WO2023044999A1 - 一种模拟量远程传输方法及装置 - Google Patents

一种模拟量远程传输方法及装置 Download PDF

Info

Publication number
WO2023044999A1
WO2023044999A1 PCT/CN2021/124634 CN2021124634W WO2023044999A1 WO 2023044999 A1 WO2023044999 A1 WO 2023044999A1 CN 2021124634 W CN2021124634 W CN 2021124634W WO 2023044999 A1 WO2023044999 A1 WO 2023044999A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase angle
analog
analog quantity
amplitude
voltage signal
Prior art date
Application number
PCT/CN2021/124634
Other languages
English (en)
French (fr)
Inventor
陈勇
李胜男
常东旭
郭琦
朱益华
余多
Original Assignee
云南电网有限责任公司电力科学研究院
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南电网有限责任公司电力科学研究院, 南方电网科学研究院有限责任公司 filed Critical 云南电网有限责任公司电力科学研究院
Publication of WO2023044999A1 publication Critical patent/WO2023044999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present application relates to the technical field of power system protection and control, in particular to a method and device for remote transmission of analog quantities.
  • the secondary equipment of the power system refers to auxiliary electrical equipment such as relays that monitor, control and protect the working status of the primary equipment of the power system during production.
  • the secondary equipment of the power system is often in a complex working environment, and the working duration is very long, and it is very easy to be damaged and aged, so that it cannot operate normally and brings losses to production. Therefore, it is necessary to carry out regular maintenance on the secondary equipment of the power system.
  • the method of static simulation is to first input the detection value of each component of the secondary equipment of the power system, and then collect the output response of each component of the secondary equipment of the power system to the detection value, and then establish the secondary control system of the power system according to the input detection value and the collected output response.
  • the process of static simulation the process of building a model is very complicated.
  • On-site inspection is to input instructions to the secondary equipment of the power system at the production site, and judge its operating status by observing the output response of the secondary equipment of the power system.
  • the inspection efficiency of on-site inspection is low.
  • the remote intelligent inspection method with high inspection efficiency can also inspect the secondary equipment of the power system.
  • the remote intelligent inspection method is to transmit the analog quantity to the secondary equipment of the power system to be inspected through the operator network, observe the output response of the secondary equipment of the power system to be inspected, and then judge the maintenance method of the operating state.
  • the instantaneous value of the analog quantity is directly transmitted through the operator network, and the analog quantity data is easily distorted, resulting in inaccurate test results.
  • the application provides a method and device for remote transmission of analog quantities to solve the problem of difficulty in analog quantity transmission during remote inspection of secondary equipment in a power system.
  • This application provides a method and device for remote transmission of analog quantities, through the establishment of a master control center, and the establishment of control signal receiving ends at each production site to realize remote equipment inspection, including:
  • the acquisition module is used to collect analog quantities; the analog quantities include voltage signals and current signals.
  • the discrete Fourier transform method is used to extract the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle of the analog quantity.
  • the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle are transmitted to the analog quantity fitting module through the operator network through the communication transmission module.
  • the digital-to-analog conversion operation is performed on the amplitude and phase angle by an analog quantity fitting module, and the amplitude and phase angle are fitted into the analog quantity.
  • the analog quantity fitting module transmits the analog quantity to the power equipment to be tested.
  • the improvement of the remote transmission method of analog quantity combined with the establishment of the general control center and the establishment of control signal receiving ends at each production site, has realized the remote inspection of the secondary equipment of the power system.
  • the key lies in solving the problem of difficult analog quantity transmission.
  • the analog quantity for checking the secondary equipment of the power system is generated in the master control center, the analog quantity mainly includes voltage signals and current signals, and the category of the analog quantity is selected according to the secondary equipment of the power system to be checked.
  • the time domain and frequency domain of the collected analog quantity By calculating the time domain and frequency domain of the collected analog quantity, the information such as the amplitude and phase angle of the analog quantity is extracted, and it is not easy to be distorted when the digital quantity such as the amplitude and phase angle is transmitted remotely. Improved transmission accuracy.
  • the process of splitting and refitting the analog quantity reduces the demand for sampling frequency and transmission speed of acquisition equipment and transmission equipment.
  • the step of extracting the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle of the analog quantity by the Fourier transform comprises:
  • the analog quantity is sampled at a sampling frequency to obtain a sampled signal after the analog quantity is sampled.
  • Windowing processing is performed on the sampled signal to intercept a signal sequence of one period.
  • the frequency domain convolution characteristic of the signal is used to perform convolution operation on the signal sequence to obtain the periodic continuous spectrum of the signal sequence.
  • the periodic continuous frequency spectrum is multiplied by the periodic sequence pulse function to obtain the discretized frequency spectrum of the signal sequence.
  • the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle of the analog quantity are obtained from the discretized frequency spectrum.
  • the step of the communication transmission module transmitting the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle to the analog fitting module includes:
  • the communication transmission module receives the analog voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle.
  • the communication transmission module modulates the electromagnetic wave according to the transmission protocol and transmits the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle data as a carrier wave.
  • the communication transmission module sends the electromagnetic wave to the analog quantity fitting module.
  • the steps of fitting the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle into the voltage signal and the current signal by the analog quantity fitting module include:
  • the receiving end of the analog fitting module receives the electromagnetic wave.
  • the amplitude and phase angle of the analog quantity are converted into machine codes recognizable by the machine through modulation and demodulation operations, and then transmitted to the receiving end of each production site through the operator network.
  • the transmission efficiency is high, and a transmission method is provided for the remote inspection of the secondary equipment of the power system.
  • the analog quantity fitting module demodulates the machine code into the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle according to the transmission protocol.
  • the analog fitting module converts the voltage signal amplitude and the voltage signal phase angle into the voltage signal through a digital-to-analog conversion operation and a vector synthesis operation.
  • the analog fitting module converts the current signal amplitude and the current signal phase angle into the current signal through a digital-to-analog conversion operation and a vector synthesis operation.
  • the four digital quantities of the voltage signal amplitude, voltage signal phase angle, current signal amplitude and current signal phase angle are converted into the analog quantity through the digital-to-analog conversion operation and the vector synthesis operation: the voltage signal and the current signal Steps include:
  • the analog quantity fitting module sets a weight for digital-to-analog conversion.
  • the analog quantity fitting module calculates each count bit of the digital quantity according to a weight value to obtain a sub-analog quantity corresponding to each count bit.
  • the analog quantity fitting module adds the sub-analog quantities to obtain the analog quantity proportional to the digital quantity.
  • This application collects and inspects the analog quantity of the secondary equipment of the power system through the acquisition module, and then extracts the characteristic values such as the amplitude and phase angle of the analog quantity through the calculation in the time domain and the frequency domain, and then uses the communication transmission module to analyze the amplitude, The modulation and demodulation of characteristic values such as phase angle realizes the long-distance transmission of analog quantities, and improves the transmission speed and accuracy of analog quantities.
  • the receiving end set up at each production site fits the demodulated amplitude, phase angle and other digital quantities into analog quantities, and transmits them to the secondary equipment of the power system to be inspected, and conducts remote inspection of the secondary equipment of the power system, which improves the power consumption The efficiency of system secondary equipment inspection.
  • Fig. 1 is the schematic flow chart of analog remote transmission method
  • Fig. 2 is a schematic flow chart of the method for extracting the amplitude and phase angle of the analog quantity
  • Fig. 3 is a schematic diagram of the amplitude and phase angle transmission process
  • Figure 4 is a schematic diagram of the analog fitting process.
  • FIG. 1 is a schematic flow chart of the analog quantity remote transmission method.
  • Fig. 2 is a schematic flow chart of the method for extracting the amplitude and phase angle of the analog quantity.
  • Fig. 3 is a schematic diagram of the transmission process of amplitude and phase angle.
  • Figure 4 is a schematic diagram of the analog fitting process. Its steps include:
  • RTDS Real Time Digital Simulator, real-time digital simulator
  • the analog quantity which is the voltage or current value of the primary equipment of the power system.
  • the calculation step size is set to 100 ⁇ s in RTDS.
  • the corresponding sampling rate is 10000Hz, that is, every 100 ⁇ s, RTDS collects a set of analog data. If other simulation tools or acquisition modules are used to collect the analog quantities, the minimum sampling rate must be 1200Hz. After the analog quantity is collected, the amplitude and phase angle of the analog quantity are extracted.
  • the windowing process is a time-domain truncation method.
  • the sampling signal obtained by S100 is theoretically an infinitely long discrete sequence.
  • S202 Perform a convolution operation on the signal sequence by using the frequency-domain convolution characteristic of the signal to obtain a periodic continuous spectrum of the signal sequence.
  • the frequency domain part of the signal sequence is discretized by using the frequency domain convolution theorem of the signal.
  • the frequency domain convolution theorem is: the frequency domain convolution theorem is that the convolution in the frequency domain corresponds to the product in the time domain, and the product of the Fourier transforms of the two functions is equal to their convolutional Fourier transforms.
  • the periodic continuous frequency spectrum is multiplied by the periodic sequence pulse function to obtain the discretized frequency spectrum of the signal sequence.
  • extracting the eigenvalues of the discretized frequency spectrum means extracting the amplitude and phase angle.
  • S203 Obtain the analog voltage signal amplitude, voltage signal phase angle, current signal amplitude, and current signal phase angle from the discretized frequency spectrum.
  • Fast Fourier transform is performed on the discretized frequency domain sampling function to obtain the amplitude and phase angle of the analog quantity.
  • the fast Fourier transform sorts the frequency domain signal sequence into even and odd order, and iterates by stages. In the step-by-step iterative calculation, the output data obtained each time is stored in the unit that originally stored the input data. The number of multiplications required by the leaf transformation, the more the number of sampling points to be transformed, the greater the calculation time saved by the fast Fourier transform method.
  • the amplitude and phase angle are transmitted from the acquisition module to the transmission module.
  • weights are first set to convert the amplitude and phase angle into binary numbers, and then the electromagnetic wave is modulated as a carrier to transmit the amplitude and phase angle. converted to binary
  • S300 Transmitting the amplitude and phase angle of the analog quantity to the analog quantity fitting module through the transmission module.
  • the transmission module transmits the amplitude and phase angle to the receiving end of the analog quantity fitting module of each production site through the operator network. It avoids the situation that the direct transmission of analog quantities will cause analog quantity distortion due to network delay, and improves the accuracy and efficiency of data transmission.
  • the communication transmission module receives the analog voltage signal amplitude, voltage signal phase angle, current signal amplitude, and current signal phase angle.
  • the received amplitude and phase angle data need to be converted into binary numbers and then sent to the receiving end through modulated electromagnetic waves.
  • the communication transmission module modulates the voltage signal amplitude, voltage signal phase angle, current signal amplitude, and current signal phase angle data to be transmitted into electromagnetic waves carrying data according to the transmission protocol.
  • the electromagnetic wave modulated by the modulation method is applicable to the current operator's transmission network and the wireless transmission network provided by the operator.
  • QAM Quadrature Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying, Quadrature Phase Shift Keying
  • the communication transmission module sends the modulated electromagnetic wave to the analog quantity fitting module.
  • the electromagnetic waves are transmitted through the operator's commercial network, and the transmission conditions are convenient.
  • the operator 5G network is used to transmit the amplitude and phase angle of the analog quantity to the data receiving end of each production site, and then the data receiving end transmits the demodulated amplitude and phase angle to the analog Quantitative fitting module.
  • the 5G network to send data is to use the electromagnetic wave signal as the carrier to send the data. It is necessary to modulate the amplitude, frequency and phase of the electromagnetic wave to generate different waveforms to represent multiple sets of data.
  • the QAM method is adopted to modulate the amplitude and phase angle. Taking 16QAM as an example, the steps of modulation include:
  • the values of the amplitude and phase angle are converted into a string of binary sequences according to the weight.
  • Both the odd part and the even part enter 2/L level conversion, that is, the binary numbers are converted into decimal numbers, and the decimal numbers respectively correspond to the values on the preset constellation diagram.
  • the low-frequency jitter wave in the modulation waveform is eliminated by a low-pass filter.
  • the modulation waveform enters the multiplier, and the carrier cos( ⁇ ct) is multiplied by the in-phase wave Sl(t) to become Sl(t)cos( ⁇ ct).
  • the carrier wave cos( ⁇ ct) is multiplied by the quadrature wave SQ(t) after a phase shift of 90° to obtain -SQ(t)sin( ⁇ ct).
  • the communication module sends the tuned electromagnetic waves to the data receiving end of each production site through the operator's 5G network.
  • the serial/parallel conversion refers to dividing an information flow into two signals, and the two signals are transmitted simultaneously, and the transmission time is half of the original required time.
  • the analog quantity fitting module fits the received amplitude and phase angle into an analog quantity such as a voltage signal or a current signal.
  • the analog quantity fitting module first demodulates the electromagnetic wave to restore the original binary signal waveform, and finally calculates the corresponding amplitude and phase angle of the binary number according to the weight value set when sending the original binary signal.
  • the analog quantity fitting module demodulates electromagnetic waves into binary numbers according to the transmission protocol, and then restores the corresponding binary numbers to the voltage signal amplitude, voltage signal phase angle, current signal amplitude, and current signal phase according to the weight. horn. Specific steps are as follows:
  • the receiving end of the analog quantity fitting module multiplies the modulated electromagnetic wave in the multiplier, and then extracts the in-phase component and the quadrature component by moving the phase by 90°.
  • the in-phase component is:
  • the orthogonal components are:
  • the in-phase component and quadrature component enter a low-pass filter to form an envelope waveform.
  • the envelope waveform enters the sampling decision device, and sampling points are selected to form an original binary rectangular wave.
  • the binary rectangular wave enters serial/parallel conversion, and forms an original binary signal according to the odd-even distribution rule at the time of transmission.
  • the binary signal is weighted to calculate the corresponding amplitude and phase angle.
  • the analog quantity fitting module converts the voltage signal amplitude and the voltage signal phase angle into the voltage signal through a digital-to-analog conversion operation and a vector synthesis operation;
  • the analog quantity fitting module converts the current signal amplitude and the current signal phase angle into the current signal through a digital-to-analog conversion operation and a vector synthesis operation.
  • the waveforms of voltage and current are fitted by means of vector synthesis. Then, according to the working characteristics of the power secondary equipment to be tested, the voltage or current signal is sent to the power secondary equipment to be tested for performance testing.
  • the analog quantity fitting module outputs the fitted analog quantity to the power secondary equipment to be tested.
  • the analog quantity fitting module sets a digital-to-analog conversion weight for the digital-to-analog conversion.
  • the analog quantity fitting module calculates each count bit of the digital quantity according to the weight value to obtain a sub-analog quantity corresponding to each count bit.
  • the analog quantity fitting module adds the sub-analog quantities to obtain the analog quantity proportional to the digital quantity.
  • the waveform of the analog quantity is fitted by using the amplitude and phase angle and transmitted to the secondary equipment of the power system to be tested.
  • the remote analog quantity transmission method described in this application increases the remote transmission capability on the basis of meeting the basic needs of the production process.
  • the power secondary equipment to be inspected is distributed in multiple production sites, the secondary equipment of the power system to be inspected The inspection is more flexible and improves the inspection efficiency.
  • This embodiment also designs a scheme for verifying the feasibility of the remote analog quantity transmission method, the specific content is as follows:
  • Scheme 1 is to directly output the analog quantity to the power secondary equipment to be tested through the peripheral board after the analog quantity is generated by the RTDS, and the power secondary equipment to be tested is a stability control device.
  • Scheme 2 is to generate analog quantities by RTDS, and the analog quantities are extracted by the acquisition module to obtain the amplitude and phase angle, and the amplitude and phase angle are then fitted to the analog quantities by the analog quantity fitting module, and finally directly transmitted to Stabilizer.
  • Option 3 is completely operated in accordance with the actual process in the production process.
  • the analog quantity data generated by the primary power equipment is collected, and the amplitude and phase angle of the analog quantity are extracted through the acquisition module, and the amplitude and phase angle are transmitted to the analog quantity fitting module through the operator network, and the analog quantity fitting module combines the amplitude Value and phase angle, the analog waveform is fitted by vector synthesis operation, and the analog quantity is transmitted to the stability control device.
  • the output waveforms of the measured stability control devices were collected respectively, and tabulations were made based on the waveforms and waveform-related data to demonstrate the feasibility of the analog quantity transmission method.
  • comparison index plan 1 Scenario 2 Option 3 Analog output delay 0ms 6ms 27ms Judging the failure time 178ms 184ms 197ms Maximum deviation of normal working waveform 0 1.73% 1.85% Maximum deviation of fault waveform 0 2.91% 3.73% Maximum Continuous Distortion Time 0 6ms 8ms
  • the RTDS simulates an interval-type three-phase fault, and the three-phase electric trip lasts for 0.1s.
  • the output waveform of the stability control device under test is collected.
  • the analog quantity transmission methods of Scheme 2 and Scheme 3 also have a certain influence on the output waveform of the stability control device when a fault occurs, resulting in phase deviations of 2.91% and 3.73% respectively, and the phase deviations are less than 4% within the allowable error range. After the waveforms are shifted, the output waveforms basically overlap, which meets the production test requirements.
  • schemes 2 and 3 will produce a distortion time of about 5ms to 8ms compared to the transmission mode of scheme 1, and the distortion time of 5ms is due to the 5ms interval time when transmitting analog quantities, so scheme 2
  • the maximum continuous time actually generated in the transmission process of scheme 3 is in the range of 1ms to 3ms, which will not have a substantial impact on the fault discrimination of the stability control device, and meets the production and use standards.
  • the analog quantity transmission method adopted in this application is effective in actual production. Moreover, compared with the analog data transmitted by the board, the remote transmission is more flexible, and it has higher inspection efficiency in the case of multiple production sites and multiple secondary equipment of the power system to be inspected.
  • This application collects and inspects the analog quantity of the secondary equipment of the power system through the acquisition module, extracts the characteristic values such as the amplitude and phase angle of the analog quantity by discretizing the time domain waveform and frequency domain waveform of the analog quantity, and then transmits the analog quantity through the communication module
  • the modulated electromagnetic wave is used as a carrier, and the characteristic values such as amplitude and phase angle are transmitted to the receiving end of the analog fitting module at each production site through the operator network, which improves the speed and accuracy of analog transmission.
  • the receiving end set up at each production site fits the demodulated amplitude, phase angle and other eigenvalues into analog quantities, and transmits them to the secondary equipment of the power system to be inspected for remote inspection of the secondary equipment of the power system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种模拟量远程传输方法及装置,通过采集模块采集用于检验电力系统二次设备的模拟量,通过对模拟量的时域波形和频域波形离散化提取模拟量的幅值、相角等特征值,接着通过通信传输模块调制电磁波作为载波,经运营商网络将幅值、相角等特征值传输至各生产现场的模拟量拟合模块的接收端,提高了模拟量传输速度与准确率。最后由各生产现场设置的接收端将解调的幅值、相角等特征值拟合成模拟量,传输至待检验电力系统二次设备,对电力系统二次设备进行远程检验。

Description

一种模拟量远程传输方法及装置 技术领域
本申请涉及电力系统保护控制技术领域,尤其涉及一种模拟量远程传输方法及装置。
背景技术
电力系统二次设备是指继电器这类在生产中对电力系统一次设备的工作状态进行监测、控制和保护的辅助性电气设备。电力系统二次设备经常处于复杂的工作环境中,且工作持续时间很长,十分容易出现损坏老化的情况,从而不能正常运行,给生产带来损失。因此,要对电力系统二次设备进行定期检修。
生产中使用静态模拟和就地检验两种方法对电力系统二次设备进行检修。静态模拟的方法是先对电力系统二次设备各部件输入检测值,然后采集电力系统二次设备各部件对检测值的输出响应,接着根据输入的检测值和采集的输出响应建立电力系统二次设备各部件的模型,最后通过观察模拟的电力系统二次设备运行时产生的物理现象,判断电力系统二次设备的运行状态。但静态模拟的过程中,建立模型的过程十分复杂。就地检验是在生产现场向电力系统二次设备输入指令,通过观察电力系统二次设备的输出响应判断其运行状态。当待检验设备分布于多处生产现场,就地检验的检验效率低。随着通信技术的发展,检验效率高的远程智能检验方法也可以对电力系统二次设备进行检验。
远程智能检验方法是通过运营商网络将模拟量传输到待检验电力系统二次设备,观察待检验电力系统二次设备输出响应,再判断运行状态的检修方法。但直接通过运营商网络传输模拟量的瞬时值,模拟量数据容易失真,导致检验结果不准确。
申请内容
本申请提供了一种模拟量远程传输方法及装置,以解决对电力系统二次设备进行远程检查时,模拟量传输困难的问题。
本申请提供了一种模拟量远程传输方法及装置,通过建立总控中心,并在各生产现场建立控制信号接收端实现远程设备检验,包括:
使用采集模块采集模拟量;所述模拟量包括电压信号和电流信号。
使用离散傅里叶变换法提取所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。
通过通信传输模块将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角经运营商网络传输至模拟量拟合模块。
通过模拟量拟合模块对所述幅值和相角进行数模转换运算,将所述幅值和相角拟合成所述模拟量。
所述模拟量拟合模块将所述模拟量输送至待检验电力设备。
模拟量远程传输方法的改进,再结合建立总控中心以及在各生产现场建立控制信号接收端实现了对电力系统二次设备的远程检验,其关键在于解决了模拟量传输困难的问题。
在总控中心生成检验电力系统二次设备的模拟量,所述模拟量主要包括电压信号和电流信号,根据被检验电力系统二次设备来选择模拟量的类别。通过对采集的模拟量进行时域、频域上的计算,提取出所述模拟量的幅值和相角等信息,在对幅值和相角等数字量进行远程传输时不易出现失真情况,提升了传输准确率。将模拟量拆分再拟合的过程降低了对采集设备和传输设备的采样频率,传输速度的需求。
所述傅里叶变换提取所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角的步骤包括:
按采样频率对所述模拟量进行采样,得到所述模拟量采样后的采样信号。
对所述采样信号进行加窗处理,以截取一个周期的信号序列。
利用信号的频域卷积特性对所述信号序列进行卷积运算,得到所述信号序 列的周期性连续频谱。
令周期性连续频谱与周期序列脉冲函数进行乘法运算,得到所述信号序列的离散化频谱。
由所述离散化频谱得到所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。
所述通信传输模块将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角传输至所述模拟量拟合模块的步骤包括:
所述通信传输模块接收所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。
所述通信传输模块根绝传输协议调制电磁波作为载波传输电压信号幅值、电压信号相角、电流信号幅值和电流信号相角数据。
所述通信传输模块将所述电磁波发送到所述模拟量拟合模块。
所述模拟量拟合模块将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角拟合成所述电压信号和所述电流信号的步骤包括:
所属模拟量拟合模块的接收端接收所述电磁波。
将所述模拟量的幅值、相角通过调制和解调的操作转换成机器可识别的机器码,然后经运营商网络传输至各个生产现场的接收端。传输效率高,为远程检验电力系统二次设备提供了传输方法。
所述模拟量拟合模块按照传输协议将所述机器码解调成所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。
所述模拟量拟合模块通过数模转换运算与矢量合成运算将所述电压信号幅值和所述电压信号相角转换成所述电压信号。
所述模拟量拟合模块通过数模转换运算与矢量合成运算将所述电流信号幅值和所述电流信号相角转换成所述电流信号。
所述通过数模转换运算与矢量合成运算将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角四个数字量转换成所述模拟量:电压信号和 电流信号的步骤包括:
所述模拟量拟合模块为数模转换设定一个权值。
所述模拟量拟合模块将所述数字量的每一计数位按权值进行计算,得到各计数位对应的子模拟量。
所述模拟量拟合模块将所述子模拟量相加,得到与数字量成正比的所述模拟量。
本申请通过采集模块采集检验电力系统二次设备的模拟量,再通过时域、频域上的计算提取模拟量的幅值、相角等特征值,接着通过通信传输模块对所述幅值、相角等特征值进行调制与解调实现了模拟量的远程传输,提高了模拟量传输速度与准确率。最后由各生产现场设置的接收端将解调的幅值、相角等数字量拟合成模拟量,传输至待检验电力系统二次设备,对电力系统二次设备进行远程检验,提高了电力系统二次设备检验的效率。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为模拟量远程传输方法流程示意图;
图2为提取模拟量的幅值和相角方法流程示意图;
图3为幅值和相角传输流程示意图;
图4为模拟量拟合流程示意图。
具体实施方式
下面将详细地对实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下实施例中描述的实施方式并不代表与本申请相一致的所有实施方式。仅是与权利要求书中所详述的、本申请的一些方面相一致的系统和方法的示例。
本申请应用于远程检验电力系统二次设备,首先建立一个总控中心,接着在各生产现场建立控制信号接收端,用来发送和接受检验电力系统二次设备所需要的模拟量。首先由总控中心根据待检验电力系统二次设备工作特性生成检验用模拟量,接着开始对所述模拟量进行传输。下面结合图1、图2、图3和图4对模拟量传输方法进行说明,图1为模拟量远程传输方法流程示意图。图2为提取模拟量的幅值和相角方法流程示意图。图3为幅值和相角传输流程示意图。图4为模拟量拟合流程示意图。其步骤包括:
S100:数据采集模块采集模拟量。
本实施例中采用RTDS(Real Time Digital Simulator,实时数字仿真仪)对模拟量进行采集,所述模拟量为电力系统一次设备的电压或电流值。在进行电力系统二次设备远程检验时,由于控制保护板卡的运算最小周期为100μs,因此在RTDS中设置运算步长为100μs。相应的采样速率为10000Hz,即每过100μs,RTDS采集一组模拟量数据。若采用其他仿真工具或采集模块对所述模拟量进行采集时,要保证最小采样速率为1200Hz。采集模拟量之后,对所述模拟量的幅值和相角进行提取。
S200:离散傅里叶变换提取模拟量的幅值和相角。
S201:对所述采样信号进行加窗处理,以截取一个周期的信号序列;
所述加窗处理是一种时域截断方式,由S100得到的采样信号理论上是时间无限长的离散序列,为了存储、分析和处理方便,在本实施例中只取有限长度的采样序列。所以必须从采样信号的时间序列截取有限长的一段处理,就相当于把得到的采样信号与一个矩形窗函数相乘,得到一个周期长度的信号序列,所述信号序列在时域上表现为离散时间序列。
S202:利用信号的频域卷积特性对所述信号序列进行卷积运算,得到所述信号序列的周期性连续频谱。为了得到计算机或数字信号处理仪能处理的离散数据,还需要对所述信号序列进行频域离散化处理。利用信号的频域卷积定理将所述信号序列的频域部分离散化。所述频域卷积定理为:频域卷积定理即频 域内的卷积对应时域内的乘积,两函数的傅里叶变换的乘积等于他们卷积后的傅里叶变换。令周期性连续频谱与周期序列脉冲函数进行乘法运算,得到所述信号序列的离散化频谱。得到所述信号序列的离散化频谱后,提取所述离散化频谱的特征值即提取所述幅值和相角。
S203:由所述离散化频谱得到所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。对所述离散化频域采样函数进行快速傅里叶变换求出所述模拟量的幅值和相角。基于所述模拟量信号序列的周期性和对称性,快速傅里叶变换将频域信号序列按偶奇分排,并按级迭代进行。在逐级迭代计算中,每次得到的输出数据存放在原来存储输入数据的单元,是一种即位计算,节省了大量数据寄存器的使用,因此快速傅里叶变换方法可以大幅度减少离散傅里叶变换所需要的乘法次数,被变换的抽样点数越多,快速傅里叶变换法节省的计算时间相对而言就越多。
所述幅值和相角从采集模块被传输至传输模块,在传输模块中先设置权值将所述幅值和相角转换成二进制数,再调制电磁波作为载波传输所述幅值和相角转换成的二进制数
S300:通过传输模块传输模拟量的幅值和相角至模拟量拟合模块。所述传输模块通过运营商网络将幅值和相角传输至各生产现场的模拟量拟合模块的接收端。避免了直接传输模拟量会因网络延迟而导致模拟量失真的情况,提升了数据传输的准确率和效率。
S301:所述通信传输模块接收所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。接收到的幅值、相角数据均需要转换成二进制数再经调制好的电磁波发送至接收端。
S302:所述通信传输模块根据传输协议将待传输的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角数据调制成搭载数据的电磁波。所述调制方法调制的电磁波适用于当前运营商传输网络以及运营商提供的无线传输网络。例如3G和4G通信传输技术中使用的QAM(Quadrature Amplitude  Modulation,正交振幅调制)和QPSK(Quadrature Phase Shift Keying,正交相移键控)调制方法。5G通信传输技术中在包含3G和4G的传输功能基础上增加了载波幅度不变化的π/2-BPSK(Binary Phase Shift Keying,二进制相移键控)技术。
S303:所述通信传输模块将调制好的电磁波发送到所述模拟量拟合模块。所述电磁波是通过运营商商用网络传输,传输条件便利。
本实施例中利用运营商5G网络将所述模拟量的幅值和相角传输至各生产现场的数据接收端,再由数据接收端将解调后的所述幅值和相角传输至模拟量拟合模块。利用5G网络发送数据即用电磁波信号为载波将数据发送出去,需要对电磁波的振幅、频率和相位进行调制产生不同的波形来表示多组数据。本实施例中采用QAM方法对所述幅值和相角进行调制,以16QAM举例,调制的步骤包括:
为幅值和相角转换成二进制数设置一个权。
将所述幅值和相角的值按权转换成一串二进制序列。
将一串二进制序列置入串/并变换中,进行4比特划分,再进行2比特划分。将奇数部分送入同相路,偶数部分送入正交路。
所述奇数部分和偶数部分均进入2/L电平变换,即把二进制数变成十进制数,所述十进制数分别对应预先设置的星座图上的数值。
通过低通滤波器消除调制波形中频率较低的抖动波。
所述调制波形进入乘法器,载波cos(ωct)与同相路波Sl(t)相乘变为Sl(t)cos(ωct)。载波cos(ωct)经过相位移动90°后,与正交路波SQ(t)相乘,得到-SQ(t)sin(ωct)。
两路波形经过乘法器后,通过加法器相加,得到Sl(t)cos(ωct)-SQ(t)sin(ωct)。
所述通信模块通过运营商5G网络将调至好的电磁波发送至各生产现场的数据接收端。
所述串/并变换指将一条信息流分成两路信号,两路信号同时传输,传输时间为原来所需要时间的一半。
S400:模拟量拟合模块将接收到的幅值和相角拟合成电压信号或电流信号等模拟量。所述模拟量拟合模块先解调电磁波,还原出原始的二进制信号波形,最后将原始二进制信号按发送时设定的权值计算出二进制数对应的幅值和相角。
S401:所述模拟量拟合模块按照传输协议将电磁波解调成二进制数,再将对应的二进制数按权还原为所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。具体步骤如下:
所述模拟量拟合模块的接收端接收到调制的电磁波后,将调制后的电磁波在乘法器内相乘,再通过移动90°相位提取出同相分量和正交分量。
所述同相分量为:
yl=Sl(t)/2+1/2×(Sl(t)cos2(ωct)-SQ(t)sin(2ωct))。
所述正交分量为:
yQ(t)=SQ(t)/2-1/2×(Sl(t)sin(2ωct)+SQ(t)cos(2ωct))。
所述同相分量和正交分量进入低通滤波器形成包络波形。
所述包络波形进入采样判决器,选取采样点,形成原始的二进制矩形波。
所述二进制矩形波进入串/并变换,依照发送时的奇偶分配规则形成原始的二进制信号。
最后将所述二进制信号按权计算出对应的幅值、相角。
S402:所述模拟量拟合模块通过数模转换运算与矢量合成运算将所述电压信号幅值和所述电压信号相角转换成所述电压信号;
S403:所述模拟量拟合模块通过数模转换运算与矢量合成运算将所述电流信号幅值和所述电流信号相角转换成所述电流信号。
结合幅值和相角这两个模拟量的特征值,通过矢量合成的方式拟合出电压和电流的波形。再根据待检验电力二次设备的工作特性将电压或电流信号输送 至待检验电力二次设备进行性能检测。
S500:模拟量拟合模块将拟合成的模拟量输出至待检验电力二次设备。
所述模拟量拟合模块为数模转换设定一个数模转换权值。
所述模拟量拟合模块将所述数字量的每一计数位按所述权值进行计算,得到各计数位对应的子模拟量。
所述模拟量拟合模块将所述子模拟量相加,得到与数字量成正比的所述模拟量。
通过所述模拟量拟合模块中的数模转换功能和矢量合成算法利用幅值和相角拟合出模拟量的波形传输至待检验电力系统二次设备。
本申请所述的远程模拟量传输方法在满足生产过程基本需求的基础上,增加了远程传输能力,在待检验电力二次设备分布在多个生产现场的情况下,对待检验电力系统二次设备的检验更灵活,提高了检验效率。本实施例还设计了验证所述远程模拟量传输方法可行性的方案,具体内容如下:
采用三种模拟量传输方式,并对三种传输过程中的模拟量输出延迟、故障判断时间、波形偏差和连续失真时间进行比较,得出结论。
方案1是由RTDS生成模拟量后直接通过外设板卡将模拟量输出到待检验电力二次设备,所述待检验电力二次设备为稳控装置。
方案2是由RTDS生成模拟量,模拟量经过采集模块提取幅值和相角,所述幅值和相角再由模拟量拟合模块拟合成所述模拟量,最后直接由传输接口传输至稳控装置。
方案3完全按照生产过程中实际流程操作。采集电力一次设备产生的模拟量数据,模拟量经过采集模块提取幅值和相角,所述幅值和相角经运营商网络传输至模拟量拟合模块,模拟量拟合模块结合所述幅值和相角,通过矢量合成运算拟合出所述模拟量波形,并将所属模拟量传输至稳控装置。
上述三个方案在执行时,分别采集以上三种方案进行时的被测稳控装置的输出波形,以波形及波形相关数据为基础制表,论证模拟量传输方法的可行性。
表1三种方案模拟量输出指标对比
比对指标 方案1 方案2 方案3
模拟量输出延迟 0ms 6ms 27ms
判断故障时间 178ms 184ms 197ms
正常工作波形最大偏差 0 1.73% 1.85%
发生故障波形最大偏差 0 2.91% 3.73%
最大连续失真时间 0 6ms 8ms
由表中数据可知,方案2和方案3的模拟量输出较方案1有一定延迟,分别为6ms和27ms。在方案3实施过程中由于运营商网络实时延迟为20ms,因此方案三模拟量输出延迟较大。但对于三种方案输出的模拟量,稳控装置均能正确做出判断并跳闸,其判断时间分别为178ms、184ms和197ms,判断时间相差很小。
在被测稳控装置正常工作时,方案2和方案3的模拟量传输方法对被测稳控装置的输出波形有一定影响,分别产生了1.73%和1.85%的相位偏差,相位偏差小于2%在可允许误差范围内,而且将波形平移后,输出波形完全重合,说明方案2和方案3的模拟量传输方法不会对正常工作状态下的被测稳控装置造成影响。
再由RTDS模拟一种间隔类三相故障,持续0.1s后三相电跳闸,此时采集被测稳控装置的输出波形。方案2和方案3的模拟量传输方法对发生故障时,稳控装置的输出波形也有一定影响,分别产生了2.91%和3.73%的相位偏差,相位偏差均小于4%在可允许误差范围内,将波形平移后,输出波形基本重合,符合生产测试要求。
在故障工作状态下,方案2和方案3相对于方案1的传输方式会产生一段约5ms~8ms的失真时间,其中有5ms的失真时间是由于传输模拟量时存在5ms的间隔时间,因此方案2和方案3传输过程中实际产生的最大连续时间在 1ms~3ms范围内,不会对稳控装置的故障判别造成实质影响,满足生产使用标准。
由此可见本申请采用的模拟量传输方法在实际生产中是有效的。而且对比板卡传输模拟量数据,远程传输更具有灵活性,在多生产现场,多待检验电力系统二次设备的情况下具有更高的检验效率。
本申请通过采集模块采集检验电力系统二次设备的模拟量,通过对模拟量的时域波形和频域波形离散化提取所述模拟量的幅值、相角等特征值,接着通过通信传输模块调制电磁波作为载波,经运营商网络将所述幅值、相角等特征值传输至各生产现场的模拟量拟合模块的接收端,提高了模拟量传输速度与准确率。最后由各生产现场设置的接收端将解调的幅值、相角等特征值拟合成模拟量,传输至待检验电力系统二次设备,对电力系统二次设备进行远程检验。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。

Claims (6)

  1. 一种模拟量远程传输方法,其特征在于,包括:
    使用采集模块采集模拟量;所述模拟量包括电压信号和电流信号;
    使用离散傅里叶变换法提取所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角;
    通过通信传输模块将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角经运营商网络传输至模拟量拟合模块;
    通过模拟量拟合模块对所述幅值和相角进行数模转换运算,将所述幅值和相角拟合成所述模拟量;
    所述模拟量拟合模块将所述模拟量输送至待检验电力设备。
  2. 根据权利要求1所述的模拟量远程传输方法,其特征在于,所述离散傅里叶变换提取所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角的步骤包括:
    按采样频率对所述模拟量进行采样,得到所述模拟量采样后的采样信号;
    对所述采样信号进行加窗处理,以截取一个周期的信号序列;
    利用信号的频域卷积特性对所述信号序列进行卷积运算,得到所述信号序列的周期性连续频谱;
    令周期性连续频谱与周期序列脉冲函数进行乘法运算,得到所述信号序列的离散化频谱;
    由所述离散化频谱得到所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角。
  3. 根据权利要求1所述的模拟量远程传输方法,其特征在于,所述通信传输模块将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角传输至所述模拟量拟合模块的步骤:
    所述通信传输模块接收所述模拟量的电压信号幅值、电压信号相角、电流信号幅值和电流信号相角;
    所述通信传输模块根据传输协议调制电磁波作为载波传输电压信号幅值、电压信号相角、电流信号幅值和电流信号相角;
    所述通信传输模块将所述电磁波发送到所述模拟量拟合模块。
  4. 根据权利要求3所述的模拟量远程传输方法,其特征在于,所述模拟量拟合模块将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角拟合成所述电压信号和所述电流信号的步骤:
    所述模拟量拟合模块的接收端接收所述电磁波;
    所述模拟量拟合模块按照传输协议将所述电磁波解调成所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角;
    所述模拟量拟合模块通过数模转换运算与矢量合成运算将所述电压信号幅值和所述电压信号相角转换成所述电压信号;
    所述模拟量拟合模块通过数模转换运算与矢量合成运算将所述电流信号幅值和所述电流信号相角转换成所述电流信号。
  5. 根据权利要求4所述的模拟量远程传输方法,其特征在于,所述通过数模转换运算将所述电压信号幅值、电压信号相角、电流信号幅值和电流信号相角四个数字量转换成所述模拟量:电压信号和电流信号的步骤:
    所述模拟量拟合模块为数模转换设定一个权值;
    所述模拟量拟合模块将所述数字量的每一计数位按所述权值进行计算,得到各计数位对应的子模拟量;
    所述模拟量拟合模块将所述子模拟量相加,得到与数字量成正比的所述模拟量。
  6. 一种远程模拟量传输装置,其特征在于,包括:采集模块、通信传输模块、模拟量拟合模块和主机;所述采集模块设有控制信号接收端、数据采集端和数据发送端;所述通信传输模块设有数据接收端、数据调制器和数据发送端;所述模拟量拟合模块设有控制信号接收端、数据拟合器和数据发送端;所述主机与所述采集模块的控制信号接收端、所述通信传输模块的控制信号接收端和所述模拟量拟合模块的控制信号接收端连接;所述采集模块用于采集模拟量;所述通信传输模块用于传输由模拟量提取出的幅值和相角;所述模拟量拟合模块用于接收所述幅值和相角,并将所述幅值和相角拟合成模拟量;所述主机用于控制各模块稳定运行。
PCT/CN2021/124634 2021-09-22 2021-10-19 一种模拟量远程传输方法及装置 WO2023044999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111107883.2 2021-09-22
CN202111107883.2A CN113834991B (zh) 2021-09-22 2021-09-22 一种模拟量远程传输方法及装置

Publications (1)

Publication Number Publication Date
WO2023044999A1 true WO2023044999A1 (zh) 2023-03-30

Family

ID=78960163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124634 WO2023044999A1 (zh) 2021-09-22 2021-10-19 一种模拟量远程传输方法及装置

Country Status (2)

Country Link
CN (1) CN113834991B (zh)
WO (1) WO2023044999A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179356A (zh) * 2007-11-28 2008-05-14 中国海洋石油总公司 一种数据发送、接收方法及装置
CN101512945A (zh) * 2006-09-15 2009-08-19 富士通株式会社 用于通过多载波方式发送信号的装置及方法
CN101751773A (zh) * 2008-12-12 2010-06-23 江苏省电力公司扬州供电公司 一种电力电气信息远程传输的调制解调电路及其传输方法
CN106249689A (zh) * 2016-09-19 2016-12-21 东北大学 一种基于无线传输的电熔镁炉数据采集系统及方法
US20190265351A1 (en) * 2018-02-28 2019-08-29 IIIusense, Inc. Method and device for interferometric range measurements
CN112449429A (zh) * 2019-09-05 2021-03-05 成都华为技术有限公司 信号传输方法及通信装置
CN112925230A (zh) * 2019-12-06 2021-06-08 南京南瑞继保电气有限公司 一种变电站多功能模拟量统一采集模块

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554998B1 (fr) * 1983-11-15 1986-06-27 Michel Max Procede et dispositif de modulation pour la transmission simultanee de signaux analogiques et de signaux numeriques
CN204516020U (zh) * 2015-03-24 2015-07-29 国家电网公司 一种用于智能变电站内电压模拟量的无线传输装置
CN105162488B (zh) * 2015-08-21 2018-01-02 山东三江电子工程有限公司 一种无线传输模拟量数据的装置
JP2017158028A (ja) * 2016-03-01 2017-09-07 日本電信電話株式会社 信号伝送システム
CN109217928A (zh) * 2018-10-23 2019-01-15 中国科学院合肥物质科学研究院 一种模拟信号远距离传输的方法
CN109471390B (zh) * 2018-11-09 2020-05-08 西安麦格米特电气有限公司 模拟信号传输方法、装置和微控制器
CN110673509A (zh) * 2019-09-19 2020-01-10 中国电力科学研究院有限公司 一种用于半实物仿真平台的电量变送器模拟系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512945A (zh) * 2006-09-15 2009-08-19 富士通株式会社 用于通过多载波方式发送信号的装置及方法
CN101179356A (zh) * 2007-11-28 2008-05-14 中国海洋石油总公司 一种数据发送、接收方法及装置
CN101751773A (zh) * 2008-12-12 2010-06-23 江苏省电力公司扬州供电公司 一种电力电气信息远程传输的调制解调电路及其传输方法
CN106249689A (zh) * 2016-09-19 2016-12-21 东北大学 一种基于无线传输的电熔镁炉数据采集系统及方法
US20190265351A1 (en) * 2018-02-28 2019-08-29 IIIusense, Inc. Method and device for interferometric range measurements
CN112449429A (zh) * 2019-09-05 2021-03-05 成都华为技术有限公司 信号传输方法及通信装置
CN112925230A (zh) * 2019-12-06 2021-06-08 南京南瑞继保电气有限公司 一种变电站多功能模拟量统一采集模块

Also Published As

Publication number Publication date
CN113834991B (zh) 2024-04-19
CN113834991A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US10942209B2 (en) Floating neutral detection and localization system and methods
EP0226210A2 (en) Method for locating a fault on a power line and equipment for carrying out the method
CN103983850A (zh) 基于压缩感知的电力系统谐波压缩信号重构与检测方法
CN103901391B (zh) 具有数字化电能表检测功能的新型模拟标准表及检测方法
CN110942400B (zh) 一种智能变电站监控系统自动对点方法及装置
CN107219432A (zh) 船舶电力推进系统电能质量检测方法及检测装置
CN102857304B (zh) 误差矢量幅度确定方法及装置、信号发射机
CN103414523B (zh) 基于软件无线电技术的调制质量参数测量方法及系统
Gaur et al. Novel fault distance estimation method for three-terminal transmission line
WO2018191436A1 (en) Floating neutral detection and localization system and methods
CN104360215B (zh) N600多点接地故障检测装置
WO2023044999A1 (zh) 一种模拟量远程传输方法及装置
CN114912490A (zh) 一种基于傅里叶变换算法的特征电流识别检定方法及装置
CN204362076U (zh) 一种用电信息采集终端上下行通信测试系统
CN108648549B (zh) 一种面向对象的用电信息采集闭环仿真系统及控制方法
CN103199893A (zh) 低压ofdm载波物理层通信性能检测系统
CN203554462U (zh) 一种用电信息采集系统的通信信道仿真系统
CN210090591U (zh) 一种发电机调速器的测试设备
Singh et al. Distributed power system simulation using cyber-physical testbed federation: Architecture, modeling, and evaluation
CN103823970A (zh) 基于算法模型的双重化继电保护装置的异常告警辨识方法
Zhu et al. Test platform for synchrophasor based wide-area monitoring and control applications
CN113992238A (zh) 一种载波通信性能的定量测试分析方法、装置及系统
CN204188715U (zh) 一种配电线路实时工况反演试验系统
CN115047287A (zh) 一种核电仪控电缆的故障缆芯定位方法和系统
Targhi et al. Accuracy evaluation of delivered measurements to HMI in a real SCADA automation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE