WO2023044821A1 - 多旋翼无人机 - Google Patents

多旋翼无人机 Download PDF

Info

Publication number
WO2023044821A1
WO2023044821A1 PCT/CN2021/120486 CN2021120486W WO2023044821A1 WO 2023044821 A1 WO2023044821 A1 WO 2023044821A1 CN 2021120486 W CN2021120486 W CN 2021120486W WO 2023044821 A1 WO2023044821 A1 WO 2023044821A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
rotor
included angle
rotor uav
arm
Prior art date
Application number
PCT/CN2021/120486
Other languages
English (en)
French (fr)
Inventor
周炜翔
何百川
吴琼伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/120486 priority Critical patent/WO2023044821A1/zh
Publication of WO2023044821A1 publication Critical patent/WO2023044821A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/30Parts of fuselage relatively movable to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, in particular to a multi-rotor unmanned aerial vehicle.
  • Embodiments of the present application provide a multi-rotor UAV.
  • Embodiments of the present application provide a multi-rotor UAV, and the multi-rotor UAV includes a fuselage and an arm.
  • the root of the machine arm is connected with the fuselage, and the front and upper side of the machine arm is provided with a protrusion towards the front and upper side of the multi-rotor UAV when it is flying forward.
  • the two sides of the protrusion respectively extend from the upper surface and the lower surface of the arm, and taper until they meet.
  • a protrusion is provided on the arm of the multi-rotor UAV.
  • the two raised sides respectively extend from the upper surface and the lower surface of the machine arm, and taper until the two sides meet, so as to take into account the industrial design of the machine arm.
  • the airflow should be attached to the wall as much as possible when it flows through the protrusion and reaches the upper surface of the arm and the lower surface of the arm, reducing the paddle frequency of the blade in the forward flight condition, so that the multi-rotor UAV When flying forward, it can greatly reduce the resistance of forward flight to improve the flight endurance and range of forward flight.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a multi-rotor UAV in a storage state in some embodiments of the present application;
  • Fig. 2 is a schematic diagram of a partial three-dimensional exploded structure of a multi-rotor UAV in some embodiments of the present application;
  • Fig. 3 is the schematic diagram that fluid flows through the machine arm of the present application.
  • FIG. 4 is a schematic diagram of the unfolded state of the arms and the cross-section of the arms of the multi-rotor UAV in some embodiments of the present application;
  • 5 to 11 are schematic diagrams of cross-sections of the arms of the multi-rotor UAV in some embodiments of the present application.
  • Fig. 12 is the enlarged schematic view of the IX place in the multi-rotor UAV in Fig. 4;
  • Fig. 13 is a schematic diagram of the forward zone and the backward zone of the blade of the multi-rotor UAV;
  • Fig. 14 is a diagram showing the distribution of resistance of the rear arm of some embodiments of the present application and the rear arm of unoptimized aerodynamic resistance;
  • Fig. 15 is the enlarged schematic view of XII in the multi-rotor UAV in Fig. 4;
  • FIG. 16 is a graph showing the drag distribution of the front arm and the rear arm without optimized aerodynamic drag according to some embodiments of the present application.
  • orientation or positional relationship indicated by the terms “thickness”, “upper”, “top”, “bottom”, “inner”, “outer”, etc.
  • the orientation or positional relationship is only for the convenience of describing the application and simplifying the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the application .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation.
  • the present application provides a multi-rotor UAV 100
  • the multi-rotor UAV 100 includes a fuselage 10 , an arm 30 and a power assembly 40 .
  • the root of the machine arm 30 is connected with the fuselage 10, and the side of the machine arm 30 facing the front and upper side of the multi-rotor UAV 100 when flying forward has a protrusion 31, and the rear side to the front side of the multi-rotor UAV 100
  • the two side surfaces 311 of the protrusion 31 respectively extend from the upper surface 33 and the lower surface 35 of the machine arm 30 , and taper until they meet.
  • the power assembly 40 is installed on the end of the arm 30 away from the fuselage 10 for generating power to provide power for the multi-rotor UAV 100 .
  • the power assembly 40 can be a motor, or a motor and a rotor.
  • the rear side of the multi-rotor UAV 100 is the side where the tail 70 of the multi-rotor UAV 100 is located
  • the front side of the multi-rotor UAV 100 is the side where the nose 50 of the multi-rotor UAV 100 is located.
  • the protrusion 31 is located on the upper front side of the arm 30 when it is flying forward towards the multi-rotor UAV 100, and one side 311 of the protrusion 31 is in contact with the upper surface 33 of the arm 30, and from the abutment The place extends towards the front side of the multi-rotor UAV 100 toward the ground end, and the other side 311 of the protrusion 31 joins with the lower surface 37 of the machine arm 30, and moves toward the front side of the multi-rotor UAV 100 from the junction. Extend toward the sky end until the two sides 311 meet. That is to say, from the joint between the protrusion 31 and the arm 30 (line I-I in FIG. 2 ) to the front and upper direction of the multi-rotor UAV 100 when flying forward, the width of the protrusion 31 gradually narrows.
  • FIG. 3 shows the airflow state of the multi-rotor UAV 100 in the forward flight of the embodiment of the present application.
  • the airflow is blocked by the end 313 of the protrusion 31 (the part of the protrusion 31 facing the front side of the multi-rotor UAV 100), and will be diverted at the end 313 and flow along the The two sides 311 of the protrusion 31, the upper surface 33 of the machine arm 30 and the lower surface 35 of the machine arm 30 flow, which can reduce the aerodynamic resistance of the multi-rotor UAV 100 when flying in front of the arm 30, and reduce the front of the blade. Therefore, when the multi-rotor UAV is flying forward, the forward flight resistance can be greatly reduced to improve the forward flight endurance time and range.
  • a protrusion 31 is provided on the arm 30 of the multi-rotor UAV 100, and the protrusion 31 is located at the front and upper part of the multi-rotor UAV 100 when it flies forward.
  • the two sides 311 of the protrusion 31 extend from the upper surface 33 and the lower surface 35 of the arm 30 respectively, and taper until two The sides 311 are connected to each other to take into account the industrial design (Industrlal Design, ID) of the machine arm 30.
  • the airflow flows through the protrusion 31 and reaches the upper surface 33 of the machine arm 30 and the machine arm 30.
  • the lower surface 35 of the arm 30 is attached to the wall as much as possible to reduce the paddle frequency in the forward flight condition of the blades, so that the forward flight resistance can be greatly reduced when the multi-rotor UAV 100 is flying forward to improve the forward flight endurance and range.
  • the machine arm 30 includes a front machine arm 30 b and a rear machine arm 30 a.
  • the front arm 30b is close to the front side of the multi-rotor UAV 100
  • the rear arm 30a is close to the rear side of the multi-rotor UAV 100 .
  • the front machine arm 30b and the rear machine arm 30a are all provided with the above-mentioned protrusions 31, so that the air flow flows through the upper surface 33 and the lower surface 35 of the front machine arm 30b, and the upper surface 33 and the lower surface 35 of the rear machine arm 30a.
  • the wall can be attached as far as possible, and the fluid resistance suffered by the front machine arm 30b and the rear machine arm 30a can be reduced.
  • the angle between the front upper part of the multi-rotor UAV 100 and the normal plane S0 of the yaw axis of the multi-rotor UAV 100 is near the angle range of the angle of attack ⁇ of the multi-rotor UAV 100
  • the angle of attack ⁇ is the angle between the normal plane S0 of the yaw axis of the multi-rotor UAV 100 and the direction of incoming flow when the multi-rotor UAV 100 is flying forward.
  • the yaw axis described in this article is defined in the body axis system.
  • the X-axis is defined as the front-to-back direction of the body, from the rear to the front, and the Z-axis is the up-down direction of the body.
  • the Y axis is the left and right direction of the body, and the specific direction is obtained based on the XZ plane.
  • the XY plane of the body is defined as a plane passing through the center of gravity of the body and parallel to the horizontal plane of the hovering state of the whole machine, and the Z axis is perpendicular to the XY plane of the body passing through the center of gravity towards the windless plane.
  • the shaft system of the airframe is fixedly connected with the airframe and does not change with the flight state.
  • the yaw axis of the multi-rotor drone 100 herein is the Z axis in the body coordinate system.
  • the angle between the incoming flow direction and the normal plane S0 is ⁇ .
  • the angle of attack ⁇ of the whole machine is a negative angle.
  • the working condition designed for the arm 30 is long-distance voyage and maximum speed working condition, and the value range of the corresponding angle of attack ⁇ is [-20°, -15°].
  • the value of the angle of attack ⁇ can be -15°, -15.4°, -16°, -16.5°, -17°, -17.5°, -18°, -18.4°, -19°, 19.4°, or -20° etc.
  • the angle between the upper front and the normal plane S0 of the multi-rotor UAV 100 when flying forward is near the angle range of the angle of attack ⁇ , for example, the upper front and the normal plane S0 of the multi-rotor UAV 100 when flying forward
  • the value range of the included angle is ⁇ 20%.
  • the value range of the angle between the upper front and the normal plane S0 is [-24°, -16°], which will not be listed here.
  • a protrusion 31 is provided on the upper front side of the multi-rotor UAV 100 when flying forward, so that the air flow flows through the protrusion 31 and reaches the upper surface 33 of the machine arm 30 and the lower surface 35 of the machine arm 30 Try to attach to the wall as much as possible to ensure that the forward flight resistance is greatly reduced when the multi-rotor UAV 100 is flying forward, so as to improve the endurance time and range of the forward flight.
  • the cross section S1 of the machine arm 30 is a cross section of the machine arm 30 taken by the XZ plane.
  • the profile of the cross-section S1 of the arm 30 is spindle-shaped, and the protrusion 31, the side of the arm 30 close to the sky end, and the side of the arm 30 close to the ground end are The smooth curved surface allows the airflow to flow on the surface of the arm 30 , thereby reducing the aerodynamic resistance at the arm 30 .
  • the part of the cross-section S1 of the arm 30 near the sky end or the ground end has an airfoil shape.
  • the upper half S11 (near the sky end) in FIG. 6 has an airfoil shape
  • the lower half S12 (near the ground end) in FIG. 6 has an airfoil shape. That is to say, when the multi-rotor UAV 100 has a protrusion 31 on the front and upper side when flying forward, the part of the arm 30 close to the sky end is an upward convex surface; or, the part of the arm 30 close to the ground end is a downward surface. convex surface. Therefore, after the air flow passes through the protrusion 31 , it can be attached to the surface of the sky end or the surface of the bottom end, thereby reducing the aerodynamic resistance of the arm 30 .
  • the cross-section S1 of the arm 30 includes a side L0 , and the side L0 is substantially parallel to the yaw axis of the multi-rotor UAV 100 .
  • the side L0 of the cross-section S1 is the side near the tail 70, and the side L0 is a straight line, so that when the multi-rotor UAV 100 is stored, , the side L0 can be attached to the fuselage 10 .
  • the cross section S1 of the arm 30 includes a side L0 and an arc T0 , and the arc T0 connects two ends of the side L0 .
  • the side L0 of the cross-section S1 of the arm 30 is the side close to the tail 70, and the arc T0 connects the two endpoints of the side L0 respectively, wherein the convex
  • the two sides of the protrusion 31 are a part of the arc T0 toward the upper front of the multi-rotor UAV 100 when flying forward, so as to form the protrusion 31 when the multi-rotor UAV 100 is flying forward.
  • the profile of the cross-section S1 of the arm 30 is polygonal.
  • the cross section S1 of the arm 30 is pentagonal or hexagonal.
  • the hexagonal shape includes two sides near the upper front side of the multi-rotor UAV 100 when flying forward (respectively two sides of the protrusion 31). side), one side near the sky end (the side where the upper surface 33 of the machine arm 30 is located), one side near the ground side (the side where the lower surface 35 of the machine arm 30 is located) and two sides located at the rear side of the multi-rotor UAV 100 side.
  • the multi-rotor UAV 100 when the multi-rotor UAV 100 is flying forward, it can not only take into account the ID shape of the arm 30, but also take into account the constraints of the torsional section moment of the arm 30, and at the same time, it can also make the airflow flow through the protrusion 31 to attach the drone.
  • the upper surface 33 and the lower surface 35 of the arm 30 flow, reducing the aerodynamic drag of the arm 30 .
  • the cross-section S1 from the protrusion 31 to the machine arm 30 includes at least one side near the sky end
  • the cross-section S1 from the protrusion 31 to the machine arm 30 near the ground end includes at least one side a side.
  • the protrusion 31 includes a side L1 extending from the front side of the multi-rotor UAV 100 to the cross-section S1 of the arm 30 near the sky end, and a side L1 from the multi-rotor UAV 100.
  • the front side of the rotor drone 100 extends to the side L2 of the cross-section S1 of the arm 30 near the ground end, wherein the side L1 and the side L2 are both straight lines.
  • the side L1 is formed by connecting multiple (two, three or more than three) straight lines, as shown in Figure 8, the side L1 and the side L2 are formed by connecting two straight lines; as shown in Figure 9 , the side L1 and the side L2 are formed by connecting three straight lines.
  • One side 311 of the protrusion 31 extends from the end 313 of the protrusion 31 towards the rear side of the multi-rotor UAV 100 until it meets the upper surface 33 of the arm 30, and the other side 311 of the protrusion 31 extends from the end 313 of the protrusion 31.
  • the end 313 of 31 extends towards the rear side of the multi-rotor UAV 100 until it meets the lower surface 37 of the arm 30, so that when the airflow flows through the end 313 of the protrusion 31, it will be split at the end 313 and flow along the The two side walls of the protrusion 31 flow, allowing the airflow to form a contraction duct between the upper surface 33 and the lower surface 35 cross-sectional contours, maintaining the starting point from the cross-section S1 (at the front side of the multi-rotor UAV 100) to The forward pressure at the end point of the cross-section S1 (at the rear side of the multi-rotor UAV 100) keeps the airflow on the wall attached to the upper surface 33 and the lower surface 35, and reduces the impact on the arm 30 of the multi-rotor UAV 100 when flying in front.
  • the aerodynamic resistance reduces the paddle frequency in the forward flight condition of the blades, so that the forward flight resistance can be greatly reduced when the multi-rotor UAV 100 is flying forward, so as to improve the endurance time and
  • the profile of the cross-section S1 of the machine arm 30 is a pentagon, and among the five sides of the pentagon, two adjacent sides are connected by an arc.
  • the cross-section S1 of the machine arm 30 is pentagonal, and the connection of each side is connected by an arc, so that the end 313 of the protrusion 31 is an arc-shaped front edge, and when attached to the surface where one of the sides is located,
  • the airflow flows through the surface where the other side is, the airflow can flow through the wall to keep the flow of the airflow, thereby reducing the aerodynamic resistance of the arm 30 when the multi-rotor UAV 100 is flying in front.
  • the pentagon includes the first side L1, the second side L2, the third side L3, the fourth side L4 and the fifth side L5 connected in sequence, the third side L3 and the fifth side
  • the five sides L5 are opposite and all are arc lines
  • the first side L1 and the second side L2 correspond to the two side surfaces 311 of the protrusion 31
  • the fourth side L4 is opposite to the outline of the protrusion 31 .
  • the cross-section S1 of the arm 30 is pentagonal, which can not only take into account the constraints of the torsional section moment, but also conform to the ID shape design of the arm 30. At the same time, it can also form an upper front of the multi-rotor UAV 100 when flying forward.
  • the protrusion 31 enables the airflow to flow along the upper surface 33 and the lower surface 35 of the arm 30 , reducing the aerodynamic resistance of the arm 30 .
  • the first side L1 corresponds to a side 311 of the protrusion 31 near the sky end
  • the second side L2 corresponds to a side 311 of the protrusion 31 near the ground end
  • the third side L3 corresponds to the side of the arm 30.
  • the fourth side L4 is opposite to the first side L1 and the second side L2
  • the fifth side L5 corresponds to the upper surface 33 of the machine arm 30 .
  • the first side L1 corresponds to a side 311 of the protrusion 31 near the ground end
  • the second side L2 corresponds to a side 311 of the protrusion 31 near the sky end
  • the third side L3 corresponds to the upper surface 33 of the arm 30, and the fourth side L4 and
  • the first side L1 is opposite to the second side L2
  • the fifth side L5 corresponds to the lower surface 35 of the arm 30 .
  • the structure of the arm 30 is described in detail by taking the first side L1 corresponding to a side 311 of the protrusion 31 close to the sky end, and the second side L2 corresponding to a side 311 of the protrusion 31 close to the ground end as an example.
  • the third side L3 includes a start point and an end point.
  • the starting point of the third side L3 is the inflection point of the curvature at the junction of the second side L2 and the third side L3
  • the end point of the third side L3 is the inflection point of the curvature at the junction of the second side L2 and the fourth side L4
  • the first angle Di is formed between the tangent at the starting point of the third side L3 and the normal plane S0 (shown in FIG. 3 ) of the yaw axis of the multi-rotor UAV 100 (shown in FIG.
  • the fifth side L5 includes a start point and an end point.
  • the starting point of the fifth side L5 is the inflection point of the curvature at the junction of the first side L1 and the fifth side L5
  • the end point of the fifth side L5 is the inflection point of the curvature at the junction of the fourth side L4 and the fifth side L5.
  • the tangent at the end point of the fifth side L5 and the normal plane S0 of the yaw axis of the multi-rotor UAV 100 form a third angle Uo, the tangent at the starting point of the fifth side L5 and the multi-rotor UAV 100
  • the fourth angle Ui is formed between the normal plane S0 of the yaw axis.
  • the cross sections S0 of the front arm 30b and the rear arm 30a are both pentagonal, and since the two adjacent sides are connected by an arc, the difference in curvature between the two adjacent sides is preset When in range, it is defined as the endpoint of one of the sides.
  • the first angle Di is formed between the tangent at the starting point of the third side L3 and the normal plane S0 of the yaw axis of the multi-rotor UAV 100, and the tangent at the end point of the third side L3 and the multi-rotor UAV 100.
  • a second included angle Do is formed between the normal planes S0 of the yaw axes.
  • a third angle Uo is formed between the tangent at the end point of the fifth side L5 and the normal plane S0 of the yaw axis of the multi-rotor UAV 100, and the tangent at the starting point of the fifth side L5 is the same as that of the multi-rotor UAV 100.
  • a fourth included angle Ui is formed between the normal planes S0 of the yaw axes of the aircraft 100 .
  • the first included angle Di is greater than the second included angle Do
  • the third included angle Uo is greater than the fourth included angle Ui.
  • the absolute value of the difference between the first included angle Di and the second included angle Do is within the range around the preset contraction angle ⁇
  • the contraction angle ⁇ is the angle formed by the extension line of the tangent at the end point of the third side L3 and the extension line of the tangent line at the end point of the fifth side L5.
  • the value range of the contraction angle ⁇ is (0 °, 16 °], for example, the angle of the contraction angle ⁇ can be 2°, 4°, 5°, 6°, 8°, 10°, 11°, 12°, 13°, 14°, 15° or 16°, etc. are not listed here.
  • the absolute value of the difference between the third included angle Uo and the fourth included angle Ui and the difference between the first included angle Di and the second included angle is substantially equal; and/or, the absolute value of the difference between the third included angle Uo and the second included angle Do and the fourth included angle Ui and the third included angle Uo
  • the absolute value of the difference between them is basically equal, the absolute value of the difference between the third included angle Uo and the second included angle Do and the absolute value of the difference between the first included angle Di and the second included angle Do Basically equal.
  • the absolute value of the difference between the two is substantially equal, including that the absolute value of the difference is within 5°.
  • the first included angle Di and/or the third included angle Uo is smaller than the angle of attack ⁇
  • the four included angles Ui are greater than the angle of attack ⁇ , which is the angle between the normal plane S0 of the yaw axis of the multi-rotor UAV 100 and the direction of incoming flow when the multi-rotor UAV 100 is flying forward.
  • Constriction ducts are formed between the cross-sectional profiles of the third side L3 and the fifth side L5, maintaining the forward pressure from the starting point of the third side L3 to the end point of the third side L3, and from the starting point of the fifth side L5 to the end point of the fifth side L5 , keep the airflow attached to the wall, and reduce the fluid resistance of the machine arm 30 .
  • At least one of the first included angle Di, the second included angle Do, the third included angle Uo and the fourth included angle Ui is related to the angle of attack of the multi-rotor UAV 100 ⁇ is related to the deflection angle ⁇ of the multi-rotor UAV 100 .
  • the multi-rotor UAV when the machine arm 30 is the rear machine arm 30a, specifically, the first angle Di and the angle of attack ⁇ of the multi-rotor UAV 100 (shown in Fig. 2 ), the multi-rotor UAV
  • the deflection angle ⁇ is related to the deflection angle ⁇ .
  • the angle of attack ⁇ is the angle between the normal plane S0 of the yaw axis of the multi-rotor UAV 100 and the incoming flow direction when the multi-rotor UAV 100 is flying forward.
  • the deflection angle ⁇ is related to the blade at The direction of rotation when passing the machine arm 30 in the forward flight state is related.
  • the flow around the rear machine arm 30a will be affected by the downwash flow of the blade.
  • the load on the blade is high and the downwash The speed is high, and the blades have a certain downward deflection effect on the free flow. Compared with the free flow, the local airflow will deflect downward at a certain angle.
  • the downward deflection angle is the deflection angle ⁇ of the multi-rotor UAV 100 .
  • the forward travel zone refers to the area where the component of the blade rotation speed in the flight direction is the same as the flight speed direction (in the direction of 0° to 180°), as shown in Figure 13 half a circle of 0° to 180° in azimuth.
  • the deflection angle ⁇ is about 3°, for example, the deflection angle ⁇ is 1.5°, 1.7°, 2.0°, 2.5°, 2.8°, 3°, 3.3°, 3.6°, 3.8°, 4.1°, or 4.5°.
  • a value range of the first included angle Di is 26.15° ⁇ 2.62°.
  • the first included angle Di may be 23.53°, 23.70°, 23.94°, 24.43°, 24.84°, 25.34°, 25.76°, 26.15°, 26.75°, 27.39°, 27.63°, or 28.77°, etc.
  • An included angle Di may be within the range of [23.53°, 28.77°], and will not be listed here.
  • the second angle Do is related to the angle of attack ⁇ of the multi-rotor UAV 100 , the deflection angle ⁇ and the retraction angle ⁇ of the multi-rotor UAV 100 .
  • a value range of the second included angle Do is 10.65° ⁇ 1.07°.
  • the angle of the second included angle Do can be 9.58°, 10.12°, 10.35°, 10.50°, 10.65°, 10.86°, 10.95°, 11.05°, 11.34°, 11.56°, 11.62° or 11.72°, etc.
  • the second The included angle Do may be within the range of [9.58°, 11.72°], and will not be listed here.
  • the third included angle Uo is related to the angle of attack ⁇ of the multi-rotor UAV 100 and the deflection angle ⁇ of the multi-rotor UAV 100 .
  • a value range of the third included angle Uo is 24.78° ⁇ 2.48°.
  • the angle of the third included angle Uo can be 22.30°, 22.76°, 23.35°, 23.76°, 24.22°, 24.78°, 25.47°, 25.83°, 26.31°, 26.70°, 27.03° or 27.26°, etc.
  • the third The included angle Uo only needs to be within the range of [22.30°, 27.26°], and will not be listed here.
  • the fourth included angle Ui is related to the angle of attack ⁇ of the multi-rotor UAV 100 , the deflection angle ⁇ and the retraction angle ⁇ of the multi-rotor UAV.
  • the larger the absolute value of the contraction angle ⁇ the smaller the fourth included angle Ui.
  • the value range of the fourth included angle Ui is 13.42° ⁇ 1.34°.
  • the angle of the fourth included angle Ui may be 12.08°, 12.35°, 12.58°, 12.72°, 13.05°, 13.42°, 13.57°, 13.82°, 14.13°, 14.46°, 14.57° or 14.76°, etc.
  • the fourth The included angle Ui only needs to be within the range of [12.08°, 14.76°], and will not be listed here.
  • the absolute value of the difference between the first angle Di and the second angle Do is within the range of the preset contraction angle ⁇ .
  • the value range of the contraction angle ⁇ is (0°, 16°]
  • the absolute value of the difference between the first included angle Di and the second included angle Do that is, the absolute value is
  • the absolute value of the difference between the third angle Uo and the fourth angle Ui is within the range around the preset contraction angle ⁇ .
  • the value range of the contraction angle ⁇ is (0°, 16°]
  • the absolute value of the difference between the third included angle Uo and the fourth included angle Ui that is, the absolute value
  • the first included angle Di is basically the same as the third included angle Uo
  • the second included angle Do is basically the same as the fourth included angle Ui.
  • the difference between the first included angle Di and the third included angle Uo may be about 1° ⁇ 3°
  • the difference between the second included angle Do and the fourth included angle Ui may be about 1° ⁇ 3°.
  • the respective values of the first included angle Di, the second included angle Do, the third included angle Uo and the fourth included angle Ui Both need to take into account the size of the deflection angle ⁇ , and the resistance change of the rear arm 30a when the multi-rotor UAV 100 is flying forward is shown in the curve corresponding to the optimized configuration in Figure 10 . It can be seen from Fig. 14 that under different working conditions, the rear machine arm 30a of the present application (after optimizing the aerodynamic characteristics) compared with the rear machine arm 30a without optimizing the aerodynamic characteristics, the rear machine arm 30a after optimizing the aerodynamic characteristics reduces the About 60% of the rear arm resistance.
  • the fluid resistance suffered by the rear machine arm 30a located in the forward area of the blade is smaller, so that when the airflow flows through the upper surface 33 and the lower surface 35 of the rear machine arm 30a, it can flow through the wall, reducing the forward flying of the blade. Therefore, when the multi-rotor UAV 100 is flying forward, the resistance of the forward flight can be greatly reduced to improve the endurance time and range of the forward flight.
  • the first included angle Di is related to the angle of attack ⁇ and the retraction angle ⁇ of the multi-rotor UAV 100 . Because the front arm 30b is located under the blade, and the front arm 30b is located in the rear region of the blade, the load on the blade is low and the downwash speed is small, so the impact of the blade on the free flow is small.
  • the first included angle Di, the second included angle Do, the third included angle Uo, and the fourth included angle Ui of the rear arm 30b are not affected by the deflection angle ⁇ .
  • the trailing zone refers to the area where the component of the blade rotation speed in the flight direction is opposite to the flight speed direction (in the direction of 180° to 360°), as shown in Figure 13 Half circle in azimuth 180° to 360°.
  • a value range of the first included angle Di is 29.30° ⁇ 2.93°.
  • the angle of the first included angle Di may be 26.37°, 26.68°, 27.43°, 27.84°, 28.25°, 28.65°, 29.30°, 29.75°, 30.24°, 30.75°, 31.57°, or 32.23°, etc.
  • An included angle Di may be within the range of [26.37°, 32.23°], and will not be listed here.
  • the second included angle Do is related to the angle of attack ⁇ of the multi-rotor UAV 100 .
  • a value range of the second included angle Do is 20.94° ⁇ 2.09°.
  • the angle of the second angle Do can be 18.85°, 19.05°, 19.68°, 20.54°, 20.94°, 21.28°, 21.78°, 21.98°, 22.24°, 22.58°, 22.95° or 23.03°, etc.
  • the second The included angle Do may be within the range of [18.85°, 23.03°], and will not be listed here.
  • the third included angle Uo is smaller than the absolute value of the angle of attack ⁇ of the multi-rotor UAV 100 .
  • a value range of the third included angle Uo is 16.34° ⁇ 1.63°.
  • the angle of the third included angle Uo may be 14.71°, 15.0°, 15.23°, 15.54°, 15.87°, 16.05°, 16.34°, 16.78°, 17.05°, 17.31°, 17.63° or 17.97°, etc., the third It is sufficient that the included angle Uo is within the range of [14.71°, 17.97°] and smaller than the absolute value of the angle of attack ⁇ (value range is [-15°, -20°]), and will not be listed here.
  • the fourth angle Ui is related to the angle of attack ⁇ and the retraction angle ⁇ of the multi-rotor UAV 100 .
  • a value range of the fourth included angle Ui is 9.70° ⁇ 0.97°.
  • the angle of the fourth included angle Ui may be 8.73°, 8.86°, 8.96°, 9.01°, 9.24°, 9.46°, 9.67°, 9.96°, 10.08°, 10.25°, 10.39° or 10.67°, etc.
  • the fourth The included angle Ui may be within the range of [8.37°, 10.67°], and will not be listed here.
  • the change of the resistance of the front arm is shown in the curve corresponding to the initial configuration in Figure 16, and Figure 16 is the front aircraft The resistance profile of the arm.
  • the front arm 30b after optimizing the aerodynamic characteristics of the front arm 30b, for the front arm 30b, the front arm 30b is located in the rear area of the blade, and the deflection angle ⁇ has little influence on the front arm 30b.
  • the values of the included angle Di, the second included angle Do, the third included angle Uo, and the fourth included angle Ui do not need to take into account the size of the deflection angle ⁇ .
  • the change of resistance received is the curve corresponding to the optimized configuration in Fig.
  • the front machine arm 30b of the present application (after optimizing the aerodynamic characteristics) is compared with the front machine arm 30b without optimizing the aerodynamic characteristics, and the front machine arm 30b after optimizing the aerodynamic characteristics reduces About 50% to 70% of the resistance of the front arm.
  • the fluid resistance suffered by the front machine arm 30b located in the rear area of the blade is smaller, so that when the airflow flows through the upper surface 33 and the lower surface 35 of the front machine arm 30b, it can flow through the wall, reducing the front of the blade. Therefore, when the multi-rotor UAV 100 is flying forward, the forward flight resistance can be greatly reduced to improve the forward flight endurance time and range.
  • the arm 30 can be folded so that the multi-rotor UAV 100 can be switched between a storage state and an unfolded state.
  • the fourth side L4 of the arm 30 is attached to the fuselage 10 .
  • the machine arm 30 when the profile of the cross-section of the machine arm 30 is pentagonal, the machine arm 30 is rotated along the root of the machine arm 30 until it is stored in the fuselage 10, so that the folded surface where the fourth side L4 of the machine arm 30 is located Fuselage 10 stickers.
  • the surface where the fourth side L4 is located is the surface of the arm 30 facing the rear side of the multi-rotor UAV 100 , and the surface is opposite to the two side surfaces 311 of the protrusion 31 .
  • the rear machine arm 30a can rotate around the first axis oo1 to be accommodated to be attached to the fuselage 10 or deployed to be far away from the fuselage 10.
  • the first axis oo1 has no connection with the multi-rotor.
  • the value range of the included angle formed by the roll axis of the man-machine 100 is [60°, 70°].
  • the rolling axis of the multi-rotor UAV 100 is the X axis in the body coordinate system, because the rear machine arm 30a is positioned at the rear side of the fuselage 10 and exceeds the length of the fuselage 10 (extended along the X axis).
  • the rear arm 30a cannot directly rotate around the X-axis, Y-axis or Z-axis to fit the fuselage 10. Therefore, it needs to be set: the first axis oo1 passes through the root of the rear arm 30a, and the value range of the angle ⁇ formed by the first axis oo1 and the X axis is [60°, 70°].
  • the value of ⁇ can be It is 60°, 61°, 62°, 63°, 64°, 65°, 66°, 67°, 68°, 69°, or 70°, etc., which are not listed here.
  • the rear arm 30a When the rear arm 30a is switched from the expanded state to the stored state, after the rear arm 30a rotates around the first axis oo1, the surface facing the rear side of the multi-rotor UAV 100 in the rear arm 30a can be attached to the fuselage 10.
  • the front machine arm 30b can be rotated around a second axis (not shown) to be attached to the fuselage 10 or unfolded away from the fuselage 10, and the second axis is parallel to on the yaw axis of the multi-rotor UAV 100 .
  • the second axis is parallel to the yaw axis of the multi-rotor UAV 100 (equivalent to the Z axis in the body coordinate system) and passes through the root of the front arm 30b.
  • the front arm 30b Since the front arm 30b is close to the nose 50 of the multi-rotor UAV 100, when the front arm 30b is switched from the unfolded state to the stored state, it can directly move toward the side of the fuselage 10 around the second axis parallel to the Z axis.
  • the rear side of the rotor UAV 100 rotates so that the surface where the fourth side L4 of the front arm 30 b is located can be attached to the fuselage 10 .
  • a protrusion 31 is set on the machine arm 30 of the multi-rotor UAV 100, and the protrusion 31 is positioned at the upper front when the multi-rotor UAV 100 flies forward and in the direction from the rear side to the front side of the multi-rotor UAV 100, the two sides 311 of the protrusion 31 extend from the upper surface 33 and the lower surface 35 of the arm 30 respectively, and taper until the two sides The two sides 311 are connected to take into account the ID shape of the machine arm 30.
  • the airflow flows through the protrusion 31 and reaches the upper surface 33 of the machine arm 30 and the lower surface 35 of the machine arm 30.
  • the forward flight resistance can be greatly reduced to improve the forward flight endurance time and range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种多旋翼无人机(100)。多旋翼无人机(100)包括机身(10)及机臂(30)。机臂(30)的根部与机身(10)连接,机臂(30)的朝向多旋翼无人机(100)前飞时的前上方的一侧具有凸起(31),在多旋翼无人机(100)的后侧至前侧的方向上,凸起(31)的两个侧面分别自机臂(30)的上表面(33)和下表面(35)延伸,并渐缩直至相接。

Description

多旋翼无人机 技术领域
本申请涉及无人机技术领域,特别涉及一种多旋翼无人机。
背景技术
在具有机臂的无人机上,基本只考虑了机臂的折叠外观和结构特性(强度、刚度),而导致折叠机臂的无人机在整机前飞过程中,机臂成为一个巨大的阻力源,其气动阻力可以占到整机阻力三分之二以上。由此为整机的前飞带来了巨大的负担,会增加整机前飞功耗,而且提高桨叶前飞工况桨频,会使得整机在前飞工况并不高效。
发明内容
本申请的实施方式提供了一种多旋翼无人机。
本申请的实施方式提供一种多旋翼无人机,所述多旋翼无人机包括机身及机臂。所述机臂的根部与所述机身连接,所述机臂的朝向所述多旋翼无人机前飞时的前上方的一侧设有凸起,在所述多旋翼无人机的后侧至前侧的方向上,所述凸起的两个侧面分别自所述机臂的上表面和下表面延伸,并渐缩直至相接。
本申请的多旋翼无人机中,在多旋翼无人机的机臂上设有一个凸起,凸起位于多旋翼无人机前飞时的前上方的一侧,且在多旋翼无人机的后侧至前侧的方向上,凸起的两个侧面分别自机臂的上表面和下表面延伸,并渐缩直至两个侧面相接,以兼顾机臂的工业设计造型,当多旋翼无人机前飞时,使得气流在流过凸起到达机臂的上表面和机臂的下表面时尽量附壁,降低桨叶前飞工况的桨频,从而在多旋翼无人机前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的多旋翼无人机处于收纳状态时的立体结构示意图;
图2是本申请某些实施方式的多旋翼无人机的部分立体分解结构示意图;
图3是流体流经本申请的机臂的示意图;
图4是本申请某些实施方式的多旋翼无人机中的机臂展开状态与机臂的横截面的示意图;
图5至图11是本申请某些实施方式的多旋翼无人机中的机臂的横截面的示意图;
图12是图4中的多旋翼无人机中的IX处的放大示意图;
图13是多旋翼无人机的桨叶的前行区和后行区的示意图;
图14是本申请某些实施方式的后机臂及未优化气动阻力的后机臂的阻力分布图;
图15是图4中的多旋翼无人机中的XII处的放大示意图;
图16是本申请某些实施方式的前机臂及未优化气动阻力的后机臂的阻力分布图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“厚度”、“上”、“顶”、“底”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1及图2,本申请提供一种多旋翼无人机100,该多旋翼无人机100包括机身10、机臂30及动力组件40。机臂30的根部与机身10连接,机臂30的朝向多旋翼无人机 100前飞时的前上方的一侧具有凸起31,在多旋翼无人机100的后侧至前侧的方向上,凸起31的两个侧面311分别自机臂30的上表面33和下表面35延伸,并渐缩直至相接。动力组件40安装于机臂30远离机身10的一端,用于产生动力以为多旋翼无人机100提供动力。动力组件40可以为电机,也可以为电机和旋翼。
多旋翼无人机100的后侧是多旋翼无人机100的机尾70所在的一侧,多旋翼无人机100的前侧是多旋翼无人机100的机头50所在的一侧。在机臂30展开状态下或在所述多旋翼无人机的前飞状态下,机臂30的上表面33为机臂30靠近天空端的表面,机臂30的下表面35为机臂30靠近地面端的表面。具体地,凸起31位于机臂30的朝向多旋翼无人机100前飞时的前上方的一侧,凸起31的一个侧面311与机臂30的上表面33相接,并从相接处朝多旋翼无人机100的前侧向地面端延伸,凸起31的另一个侧面311与机臂30的下表面37相接,并从相接处朝多旋翼无人机100的前侧向天空端延伸,直至两个侧面311相接。也即是说,自凸起31与机臂30连接处(图2中的I-I线处)至多旋翼无人机100前飞时的前上方的方向上,凸起31的宽度逐渐缩窄。
在具有折叠机臂的无人机上,受限于折叠后机臂与机身贴附的要求,基本只考虑了机臂的折叠外观和结构特性(强度、刚度),而导致折叠机臂的无人机在整机前飞过程中,机臂成为一个巨大的阻力源,其气动阻力可以占到整机阻力三分之二以上,由此为整机的前飞带来了巨大的负担,会增加整机前飞功耗,而且提高桨叶前飞工况桨频,会使得整机在前飞工况并不高效。
请结合图3,图3中示意本申请实施方式的多旋翼无人机100前飞时的气流状态。其中,多旋翼无人机100在前飞时,气流受到凸起31的端部313(凸起31朝向多旋翼无人机100的前侧的部分)的阻挡,会在端部313分流并沿着凸起31的两个侧面311、机臂30的上表面33以及机臂30的下表面35流动,能够减小多旋翼无人机100在前飞时机臂30的气动阻力,降低桨叶前飞工况的桨频,从而在多旋翼无人机前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
综上,本申请的多旋翼无人机100中,在多旋翼无人机100的机臂30上设有一个凸起31,凸起31位于多旋翼无人机100前飞时的前上方的一侧,且在多旋翼无人机100的后侧至前侧的方向上,凸起31的两个侧面311分别自机臂30的上表面33和下表面35延伸,并渐缩直至两个侧面311相接,以兼顾机臂30的工业设计(Industrlal Design,ID)造型,当多旋翼无人机100前飞时,使得气流在流过凸起31到达机臂30的上表面33和机臂30的下表面35时尽量附壁,降低桨叶前飞工况的桨频,从而在多旋翼无人机100前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
下面结合附图对多旋翼无人机100的结构作进一步说明。
如图2所示,其中,机臂30包括前机臂30b和后机臂30a。其中,前机臂30b靠近多旋翼无人机100的前侧,后机臂30a靠近多旋翼无人机100的后侧。前机臂30b和后机臂30a均设有上述的凸起31,从而使得气流流过前机臂30b的上表面33和下表面35、后机臂30a的上表面33和下表面35时均能够尽量附壁,降低前机臂30b和后机臂30a受到的流体阻力。
其中,多旋翼无人机100前飞时的前上方与多旋翼无人机100的偏航轴的法平面S0之间的夹角在多旋翼无人机100的迎角α的角度范围附近,迎角α为多旋翼无人机100的偏航轴的法平面S0与多旋翼无人机100前飞时来流方向之间的夹角。
需要说明的是,本文中所述的偏航轴是定义在机体轴系的,在本申请中机体坐标系中,定义X轴为机体前后方向,从后指向前,Z轴为机体上下方向,从下指向上,Y轴为机体左右方向,具体指向依据XZ平面获得。即,在多旋翼无人机100无风悬停时,定义机体XY平面为过机体重心且与整机无风悬停状态的水平面平行的平面,Z轴为垂直机体XY平面过重心朝向无风悬停时的天空方向。机体轴系与机身固联,不随飞行状态变化。本文中的多旋翼无人机100的偏航轴为机体坐标系中的Z轴。
请结合图3,多旋翼无人机100前飞时来流方向与法平面S0之间的夹角为α,当多旋翼无人机100前飞时,由于桨叶需要提供向前的拉力,整机的迎角α为一负角。在本申请中,机臂30设计的工况为远航、最大速度工况,其对应的迎角α取值范围为[-20°,-15°]。例如,迎角α的取值可以是-15°、-15.4°、-16°、-16.5°、-17°、-17.5°、-18°、-18.4°、-19°、19.4°、或-20°等,在此不一一列举。其中,多旋翼无人机100前飞时的前上方与法平面S0之间的夹角在迎角α的角度范围附近,例如,多旋翼无人机100前飞时的前上方与法平面S0之间的夹角的取值范围为α±20%。当α=-15°时,多旋翼无人机100前飞时的前上方与法平面S0之间的夹角的取值范围为[-18°,-12°];当α=-20°时,多旋翼无人机100前飞时的前上方与法平面S0之间的夹角的取值范围为[-24°,-16°],在此不一一列举。
综上,在多旋翼无人机100前飞时的前上方的一侧设置一个凸起31,使得气流在流过凸起31分流到达机臂30的上表面33和机臂30的下表面35时尽量附壁,保证在多旋翼无人机100前飞时大幅度降低前飞阻力以提升前飞续航时间和航程。
具体地,如图4所示,机臂30的横截面S1为机臂30被XZ平面所截得的截面。请结合图5,在某些实施方式中,机臂30的横截面S1的轮廓呈纺锤形,凸起31处、机臂30靠近天空端的一侧、以及机臂30靠近地面端的一侧均为圆滑的曲面,使得气流贴附于机臂30的表面流动,从而减小机臂30处的气动阻力。
请参阅图6,在某些实施方式中,机臂30的横截面S1靠近天空端或地面端的部分 具有翼型形状。若以一条经过凸起31的线作为分割线,图6中的上半部分S11(靠近天空端)具有翼型形状,或者图6中的下半部分S12(靠近地面端)具有翼型形状。也即是说,多旋翼无人机100前飞时的前上方的一侧具有凸起31时,机臂30靠近天空端的部分为上凸的表面;或者,机臂30靠近地面端的部分为下凸的表面。从而使得气流流过凸起31后能够贴附于天空端的表面或底面端的表面流动,减小机臂30的气动阻力。
请参阅图3及图7,在某些实施方式中,机臂30的横截面S1包括侧边L0,侧边L0基本平行于多旋翼无人机100的偏航轴。具体地,在多旋翼无人机100展开状态下,横截面S1的侧边L0为靠近机尾70一侧的边,该侧边L0为直线,以便于在多旋翼无人机100收纳状态时,该侧边L0能够与机身10贴合。
请参阅图3及图10,在某些实施方式中,机臂30的横截面S1包括侧边L0及弧线T0,弧线T0连接侧边L0的两端。其中,在多旋翼无人机100展开状态下,机臂30的横截面S1的侧边L0为靠近机尾70一侧的边,弧线T0分别连接侧边L0的两个端点,其中,凸起31的两个侧边为弧线T0的朝向多旋翼无人机100前飞时的前上方的一部分,以在多旋翼无人机100前飞时的前上方形成凸起31。
请参阅图2、图3及图11,在某些实施方式中,机臂30的横截面S1的轮廓呈多边形。例如,机臂30的横截面S1呈五边形或六边形。其中,横截面S1呈六边形时如图11所示,六边形包括靠近多旋翼无人机100前飞时的前上方的一侧的两条边(分别为凸起31的两个侧边)、靠近天空端的一条边(机臂30的上表面33所在的边)、靠近地面端的一条边(机臂30的下表面35所在的边)和位于多旋翼无人机100后侧的两条边。从而,在多旋翼无人机100前飞时,既能兼顾机臂30的ID造型,兼顾机臂30抗扭截面矩的约束,同时,也能使得气流流过凸起31后能够贴附机臂30的上表面33和下表面35流动,减小机臂30的气动阻力。
请参阅图2、图7及图8,凸起31到机臂30的横截面S1靠近天空端一侧至少包括一条边,凸起31到机臂30的横截面S1靠近地面端一侧至少包括一条边。在一个实施方式中,如图7所示,凸起31包括一条自多旋翼无人机100的前侧延伸至机臂30的横截面S1靠近天空端一侧的侧边L1,及一条自多旋翼无人机100的前侧延伸至机臂30的横截面S1靠近地面端一侧的侧边L2,其中,侧边L1和侧边L2均为直线。在另一个实施例中,侧边L1由多条(两条、三条或者三条以上)直线相接形成,如图8中,侧边L1和侧边L2由两条直线相接形成;如图9中,侧边L1和侧边L2由三条直线相接形成。,凸起31的一个侧面311自凸起31的端部313朝多旋翼无人机100的后侧延伸直至与机臂30的上表面33相接,凸起31的另一个侧面311自凸起31的端部313朝 多旋翼无人机100的后侧延伸直至与机臂30的下表面37相接,使得气流在流过凸起31的端部313时,在端部313分流并沿着凸起31的两个侧边附壁流动,让气流与上表面33、下表面35截面轮廓之间均形成收缩管道,维持从横截面S1起点(多旋翼无人机100的前侧处)至横截面S1终点(多旋翼无人机100的后侧处)的顺压,保持气流在上表面33与下表面35的附壁,减小多旋翼无人机100在前飞时机臂30受到的气动阻力,降低桨叶前飞工况的桨频,从而在多旋翼无人机100前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
在某些实施方式中,机臂30的横截面S1的轮廓呈五边形,在五边形的五条边中,相邻的两条边通过弧线连接。机臂30的横截面S1呈五边形时,且各边的连接均通过弧线连接,使得凸起31的端部313为一弧形前缘,且当贴附于其中一条边所在的面的气流流过另一条边所在的面时,气流能够附壁流过以保持气流的附壁流动,从而减小多旋翼无人机100在前飞时机臂30的气动阻力。
请继续参阅图2及图12,具体地,五边形包括依次连接的第一边L1、第二边L2、第三边L3、第四边L4及第五边L5,第三边L3及第五边L5相对且均为弧线,第一边L1与第二边L2对应凸起31的两个侧面311,第四边L4与凸起31的轮廓相对。机臂30的横截面S1呈五边形,既能兼顾抗扭截面矩的约束,符合机臂30的ID造型设计,同时,也能够在多旋翼无人机100前飞时的前上方形成一个凸起31,使得气流能够贴附机臂30的上表面33和下表面35流动,减小机臂30的气动阻力。
如图12所示,在一个例子中,第一边L1对应凸起31靠近天空端的一个侧面311,第二边L2对应凸起31靠近地面端的一个侧面311,第三边L3对应机臂30的下表面35,第四边L4与第一边L1和第二边L2相对,第五边L5对应机臂30的上表面33。或者,第一边L1对应凸起31靠近地面端的一个侧面311,第二边L2对应凸起31靠近天空端的一个侧面311,第三边L3对应机臂30的上表面33,第四边L4与第一边L1和第二边L2相对,第五边L5对应机臂30的下表面35。本申请以第一边L1对应凸起31靠近天空端的一个侧面311,第二边L2对应凸起31靠近地面端的一个侧面311为例对机臂30的结构进行详细说明。
第三边L3包括起点和终点。在某些实施例中,第三边L3的起点为第二边L2与第三边L3连接处曲率的拐点,第三边L3的终点为第二边L2与第四边L4连接处曲率的拐点,第三边L3的起点处的切线与多旋翼无人机100(图2所示)的偏航轴的法平面S0(图3所示)之间形成第一夹角Di,第三边L3的终点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第二夹角Do。第五边L5包括起点和终点。在某些实施例中,第五边L5的起点为第一边L1与第五边L5连接处曲率的拐点,第五边L5的终 点为第四边L4与第五边L5连接处曲率的拐点,第五边L5的终点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第三夹角Uo,第五边L5的起点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第四夹角Ui。
在本申请中,前机臂30b和后机臂30a的横截面S0均为五边形,且由于相邻两边之间通过弧线连接,相邻两边中某处的曲率的差值在预设范围内时定义为其中一边的端点。第三边L3的起点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第一夹角Di,第三边L3的终点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第二夹角Do。同样地,第五边L5的终点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第三夹角Uo,第五边L5的起点处的切线与多旋翼无人机100的偏航轴的法平面S0之间形成第四夹角Ui。
请结合图2,具体地,机臂30为前机臂30b和后机臂30a时,第一夹角Di大于第二夹角Do,第三夹角Uo大于第四夹角Ui。折叠后的机臂30满足最外侧宽度不大于机头宽度、且能够兼顾抗扭截面矩的约束的情况下,能够让气流尽可能地贴附第三边L3和第五边L5所在的表面流动,在第三边L3与第五边L5形成较小的尾迹区P0,减小机臂30受到的流体阻力。
进一步地,机臂30为前机臂30b或后机臂30a时,第一夹角Di与第二夹角Do之间的差值的绝对值在预设的收缩角δ附近范围内,收缩角δ为第三边L3的终点处的切线延长线与第五边L5的终点处的切线延长线形成的夹角。为了在机臂30的后侧形成较小的尾迹区P0,减小机臂30的流体阻力,收缩角δ的取值范围为(0°,16°],例如,收缩角δ的角度可以是2°、4°、5°、6°、8°、10°、11°、12°、13°、14°、15°或16°等,在此不一一列举。
在某些实施方式中,当机臂30为前机臂30b或后机臂30a时,第三夹角Uo与第四夹角Ui之间的差值的绝对值和第一夹角Di与第二夹角Do之间的差值的绝对值基本相等;和/或,第三夹角Uo与第二夹角Do之间的差值的绝对值和第四夹角Ui与第三夹角Uo之间的差值的绝对值基本相等,第三夹角Uo与第二夹角Do之间的差值的绝对值和第一夹角Di与第二夹角Do之间的差值的绝对值基本相等。其中,两者的差值的绝对值基本相等包括差值的绝对值在5°以内。
在某些实施方式中,当机臂30为前机臂30b或后机臂30a时,第一夹角Di和/或第三夹角Uo小于迎角α,第二夹角Do和/或第四夹角Ui大于迎角α,迎角α为多旋翼无人机100的偏航轴的法平面S0与多旋翼无人机100前飞时来流方向之间的夹角。
通过设置第一夹角Di、第二夹角Do、第三夹角Uo和第四夹角Ui之间的关系,使得机臂30符合ID造型的设计,同时,能够让气流与机臂30的第三边L3以及第五 边L5截面轮廓之间均形成收缩管道,维持从第三边L3的起点到第三边L3的终点、第五边L5的起点到第五边L5的终点的顺压,保持气流附壁,减小机臂30的流体阻力。
在多旋翼无人机100的机臂30中,第一夹角Di,第二夹角Do、第三夹角Uo和第四夹角Ui中的至少一个与多旋翼无人机100的迎角α、多旋翼无人机100的偏折角ε相关。
请结合图3及图12,当机臂30为后机臂30a时,具体地,第一夹角Di与多旋翼无人机100(图2所示)的迎角α、多旋翼无人机的偏折角ε相关,迎角α为多旋翼无人机100的偏航轴的法平面S0与多旋翼无人机100前飞时来流方向之间的夹角,偏折角ε与桨叶在前飞状态时经过机臂30时的转动方向相关。由于后机臂30a位于桨叶的下方,后机臂30a的绕流会受到桨叶下洗流的影响,当后机臂30a位于桨叶的前行区时,桨叶的载荷高,下洗速度较高,桨叶对于自由来流具有一定向下偏折的影响,当地的气流会相较于自由来流更加下偏一定角度,下偏的角度为多旋翼无人机100的偏折角ε。其中,如图13所示,前行区是指,桨叶旋转速度在飞行方向上的分量与飞行速度方向(0°至180°的方向上)相同的桨叶所在的区域,如图13中的处于方位角0°到180°的半圈。偏折角ε约为3°左右,例如,偏折角ε为1.5°、1.7°、2.0°、2.5°、2.8°、3°、3.3°、3.6°、3.8°、4.1°、或4.5°等。其中,多旋翼无人机100的迎角α的绝对值越大,第一夹角Di越大;多旋翼无人机100的偏折角ε的绝对值越大,第一夹角Di越大。第一夹角Di的取值范围为26.15°±2.62°。例如,第一夹角Di的角度可以是23.53°、23.70°、23.94°、24.43°、24.84°、25.34°、25.76°、26.15°、26.75°、27.39°、27.63°、或28.77°等,第一夹角Di的角度在[23.53°,28.77°]范围内即可,在此不一一列举。
在多旋翼无人机100的后机臂30a中,第二夹角Do与多旋翼无人机100的迎角α、多旋翼无人机100的偏折角ε及收缩角δ相关。其中,多旋翼无人机100的迎角α的绝对值越大,第二夹角Do越大;多旋翼无人机100的偏折角ε的绝对值越大,第二夹角Do越大;收缩角δ的绝对值越大,第二夹角Do越小。第二夹角Do的取值范围为10.65°±1.07°。例如,第二夹角Do的角度可以是9.58°、10.12°、10.35°、10.50°、10.65°、10.86°、10.95°、11.05°、11.34°、11.56°、11.62°或11.72°等,第二夹角Do的角度在[9.58°,11.72°]范围内即可,在此不一一列举。
在多旋翼无人机100的后机臂30a中,第三夹角Uo与多旋翼无人机100的迎角α、多旋翼无人机100的偏折角ε相关。其中,迎角α的绝对值越大,第三夹角Uo越大;偏折角ε的绝对值越大,第三夹角Uo越大。第三夹角Uo的取值范围为24.78°±2.48°。例如,第三夹角Uo的角度可以是22.30°、22.76°、23.35°、23.76°、24.22°、24.78°、 25.47°、25.83°、26.31°、26.70°、27.03°或27.26°等,第三夹角Uo的角度在[22.30°,27.26°]范围内即可,在此不一一列举。
在多旋翼无人机100的后机臂30a中,第四夹角Ui与多旋翼无人机100的迎角α、多旋翼无人机的偏折角ε及收缩角δ相关。其中,多旋翼无人机100的迎角α的绝对值越大,第四夹角Ui越大;多旋翼无人机100的偏折角ε的绝对值越大,第四夹角Ui越大;收缩角δ的绝对值越大,第四夹角Ui越小。第四夹角Ui的取值范围为13.42°±1.34°。例如,第四夹角Ui的角度可以是12.08°、12.35°、12.58°、12.72°、13.05°、13.42°、13.57°、13.82°、14.13°、14.46°、14.57°或14.76°等,第四夹角Ui的角度在[12.08°,14.76°]范围内即可,在此不一一列举。
进一步地,在多旋翼无人机100的后机臂30a中,第一夹角Di与第二夹角Do之间的差值的绝对值在预设的收缩角δ范围附近内。其中,收缩角δ的取值范围为(0°,16°],第一夹角Di与第二夹角Do的差值的绝对值(即绝对值为|Di-Do|)在收缩角δ的取值范围内。
同样地,在多旋翼无人机100的后机臂30a中,第三夹角Uo与第四夹角Ui之间的差值的绝对值在预设的收缩角δ附近范围内。其中,收缩角δ的取值范围为(0°,16°],第三夹角Uo与第四夹角Ui的差值的绝对值(即绝对值为|Uo-Ui|)在收缩角δ的取值范围内。
在多旋翼无人机100的后机臂30a中,第一夹角Di与第三夹角Uo基本相同,第二夹角Do与第四夹角Ui基本相同。具体地,第一夹角Di与第三夹角Uo之间可以相差1°~3°左右,第二夹角Do与第四夹角Ui之间也相差1°~3°左右。
综上,由于后机臂30a位于桨叶的前行区,后机臂30a所在的位置的气流相对于自由来流更加下偏一定角度,对于未考虑气动特性的后机臂而言,多旋翼无人机100在前飞时,后机臂受到的阻力变化情况如图14中初始构型对应的曲线,图14为后机臂的阻力分布图。而本申请中,优化后机臂30a的气动特性后,对于后机臂30a而言,第一夹角Di、第二夹角Do、第三夹角Uo和第四夹角Ui的各个取值均需要考虑到偏折角ε的大小,后机臂30a在多旋翼无人机100前飞时受到的阻力变化情况如图10中的优化构型对应的曲线。由图14可知,在不同工况下,本申请中(优化气动特性后)的后机臂30a相较于未优化气动特性的后机臂而言,优化气动特性后的后机臂30a降低了后机臂阻力的60%左右。从而,使得位于桨叶的前行区的后机臂30a受到的流体阻力更小,使得气流流过后机臂30a的上表面33和下表面35时均能够附壁流过,降低桨叶前飞工况的桨频,从而在多旋翼无人机100前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
请参阅图2、图3及图15,在多旋翼无人机100的前机臂30b中,第一夹角Di与多旋翼无人机100的迎角α和收缩角δ相关。由于前机臂30b位于桨叶的下方,前机臂30b位于桨叶的后行区,桨叶的载荷较低,下洗速度较小,因此桨叶对自由来流的影响较小。后机臂30b的第一夹角Di、第二夹角Do、第三夹角Uo、与第四夹角Ui不受偏折角ε的影响。其中,如图13所示,后行区是指,桨叶旋转速度在飞行方向上的分量与飞行速度方向(180°至360°的方向上)相逆的桨叶所在的区域,如图13中的处于方位角180°到360°的半圈。多旋翼无人机100的迎角α的绝对值越大,第一夹角Di越大;收缩角δ越大,第一夹角Di越大。第一夹角Di的取值范围为29.30°±2.93°。例如,第一夹角Di的角度可以是26.37°、26.68°、27.43°、27.84°、28.25°、28.65°、29.30°、29.75°、30.24°、30.75°、31.57°、或32.23°等,第一夹角Di的角度在[26.37°,32.23°]范围内即可,在此不一一列举。
请结合图2、图3及图15,在多旋翼无人机100的前机臂30b中,第二夹角Do与多旋翼无人机100的迎角α相关。其中,多旋翼无人机100的迎角α的绝对值越大,第二夹角Do越大。第二夹角Do的取值范围为20.94°±2.09°。例如,第二夹角Do的角度可以是18.85°、19.05°、19.68°、20.54°、20.94°、21.28°、21.78°、21.98°、22.24°、22.58°、22.95°或23.03°等,第二夹角Do的角度在[18.85°,23.03°]范围内即可,在此不一一列举。
请结合图2、图3及图15,在多旋翼无人机100的前机臂30b中,第三夹角Uo小于多旋翼无人机100的迎角α的绝对值。第三夹角Uo的取值范围为16.34°±1.63°。例如,第三夹角Uo的角度可以是14.71°、15.0°、15.23°、15.54°、15.87°、16.05°、16.34°、16.78°、17.05°、17.31°、17.63°或17.97°等,第三夹角Uo的角度在[14.71°,17.97°]范围内且小于迎角α(取值范围为[-15°,-20°])的绝对值即可,在此不一一列举。
请结合图2、图3及图15,在多旋翼无人机100的前机臂30b中,第四夹角Ui与多旋翼无人机100的迎角α和收缩角δ相关。其中,多旋翼无人机100的迎角α的绝对值越大,第四夹角Ui越大;收缩角δ的绝对值越大,第四夹角Ui越小。第四夹角Ui的取值范围为9.70°±0.97°。例如,第四夹角Ui的角度可以是8.73°、8.86°、8.96°、9.01°、9.24°、9.46°、9.67°、9.96°、10.08°、10.25°、10.39°或10.67°等,第四夹角Ui的角度在[8.37°,10.67°]范围内即可,在此不一一列举。
综上,对于未考虑气动特性的前机臂而言,多旋翼无人机100在前飞时,前机臂受到的阻力变化情况如图16中初始构型对应的曲线,图16为前机臂的阻力分布图。而本申请中,优化前机臂30b的气动特性后,对于前机臂30b而言,前机臂30b位于 桨叶的后行区,偏折角ε对前机臂30b的影响较小,第一夹角Di、第二夹角Do、第三夹角Uo和第四夹角Ui的各个取值均不需要考虑到偏折角ε的大小,前机臂30b在多旋翼无人机100前飞时受到的阻力变化情况如图16中的优化构型对应的曲线。由图16可知,在不同工况下,本申请中(优化气动特性后)的前机臂30b相较于未优化气动特性的前机臂而言,优化气动特性后的前机臂30b降低了前机臂阻力的50%~70%左右。从而,使得位于桨叶的后行区的前机臂30b受到的流体阻力更小,使得气流流过前机臂30b的上表面33和下表面35时均能够附壁流过,降低桨叶前飞工况的桨频,从而在多旋翼无人机100前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
请参阅图1、图4及图12,在某些实施方式中,机臂30能够折叠,以使多旋翼无人机100能够在收纳状态和展开状态之间切换。在收纳状态,机臂30的第四边L4与机身10贴合。
其中,当机臂30的横截面的轮廓呈五边形时,机臂30沿着机臂30的根部旋转至机身10收纳,使得折叠后的机臂30的第四边L4所在的表面与机身10贴服。其中,第四边L4所在的表面为机臂30朝向多旋翼无人机100的后侧的表面,该表面与凸起31的两个侧面311相对。
具体地,当机臂30为后机臂30a时,后机臂30a能够绕第一轴oo1旋转以收纳至与机身10贴合或展开至远离机身10,第一轴oo1与多旋翼无人机100的横滚轴形成的夹角的取值范围为[60°,70°]。如图4所示,多旋翼无人机100的横滚轴为机体坐标系中的X轴,由于后机臂30a位于机身10的后侧并超出机身10的长度(沿X轴延伸的长度),后机臂30a不能直接绕X轴、Y轴或Z轴旋转以贴合机身10。因此需要设定:第一轴oo1经过后机臂30a的根部,且第一轴oo1与X轴形成的夹角β的取值范围为[60°,70°],例如,β的取值可以是60°、61°、62°、63°、64°、65°、66°、67°、68°、69°、或70°等,在此不一一列举。后机臂30a从展开状态切换为收纳状态时,后机臂30a绕第一轴oo1旋转后,能够使得后机臂30a中的朝向多旋翼无人机100的后侧的表面贴合至机身10。
具体地,当机臂30为前机臂30b时,前机臂30b能够绕第二轴(图未示出)旋转收纳至与机身10贴合或展开至远离机身10,第二轴平行于多旋翼无人机100的偏航轴。其中,第二轴平行于多旋翼无人机100的偏航轴(相当于机体坐标系中的Z轴)且经过前机臂30b的根部。由于前机臂30b靠近多旋翼无人机100的机头50,前机臂30b从展开状态切换至收纳状态时,可直接绕平行于Z轴的第二轴朝机身10所在的侧面往多旋翼无人机100的后侧旋转,便可将前机臂30b的第四边L4所在的表面与机身10贴合。
请参阅图2,本申请的多旋翼无人机100中,在多旋翼无人机100的机臂30上开设一个凸起31,凸起31位于多旋翼无人机100前飞时的前上方的一侧,且在多旋翼无人机100的后侧至前侧的方向上,凸起31的两个侧面311分别自机臂30的上表面33和下表面35延伸,并渐缩直至两个侧面311相接,以兼顾机臂30的ID造型,当多旋翼无人机100前飞时,使得气流在流过凸起31到达机臂30的上表面33和机臂30的下表面35时尽量附壁,降低桨叶前飞工况的桨频,从而在多旋翼无人机100前飞时能够大幅度降低前飞阻力以提升前飞续航时间和航程。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。

Claims (33)

  1. 一种多旋翼无人机,其特征在于,包括:
    机身;及
    机臂,所述机臂的根部与所述机身连接,所述机臂的朝向所述多旋翼无人机前飞时的前上方的一侧具有凸起,在所述多旋翼无人机的后侧至前侧的方向上,所述凸起的两个侧面分别自所述机臂的上表面和下表面延伸,并渐缩直至相接。
  2. 根据权利要求1所述的多旋翼无人机,其特征在于,所述前上方与所述多旋翼无人机的偏航轴的法平面之间的夹角在所述多旋翼无人机的迎角的角度范围附近,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角。
  3. 根据权利要求1所述的多旋翼无人机,其特征在于,所述机臂的横截面的轮廓呈纺锤形。
  4. 根据权利要求1所述的多旋翼无人机,其特征在于,所述机臂的横截面靠近天空端或地面端的部分具有翼型形状。
  5. 根据权利要求1所述的多旋翼无人机,其特征在于,所述机臂的横截面包括侧边,所述侧边基本平行于所述多旋翼无人机的偏航轴。
  6. 根据权利要求1所述的多旋翼无人机,其特征在于,所述机臂的横截面包括侧边及弧线,所述弧线连接所述侧边的两端。
  7. 根据权利要求1所述的多旋翼无人机,其特征在于,所述机臂的横截面的轮廓呈多边形。
  8. 根据权利要求1所述的多旋翼无人机,其特征在于,所述凸起到所述机臂的横截面靠近天空端一侧至少包括一条边,所述凸起到所述机臂的横截面靠近地面端一侧至少包括一条边。
  9. 根据权利要求1所述的多旋翼无人机,其特征在于,所述机臂的横截面的轮廓呈五边形,在所述五边形的五条边中,相邻的两条边通过弧线连接。
  10. 根据权利要求9所述的多旋翼无人机,其特征在于,所述五边形包括依次连接的第一边、第二边、第三边、第四边及第五边,所述第三边及所述第五边相对且均为弧线,所述第一边与所述第二边对应所述凸起的两个侧面,所述第四边与所述凸起的轮廓相对。
  11. 根据权利要求10所述的多旋翼无人机,其特征在于,所述第三边包括起点和终点,所述第三边的起点为所述第二边与所述第三边连接处曲率的拐点,所述第三边的终点为所述第二边与所述第四边连接处曲率的拐点,所述第三边的起点处的切线与 所述多旋翼无人机的偏航轴的法平面之间形成第一夹角,所述第三边的终点处的切线与所述多旋翼无人机的偏航轴的法平面之间形成第二夹角;
    所述第五边包括起点和终点,所述第五边的起点为所述第一边与所述第五边连接处曲率的拐点,所述第五边的终点为所述第四边与所述第五边连接处曲率的拐点,所述第五边的终点处的切线与所述多旋翼无人机的偏航轴的法平面之间形成第三夹角,所述第五边的起点处的切线与所述多旋翼无人机的偏航轴的法平面之间形成第四夹角。
  12. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第一夹角大于所述第二夹角。
  13. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第三夹角大于所述第四夹角。
  14. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第一夹角与所述第二夹角之间的差值的绝对值在预设的收缩角附近范围内,所述收缩角为所述第三边的终点处的切线延长线与所述第五边的终点处的切线延长线形成的夹角。
  15. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第三夹角与所述第四夹角之间的差值的绝对值和所述第一夹角与所述第二夹角之间的差值的绝对值基本相等;和/或
    所述第三夹角与所述第二夹角之间的差值的绝对值和所述第四夹角与所述第三夹角之间的差值的绝对值基本相等,所述第三夹角与所述第二夹角之间的差值的绝对值和所述第一夹角与所述第二夹角之间的差值的绝对值基本相等。
  16. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第一夹角和/或所述第三夹角小于所述迎角,所述第二夹角和/或所述第四夹角大于迎角,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角。
  17. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第一夹角与所述多旋翼无人机的迎角、所述多旋翼无人机的偏折角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角,所述偏折角与所述多旋翼无人机的桨叶在前飞状态时经过所述机臂时的转动方向相关。
  18. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第二夹角与所述多旋翼无人机的迎角、所述多旋翼无人机的偏折角及收缩角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角,所述偏折角与所述多旋翼无人机的桨叶在前飞状态时经过所述机臂时的转动方向相关,所述收缩角为所述第三边的终点处的切线延长线与所述第五边的终点处的切线延长线形成的夹角。
  19. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第三夹角与所述多旋翼无人机的迎角、所述多旋翼无人机的偏折角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角,所述偏折角与所述多旋翼无人机的桨叶在前飞状态时经过所述机臂时的转动方向相关。
  20. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第四夹角与所述多旋翼无人机的迎角、所述多旋翼无人机的偏折角及收缩角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角,所述偏折角与所述多旋翼无人机的桨叶在前飞状态时经过所述机臂时的转动方向相关,所述收缩角为所述第三边的终点处的切线延长线与所述第五边的终点处的切线延长线形成的夹角。
  21. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第三夹角与所述第四夹角之间的差值的绝对值在预设的收缩角附近范围内,所述收缩角为所述第三边的终点处的切线延长线与所述第五边的终点处的切线延长线形成的夹角。
  22. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第一夹角与所述第三夹角基本相同;所述第二夹角与所述第四夹角基本相同。
  23. 根据权利要求11所述的多旋翼无人机,其特征在于,
    所述第一夹角的取值范围为26.15°±2.62°;和/或
    所述第二夹角的取值范围为10.65°±1.07°;和/或
    所述第三夹角的取值范围为24.78°±2.48°;和/或
    所述第四夹角的取值范围为13.42°±1.34°。
  24. 根据权利要求1至23任意一项所述的多旋翼无人机,其特征在于,所述机臂为所述多旋翼无人机的后机臂,所述后机臂靠近所述多旋翼无人机的后侧。
  25. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第一夹角与所述多旋翼无人机的迎角和收缩角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角,所述收缩角为所述第三边的终点处的切线延长线与所述第五边终点处的切线延长线形成的夹角。
  26. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第二夹角与所述多旋翼无人机的迎角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角。
  27. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第三夹角小于所述多旋翼无人机的迎角的绝对值,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角。
  28. 根据权利要求11所述的多旋翼无人机,其特征在于,所述第四夹角与所述多旋翼无人机的迎角和收缩角相关,所述迎角为所述多旋翼无人机的偏航轴的法平面与所述多旋翼无人机前飞时来流方向之间的夹角,所述收缩角为所述第三边的终点处的切线延长线与所述第五边终点处的切线延长线形成的夹角。
  29. 根据权利要求11所述的多旋翼无人机,其特征在于,
    所述第一夹角的取值范围为29.30°±2.93°;和/或
    所述第二夹角的取值范围为20.94°±2.09°;和/或
    所述第三夹角的取值范围为16.34°±1.63°;和/或
    所述第四夹角的取值范围为9.70°±0.97°。
  30. 根据权利要求1-14及25-29任意一项所述的多旋翼无人机,其特征在于,所述机臂为所述多旋翼无人机的前机臂,所述前机臂靠近所述多旋翼无人机的前侧。
  31. 根据权利要求11所述的多旋翼无人机,其特征在于,所述机臂能够折叠,以使所述多旋翼无人机能够在收纳状态和展开状态之间切换;在所述收纳状态,所述机臂的第四边与所述机身贴合。
  32. 根据权利要求31所述的多旋翼无人机,其特征在于,所述机臂包括位于所述多旋翼无人机的后侧的后机臂,所述后机臂能够绕第一轴旋转以收纳至与所述机身贴合或展开至远离所述机身,所述第一轴与所述多旋翼无人机的横滚轴形成的夹角的取值范围为[60°,70°]。
  33. 根据权利要求31所述的多旋翼无人机,其特征在于,所述机臂包括位于所述多旋翼无人机的前侧的前机臂,所述前机臂能够绕第二轴旋转收纳至与所述机身贴合或展开至远离所述机身,所述第二轴平行于所述多旋翼无人机的偏航轴。
PCT/CN2021/120486 2021-09-24 2021-09-24 多旋翼无人机 WO2023044821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120486 WO2023044821A1 (zh) 2021-09-24 2021-09-24 多旋翼无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120486 WO2023044821A1 (zh) 2021-09-24 2021-09-24 多旋翼无人机

Publications (1)

Publication Number Publication Date
WO2023044821A1 true WO2023044821A1 (zh) 2023-03-30

Family

ID=85719246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120486 WO2023044821A1 (zh) 2021-09-24 2021-09-24 多旋翼无人机

Country Status (1)

Country Link
WO (1) WO2023044821A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205770136U (zh) * 2016-05-17 2016-12-07 亿航智能设备(广州)有限公司 飞行器
CN107150803A (zh) * 2017-06-07 2017-09-12 天津科技大学 混合布局无人机及其控制方法
CN206766318U (zh) * 2017-03-29 2017-12-19 南京拓改航空科技有限公司 一种多旋翼无人机
CN109436311A (zh) * 2018-12-21 2019-03-08 辽宁壮龙无人机科技有限公司 多旋翼无人机
CN109808913A (zh) * 2019-01-29 2019-05-28 西北工业大学 一种带有可偏转翼梢小翼的无人机设计方法
US20200307814A1 (en) * 2019-03-26 2020-10-01 Suzhou Xingzhen Intelligent Technology Co., Ltd. Arm for unmanned aerial vehicle
CN112722273A (zh) * 2021-03-08 2021-04-30 安徽鸠兹航空智能产业技术研究院有限公司 一种重心可调的复合推进无人机及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205770136U (zh) * 2016-05-17 2016-12-07 亿航智能设备(广州)有限公司 飞行器
CN206766318U (zh) * 2017-03-29 2017-12-19 南京拓改航空科技有限公司 一种多旋翼无人机
CN107150803A (zh) * 2017-06-07 2017-09-12 天津科技大学 混合布局无人机及其控制方法
CN109436311A (zh) * 2018-12-21 2019-03-08 辽宁壮龙无人机科技有限公司 多旋翼无人机
CN109808913A (zh) * 2019-01-29 2019-05-28 西北工业大学 一种带有可偏转翼梢小翼的无人机设计方法
US20200307814A1 (en) * 2019-03-26 2020-10-01 Suzhou Xingzhen Intelligent Technology Co., Ltd. Arm for unmanned aerial vehicle
CN112722273A (zh) * 2021-03-08 2021-04-30 安徽鸠兹航空智能产业技术研究院有限公司 一种重心可调的复合推进无人机及其控制方法

Similar Documents

Publication Publication Date Title
US10974827B2 (en) Electric tiltrotor aircraft
CN107176286B (zh) 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
US8387913B2 (en) Compact aircraft wing folding systems and methods
CN108100212B (zh) 一种小展弦比自适应变体飞翼布局战斗机
CN106516099A (zh) 复合旋翼飞行器
US9079663B2 (en) Canard-locked oblique wing aircraft
CN103158856B (zh) 可短距起降的轻型螺旋桨飞翼飞机
WO2023000571A1 (zh) 飞行汽车
EP3771638A1 (en) Lift rotor system
KR20220029575A (ko) 강성 날개 공기역학을 시뮬레이션하기 위해 고정된 전방으로 기울어진 회전자를 사용하는 수직 이착륙 항공기
CN107813928A (zh) 一种可倾转多旋翼双机身鸭式布局无人飞行器
CN105173076B (zh) 一种垂直起降无人机
US11685519B2 (en) Wing tips and wing tip construction and design methods
CN107804469B (zh) 飞机
CN113371190A (zh) 一种基于常规旋翼构型的复合式高速直升机
CN110896624A (zh) 螺旋桨、动力组件及飞行器
CN103754360A (zh) 一种类飞碟式旋翼机
JP2021529695A (ja) テールシッター
WO2023044821A1 (zh) 多旋翼无人机
CN110143275B (zh) 多旋翼无人机
CN206255191U (zh) 串翼无人机
CN216636804U (zh) 多旋翼无人机
CN211364907U (zh) 一种低速无人机气动布局
CN210793629U (zh) 直升机旋翼桨尖结构及旋翼
CN109573016B (zh) 一种轻型无人直升机尾桨的桨叶气动外形

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957944

Country of ref document: EP

Kind code of ref document: A1