WO2023045068A1 - 一种带防护及线路监视的干湿节点采集电路 - Google Patents

一种带防护及线路监视的干湿节点采集电路 Download PDF

Info

Publication number
WO2023045068A1
WO2023045068A1 PCT/CN2021/133609 CN2021133609W WO2023045068A1 WO 2023045068 A1 WO2023045068 A1 WO 2023045068A1 CN 2021133609 W CN2021133609 W CN 2021133609W WO 2023045068 A1 WO2023045068 A1 WO 2023045068A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
module
capacitor
dry
wet
Prior art date
Application number
PCT/CN2021/133609
Other languages
English (en)
French (fr)
Inventor
郭磊
萧镜明
明德
张常华
朱正辉
赵定金
Original Assignee
广州市保伦电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市保伦电子有限公司 filed Critical 广州市保伦电子有限公司
Publication of WO2023045068A1 publication Critical patent/WO2023045068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017545Coupling arrangements; Impedance matching circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/007Fail-safe circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements

Definitions

  • the invention relates to the technical field of dry and wet node acquisition circuits, in particular to a dry and wet node acquisition circuit with protection and line monitoring.
  • the object of the present invention is to provide a dry and wet node acquisition circuit with protection and line monitoring, which can solve the problem of monitoring whether the line is disconnected while collecting node signals.
  • a dry and wet node acquisition circuit with protection and line monitoring including a matching module and an interface module connected in sequence, and the line is the line between the matching module and the dry and wet node , the line between the matching module and the wet and dry node includes the connecting line inside the matching module itself,
  • the matching module is used to connect with the dry and wet nodes and transmit the dry and wet node signals output by the dry and wet nodes to the interface module, and the matching module can form a loop by itself and form a loop with the connected dry and wet nodes through the line,
  • the interface module is used to access the dry and wet node signals and linearly convert the dry and wet node signals into voltage signals that can characterize the condition of the line, so as to monitor the line.
  • the matching module includes a resistor R27, a resistor R28 and several cable terminals connected in series, the first end of the cable terminal is connected to the interface module, the second end is grounded, the cable terminal is also connected in series with the resistor R27, and the resistor R28 is connected in parallel to the resistor R27, and the two ends of the resistor R28 connected in parallel to the resistor R27 are used to connect with the wet and dry nodes.
  • the cable terminal includes a cable terminal P1 and a cable terminal P2, the first end of the cable terminal P1 is connected to the interface module, the second end is grounded, the cable terminal P1 is connected to the cable terminal P2, and the cable Terminal P2 is connected in series with resistor R27.
  • the interface module includes an overvoltage short-circuit prevention submodule, a filter submodule and a bias voltage submodule, the output terminal of the overvoltage short circuit prevention submodule is connected in series with the input terminal of the filter submodule, and the overvoltage short circuit prevention submodule
  • the input end of the filter sub-module is connected to the matching module, the output end of the filter sub-module is connected to the isolation module, and the connection point between the anti-overvoltage and short-circuit sub-module and the filter sub-module is connected to the bias voltage sub-module.
  • the anti-overvoltage and short circuit sub-module includes resettable fuse F1, resistor R25, diode D6 and diode D7, and the filter sub-module includes capacitor C11, capacitor C12 and inductor L1, and capacitor C11, capacitor C12 and inductor L1 form a ⁇ -type filter.
  • the bias voltage sub-module includes a resistor R57 and a DC voltage connected to the resistor R57.
  • One end of the self-recovery fuse F1 is connected to the first end of the cable terminal of the matching module, and the other end is connected to one end of the diode D6 and the diode D6 in series with the other end of the resistor R25.
  • the diode D7 is a Zener diode
  • the diode D6 is a transient suppression diode, used to suppress the interference voltage from the transmission cable in the matching module.
  • an isolation module is also included, and the isolation module is used for electrically isolating and voltage linearly converting the voltage signal output by the interface module, and converting the voltage signal output by the interface module to output a final identification signal, thereby completing the wet and dry node signal collection.
  • the isolation module includes an isolated DC-DC circuit and an isolated signal amplifier circuit.
  • the isolated DC-DC circuit includes a resistor R49, a capacitor C38, a capacitor EC9, a capacitor EC10, and a power module U7.
  • One end of the resistor R49 is connected to the second One voltage connection
  • the other end of the resistor R49, one end of the capacitor C38, and one end of the capacitor EC9 are connected together to the input end of the power module U7, and the other end of the capacitor C38, the other end of the capacitor EC9, and the ground end of the power module U7 are common Grounded
  • the output end of the power module U7 is connected to one end of the capacitor EC10 and the connection is connected to the resistor R57 in the interface module to output the DC voltage to the resistor R57
  • the other end of the capacitor EC10 is connected to the low voltage end of the power module U7
  • the power supply module U7 completely isolates the input voltage and then outputs a stable voltage, thereby providing
  • the isolated signal amplifying circuit includes resistor R52, resistor R54, resistor R55, resistor R56, capacitor C55, capacitor C56, capacitor EC11, operational amplifier U11A, operational amplifier U12A, linear photocoupler U10, input terminal of operational amplifier U11A and interface module
  • the other input terminal of the operational amplifier U11A is connected to one end of the resistor R55, the negative pole of the capacitor EC11, and the PDA1 end of the linear photocoupler U10, and the other end of the resistor R55 is connected to one end of the capacitor C55.
  • the other end of the capacitor C55 is connected to the input end of the operational amplifier U11A, the output end of the operational amplifier U11A is respectively connected to the positive electrode of the capacitor EC11 and one end of the resistor R52, and the other end of the resistor R52 is connected to the LEDA end of the linear photocoupler U10,
  • the LEDK terminal of the linear optocoupler U10 is grounded, the PDK1 terminal of the linear optocoupler U10 is connected to the positive power supply of the operational amplifier U11A, the two NC terminals of the linear optocoupler U10 are connected to the ground, and the PDK2 terminal of the linear optocoupler U10 is connected to the first Three voltages, the PDA2 end of the linear photocoupler U10 is grounded with one end of the resistor R56 and the input end of the operational amplifier U12A, the other ground of the resistor R56 is grounded, the other input end of the operational amplifier U12A is connected with the output end of the operational amplifier U12A connection, the output terminal of the operational
  • an identification module which is connected with the isolation module, and is used to read the output voltage of the isolation module, and identify the line condition according to the read voltage, so as to output the identification result.
  • the identification module is a circuit formed based on a single-chip microcomputer.
  • the single-chip microcomputer is M487SIDAE of NUVOTON
  • the output voltage signal of the isolation module is connected to the AD input port of the single-chip microcomputer
  • the single-chip microcomputer AD reads the size of the input signal.
  • the present invention can improve the protection level of the acquisition circuit method and the real-time monitoring of the node signal transmission line by adding a matching module and an isolation module to the traditional dry and wet node acquisition circuit, and can judge in real time whether the transmission line is If a fault occurs, a corresponding prompt message will be issued.
  • Figure 1 is a schematic diagram of a circuit without an identification module
  • Fig. 2 is a schematic circuit diagram of a matching module
  • Fig. 2 a is one of connection schematic diagrams with external equipment (control equipment among the figure);
  • Fig. 2b is one of connection schematic diagrams with external equipment (control equipment among the figure);
  • Fig. 3a is a schematic diagram when the line is normal (undisconnected and short-circuited);
  • Fig. 3b is a schematic diagram when the line is broken
  • Fig. 3c is a schematic diagram when the line is short-circuited
  • Figure 3d is a schematic diagram when the dry node connected to the matching module is not closed
  • Fig. 3e is a schematic diagram when the dry node connected to the matching module is closed
  • Fig. 3f is a schematic diagram when the wet node connected to the matching module is not closed
  • Fig. 3g is a schematic diagram when the wet node connected to the matching module is closed
  • a dry and wet node acquisition circuit with protection and line monitoring includes a matching module, an interface module and an isolation module connected in sequence, and the matching module It is used to connect with the dry and wet nodes and transmit the dry and wet node signals output by the dry and wet nodes to the interface module, that is, the matching module is used to connect to the dry and wet nodes and transmit the dry and wet node signals output by the dry and wet nodes to the interface module, and the matching module can form a loop by itself and with the connected dry and wet nodes through the line.
  • Dry and wet nodes are external devices, such as the control devices in Figure 2a and Figure 2b, the control devices in Figure 3d and Figure 3e are dry nodes, and the control devices in Figure 3f and Figure 3g are wet nodes.
  • the interface module is used to access the dry and wet node signals and linearly convert the dry and wet node signals into voltage signals that can characterize the line conditions, so as to monitor the line between the matching module and the dry and wet nodes, and the connection between the matching module and the dry and wet nodes The wiring between them includes the connecting wiring inside the matching module itself.
  • the isolation module is used to electrically isolate the interface module and convert and process the voltage signal output by the interface module to output the final identification signal, thereby completing the dry and wet node signal collection.
  • the matching module includes a resistor R27 , a resistor R28 and several cable terminals connected in series, and the resistor R27 , resistor R28 and the cable terminals form a loop.
  • the first end of the cable terminal P1 is connected to the interface module, the second end is grounded, the cable terminal P1 is connected to the cable terminal P2, the cable terminal P2 is connected in series with the resistor R27, and the resistor R28 is connected in parallel to the resistor R27 superior. Both ends of the resistor R28 are also connected to the wet and dry nodes, that is, connected to external equipment.
  • the interface module includes an anti-overvoltage short-circuit submodule, a filter submodule and a bias voltage submodule, the output end of the anti-overvoltage short-circuit submodule is connected in series with the input end of the filter submodule, and the input end of the anti-overvoltage short-circuit submodule It is connected with the matching module, the output terminal of the filtering submodule is connected with the isolation module, and the connection point of the anti-overvoltage and short circuit submodule and the filtering submodule is jointly connected with the bias voltage submodule.
  • the anti-overvoltage and short circuit sub-module includes resettable fuse F1, resistor R25, diode D6 and diode D7, and the filter sub-module includes capacitor C11, capacitor C12 and inductor L1, capacitor C11, capacitor C12 and inductor L1 form a ⁇ -type filter, bias
  • the voltage sub-module includes a resistor R57 and a DC voltage connected to the resistor R57.
  • the DC voltage in this embodiment is 5V, that is, VDD 5V in the figure, which means that the resistor R57 is connected to a DC voltage source with a voltage of 5V.
  • One end of the self-recovery fuse F1 is connected to the first end of the cable terminal P1 of the matching module, and the other end is connected to one end of the diode D6, one end of the diode D7, one end of the resistor R57, one end of the inductor L, and the capacitor One end of C12 is connected.
  • the other end of the diode D6 and the other end of the diode D7 are respectively grounded, the other end of the resistor R57 is connected to the DC voltage, the other end of the inductor L1 is connected to one end of the capacitor C11, and the other end of the capacitor C11 is grounded.
  • the connection between the inductor L1 and the capacitor C11 (U1 in the figure) is marked as the output end of the interface module.
  • the diode D7 is a Zener diode
  • the diode D6 is a transient suppression diode, which can suppress the interference voltage from the transmission cable in the matching module.
  • Resistor R25 also has the function of protecting wet node polarity reverse connection to avoid damage to the acquisition circuit due to wrong connection of node line polarity.
  • the isolation module includes an isolated DC-DC circuit and an isolated signal amplifier circuit
  • the isolated DC-DC circuit includes a resistor R49, a capacitor C38, a capacitor EC9, a capacitor EC10 and a power module U7, and one end of the resistor R49 is connected to the first voltage (+5V in the figure), in this embodiment, the first voltage is 5V, of course, the specific voltage value of the first voltage can be adjusted according to the actual situation.
  • the other end of the resistor R49, one end of the capacitor C38, and one end of the capacitor EC9 are connected together to the input end of the power module U7 (the Vin pin in the figure), and the other end of the capacitor C38, the other end of the capacitor EC9 and the power module U7
  • the ground terminal (GND pin in the figure) of the power supply module U7 is connected to one end of the capacitor EC10 and the connection is connected to the resistor R57 in the interface module, so as to connect the resistor R57 to the resistor R57 outputs a DC voltage of 5V, which is the DC voltage connected to the resistor R57 in the interface module.
  • the other end of the capacitor EC10 is connected to the low voltage end of the power module U7 (the 0V pin in the figure, that is, pin 3 ) and then grounded.
  • the power module U7 outputs a stable 5V voltage after isolating the input 5V voltage, so as to provide an electrically isolated and regulated bias voltage to the interface module.
  • the isolated signal amplifying circuit includes a resistor R52, a resistor R54, a resistor R55, a resistor R56, a capacitor C55, a capacitor C56, a capacitor EC11, an operational amplifier U11A, an operational amplifier U12A, and a linear photocoupler U10.
  • the input end of the operational amplifier U11A (pin 3 in the figure) is connected to the output end of the interface module, that is, connected to the connection point U1 in the interface module.
  • the other input end of the operational amplifier U11A is respectively connected to one end of the resistor R55, the negative pole of the capacitor EC11, and the PDA1 end (pin 4 in the figure) of the linear optocoupler U10, and the other end of the resistor R55 is connected to one end of the capacitor C55 Commonly grounded, the other end of the capacitor C55 is connected to the input end of the operational amplifier U11A (pin 3 in the figure).
  • the output end of the operational amplifier U11A (pin 1 in the figure) is respectively connected to the positive pole of the capacitor EC11 and one end of the resistor R52, and the other end of the resistor R52 is connected to the LEDA end of the linear optocoupler U10 (pin 2 in the figure) Connection, the LEDK end (pin 1 in the figure) of the linear optocoupler U10 is grounded, and the PDK1 end (pin 3 in the figure) of the linear optocoupler U10 is connected to the positive power supply of the operational amplifier U11A (that is, + in the figure) 12VF), the two NC ends of the linear optocoupler U10 (pin 7 and pin 8 in the figure) are open, that is, do not connect anything, the PDK2 end of the linear optocoupler U10 (pin 6 in the figure) Connect a 5.1V voltage, the PDA2 end (pin 5 in the figure) of the linear optocoupler U10 is connected to one end of the resistor R56 and the input end of the operational amplifier U12A
  • the isolation module is used for electrically isolating and linearly converting the voltage signal output by the interface module (that is, the voltage at U1 ), as well as isolating the bias voltage.
  • the isolated DC-DC circuit can provide isolated interface bias voltage.
  • the resistance of resistor R57 is 4.7K
  • the resistance of resistor R25 is 2.2K
  • the resistance of resistor R27 is 2.2K
  • the resistance of resistor R28 is 10K.
  • the connected dry node is closed, the resistor R28 is short-circuited, and the dry contact signal can be effectively transmitted.
  • the voltage U1 2.4V
  • both ends of the resistor R28 are charged by the VCC voltage of the wet node (in this embodiment, the VCC voltage is DC12-48V), and the VCC voltage of the wet node passes through the resistors R27, R25 1.
  • the isolation module linearly amplifies the voltage U1, and the output voltage of the isolation module (that is, the output terminal of PB11/AD11 in Figure 1) still corresponds to the line status one by one, so reading the output voltage of the isolation module can be Identify the condition of the line to achieve the purpose of monitoring the dry and wet node acquisition circuit.
  • the identification module also includes an identification module, which is connected to the isolation module, and is used to read the output voltage of the isolation module, identify the line condition according to the read voltage, and output the identification result.
  • the identification module can use a circuit based on a single-chip microcomputer. Referring to Figure 4, the identification module is composed of a single-chip microcomputer and its peripheral circuit. The peripheral circuit contains an external watchdog circuit. The output voltage signal is connected to the AD input port of the single-chip microcomputer U3, and the size of the input signal is read by the AD input port of the single-chip microcomputer to identify the situation of the acquisition node signal and the state of the line, and then perform other forms of state according to the functional requirements of the device where the actual circuit is located output of information.
  • Other specific components formed by the peripheral circuit in FIG. 4 are set for other requirements of actual processing, and do not directly involve the line monitoring function, so details are not described here.
  • the present invention can improve the protection level of the acquisition circuit method and the real-time monitoring of the node signal transmission line, and can judge in real time whether the transmission line is faulty, so as to issue a corresponding Reminder information, for example, once the transmission line fails, an alarm can be sent in real time to remind maintenance personnel to deal with it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开一种带防护及线路监视的干湿节点采集电路,包括依次连接的匹配模块和接口模块,所述线路为匹配模块至干湿节点之间的线路,匹配模块至干湿节点之间的线路包括匹配模块内部自身的连接线路,匹配模块用于与所述干湿节点连接并将干湿节点输出的干湿节点信号传输给接口模块,且匹配模块通过所述线路可自身形成回路以及与连接的干湿节点一起形成回路,接口模块用于接入所述干湿节点信号并将干湿节点信号线性转换为可表征线路状况的电压信号,从而达到监视所述线路。本发明能够提升采集电路方法的防护等级和对节点信号传输线路的实时监视,并且可以实时判断传输线路是否出现故障,以发出相应的提醒信息。

Description

一种带防护及线路监视的干湿节点采集电路 技术领域
本发明涉及干湿节点采集电路技术领域,具体涉及一种带防护及线路监视的干湿节点采集电路。
背景技术
目前,在工业控制领域,各类型的联动控制已经很普遍,干、湿节点信号作为不同设备之间的联动信号已经十分普遍,因此,采用干湿节点采集电路也是广泛应用的一个电路,其也作为一种普遍使用的接口,采集端除了需要适应不同类型的节点信号外,对于联动控制有效性要求高的场合还要求可以实时监视联动控制线路的通畅性(线路有无断开),保证节点信号传输有效;对于长距离传输节点信号可能引入的外界有害干扰的去除也是保证联动有效性重要的一环。现有的节点信号采集方案在传输有效性还有待提高,特别高效率地监视线路中是否断开并获得采集信号。
发明内容
针对现有技术的不足,本发明的目的提供一种带防护及线路监视的干湿节点采集电路,其能够解决采集节点信号的同时监视线路是否断开的问题。
实现本发明的目的之一的技术方案为:一种带防护及线路监视的干湿节点采集电路,包括依次连接的匹配模块和接口模块,所述线路为匹配模块至干湿节点之间的线路,匹配模块至干湿节点之间的线路包括匹配模块内部自身的连接线路,
匹配模块用于与所述干湿节点连接并将干湿节点输出的干湿节点信号 传输给接口模块,且匹配模块通过所述线路可自身形成回路以及与连接的干湿节点一起形成回路,
接口模块用于接入所述干湿节点信号并将干湿节点信号线性转换为可表征线路状况的电压信号,从而达到监视所述线路。
进一步地,所述匹配模块包括电阻R27、电阻R28和若干串联连接的线缆端子,线缆端子的第一端与接口模块连接,第二端接地,线缆端子还与电阻R27串联连接,电阻R28并联在电阻R27上,并联在电阻R27上的电阻R28的两端用于与干湿节点连接。
进一步地,所述线缆端子包括线缆端子P1和线缆端子P2,线缆端子P1的第一端与接口模块连接,第二端接地,线缆端子P1与线缆端子P2连接,线缆端子P2与电阻R27串联连接。
进一步地,所述接口模块包括防过压短路子模块、滤波子模块和偏置电压子模块,防过压短路子模块的输出端与滤波子模块的输入端串联连接,防过压短路子模块的输入端与匹配模块连接,滤波子模块的输出端与隔离模块连接,防过压短路子模块与滤波子模块的连接点处共同与偏置电压子模块连接,
防过压短路子模块包括自恢复保险丝F1、电阻R25、二极管D6和二极管D7,滤波子模块包括电容C11、电容C12和电感L1,电容C11、电容C12和电感L1组成π型滤波器,
偏置电压子模块包括电阻R57以及与电阻R57连接的直流电压,自恢复保险丝F1的一端与匹配模块的线缆端子的第一端连接,另一端串联电阻R25 后分别与二极管D6的一端、二极管D7的一端、电阻R57的一端、电感L的一端1、电容C12的一端连接,二极管D6的另一端、二极管D7的另一端分别接地,电阻R57的另一端连接所述直流电压,电感L1的另一端与电容C11的一端连接,电容C11的另一端接地,电感L1与电容C11的连接处作为接口模块的输出端,输出端处的电压为所述将干湿节点信号线性转换为可表征线路状况的电压信号。
进一步地,二极管D7为稳压二极管,二极管D6为瞬态抑制二极管,用于抑制从匹配模块中的传输线缆上的干扰电压。
进一步地,还包括隔离模块,隔离模块用于对接口模块输出的电压信号进行电气隔离和电压线性转换,并将接口模块输出的电压信号进行转换处理后输出最终识别信号,从而完成干湿节点信号采集。
进一步地,所述隔离模块包括隔离型DC-DC电路和隔离型信号放大电路,隔离型DC-DC电路包括电阻R49、电容C38、电容EC9、电容EC10和电源模块U7,电阻R49的一端与第一电压连接,电阻R49的另一端、电容C38的一端、电容EC9的一端共同连接后与电源模块U7的输入端连接,电容C38的另一端、电容EC9的另一端和电源模块U7的接地端共同接地,电源模块U7的输出端与电容EC10的一端连接且该连接处与接口模块中的电阻R57连接,以向电阻R57输出所述直流电压,电容EC10的另一端与电源模块U7的低电压端共同连接后接地,电源模块U7将输入的电压电气完全隔离后输出稳定电压,从而向接口模块提供隔离的、稳压的偏置电压,
隔离型信号放大电路包括电阻R52、电阻R54、电阻R55、电阻R56、电容C55、电容C56、电容EC11、运算放大器U11A、运算放大器U12A、线性光 电耦合器U10,运算放大器U11A的输入端与接口模块的输出端连接,运算放大器U11A的另一输入端分别与电阻R55的一端、电容EC11的负极、线性光电耦合器U10的PDA1端连接,电阻R55的另一端与电容C55的一端连接后共同接地,电容C55的另一端与运算放大器U11A的输入端连接,运算放大器U11A的输出端分别与电容EC11的正极、电阻R52的一端分别连接,电阻R52的另一端与线性光电耦合器U10的LEDA端连接,线性光电耦合器U10的LEDK端接地,线性光电耦合器U10的PDK1端与运算放大器U11A的正电源连接,线性光电耦合器U10的两个NC端空接,线性光电耦合器U10的PDK2端连接第三电压,线性光电耦合器U10的PDA2端接地分别与电阻R56的一端、运算放大器U12A的输入端连接,电阻R56的另一地接地,运算放大器U12A的另一个输入端与运算放大器U12A的输出端连接,运算放大器U12A的输出端还依次串接电阻R54和电容C56后接地,电阻R54与电容C56之间的连接点为隔离型信号放大电路的输出端。
进一步地,还包括识别模块,识别模块与隔离模块连接,用于读取隔离模块的输出电压,并根据读取到的电压大小识别线路状况,以输出识别结果。
进一步地,所述识别模块为采用基于单片机形成的电路。
进一步地,所述单片机为NUVOTON的M487SIDAE,隔离模块的输出电压信号接入单片机的AD输入口中,单片机AD读取输入信号的大小。
本发明的有益效果为:本发明通过在传统干湿节点采集电路上增加匹配模块和隔离模块,能够提升采集电路方法的防护等级和对节点信号传输线路的实时监视,并且可以实时判断传输线路是否出现故障,以发出相应的提示信息。
附图说明
图1是不含识别模块的电路示意图;
图2是匹配模块的电路示意图;
图2a是与外部设备(图中为控制设备)的连接示意图之一;
图2b是与外部设备(图中为控制设备)的连接示意图之一;
图3a是线路正常(未断开和短路)时的示意图;
图3b是线路断时的示意图;
图3c是线路短路时的示意图;
图3d是匹配模块所连接干节点未闭合时的示意图;
图3e是匹配模块所连接干节点闭合时的示意图;
图3f是匹配模块所连接湿节点未闭合时的示意图;
图3g是匹配模块所连接湿节点闭合时的示意图;
图中,1-匹配模块。
具体实施方式
下面,下面结合附图以及具体实施方案,对本发明做进一步描述。
如图1、图2、图2a、图2b、图3a-图3g所示,一种带防护及线路监视的干湿节点采集电路,包括依次连接的匹配模块、接口模块和隔离模块,匹配模块用于与所述干湿节点连接并将干湿节点输出的干湿节点信号传输给接口模块,也即匹配模块用于与所述干湿节点连接并将干湿节点输出的干湿节点信号传输给接口模块,且匹配模块通过所述线路可自身形成回路以及与 连接的干湿节点一起形成回路。干湿节点为外部设备,例如图2a和图2b中的控制设备,图3d和图3e中的控制设备为干节点,图3f和图3g中的控制设备为湿节点。接口模块用于接入所述干湿节点信号并将干湿节点信号线性转换为可表征线路状况的电压信号,从而达到监视匹配模块至干湿节点之间的线路,匹配模块至干湿节点之间的线路包括匹配模块内部自身的连接线路。隔离模块用于对接口模块进行电气隔离并将接口模块输出的电压信号进行转换处理后输出最终识别信号,从而完成干湿节点信号采集。
参考图2,所述匹配模块包括电阻R27、电阻R28和若干串联连接的线缆端子,电阻R27、电阻R28和线缆端子构成一个回路。图2中,线缆端子P1的第一端与接口模块连接,第二端进行接地,线缆端子P1与线缆端子P2连接,线缆端子P2与电阻R27串联连接,电阻R28并联在电阻R27上。电阻R28的两端还与干湿节点连接,即与外部设备连接。
所述接口模块包括防过压短路子模块、滤波子模块和偏置电压子模块,防过压短路子模块的输出端与滤波子模块的输入端串联连接,防过压短路子模块的输入端与匹配模块连接,滤波子模块的输出端与隔离模块连接,防过压短路子模块与滤波子模块的连接点处共同与偏置电压子模块连接。防过压短路子模块包括自恢复保险丝F1、电阻R25、二极管D6和二极管D7,滤波子模块包括电容C11、电容C12和电感L1,电容C11、电容C12和电感L1组成π型滤波器,偏置电压子模块包括电阻R57以及与电阻R57连接的直流电压,本实施例的直流电压为5V,即图中的VDD 5V,即表示电阻R57连接到电压为5V的直流电压源。自恢复保险丝F1的一端与匹配模块的线缆端子P1的第一端连接,另一端串联电阻R25后分别与二极管D6的一端、二极管 D7的一端、电阻R57的一端、电感L的一端1、电容C12的一端连接。二极管D6的另一端、二极管D7的另一端分别接地,电阻R57的另一端连接所述直流电压,电感L1的另一端与电容C11的一端连接,电容C11的另一端接地。电感L1与电容C11的连接处(图中的U1处)记为接口模块的输出端。
其中,二极管D7为稳压二极管,二极管D6为瞬态抑制二极管,可以抑制从匹配模块中的传输线缆上的干扰电压。电阻R25还起到湿节点极性反接保护功能,避免节点线极性接错而损坏本采集电路。
所述隔离模块包括隔离型DC-DC电路和隔离型信号放大电路,隔离型DC-DC电路包括电阻R49、电容C38、电容EC9、电容EC10和电源模块U7,电阻R49的一端与第一电压连接(图中的+5V),在本实施例中,第一电压为5V,当然,第一电压的具体电压值可以根据实际情况进行调整。电阻R49的另一端、电容C38的一端、电容EC9的一端共同连接后与电源模块U7的输入端(图中的Vin引脚)连接,电容C38的另一端、电容EC9的另一端和电源模块U7的接地端(图中的GND引脚)共同接地,电源模块U7的输出端(图中的Vo引脚)与电容EC10的一端连接且该连接处与接口模块中的电阻R57连接,从而向电阻R57输出5V的直流电压,也即是作为接口模块中电阻R57所连接的直流电压。电容EC10的另一端与电源模块U7的低电压端(图中的0V引脚,也即是引脚3)共同连接后接地。电源模块U7将输入的5V电压隔离后输出稳定的5V电压,从而可以向接口模块提供电气隔离、稳压的偏置电压。
隔离型信号放大电路包括电阻R52、电阻R54、电阻R55、电阻R56、电容C55、电容C56、电容EC11、运算放大器U11A、运算放大器U12A、线性光 电耦合器U10。运算放大器U11A的输入端(图中的引脚3)与接口模块的输出端连接,即与接口模块中的连接处U1连接。运算放大器U11A的另一输入端分别与电阻R55的一端、电容EC11的负极、线性光电耦合器U10的PDA1端(图中的引脚4)连接,电阻R55的另一端与电容C55的一端连接后共同接地,电容C55的另一端与运算放大器U11A的输入端(图中的引脚3)连接。运算放大器U11A的输出端(图中的引脚1)分别与电容EC11的正极、电阻R52的一端分别连接,电阻R52的另一端与线性光电耦合器U10的LEDA端(图中的引脚2)连接,线性光电耦合器U10的LEDK端(图中的引脚1)接地,线性光电耦合器U10的PDK1端(图中的引脚3)与运算放大器U11A的正电源连接(即图中的+12VF),线性光电耦合器U10的两个NC端(图中的引脚7和引脚8)空接,即不连接任何东西,线性光电耦合器U10的PDK2端(图中的引脚6)连接一个5.1V电压,线性光电耦合器U10的PDA2端(图中的引脚5)接地分别与电阻R56的一端、运算放大器U12A的输入端(图中的引脚3)连接,电阻R56的另一地接地,运算放大器U12A的另一个输入端(图中的引脚2)与运算放大器U12A的输出端(图中的引脚1)连接,运算放大器U12A的输出端还依次串接电阻R54和电容C56后接地,电阻R54与电容C56之间的连接点为隔离型信号放大电路的输出端(即图中的PB11/AD11节点处)。
隔离模块用于将接口模块输出的电压信号(即U1处的电压)进行电气隔离和电压线性转换,以及对偏置电压的隔离。隔离型DC-DC电路能够提供隔离的接口偏置电压。
工作原理:本实施例中,电阻R57的电阻为4.7K,电阻R25的电阻2.2K, 电阻R27的电阻为2.2K,电阻R28的电阻为10K,当然实际使用时,也可以根据实际情况选择其他阻值的电阻。
如图3a所示,在线路正常时,5V的偏置电压经过电阻R57、电阻R25、电阻R27、电阻R28后形成回路,U1处的电压U1为电阻R25、电阻R27和电阻R28的分压,故电压U1=3.8V。
如图3b所示,线路开路时,线缆端子P1与线缆端子P2之间的线缆断开,5V的偏置电压不能形成回路,故电压U1=5V。
如图3c所示,线路短路时,5V的偏置电压通过线缆端子P1与线缆端子P2之间的某一点而形成回路,U1处的电压U1为电阻R25的分压,故电压U1=1.6V,也即U1=R25/(R25+R57)=2.2/(2.2+4.7)=1.6V。
如图3d所示,所连接的干节点未闭合时,线路为正常状态,故电压U1=3.8V。
如图3e所示,所连接的干节点闭合,电阻R28被短路,干接点信号可以有效传递,此时电压U1=2.4V,
也即U1=(R25+R27)/(R57+R25+R27)=4.4/9.1=2.4V。
如图3f所示,所连接的湿节点未闭合时,线路为正常状态,故电压U1=3.8V。
如图3g所示,所连接的湿节点闭合时,电阻R28的两端被湿节点的VCC电压(本实施例中,VCC电压为DC12-48V),湿节点的VCC电压经过电阻R27、电阻R25、稳压二极管D7形成回路,稳压二极管D7将VCC电压稳压为4.3V,故电压U1=4.3V。
从以上可知,接口模块输出端(即U1处)的电压值能够反映线路状态,电压U1与线路状态的对应关系为:线路正常—U1=3.8V;线路开路—U1=5V;线路短路—U1=1.6V;干节点闭合—U1=2.4V;湿节点闭合—U1=4.3V。故只需要读取出接口模块的输出端的输出电压U1即可读取出干湿节点以及线路的状态信息,完成干湿节点采集。
当电压U1经过隔离模块后,隔离模块对电压U1进行线性放大,隔离模块的输出电压(即图1中PB11/AD11输出端)仍与线路状况一一对应,故读取隔离模块的输出电压能够识别出线路状况,达到监视干湿节点采集电路的目的。
在一个可选的实施方式中,还包括识别模块,识别模块与隔离模块连接,用于读取隔离模块的输出电压,并根据读取到的电压大小识别线路状况,并输出识别结果。识别模块可以采用基于单片机形成的电路,参考图4,采用单片机及其外围电路构成的识别模块,外围电路中含有外置看门狗电路,图4中的单片机U3采用NUVOTON的M487SIDAE,隔离模块的输出电压信号接入单片机U3的AD输入口中,采用单片机AD输入口读取输入信号的大小,来达到识别采集节点信号的情况及线路状态,再根据实际电路所在设备的功能需求进行其他形式的状态信息的输出。图4中的外围电路构成的其他具体部件适用于实际处理的其他需求而设置的,并不直接涉及线路监视功能,故在此不赘述。
本发明通过在传统干湿节点采集电路上增加匹配模块和隔离模块,能够提升采集电路方法的防护等级和对节点信号传输线路的实时监视,并且可以实时判断传输线路是否出现故障,以发出相应的提醒信息,例如,一旦传输 线路出现故障可以实时发出警报提醒维护人员处理。
本说明书所公开的实施例只是对本发明单方面特征的一个例证,本发明的保护范围不限于此实施例,其他任何功能等效的实施例均落入本发明的保护范围内。对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种带防护及线路监视的干湿节点采集电路,其特征在于,包括依次连接的匹配模块和接口模块,所述线路为匹配模块至干湿节点之间的线路,匹配模块至干湿节点之间的线路包括匹配模块内部自身的连接线路,
    匹配模块用于与所述干湿节点连接并将干湿节点输出的干湿节点信号传输给接口模块,且匹配模块通过所述线路可自身形成回路以及与连接的干湿节点一起形成回路,
    接口模块用于接入所述干湿节点信号并将干湿节点信号线性转换为可表征线路状况的电压信号,从而达到监视所述线路。
  2. 根据权利要求1所述的带防护及线路监视的干湿节点采集电路,其特征在于,所述匹配模块包括电阻R27、电阻R28和若干串联连接的线缆端子,线缆端子的第一端与接口模块连接,第二端接地,线缆端子还与电阻R27串联连接,电阻R28并联在电阻R27上,并联在电阻R27上的电阻R28的两端用于与干湿节点连接。
  3. 根据权利要求2所述的带防护及线路监视的干湿节点采集电路,其特征在于,所述线缆端子包括线缆端子P1和线缆端子P2,线缆端子P1的第一端与接口模块连接,第二端接地,线缆端子P1与线缆端子P2连接,线缆端子P2与电阻R27串联连接。
  4. 根据权利要求3所述的带防护及线路监视的干湿节点采集电路,其特征在于,所述接口模块包括防过压短路子模块、滤波子模块和偏置电压子模块,防过压短路子模块的输出端与滤波子模块的输入 端串联连接,防过压短路子模块的输入端与匹配模块连接,滤波子模块的输出端与隔离模块连接,防过压短路子模块与滤波子模块的连接点处共同与偏置电压子模块连接,
    防过压短路子模块包括自恢复保险丝F1、电阻R25、二极管D6和二极管D7,滤波子模块包括电容C11、电容C12和电感L1,电容C11、电容C12和电感L1组成π型滤波器,
    偏置电压子模块包括电阻R57以及与电阻R57连接的直流电压,自恢复保险丝F1的一端与匹配模块的线缆端子的第一端连接,另一端串联电阻R25后分别与二极管D6的一端、二极管D7的一端、电阻R57的一端、电感L的一端1、电容C12的一端连接,二极管D6的另一端、二极管D7的另一端分别接地,电阻R57的另一端连接所述直流电压,电感L1的另一端与电容C11的一端连接,电容C11的另一端接地,电感L1与电容C11的连接处作为接口模块的输出端,输出端处的电压为所述将干湿节点信号线性转换为可表征线路状况的电压信号。
  5. 根据权利要求4所述的带防护及线路监视的干湿节点采集电路,其特征在于,二极管D7为稳压二极管,二极管D6为瞬态抑制二极管,用于抑制从匹配模块中的传输线缆上的干扰电压。
  6. 根据权利要求5所述的带防护及线路监视的干湿节点采集电路,其特征在于,还包括隔离模块,隔离模块用于对接口模块输出的电压信号进行电气隔离和电压线性转换,并将接口模块输出的电压信 号进行转换处理后输出最终识别信号,从而完成干湿节点信号采集。
  7. 根据权利要求6所述的带防护及线路监视的干湿节点采集电路,其特征在于,所述隔离模块包括隔离型DC-DC电路和隔离型信号放大电路,隔离型DC-DC电路包括电阻R49、电容C38、电容EC9、电容EC10和电源模块U7,电阻R49的一端与第一电压连接,电阻R49的另一端、电容C38的一端、电容EC9的一端共同连接后与电源模块U7的输入端连接,电容C38的另一端、电容EC9的另一端和电源模块U7的接地端共同接地,电源模块U7的输出端与电容EC10的一端连接且该连接处与接口模块中的电阻R57连接,以向电阻R57输出所述直流电压,电容EC10的另一端与电源模块U7的低电压端共同连接后接地,电源模块U7将输入的电压电气完全隔离后输出稳定电压,从而向接口模块提供隔离的、稳压的偏置电压,
    隔离型信号放大电路包括电阻R52、电阻R54、电阻R55、电阻R56、电容C55、电容C56、电容EC11、运算放大器U11A、运算放大器U12A、线性光电耦合器U10,运算放大器U11A的输入端与接口模块的输出端连接,运算放大器U11A的另一输入端分别与电阻R55的一端、电容EC11的负极、线性光电耦合器U10的PDA1端连接,电阻R55的另一端与电容C55的一端连接后共同接地,电容C55的另一端与运算放大器U11A的输入端连接,运算放大器U11A的输出端分别与电容EC11的正极、电阻R52的一端分别连接,电阻R52的另一端与线性光电耦合器U10的LEDA端连接,线性光电耦合器U10的LEDK端接地,线性光电耦合器U10的PDK1端与运算放大器U11A的正电源连 接,线性光电耦合器U10的两个NC端空接,线性光电耦合器U10的PDK2端连接第三电压,线性光电耦合器U10的PDA2端接地分别与电阻R56的一端、运算放大器U12A的输入端连接,电阻R56的另一地接地,运算放大器U12A的另一个输入端与运算放大器U12A的输出端连接,运算放大器U12A的输出端还依次串接电阻R54和电容C56后接地,电阻R54与电容C56之间的连接点为隔离型信号放大电路的输出端。
  8. 根据权利要求7所述的带防护及线路监视的干湿节点采集电路,其特征在于,还包括识别模块,识别模块与隔离模块连接,用于读取隔离模块的输出电压,并根据读取到的电压大小识别线路状况,以输出识别结果。
  9. 根据权利要求8所述的带防护及线路监视的干湿节点采集电路,其特征在于,所述识别模块为采用基于单片机形成的电路。
  10. 根据权利要求9所述的带防护及线路监视的干湿节点采集电路,其特征在于,所述单片机为NUVOTON的M487SIDAE,隔离模块的输出电压信号接入单片机的AD输入口中,单片机AD读取输入信号的大小。
PCT/CN2021/133609 2021-09-27 2021-11-26 一种带防护及线路监视的干湿节点采集电路 WO2023045068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111134416.9 2021-09-27
CN202111134416.9A CN113872587A (zh) 2021-09-27 2021-09-27 一种带防护及线路监视的干湿节点采集电路

Publications (1)

Publication Number Publication Date
WO2023045068A1 true WO2023045068A1 (zh) 2023-03-30

Family

ID=78991018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133609 WO2023045068A1 (zh) 2021-09-27 2021-11-26 一种带防护及线路监视的干湿节点采集电路

Country Status (2)

Country Link
CN (1) CN113872587A (zh)
WO (1) WO2023045068A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115513733B (zh) * 2022-10-19 2023-11-24 深圳交控科技有限公司 倒切装置、机柜及轨道车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008680A (zh) * 2017-12-31 2018-05-08 北京自动测试技术研究所 一种实验室设备前端智能信息采集系统
US20190097418A1 (en) * 2017-09-25 2019-03-28 Schweitzer Engineering Laboratories, Inc. Multiple generator ground fault detection
CN208872847U (zh) * 2018-09-06 2019-05-17 深圳华北工控软件技术有限公司 一种干湿节点采集电路模块
CN112804019A (zh) * 2021-01-19 2021-05-14 广州市保伦电子有限公司 一种远距离广播线路检测装置
CN213904104U (zh) * 2020-12-21 2021-08-06 广州市保伦电子有限公司 一种多触发点信号输送装置
CN215990746U (zh) * 2021-09-27 2022-03-08 广州市保伦电子有限公司 一种带防护及线路监视的干湿节点采集电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097418A1 (en) * 2017-09-25 2019-03-28 Schweitzer Engineering Laboratories, Inc. Multiple generator ground fault detection
CN108008680A (zh) * 2017-12-31 2018-05-08 北京自动测试技术研究所 一种实验室设备前端智能信息采集系统
CN208872847U (zh) * 2018-09-06 2019-05-17 深圳华北工控软件技术有限公司 一种干湿节点采集电路模块
CN213904104U (zh) * 2020-12-21 2021-08-06 广州市保伦电子有限公司 一种多触发点信号输送装置
CN112804019A (zh) * 2021-01-19 2021-05-14 广州市保伦电子有限公司 一种远距离广播线路检测装置
CN215990746U (zh) * 2021-09-27 2022-03-08 广州市保伦电子有限公司 一种带防护及线路监视的干湿节点采集电路

Also Published As

Publication number Publication date
CN113872587A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN103439649B (zh) 一种控制回路开关接入状态的监测系统
CN104267340B (zh) 一种直流馈线断路器的信息检测装置及检测方法
WO2023045068A1 (zh) 一种带防护及线路监视的干湿节点采集电路
CN215990746U (zh) 一种带防护及线路监视的干湿节点采集电路
CN109828177B (zh) 一种直流系统的故障录波装置
CN207882381U (zh) 一种农村低压线路漏电查找装置
CN202975132U (zh) 变压器电压异常报警装置
CN203535189U (zh) 一种控制回路跳闸开关接入状态的监测系统
CN204177901U (zh) 一种智能交通信号机故障检测电路
CN105244841A (zh) 一种基于can的电气火灾监控装置
CN103683186B (zh) 一种具有自整定功能的剩余电流断路器
CN204481570U (zh) 断路器智能控制器
CN208636370U (zh) 一种cvt二次侧远程监测装置
CN202522657U (zh) 接地线监测电路及系统
CN203396891U (zh) 互感器断线检测装置
CN105785180A (zh) 一种多功能智能继电保护测试仪
CN206725670U (zh) 用于plc模块中滤波电容的检测装置
CN205539259U (zh) 一种多功能智能继电保护测试仪
CN205231726U (zh) 一种具有上电保护的电源保护电路
CN216162615U (zh) 一种有源遥信防并接冲突电路
CN105953842A (zh) 一种对局部放电及温度监测装置监测的二次设备
CN208174829U (zh) 在线巡课用自动感应摄像头
CN213023313U (zh) 安全管控终端
CN106324421B (zh) 一种电网变压器漏电故障监测装置
CN205302547U (zh) 一种高压配电柜监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE