WO2023045463A1 - 基于数字孪生技术的电站管道在线监测预警系统及方法 - Google Patents

基于数字孪生技术的电站管道在线监测预警系统及方法 Download PDF

Info

Publication number
WO2023045463A1
WO2023045463A1 PCT/CN2022/102042 CN2022102042W WO2023045463A1 WO 2023045463 A1 WO2023045463 A1 WO 2023045463A1 CN 2022102042 W CN2022102042 W CN 2022102042W WO 2023045463 A1 WO2023045463 A1 WO 2023045463A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
pipeline
hanger
data acquisition
monitored
Prior art date
Application number
PCT/CN2022/102042
Other languages
English (en)
French (fr)
Inventor
陈尚军
王军民
武彦飞
邓玲慧
康豫军
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023045463A1 publication Critical patent/WO2023045463A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the field of pipeline state monitoring, and relates to an online monitoring and early warning system and method for power station pipelines based on digital twin technology.
  • the technology obtains the stress state of the pipeline in real time, intelligently judges the health status of the pipeline, and automatically alarms for abnormal problems.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide an online monitoring and early warning system and method for power station pipelines based on digital twin technology.
  • the system and method can perform online monitoring and early warning for pipeline status.
  • the online monitoring and early warning system for power plant pipelines based on digital twin technology includes pipelines to be monitored, a constant force hanger, a load measuring device for the first hanger, a spring hanger, and a load measuring device for the second hanger.
  • the pipeline to be monitored is set between two devices, one end of the rigid hanger, one end of the spring hanger and one end of the constant force hanger are all fixed on the pipeline to be monitored, the other end of the rigid hanger, the other end of the spring hanger and The other end of the constant force hanger is respectively fixed at the suspension position, the load measuring device of the first hanger is installed on the rigid hanger, the load measuring device of the second hanger is installed on the spring hanger, and the third hanger
  • the load measuring device is installed on the constant force hanger; the first three-direction displacement measuring device, the second three-direction displacement measuring device and the third three-direction displacement measuring device are fixed at different positions of the pipeline to be monitored; the pipeline vibration measuring device is fixed on On the pipeline to be monitored;
  • the first three-way displacement measurement device and the first hanger load measurement device are connected to the first data acquisition instrument
  • the second three-way displacement measurement device and the second support hanger load measurement device are connected to the second data acquisition instrument
  • the pipeline vibration measurement device, the third three-way displacement measurement device and the third hanger load measurement device are connected to the third data acquisition instrument
  • the switch is connected to the first data acquisition instrument, the second data acquisition instrument and the third data acquisition instrument. Connection, the switch is connected with the industrial computer, and the industrial computer includes a real-time calculation system for pipeline stress and a data interaction/early warning system;
  • the switch is connected with the first data acquisition instrument, the second data acquisition instrument and the third data acquisition instrument through the network cable.
  • It also includes a DC power supply; the DC power supply is connected to the first hanger load measuring device, the second hanger load measuring device, the third hanger load measuring device, the first three-way displacement measuring device, and the first hanger load measuring device through a power supply cable.
  • the second three-way displacement measuring device is connected with the third three-way displacement measuring device.
  • the first data acquisition instrument, the second data acquisition instrument and the third data acquisition instrument are connected through synchronous signal lines.
  • the first data collector, the second data collector and the third data collector adopt a distributed installation mode.
  • the pipeline vibration measurement device is fixed on the pipeline to be monitored through the pipe clamp hoop.
  • the first three-way displacement measuring device is set at one end of the pipeline to be monitored, the second three-way displacement measuring device is set at the other end of the pipeline to be monitored, and the third three-way displacement measuring device is set at the maximum design expansion displacement position on the pipeline to be monitored place.
  • the first three-direction displacement measuring device, the second three-direction displacement measuring device and the third three-direction displacement measuring device are all fixed on the pipeline to be monitored through pipe clamps.
  • the switch is connected with the industrial computer through the wireless transmitting module, the signal relay module and the signal receiving module.
  • a method for online monitoring and early warning of power station pipelines based on digital twin technology includes the following steps:
  • the pipeline stress real-time calculation system obtains the pipeline vibration measurement device, the first hanger load measurement device, the second hanger load measurement device, the third hanger load measurement device, and the first three-way displacement measurement according to the stress automatic analysis time interval device, the second three-way displacement measuring device and the third three-way displacement measuring device, and then the pipeline vibration measuring device, the first hanger load measuring device, the second hanger load measuring device, the third The data measured by the hanger load measuring device, the first three-way displacement measuring device, the second three-way displacement measuring device and the third three-way displacement measuring device are input into the stress calculation model of the pipeline to be monitored, and the primary stress and secondary stress;
  • the vibration of the pipeline to be monitored is greater than the pipeline vibration velocity threshold
  • the displacement of the pipeline to be monitored is greater than the allowable threshold a% of the thermal displacement deviation from the design
  • the load of the pipeline to be monitored is greater than the allowable threshold b% of the load deviation from the design
  • the primary stress/secondary stress of the pipeline to be monitored If the stress is greater than the primary stress/secondary stress alarm threshold c%, an alarm signal is generated.
  • the on-line monitoring and early warning system and method for power station pipelines based on digital twin technology described in the present invention during specific operations, through the pipeline vibration measurement device, the first hanger load measurement device, the second hanger load measurement device, the third support
  • the hanger load measuring device, the first three-way displacement measuring device, the second three-way displacement measuring device and the third three-way displacement measuring device realize the monitoring of pipeline data, and then judge the vibration signal, displacement signal and load of the pipeline through the industrial computer Whether the signal and the primary stress/secondary stress meet the requirements, and if they do not meet the requirements, an alarm will be issued to truly achieve proactive prevention in advance and ensure the safe operation of the pipeline.
  • Fig. 1 is a structural representation of the present invention
  • Fig. 2 is the workflow diagram of pipeline stress real-time calculation system 13;
  • FIG. 3 is a working flow chart of the data interaction/early warning system 14 .
  • 1 is the pipeline to be monitored
  • 2 is the constant force hanger
  • 21 is the load measuring device of the first hanger
  • 3 is the spring hanger
  • 31 is the load measuring device of the second hanger
  • 4 is the rigid hanger
  • 41 is the third hanger load measuring device
  • 5 is the DC power supply
  • 51 is the first three-way displacement measuring device
  • 52 is the second three-way displacement measuring device
  • 53 is the third three-way displacement measuring device
  • 501 is the power supply line cable
  • 61 is the pipeline vibration measurement device
  • 71 is the first data acquisition instrument
  • 72 is the second data acquisition instrument
  • 73 is the third data acquisition instrument
  • 701 is the sensor signal cable
  • 702 is the synchronous signal line
  • 8 is the switch
  • 9 is a wireless transmitting module
  • 10 is a signal relay module
  • 11 is a signal receiving module
  • 12 is an industrial computer
  • 13 is a real-time calculation system for pipeline stress
  • 14 is a data interaction/early warning system.
  • the online monitoring and early warning system for power plant pipelines based on digital twin technology includes a pipeline to be monitored 1, a constant force hanger 2, a first hanger load measuring device 21, a spring hanger 3, a second support Hanger load measuring device 31, rigid hanger 4, third hanger load measuring device 41, DC power supply 5, first three-way displacement measuring device 51, second three-way displacement measuring device 52, third three-way displacement Measuring device 53, power supply cable 501, pipeline vibration measuring device 61, first data acquisition instrument 71, second data acquisition instrument 72, third data acquisition instrument 73, sensor signal cable 701, synchronization signal line 702, switch 8, Wireless transmitting module 9, signal relay module 10, signal receiving module 11 and industrial computer 12;
  • the pipeline 1 to be monitored is set between the equipment A and the equipment B, one end of the rigid hanger 4, one end of the spring hanger 3 and one end of the constant force hanger 2 are all fixed on the pipeline 1 to be monitored, and the other end of the rigid hanger 4 One end, the other end of the spring hanger 3 and the other end of the constant force hanger 2 are all fixed at the suspension position, the first hanger load measuring device 21 is threaded on the rigid hanger 4, the second hanger load The measuring device 31 is threadedly mounted on the spring hanger 3, the third hanger load measuring device 41 is threaded on the constant force hanger 2, the first three-way displacement measuring device 51 and the first hanger load measuring device 21 are connected with the The first data acquisition instrument 71 is connected, the second three-way displacement measurement device 52 and the second support hanger load measurement device 31 are connected with the second data acquisition instrument 72, the third three-way displacement measurement device 53 and the third support hanger Frame load measuring device 41 is connected with the 3rd data acquisition instrument 73, switch 8 is connected with the first
  • the data collectors 72 , the third three-way displacement measuring device 53 , the third hanger load measuring device 41 and the third data collecting device 73 are all connected by sensor signal cables 701 .
  • the first three-way displacement measuring device 51, the second three-way displacement measuring device 52 and the third three-way displacement measuring device 53 are all fixed on the pipeline 1 to be monitored by the pipe clamp hoop, and the first three-way displacement measuring device 51 is arranged on At one end of the pipeline 1 to be monitored, the second three-way displacement measuring device 52 is arranged at the other end of the pipeline 1 to be monitored, and the third three-way displacement measuring device 53 is arranged at the maximum design expansion displacement position on the pipeline 1 to be monitored, so as to obtain The actual expansion state of key parts of the pipeline 1 to be monitored;
  • the pipeline vibration measurement device 61 is fixed on the pipeline to be monitored 1 through the pipe clamp hoop, and the output end of the pipeline vibration measurement device 61 is connected with the third data acquisition instrument 73 to obtain pipeline vibration velocity data in real time;
  • the first data acquisition instrument 71, the second data acquisition instrument 72 and the third data acquisition instrument 73 adopt a distributed installation mode, and are placed near each signal measuring point nearby, the first data acquisition instrument 71, the second data acquisition instrument 72 and the third data acquisition instrument 73 are connected through a synchronous signal line 702, so as to realize signal synchronous trigger acquisition;
  • the DC power supply 5 communicates with the first hanger load measuring device 21, the second hanger load measuring device 31, the third hanger load measuring device 41, the first three-way displacement measuring device 51, and the first hanger load measuring device 51 through a power supply cable 501.
  • the second three-way displacement measuring device 52 and the third three-way displacement measuring device 53 are connected to realize unified power supply.
  • the switch 8 is connected with the first data acquisition instrument 71 , the second data acquisition instrument 72 and the third data acquisition instrument 73 via network cables.
  • the measured load, displacement and vibration signals are sent to the industrial computer 12 by the switch 8 via the wireless transmission module 9, the signal relay module 10 and the signal receiving module 11;
  • the industrial computer 12 includes a pipeline stress real-time calculation system 13 and data interaction/warning System 14.
  • the pipeline stress real-time calculation system 13 obtains the pipeline vibration measurement device 61, the first hanger load measurement device 21, the second support hanger load measurement device 31, the third hanger load measurement device Frame load measuring device 41, the first three-way displacement measuring device 51, the second three-way displacement measuring device 52 and the third three-way displacement measuring device 53 measure the data obtained, and then call the pipeline stress finite element calculation program to open the pipeline stress to be monitored Calculation model, then the pipeline vibration measuring device 61, the first hanger load measuring device 21, the second hanger load measuring device 31, the third hanger load measuring device 41, the first three-way displacement measuring device 51, The data measured by the second three-way displacement measuring device 52 and the third three-way displacement measuring device 53 are input into the stress calculation model of the pipeline to be monitored to obtain the primary stress and secondary stress of the pipeline 1 to be monitored;
  • vibration signal monitoring time interval ⁇ T 2 Set vibration signal monitoring time interval ⁇ T 2 , displacement signal monitoring time interval ⁇ T 3 , load signal monitoring time interval ⁇ T 4 , primary stress/secondary stress time interval ⁇ T 5 , pipeline vibration velocity threshold, thermal displacement deviation design Allowable threshold a%, load deviation from design allowable threshold b%, and primary stress/secondary stress alarm threshold c%; according to vibration signal monitoring time interval ⁇ T 2 , displacement signal monitoring time interval ⁇ T 3 , load signal monitoring time interval ⁇ T 4.
  • the primary stress/secondary stress time interval ⁇ T 5 is used to obtain vibration signals, displacement signals, load signals and primary stress/secondary stress.
  • the load of the pipeline 1 to be monitored is greater than the load deviation from the design allowable threshold b%, or the primary stress/secondary stress of the pipeline 1 to be monitored is greater than the primary stress/secondary stress alarm threshold c%, an alarm will be generated Signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Pipeline Systems (AREA)

Abstract

一种基于数字孪生技术的电站管道在线监测预警系统及方法,该系统包括:待监测管道(1)、恒力吊架(2)、第一支吊架载荷测量装置(21)、弹簧吊架(3)、第二支吊架载荷测量装置(31)、刚性吊架(4)、第三支吊架载荷测量装置(41)、DC直流电源(5)、第一三向位移测量装置(51)、第二三向位移测量装置(52)、第三三向位移测量装置(53)、管道振动测量装置(61)、第一数据采集仪(71)、第二数据采集仪(72)、第三数据采集仪(73)、交换机(8)及工控机(12)。该系统及方法能够实现对管道状态进行在线监测,并判断管道的振动信号、位移信号、载荷信号以及一次应力/二次应力是否符合要求,当不符合要求时,则进行报警,实现事前主动预防,确保管道安全运行。

Description

基于数字孪生技术的电站管道在线监测预警系统及方法 技术领域
本发明属于管道状态监测领域,涉及一种基于数字孪生技术的电站管道在线监测预警系统及方法。
背景技术
近年来,我国电力行业飞速发展,目前已形成以单机30万千瓦、60万千瓦、100万千瓦等级大型国产发电机组为主的发电系统,单元机组向高参数、大容量、智能化方向发展的同时,配套的汽水管道系统也正向复杂化、精细化转变。初始设计缺陷、设备制造偏差、基建安装误差等因素造成的大型火电机组管道偏离设计状态的现象时有发生,尤其是为响应“2030年碳达峰、2060年碳中和”的号召,火电机组深度调峰带来机组的运行不稳定性增加,目前已有较多因管道偏离设计状态引起端点推力异常而导致汽轮机振动超标、管道严重变形、应力水平激增、焊缝开裂、管道振动超限、甚至造成事故停机的报导,严重威胁到机组的安全生产。
目前对在役动力管道偏离设计状态的防治手段还处于“事后被动处理”阶段,不能做到“事前主动预防”,其技术瓶颈在于无法长期实时获取管道受力与膨胀信息、无法准确获取管道实时应力状态,进而无法综合各项数据对管道状态进行智能实时监测预警。
因此,有必要开发一种能够极大提高管道安全运行稳定性的状态监测系统,该系统应具备以下特征:能够长期实时获取管道受力及膨胀信 息、能够长期实时获取管道振动信息、利用数字孪生技术实时获得管道应力状态、智能判别管道健康状态、异常问题自动报警等。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种基于数字孪生技术的电站管道在线监测预警系统及方法,该系统及方法能够对管道状态进行在线监测预警。
为达到上述目的,本发明所述的基于数字孪生技术的电站管道在线监测预警系统包括待监测管道、恒力吊架、第一支吊架载荷测量装置、弹簧吊架、第二支吊架载荷测量装置、刚性吊架、第三支吊架载荷测量装置、DC直流电源、第一三向位移测量装置、第二三向位移测量装置、第三三向位移测量装置、管道振动测量装置、第一数据采集仪、第二数据采集仪、第三数据采集仪、交换机及工控机;
待监测管道设置于两个设备间,刚性吊架的一端、弹簧吊架的一端及恒力吊架的一端均固定于待监测管道上,刚性吊架的另一端、弹簧吊架的另一端及恒力吊架的另一端分别固定于悬吊位置处,第一支吊架载荷测量装置安装于刚性吊架上,第二支吊架载荷测量装置安装于弹簧吊架上,第三支吊架载荷测量装置安装于恒力吊架上;第一三向位移测量装置、第二三向位移测量装置及第三三向位移测量装置固定于待监测管道的不同位置处;管道振动测量装置固定于待监测管道上;
第一三向位移测量装置及第一支吊架载荷测量装置与第一数据采集仪相连接,第二三向位移测量装置及第二支吊架载荷测量装置与第二数据采集仪相连接,管道振动测量装置、第三三向位移测量装置及第三支 吊架载荷测量装置与第三数据采集仪相连接,交换机与第一数据采集仪、第二数据采集仪及第三数据采集仪相连接,交换机与工控机相连接,工控机包括管道应力实时计算系统及数据交互/预警系统;
交换机经网线与第一数据采集仪、第二数据采集仪及第三数据采集仪相连接。
还包括DC直流电源;DC直流电源通过供电线缆与第一支吊架载荷测量装置、第二支吊架载荷测量装置、第三支吊架载荷测量装置、第一三向位移测量装置、第二三向位移测量装置及第三三向位移测量装置相连接。
第一数据采集仪、第二数据采集仪及第三数据采集仪之间通过同步信号线相连接。
所述第一数据采集仪、第二数据采集仪及第三数据采集仪采用分布式安装模式。
管道振动测量装置通过管夹抱箍固定于待监测管道上。
第一三向位移测量装置设置于待监测管道的一端,第二三向位移测量装置设置于待监测管道的另一端,第三三向位移测量装置设置于待监测管道上设计膨胀位移最大的位置处。
第一三向位移测量装置、第二三向位移测量装置及第三三向位移测量装置均通过管夹抱箍固定于待监测管道上。
交换机经无线发射模块、信号中继模块及信号接收模块与工控机相连接。
一种基于数字孪生技术的电站管道在线监测预警方法包括以下步 骤:
管道应力实时计算系统根据应力自动分析时间间隔获取管道振动测量装置、第一支吊架载荷测量装置、第二支吊架载荷测量装置、第三支吊架载荷测量装置、第一三向位移测量装置、第二三向位移测量装置及第三三向位移测量装置测量得到的数据,再将管道振动测量装置、第一支吊架载荷测量装置、第二支吊架载荷测量装置、第三支吊架载荷测量装置、第一三向位移测量装置、第二三向位移测量装置及第三三向位移测量装置测量的数据输入到待监测管道应力计算模型中,得待监测管道的一次应力及二次应力;
当待监测管道的振动大于管道振动速度阈值、待监测管道的位移大于热位移偏离设计容许阈值a%、待监测管道的载荷大于载荷偏离设计容许阈值b%或者待监测管道的一次应力/二次应力大于一次应力/二次应力报警阈值c%,则产生报警信号。
本发明具有以下有益效果:
本发明所述的基于数字孪生技术的电站管道在线监测预警系统及方法在具体操作时,通过管道振动测量装置、第一支吊架载荷测量装置、第二支吊架载荷测量装置、第三支吊架载荷测量装置、第一三向位移测量装置、第二三向位移测量装置及第三三向位移测量装置实现对管道数据的监测,再通过工控机判断管道的振动信号、位移信号、载荷信号以及一次应力/二次应力是否符合要求,当不符合要求时,则进行报警,真正做到事前主动预防,确保管道安全运行。
附图说明
图1为本发明的结构示意图;
图2为管道应力实时计算系统13的工作流程图;
图3为数据交互/预警系统14的工作流程图。
其中,1为待监测管道、2为恒力吊架、21为第一支吊架载荷测量装置、3为弹簧吊架、31为第二支吊架载荷测量装置、4为刚性吊架、41为第三支吊架载荷测量装置、5为DC直流电源、51为第一三向位移测量装置、52为第二三向位移测量装置、53为第三三向位移测量装置、501为供电线缆、61为管道振动测量装置、71为第一数据采集仪、72为第二数据采集仪、73为第三数据采集仪、701为传感器信号线缆、702为同步信号线、8为交换机、9为无线发射模块、10为信号中继模块、11为信号接收模块、12为工控机、13为管道应力实时计算系统、14为数据交互/预警系统。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可 能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图1,本发明所述的基于数字孪生技术的电站管道在线监测预警系统包括待监测管道1、恒力吊架2、第一支吊架载荷测量装置21、弹簧吊架3、第二支吊架载荷测量装置31、刚性吊架4、第三支吊架载荷测量装置41、DC直流电源5、第一三向位移测量装置51、第二三向位移测量装置52、第三三向位移测量装置53、供电线缆501、管道振动测量装置61、第一数据采集仪71、第二数据采集仪72、第三数据采集仪73、传感器信号线缆701、同步信号线702、交换机8、无线发射模块9、信号中继模块10、信号接收模块11及工控机12;
待监测管道1设置于设备A与设备B之间,刚性吊架4的一端、弹簧吊架3的一端及恒力吊架2的一端均固定于待监测管道1上,刚性吊架4的另一端、弹簧吊架3的另一端及恒力吊架2的另一端均固定于悬吊位置处,第一支吊架载荷测量装置21螺纹安装于刚性吊架4上,第二支吊架载荷测量装置31螺纹安装于弹簧吊架3上,第三支吊架载荷测量装置41螺纹连接于恒力吊架2上,第一三向位移测量装置51及第一支吊架载荷测量装置21与第一数据采集仪71相连接,第二三向位移测量装置52及第二支吊架载荷测量装置31与第二数据采集仪72相连接,第三三向位移测量装置53及第三支吊架载荷测量装置41与第三数据采集仪73相连接,交换机8与第一数据采集仪71、第二数据采集仪72及第 三数据采集仪73相连接,交换机8经无线发射模块9、信号中继模块10及信号接收模块11与工控机12相连接,工控机12包括管道应力实时计算系统13及数据交互/预警系统14。
第一三向位移测量装置51及第一支吊架载荷测量装置21与第一数据采集仪71之间、第二三向位移测量装置52及第二支吊架载荷测量装置31与第二数据采集仪72之间、第三三向位移测量装置53及第三支吊架载荷测量装置41与第三数据采集仪73之间均通过传感器信号线缆701相连接。
第一三向位移测量装置51、第二三向位移测量装置52及第三三向位移测量装置53均通过管夹抱箍固定于待监测管道1上,第一三向位移测量装置51设置于待监测管道1的一端,第二三向位移测量装置52设置于待监测管道1的另一端,第三三向位移测量装置53设置于待监测管道1上设计膨胀位移最大的位置处,以获得待监测管道1关键部位的实际膨胀状态;
管道振动测量装置61通过管夹抱箍固定于待监测管道1上,管道振动测量装置61的输出端与第三数据采集仪73相连接,以实时获取管道振动速度数据;
所述第一数据采集仪71、第二数据采集仪72及第三数据采集仪73采用分布式安装模式,就近置于各信号测点附近,第一数据采集仪71、第二数据采集仪72及第三数据采集仪73之间通过同步信号线702相连接,以实现信号同步触发采集;
DC直流电源5通过供电线缆501与第一支吊架载荷测量装置21、第 二支吊架载荷测量装置31、第三支吊架载荷测量装置41、第一三向位移测量装置51、第二三向位移测量装置52及第三三向位移测量装置53相连接,以实现统一供电。
交换机8经网线与第一数据采集仪71、第二数据采集仪72及第三数据采集仪73相连接。
测量得到的载荷、位移及振动信号由交换机8经无线发射模块9、信号中继模块10及信号接收模块11送入至工控机12;工控机12包括管道应力实时计算系统13及数据交互/预警系统14。
本发明的具体工作过程为:
参考图2及图3,管道应力实时计算系统13根据应力自动分析时间间隔获取管道振动测量装置61、第一支吊架载荷测量装置21、第二支吊架载荷测量装置31、第三支吊架载荷测量装置41、第一三向位移测量装置51、第二三向位移测量装置52及第三三向位移测量装置53测量得到的数据,再调用管道应力有限元计算程序打开待监测管道应力计算模型,再将管道振动测量装置61、第一支吊架载荷测量装置21、第二支吊架载荷测量装置31、第三支吊架载荷测量装置41、第一三向位移测量装置51、第二三向位移测量装置52及第三三向位移测量装置53测量的数据输入到待监测管道应力计算模型中,得待监测管道1的一次应力及二次应力;
设定振动信号监测时间间隔△T 2、位移信号监测时间间隔△T 3、载荷信号监测时间间隔△T 4、一次应力/二次应力时间间隔△T 5、管道振动速度阈值、热位移偏离设计容许阈值a%、载荷偏离设计容许阈值b%及一次应 力/二次应力报警阈值c%;根据振动信号监测时间间隔△T 2、位移信号监测时间间隔△T 3、载荷信号监测时间间隔△T 4、一次应力/二次应力时间间隔△T 5获取振动信号、位移信号、载荷信号以及一次应力/二次应力,当待监测管道1的振动大于管道振动速度阈值、待监测管道1的位移大于热位移偏离设计容许阈值a%、待监测管道1的载荷大于载荷偏离设计容许阈值b%或者待监测管道1的一次应力/二次应力大于一次应力/二次应力报警阈值c%,则产生报警信号。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明介绍的技术范围内,可轻易想到的变化或替换都应涵盖在本发明的保护范围之内。因此本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

  1. 一种基于数字孪生技术的电站管道在线监测预警系统,其特征在于,包括待监测管道(1)、恒力吊架(2)、第一支吊架载荷测量装置(21)、弹簧吊架(3)、第二支吊架载荷测量装置(31)、刚性吊架(4)、第三支吊架载荷测量装置(41)、DC直流电源(5)、第一三向位移测量装置(51)、第二三向位移测量装置(52)、第三三向位移测量装置(53)、管道振动测量装置(61)、第一数据采集仪(71)、第二数据采集仪(72)、第三数据采集仪(73)、交换机(8)及工控机(12);
    待监测管道(1)设置于两个设备间,刚性吊架(4)的一端、弹簧吊架(3)的一端及恒力吊架(2)的一端均固定于待监测管道(1)上,刚性吊架(4)的另一端、弹簧吊架(3)的另一端及恒力吊架(2)的另一端分别固定于悬吊位置处,第一支吊架载荷测量装置(21)安装于刚性吊架(4)上,第二支吊架载荷测量装置(31)安装于弹簧吊架(3)上,第三支吊架载荷测量装置(41)安装于恒力吊架(2)上;第一三向位移测量装置(51)、第二三向位移测量装置(52)及第三三向位移测量装置(53)固定于待监测管道(1)的不同位置处;管道振动测量装置(61)固定于待监测管道(1)上;
    第一三向位移测量装置(51)及第一支吊架载荷测量装置(21)与第一数据采集仪(71)相连接,第二三向位移测量装置(52)及第二支吊架载荷测量装置(31)与第二数据采集仪(72)相连接,管道振动测量装置(61)、第三三向位移测量装置(53)及第三支吊架载荷测量装置(41)与第三数据采集仪(73)相连接,交换机(8)与第一数据采集仪(71)、第二数据采集仪(72)及第三数据采集仪(73)相连接,交换机(8)与工控机(12)相连接,工控机(12)包括管道应力实时计算系统(13)及 数据交互/预警系统(14);
  2. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,交换机(8)经网线与第一数据采集仪(71)、第二数据采集仪(72)及第三数据采集仪(73)相连接。
  3. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,还包括DC直流电源(5);DC直流电源(5)通过供电线缆(501)与第一支吊架载荷测量装置(21)、第二支吊架载荷测量装置(31)、第三支吊架载荷测量装置(41)、第一三向位移测量装置(51)、第二三向位移测量装置(52)及第三三向位移测量装置(53)相连接。
  4. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,第一数据采集仪(71)、第二数据采集仪(72)及第三数据采集仪(73)之间通过同步信号线(702)相连接。
  5. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,所述第一数据采集仪(71)、第二数据采集仪(72)及第三数据采集仪(73)采用分布式安装模式。
  6. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,管道振动测量装置(61)通过管夹抱箍固定于待监测管道(1)上。
  7. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,第一三向位移测量装置(51)设置于待监测管道(1)的一端,第二三向位移测量装置(52)设置于待监测管道(1)的另一端,第三三向位移测量装置(53)设置于待监测管道(1)上设计膨胀位移最大的位置处。
  8. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,第一三向位移测量装置(51)、第二三向位移测量装置(52)及第三三向位移测量装置(53)均通过管夹抱箍固定于待监测管道(1)上。
  9. 根据权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,其特征在于,交换机(8)经无线发射模块(9)、信号中继模块(10)及信号接收模块(11)与工控机(12)相连接。
  10. 一种基于数字孪生技术的电站管道在线监测预警方法,其特征在于,基于权利要求1所述的基于数字孪生技术的电站管道在线监测预警系统,包括以下步骤:
    管道应力实时计算系统(13)获取管道振动测量装置(61)、第一支吊架载荷测量装置(21)、第二支吊架载荷测量装置(31)、第三支吊架载荷测量装置(41)、第一三向位移测量装置(51)、第二三向位移测量装置(52)及第三三向位移测量装置(53)测量得到的数据,再将管道振动测量装置(61)、第一支吊架载荷测量装置(21)、第二支吊架载荷测量装置(31)、第三支吊架载荷测量装置(41)、第一三向位移测量装置(51)、第二三向位移测量装置(52)及第三三向位移测量装置(53)测量的数据输入到待监测管道应力计算模型中,得待监测管道(1)的一次应力及二次应力;
    当待监测管道(1)的振动大于管道振动速度阈值、待监测管道(1)的位移大于热位移偏离设计容许阈值a%、待监测管道(1)的载荷大于载荷偏离设计容许阈值b%或者待监测管道(1)的一次应力/二次应力大于一次应力/二次应力报警阈值c%,则产生报警信号。
PCT/CN2022/102042 2021-09-22 2022-06-28 基于数字孪生技术的电站管道在线监测预警系统及方法 WO2023045463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111109555.6 2021-09-22
CN202111109555.6A CN113739079B (zh) 2021-09-22 2021-09-22 基于数字孪生技术的电站管道在线监测预警系统及方法

Publications (1)

Publication Number Publication Date
WO2023045463A1 true WO2023045463A1 (zh) 2023-03-30

Family

ID=78740348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102042 WO2023045463A1 (zh) 2021-09-22 2022-06-28 基于数字孪生技术的电站管道在线监测预警系统及方法

Country Status (2)

Country Link
CN (1) CN113739079B (zh)
WO (1) WO2023045463A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739079B (zh) * 2021-09-22 2023-06-06 西安热工研究院有限公司 基于数字孪生技术的电站管道在线监测预警系统及方法
CN114659029A (zh) * 2022-03-23 2022-06-24 武汉理工大学 一种氢气储运安全性监测系统及其监测方法
CN116129032B (zh) * 2022-10-02 2023-07-25 重庆蕴明科技股份有限公司 一种基于数字孪生的三维可视化管理系统及构建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110992653A (zh) * 2019-12-13 2020-04-10 软通动力信息技术有限公司 城市内涝预警系统及方法
CN112131782A (zh) * 2020-08-27 2020-12-25 浙江大学 一种多回路智能工厂边缘侧数字孪生场景耦合装置
US20210096700A1 (en) * 2019-09-27 2021-04-01 Rockwell Automation Technologies, Inc. Preferential automation view curation
CN112728416A (zh) * 2020-12-18 2021-04-30 苏州热工研究院有限公司 一种高温高压动力管道状态监测系统
CN112801550A (zh) * 2021-03-23 2021-05-14 辽宁盛永鑫自动化工程有限公司 输配管网及附属设施综合监管监控与应急管理平台系统
CN113739079A (zh) * 2021-09-22 2021-12-03 西安热工研究院有限公司 基于数字孪生技术的电站管道在线监测预警系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204007410U (zh) * 2014-06-30 2014-12-10 国网吉林省电力有限公司电力科学研究院 火力发电厂汽水管道支吊架位移测量装置
CN203949700U (zh) * 2014-07-15 2014-11-19 江苏徐塘发电有限责任公司 支吊架在线监测装置
CN104864180A (zh) * 2015-04-10 2015-08-26 苏州明光电力技术有限公司 带有智能支吊架的智能化支吊架系统
CN105136360A (zh) * 2015-09-11 2015-12-09 华电电力科学研究院 一种精确测量电厂支吊架热态载荷的监测系统及监测方法
CN207123349U (zh) * 2016-12-19 2018-03-20 华电电力科学研究院 一种测量电厂支吊架热态载荷及应力的监测装置
CN109723910B (zh) * 2018-11-20 2020-09-08 苏州热工研究院有限公司 支吊架量化安装检测调整工器具及使用其进行支吊架载荷测量的方法
CN109945073A (zh) * 2019-03-05 2019-06-28 华电电力科学研究院有限公司 一种火力发电厂蒸汽管道实时状态信息采集及风险预测系统
CN110174199A (zh) * 2019-04-03 2019-08-27 苏州热工研究院有限公司 在役管道支吊架的载荷监测及预警方法
CN210243147U (zh) * 2019-06-14 2020-04-03 华电电力科学研究院有限公司 一种恒力吊架现场载荷测试结构
CN111504388A (zh) * 2020-05-21 2020-08-07 西安热工研究院有限公司 一种电站吊挂装置载荷及位移实时监测系统及方法
CN213068232U (zh) * 2020-10-26 2021-04-27 西安热工研究院有限公司 一种在役恒力吊架现场性能测试系统
CN113324180B (zh) * 2021-04-25 2023-04-07 华电电力科学研究院有限公司 火电厂高温/高压管道状态监测与风险评估系统
CN113343511B (zh) * 2021-05-08 2023-03-24 大唐东北电力试验研究院有限公司 机组汽水管道现场恒力及变力弹簧吊架安全状态评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210096700A1 (en) * 2019-09-27 2021-04-01 Rockwell Automation Technologies, Inc. Preferential automation view curation
CN110992653A (zh) * 2019-12-13 2020-04-10 软通动力信息技术有限公司 城市内涝预警系统及方法
CN112131782A (zh) * 2020-08-27 2020-12-25 浙江大学 一种多回路智能工厂边缘侧数字孪生场景耦合装置
CN112728416A (zh) * 2020-12-18 2021-04-30 苏州热工研究院有限公司 一种高温高压动力管道状态监测系统
CN112801550A (zh) * 2021-03-23 2021-05-14 辽宁盛永鑫自动化工程有限公司 输配管网及附属设施综合监管监控与应急管理平台系统
CN113739079A (zh) * 2021-09-22 2021-12-03 西安热工研究院有限公司 基于数字孪生技术的电站管道在线监测预警系统及方法

Also Published As

Publication number Publication date
CN113739079B (zh) 2023-06-06
CN113739079A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023045463A1 (zh) 基于数字孪生技术的电站管道在线监测预警系统及方法
CN101230953B (zh) 一种管路泄漏检测系统及具有远程监视的管路泄漏检测系统
CN214585932U (zh) 一种基于数字孪生的电力变压器在线监测系统
CN106571689B (zh) 一种多数据源比较技术诊断变电站遥测故障在线监测系统
CN103512619A (zh) 一种变压器状态信息智能监控系统及方法
CN204965668U (zh) 一种变电站电缆沟火灾在线监测装置
CN106443362A (zh) 一种配电网故障检测系统
CN106483403A (zh) 基于多途径多手段的变压器实时监测方法及系统
CN205742333U (zh) 一种智能挖掘机远程在线监控系统
CN106297156A (zh) 一种发电厂电缆火灾在线监测预警系统及方法
CN106646116A (zh) 一种配电网故障查找定位方法
CN215217488U (zh) 一种多维度汽轮机膨胀在线监测系统
CN213810061U (zh) 一种带声波监控的直埋供热管道系统
CN202718667U (zh) 高温高压高流速管道振动监测系统
CN107860995A (zh) 松脱部件监测系统电荷转换器的远程在线检测系统及方法
CN209485414U (zh) 一种适合于大型电站汽水管道支吊架的在线检测系统
CN208722035U (zh) 一种变电站在线智能监测系统
CN113063475A (zh) 一种基于多类型传感器的水淹厂房检测与报警系统及方法
CN115307067A (zh) 基于数字孪生技术的电站在线监测预警系统及方法
CN204480018U (zh) 一种火电机组运行预警及故障诊断系统
CN219084138U (zh) 光伏电缆线路监测系统
CN206114188U (zh) 一种热力系统压力监测系统以及热力系统
CN205302525U (zh) 一种基于3d虚拟场景的变电站安全监测系统
CN214222756U (zh) 一种供水管道监测系统
CN205049937U (zh) 应用于dcs系统的监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE