WO2023044996A1 - 一种基于步态识别的步行辅助装置控制方法 - Google Patents

一种基于步态识别的步行辅助装置控制方法 Download PDF

Info

Publication number
WO2023044996A1
WO2023044996A1 PCT/CN2021/124465 CN2021124465W WO2023044996A1 WO 2023044996 A1 WO2023044996 A1 WO 2023044996A1 CN 2021124465 W CN2021124465 W CN 2021124465W WO 2023044996 A1 WO2023044996 A1 WO 2023044996A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
walking assistance
dual
support phase
user
Prior art date
Application number
PCT/CN2021/124465
Other languages
English (en)
French (fr)
Inventor
朱瀚琦
麻正宇
Original Assignee
深圳市英汉思动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市英汉思动力科技有限公司 filed Critical 深圳市英汉思动力科技有限公司
Publication of WO2023044996A1 publication Critical patent/WO2023044996A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the present application belongs to the field of walking assistance devices, and in particular relates to a walking assistance device control method based on gait recognition.
  • Walking assist device is a kind of intelligent mechanical device that imitates the physiological structure of human body, can be worn by people, and assists the wearer while coordinating the movement of the wearer.
  • Walking assist devices can provide external force support for the human body, thereby achieving the purpose of reducing human body load and improving human exercise capacity.
  • Walking assist devices have broad application prospects in medical assistance to the disabled.
  • the control method is generally fixed, that is, based on the parameters obtained by the sensor, a specific torque calculation formula is input, and the current torque that should be provided is obtained and output, and then the external force support for the user is completed.
  • the torque output rule used is relatively rough
  • the control method is relatively mechanical
  • the user's body feeling is poor.
  • the purpose of the present invention is to provide a walking assistance device control method based on gait recognition, aiming to solve the problem that the existing walking assistance device has a relatively mechanical control method and poor user experience.
  • the first aspect of the embodiment of the present application provides a walking assistance device control method based on gait recognition, which is applied to a walking assistance device, including:
  • the initial torque is the torque that the walking assistance device should output at the current moment
  • correcting the initial torque based on the gait cycle and the dual-support phase information to obtain an adjusted torque includes:
  • the adjustment torque is a constant value smaller than the initial torque
  • the adjustment torque is equal to the initial torque.
  • the judging whether the user is currently in a dual support phase state includes:
  • the initial torque is calculated based on the hip joint angle, or the initial torque is calculated based on sensor parameters.
  • the outputting the adjustment torque, before, the method also includes:
  • Said outputting said adjustment torque includes:
  • the second adjustment torque is output.
  • the outputting the adjustment torque includes:
  • the second aspect of the embodiment of the present application provides a walking assistance device control device based on gait recognition, which is used in conjunction with a walking assistance device, including:
  • An acquisition unit configured to acquire an initial torque corresponding to the walking assistance device, where the initial torque is the torque that the walking assistance device should output at the current moment;
  • a determining unit configured to perform gait recognition based on the user's use information of the walking assistance device, and determine the user's gait cycle and dual support phase information;
  • An adjustment unit configured to adjust the initial torque based on the gait cycle and the dual-support phase information to obtain an adjusted torque
  • the output unit is used to output the adjustment torque.
  • the third aspect of the embodiment of the present application provides a walking assistance device, including:
  • a processor configured to obtain an initial moment corresponding to the walking assistance device, where the initial torque is the torque that the walking assistance device should output at the current moment; perform gait recognition based on the user's use information of the walking assistance device , determine the gait cycle and dual-support phase information of the user; adjust the initial torque based on the gait cycle and the dual-support phase information to obtain an adjusted torque; output the adjusted torque
  • the motor is used to output the adjustment torque based on the control of the processor.
  • the fourth aspect of the embodiment of the present application provides a computer-readable storage medium, including instructions, and when the instructions are run on a computer, the computer is made to perform the method described in any one of the first aspects of the embodiments of the present application.
  • the fifth aspect of the embodiments of the present application provides a computer program product including instructions, which, when run on a computer, cause the computer to execute the method described in any one of the first aspects of the embodiments of the present application.
  • this solution identifies the dual-support phase state during the walking process of the user using the walking assistance device, and recognizes the output of the walking assistance device when the user is in the dual-support phase state.
  • the torque is adjusted to reduce the torque output by the walking assistance device when the user is in the state of dual support phases. Since the user is relatively relaxed in the state of dual support phases, reducing the output torque of the walking assistance device at this time can prevent the walking assistance device from being in use.
  • the mechanical sense avoids the situation where the walking assist device pushes people to walk, making the gait more natural, thereby improving the user experience.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for controlling a walking assistance device based on gait recognition provided by the present application;
  • FIG. 2 is a schematic flowchart of an embodiment of a method for controlling a walking assistance device based on gait recognition provided by the present application;
  • FIG. 3 is a schematic structural diagram of an embodiment of a walking assistance device control device based on gait recognition provided by the present application;
  • Fig. 4 is a schematic structural diagram of an embodiment of a walking assistance device control device based on gait recognition provided by the present application.
  • the embodiment of the present application provides a walking assistance device control method based on gait recognition, aiming to solve the problem that the existing walking assistance device has a relatively mechanical control method and poor user experience.
  • Walking assist device is a kind of intelligent mechanical device that imitates the physiological structure of human body, can be worn by people, and assists the wearer while coordinating the movement of the wearer.
  • Walking assist devices can provide external force support for the human body, thereby achieving the purpose of reducing human body load and improving human exercise capacity.
  • Walking assist devices have broad application prospects in medical assistance to the disabled.
  • the control method is generally fixed, that is, based on the parameters obtained by the sensor, a specific torque calculation formula is input, and the current torque that should be provided is obtained and output, and then the external force support for the user is completed.
  • y0(t) is the torque that should be provided by the walking assist device
  • Angle1 and Angle2 are the angles of the hip joints of the left and right legs
  • A is the auxiliary constant set according to the actual situation.
  • the present application provides a method for controlling walking assistance equipment based on gait recognition. Specifically, please refer to FIG. 1.
  • An embodiment of the method for controlling walking assistance equipment based on gait recognition in this application includes: 104.
  • the initial torque corresponding to the walking assistance device is obtained, the initial torque is the torque that should be output by the walking assistance device at the current moment, and the torque that should be output is a calculated but not executed torque.
  • the initial torque is the torque provided by the walking assistance device to assist the user in walking.
  • the way to obtain the initial torque can be determined according to the actual situation.
  • the pressure data generated by the pressure sensor at the bottom, and based on the pressure data, the initial torque that should be provided by the current walking assistance device is obtained through corresponding calculation.
  • Another way to obtain the initial torque is to calculate the angle difference between the user's left and right leg hip joints at the current moment through hip joint angle detection, and calculate the initial torque based on the angle difference.
  • the specific initial torque calculation method can be determined according to the actual situation. There is no limit here.
  • the user's gait cycle and dual support phase information are determined.
  • the gait cycle refers to the progress of the same foot from the heel off the ground to the heel landing again during the walking process.
  • the use information is the information generated during the user's use of the walking assistance device. device, the use information can include the corresponding pressure sensor value at each moment, in the actual implementation process, the user's gait cycle can be determined based on the sensor information when the user is walking, such as the user's gait cycle duration, gait cycle Including support phase and swing phase, double support phase refers to the state that both feet are on the ground during walking, and double support phase is the most stable period in the gait cycle.
  • the pressure sensors corresponding to the left and right legs have parameters, Then it can be determined that the user is in the dual support phase state, and the duration of the dual support phase and the position in the walking cycle can be determined.
  • the dual-support phase information can also be determined by identifying the hip joint angle, which can be determined according to actual conditions, and is not limited here.
  • step 101 there is no sequential logical relationship between step 101 and step 102.
  • the execution order of the two can be adjusted according to the situation, or can be performed at the same time, which is not limited here. .
  • the initial torque is adjusted based on the gait cycle and the dual-support phase information to obtain the adjusted torque, including adjusting the initial torque when the user is in the dual-support phase state. Since the initial torque is obtained based on a specific The algorithm only identifies the support phase and the swing phase, and provides torque according to a unified rule, but cannot identify the user's dual support phase state, resulting in a relatively rigid torque provision strategy.
  • the initial torque In order to generate the force according to the support phase state, the torque output to the user is too large, which does not conform to the user's exercise habits. Therefore, the initial torque needs to be adjusted based on the information of the dual support phase.
  • the adjustment method can be, when the user In the state of dual support phase, reduce the value of the initial torque, or directly reduce the initial torque to 0, so as to avoid the mechanical feeling of the walking assist device during use, avoid the situation where the device pushes people, and improve the user's use experience.
  • No adjustment is required for the part of the gait cycle that is not in the dual-support phase, and there is no specific limitation here.
  • an electrical signal corresponding to the adjustment torque can be generated and transmitted to the motor, and the motor outputs the adjusted adjustment torque, so that the walking assistance device can provide walking assistance to the user according to the adjustment torque, completing the walking assistance process.
  • this solution identifies the dual-support phase state during the walking process of the user using the walking assistance device, and recognizes the output of the walking assistance device when the user is in the dual-support phase state.
  • the torque is adjusted to reduce the torque output by the walking assistance device when the user is in the state of dual support phases. Since the user is relatively relaxed in the state of dual support phases, reducing the output torque of the walking assistance device at this time can prevent the walking assistance device from being in use.
  • the mechanical sense avoids the situation where the walking assist device pushes people to walk, making the gait more natural, thereby improving the user experience.
  • an embodiment of the walking assistance device control method of the present application includes: Step 201- Step 210.
  • steps 201 to 202 are similar to the steps 101 to 102 in the corresponding embodiment of FIG. 1 , and details are not repeated here.
  • the duration occupied by the dual-support phase state in the gait cycle and the overall duration of the gait cycle are obtained, and the two are divided to obtain the proportion information of the dual-support phase state in the gait cycle.
  • the initial torque output curve is the curve of the initial torque changing with time, where the size of the initial torque changes because the user is in different gaits at different times, and since the double support phase is the most stable period in the gait cycle, At this time, both feet of the user are in contact with the ground, so the required torque is a small value.
  • the torque range of the user in the dual support phase can be determined through the proportion information of the dual support phase and the initial torque output curve. That is, in the initial torque output curve, the time range corresponding to the corresponding proportion of the minimum torque is the time range of the dual support phase, and the boundary point between the time range of the dual support phase and other gait time ranges is the boundary point of the torque range of the dual support phase.
  • the range from zero to the boundary point of the dual-support phase moment range is the dual-support phase moment range.
  • step 206 Determine whether the initial moment is within the range of dual-support phase moments. If the initial moment corresponding to the current moment is smaller than the moment corresponding to the boundary point of the above-mentioned dual-support phase torque range, it is determined that the user is currently in the state of dual-support phases, and step 206 is performed. If the initial moment corresponding to the current moment is greater than the moment corresponding to the boundary point of the torque range of the dual support phase, it is determined that the user is not currently in the dual support phase state, and step 207 is executed.
  • the initial moment is within the torque range of the dual-support phase, it is determined that the user is currently in the state of the dual-support phase, and the torque is adjusted to a constant value smaller than the initial moment.
  • the constant value can be zero, that is, when the user is in the dual support phase state, no auxiliary torque is provided for the user, or any other constant value smaller than the initial torque, which can be determined according to the actual situation. Do limited.
  • the initial moment is within the torque range of the dual-support phase, it is determined that the user is currently in the state of the dual-support phase, and the adjusted torque is equal to the initial moment. If the user is not in the dual support phase state, there is no need to adjust the user's current initial torque, just make the adjusted torque equal to the initial torque.
  • the adjustment torque When using the adjustment torque, the change between the previous moment and the next moment of the adjustment torque may be too large, which will easily lead to the problem of poor user experience. Based on this, the adjustment torque can be further improved to avoid torque changes
  • the problem that the speed is too fast affects the user's sense of use.
  • the adjustment process first requires the historical adjustment torque corresponding to the previous moment.
  • the time interval between the previous moment and the current moment can be determined according to the actual usage of the user.
  • the historical adjustment torque is the torque that has been output, that is, the torque has been actually applied in the process of assisting walking.
  • the adjustment torque is adjusted based on the difference between the historical adjustment torque and the adjustment torque to obtain the second adjustment torque.
  • the difference between the historical adjustment torque and the adjustment torque is the difference between the initial torque at the current moment and the previous moment. If the difference is too large, it does not conform to the exercise habits of the human body, and it should be adjusted accordingly.
  • the specific adjustment method can be determined according to the actual situation, and there is no limitation here.
  • An optional method is To reduce the amount of variation by a certain percentage, the formula is expressed as:
  • y1(t) is the adjustment torque corresponding to the current moment
  • y1(t-dt) is the historical adjustment torque corresponding to the previous dt moment
  • y2(t) is the second adjustment torque
  • R is the intermediate amount for calculating the correction of the adjustment torque , referred to here as the damping coefficient
  • A, B, and C are constant values used to correct the torque, and the values of A, B, and C can be adjusted according to actual conditions, and are not limited here.
  • the magnitude of the damping coefficient is related to the difference between the historical adjustment torque and the adjustment torque. The larger the difference, the greater the corresponding reduction of the second adjustment torque, thereby reducing the second adjustment torque.
  • the variation of the torque is adjusted relative to the history at the previous moment, so that the torque provided by the walking assistance device is more in line with the needs of the user, and the practicability of the solution is improved.
  • Torque3 is the actual output torque
  • Torque2 is the second adjustment torque
  • D is a constant used to adjust the output range.
  • this step can also be selectively performed, that is, the size of the second adjustment torque is adjusted. Judging, if the second adjustment torque is less than 1, this step is executed, and in other cases, it is not executed.
  • An acquisition unit 301 configured to acquire an initial torque corresponding to the walking assistance device, where the initial torque is the torque that the walking assistance device should output at the current moment;
  • a determining unit 302 configured to perform gait recognition based on the user's use information of the walking assistance device, and determine the user's gait cycle and dual support phase information;
  • An adjustment unit 303 configured to adjust the initial torque based on the gait cycle and the dual-support phase information to obtain an adjusted torque
  • the output unit 304 is configured to output the adjustment torque.
  • each unit in the gait recognition-based walking assistance device control device is similar to the method procedure described in the foregoing embodiment corresponding to FIG. 1 , and will not be repeated here.
  • FIG. 4 is a schematic structural diagram of a walking assistance device provided in an embodiment of the present application.
  • the walking assistance device 400 includes:
  • the controller 401 may be implemented with a processing circuit (such as hardware including logic circuits), a hardware/software combination (such as a processor executing software), or a combination thereof and a memory.
  • processing circuits may more specifically include, but are not limited to: a central processing unit (CPU), an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), a programmable logic unit, a micro Processors, Application Specific Integrated Circuits (ASICs), etc.
  • the controller is used to execute the above-mentioned method flow corresponding to FIG. 1 or FIG.
  • the initial torque is the torque that the walking assistance device should output at the current moment; based on The user performs gait recognition on the usage information of the walking assistance device, and determines the user's gait cycle and dual-support phase information; adjusts the initial moment based on the gait cycle and the dual-support phase information, get the adjustment torque; output said adjustment torque
  • the motor 402 is configured to output the adjustment torque based on the control of the processor 401 .
  • the walking assistance device control device 400 based on gait recognition further includes a power supply 403 and a memory 404, and the memory 404 stores one or more application programs or data.
  • the storage 404 may be a volatile storage or a persistent storage.
  • the program stored in the memory 404 may include one or more modules, and each module may include a series of instruction operations.
  • the central processing unit 401 may be configured to communicate with the memory 404 and execute a series of instruction operations in the memory 405 .
  • the embodiment of the present application also provides a computer storage medium, the computer storage medium is used to store the computer software instructions used for the above-mentioned walking assistance device control device based on gait recognition, which includes instructions for performing walking based on gait recognition Auxiliary devices are programmed to control equipment.
  • the gait recognition-based walking assistance device control method may be the same as the gait recognition-based walking assistance device control method described in FIG. 1 or FIG. 2 .
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement any one of the above-mentioned embodiments corresponding to Fig. 1 and Fig. 2 based on gait. Flow of the identified walking assistance device control method.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the equivalent transformation of circuits and the division of units are only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Rehabilitation Therapy (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种基于步态识别的步行辅助装置控制方法,应用于步行辅助装置,包括以下步骤:获取步行辅助装置对应的初始力矩(101),基于用户对步行辅助装置的使用信息进行步态识别,确定用户的步态周期及双支撑相信息(102);基于步态周期和双支撑相信息对初始力矩进行调整,获得调整力矩(103);输出调整力矩(104)。该方法对用户行走过程中的双支撑相状态进行识别,并对用户处于双支撑相状态时步行辅助装置所输出的力矩进行调整,降低用户处于双支撑相状态时步行辅助装置的输出力矩,减小此时步行辅助装置的输出力矩可避免步行辅助装置在使用过程中的机械感,使得步态更加自然,进而提高用户的使用体验。

Description

一种基于步态识别的步行辅助装置控制方法 技术领域
本申请属于步行辅助设备领域,尤其涉及一种基于步态识别的步行辅助装置控制方法。
背景技术
步行辅助装置是一类模仿人体生理构造,能被人穿戴、协同穿戴者运动的同时辅助穿戴者的智能机械装置。步行辅助装置够为人体提供外力支持,进而达到降低人体负荷、提高人体运动能力等目的,步行辅助装置在医疗助残方面有着广泛的应用前景。
对于步行辅助装置,其控制方式一般较为固定,即基于传感器所获得的参数输入特定的力矩计算公式,得出当前应当提供的力矩并输出,进而完成对用户的外力支撑。
现有的步行辅助装置控制方式在控制过程中对用户的步态的区分较为简单,使用的力矩输出规则较为粗糙,控制方式较为机械,用户的使用体感较差。
发明内容
本发明的目的在于提供一种基于步态识别的步行辅助装置控制方法,旨在解决现有的步行补助装置控制方式较为机械,用户使用体感较差的问题。
本申请实施例第一方面提供了一种基于步态识别的步行辅助装置控制方法,应用于步行辅助装置,包括:
获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;
基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的 步态周期及双支撑相信息;
基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;
输出所述调整力矩。
基于本申请实施例第一方面提供的步行辅助装置控制方法,可选的,所述基于所述步态周期和所述双支撑相信息对所述初始力矩进行修正,获得调整力矩,包括:
依据所述步态周期和所述双支撑相信息判断用户当前是否处于双支撑相状态;
若用户当前处于双支撑相状态,则所述调整力矩为小于所述初始力矩的常数值;
若用户当前未处于双支撑相状态,则所述调整力矩等于所述初始力矩。
基于本申请实施例第一方面提供的步行辅助装置控制方法,可选的,所述判断用户当前是否处于双支撑相状态,包括:
获取所述双支撑相状态在所述步态周期中的占比信息;
基于所述占比信息和初始力矩输出曲线确定用户处于双支撑相的双支撑相力矩范围;
判断所述初始力矩是否处于双支撑相力矩范围内;
若所述初始力矩处于双支撑相力矩范围内,则判定用户当前处于双支撑相状态;
若所述初始力矩处于双支撑相力矩范围外,则判定用户当前未处于双支撑相状态。
基于本申请实施例第一方面提供的步行辅助装置控制方法,可选的,所述初始力矩为依据髋关节角度计算获得,或所述初始力矩为依据传感器参数计算获得。
基于本申请实施例第一方面提供的步行辅助装置控制方法,可选的,所述 输出所述调整力矩,之前,所述方法还包括:
获取前一时刻对应的历史调整力矩;
基于所述历史调整力矩和调整力矩之间的差值对所述调整力矩进行调整,获得第二调整力矩;
所述输出所述调整力矩,包括:
输出所述第二调整力矩。
基于本申请实施例第一方面提供的步行辅助装置控制方法,可选的,所述输出所述调整力矩,包括:
输出所述调整力矩的乘方值。
本申请实施例第二方面提供了一种基于步态识别的步行辅助装置控制设备,与步行辅助装置配合使用,包括:
获取单元,用于获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;
确定单元,用于基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;
调整单元,用于基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;
输出单元,用于输出所述调整力矩。
本申请实施例第三方面提供了一种步行辅助装置,包括:
处理器,配置为用于获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;输出所述调整力矩
电机,用于基于处理器的控制输出所述调整力矩。
本申请实施例第四方面提供了一种计算机可读存储介质,包括指令,当所 述指令在计算机上运行时,使得计算机执行如本申请实施例第一方面中任意一项所述的方法。
本申请实施例第五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如本申请实施例第一方面中任意一项所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:本方案对用户使用步行辅助装置行走过程中的双支撑相状态进行识别,并对用户处于双支撑相状态时步行辅助装置所输出的力矩进行调整,降低用户处于双支撑相状态时步行辅助装置所输出的力矩,由于用户处于双支撑相状态下较为放松,减小此时步行辅助装置所输出力矩可避免步行辅助装置在使用过程中的机械感,避免步行辅助装置推着人走的情况发生,使得步态更加自然,进而提高用户的使用体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请所提供的基于步态识别的步行辅助装置控制方法实施例的一个流程示意图;
图2为本申请所提供的基于步态识别的步行辅助装置控制方法实施例的一个流程示意图;
图3为本申请所提供的基于步态识别的步行辅助装置控制设备实施例的一个结构示意图;
图4为本申请所提供的基于步态识别的步行辅助装置控制设备实施例的一个结构示意图。
具体实施方式
本申请实施例提供了一种基于步态识别的步行辅助装置控制方法,旨在解决现有的步行补助装置控制方式较为机械,用户使用体感较差的问题。
为了使本技术领域的人员更好地理解本申请方案,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
步行辅助装置是一类模仿人体生理构造,能被人穿戴、协同穿戴者运动的同时辅助穿戴者的智能机械装置。步行辅助装置够为人体提供外力支持,进而达到降低人体负荷、提高人体运动能力等目的,步行辅助装置在医疗助残方面有着广泛的应用前景。对于步行辅助装置,对于步行辅助装置,其控制方式一般较为固定,即基于传感器所获得的参数输入特定的力矩计算公式,得出当前应当提供的力矩并输出,进而完成对用户的外力支撑。具体而言,步行辅助装置应输出的力矩可由用户的髋关节角度获得,即:y0(t)=A*(Angle1-Angle2)。
其中y0(t)为步行辅助装置应提供的力矩,Angle1,Angle2为左右腿髋关节角度,A为依据实际情况所设定的辅助常数。这种控制方式较为机械,用户 的使用体感较差。
基于上述背景本申请提供了一种基于步态识别的步行辅助设备控制方法,具体的,请参阅图1,本申请基于步态识别的步行辅助设备控制方法的一个实施例包括:步骤101-步骤104。
101、获取步行辅助装置对应的初始力矩。
具体的,获取步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩,该应输出的力矩为计算得到,但还未执行的力矩。初始力矩即为步行辅助装置为用户所提供的辅助行走的力矩,初始力矩的获得方式可依据实际情况而定,一般而言,初始力矩的获得方式可包括:获取步行辅助装置中设置于用户足底的压力传感器所产生的压力数据,并基于该压力数据通过相应的计算获得当前步行辅助装置应提供的初始力矩。另一种初始力矩的获得方式为通过髋关节角度检测,计算当前时刻用户左右腿髋关节的角度差,基于角度差值计算得出初始力矩,具体的初始力矩计算方式可依据实际情况而定,此处不做限定。
102、基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息。
具体的,基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息。步态周期指行走过程中,同一只脚从脚跟离地跨出,到再次脚跟着地的行进过程,使用信息即为用户使用步行辅助装置过程中所产生的信息,如对于设置有脚底压力传感器的装置,使用信息可包括各个时刻对应的压力传感器数值大小,在实际实施过程中可基于用户行走时的传感器信息确定用户的步态周期,如通过压力传感器获得用户的步态周期时长,步态周期包括支撑相和摆动相,双支撑相指行走过程中双足均在地面的状态,双支撑相是步态周期中最为稳定的时期,一般而言用户步行速度越慢,则双支撑相在步态周期中的占比越大,每一个步行周期中有两个双支撑相,双支撑相的确定也可通过设置于足底的压力传感器确定,当左右腿对应的压力传感器均 有参数时,则可确定用户处于双支撑相状态,并确定双支撑相的时长及在步行周期中的位置。也可采用髋关节角度识别的方式确定双支撑相信息,具体可依据实际情况而定,此处不做限定。
可以理解的是,步骤101与步骤102之间不存在时序上的逻辑关系,在本方案实际实施过程中,二者的执行顺序可依据情况进行调整,也可同时进行,具体此处不做限定。
103、基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩。
具体的,基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩,包括对用户处于双支撑相状态时的初始力矩进行调整,由于初始力矩的获得基于特定算法,仅对支撑相和摆动相进行了识别,并依据统一的规则进行力矩提供,而无法识别出用户的双支撑相状态,造成力矩提供策略较为生硬,当用户处于双支撑相状态时初始力矩为依据支撑相状态下的给力方式生成,造成向用户输出的力矩过大,不符合用户的运动习惯,因此需基于双支撑相信息对初始力矩进行调整,具体的,调整方式可为,当用户处于双支撑相状态下,则降低初始力矩的值,或直接将初始力矩降为0,进而避免步行辅助装置在使用过程中的机械感,避免设备推着人走的情况,进而提高用户的使用体验。对于步态周期中非双支撑相的部分则可不做调整,具体此处不做限定。
104、输出所述调整力矩。
输出所述调整力矩。具体的,可生成与调整力矩相符合的电信号并传输至电机,由电机输出调整后的调整力矩,进而使得步行辅助装置依据调整力矩为用户提供步行辅助,完成步行辅助过程。
从以上技术方案可以看出,本申请实施例具有以下优点:本方案对用户使用步行辅助装置行走过程中的双支撑相状态进行识别,并对用户处于双支撑相状态时步行辅助装置所输出的力矩进行调整,降低用户处于双支撑相状态时步行辅助装置所输出的力矩,由于用户处于双支撑相状态下较为放松,减小此时 步行辅助装置所输出力矩可避免步行辅助装置在使用过程中的机械感,避免步行辅助装置推着人走的情况发生,使得步态更加自然,进而提高用户的使用体验。
基于上述图1提供的步行辅助装置控制方法,可选的,本申请提供了一种更为详尽的实现方法,请参阅图2,本申请的步行辅助装置控制方法一个实施例包括:步骤201-步骤210。
201、获取步行辅助装置对应的初始力矩。
202、基于用户对步行辅助装置的使用信息进行步态识别,确定用户的步态周期及双支撑相信息。
上述步骤201至步骤202与前述图1对应实施例中步骤101至步骤102类似,具体此处不做赘述。
203、获取双支撑相状态在步态周期中的占比信息。
具体的,获取步态周期中双支撑相状态部分的所占时长及步态周期的总体时长,二者相除,进而获得双支撑相状态在步态周期中的占比信息。
204、基于所述占比信息和初始力矩输出曲线确定用户处于双支撑相状态的双支撑相力矩范围。
具体的,初始力矩输出曲线即为初始力矩随时间变化的曲线,其中初始力矩的大小因用户在不同时刻处于不同的步态而改变,其中由于双支撑相为步态周期中最为稳定的时期,此时用户双脚均处于与地面接触状态,因此需要的力矩大小为较小值,基于此,可通过双支撑相的占比信息和初始力矩输出曲线确定出用户处于双支撑相的力矩范围,即在初始力矩输出曲线中力矩最小的相应占比所对应的时间范围为双支撑相的时间范围,双支撑相时间范围与其他步态时间范围的分界点即为双支撑相力矩范围分界点,由零至该双支撑相力矩范围分界点的范围即为双支撑相力矩范围。
205、判断初始力矩是否处于双支撑相力矩范围内。
判断初始力矩是否处于双支撑相力矩范围内,若当前时刻对应的初始力矩 小于上述双支撑相力矩范围分界点对应的力矩,则确定用户当前处于双支撑相状态,执行步骤206。若当前时刻对应的初始力矩大于上述双支撑相力矩范围分界点对应的力矩,则确定用户当前未处于双支撑相状态,执行步骤207。
206、判定用户当前处于双支撑相状态,调整力矩为小于所述初始力矩的常数值。
若所述初始力矩处于双支撑相力矩范围内,则判定用户当前处于双支撑相状态,调整力矩为小于所述初始力矩的常数值。具体的,该常数值可为零,即在用户处于双支撑相状态时则不为用户提供辅助力矩,也可为其他任意小于初始力矩的常数值,具体可依据实际情况而定,此处不做限定。
207、判定用户当前未处于双支撑相状态,所述调整力矩等于所述初始力矩。
若所述初始力矩处于双支撑相力矩范围内,则判定用户当前处于双支撑相状态,调整力矩等于所述初始力矩。若用户未处于双支撑相状态,则无需对用户当前的初始力矩进行调整,使调整力矩等于初始力矩即可。
208、获取前一时刻对应的历史调整力矩。
在使用调整力矩时,调整力矩前一时刻与后一时刻之间的变化可能存在过大的情况,容易导致用户使用体感较差的问题,基于此可对调整力矩进行进一步改进,以避免力矩变化速度过快影响用户使用体感的问题,具体而言,调整过程首先需要前一时刻对应的历史调整力矩,其中前一时刻与当前时刻之间的时间间隔可依据用户实际使用情况而定,具体此处不做限定,历史调整力矩为已输出的力矩,即该力矩已经实际应用于辅助行走过程中。
209、基于历史调整力矩和调整力矩之间的差值对调整力矩进行调整,获得第二调整力矩。
基于历史调整力矩和调整力矩之间的差值对调整力矩进行调整,获得第二调整力矩,具体的,历史调整力矩和调整力矩之间的差值即为当前时刻初始力矩相对于前一时刻的变化量,若该差值过大,则不符合人体的运动习惯,应对其进行相应调整,具体所选择的调整方式可依据实际情况而定,此处不做限定, 一种可选的方式为降低一定百分比的变化量,其公式表达为:
R=B*A*(y1(t)-y1(t-dt));
y2(t)=C*y1(t)–R;
其中y1(t)为当前时刻对应的调整力矩,y1(t-dt)为前dt时刻对应的历史调整力矩,y2(t)为第二调整力矩,R为计算对调整力矩进行修正的中间量,此处简称为阻尼系数,A、B和C均为对力矩进行修正所采用的常数值,A、B和C的值可依据实际情况进行调整,具体此处不做限定。基于上述公式可知,阻尼系数的大小与历史调整力矩和调整力矩之间的差值相关联,差值越大,则第二调整力矩相应减小的量也越大,从而降低了第二调整力矩相对于前一时刻历史调整力矩的变化量,进而使得步行辅助装置所提供的力矩更符合用户需求,提高本方案的可实施性。
210、输出第二调整力矩的乘方值。
输出第二调整力矩的乘方值。具体的,对于用户在由行走状态转换为停止状态的过程中,算法无法准确的确定何时停止,可能出现用户停止而设备仍在给力的情况。基于这一情况,在输出力矩时,可输出第二调整力矩的乘方值,其公式表达可为:y3(t)=D*y2(t)*y2(t)。
其中Torque3为实际输出力矩,Torque2为第二调整力矩,D为用于调整输出范围的常数,其数值大小可依据实际情况而定,由于用户停止前设备所输出的力矩不会过大,通过这种方式,使得输出力矩在小于1的情况下则所实际输出的力矩将会急剧减小,进而不会在用户存在停止意图时而将用户向前推,提高了本方案的可实施性。同时对于大于1的部分也同时提供了相应的补偿,以保证一个步态周期内输出的功率不变,可以理解的是,本步骤也可选择性的执行,即对第二调整力矩的大小进行判断,若第二调整力矩小于1则执行本步骤,其他情况则不执行。
上述内容对本申请所提供的基于步态识别的步行辅助装置控制方法部分进行了介绍,下面对本方案所提供的基于步态相识别的步行辅助装置控制设备进 行介绍,请参阅图3,本申请基于步态识别的步行辅助装置控制设备的一个实施例包括:
获取单元301,用于获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;
确定单元302,用于基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;
调整单元303,用于基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;
输出单元304,用于输出所述调整力矩。
本实施例中,基于步态识别的步行辅助装置控制设备中各单元所执行的流程与前述图1所对应的实施例中描述的方法流程类似,此处不再赘述。
图4是本申请实施例提供的一种步行辅助装置的结构示意图,步行辅助装置400包括:
控制器401可以以处理电路(诸如,包括逻辑电路的硬件)、硬件/软件组合(诸如,执行软件的处理器)或它们的组合和存储器实现。例如,处理电路更具体地可包括但不限于:中央处理器(CPU)、算术逻辑单元(ALU)、数字信号处理器、微型计算机、现场可编程门阵列(FPGA)、可编程逻辑单元、微处理器、专用集成电路(ASIC)等。控制器用于执行上述图1或图2所对应得到方法流程,即配置为用于获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;输出所述调整力矩
电机402,用于基于处理器401的控制输出所述调整力矩。
可选的,基于步态识别的步行辅助装置控制设备400还包括电源403、存储器404,该存储器404中存储有一个或一个以上的应用程序或数据。其中, 存储器404可以是易失性存储或持久存储。存储在存储器404的程序可以包括一个或一个以上模块,每个模块可以包括一系列指令操作。更进一步地,中央处理器401可以设置为与存储器404通信并执行存储器405中的一系列指令操作。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质用于储存为上述基于步态识别的步行辅助装置控制设备所用的计算机软件指令,其包括用于执行为基于步态识别的步行辅助装置控制设备所设计的程序。
该基于步态识别的步行辅助装置控制方法可以如前述图1或图2中所描述的基于步态识别的步行辅助装置控制方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图1图2所对应实施例中任意一项基于步态识别的步行辅助装置控制方法的流程。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,电路的等效变换,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的 形式实现。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于步态识别的步行辅助装置控制方法,其特征在于,应用于步行辅助装置,包括:
    获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;
    基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;
    基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;
    输出所述调整力矩。
  2. 根据权利要求1所述的步行辅助装置控制方法,其特征在于,所述基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩,包括:
    依据所述步态周期和所述双支撑相信息判断用户当前是否处于双支撑相状态;
    若用户当前处于双支撑相状态,则所述调整力矩为小于所述初始力矩的常数值;
    若用户当前未处于双支撑相状态,则所述调整力矩等于所述初始力矩。
  3. 根据权利要求2所述的步行辅助装置控制方法,其特征在于,所述依据所述步态周期和所述双支撑相信息判断用户当前是否处于双支撑相状态,包括:
    获取所述双支撑相状态在所述步态周期中的占比信息;
    基于所述占比信息和初始力矩输出曲线确定用户处于双支撑相状态的双支撑相力矩范围;
    判断所述初始力矩是否处于所述双支撑相力矩范围内;
    若所述初始力矩处于所述双支撑相力矩范围之内,则判定用户当前处于双支撑相状态;
    若所述初始力矩处于所述双支撑相力矩范围之外,则判定用户当前未处于双支撑相状态。
  4. 根据权利要求1所述的步行辅助装置控制方法,其特征在于,所述初始力矩为依据髋关节角度计算获得,或所述初始力矩为依据传感器参数计算获得。
  5. 根据权利要求1所述的步行辅助装置控制方法,其特征在于,所述输出所述调整力矩的步骤之前,所述方法还包括:
    获取前一时刻对应的历史调整力矩,所述历史调整力矩为已输出的调整力矩;
    基于所述历史调整力矩和所述调整力矩之间的差值对所述调整力矩进行调整,获得第二调整力矩;
    所述输出所述调整力矩,包括:
    输出所述第二调整力矩。
  6. 根据权利要求1所述的步行辅助装置控制方法,其特征在于,所述输出所述调整力矩,包括:
    输出所述调整力矩的乘方值。
  7. 一种基于步态识别的步行辅助装置控制设备,其特征在于,与步行辅助装置配合使用,包括:
    获取单元,用于获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;
    确定单元,用于基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;
    调整单元,用于基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;
    输出单元,用于输出所述调整力矩。
  8. 一种步行辅助装置,其特征在于,包括:
    处理器,配置为用于获取所述步行辅助装置对应的初始力矩,所述初始力矩为当前时刻所述步行辅助装置应输出的力矩;基于用户对所述步行辅助装置的使用信息进行步态识别,确定所述用户的步态周期及双支撑相信息;基于所述步态周期和所述双支撑相信息对所述初始力矩进行调整,获得调整力矩;输出所述调整力矩
    电机,用于基于处理器的控制输出所述调整力矩。
  9. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至6中任意一项所述的方法。
  10. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至6中任意一项所述的方法。
PCT/CN2021/124465 2021-09-26 2021-10-18 一种基于步态识别的步行辅助装置控制方法 WO2023044996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111131601.2 2021-09-26
CN202111131601.2A CN115869161A (zh) 2021-09-26 2021-09-26 一种基于步态识别的步行辅助装置控制方法

Publications (1)

Publication Number Publication Date
WO2023044996A1 true WO2023044996A1 (zh) 2023-03-30

Family

ID=85719945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124465 WO2023044996A1 (zh) 2021-09-26 2021-10-18 一种基于步态识别的步行辅助装置控制方法

Country Status (2)

Country Link
CN (1) CN115869161A (zh)
WO (1) WO2023044996A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117442398B (zh) * 2023-12-22 2024-04-09 浙江强脑科技有限公司 基于步态差异的智能假肢调整方法、装置、终端及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259431A1 (en) * 2011-01-21 2012-10-11 Zhixiu Han Terrain adaptive powered joint orthosis
CN105616112A (zh) * 2014-11-26 2016-06-01 三星电子株式会社 辅助转矩设置设备和步行辅助设备
CN105726267A (zh) * 2014-12-26 2016-07-06 三星电子株式会社 辅助扭矩设置方法和设备
CN111407603A (zh) * 2019-01-04 2020-07-14 三星电子株式会社 步行辅助装置以及用于控制步行辅助装置的方法和装置
CN112192570A (zh) * 2020-10-09 2021-01-08 中国船舶重工集团公司第七0七研究所九江分部 一种下肢关节助力外骨骼系统感知与控制系统及方法
CN112774115A (zh) * 2019-11-04 2021-05-11 三星电子株式会社 可穿戴装置和由可穿戴装置执行的锻炼支撑方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259431A1 (en) * 2011-01-21 2012-10-11 Zhixiu Han Terrain adaptive powered joint orthosis
CN105616112A (zh) * 2014-11-26 2016-06-01 三星电子株式会社 辅助转矩设置设备和步行辅助设备
CN105726267A (zh) * 2014-12-26 2016-07-06 三星电子株式会社 辅助扭矩设置方法和设备
CN111407603A (zh) * 2019-01-04 2020-07-14 三星电子株式会社 步行辅助装置以及用于控制步行辅助装置的方法和装置
CN112774115A (zh) * 2019-11-04 2021-05-11 三星电子株式会社 可穿戴装置和由可穿戴装置执行的锻炼支撑方法
CN112192570A (zh) * 2020-10-09 2021-01-08 中国船舶重工集团公司第七0七研究所九江分部 一种下肢关节助力外骨骼系统感知与控制系统及方法

Also Published As

Publication number Publication date
CN115869161A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
JP5640991B2 (ja) 歩行補助装置
KR102186859B1 (ko) 보행 보조 기구 및 보행 보조 기구의 제어 방법
CN110812127B (zh) 下肢外骨骼控制方法及装置
US9610209B2 (en) Walking motion assist device
US10016330B2 (en) Step assist device, and computer-readable medium having stored thereon a step count program
CN109760015B (zh) 用于转弯步行的控制方法和控制设备
KR102384155B1 (ko) 보행 보조 방법 및 장치
US11590383B2 (en) Wearable device and exercise support method performed by the wearable device
US9050237B2 (en) Walking assist device
WO2023044996A1 (zh) 一种基于步态识别的步行辅助装置控制方法
JP5565037B2 (ja) 歩行支援装置
KR20180031409A (ko) 보행 보조 장치 및 보행 보조 장치의 제어 방법
US20190209413A1 (en) Method and device for assisting walking
KR20160043710A (ko) 보행 보조를 제어하기 위한 장치 및 그 방법
KR20170027448A (ko) 보행 보조 장치 및 그 동작 방법
KR20170001261A (ko) 착용로봇의 보행천이 제어방법
JP6017267B2 (ja) 歩行運動補助装置
KR102496574B1 (ko) 토크 출력 타이밍 조정 방법 및 장치
CN111358667A (zh) 基于关节应力的下肢外骨骼人机交互运动控制的方法
CN112809651A (zh) 一种助力外骨骼控制方法、控制系统和计算机设备
WO2023044997A1 (zh) 一种基于速度信息的步行辅助装置控制方法及其相关设备
CN114948579B (zh) 踝关节外骨骼及其助力控制方法、装置及可读存储介质
JP2013208291A (ja) 歩行支援装置、及び歩行支援プログラム
CN112296983B (zh) 外骨骼设备及其控制方法、控制装置
CN115016561B (zh) 一种步行辅助装置控制方法及其相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958111

Country of ref document: EP

Kind code of ref document: A1