CN112809651A - 一种助力外骨骼控制方法、控制系统和计算机设备 - Google Patents

一种助力外骨骼控制方法、控制系统和计算机设备 Download PDF

Info

Publication number
CN112809651A
CN112809651A CN201911120053.6A CN201911120053A CN112809651A CN 112809651 A CN112809651 A CN 112809651A CN 201911120053 A CN201911120053 A CN 201911120053A CN 112809651 A CN112809651 A CN 112809651A
Authority
CN
China
Prior art keywords
angle
power
joint
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911120053.6A
Other languages
English (en)
Other versions
CN112809651B (zh
Inventor
朱瀚琦
张斌权
邱培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yingyinsi Power Technology Co ltd
Original Assignee
Shenzhen Yingyinsi Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yingyinsi Power Technology Co ltd filed Critical Shenzhen Yingyinsi Power Technology Co ltd
Priority to CN201911120053.6A priority Critical patent/CN112809651B/zh
Publication of CN112809651A publication Critical patent/CN112809651A/zh
Application granted granted Critical
Publication of CN112809651B publication Critical patent/CN112809651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/62Posture
    • A61H2230/625Posture used as a control parameter for the apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Robotics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)

Abstract

本发明公开了一种助力外骨骼控制方法、控制系统和计算机设备,通过检测、记录外骨骼穿戴者的各时间节点的实时关节角度,根据所记录的关节角度计算得到变化角度;根据变化角度生成辅助扭矩值;根据辅助扭矩值实时输出扭矩指令;根据所述扭矩指令驱动相应关节。本发明采用无模式识别的扭矩控制方法,不需要进行人体意图识别、场景分类、步态规划等环节,避免了因意图识别、场景分类等误识别引起的潜在不安全因素,且传感器使用简单,仅需要测量关节的运动角度,测控系统可靠性好,信息处理量小,避免了使用压力鞋垫等耗材,节约了成本。

Description

一种助力外骨骼控制方法、控制系统和计算机设备
技术领域
本发明涉及可穿戴机器人领域,具体涉及一种助力外骨骼控制方法、控制系统和计算机设备。
背景技术
随着社会老龄化程度的加剧,用于老年人日常辅助的服务机器人得到越来越多的应用。其中,可穿戴式助力外骨骼设备是通过穿戴于身体外部的机器人装置为穿戴者肢体提供助力,以辅助穿戴者更方便地完成日常生活。此外,由于偏瘫、中风等疾病因素引起行动障碍患者,在康复过程中也需要依靠此类自动化的辅助设备进行训练。
目前外骨骼技术及相关产品智能化程度较低,难以适应复杂的日常生活场景,如在不规则步态或上下楼梯等多场景下,外骨骼仍需要手动参与调节,影响穿戴者日常体验。因此,作为外骨骼技术的核心之一的外骨骼的控制系统及方法一直在不断的更新改进。
但现有技术中,助力外骨骼的控制技术一般采用以下几种方式:
1、助力外骨骼的控制技术主要以位置控制为主,即以外骨骼以预先规划和编程好的轨迹运动,该技术通常按按照意图识别、步态识别、运动控制的顺序进行。这种方式穿戴者需要按迁就外骨骼设定好的轨迹,行动缓慢、效率低。而且对于有行动能力的穿戴者来说,严重限制了其自主运动的自由。
2、采用扭矩控制技术的外骨骼相对于位置控制更加灵活。外骨骼扭矩控制技术通常需要利用传感器检测信息输出相应辅助扭矩,常采用模式识别技术进行行走场景区分,但这种方式无法保证百分之百识别准确,一旦出现误识别情形,可能对穿戴者造成伤害。
3、依靠穿戴于足底的压力传感器或者力敏电阻检测步态事件,但该技术问题也存在问题:足底传感器只能检测下肢处于支撑相(脚与地面接触)的信号,在摆动相(脚离地)无法检测步态事件;足底力传感器易损坏,而且需要根据初戴者体型配置相应的鞋垫,穿戴体验差。
发明内容
本发明提供一种助力外骨骼控制方法、控制系统和计算机设备,以解决现有技术中外骨骼使用需要进行场景区分、步态事件识别不足和穿戴体验差的问题。
一种助力外骨骼控制方法,包括:
检测并记录各时间节点的实时关节角度;
根据前后时间节点的所述实时关节角度计算得到变化角度;
根据所述变化角度生成辅助扭矩值;
根据所述辅助扭矩值实时输出扭矩指令;
根据所述扭矩指令驱动相应关节。
进一步地,所述关节角度包括髋关节角度,所述髋关节角度包括左髋关节角度、右腿髋关节角度。
进一步地,所述检测并记录各时间节点的实时关节角度之前,包括:
检测并记录所述关节角度的初始数据,所述初始数据为用户在穿戴好助力外骨骼物理本体后保持双腿站立静止状态的数据。
进一步地,所述检测并记录各时间节点的实时关节角度之前,包括:
确定是否接收到启动助力模式指令;
若接收到所述启动助力模式指令,则进入所述助力模式,根据前后节点的所述变化角度生成所述辅助扭矩值;若未接收到所述启动助力模式指令,则控制扭矩始终为零。
进一步地,所述根据所述变化角度计算得到辅助扭矩值,包括:
通过将所述变化角度进行平滑处理,获得平滑角度值;
根据所述平滑角度值以及设定好的规则确定助力系数;
根据所述平滑角度值、所述助力系数以及舒适参数计算输出所述辅助扭矩值,所述舒适参数为用户根据助力的舒适程度调整的参数。
进一步地,所述通过将所述变化角度进行平滑处理,获得平滑角度值,包括:
将T时刻及其之前的N个节点时刻的所述实时关节角度进行均值滤波处理,以获得平滑角度值;
所述均值滤波处理公式为:θf(t)=[θ(t)+θ(t-1)…+θ(t-N-1)]/N,所述θ为所述关节角度,所述θ(t)为所述T时刻的所述变化角度,所述θf(t)为所述平滑角度值。
进一步地,所述根据所述平滑角度值以及设定好的规则确定助力系数,包括:
Figure BDA0002275207940000031
K=km·k,则所述
Figure BDA0002275207940000032
表示腿抬起,所述
Figure BDA0002275207940000033
为所述平滑角度θf(t)的导数,所述K为所述助力系数,所述k为初始助力值,所述km为用户根据阻力需要设定的助力值;
Figure BDA0002275207940000041
K=km·k·kg,则所述
Figure BDA0002275207940000042
表示腿落下,所kg为重力补偿系数。
进一步地,所述根据所述平滑角度值、所述助力系数以及舒适参数计算输出所述辅助扭矩值,包括:
根据如下公式计算所述辅助扭矩值:
τ1(t)=K1·[sin(θ1f(t+Δt))-sin(θ2f(t+Δt))];
τ2(t)=K2·[sin(θ1f(t+Δt))-sin(θ2f(t+Δt))];
所述Δt为所述舒适参数,所述θ1为左髋关节角度,所述θ2为右髋关节角度,所述K1为所述左髋关节的助力系数,所述K2为所述右髋关节的助力系数,τ1(t)为所述左髋关节的所述辅助扭矩值,所述τ2(t)为所述右髋关节的所述辅助扭矩值。
一种助力外骨骼控制系统,包括:
检测模块,用于检测并记录各时间节点的实时关节角度;
生成模块,用于根据前后时间节点的所述实时关节角度计算得到变化角度,并根据所述变化角度生成辅助扭矩值;
输出模块,用于根据所述辅助扭矩值实时输出扭矩指令;
驱动模块,用于根据所述扭矩指令驱动相应关节。
一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述助力外骨骼控制方法的步骤。
上述助力外骨骼控制方法、系统、计算机设备及存储介质,通过检测、记录各节点的实时关节角度,根据前后节点的实时关节角度计算得到变化角度,然后生成辅助扭矩值及扭矩指令,并根据扭矩指令的辅助扭矩值驱动相应关节。本发明采用无模式识别的扭矩控制方法,不需要进行人体意图识别、场景分类、步态规划等环节,避免了因意图识别、场景分类等误识别引起的潜在不安全因素,且传感器使用简单,仅需要测量关节的运动角度,测控系统可靠性好,信息处理量小,避免了使用压力鞋垫等耗材,节约了成本。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中助力外骨骼控制方法的流程示意图;
图2是本发明一实施例中助力外骨骼控制方法步骤S30的实现流程示意图;
图3是本发明一实施例中助力外骨骼控制系统示意图;
图4是本发明一实施例中计算机设备的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的助力外骨骼控制方法,应用客户使用的外骨骼中,外骨骼对用户实时的关节角度的数据进行测量、记录,根据计算出辅助扭矩以驱动关节,并将数据传输至客户端,客户端通过网络与外骨骼进行通信。客户端可以但不限于各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。
在一实施例中,如图1所示,提供一种助力外骨骼控制方法,该方法应用在图1中的外骨骼,包括如下步骤:
S10:检测并记录各时间节点的实时关节角度。
在运动时,根据姿势的变化产生不同的关节角度,在不同的时间点,外骨骼通过传感器对某一关节的关节角度进行实时检测和记录,可获得不同的关节角度。具体的,该某一关节为下肢的关节,行走时,下肢关节在腿抬起时或腿落下时,形成不同的角度。
由于髋关节的关节角度较好检测且数据较少,本实施例中测量并记录的关节角度为髋关节角度,包括左、右髋关节角度。在其他实施例中,还可以检测和记录其他下肢关节的角度,如脚踝关节角度、膝关节角度。
S20:根据前后时间节点的实时关节角度计算得到变化角度。
检测并记录的不同时间点的关节角度,并对前后时间点不同的关节角度进行计算,得到关节的变化角度。例如,在T0时刻,左髋关节的关节角度为θ0,在T1时刻,左髋关节的关节角度为θ1,则髋关节的变化角度为θ(t)=θ10,当θ(t)数值大于0时,即左髋关节角度为正,此时腿为抬起状态,当θ(t)数值小于等于0时,即左髋关节角度为负,此时腿为落下状态。
S30:根据变化角度生成辅助扭矩值。
按照一定的规则,根据实时计算出的左、右髋关节变化角度来生成不同时间节点的辅助扭矩值τ(t)。例如,辅助扭矩值τ(t)的计算方式为:助力系数乘以左右髋关节变化角度的sin值之差,在其他实施例中,还可以采用其它规则生成辅助扭矩值,在此不再赘述。
S40:根据辅助扭矩值实时输出扭矩指令。
在计算得到辅助扭矩值τ(t),根据生成的辅助扭矩值τ(t)实时输出扭矩指令,以便后续外骨骼根据扭矩指令来驱动髋关节运动。
S50:根据扭矩指令驱动相应关节。
根据实时输出的扭矩指令来驱动髋关节,驱使外骨骼左右腿运动。
本实施例中,通过检测、记录各节点的实时关节角度,根据前后节点的实时关节角度计算得到变化角度,然后生成辅助扭矩值及扭矩指令,并根据扭矩指令的辅助扭矩值驱动相应关节。本发明采用无模式识别的扭矩控制方法,不需要进行人体意图识别、场景分类、步态规划等环节,避免了因意图识别、场景分类等误识别引起的潜在不安全因素,且传感器使用简单,仅需要测量关节的运动角度,测控系统可靠性好,信息处理量小,避免了使用压力鞋垫等耗材,节约了成本。
而采用测量髋关节角度的方式,只需要测量髋关节的角度变化趋势,就可以确定腿的运动方式,比脚踝关节和膝关节的关节角度好检测且数据较少,减少了数据检测量和计算量,节约了成本,提高了用户的穿戴体验。
在一实施例中,在检测并记录各时间节点的实时关节角度之前,即步骤S10之前,包括:检测并记录关节角度的初始数据,初始数据为用户在穿戴好助力外骨骼物理本体后保持双腿站立静止状态的数据。
用户在穿戴好助力外骨骼物理本体后,保持双腿站立静止状态,启动外骨骼电源,使外骨骼系统上电,此时,系统中记录的数据可能是上一次使用时留下的数据,如果不对该数据进行清除,会对后续变化角度的计算产生影响,进而影响到辅助扭矩地准确性。因此,在上电后,需要对系统进行初始化,即对上一次留下的数据进行清除,并通过传感器对清除后的髋关节角度进行检测并记录,获得在保持双腿站立静止状态下的髋关节的初始数据。
本实施例中,通过对外骨骼系统的初始化,清除了上一次留下的数据,并获得了保持双腿站立静止状态下的髋关节的初始数据,消除了上一次的使用数据对计算结果的影响,提高了数据的准确性。
在一实施例中,在检测并记录各时间节点的实时关节角度之前,即步骤S10之前,包括:
确定是否接收到启动助力模式指令;
若接收到启动助力模式指令,则进入助力模式,根据前后节点的变化角度生成辅助扭矩值;若未接收到启动助力模式指令,则控制扭矩始终为零。
在检测并记录各时间节点的实时关节角度之前,或者在检测并记录关节角度的初始数据之后,检测并记录各时间节点的实时关节角度之前,用户可以通过客户端向外骨骼发送是否启动助力模式的指令。如果外骨骼接收到客户端发送的启动助力模式指令,则外骨骼进入助力模式,对髋关节角度进行实时的检测记录,并计算出实时的变化角度,再根据实时的变化角度生成辅助扭矩值,以驱动髋关节运动;如果外骨骼未接收到客户端发送的启动助力模式指令,则外骨骼不启动助力模式,随后外骨骼输出的扭矩始终为零。
本实施例中,用户通过客户端向外骨骼发送是否启动助力模式的指令,来选择是否进入模式,增加了用户使用外骨骼的选择性,提高了用户的使用体验。
在一实施例中,如图2所示,步骤S30中,即根据所述变化角度计算得到辅助扭矩值,具体包括如下步骤:
S301:通过将变化角度进行平滑处理,获得平滑角度值。
通过对髋关节的某时间点的变化角度θ(t)进行平滑处理,获得进行平滑处理后的平滑角度值θf(t),对变化角度进行平滑处理,使髋关节的前后变化角度之间差距更小,以便后续获得据此获得更平缓的辅助扭矩值,使髋关节动作更平缓。
S302:根据平滑角度值以及设定好的规则确定助力系数。
根据获得的平滑角度值和设定好的规则来确定不同髋关节的助力系数。例如,在不同姿态中,髋关节的助力系数不同,当平滑角度值θf(t)为正,即腿抬起时,髋关节助力系数为2,当平滑角度值θf(t)为负,即腿放下时,髋关节助力系数为1。
S303:根据平滑角度值、助力系数以及舒适参数计算输出辅助扭矩值,舒适参数为用户根据助力的舒适程度调整的参数。
根据输出的辅助扭矩值来驱动髋关节关节运动,即便在对变化角度进行平滑处理后,髋关节动作已经尽量平缓了,但每个人对动作的舒适感体验不一样,有些用户喜欢幅度大一些的动作,有些用户喜欢幅度小一些的动作,所以还提供了一个可供用户调试的舒适参数,以使用户获得流畅舒适的外骨骼使用体验。
本实施例中,用户通过对关节变化角度进行平滑处理,根据获得的平滑角度值及特定规则确定助力系数,并在此基础上增加了舒适参数以生成辅助扭3适感和使用体验。
进一步地,步骤S301中,采用均值滤波的方式对髋关节的变化角度进行平滑处理,以得到平滑角度值,包括:
将T时刻及T时刻之前的N个节点时刻的实时关节角度进行均值滤波处理,以获得平滑角度值;
均值滤波处理公式为:θf(t)=[θ(t)+θ(t-1)…+θ(t-N-1)]/N,其中,θ为关节角度,θ(t)为T时刻的变化角度,θf(t)为平滑角度值。
例如,T时刻(8:00:04)的实时髋关节角度为50°,之前4个节点时刻的实时关节角度分别为:8:00:03时的髋关节角度为36°、8:00:02时的髋关节角度为23°、8:00:01时的髋关节角度为11°、在8:00:00时的髋关节角度为0°,则在8:00:04时髋关节的变化角度为11°、在8:00:03时髋关节的变化角度为12°、在8:00:02时髋关节的变化角度为13°、在8:00:01时髋关节的变化角度为14°,那么此时,T时刻(8:00:04)的髋关节平滑角度为:(11°+12°+13°+14°)/4=12.5°。
本实施中,采用均值滤波的方式对关节的变化角度进行平滑处理,方法简单且波动小,减少了关节变化角度的可能出现的误差,提高了髋关节变化角度的平缓性。在其他实施例中,还可以采用其他平滑处理方式,如中值滤波方式。
进一步地,步骤S302中,根据平滑角度值以及设定好的规则确定助力系数,包括:
Figure BDA0002275207940000101
K=km·k,则
Figure BDA0002275207940000102
表示腿抬起,
Figure BDA0002275207940000103
为平滑角度θf(t)的导数,K为所述助力系数,k为初始助力值,km为用户根据阻力需要设定的助力值;
Figure BDA0002275207940000104
K=km·k·kg,则
Figure BDA0002275207940000105
表示腿落下,kg为重力补偿系数。
具体地,当
Figure BDA0002275207940000106
大于0时,表示在T时刻之前,髋关节的角度变化趋势是增大的,则表示腿向上抬起,而抬腿需要一个与重力想抵抗并帮助腿抬起的助力,此时助力系数K为初始助力系数k与助力值km的乘积,其中,km为穿戴者根据阻力需要设定的助力系数,可通过外骨骼旋钮或者客户端设定或者根据实际需要修改;k为初始设定的助力系数,不可更改;当
Figure BDA0002275207940000111
小于等于0时,表示在T时刻之前,髋关节的角度变化趋势是减小的,则表示腿向下落下,而腿落下时,除了要有一个帮助腿落下的助力外,还需要有一个重力补偿的系数,以帮助腿不会过快落下,影响舒适性和平稳性,此时助力系数K为初始助力系数k、助力值km和重力补偿系数kg的乘积。
本实施例中,通过设定初始助力值k、根据实际需要修改的助力值km和重力补偿系数kg,为外骨骼的动作变化增加了帮助,使外骨骼的动作变化更加平缓,提高了运动时的舒适性和平稳性。
本实施例中,通过根据设定初始助力值、根据实际需要修改的助力值和重力补偿系数来确定助力系数,在其他实施例中,可采用其他方法来确定助力系数,在此不再赘述。
进一步地,步骤S303中,根据所述平滑角度值、助力系数以及舒适参数计算输出辅助扭矩值,包括:
根据如下公式计算所述辅助扭矩值:
τ1(t)=K1·[sin(θ1f(t+Δt))-sin(θ2f(t+Δt))];
τ2(t)=K2·[sin(θ1f(t+Δt))-sin(θ2f(t+Δt))];
其中,Δt为舒适参数,θ1为左髋关节角度,θ2为右髋关节角度,K1为左髋关节的助力系数,K2为右髋关节的助力系数,τ1(t)为左髋关节的辅助扭矩值,τ2(t)为右髋关节的辅助扭矩值。
例如,初始助力系数k为1与助力值km为2,重力补偿系数kg为0.2,在T时刻,左髋关节的平滑角度值θ1f(t)为12.5°,右髋关节的平滑角度值θ2f(t)为-10°,但用户想要增加舒适性,增加了舒适参数Δt,并舒适参数Δt设置为0.1秒(舒适参数Δt范围为-0.3秒至0.3秒),则需将T时刻及T时刻之前的N+1个节点时刻的实时髋关关节角度进行均值滤波处理,则此时左髋关节的平滑角度值(θ1f(t±Δt)为10°,右髋关节的平滑角度值(θ2f(t±Δt)为-7°。因为(θ1f(t±Δt)为10°,用户左腿为抬起状态,助力系数K1为k与km的乘积,即K1为:1×2=2,所以左关节在T时刻的辅助扭矩值τ1(t)=2×[sin10°-sin 7°];因为(θ2f(t±Δt)为-7°,用户右腿为落下状态,助力系数K2为k、km与kg的乘积,即K1为:1×2×0.2=0.4,所以右关节在T时刻的辅助扭矩值τ1(t)=0.4×[sin-10°-sin7°]。
本实施例中,通过根据可设置并修改的舒适参数来对关节角度变化小,使关节动作更平缓,进一步提高了运动时的舒适性和平稳性。
在其他实施例中,可采用其他方法来计算辅助扭矩值,在此不再赘述。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在一实施例中,提供一种助力外骨骼控制系统,该助力外骨骼控制系统与上述实施例中助力外骨骼控制方法一一对应。如图3所示,该助力外骨骼控制系统包括检测模块401、生成模块402、输出模块403和驱动模块404。各功能模块详细说明如下:
401:检测模块,用于检测并记录各时间节点的实时关节角度。
402:生成模块,用于根据前后时间节点的实时关节角度计算得到变化角度,并根据变化角度生成辅助扭矩值。
403:输出模块,用于根据辅助扭矩值实时输出扭矩指令。
404:驱动模块,用于根据扭矩指令驱动相应关节。
关于助力外骨骼控制系统的具体限定可以参见上文中对助力外骨骼控制方法的限定,在此不再赘述。上述助力外骨骼控制系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,如图4所示。该计算机设备包括通过系统总线连接的存储器401、处理器402和收发器403,存储器401、处理器402和收发器403通过总线404连接。其中,该计算机设备的处理器402用于提供计算和控制能力。该计算机设备的收发器403用于收发数据/指令,该计算机设备的存储器401包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器401为非易失性存储介质中的操作系统和计算机程序的运行提供环境。示例性的,该计算机设备采用嵌入式系统,该计算机程序被处理器402执行时以实现上述的助力外骨骼控制方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例所述的助力外骨骼控制方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器RAM或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAMSDRAM、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

1.一种助力外骨骼控制方法,其特征在于,包括:
检测并记录各时间节点的实时关节角度;
根据前后时间节点的所述实时关节角度计算得到变化角度;
根据所述变化角度生成辅助扭矩值;
根据所述辅助扭矩值实时输出扭矩指令;
根据所述扭矩指令驱动相应关节。
2.如权利要求1所述的助力外骨骼控制方法,其特征在于,所述关节角度包括髋关节角度,所述髋关节角度包括左髋关节角度、右腿髋关节角度。
3.如权利要求2所述的助力外骨骼控制方法,其特征在于,所述检测并记录各时间节点的实时关节角度之前,包括:
检测并记录所述关节角度的初始数据,所述初始数据为用户在穿戴好助力外骨骼物理本体后保持双腿站立静止状态的数据。
4.如权利要求1所述的助力外骨骼控制方法,其特征在于,所述检测并记录各时间节点的实时关节角度之前,包括:
确定是否接收到启动助力模式指令;
若接收到所述启动助力模式指令,则进入所述助力模式,根据前后节点的所述变化角度生成所述辅助扭矩值;若未接收到所述启动助力模式指令,则控制扭矩始终为零。
5.如权利要求1-4任一项所述的助力外骨骼控制方法,其特征在于,所述根据所述变化角度计算得到辅助扭矩值,包括:
通过将所述变化角度进行平滑处理,获得平滑角度值;
根据所述平滑角度值以及设定好的规则确定助力系数;
根据所述平滑角度值、所述助力系数以及舒适参数计算输出所述辅助扭矩值,所述舒适参数为用户根据助力的舒适程度调整的参数。
6.如权利要求5所述的助力外骨骼控制方法,其特征在于,所述通过将所述变化角度进行平滑处理,获得平滑角度值,包括:
将T时刻及其之前的N个节点时刻的所述实时关节角度进行均值滤波处理,以获得平滑角度值;
所述均值滤波处理公式为:θf(t)=[θ(t)+θ(t-1)…+θ(t-N-1)]/N,所述θ为所述关节角度,所述θ(t)为所述T时刻的所述变化角度,所述θf(t)为所述平滑角度值。
7.如权利要求6所述的助力外骨骼控制方法,其特征在于,所述根据所述平滑角度值以及设定好的规则确定助力系数,包括:
Figure FDA0002275207930000021
K=km·k,则所述
Figure FDA0002275207930000024
表示腿抬起,所述
Figure FDA0002275207930000025
为所述平滑角度θf(t)的导数,所述K为所述助力系数,所述k为初始助力值,所述km为用户根据阻力需要设定的助力值;
Figure FDA0002275207930000022
K=km·k·kg,则所述
Figure FDA0002275207930000023
表示腿落下,所kg为重力补偿系数。
8.如权利要求7所述的助力外骨骼控制方法,其特征在于,所述根据所述平滑角度值、所述助力系数以及舒适参数计算输出所述辅助扭矩值,包括:
根据如下公式计算所述辅助扭矩值:
τ1(t)=K1·[sin(θ1f(t+Δt))-sin(θ2f(t+Δt))];
τ2(t)=K2·[sin(θ1f(t+Δt))-sin(θ2f(t+Δt))];
所述Δt为所述舒适参数,所述θ1为左髋关节角度,所述θ2为右髋关节角度,所述K1为所述左髋关节的助力系数,所述K2为所述右髋关节的助力系数,τ1(t)为所述左髋关节的所述辅助扭矩值,所述τ2(t)为所述右髋关节的所述辅助扭矩值。
9.一种助力外骨骼控制系统,其特征在于,包括:
检测模块,用于检测并记录各时间节点的实时关节角度;
生成模块,用于根据前后时间节点的所述实时关节角度计算得到变化角度,并根据所述变化角度生成辅助扭矩值;
输出模块,用于根据所述辅助扭矩值实时输出扭矩指令;
驱动模块,用于根据所述扭矩指令驱动相应关节。
10.一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至8任一项所述助力外骨骼控制方法的步骤。
CN201911120053.6A 2019-11-15 2019-11-15 一种助力外骨骼控制方法、控制系统和计算机设备 Active CN112809651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911120053.6A CN112809651B (zh) 2019-11-15 2019-11-15 一种助力外骨骼控制方法、控制系统和计算机设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911120053.6A CN112809651B (zh) 2019-11-15 2019-11-15 一种助力外骨骼控制方法、控制系统和计算机设备

Publications (2)

Publication Number Publication Date
CN112809651A true CN112809651A (zh) 2021-05-18
CN112809651B CN112809651B (zh) 2021-10-29

Family

ID=75851697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911120053.6A Active CN112809651B (zh) 2019-11-15 2019-11-15 一种助力外骨骼控制方法、控制系统和计算机设备

Country Status (1)

Country Link
CN (1) CN112809651B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114948609A (zh) * 2022-04-12 2022-08-30 北京航空航天大学 一种瘫痪病人的助行辅助装置及方法
CN117444978A (zh) * 2023-11-30 2024-01-26 哈尔滨工业大学 一种气动软体机器人的位置控制方法及其系统、设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161937A1 (en) * 2005-01-26 2008-07-03 Yoshiyuki Sankai Wearing-Type Motion Assistance Device and Program for Control
CN103379881A (zh) * 2010-12-27 2013-10-30 赛伯达英电子科技股份有限公司 穿戴式动作辅助装置、其接口装置及程序
KR20170001261A (ko) * 2015-06-26 2017-01-04 국방과학연구소 착용로봇의 보행천이 제어방법
CN108888473A (zh) * 2018-05-22 2018-11-27 哈尔滨工业大学 基于穿戴式助行外骨骼的下肢关节运动复现方法
CN109044743A (zh) * 2018-08-07 2018-12-21 华东理工大学 一种康复型下肢外骨骼及其控制方法
CN109108954A (zh) * 2017-06-22 2019-01-01 深圳市肯綮科技有限公司 一种动力关节装置的力矩控制系统及其力矩控制方法
CN109124998A (zh) * 2018-06-28 2019-01-04 东莞英汉思机器人科技有限公司 动力外骨骼控制方法、装置、计算机设备及存储介质
CN110215648A (zh) * 2019-06-28 2019-09-10 华中科技大学 基于人体步态运动协调特性的外骨骼协调步态控制方法
CN110405736A (zh) * 2019-08-07 2019-11-05 广东博智林机器人有限公司 助行控制方法及系统、外骨骼机器人和终端

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161937A1 (en) * 2005-01-26 2008-07-03 Yoshiyuki Sankai Wearing-Type Motion Assistance Device and Program for Control
CN103379881A (zh) * 2010-12-27 2013-10-30 赛伯达英电子科技股份有限公司 穿戴式动作辅助装置、其接口装置及程序
KR20170001261A (ko) * 2015-06-26 2017-01-04 국방과학연구소 착용로봇의 보행천이 제어방법
CN109108954A (zh) * 2017-06-22 2019-01-01 深圳市肯綮科技有限公司 一种动力关节装置的力矩控制系统及其力矩控制方法
CN108888473A (zh) * 2018-05-22 2018-11-27 哈尔滨工业大学 基于穿戴式助行外骨骼的下肢关节运动复现方法
CN109124998A (zh) * 2018-06-28 2019-01-04 东莞英汉思机器人科技有限公司 动力外骨骼控制方法、装置、计算机设备及存储介质
CN109044743A (zh) * 2018-08-07 2018-12-21 华东理工大学 一种康复型下肢外骨骼及其控制方法
CN110215648A (zh) * 2019-06-28 2019-09-10 华中科技大学 基于人体步态运动协调特性的外骨骼协调步态控制方法
CN110405736A (zh) * 2019-08-07 2019-11-05 广东博智林机器人有限公司 助行控制方法及系统、外骨骼机器人和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
程冠铭,孟青云,胡冰山等: "下肢助行外骨骼髋关节串联弹性驱动器弹性单元优化设计研究", 《生物医学工程与临床》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114948609A (zh) * 2022-04-12 2022-08-30 北京航空航天大学 一种瘫痪病人的助行辅助装置及方法
CN114948609B (zh) * 2022-04-12 2023-06-16 北京航空航天大学 一种瘫痪病人的助行辅助装置及方法
CN117444978A (zh) * 2023-11-30 2024-01-26 哈尔滨工业大学 一种气动软体机器人的位置控制方法及其系统、设备
CN117444978B (zh) * 2023-11-30 2024-05-14 哈尔滨工业大学 一种气动软体机器人的位置控制方法及其系统、设备

Also Published As

Publication number Publication date
CN112809651B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
JP6884526B2 (ja) 起立補助方法及び装置
US11096854B2 (en) Human machine interfaces for lower extremity orthotics
Huo et al. Active impedance control of a lower limb exoskeleton to assist sit-to-stand movement
US9539162B2 (en) Wearing type behavior help device, wearing type behavior help device calibration device, and calibration program
Guerrero-Castellanos et al. Robust active disturbance rejection control via control lyapunov functions: Application to actuated-ankle–foot-orthosis
KR100904937B1 (ko) 장착식 동작 보조장치
CN112809651B (zh) 一种助力外骨骼控制方法、控制系统和计算机设备
CN110327187B (zh) 一种外骨骼的带先验力矩无模型控制方法
CN109124998B (zh) 动力外骨骼控制方法、装置、计算机设备及存储介质
KR20180096241A (ko) 보행 보조 장치의 제어 방법 및 장치
KR20180047955A (ko) 밸런스 제어 방법 및 장치
CN112405504B (zh) 外骨骼机器人
JPWO2020100961A1 (ja) 負荷軽減装置、負荷軽減方法、及びプログラム
Chalvatzaki et al. User-adaptive human-robot formation control for an intelligent robotic walker using augmented human state estimation and pathological gait characterization
JP7327413B2 (ja) 負荷軽減装置、負荷軽減方法、及びプログラム
KR20170005930A (ko) 로봇의 보행 제어 시스템 및 방법
KR101795139B1 (ko) 로봇의 보행 제어 방법 및 시스템
CN114073631B (zh) 一种助力外骨骼自适应控制方法和装置
JP7290490B2 (ja) パワーアシスト装置
Chen et al. Comparison of machine learning regression algorithms for foot placement prediction
CN116265200A (zh) 一种用于外骨骼的绊倒情况步态自动调整的控制方法
KR102266431B1 (ko) 보행속도기반 착용로봇의 능동-준능동 제어 방법
Chen et al. Intention recgonition for exoskeleton
Chen et al. Learning and planning of stair ascent for lower-limb exoskeleton systems
CN111360815B (zh) 基于肌电信号和关节应力的人机交互运动控制的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant