WO2023045594A1 - 一种用于香料生产过程中的水处理剂及其制备方法 - Google Patents

一种用于香料生产过程中的水处理剂及其制备方法 Download PDF

Info

Publication number
WO2023045594A1
WO2023045594A1 PCT/CN2022/110549 CN2022110549W WO2023045594A1 WO 2023045594 A1 WO2023045594 A1 WO 2023045594A1 CN 2022110549 W CN2022110549 W CN 2022110549W WO 2023045594 A1 WO2023045594 A1 WO 2023045594A1
Authority
WO
WIPO (PCT)
Prior art keywords
water treatment
treatment agent
production process
preparation
stir
Prior art date
Application number
PCT/CN2022/110549
Other languages
English (en)
French (fr)
Inventor
王天义
汪洋
张政
王毅
何云飞
Original Assignee
安徽华业香料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽华业香料股份有限公司 filed Critical 安徽华业香料股份有限公司
Publication of WO2023045594A1 publication Critical patent/WO2023045594A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of water treatment agents, and in particular relates to a water treatment agent used in the production of spices and a preparation method thereof.
  • Spices are closely related to people's lives. In the past ten years, the spices industry has developed rapidly, with an annual output value of tens of billions of enterprises and thousands of enterprises. The resulting environmental problems have become increasingly serious.
  • the components of spice wastewater are complex and changeable, and some wastewater has a high concentration of organic matter. , Difficult to biodegrade, high in acidity and alkalinity and salt content, and also contains oil or surfactants, etc., making it difficult to handle.
  • the organic components of wastewater contain a large amount of aromatic hydrocarbons, aromatic compounds and their derivatives, as many as 20 kinds, including substances that can inhibit the growth of microorganisms such as phenol, toluene, benzaldehyde, etc.;
  • a large number of surfactants are added to the wastewater, so the wastewater is characterized by high concentration, large fluctuations in water quality, and contains a large amount of organic substances that can inhibit the growth of microorganisms, and the composition of water pollution sources is complex.
  • the present invention provides a water treatment agent used in the perfume production process and a preparation method thereof.
  • a method for preparing a water treatment agent used in the production of spices comprising the following steps: mixing iron-based montmorillonite and deionized water, then adding modified cyclodextrin, and stirring and reacting at 20-30°C for 24 hours , after the reaction, adjust the pH value to 7 with hydrochloric acid solution, then filter under reduced pressure, wash the filter cake three times with distilled water, and vacuum-dry it to constant weight at 60°C after washing, to obtain a water treatment agent.
  • Cyclodextrin is a A natural polymer with a special pore structure is hydrophilic because of its outer edge containing a large number of hydroxyl groups, while the inner cavity is hydrophobic. The inner cavity can reduce the concentration of organic matter through inclusion complexation with organic matter.
  • the dosage ratio of iron-based montmorillonite, modified cyclodextrin and deionized water is 5-8g:1-2g:50ml.
  • modified cyclodextrin is prepared through the following steps:
  • Step S11 under the condition of nitrogen protection and temperature at 0°C, mix ⁇ -cyclodextrin and N,N-dimethylformamide, add octenyl succinic anhydride and stir for 10 minutes, then raise the temperature to 80°C, and stir for 9 hours, Cool to room temperature after the reaction, add three times the volume of chloroform, filter, wash the filter cake with acetone, and dry at 60°C to constant weight after washing to obtain solid a;
  • Step S12 under the condition of nitrogen protection, add the solid a and the modifier into deionized water, stir to dissolve, then add the initiator, stir and react at 65°C for 9h, cool to room temperature after the reaction, and then double the volume mixed with acetone, filtered under reduced pressure, and the filter cake was dried to constant weight at 60°C to obtain the modified cyclodextrin.
  • the dosage ratio of ⁇ -cyclodextrin, octenyl succinic anhydride and N,N-dimethylformamide in step S11 is 5g:2g:50ml; the initiator in step S12 is ammonium persulfate, bisulfite Sodium and deionized water are mixed according to the dosage ratio of 0.01mol:0.01mol:20ml; the dosage ratio of solid a, modifier, deionized water and initiator is 5.5g:1.8g:50ml:1ml.
  • the modifying agent is prepared through the following steps:
  • the reaction process is as follows:
  • the molar ratio of dimethylaminoethyl methacrylate and 2-(2'-hydroxyl-3',5'-di-tert-butylphenyl)-5 chlorobenzotriazole is 1:1: 1.
  • the dosage of dimethylaminoethyl methacrylate and acetonitrile is 1g:10ml.
  • iron-based montmorillonite is prepared through the following steps:
  • Iron-based montmorillonite Mix sodium-based montmorillonite and deionized water, stir for 2 hours at a temperature of 30°C, then add ferric chloride solution, and stir for 6 hours. After stirring, centrifuge and wash until the washing liquid does not contain chloride ions.
  • Iron-based montmorillonite combined with modified cyclodextrin improves photo-assisted Fenton catalytic activity.
  • Iron-based montmorillonite has the advantages of large specific surface area and good stability.
  • the ultraviolet absorption structure in modified cyclodextrin improves the performance of water treatment agents. stability and promote catalytic efficiency.
  • the dosage ratio of sodium montmorillonite, deionized water and ferric chloride solution is 5g:200ml:100ml
  • the ferric chloride solution is ferric chloride hexahydrate and deionized water mixed according to the dosage ratio of 5g:100ml. become.
  • the invention prepares a water treatment agent used in the production process of spices.
  • the treatment agent oxidizes and degrades spice wastewater by immobilizing iron elements and modified cyclodextrin on the surface of montmorillonite, and makes some refractory organic matter Oxidative decomposition reduces its toxicity and improves the biodegradability of wastewater.
  • Modified cyclodextrin is based on UV absorber, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole and dimethylammonium methacrylate Ethyl ester reaction to prepare a modifier containing an unsaturated quaternary ammonium salt structure, first polymerize with ⁇ -cyclodextrin, and then undergo ion exchange with iron-based montmorillonite to modify the ultraviolet absorption structure in the cyclodextrin, Improve the stability of water treatment agents and promote catalytic efficiency.
  • dimethylaminoethyl methacrylate and 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole add acetonitrile, at 45°C Stir the reaction for 12 hours, then freeze and crystallize, wash the obtained crystals with ether, and then vacuum-dry to constant weight to obtain a modifier; wherein, dimethylaminoethyl methacrylate and 2-(2'-hydroxyl-3', The molar ratio of 5'-di-tert-butylphenyl)-5-chlorobenzotriazole is 1:1:1; the ratio of dimethylaminoethyl methacrylate to acetonitrile is 1g:10ml.
  • modified cyclodextrin is prepared through the following steps:
  • Step S11 under the condition of nitrogen protection and temperature at 0°C, mix ⁇ -cyclodextrin and N,N-dimethylformamide, add octenyl succinic anhydride and stir for 10 minutes, then raise the temperature to 80°C, and stir for 9 hours, After the reaction, cool to room temperature, add three times the volume of chloroform, filter, wash the filter cake with acetone, and dry at 60°C to a constant weight after washing to obtain solid a; wherein, ⁇ -cyclodextrin, octane
  • the dosage ratio of alkenyl succinic anhydride and N, N-dimethylformamide is 5g: 2g: 50mL;
  • Step S12 under the condition of nitrogen protection, add the solid a and the modifier into deionized water, stir to dissolve, then add the initiator, stir and react at 65°C for 9h, cool to room temperature after the reaction, and then double the volume mixed with acetone, filtered under reduced pressure, and the filter cake was dried to constant weight at 60°C to obtain a modified cyclodextrin; wherein, the initiator was ammonium persulfate, sodium bisulfite and deionized water according to the dosage ratio of 0.01 mol: 0.01mol: 20mL mixed; the amount ratio of solid a, modifier, deionized water and initiator is 5.5g: 1.8g: 50mL: 1mL; the modifier is prepared in Example 1.
  • a preparation method for a water treatment agent used in the perfume production process comprising the steps of:
  • the dosage ratio of iron-based montmorillonite, modified cyclodextrin and deionized water is 5g: 1g: 50mL; iron-based montmorillonite is prepared in Example 3; modified cyclodextrin is the made.
  • a preparation method for a water treatment agent used in the perfume production process comprising the steps of:
  • the dosage ratio of iron-based montmorillonite, modified cyclodextrin and deionized water is 6g: 1.5g: 50mL; iron-based montmorillonite is prepared in Example 3; modified cyclodextrin is the 2 made.
  • a preparation method for a water treatment agent used in the perfume production process comprising the steps of:
  • the dosage ratio of iron-based montmorillonite, modified cyclodextrin and deionized water is 8g: 2g: 50mL; iron-based montmorillonite is prepared in Example 3; modified cyclodextrin is the made.
  • Example 2 The modified cyclodextrin in Example 2 is replaced by ⁇ -cyclodextrin, and all the other raw materials and preparation process remain unchanged.
  • Example 2 The iron-based montmorillonite in Example 2 was replaced with sodium-based montmorillonite, and the rest of the raw materials and preparation process remained unchanged.
  • the water treatment agent prepared by the present invention has the advantages of small investment, quick response and obvious effect for treating fragrance and fragrance wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明涉及一种用于香料生产过程中的水处理剂及其制备方法,属于水处理剂技术领域,该水处理剂通过如下步骤制备:将铁基蒙脱土和去离子水混合,然后加入改性环糊精,搅拌反应24h,得到一种用于香料生产过程中的水处理剂;由于合成香料废水中含有大量对微生物具有毒害作用的难降解的有机物,又缺乏营养元素磷,直接采用生化法处理这类废水效果极低,有时甚至无法运行。通过化学氧化,可以将废水中许多有毒有害难降解的有机物转化为微毒、无毒、易降解的物质。

Description

一种用于香料生产过程中的水处理剂及其制备方法 技术领域
本发明属于水处理剂技术领域,具体地,涉及一种用于香料生产过程中水处理剂及其制备方法。
背景技术
香料与人们的生活密切相关,近十年来,香料行业发展迅猛,年产值数百亿企业数千家,由此带来的环保问题日益严重,香料废水成分复杂多变,有的废水有机物浓度高,难以生物降解,酸碱性和含盐量高,还含油或表面活性剂等,处理难度大。废水的有机成分中含有大量的芳烃,芳香化合物及其衍生物,多达二十多种,其中还包括对微生物生长有抑制作用的物质如酚、甲苯、苯甲醛等;在洗涤反应釜等过程中加入大量的表面活性剂,因此,其废水的特点是浓度高,水质波动大,含有大量的对微生物生长有抑制作用的有机物质,水中污染源成分复杂。
发明内容
为了解决背景技术中提到的技术问题,本发明提供一种用于香料生产过程中的水处理剂及其制备方法。
本发明的目的可以通过以下技术方案实现:
由于合成香料废水中含有大量对微生物具有毒害作用的难降解的有机 物,又缺乏营养元素磷,直接采用生化法处理这类废水效果极低,有时甚至无法运行。通过化学氧化,可以将废水中许多有毒有害难降解的有机物转化为微毒、无毒、易降解的物质。
一种用于香料生产过程中的水处理剂的制备方法,包括如下步骤:将铁基蒙脱土和去离子水混合,然后加入改性环糊精,在20-30℃条件下搅拌反应24h,反应结束后,用盐酸溶液调节pH值为7,然后减压抽滤,滤饼用蒸馏水洗涤三遍,洗涤结束后在60℃条件下真空干燥至恒重,得到一种用于香料生产过程中的水处理剂。铁基蒙脱土和改性环糊精发生离子交换,其中改性环糊精中含有季铵盐结构,将改性环糊精固载在铁基蒙脱土表面,环糊精是一种具有特殊孔道结构的天然高分子,因其外缘含有大量的羟基而呈现亲水性,而内腔则呈现疏水性。内腔可以与有机物发生包合作用而降低有机物的浓度。
进一步地,铁基蒙脱土、改性环糊精和去离子水的用量比为5-8g:1-2g:50ml。
进一步地,改性环糊精通过如下步骤制备:
步骤S11、在氮气保护、温度为0℃条件下,将β-环糊精和N,N-二甲基甲酰胺混合,加入辛烯基琥珀酸酐搅拌10min,然后升温至80℃,搅拌9h,反应结束后冷却至室温,加入三倍体积的三氯甲烷,过滤、滤饼用丙酮洗涤,洗涤结束后在60℃条件下干燥至恒重,得到固体a;
步骤S12、在氮气保护条件下,将固体a和改性剂加入去离子水中,搅拌溶解,然后加入引发剂,在65℃条件下搅拌反应9h,反应结束后冷却至室温,然后和两倍体积的丙酮混合,减压抽滤,滤饼在60℃条件下,干燥至恒重,得到改性环糊精。
进一步地,步骤S11中β-环糊精、辛烯基琥珀酸酐和N,N-二甲基甲酰胺的用 量比为5g:2g:50ml;步骤S12中引发剂为过硫酸铵、亚硫酸氢钠和去离子水按照用量比0.01mol:0.01mol:20ml混合而成;固体a、改性剂、去离子水和引发剂的用量比为5.5g:1.8g:50ml:1ml。
进一步地,改性剂通过如下步骤制备:
将甲基丙烯酸二甲氨乙酯和2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑混合,加入乙腈,在45℃条件下搅拌反应12h,然后冷冻结晶,将得到的晶体用乙醚洗涤,然后真空干燥至恒重,得到改性剂。
反应过程如下所示:
Figure PCTCN2022110549-appb-000001
进一步地,甲基丙烯酸二甲氨乙酯和2-(2'-羟基-3',5'-二叔丁基苯基)-5氯代苯并三唑的用量摩尔比为1:1:1,甲基丙烯酸二甲氨乙酯和乙腈的用量为1g:10ml。
进一步地,铁基蒙脱土通过如下步骤制备:
将钠基蒙脱土和去离子水混合,在温度为30℃条件下搅拌2h,然后加入氯化铁溶液,搅拌6h,搅拌结束后离心分离、洗涤,洗涤至洗涤液中不含有氯离子,得到铁基蒙脱土。铁基蒙脱土配合改性环糊精提高光助芬顿催化活性,铁基蒙脱土具有比表面积大、稳定性好的优点,改性环糊精中的紫外线吸收结构,提高水处理剂的稳定性,促进催化效率。
进一步地,钠基蒙脱土、去离子水和氯化铁溶液的用量比为5g:200ml:100ml,氯化铁溶液为六水三氯化铁和去离子水按照用量比5g:100ml混合而成。
本发明的有益效果:
本发明制备了一种用于香料生产过程中的水处理剂,该处理剂通过将铁元素和改性环糊精固载在蒙脱土表面,对香料废水进行氧化降解,使部分难降解有机物氧化分解,降低其毒性,提高废水可生化性。改性环糊精是以紫外线吸收剂为原料,2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑和甲基丙烯酸二甲氨乙酯反应,制得含有不饱和季铵盐结构的改性剂,先与β-环糊精聚合反应,然后和铁基蒙脱土发生离子交换,改性环糊精中的紫外线吸收结构,提高水处理剂的稳定性,促进催化效率。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
制备改性剂:
将甲基丙烯酸二甲氨乙酯和2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑混合,加入乙腈,在45℃条件下搅拌反应12h,然后冷冻结晶,将得到的晶体用乙醚洗涤,然后真空干燥至恒重,得到改性剂;其中,甲基丙烯酸二甲氨乙酯和2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑的用量摩尔比为1:1:1;甲基丙烯酸二甲氨乙酯和乙腈的用量比为1g:10ml。
实施例2
进一步地,改性环糊精通过如下步骤制备:
步骤S11、在氮气保护、温度为0℃条件下,将β-环糊精和N,N-二甲基甲酰胺混合,加入辛烯基琥珀酸酐搅拌10min,然后升温至80℃,搅拌9h,反应结束后冷却至室温,加入三倍体积的三氯甲烷,过滤、滤饼用丙酮洗涤,洗涤结束后在60℃条件下干燥至恒重,得到固体a;其中,β-环糊精、辛烯基琥珀酸酐和N,N-二甲基甲酰胺的用量比为5g:2g:50mL;
步骤S12、在氮气保护条件下,将固体a和改性剂加入去离子水中,搅拌溶解,然后加入引发剂,在65℃条件下搅拌反应9h,反应结束后冷却至室温,然后和两倍体积的丙酮混合,减压抽滤,滤饼在60℃条件下,干燥至恒重,得到改性环糊精;其中,引发剂为过硫酸铵、亚硫酸氢钠和去离子水按照用量比0.01mol:0.01mol:20mL混合而成;固体a、改性剂、去离子水和引发剂的用量比为5.5g:1.8g:50mL:1mL;改性剂为实施例1制得的。
实施例3
制备铁基蒙脱土:
将钠基蒙脱土和去离子水混合,在温度为30℃条件下搅拌2h,然后加入氯化铁溶液,搅拌6h,搅拌结束后离心分离、洗涤,洗涤至洗涤液中不含有氯离子,得到铁基蒙脱土;其中,钠基蒙脱土、去离子水和氯化铁溶液的用量比为5g:200mL:100mL;氯化铁溶液为六水三氯化铁和去离子水按照用量比5g:100mL混合而成。
实施例4
一种用于香料生产过程中的水处理剂的制备方法,包括如下步骤:
将铁基蒙脱土和去离子水混合,然后加入改性环糊精,在20℃条件下搅拌反应24h,反应结束后,用盐酸溶液调节pH值为7,然后减压抽滤,滤饼 用蒸馏水洗涤三遍,洗涤结束后在60℃条件下真空干燥至恒重,得到一种用于香料生产过程中的水处理剂。
其中,铁基蒙脱土、改性环糊精和去离子水的用量比为5g:1g:50mL;铁基蒙脱土为实施例3中制得的;改性环糊精为实施例2制得的。
实施例5
一种用于香料生产过程中的水处理剂的制备方法,包括如下步骤:
将铁基蒙脱土和去离子水混合,然后加入改性环糊精,在25℃条件下搅拌反应24h,反应结束后,用盐酸溶液调节pH值为7,然后减压抽滤,滤饼用蒸馏水洗涤三遍,洗涤结束后在60℃条件下真空干燥至恒重,得到一种用于香料生产过程中的水处理剂。
其中,铁基蒙脱土、改性环糊精和去离子水的用量比为6g:1.5g:50mL;铁基蒙脱土为实施例3中制得的;改性环糊精为实施例2制得的。
实施例6
一种用于香料生产过程中的水处理剂的制备方法,包括如下步骤:
将铁基蒙脱土和去离子水混合,然后加入改性环糊精,在30℃条件下搅拌反应24h,反应结束后,用盐酸溶液调节pH值为7,然后减压抽滤,滤饼用蒸馏水洗涤三遍,洗涤结束后在60℃条件下真空干燥至恒重,得到一种用于香料生产过程中的水处理剂。
其中,铁基蒙脱土、改性环糊精和去离子水的用量比为8g:2g:50mL;铁基蒙脱土为实施例3中制得的;改性环糊精为实施例2制得的。
对比例1
将实施例2中的改性环糊精换成β-环糊精,其余原料及制备过程保持 不变。
对比例2
将实施例2中的铁基蒙脱土换成钠基蒙脱土,其余原料及制备过程保持不变。
对实施例4-6和对比例1-2制得的样品进行测试;
取香料香料水样1000mL于烧杯中,同时把烧杯放在小型磁力搅拌器上,用H 2SO 4或NaOH调节pH值到3,边搅拌边加入制得的样品;样品的加入量为4g/L;待完成上述操作之后,加入一定体积的H 2O 2,以1000W氙灯为光源模拟太阳光,反应3h后从烧杯中取20mL水样。每次取完样后,先测其pH值,然后再用H 2SO 4或NaOH调节pH值到中性,过滤沉淀,取10mL过滤后的水样测COD;
测试结果如下表1所示:
表1
Figure PCTCN2022110549-appb-000002
从上表1可知,本发明制得的水处理剂,处理香料香料废水,具有投资小、反应快、效果明显的优点。
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、 材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

  1. 一种用于香料生产过程中的水处理剂的制备方法,其特征在于,包括如下步骤:
    将铁基蒙脱土和去离子水混合,然后加入改性环糊精,在20-30℃条件下搅拌反应24h,得到一种用于香料生产过程中的水处理剂;
    改性环糊精通过如下步骤制备:
    步骤S11、在氮气保护、温度为0℃条件下,将β-环糊精和N,N-二甲基甲酰胺混合,加入辛烯基琥珀酸酐搅拌10min,然后升温至80℃,搅拌9h,得到固体a;
    步骤S12、在氮气保护条件下,将固体a和改性剂加入去离子水中,搅拌溶解,然后加入引发剂,在65℃条件下搅拌反应9h,得到改性环糊精。
  2. 根据权利要求1所述的一种用于香料生产过程中的水处理剂的制备方法,其特征在于,铁基蒙脱土、改性环糊精和去离子水的用量比为5-8g:1-2g:50mL。
  3. 根据权利要求1所述的一种用于香料生产过程中的水处理剂的制备方法,其特征在于,步骤S11中β-环糊精、辛烯基琥珀酸酐和N,N-二甲基甲酰胺的用量比为5g:2g:50mL;步骤S12中引发剂为过硫酸铵、亚硫酸氢钠和去离子水按照用量比0.01mol:0.01mol:20mL混合而成;固体a、改性剂、去离子水和引发剂的用量比为5.5g:1.8g:50mL:1mL。
  4. 根据权利要求1所述的一种用于香料生产过程中的水处理剂的制备方法,其特征在于,改性剂通过如下步骤制备:
    将甲基丙烯酸二甲氨乙酯和2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑混合,加入乙腈,在45℃条件下搅拌反应12h,得到改性剂。
  5. 根据权利要求4所述的一种用于香料生产过程中的水处理剂的制备方法,其特征在于,甲基丙烯酸二甲氨乙酯和2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑的用量摩尔比为1.1:1;甲基丙烯酸二甲氨乙酯和乙腈的用量比为1g:10mL。
  6. 根据权利要求1所述的一种用于香料生产过程中的水处理剂的制备方 法,其特征在于,铁基蒙脱土通过如下步骤制备:
    将钠基蒙脱土和去离子水混合,在温度为30℃条件下搅拌2h,然后加入氯化铁溶液,搅拌6h,搅拌结束后离心分离、洗涤,洗涤至洗涤液中不含有氯离子,得到铁基蒙脱土。
  7. 一种用于香料生产过程中的水处理剂,其特征在于,由权利要求1所述的制备方法制备而成。
PCT/CN2022/110549 2021-09-23 2022-08-05 一种用于香料生产过程中的水处理剂及其制备方法 WO2023045594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111117051.9A CN113772760B (zh) 2021-09-23 2021-09-23 一种用于香料生产过程中的水处理剂及其制备方法
CN202111117051.9 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023045594A1 true WO2023045594A1 (zh) 2023-03-30

Family

ID=78852987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110549 WO2023045594A1 (zh) 2021-09-23 2022-08-05 一种用于香料生产过程中的水处理剂及其制备方法

Country Status (2)

Country Link
CN (1) CN113772760B (zh)
WO (1) WO2023045594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117623426A (zh) * 2024-01-25 2024-03-01 山东道简环保科技有限公司 一种污水处理药剂的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772760B (zh) * 2021-09-23 2022-12-27 安徽华业香料股份有限公司 一种用于香料生产过程中的水处理剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177310A (zh) * 2007-11-02 2008-05-14 西南石油大学 一种含有机染料废水处理剂的制备方法
US20140175015A1 (en) * 2011-06-20 2014-06-26 Fujifilm Corporation Water purification method
CN110734180A (zh) * 2019-10-16 2020-01-31 利安隆科润(浙江)新材料有限公司 一种回收套用催化加氢法制备紫外线吸收剂反应液中碱水的方法
CN112958090A (zh) * 2021-02-05 2021-06-15 长春工业大学 高效稳定的铁铜蒙脱土非均相芬顿催化剂及其制备方法和应用
CN113772760A (zh) * 2021-09-23 2021-12-10 安徽华业香料股份有限公司 一种用于香料生产过程中的水处理剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191416A (ja) * 1986-02-14 1987-08-21 Natl Inst For Res In Inorg Mater モンモリロナイト−メチル化シクロデキストリン系結晶質複合体及びその製造法
US8673272B2 (en) * 2009-07-27 2014-03-18 Isp Investments Inc. Ultraviolet-absorbing compounds
CN101774676A (zh) * 2010-01-20 2010-07-14 华东理工大学 处理高浓度工业有机废水的方法及相关催化剂
CN102503017B (zh) * 2011-11-09 2013-07-24 广西博世科环保科技股份有限公司 一种多元多相膜技术处理难降解有机废水的方法
CN106179245A (zh) * 2016-08-02 2016-12-07 黎明职业大学 一种蒙脱土基复合吸附剂及其制备方法
CN107935098A (zh) * 2017-12-25 2018-04-20 芜湖皖江知识产权运营中心有限公司 一种处理有机废水的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177310A (zh) * 2007-11-02 2008-05-14 西南石油大学 一种含有机染料废水处理剂的制备方法
US20140175015A1 (en) * 2011-06-20 2014-06-26 Fujifilm Corporation Water purification method
CN110734180A (zh) * 2019-10-16 2020-01-31 利安隆科润(浙江)新材料有限公司 一种回收套用催化加氢法制备紫外线吸收剂反应液中碱水的方法
CN112958090A (zh) * 2021-02-05 2021-06-15 长春工业大学 高效稳定的铁铜蒙脱土非均相芬顿催化剂及其制备方法和应用
CN113772760A (zh) * 2021-09-23 2021-12-10 安徽华业香料股份有限公司 一种用于香料生产过程中的水处理剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUZ L., CURUTCHET G., TORRES SÁNCHEZ R.M., CANDAL R.: "Adsorption of crystal violet on montmorillonite (or iron modified montmorillonite) followed by degradation through Fenton or photo-Fenton type reactions", JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, ELSEVIER BV, NL, vol. 2, no. 4, 1 December 2014 (2014-12-01), NL , pages 2344 - 2351, XP093054241, ISSN: 2213-3437, DOI: 10.1016/j.jece.2014.02.007 *
WANG, ZUODONG: "Preparation of Cationic β-cyclodextrin/montmorillonite Composite Material and Its Application in Dye Wastewater Treatment", CHINA MASTER’S THESES FULL-TEXT DATABASE SCIENCE-ENGINEERING I, no. 8, 1 May 2021 (2021-05-01), China, pages 1 - 58, XP009544852, DOI: 10.27408/d.cnki.gxmzc.2021.000138 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117623426A (zh) * 2024-01-25 2024-03-01 山东道简环保科技有限公司 一种污水处理药剂的制备方法
CN117623426B (zh) * 2024-01-25 2024-04-12 山东道简环保科技有限公司 一种污水处理药剂的制备方法

Also Published As

Publication number Publication date
CN113772760A (zh) 2021-12-10
CN113772760B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2023045594A1 (zh) 一种用于香料生产过程中的水处理剂及其制备方法
Zhang et al. Photocatalyst/enzyme heterojunction fabricated for high-efficiency photoenzyme synergic catalytic degrading Bisphenol A in water
Ramaraju et al. Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation
Tian et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure
CN102974374B (zh) 一种磷酸银/p25双功能复合材料及其制备方法和应用
Ma et al. Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation: Effect of hydrothermal treatment temperature
Wang et al. Fluorescent Ag nanoclusters templated by carboxymethyl-β-cyclodextrin (CM-β-CD) and their in vitro antimicrobial activity
Liu et al. Development of nitrogen-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of the heavy-ion Fe3+
Li et al. SMP production by activated sludge in the presence of a metabolic uncoupler, 3, 3′, 4′, 5-tetrachlorosalicylanilide (TCS)
CN105797692A (zh) 磁性-β-环糊精-氧化石墨烯复合物及其制备方法与应用
CN106423275B (zh) 一种用于可见光降解水中抗生素的磁性复合材料
Manikandan et al. Biogenic synthesis from Prunus× yedoensis leaf extract, characterization, and photocatalytic and antibacterial activity of TiO 2 nanoparticles
Liu et al. The mechanism of aquatic photodegradation of organophosphorus sensitized by humic acid-Fe3+ complexes
Das et al. ZrO2@ chitosan composite for simultaneous photodegradation of three emerging contaminants and antibacterial application
Jiang et al. A review on chitosan/metal oxide nanocomposites for applications in environmental remediation
CN108569754B (zh) 一种环境友好型污水处理剂及其使用方法和应用
CN105800765B (zh) 过氧化硫酸钠的应用
Bassi et al. Visible light assisted mineralization of malachite green dye by green synthesized xanthan gum/agar@ ZnO bionanocomposite
Khare et al. Impact of ozonation on subsequent treatment of azo dye solutions
Hassan et al. Novel fabrication of photoactive CuO/HY zeolite as an efficient catalyst for photodecolorization of malachite green
CN108358299A (zh) 一种臭氧催化降解染料废水的处理工艺
CN108314214A (zh) 一种非均相臭氧催化降解印染废水的工艺
Trama-Freitas et al. A study of bio-hybrid silsesquioxane/yeast: Biosorption and neuronal toxicity of lead
Kowsalya et al. Photocatalytic treatment of textile effluents by biosynthesized photo-smart catalyst: An eco-friendly and cost-effective approach
RU2423384C1 (ru) Способ получения водной системы разветвленных фрактальных кластеров на основе l-цистеина

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE