WO2023044756A1 - 燃料电池电堆模块 - Google Patents

燃料电池电堆模块 Download PDF

Info

Publication number
WO2023044756A1
WO2023044756A1 PCT/CN2021/120324 CN2021120324W WO2023044756A1 WO 2023044756 A1 WO2023044756 A1 WO 2023044756A1 CN 2021120324 W CN2021120324 W CN 2021120324W WO 2023044756 A1 WO2023044756 A1 WO 2023044756A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
end plate
oxidant
shared end
Prior art date
Application number
PCT/CN2021/120324
Other languages
English (en)
French (fr)
Inventor
王凯
傅立运
常亚飞
陈泽
Original Assignee
罗伯特·博世有限公司
王凯
傅立运
常亚飞
陈泽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 王凯, 傅立运, 常亚飞, 陈泽 filed Critical 罗伯特·博世有限公司
Priority to PCT/CN2021/120324 priority Critical patent/WO2023044756A1/zh
Priority to DE112021007720.1T priority patent/DE112021007720T5/de
Publication of WO2023044756A1 publication Critical patent/WO2023044756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to fuel cell stacks, and more particularly to fuel cell stack modules having shared end plates.
  • fuel cells Due to the advantages of high energy conversion efficiency and low pollution, fuel cells have broad development prospects, and have been widely used in many fields.
  • a fuel cell stack consisting of multiple fuel cell cells and end plates on both sides can be used to power electric vehicles.
  • Commercial vehicles and large passenger vehicles require more power and therefore more stack power, which requires the stack to include more battery cells.
  • stacks that include more cells have difficulty maintaining uniform clamping force and ensuring sealing to avoid leakage. Therefore, the current common practice is to divide a larger stack into multiple smaller stacks, which usually results in a decrease in the power density of the stack.
  • the purpose of the present disclosure is to propose a fuel cell stack module to solve at least some of the above-mentioned problems.
  • the present disclosure proposes a fuel cell stack module comprising: at least one shared end plate; and at least two fuel cell stacks arranged to share the at least one shared end plate , wherein each of the at least two fuel cell stacks is individually clamped.
  • the at least two fuel cell stacks are arranged in sequence approximately from left to right, and the shared end plate is provided between every two adjacent fuel cell stacks .
  • the fuel cell stack module further includes a first outer end plate and a second outer end plate, and the at least two fuel cell stacks include a first fuel cell stack and a second fuel cell stack stack, the first fuel cell stack is clamped between the first outer end plate and a shared end plate, and the second fuel cell stack module is clamped between the second outer end plate and between a shared end plate.
  • the at least two fuel cell stacks are arranged in a ring shape, and the shared end plate is provided between every two adjacent fuel cell stacks, and the at least two fuel cell stacks Each of the battery stacks is clamped between shared end plates on either side of it.
  • the dimension of the at least one shared end plate in the longitudinal direction is greater than the dimension of the at least two fuel cell stacks in the longitudinal direction such that on either side of the shared end plate along the longitudinal direction A plurality of fuel cell stacks are arranged.
  • the at least one shared end plate is configured in the form of a polygonal prism, and the fuel cell stack is arranged on at least two of the sides of the at least one shared end plate.
  • each of the at least two fuel cell stacks includes the same or a different number of fuel cell cells.
  • each of the at least one shared end plate is provided with a plurality of inlets, passages and outlets, and the fuel, oxidant and coolant flow into each fuel cell stack through different inlets and passages, and pass through Different outlets flow from the shared end plate.
  • temperature sensors, relative humidity sensors, pressure sensors, and concentration sensors for measuring operating parameters of fuel, oxidant, and coolant are further arranged in each of the at least one shared end plate.
  • the channel includes a cathode exhaust gas recirculation channel, and an exhaust gas recirculation pump is arranged in the cathode exhaust gas recirculation channel.
  • the plurality of inlets and outlets includes an oxidant inlet and an oxidant outlet through which oxidant flows into the shared end plate and is divided into two portions, a first portion of oxidant flowing into the shared end plate first side In the first fuel cell stack, the second part of the oxidant flows into the second fuel cell stack on the second side of the shared end plate, and the cathode exhaust gas generated by the reaction gathers and flows back to the oxidant outlet of the shared end plate A part of the cathode exhaust gas flows into the cathode exhaust gas recirculation channel under the action of the exhaust gas recirculation pump, and another part of the cathode exhaust gas is discharged from the shared end plate through the oxidant outlet.
  • the shared end plate is provided with a first diverter valve for adjusting the ratio of the first part of oxidant and the second part of oxidant.
  • the plurality of inlets and outlets includes an oxidant inlet and an oxidant outlet through which oxidant flows into the shared end plate and is divided into two portions, a first portion of oxidant flowing into the shared end plate first side
  • the cathode exhaust gas generated by the reaction is mixed with the second part of the oxidant and then flows into the second fuel cell stack on the second side of the shared end plate, and the cathode exhaust gas generated by the reaction is gathered and flows back to all
  • a part of the cathode exhaust gas flows into the cathode exhaust gas recirculation channel under the action of the exhaust gas recirculation pump, and another part of the cathode exhaust gas is discharged from the shared end plate through the oxidant outlet.
  • the shared end plate is provided with a second diverter valve for adjusting the ratio of the first part of oxidant and the second part of oxidant.
  • the first fuel cell stack and the second fuel cell stack include the same number of fuel cell cells, and the ratio of the first partial oxidant to the second partial oxidant is greater than 1:1.
  • the fuel cell stack module can integrate more battery cells in a limited space, thereby providing higher power density; while maintaining uniform clamping force and effective sealing within each fuel cell stack, thereby preventing leakage.
  • various sensors and actuators are integrated in the shared end plate of the fuel cell stack module, which simplifies the structure of the fuel cell stack module and saves volume, thereby further increasing the power density.
  • the cathode exhaust gas recirculation channel provided in the shared end plate is greatly shortened, thereby avoiding the condensation of water vapor in the cathode exhaust gas to block the channel.
  • Fig. 1 schematically shows a fuel cell stack module according to an embodiment of the present disclosure
  • Fig. 2 schematically shows an oxidant flow path of a fuel cell stack module according to an embodiment of the present disclosure
  • Fig. 3 schematically shows an oxidant flow channel of a fuel cell stack module according to another embodiment of the present disclosure.
  • Fig. 1 schematically shows a fuel cell stack module according to an embodiment of the present disclosure.
  • the fuel cell stack module includes: two fuel cell stacks, that is, a first fuel cell stack 11 and a second fuel cell stack 12; The shared end plate 2 between the two fuel cell stacks 12 ; and the first outer end plate 31 and the second outer end plate 32 arranged outside the first fuel cell stack 11 and the second fuel cell stack 12 respectively.
  • the first fuel cell stack 11 and the second fuel cell stack 12 respectively include a plurality of battery cells stacked together, and each battery cell can independently perform a chemical reaction to generate electric energy, so that the multiple battery cells can The body provides greater power.
  • each battery cell can independently perform a chemical reaction to generate electric energy, so that the multiple battery cells can The body provides greater power.
  • the specific structure of the fuel cell unit will not be described in detail here.
  • the battery cells of the fuel cell stack according to the present disclosure may be any suitable fuel cells, such as hydrogen-oxygen fuel cells and the like.
  • the shared end plate 2 can provide support for the fuel cell stacks on both sides, and is also provided with a plurality of fluid inlets, channels and outlets (described in detail below in conjunction with FIGS. 2 and 3 ), fuel, oxidant and cooling Fluids such as reagents can flow into each fuel cell stack through different inlets and channels to enter each battery cell for chemical reactions or to cool each battery cell, and then flow out through different outlets.
  • the white arrows in Fig. 1 schematically show the oxidant flow path in the fuel cell stack module.
  • the multiple battery cells of the first fuel cell stack 11 are clamped between the first outer end plate 31 and the shared end plate 2 by fasteners such as screws, and the second fuel cell stack 12 A plurality of battery cells are clamped between the second outer end plate 32 and the shared end plate 2 by fasteners such as screws.
  • the black arrows in FIG. 1 schematically show the direction of action of the clamping force acting on each fuel cell stack.
  • the fuel cell stack module can integrate more battery cells in a limited space, thereby providing higher power density.
  • the first fuel cell stack 11 and the second fuel cell stack 12 are individually clamped between the end plates on both sides (the shared end plate 2 and the outer end plates 31, 32), instead of Clamping is carried out as a whole as in the technology, so that uniform clamping force and effective sealing are maintained in each fuel cell stack, thereby preventing leakage.
  • a fuel cell stack module according to the present disclosure is not limited to the configuration described above, and may include more than two fuel cell stacks and/or more than one shared end plate.
  • the fuel cell stack module may be included in an approximately left-to-right direction (which may be a linear transverse direction as shown by X in FIG. 1 , or any other suitable A plurality of fuel cell stacks arranged in sequence in the non-linear direction), and a shared end plate 2 is arranged between every two adjacent fuel cell stacks.
  • the fuel cell stack module may include multiple fuel cell stacks arranged in a ring, and a shared end plate 2 is provided between every two adjacent fuel cell stacks.
  • the entire fuel cell stack module is in the shape of an end-to-end ring, so the above-mentioned first outer end plate 31 and second outer end plate 32 may not be included, and each fuel cell stack can be clamped separately between the shared end plates 2 on both sides thereof.
  • the size of the shared end plate 2 in the longitudinal direction may be larger than that of the first fuel cell stack 11 and the second fuel cell stack 12 Dimensions in the portrait direction.
  • the size of the shared end plate 2 in the longitudinal direction may be twice the size of the first fuel cell stack 11 and the second fuel cell stack 12 in the longitudinal direction, so that any Two fuel cell stacks are arranged along the longitudinal direction on one side.
  • the shared end plate 2 may be configured in the form of a polygonal prism, and fuel cell stacks are arranged on at least two of the sides of the polygonal prism.
  • the shared end plate may be configured in the form of a hexagonal prism, with fuel cell stacks disposed on at least two of its six sides. At least two of the six sides may be arranged adjacently, opposite or spaced apart.
  • one fuel cell stack can be arranged on each of the six sides of the hexagonal prism, or a plurality of fuel cell stacks can be arranged in the longitudinal direction on each of the six sides, so that all fuel cells The battery stacks share a shared end plate in the center.
  • the various configurations above enable the fuel cell stack module to integrate more battery cells within a limited volume, thereby providing higher power density.
  • the fuel cell stack module according to the present disclosure may also include any other suitable configurations.
  • the number of cells contained in each fuel cell stack of the fuel cell stack module may be the same or different, depending on the specific application.
  • a temperature sensor, a relative humidity sensor, a pressure sensor and a concentration sensor (not shown) etc. may also be arranged in the shared end plate 2, so that the temperature, relative humidity, pressure and concentration etc. to optimize the performance of the fuel cell stack module.
  • the specific setting positions of the above-mentioned sensors can be determined according to the parameters expected to be measured.
  • a cathode exhaust gas recirculation channel is provided in the shared end plate 2 , and an exhaust gas recirculation pump is provided in the cathode exhaust gas recirculation channel, which will be further described in detail below with reference to FIGS. 2 and 3 .
  • an exhaust gas recirculation pump is provided in the cathode exhaust gas recirculation channel, which will be further described in detail below with reference to FIGS. 2 and 3 .
  • Fig. 2 schematically shows the oxidant flow channel of the fuel cell stack module according to one embodiment of the present disclosure
  • Fig. 3 schematically shows the flow channel of the fuel cell stack module according to another embodiment of the present disclosure Oxidant channel.
  • the oxidant is usually compressed air compressed by an air compressor.
  • the shared end plate 2 is provided with an oxidant inlet 4 and an oxidant outlet 6 at both ends, and a cathode waste gas recirculation channel 21 is provided inside.
  • the cathode exhaust gas recirculation channel 21 includes a channel inlet 21a and a channel outlet 21b, and an exhaust gas recirculation pump 22 is disposed therein.
  • the channel inlet 21 a is in fluid communication with the oxidant outlet 6 of the shared end plate 2 and the channel outlet 21 b is in fluid communication with the oxidant inlet 4 of the shared end plate 2 .
  • Part of the cathode exhaust gas is discharged from the shared end plate 2 through the oxidant outlet 6, and the other part of the cathode exhaust gas flows into the cathode exhaust gas recirculation channel 21 under the action of the exhaust gas recirculation pump 22 and flows to the channel outlet 21b for cathode exhaust gas recirculation .
  • the channel outlet 21b is in fluid communication with the oxidant inlet 4 of the shared end plate 2, this part of the exhaust gas can flow into each fuel cell stack together with fresh compressed air again for chemical reaction. In this way, the remaining oxygen in the cathode exhaust gas can be effectively utilized.
  • the cathode exhaust gas usually contains more water vapor, the fresh compressed air flowing in through the oxidant inlet 4 can be humidified, which can reduce the need for an additional humidifier, or even save an additional humidifier.
  • the shared end plate 2 can also be provided with a first diverter valve 5 at the oxidant inlet 4, and the ratio of the first part and the second part of compressed air can be adjusted by controlling the first diverter valve 5 to meet the actual use need.
  • the first diverter valve 5 may be controlled,
  • the ratio of the first part of the compressed air to the second part of the compressed air is the same or close to the ratio of the number of battery cells contained in the fuel cell stack, so that each battery cell can obtain a substantially consistent oxidant supply.
  • the first diverter valve 5 can be controlled so that the first part and the second part of compressed air The quantities are different, so that the first fuel cell stack 11 and the second fuel cell stack 12 provide different electric power.
  • the oxidant flow channel of the fuel cell stack module shown in FIG. 3 will be specifically described below.
  • the shared end plate 2 is provided with an oxidant inlet 4' and an oxidant outlet 6' at the same end, and a cathode exhaust gas recirculation channel 21' is provided inside.
  • the cathode exhaust gas recirculation channel 21' includes a channel inlet 21a' and a channel outlet 21b', and an exhaust gas recirculation pump 22' is disposed therein.
  • the channel inlet 21a' is in fluid communication with the oxidant outlet 6' of the shared end plate 2
  • the channel outlet 21b' is in fluid communication with the oxidant inlet 4' of the shared end plate 2.
  • Fresh compressed air flows into the shared end plate 2 through the oxidant inlet 4' and is divided into two parts.
  • the first part flows into the first fuel cell stack 11 for chemical reaction, and the cathode waste gas generated by the reaction is collected and discharged from the first fuel cell stack. 11 flows out, and mixes with the second part of fresh compressed air, and then flows into the second fuel cell stack 12 together to carry out chemical reaction.
  • the second portion of fresh compressed air can be used to ensure that the concentration of the air flowing into the second fuel cell stack 12 meets requirements.
  • the cathode exhaust gas generated by the reaction in the second fuel cell stack 12 is collected and flows to the oxidant outlet 6' of the shared end plate 2, a part of the cathode exhaust gas is discharged from the shared end plate 2 through the oxidant outlet 6', and the other part of the cathode exhaust gas is discharged from the shared end plate 2 through the oxidant outlet 6'.
  • the exhaust gas recirculation pump 22' Under the action of the exhaust gas recirculation pump 22', it enters the cathode exhaust gas recirculation channel 21' and flows to the channel outlet 21b'.
  • the part of the cathode exhaust gas can re-enter the cells of the first fuel cell stack 11 together with fresh compressed air for chemical reaction.
  • the structure of the oxidant channel shown in FIG. 3 can achieve similar effects to the oxidant channel shown in FIG. 2 .
  • the cathode exhaust gas generated by the reaction in the first fuel cell stack 11 contains a certain amount of water vapor, when it is mixed with the second part of the fresh compressed air, the second part of the fresh compressed air can be humidified. , which can improve the performance of the second fuel cell stack 12 while reducing the need for an additional humidifier.
  • the shared end plate 2 can also be provided with a second diverter valve 7 at the oxidant inlet 4', and the ratio of the first part and the second part of compressed air can be adjusted by controlling the second diverter valve 7 to meet the actual Usage requirements.
  • the second diverter valve 7 can be controlled so that the first part and the second part of the compressed air The ratio is greater than 1:1. In this way, each battery cell in the first fuel cell stack 11 and the second fuel cell stack 12 can obtain substantially uniform compressed air supply.
  • the shared end plate 2 is provided with the second diverter valve 7 at the oxidant inlet 4', and the compressed air flowing in from the oxidizer inlet 4' is divided into the first outlet and the second outlet of the second diverter valve 7.
  • the channel outlet 21b' of the cathode exhaust gas recirculation channel 21' may be directly in fluid communication with the first outlet of the second diverter valve 7, so that the The cathode exhaust gas is directly mixed with the first part of the compressed air to humidify only the first part of the compressed air.
  • the cathode exhaust gas recirculation channels 21, 21', the first diverter valve 5 and the second diverter valve 7, and the pumps 22, 22' are all arranged in the shared end plate 2 , which simplifies the structure of the entire fuel cell stack module and saves volume, thereby increasing the power density of the fuel cell stack module.
  • the fuel cell stack module is also provided with passages for fluids such as fuel and coolant, these fluids It can flow into the fuel channel and the coolant channel of the fuel cell stack module through different inlets arranged on the shared end plate 2 , and flow out through different outlets arranged on the shared end plate 2 .
  • the first diverter valve 5 shown in FIG. 2 and the second diverter valve 7 shown in FIG. 3 may be electronically controlled valves, so that they can be electrically controlled in real time according to actual use requirements.

Abstract

一种燃料电池电堆模块,其包括:至少一个共享端板(2);以及至少两个燃料电池电堆(11,12),至少两个燃料电池电堆(11,12)被布置为共享至少一个共享端板(2),其中,至少两个燃料电池电堆(11,12)中的每一个被单独地夹紧。燃料电池电堆模块能够在有限的空间内集成更多的电池单体,从而提供更高的功率密度;同时在各个燃料电池电堆内保持均匀的夹紧力和有效的密封,从而防止泄露。

Description

燃料电池电堆模块 技术领域
本公开涉及燃料电池电堆,更特别地涉及具有共享端板的燃料电池电堆模块。
背景技术
燃料电池因能量转化效率高且污染低等优点而拥有广阔的发展前景,并且当前已经在多个领域中广泛应用。例如,由多个燃料电池单体和两侧端板构成的燃料电池电堆能够用于为电动汽车提供动力。商用车和大型乘用车需要更大的动力,因此需要更大的电堆功率,这就要求电堆包括更多的电池单体。然而,包括更多电池单体的电堆难以保持均匀的夹紧力,并且难以保证密封以避免泄漏。因此,当前的普遍做法是将较大的电堆分为多个小的电堆,这通常会导致电堆的功率密度下降。
此外,在当前燃料电池电堆的配置中,用于泵送燃料、氧化剂和冷却剂等的泵和调节其流量的阀等部件通常安装在燃料电池电堆的外部,需要占用额外的体积,这将进一步导致燃料电池电堆的功率密度下降。而且,由于当前燃料电池电堆的阴极废气再循环(EGR,exhaust gas recirculation)通道过长,阴极废气在流过该通道时将经历较大的温度降,从而导致其中的水蒸气冷凝并堵塞通道,影响废气再循环的顺利进行。
因此,本领域需要一种能够解决上述问题的燃料电池电堆。
发明内容
本公开的目的在于提出一种燃料电池电堆模块,以解决上述问题中的至少一些。
本公开提出了一种燃料电池电堆模块,其包括:至少一个共享端板;以及至少两个燃料电池电堆,所述至少两个燃料电池电堆被布置为共享所述至少一个共享端板,其中,所述至少两个燃料电池电堆中的每一个被单独地夹紧。
在一个实施例中,所述至少两个燃料电池电堆在大致从左至右的方向上顺次排列,并且在每两个相邻的燃料电池电堆之间均设置有所述共享端板。
在一个实施例中,所述燃料电池电堆模块还包括第一外侧端板和第二外侧端板,并且所述至少两个燃料电池电堆包括第一燃料电池电堆和第二燃料电池电堆,所述第一燃料电池电堆被夹紧在所述第一外侧端板与一个共享端板之间,所述第二燃料电池电堆模块被夹紧在所述第二外侧端板与一个共享端板之间。
在一个实施例中,所述至少两个燃料电池电堆以环状形式排列,并且在每两个相邻的燃料电池电堆之间均设置有所述共享端板,所述至少两个燃料电池电堆中的每一个被夹紧在其两侧的共享端板之间。
在一个实施例中,所述至少一个共享端板在纵向方向上的尺寸大于所述至少两个燃料电池电堆在纵向方向上的尺寸,使得在所述共享端板的任一侧沿纵向方向布置有多个燃料电池电堆。
在一个实施例中,所述至少一个共享端板被构造为多棱柱的形式,并且在所述至少一个共享端板的多个侧面中的至少两个上布置有所述燃料电池电堆。
在一个实施例中,所述至少两个燃料电池电堆中的每一个包括相同或不同数量的燃料电池单体。
在一个实施例中,所述至少一个共享端板中的每一个内设置有多个入口、通道以及出口,燃料、氧化剂和冷却剂经由不同的入口和通道流入各个燃料电池电堆中,并经由不同的出口从所述共享端板流出。
在一个实施例中,所述至少一个共享端板中的每一个内还设置有用于测量燃料、氧化剂和冷却剂的工作参数的温度传感器、相对湿度传感器、压力传感器和浓度传感器。
在一个实施例中,所述通道包括阴极废气再循环通道,并且所述阴极废气再循环通道中设置有废气再循环泵。
在一个实施例中,所述多个入口和出口包括氧化剂入口和氧化剂出口,氧化剂经由所述氧化剂入口流入共享端板中并且被分为两部分,第一部分氧化剂流入所述共享端板第一侧的第一燃料电池电堆内,第二部分氧化剂流入所述共享端板第二侧的第二燃料电池电堆内,反应生成的阴极废气汇 聚并流回到所述共享端板的氧化剂出口处,一部分阴极废气在所述废气再循环泵的作用下流入所述阴极废气再循环通道内,另一部分阴极废气经由所述氧化剂出口从所述共享端板排出。
在一个实施例中,所述共享端板设置有用于调整所述第一部分氧化剂和第二部分氧化剂的比例的第一分流阀。
在一个实施例中,所述多个入口和出口包括氧化剂入口和氧化剂出口,氧化剂经由所述氧化剂入口流入共享端板中并且被分为两部分,第一部分氧化剂流入所述共享端板第一侧的第一燃料电池电堆内,反应生成的阴极废气与第二部分氧化剂混合后流入所述共享端板第二侧的第二燃料电池电堆内,反应生成的阴极废气汇聚并流回到所述共享端板的氧化剂出口处,一部分阴极废气在所述废气再循环泵的作用下流入所述阴极废气再循环通道内,另一部分阴极废气经由所述氧化剂出口从所述共享端板排出。
在一个实施例中,所述共享端板设置有用于调整所述第一部分氧化剂和第二部分氧化剂的比例的第二分流阀。
在一个实施例中,所述第一燃料电池电堆和第二燃料电池电堆包括相同数量的燃料电池单体,并且所述第一部分氧化剂与第二部分氧化剂的比例大于1:1。
根据本公开的燃料电池电堆模块能够在有限的空间内集成更多的电池单体,从而提供更高的功率密度;同时在各个燃料电池电堆内保持均匀的夹紧力和有效的密封,从而防止泄露。此外,各种传感器和致动器(阀和泵等)集成在燃料电池电堆模块的共享端板内,这简化了燃料电池电堆模块的结构并且节省了体积,从而进一步提高了功率密度。最后,设置在共享端板内的阴极废气再循环通道被大大缩短,从而避免了阴极废气中的水蒸气冷凝而堵塞该通道。
附图说明
提供说明书附图以帮助阅读者更透彻地理解本公开,其中:
图1示意性地示出了根据本公开的一个实施例的燃料电池电堆模块;
图2示意性地示出了根据本公开的一个实施例的燃料电池电堆模块的氧化剂流道;以及
图3示意性地示出了根据本公开的另一实施例的燃料电池电堆模块的 氧化剂流道。
具体实施方式
下面通过具体实施例对本公开进行描述。应当理解,提供具体实施例仅是出于便于透彻理解本公开的目的,而不旨在限制本公开。因此,以下实施例只是示例性的,并且本公开的保护范围仅由所附权利要求限定。
图1示意性地示出了根据本公开的一个实施例的燃料电池电堆模块。如图1所示,该燃料电池电堆模块包括:两个燃料电池电堆,即第一燃料电池电堆11和第二燃料电池电堆12;夹设在第一燃料电池电堆11和第二燃料电池电堆12之间的共享端板2;以及分别设置在第一燃料电池电堆11外侧和第二燃料电池电堆12外侧的第一外侧端板31和第二外侧端板32。
所述第一燃料电池电堆11和第二燃料电池电堆12分别包括多个堆叠在一起的电池单体,每个电池单体能够独立地进行化学反应以生成电能,从而通过多个电池单体提供较大的功率。为了避免不必要地使本公开的重点变得模糊,在此不对燃料电池单体的具体构造进行详细描述。本领域技术人员将理解,根据本公开的燃料电池电堆的电池单体可以是任何合适的燃料电池,诸如氢氧燃料电池等。
所述共享端板2能够为其两侧的燃料电池电堆提供支撑,并且还设置有多个流体入口、通道以及出口(下文将结合图2和图3进行详细描述),燃料、氧化剂和冷却剂等流体能够经由不同的入口和通道流入各个燃料电池电堆中,以进入各个电池单体中发生化学反应或对各个电池单体进行冷却,并随后经由不同的出口流出。图1中的白色箭头示意性地示出了燃料电池电堆模块中的氧化剂流动路径。
所述第一燃料电池电堆11的多个电池单体通过螺钉等紧固件夹紧在所述第一外侧端板31和共享端板2之间,并且所述第二燃料电池电堆12的多个电池单体通过螺钉等紧固件夹紧在所述第二外侧端板32和共享端板2之间。图1中的黑色箭头示意性地示出了作用在各个燃料电池电堆上的夹紧力的作用方向。
借助于上述构造,根据本公开的燃料电池电堆模块能够在有限的空间内集成更多的电池单体,从而提供更高的功率密度。同时,由于第一燃料电池电堆11和第二燃料电池电堆12被单独地夹紧在两侧的端板(共享端 板2和外侧端板31,32)之间,而不是像现有技术中那样整体进行夹紧,从而使得在各个燃料电池电堆内保持了均匀的夹紧力和有效的密封,进而防止了泄露。
根据本公开的燃料电池电堆模块并不限于上述构造,并且可以包括多于两个的燃料电池电堆和/或多于一个的共享端板。
在根据本公开的另一实施例中,燃料电池电堆模块可以包括在大致从左至右的方向(其可以是如图1中的X所示的线性的横向方向,也可以是其它任何适当的非线性方向)上顺次排列的多个燃料电池电堆,并且在每两个相邻的燃料电池电堆之间均设置有一个共享端板2。或者,燃料电池电堆模块可以包括以环状形式排列的多个燃料电池电堆,并且在每两个相邻的燃料电池电堆之间均设置有一个共享端板2。在这种情况下,整个燃料电池电堆模块为首尾相连的环状,因此可以不包括上述第一外侧端板31和第二外侧端板32,并且每个燃料电池电堆可以单独地夹紧在其两侧的共享端板2之间。
在根据本公开的又一实施例中,所述共享端板2在纵向方向(如图1中的Y所示)上的尺寸可以大于第一燃料电池电堆11和第二燃料电池电堆12在纵向方向上的尺寸。例如,所述共享端板2在纵向方向上的尺寸可以是第一燃料电池电堆11和第二燃料电池电堆12在纵向方向上的尺寸的两倍,使得可以在共享端板2的任一侧沿纵向方向设置两个燃料电池电堆。
在根据本公开的再一实施例中,所述共享端板2可以被构造为多棱柱的形式,并且在该多棱柱的多个侧面中的至少两个上设置有燃料电池电堆。举例而言,所述共享端板可以被构造为六棱柱的形式,并且在其六个侧面中的至少两个上设置有燃料电池电堆。所述六个侧面中的至少两个可以相邻、相对或间隔开地布置。例如,可以在六棱柱的六个侧面中的每一个上均设置一个燃料电池电堆,抑或是在六个侧面中的每一个上沿纵向方向设置多个燃料电池电堆,如此,所有的燃料电池电堆共享中央的一个共享端板。
上述各种构造使得燃料电池电堆模块能够在有限的体积内集成更多的电池单体,从而提供更高的功率密度。本领域技术人员将理解,根据本公开的燃料电池电堆模块还可以包括其它任何合适的构造。
此外,在上述各种构造中,燃料电池电堆模块的各个燃料电池电堆所 包含的电池单体的数量可以相同或不同,这取决于具体应用。
所述共享端板2内还可以设置有温度传感器、相对湿度传感器、压力传感器和浓度传感器(图中未示出)等,使得能够基于上述传感器的测量结果调整流经流道的流体的温度、相对湿度、压力和浓度等,以优化燃料电池电堆模块的性能。上述传感器的具体设置位置可依据其期望测量的参数来确定。
此外,所述共享端板2内设置有阴极废气再循环通道,并且该阴极废气再循环通道内设置有废气再循环泵,这将在下面参考图2和图3进一步详细说明。以这种方式,一部分阴极废气能够在废气再循环泵的作用下经由该阴极废气再循环通道再次流入燃料电池电堆内进行化学反应。与将阴极废气再循环通道设置在端板之外的传统构造相比,这缩短了阴极废气再循环通道的长度,从而避免了阴极废气中的水蒸气冷凝而堵塞该通道。此外,由于该阴极废气再循环通道设置在共享端板2内,邻近该共享端板2的燃料电池电堆反应生成的热量可以进一步防止水蒸气的冷凝。
图2示意性地示出了根据本公开的一个实施例的燃料电池电堆模块的氧化剂流道,并且图3示意性地示出了根据本公开的另一实施例的燃料电池电堆模块的氧化剂流道。以氢氧燃料电池作为示例,氧化剂通常为经空压机压缩后的压缩空气。
如图2所示,所述共享端板2在两端分别设置有氧化剂入口4和氧化剂出口6,并且在内部设置有阴极废气再循环通道21。该阴极废气再循环通道21包括通道入口21a和通道出口21b,并且在其中设置有废气再循环泵22。所述通道入口21a与共享端板2的氧化剂出口6流体连通,并且所述通道出口21b与共享端板2的氧化剂入口4流体连通。新鲜的压缩空气经由氧化剂入口4流入共享端板2中并且一分为二,第一部分流入第一燃料电池电堆11内,并且第二部分流入第二燃料电池电堆12内,以进行化学反应,反应生成的阴极废气汇聚并流回到共享端板的氧化剂出口6处。一部分阴极废气经由氧化剂出口6从共享端板2排出,另一部分阴极废气则在废气再循环泵22的作用下流入阴极废气再循环通道21内并流到通道出口21b处,以进行阴极废气再循环。由于该通道出口21b与共享端板2的氧化剂入口4流体连通,使得该部分废气能够与新鲜的压缩空气一起再次流入各个燃料电池电堆内进行化学反应。以这种方式,阴极废气中的剩 余氧气能够得到有效利用。此外,由于阴极废气中通常含有较多的水蒸气,因此能够对经由氧化剂入口4流入的新鲜压缩空气进行加湿,这能够减少对额外的加湿器的需求,甚至能够省去额外的加湿器。
所述共享端板2还可以在氧化剂入口4处设置第一分流阀5,并且可以通过控制所述第一分流阀5来调整所述第一部分和第二部分压缩空气的比例,以满足实际使用需求。例如,在所述第一燃料电池电堆11所包含的电池单体的数量大于第二燃料电池电堆12所包含的电池单体的数量的情况下,可以控制所述第一分流阀5,使得所述第一部分和第二部分压缩空气的比例与燃料电池电堆所包含的电池单体的数量的比例相同或相近,以使各个电池单体获得基本一致的氧化剂供应。或者,即使所述第一燃料电池电堆11和第二燃料电池电堆12包含相同数量的电池单体,也可以控制所述第一分流阀5,使得所述第一部分和第二部分压缩空气的量不同,以使第一燃料电池电堆11和第二燃料电池电堆12提供不同的电功率。
下面具体描述图3所示的燃料电池电堆模块的氧化剂流道。如图3所示,所述共享端板2在同一端设置有氧化剂入口4’和氧化剂出口6’,并且在内部设置有阴极废气再循环通道21’。该阴极废气再循环通道21’包括通道入口21a’和通道出口21b’,并且在其中设置有废气再循环泵22’。所述通道入口21a’与共享端板2的氧化剂出口6’流体连通,并且所述通道出口21b’与共享端板2的氧化剂入口4’流体连通。新鲜的压缩空气经由氧化剂入口4’流入共享端板2中并且一分为二,第一部分流入第一燃料电池电堆11内进行化学反应,反应生成的阴极废气汇聚后从第一燃料电池电堆11流出,并与第二部分新鲜的压缩空气混合,然后一起流入第二燃料电池电堆12内进行化学反应。该第二部分新鲜的压缩空气能够用于确保流入第二燃料电池电堆12内的空气的浓度满足需求。第二燃料电池电堆12内反应生成的阴极废气汇聚后流到共享端板2的氧化剂出口6’处,一部分阴极废气经由该氧化剂出口6’从共享端板2排出,而另一部分阴极废气在废气再循环泵22’的作用下进入阴极废气再循环通道21’中并流到通道出口21b’处。由于该通道出口21b’与共享端板2的氧化剂入口4’流体连通,使得该部分阴极废气能够与新鲜的压缩空气一起再次进入第一燃料电池电堆11的电池单体内进行化学反应。图3所示的氧化剂流道的构造能够实现与图2所示的氧化剂流道类似的效果。此外,由于第一燃料电池电堆11内反应生成的阴极 废气中含有一定量的水蒸气,当其与所述第二部分新鲜的压缩空气混合时,能够对第二部分新鲜的压缩空气进行加湿,这能够提高第二燃料电池电堆12的性能,同时减少对额外加湿器的需求。
所述共享端板2还可以在氧化剂入口4’处设置第二分流阀7,并且可以通过控制所述第二分流阀7来调整所述第一部分和第二部分压缩空气的比例,以满足实际使用需求。例如,当第一燃料电池电堆11和第二燃料电池电堆12包含的电池单体的数量相同时,可以控制所述第二分流阀7,使得所述第一部分和第二部分压缩空气的比例大于1:1。以这种方式,能够使得第一燃料电池电堆11和第二燃料电池电堆12中的各个电池单体获得基本均匀的压缩空气供应。
在所述共享端板2在氧化剂入口4’处设置有所述第二分流阀7,并且从氧化剂入口4’流入的压缩空气经由该第二分流阀7的第一出口和第二出口被分为所述第一部分和第二部分的情况下,阴极废气再循环通道21’的通道出口21b’可以直接与所述第二分流阀7的第一出口流体连通,使得从通道出口21b’流出的阴极废气直接与第一部分压缩空气混合,以仅对第一部分压缩空气进行加湿。
在图2和图3所示的实施例中,阴极废气再循环通道21,21’、第一分流阀5和第二分流阀7、以及泵22,22’等均设置在共享端板2内,这简化了整个燃料电池电堆模块的结构并且节省了体积,从而提高了燃料电池电堆模块的功率密度。此外,图2和图3仅示出了燃料电池电堆模块的氧化剂流道,本领域技术人员将理解,该燃料电池电堆模块内还设置有用于燃料和冷却剂等流体的通道,这些流体能够经由设置在共享端板2上的不同入口流入燃料电池电堆模块的燃料通道和冷却剂通道中,并经由设置在共享端板2上的不同出口流出。
图2中所示的第一分流阀5和图3中所示的第二分流阀7可以是电控阀,使得能够根据实际使用需要对它们进行实时电控制。
需要说明的是,本公开的说明书和权利要求书中的术语“第一”或“第二”等仅用于区别类似的对象,并不用于描述特定的顺序或先后次序。应当理解,被冠以“第一”或“第二”等的对象在适当的情况下可以互换。
尽管以上公开了本公开的具体实施例,但是本领域技术人员可以理解的是,在不脱离本公开的精神和范围的条件下,可以进行各种修改、替换 和变化。因此,本公开的范围不局限于上述具体实施例,而是仅由所附权利要求限定。

Claims (15)

  1. 一种燃料电池电堆模块,其特征在于,所述燃料电池电堆模块包括:
    至少一个共享端板(2);以及
    至少两个燃料电池电堆(11,12),所述至少两个燃料电池电堆(11,12)被布置为共享所述至少一个共享端板(2),
    其中,所述至少两个燃料电池电堆(11,12)中的每一个被单独地夹紧。
  2. 根据权利要求1所述的燃料电池电堆模块,其特征在于,所述至少两个燃料电池电堆在大致从左至右的方向上顺次排列,并且在每两个相邻的燃料电池电堆之间均设置有所述共享端板(2)。
  3. 根据权利要求2所述的燃料电池电堆模块,其特征在于,所述燃料电池电堆模块还包括第一外侧端板(31)和第二外侧端板(32),并且所述至少两个燃料电池电堆(11,12)包括第一燃料电池电堆(11)和第二燃料电池电堆(12),所述第一燃料电池电堆(11)被夹紧在所述第一外侧端板(31)与一个共享端板(2)之间,所述第二燃料电池电堆模块(12)被夹紧在所述第二外侧端板(32)与一个共享端板(2)之间。
  4. 根据权利要求1所述的燃料电池电堆模块,其特征在于,所述至少两个燃料电池电堆(11,12)以环状形式排列,并且在每两个相邻的燃料电池电堆之间均设置有所述共享端板(2),所述至少两个燃料电池电堆(11,12)中的每一个被夹紧在其两侧的共享端板(2)之间。
  5. 根据权利要求1所述的燃料电池电堆模块,其特征在于,所述至少一个共享端板(2)在纵向方向上的尺寸大于所述至少两个燃料电池电堆(11,12)在纵向方向上的尺寸,使得在所述共享端板(2)的任一侧沿纵向方向布置有多个燃料电池电堆。
  6. 根据权利要求1或5所述的燃料电池电堆模块,其特征在于,所述 至少一个共享端板(2)被构造为多棱柱的形式,并且在所述至少一个共享端板(2)的多个侧面中的至少两个上布置有所述燃料电池电堆。
  7. 根据权利要求1至5中任一项所述的燃料电池电堆模块,其特征在于,所述至少两个燃料电池电堆(11,12)中的每一个包括相同或不同数量的燃料电池单体。
  8. 根据权利要求1所述的燃料电池电堆模块,其特征在于,所述至少一个共享端板(2)中的每一个内设置有多个入口、通道以及出口,燃料、氧化剂和冷却剂经由不同的入口和通道流入各个燃料电池电堆中,并经由不同的出口从所述共享端板(2)流出。
  9. 根据权利要求8所述的燃料电池电堆模块,其特征在于,所述至少一个共享端板(2)中的每一个内还设置有用于测量燃料、氧化剂和冷却剂的工作参数的温度传感器、相对湿度传感器、压力传感器和浓度传感器。
  10. 根据权利要求8所述的燃料电池电堆模块,其特征在于,所述通道包括阴极废气再循环通道(21,21’),并且所述阴极废气再循环通道(21,21’)中设置有废气再循环泵(22,22’)。
  11. 根据权利要求10所述的燃料电池电堆模块,其特征在于,所述多个入口和出口包括氧化剂入口(4)和氧化剂出口(6),氧化剂经由所述氧化剂入口(4)流入共享端板(2)中并且被分为两部分,第一部分氧化剂流入所述共享端板(2)第一侧的第一燃料电池电堆(11)内,第二部分氧化剂流入所述共享端板(2)第二侧的第二燃料电池电堆(12)内,反应生成的阴极废气汇聚并流回到所述共享端板(2)的氧化剂出口(6)处,一部分阴极废气在所述废气再循环泵(22)的作用下流入所述阴极废气再循环通道(21)内,另一部分阴极废气经由所述氧化剂出口(6)从所述共享端板(2)排出。
  12. 根据权利要求11所述的燃料电池电堆模块,其特征在于,所述共 享端板(2)设置有用于调整所述第一部分氧化剂和第二部分氧化剂的比例的第一分流阀(5)。
  13. 根据权利要求10所述的燃料电池电堆模块,其特征在于,所述多个入口和出口包括氧化剂入口(4’)和氧化剂出口(6’),氧化剂经由所述氧化剂入口(4’)流入共享端板(2)中并且被分为两部分,第一部分氧化剂流入所述共享端板(2)第一侧的第一燃料电池电堆(11)内,反应生成的阴极废气与第二部分氧化剂混合后流入所述共享端板(2)第二侧的第二燃料电池电堆(12)内,反应生成的阴极废气汇聚并流回到所述共享端板(2)的氧化剂出口(6’)处,一部分阴极废气在所述废气再循环泵(22’)的作用下流入所述阴极废气再循环通道(21’)内,另一部分阴极废气经由所述氧化剂出口(6’)从所述共享端板(2’)排出。
  14. 根据权利要求13所述的燃料电池电堆模块,其特征在于,所述共享端板(2)设置有用于调整所述第一部分氧化剂和第二部分氧化剂的比例的第二分流阀(7)。
  15. 根据权利要求14所述的燃料电池电堆模块,其特征在于,所述第一燃料电池电堆(11)和第二燃料电池电堆(12)包括相同数量的燃料电池单体,并且所述第一部分氧化剂与第二部分氧化剂的比例大于1:1。
PCT/CN2021/120324 2021-09-24 2021-09-24 燃料电池电堆模块 WO2023044756A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/120324 WO2023044756A1 (zh) 2021-09-24 2021-09-24 燃料电池电堆模块
DE112021007720.1T DE112021007720T5 (de) 2021-09-24 2021-09-24 Brennstoffzellen-stapelmodul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120324 WO2023044756A1 (zh) 2021-09-24 2021-09-24 燃料电池电堆模块

Publications (1)

Publication Number Publication Date
WO2023044756A1 true WO2023044756A1 (zh) 2023-03-30

Family

ID=85719883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120324 WO2023044756A1 (zh) 2021-09-24 2021-09-24 燃料电池电堆模块

Country Status (2)

Country Link
DE (1) DE112021007720T5 (zh)
WO (1) WO2023044756A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200965894Y (zh) * 2006-10-18 2007-10-24 上海神力科技有限公司 一种正负极引线串联的集成式燃料电池堆
CN101132073A (zh) * 2006-08-25 2008-02-27 上海神力科技有限公司 一种充分利用集成式燃料电池堆空间的管道设计
CN101165957A (zh) * 2006-10-18 2008-04-23 上海神力科技有限公司 一种集成式燃料电池堆的串联方法
CN201126844Y (zh) * 2007-06-15 2008-10-01 上海神力科技有限公司 一种集成式燃料电池堆
CN101325267A (zh) * 2007-06-15 2008-12-17 上海神力科技有限公司 一种内增湿质子交换膜燃料电池的集成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132073A (zh) * 2006-08-25 2008-02-27 上海神力科技有限公司 一种充分利用集成式燃料电池堆空间的管道设计
CN200965894Y (zh) * 2006-10-18 2007-10-24 上海神力科技有限公司 一种正负极引线串联的集成式燃料电池堆
CN101165957A (zh) * 2006-10-18 2008-04-23 上海神力科技有限公司 一种集成式燃料电池堆的串联方法
CN201126844Y (zh) * 2007-06-15 2008-10-01 上海神力科技有限公司 一种集成式燃料电池堆
CN101325267A (zh) * 2007-06-15 2008-12-17 上海神力科技有限公司 一种内增湿质子交换膜燃料电池的集成方法

Also Published As

Publication number Publication date
DE112021007720T5 (de) 2024-03-21

Similar Documents

Publication Publication Date Title
CA2480960C (en) Manifold for a fuel cell system
US7923162B2 (en) Fuel cell assemblies with integrated reactant-conditioning heat exchangers
US8298713B2 (en) Thermally integrated fuel cell humidifier for rapid warm-up
US7820333B2 (en) Fuel cell operating method with improved hydrogen and oxygen utilization
CN101796677B (zh) 对pem燃料电池的密封垫和双极板的改进
US11831047B2 (en) Membrane humidifier for fuel cell, and fuel cell system comprising same
MX2011003673A (es) Ensamble de celdas de combustible.
US10535887B2 (en) Fuel cell system
US8617752B2 (en) Cold start compressor control and mechanization in a fuel cell system
US20150107453A1 (en) Water recovery device
KR20200056230A (ko) 연료전지용 가습기
US8029939B2 (en) Fuel cell ejector with integrated check valve
CN113823808B (zh) 一燃料电池电堆及其系统和应用
WO2023044756A1 (zh) 燃料电池电堆模块
CN101593839A (zh) 燃料电池装置
CN118044017A (zh) 燃料电池电堆模块
EP2587577A1 (en) Fuel cell system
JP2023545348A (ja) 燃料電池積層体
US20230099737A1 (en) Air cooler and fuel cell system
US20220069330A1 (en) Fuel Cell and Fuel Cell Vehicle
KR101342662B1 (ko) 수소 사용 효율을 향상시킨 연료전지 시스템
US20240047720A1 (en) Fuel cell system
US20140377674A1 (en) Fuel cell air flow method and system
KR20240051734A (ko) 드레인밸브 및 연료전지 시스템
JP2006185617A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957886

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021007720

Country of ref document: DE