WO2023045083A1 - 一种铝合金的无钎剂钎焊方法及钎料膏 - Google Patents

一种铝合金的无钎剂钎焊方法及钎料膏 Download PDF

Info

Publication number
WO2023045083A1
WO2023045083A1 PCT/CN2021/135210 CN2021135210W WO2023045083A1 WO 2023045083 A1 WO2023045083 A1 WO 2023045083A1 CN 2021135210 W CN2021135210 W CN 2021135210W WO 2023045083 A1 WO2023045083 A1 WO 2023045083A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
parts
solder
aluminum alloy
aluminum
Prior art date
Application number
PCT/CN2021/135210
Other languages
English (en)
French (fr)
Inventor
钟素娟
龙伟民
黄俊兰
程亚芳
裴夤崟
路全彬
薛行雁
聂孟杰
Original Assignee
郑州机械研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州机械研究所有限公司 filed Critical 郑州机械研究所有限公司
Publication of WO2023045083A1 publication Critical patent/WO2023045083A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • B23K3/047Heating appliances electric
    • B23K3/0475Heating appliances electric using induction effects, e.g. Kelvin or skin effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent

Definitions

  • the invention belongs to the field of brazing materials, and in particular relates to a flux-free brazing method and brazing paste for aluminum alloys.
  • Cast aluminum alloy has low manufacturing cost, light weight, high strength and good low temperature performance, and is widely used in aerospace, ships, automobiles, motorcycles and large equipment. Cast aluminum alloys are prone to defects such as oxidation inclusions, pores, shrinkage porosity, and cracks during the casting process. Due to the inherent defects of cast aluminum alloy castings, welding defects such as inclusions, pores, and cracks are prone to occur during the brazing process.
  • the commonly used brazing method for cast aluminum alloys is induction or flame brazing in the atmosphere with Zn95Al filler metal and cesium fluoroaluminate flux.
  • Zn95Al is a eutectic solder (a solder with a Zn content of 95% is a eutectic solder, and a solder with a Zn content of less than 95% is a hypoeutectic solder), which has good fluidity and low brazing temperature, and is widely used Used to braze cast aluminum alloys.
  • the main components of the cesium fluoroaluminate flux matched with the Zn95Al eutectic solder are CsF and Al 3 F, which have high viscosity, and the brazing residue is difficult to remove, which will further cause excessive slag inclusions, Defects such as air holes lead to low joint strength and affect the service life of castings.
  • the purpose of the present invention is to provide a flux-free brazing method for aluminum alloys, which can reduce inclusions and pores and improve joint strength.
  • the second object of the present invention is to provide a solder paste compatible with the above method.
  • the technical scheme of the flux-free brazing method of aluminum alloy of the present invention is:
  • a flux-free brazing method for aluminum alloys comprising the following steps:
  • the flux-free solder paste is composed of a binder and the following components in parts by weight: 70-80 parts of zinc-aluminum solder, rubidium 6.0-8.0 parts of iron-boron magnetic particles; the zinc-aluminum solder is composed of the following components in parts by weight: Zn 80.0-90.0 parts, Al 5.0-15.0 parts;
  • the plating layer and the brazing filler metal layer diffuse under the action of a concentration gradient, and the flux-free brazing of aluminum alloys is realized under the spin of strong magnetic particles to break the membrane and promote flow; There are few inclusions and pores in the brazed joint, the brazing seam is denser, and the joint strength is high.
  • step 2) coating the flux-free solder paste on the galvanized layer is coating the flux-free solder paste on one or both of the two aluminum alloys to be brazed. layer.
  • the thickness of the galvanized layer is 15-30 ⁇ m.
  • the particle diameter of the NdFeB magnetic particles is 30-50 nm.
  • NdFeB magnetic particles that is, NdFeB magnets (Nd2Fe14B)
  • NdFeB magnets Nd2Fe14B
  • Nd2Fe14B NdFeB magnets
  • Another reason for choosing NdFeB magnetic particles is that their resistance to solder Good wettability, does not affect the interfacial bonding with solder.
  • the weight ratio of the zinc-aluminum solder to the binder is (70.0 ⁇ 80.0):(3.0 ⁇ 6.0); the binder is selected from one of polyethylene glycol 200, terpineol and isopropanol. one or a combination of two or more. More preferably, the coating thickness of the solder paste is 3-8 ⁇ m.
  • the rotating magnetic field is generated by an alternating current, the current intensity is 0.1-20A, and the current frequency is 10 2 -10 5 Hz.
  • the time for applying the rotating magnetic field is 8-15s.
  • the brazing temperature is 380-420°C.
  • the aluminum alloy is cast aluminum alloy.
  • Casting aluminum alloys are widely used, and the casting process will be accompanied by many defects, and the effect of conventional brazing connection is poor, but the method of the invention can well solve the problem of brazing connection of casting aluminum alloys.
  • solder paste of the present invention is:
  • a solder paste for aluminum alloy flux-free brazing which is composed of a binder and the following components in parts by weight: 70-80 parts of zinc-aluminum solder, 6.0-8.0 parts of rubidium-iron-boron magnetic particles; the zinc The aluminum solder is composed of the following components in parts by weight: 80.0-90 parts of Zn, 5.0-15.0 parts of Al.
  • solder paste for aluminum alloy flux-free brazing of the present invention is used in conjunction with the above-mentioned brazing method, and can realize rapid induction brazing of cast aluminum alloys in an atmospheric environment, without polluting the environment and being environmentally friendly.
  • Fig. 1 is the brazing structure assembly schematic diagram of the fluxless brazing method of aluminum alloy of the present invention
  • Fig. 2 is the left view of Fig. 1;
  • Fig. 3 has the brazing seam morphology of flux brazing for the prior art
  • Fig. 4 is the brazing seam morphology of flux-free brazing in Example 5 of the present invention.
  • Fig. 5 is the partial shear strength test piece of the embodiment of the present invention 5;
  • Fig. 6 is the energy spectrum analysis result of A point inclusion in the brazing seam of the flux brazing joint in the prior art
  • 1-cast aluminum alloy 2-zinc layer, 3-solder paste, 4-magnetic pole.
  • the flux-free brazing method for aluminum alloys of the present invention mainly utilizes the principle of concentration gradient diffusion, and uses the spin membrane breaking mechanism of NdFeB strong magnetic particles under the action of a rotating magnetic field to achieve high reliability and high density of aluminum alloys. Fluxless brazing.
  • brazing methods are mainly implemented according to the following steps:
  • Step 1 Coating the surfaces of the two cast aluminum alloys to be welded with a layer of pure zinc to obtain galvanized cast aluminum alloys;
  • Step 2 Evenly coat a layer of solder paste on the coating of one of the galvanized cast aluminum alloys, and compound it with the coating surface of the other cast aluminum alloy. After assembling and fixing, place it in a rotating magnetic field. inside the device;
  • Step 3 Turn on the power, start heating, and heat to 380-420°C, the solder layer becomes liquid, and under the action of the concentration gradient on both sides, it diffuses and dissolves to form eutectic or near-eutectic solder liquid;
  • Step 4 Keep the solder in a liquid state, start the spin magnetic field, make the NdFeB strong magnetic particles in the solder layer spin, collide and rub, and the solder liquid flows to fill the joints to form a metallurgical bond. Turn off the magnetic field power supply and stop the heating power supply , brazing is complete.
  • a layer of pure zinc layer 2 is coated on the surfaces of two cast aluminum alloys 1 to be welded, and a layer of NdFeB strong magnetic particles is coated on one of the cast aluminum alloy coatings.
  • the hypoeutectic Zn-Al solder paste 3 is assembled opposite to another cast aluminum alloy plating surface.
  • the workpiece is placed in the spin magnetic field, so that the part to be welded is placed in the inductor.
  • the solder layer melts into a solder liquid, and under the action of the concentration gradient, the solder liquid diffuses with the coating, and a eutectic reaction occurs to form a eutectic Zn95Al solder liquid.
  • the spin magnetic field is activated, the strong magnetic particles undergo spin motion, and friction hits the surface of the coating, which can break the membrane to aid flow, promote the flow of solder liquid to fill joints, and realize flux-free brazing of cast aluminum alloys.
  • the near-eutectic solder refers to a solder that is close to the eutectic composition.
  • the zinc-aluminum solder composition in the solder paste (Zn 80.0-90.0 parts, Al 5.0-15.0) is a hypoeutectic solder.
  • Zn in the coating layer continuously diffuses into the solder layer, resulting in brazing
  • the solder composition is getting closer to the eutectic composition (95Zn5Al), and a near-eutectic solder liquid may be formed.
  • the rotating magnetic field is generated by a transverse magnetic field generator. It is designed according to the principle of generating a rotating magnetic field through a symmetrical three-phase alternating current in a symmetrical three-phase winding. It is mainly composed of an iron core and a winding. The main characteristic of the rotating magnetic field generated by it is the magnetic field strength The size does not change, but the direction keeps rotating.
  • three pairs of magnetic poles 4 are evenly distributed on the same circumference (the brazing workpiece is placed inside the magnetic field formed by the three pairs of magnetic poles), and the central axis of the three pairs of magnetic poles 4 evenly distributed passes through the center of the weld.
  • the position, and the excitation coil on the magnetic pole is powered by a three-phase single-six-beat excitation sequence, thereby generating a rotating magnetic field.
  • the current intensity is 0.1-20A
  • the current frequency is 10 2 -10 5 Hz
  • the time is 8-15s.
  • the rotating magnetic field rotates clockwise or counterclockwise in a plane perpendicular to the surface to be welded.
  • the direction of rotation of the magnetic field can be clockwise or counterclockwise.
  • the present invention does not need to use brazing flux, and there is no brazing flux residue in the brazing seam; in addition, the spin impact (reciprocating motion) of NdFeB strong magnetic particles can further play the role of deslagging and degassing, and the obtained joint is denser and stronger .
  • the parts by mass of each component of the solder paste are: 75.0 parts of solder powder, 6.0 parts of NdFeB strong magnetic particles, and 3.0 parts of binder.
  • the mass parts of each component in the solder powder are: Zn 80.0 parts, Al 5.0 parts.
  • the particle size of NdFeB strong magnetic particles is 30nm.
  • the binder is polyethylene glycol 200.
  • three pairs of magnetic poles are evenly distributed on the same circumference, and the center axis of the three pairs of magnetic poles evenly distributed passes through the center of the weld seam, and the excitation coil on the magnetic poles is powered by a three-phase single-six-beat excitation sequence, thereby generating rotation magnetic field.
  • the current intensity is 10A
  • the current frequency is 10 4 Hz
  • the time is 10s.
  • the current intensity can be 0.1, 0.5, 1, 3, 5, 8, 15, 20A
  • the current frequency can be 10 2 , 10 3 , 10 5 Hz
  • the time It can be 8, 12, 15 s, etc., so as to achieve the reciprocating movement of the magnetic particles and the rupture of the membrane to aid flow.
  • the flux-free brazing method of the aluminum alloy of the present embodiment is basically the same as that of Embodiment 1, the only difference being that the parts by mass of the components of the solder paste are: 76.0 parts of solder powder, 7.0 parts of NdFeB strong magnetic particles part, 5.0 parts of binder.
  • the mass parts of each component in the material powder are: Zn 82.0 parts, Al 8.0 parts.
  • the particle size of NdFeB strong magnetic particles is 40nm.
  • the binder is terpineol.
  • the flux-free brazing method of the aluminum alloy of this embodiment is basically the same as that of Embodiment 1, the only difference being that the parts by mass of each component of the solder paste are: 77.0 parts of solder powder, NdFeB strong magnetic particles 8.0 parts, 6.0 parts of binder.
  • the mass fractions of each component in the solder powder are: Zn 85.0 parts, Al 10.0 parts.
  • the particle size of NdFeB strong magnetic particles is 50nm.
  • the binder is isopropanol.
  • the flux-free brazing method of the aluminum alloy of this embodiment is basically the same as that of Embodiment 1, the only difference being that the parts by mass of each component of the solder paste are: 78.0 parts of solder powder, NdFeB strong magnetic particles 6.0 parts, binder 3.0 parts.
  • the mass parts of each component in the solder powder are: Zn 87.0 parts, Al 12.0 parts.
  • the particle size of NdFeB strong magnetic particles is 30nm.
  • the binder is composed of terpineol and isopropanol, and the volume ratio of terpineol and isopropanol is 1:1.
  • the flux-free brazing method of the aluminum alloy of this embodiment is basically the same as that of Embodiment 1, the only difference is that the parts by mass of the components of the solder paste are respectively: 79.0 parts of solder powder, NdFeB strong magnetic particles 7.0 parts, 5.0 parts of binder.
  • the mass parts of each component in the solder powder are: Zn 88.0 parts, Al 14.0 parts.
  • the particle size of NdFeB strong magnetic particles is 50nm.
  • the binder is composed of polyethylene glycol 200 and terpineol in a volume ratio of 1:1.
  • the flux-free brazing method of the aluminum alloy of this embodiment is basically the same as that of Embodiment 1, the only difference is that the parts by mass of the components of the solder paste are respectively: 70.0 parts of solder powder, NdFeB strong magnetic particles 8.0 parts, 6.0 parts of binder.
  • the mass parts of each component in the solder powder are: Zn 90.0 parts, Al 15.0 parts.
  • the particle size of NdFeB strong magnetic particles is 40nm.
  • the binder is composed of polyethylene glycol 200, terpineol, and isopropanol in a volume ratio of 1:1:1.
  • the brazing temperature can be controlled at 385°C, 395°C, 405°C, 415°C, 420°C, etc., which can achieve substantially equivalent experimental results.
  • solder paste for fluxless brazing of aluminum alloys in this embodiment corresponds to the solder paste in the brazing method of Embodiment 1.
  • solder paste correspond to the solder pastes in the brazing methods of Examples 2 to 6, respectively.
  • the brazing seam obtained by flux brazing has more inclusions and pores.
  • the cast aluminum alloy welding test base metal is a plate with a thickness of 2mm, a width of 15mm, and a length of 50mm. After brazing, it is processed into a standard shear sample according to the provisions of GB/T11364-2008, and the shear strength of the comparison joint is tested. The results are as follows Table 1 shows.
  • Table 2 shows the shear strengths of the joints of Examples 1-6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

一种铝合金的无钎剂钎焊方法包括以下步骤:(1)在铝合金的待焊面上镀锌,形成镀锌层;(2)将无钎剂钎料膏涂覆在镀锌层上,所述无钎剂钎料膏由粘结剂和以下重量份数的组分组成:锌铝钎料70~80份,铷铁硼磁性颗粒6.0~8.0份;(3)对待焊部位加热,使镀锌层与锌铝钎料形成共晶或近共晶钎料液,施加旋转磁场,铷铁硼磁性颗粒在旋转磁场作用下自旋运动,将铝合金在无钎剂下钎焊连接。该方法中,镀层与钎料层在浓度梯度作用下发生扩散,在强磁颗粒自旋破膜、促流下,实现铝合金的无钎剂钎焊;所获钎焊接头中夹杂、气孔缺欠少,钎缝较致密,接头强度高。还公开了一种无钎剂钎焊用钎料膏。

Description

一种铝合金的无钎剂钎焊方法及钎料膏 技术领域
本发明属于钎焊材料领域,具体涉及一种铝合金的无钎剂钎焊方法及钎料膏。
背景技术
铸造铝合金的制造成本低、质量轻、强度高和低温性能良好,被广泛应用于航空航天、船舶、汽车、摩托车以及大型设备中。铸造铝合金在铸造过程中本身就容易产生氧化夹杂、气孔、缩松、裂纹等缺陷。由于铸造铝合金铸件自身存在的缺陷,所以在钎焊过程中易产生夹杂、气孔、裂纹等焊接缺陷。
目前,铸造铝合金常用钎焊方法为Zn95Al钎料配合氟铝酸铯钎剂在大气下进行感应或火焰钎焊。Zn95Al为共晶钎料(Zn含量为95%的钎料为共晶钎料,Zn含量低于95%的钎料为亚共晶钎料),其流动性能好,钎焊温度低,被广泛用来钎焊铸造铝合金。但是,与Zn95Al共晶钎料相匹配的氟铝酸铯钎剂中主要成分是CsF、Al 3F,黏度高,其钎焊残渣较难排除,会进一步造成钎缝中形成过多夹渣、气孔等缺欠,导致接头强度低,影响铸件的使用寿命。
发明内容
本发明的目的在于提供一种铝合金的无钎剂钎焊方法,减少夹杂和气孔,提高接头强度。
本发明的第二个目的在于提供匹配上述方法使用的钎料膏。
为实现上述目的,本发明的铝合金的无钎剂钎焊方法的技术方案是:
一种铝合金的无钎剂钎焊方法,包括以下步骤:
(1)在铝合金的待焊面上镀锌,形成镀锌层;
(2)将无钎剂钎料膏涂覆在镀锌层上,所述无钎剂钎料膏由粘结剂和以下重量份数的组分组成:锌铝钎料70~80份,铷铁硼磁性颗粒6.0~8.0份;所述锌铝钎料由以下重量份数的组分组成:Zn 80.0~90.0份、Al 5.0~15.0份;
(3)对待焊部位加热,使镀锌层与锌铝钎料形成共晶或近共晶钎料液,施加旋转磁场,铷铁硼磁性颗粒在旋转磁场作用下自旋运动,将铝合金在无钎剂下钎焊连接。
本发明的铸造铝合金的无钎剂钎焊方法,镀层与钎料层在浓度梯度作用下发生扩散,在强磁颗粒自旋破膜、促流下,实现铝合金的无钎剂钎焊;所获钎焊接头中夹杂、气孔缺欠少,钎缝较致密,接头强度高。
可以理解的是,步骤2)中,将无钎剂钎料膏涂覆在镀锌层上是将无钎剂钎料膏涂覆在两待钎焊铝合金中的一个或两个的镀锌层上。
优选的,步骤(1)中,所述镀锌层的厚度为15~30μm。
优选的,所述铷铁硼磁性颗粒的粒径为30~50nm。铷铁硼磁性颗粒即铷铁硼磁铁(Nd2Fe14B),是由铷、铁、硼形成的四方晶系晶体,属于强磁材料;选择铷铁硼磁性颗粒的另一原因在于,其对钎料的润湿性好,不影响与钎料的界面结合性。
优选的,锌铝钎料与粘结剂的重量比为(70.0~80.0):(3.0~6.0);所述粘结剂选自聚乙二醇200、松油醇、异丙醇中的一种或两种以上组合。更优选的,钎料膏的涂覆厚度为3~8μm。
优选的,步骤(3)中,所述旋转磁场由交变电流产生,电流强度为0.1~20A,电流频率为10 2~10 5Hz。
优选的,步骤(3)中,施加旋转磁场的时间为8~15s。
优选的,步骤(3)中,钎焊的温度为380~420℃。
更优选的,所述铝合金为铸造铝合金。铸造铝合金应用广泛,且铸造过程中会伴随许多缺陷,常规钎焊连接效果较差,而利用本发明的方法可以很好地解决铸造铝合金的钎焊连接问题。
本发明的钎料膏的技术方案是:
一种铝合金无钎剂钎焊用钎料膏,由粘结剂和以下重量份数的组分组成:锌铝钎料70~80份,铷铁硼磁性颗粒6.0~8.0份;所述锌铝钎料由以下重量份数的组分组成:Zn 80.0~90份、Al 5.0~15.0份。
本发明的铝合金无钎剂钎焊用钎料膏,配合上述钎焊方法使用,可在大气环境下实现铸造铝合金的快速感应钎焊,不污染环境,绿色环保。
附图说明
图1为本发明的铝合金的无钎剂钎焊方法的钎焊结构装配示意图;
图2为图1的左视图;
图3为现有技术有钎剂钎焊的钎缝形貌;
图4为本发明实施例5中无钎剂钎焊的钎缝形貌;
图5为本发明实施例5的部分剪切强度试验件;
图6为现有技术中有钎剂钎焊接头钎缝中A点夹杂能谱分析结果;
其中,1-铸造铝合金,2-锌层,3-钎料膏,4-磁极。
具体实施方式
本发明的铝合金的无钎剂钎焊方法,主要是借助浓度梯度扩散原理,利用铷铁硼强磁颗粒在旋转磁场作用下的自旋破膜机理,实现铝合金的高可靠、高致密的无钎剂钎焊。
以下钎焊方法主要按照以下步骤实施:
步骤一、将两个待焊铸造铝合金表面均涂覆一层纯锌层,得到镀锌铸造铝合金;
步骤二、将其中一个镀锌铸造铝合金的镀层上均匀涂覆一层钎料膏,并与另一铸造铝合金的镀覆面复合,装配固定后置于旋转磁场内,待焊部位置于感应器内;
步骤三、打开电源,开始加热,加热至380~420℃,钎料层成液态,与两边镀层在浓度梯度作用下,发生扩散溶解,形成共晶或近共晶钎料液;
步骤四、保持钎料处于液态,启动自旋磁场,使钎料层中铷铁硼强磁颗粒自旋运动,碰撞摩擦,钎料液流动填缝,形成冶金结合,关磁场电源,停止加热电源,钎焊完成。
如图1所示,上述方法中,在两个待焊铸造铝合金1表面均镀覆一层纯锌层2,在其中一个铸造铝合金镀层上涂覆一层含铷铁硼强磁颗粒的亚共晶Zn-Al钎料膏3,与另一铸造铝合金镀覆面相对装配。钎焊时,将工件置于自旋磁场,使待焊部位置于感应器内。加热至382~420℃时,钎料层熔化成钎料液,在浓度梯度作用下,钎料液与镀层扩散,发生共晶反应,形成共晶Zn95Al钎料液。启动自旋磁场,强磁颗粒发生自旋运动,摩擦撞击镀层表面,可破膜助流,促进钎料液流动填缝,实现铸造铝合金的无钎剂钎焊。
近共晶钎料指的是接近共晶成分的钎料。钎料膏中锌铝钎料成分(Zn 80.0~90.0份、Al 5.0~15.0)是亚共晶钎料,当加热到温度380~420℃时,镀层中Zn不断扩散进入钎料层,导致钎料中Zn含量增加,钎料成分越来越靠近共晶成分(95Zn5Al),可能形成近共晶钎料液。
旋转磁场由横向磁场发生器产生,根据对称的三相绕组中通过对称的三相交流电产生旋转磁场这一原理设计而成,主要由铁芯和绕组组成,它产生旋转磁场的主要特点是磁场强度大小不变,方向不断旋转。
具体地,如图1和图2所示,采用三对磁极4均布同一圆周上(钎焊工件置于三对磁极形成的磁场内部),三对磁极4均布的圆心轴线通过焊缝中心位置,并对磁极上的励磁线圈采用三相单六拍的励磁顺序供电,从而产生旋转磁场。电流强度为0.1~20A,电流频率为10 2~10 5Hz,时间为8~15s。
旋转磁场在垂直于待焊面的平面内沿顺时针或逆时针旋转。在图2的左视图上,磁场旋转方向可以为顺时针或逆时针。
本发明无需用钎剂,钎缝中无钎剂残留;另外,铷铁硼强磁颗粒的自旋撞击(往复运动),可进一步起到排渣除气作用,所获接头较致密、强度高。
下面结合具体实施例对本发明的实施方式作进一步说明。下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、铸造铝合金的无钎剂钎焊方法的具体实施例
实施例1
本实施例的铝合金的无钎剂钎焊方法,包括以下步骤:
(1)将两个铸造铝合金待焊面均镀覆一层15~30μm厚的纯锌层,得到镀锌铸造铝合金;
(2)将其中一个铸造铝合金的镀层上均匀涂覆一层3~8μm厚的钎料膏,与另一铸造铝合金的镀覆面相对配合,固定后置于旋转磁场内,待焊部位置于感应器内;
钎料膏各组分的质量份数分别为:钎料粉75.0份、铷铁硼强磁颗粒6.0份、粘结剂3.0份。钎料粉中各组分的质量份数为:Zn 80.0份、Al 5.0份。铷铁硼强磁颗粒的粒径为30nm。粘结剂为聚乙二醇200。
(3)打开电源,开始加热,加热至400℃,钎料层与两边镀层在浓度梯度作用下,发生扩散溶解,形成共晶钎料液;
(4)保持钎料处于液态,启动旋转磁场,使钎料层中铷铁硼强磁颗粒发生自旋运动,当钎料液流动填缝、形成冶金结合时,关磁场电源,停止加热电源,钎焊完成。
本实施例中,采用三对磁极均布同一圆周上,三对磁极均布的圆心轴线通过焊缝中心位置,并对磁极上的励磁线圈采用三相单六拍的励磁顺序供电,从而产生旋转磁场。电流强度为10A,电流频率为10 4Hz,时间为10s。
在其他实施情形中,视钎焊情形,电流强度可以为0.1、0.5、1、3、5、8、15、20A不等,电流频率可以为10 2、10 3、10 5Hz不等,时间可以为8、12、15s不等,以达到磁粒能够往复运动、破膜助流为宜。
实施例2
本实施例的铝合金的无钎剂钎焊方法,与实施例1基本相同,区别仅在于:钎料膏各组分的质量份数为:钎料粉76.0份、铷铁硼强磁颗粒7.0份、粘结剂5.0份。料粉中各组分的质量份数为:Zn 82.0份、Al 8.0份。铷铁硼强磁颗粒的粒度为40nm。粘结剂为松油醇。
实施例3
本实施例的铝合金的无钎剂钎焊方法,与实施例1基本相同,区别仅在于:钎料膏各组分的质量份数分别为:钎料粉77.0份、铷铁硼强磁颗粒8.0份、粘结剂6.0份。钎料粉中 各组分的质量份数为:Zn 85.0份、Al 10.0份。铷铁硼强磁颗粒的粒度为50nm。粘结剂为异丙醇。
实施例4
本实施例的铝合金的无钎剂钎焊方法,与实施例1基本相同,区别仅在于:钎料膏各组分的质量份数分别为:钎料粉78.0份、铷铁硼强磁颗粒6.0份、粘结剂3.0份。钎料粉中各组分的质量份数为:Zn 87.0份、Al 12.0份。铷铁硼强磁颗粒的粒度为30nm。粘结剂由松油醇、异丙醇组成,松油醇、异丙醇的体积比为1:1。
实施例5
本实施例的铝合金的无钎剂钎焊方法,与实施例1基本相同,区别仅在于:钎料膏各组分的质量份数分别为:钎料粉79.0份、铷铁硼强磁颗粒7.0份、粘结剂5.0份。钎料粉中各组分的质量份数为:Zn 88.0份、Al 14.0份。铷铁硼强磁颗粒的粒度为50nm。粘结剂由聚乙二醇200、松油醇按体积比1:1组成。
实施例6
本实施例的铝合金的无钎剂钎焊方法,与实施例1基本相同,区别仅在于:钎料膏各组分的质量份数分别为:钎料粉70.0份、铷铁硼强磁颗粒8.0份、粘结剂6.0份。钎料粉中各组分的质量份数为:Zn 90.0份、Al 15.0份。铷铁硼强磁颗粒的粒度为40nm。粘结剂由聚乙二醇200、松油醇、异丙醇按体积比1:1:1组成。
在本发明的无钎剂钎焊方法的其他实施例中,钎焊温度可以控制为385℃、395℃、405℃、415℃、420℃等等,均可以达到基本相当的实验效果。
二、钎料膏的具体实施例
实施例7
本实施例的铝合金无钎剂钎焊用钎料膏,对应实施例1的钎焊方法中的钎料膏。
钎料膏的其他实施例,分别对应实施例2~6的钎焊方法中的钎料膏。
三、实验例
实验例1
在其他条件相同的情况下,采用Zn95Al共晶钎料配合氟铝酸铯钎剂进行铸造铝合金的有钎剂感应钎焊,另外采用实施例5的钎焊方法进行铸造铝合金的无钎剂感应钎焊,对比两种接头的钎缝形貌和接头强度。
有钎剂钎焊的钎缝形貌如图3所示,无钎剂钎焊的钎缝形貌如图4所示。
通过以上钎缝形貌对比可以看出,与无钎剂钎焊钎缝相比,有钎剂钎焊所获得钎缝中 的夹杂和气孔较多。
铸造铝合金焊接试验母材为2mm厚、15mm宽、50mm长的板,钎焊后按照GB/T11364-2008的规定的规定加工成标准剪切试样,测试对比接头的剪切强度,结果如表1所示。
两种接头的剪切强度对比如表1所示。部分剪切强度试验件情况如图5所示。
表1两种接头的剪切强度
Figure PCTCN2021135210-appb-000001
可以看出,无钎剂钎焊钎缝,也即实施例1的钎缝平均剪切强度值为44.7MPa,而有钎剂钎焊所获得钎缝的剪切强度平均值仅21.8MPa,前者远远高于后者。
实施例1~6的接头的剪切强度如表2所示。
表2实施例1~6的接头的剪切强度
  接头平均强度/MPa
实施例1 30
实施例2 32
实施例3 35.6
实施例4 38.5
实施例5 44.7
实施例6 52
Zn95Al钎料有钎剂钎缝 21.8
由表2可知,相对于Zn95Al钎料有钎剂钎焊,实施例的方法所得接头的剪切强度具有显著提高。
实验例2
对由钎剂钎缝中夹杂进行能谱分析,结果如图6所示。
由图6可以看出,有钎剂钎缝中的A点能谱分析结果中有Cs、F成分,证明钎缝中 的钎剂残渣较多,难以排除干净,这也导致了其钎焊强度难以得到有效提高。

Claims (11)

  1. 一种铝合金的无钎剂钎焊方法,其特征在于,包括以下步骤:
    (1)在铝合金的待焊面上镀锌,形成镀锌层;
    (2)将无钎剂钎料膏涂覆在镀锌层上,所述无钎剂钎料膏由粘结剂和以下重量份数的组分组成:锌铝钎料70~80份,铷铁硼磁性颗粒6.0~8.0份;所述锌铝钎料由以下重量份数的组分组成:Zn 80.0~90.0份、Al 5.0~15.0份;
    (3)对待焊部位加热,使镀锌层与锌铝钎料形成共晶或近共晶钎料液,施加旋转磁场,铷铁硼磁性颗粒在旋转磁场作用下自旋运动,将铝合金在无钎剂下钎焊连接。
  2. 如权利要求1所述的铝合金的无钎剂钎焊方法,其特征在于,步骤(1)中,所述镀锌层的厚度为15~30μm。
  3. 如权利要求1所述的铝合金的无钎剂钎焊方法,其特征在于,所述铷铁硼磁性颗粒的粒径为30~50nm。
  4. 如权利要求1~3中任一项所述的铝合金的无钎剂钎焊方法,其特征在于,锌铝钎料与粘结剂的重量比为(70.0~80.0):(3.0~6.0);所述粘结剂选自聚乙二醇200、松油醇、异丙醇中的一种或两种以上。
  5. 如权利要求4所述的铝合金的无钎剂钎焊方法,其特征在于,钎料膏的涂覆厚度为3~8μm。
  6. 如权利要求1所述的铝合金的无钎剂钎焊方法,其特征在于,步骤(3)中,所述旋转磁场由交变电流产生,电流强度为0.1~20A,电流频率为10 2~10 5Hz。
  7. 如权利要求1或6所述的铝合金的无钎剂钎焊方法,其特征在于,旋转磁场在垂直于待焊面的平面内沿顺时针或逆时针旋转。
  8. 如权利要求6所述的铝合金的无钎剂钎焊方法,其特征在于,步骤(3)中,施加旋转磁场的时间为8~15s。
  9. 如权利要求1所述的铝合金的无钎剂钎焊方法,其特征在于,步骤(3)中,加热的温度为380~420℃。
  10. 如权利要求1或6或8或9所述的铝合金的无钎剂钎焊方法,其特征在于,所述铝合金为铸造铝合金。
  11. 一种铝合金无钎剂钎焊用钎料膏,其特征在于,由粘结剂和以下重量份数的组分组成:锌铝钎料70~80份,铷铁硼磁性颗粒6.0~8.0份;所述锌铝钎料由以下重量份数的组分组成:Zn 80.0~90份、Al 5.0~15.0份。
PCT/CN2021/135210 2021-09-23 2021-12-03 一种铝合金的无钎剂钎焊方法及钎料膏 WO2023045083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111114679.3 2021-09-23
CN202111114679.3A CN113732422B (zh) 2021-09-23 2021-09-23 一种铝合金的无钎剂钎焊方法及钎料膏

Publications (1)

Publication Number Publication Date
WO2023045083A1 true WO2023045083A1 (zh) 2023-03-30

Family

ID=78740457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135210 WO2023045083A1 (zh) 2021-09-23 2021-12-03 一种铝合金的无钎剂钎焊方法及钎料膏

Country Status (2)

Country Link
CN (1) CN113732422B (zh)
WO (1) WO2023045083A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732422B (zh) * 2021-09-23 2022-12-13 郑州机械研究所有限公司 一种铝合金的无钎剂钎焊方法及钎料膏
CN115255714B (zh) * 2022-08-22 2023-04-28 河南科技大学 一种强磁性颗粒增强型药芯钎料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008952A1 (en) * 1991-10-28 1993-05-13 Alcan International Limited Method for modifying the surface of an aluminum substrate
CN109465564A (zh) * 2018-12-13 2019-03-15 郑州机械研究所有限公司 一种钎焊强度高、抗腐蚀性强的锌铝药芯钎料
CN112621010A (zh) * 2020-12-25 2021-04-09 中机智能装备创新研究院(宁波)有限公司 一种药芯锌铝钎料及其制备方法
US20210183545A1 (en) * 2019-12-12 2021-06-17 Heat X, LLC Paramagnetic materials and assemblies for any magnetocaloric or thermoelectric applications
CN113732422A (zh) * 2021-09-23 2021-12-03 郑州机械研究所有限公司 一种铝合金的无钎剂钎焊方法及钎料膏

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206866A (en) * 1978-04-21 1980-06-10 Lyne S. Trimble Apparatus and method for producing high sensitivity magnetochemical particles
JPS5619998A (en) * 1979-07-27 1981-02-25 Furukawa Alum Co Ltd Solder for aluminum and aluminum alloy
US5093545A (en) * 1988-09-09 1992-03-03 Metcal, Inc. Method, system and composition for soldering by induction heating
JP4641267B2 (ja) * 2006-02-17 2011-03-02 株式会社デンソー アルミニウム熱交換器用の低融点ろう材及びアルミニウム熱交換器の製造方法
JP2011230162A (ja) * 2010-04-28 2011-11-17 Kobe Steel Ltd アルミニウム材の接合方法
CN101844260B (zh) * 2010-05-13 2012-06-27 重庆大学 一种异种材料电磁激励电阻熔-钎焊复合焊接方法和设备
CN102407404A (zh) * 2011-08-19 2012-04-11 北京工业大学 一种无钎剂激光填粉焊接铝钢异种金属接头的方法
CN102350623A (zh) * 2011-08-31 2012-02-15 金龙精密铜管集团股份有限公司 一种铝合金热交换器的制造方法
CN102513719A (zh) * 2011-11-17 2012-06-27 东南大学 一种磁性颗粒锡-锌基复合焊料及其制备方法
CN102632347B (zh) * 2012-01-09 2014-07-02 西安交通大学 一种铝基复合材料及铝合金用钎料及钎焊方法
CN107262862A (zh) * 2017-06-22 2017-10-20 北京科技大学 一种镀镍‑锌复合镀层的钢/铝钎焊方法
CN113103690A (zh) * 2021-05-19 2021-07-13 飞荣达科技(江苏)有限公司 一种镀Ni钎焊铝合金复合板及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008952A1 (en) * 1991-10-28 1993-05-13 Alcan International Limited Method for modifying the surface of an aluminum substrate
CN109465564A (zh) * 2018-12-13 2019-03-15 郑州机械研究所有限公司 一种钎焊强度高、抗腐蚀性强的锌铝药芯钎料
US20210183545A1 (en) * 2019-12-12 2021-06-17 Heat X, LLC Paramagnetic materials and assemblies for any magnetocaloric or thermoelectric applications
CN112621010A (zh) * 2020-12-25 2021-04-09 中机智能装备创新研究院(宁波)有限公司 一种药芯锌铝钎料及其制备方法
CN113732422A (zh) * 2021-09-23 2021-12-03 郑州机械研究所有限公司 一种铝合金的无钎剂钎焊方法及钎料膏

Also Published As

Publication number Publication date
CN113732422A (zh) 2021-12-03
CN113732422B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2023045083A1 (zh) 一种铝合金的无钎剂钎焊方法及钎料膏
CN100493795C (zh) 超声钎焊铝基复合材料焊缝复合化方法
Xu et al. Control Al/Mg intermetallic compound formation during ultrasonic-assisted soldering Mg to Al
KR100997607B1 (ko) 이재 접합 방법
JP2015535201A (ja) 複合溶接ワイヤ及びその製造方法
WO2022083013A1 (zh) 一种铝合金薄板大间隙对接的摆动激光填丝焊方法
US3675310A (en) Soldering method
CN110666329B (zh) 一种提高铝板和钢板焊接接头耐腐蚀性能的方法
CN108188521B (zh) 一种钼铼合金箔材的高频感应加热钎焊方法
CN102728937A (zh) 一种钛合金与奥氏体不锈钢异种金属的焊接方法
CN100519032C (zh) 低温钎焊铝合金获得高温使用性能焊接接头的方法
CN102896406A (zh) 钛合金与纯铝板的tig焊接方法
JP2012152789A (ja) 異種金属板の重ね電気抵抗ろう付による接合方法およびそれによるろう付継手
CN103056546A (zh) 用于tig法焊接钛合金与纯铝板的焊丝
CN106624438A (zh) 锌铝钎料
CN113579547B (zh) 一种铜铝异种金属无钎剂钎焊用钎料膏及钎焊方法
Yang et al. Materia ls and Design
JP2017047449A (ja) 金属接合品及びその製造方法
CN112894192B (zh) 一种药皮钎料及其制备方法和应用
CN111331278B (zh) 一种高耐蚀性Zn-Al钎料粉、钎料膏及制备方法
Gan et al. Ultrasonic-assisted soldering of low-Ag SAC lead-free solder paste at low-temperature
CHEN et al. Research status analysis of aluminum-lithium alloy welding
Lu et al. Laser-MIG hybrid keyhole welded 6mm steel/aluminum butt joints
CN108145267B (zh) 用于高空飞行器自动灭火装置保护阀高频感应钎焊方法
CN111299803A (zh) 一种基于铝中间层的镁/钢异种材料搅拌摩擦焊搭接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE