WO2023044630A1 - User equipment, base station, and method for channel state information (csi) measurement - Google Patents

User equipment, base station, and method for channel state information (csi) measurement Download PDF

Info

Publication number
WO2023044630A1
WO2023044630A1 PCT/CN2021/119717 CN2021119717W WO2023044630A1 WO 2023044630 A1 WO2023044630 A1 WO 2023044630A1 CN 2021119717 W CN2021119717 W CN 2021119717W WO 2023044630 A1 WO2023044630 A1 WO 2023044630A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
trp
resource
port
port indices
Prior art date
Application number
PCT/CN2021/119717
Other languages
French (fr)
Inventor
Tian LI
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd
Priority to PCT/CN2021/119717 priority Critical patent/WO2023044630A1/en
Publication of WO2023044630A1 publication Critical patent/WO2023044630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present disclosure relates to the field of multiple input multiple output (MIMO) wireless communication systems, and more particularly, to user equipment and a method for CSI measurement and report.
  • MIMO multiple input multiple output
  • Wireless communication systems such as the third-generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • the 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications.
  • Communication systems and networks have developed towards being a broadband and mobile system.
  • UE user equipment
  • RAN radio access network
  • the RAN comprises a set of base stations (BSs) that provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conduct respective functions in relation to the overall network.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • multi-input multi-output is a method for multiplying the capacity of a radio link using multiple transmitting antennas and multiple receiving antennas deployed at a transmitter and a receiver.
  • MIMO is a practical technique that improves spectral efficiency by sending and receiving multiple data streams simultaneously over the same radio channel.
  • a UE can be equipped with multiple panel entities (i.e., transmission/reception points, TRPs) of which one or multiple panel entities can be activated at a time.
  • TRPs transmission/reception points
  • CSI-RS channel state information reference signal
  • a gNB Without knowledge of radio interference at the UE, a gNB cannot perfectly determines rank solely based on the UL channel measurement. Hence, a gNB should transmit precoded CSI-RS resources to a UE, and the UE achieves better link adaptation based on the indicated port indices of CSI-RS resources.
  • the uplink control information (UCI) payload can be reduced through CSI sharing, including rank indicator (RI) and channel quality indicator (CQI) .
  • RI rank indicator
  • CQI channel quality indicator
  • NCJT non-coherent joint transmission
  • An object of the present disclosure is to propose a user equipment, a base station, and a method for CSI measurement.
  • an embodiment of the invention provides an uplink configuration method, executable in a user equipment (UE) , comprising:
  • an embodiment of the invention provides a user equipment (UE) comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • UE user equipment
  • an embodiment of the invention provides uplink configuration method, executable in a user equipment (UE) , comprising:
  • the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from a first TRP among port indices for the first TRP, the sequence of the port indices of the CSI-RS resource from the first TRP is configured, the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from a second TRP among port indices for the second TRP, and the sequence of the port indices of the CSI-RS resource from the second TRP is configured; and receiving CSI measurement for the first TRP that is based on the port indices for the first TRP and CSI measurement for the second TRP that is based on the port indices for the second TRP.
  • an embodiment of the invention provides a base station comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer-executable instructions stored in a non-transitory computer readable medium.
  • the non-transitory computer-readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer-readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read-Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read-Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as a computer program product, that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as a computer program, that causes a computer to execute the disclosed method.
  • the disclosed method provides improvement to non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis, including:
  • FIG. 1 illustrates a schematic view showing an example of multi-TRP/panel SRS transmission and multi-TRP/panel CSI-RS transmission.
  • FIG. 2 illustrates a schematic view showing an example of single-TRP/panel SRS transmission and single-TRP/panel CSI-RS transmission.
  • FIG. 3 illustrates a schematic view of a telecommunication system.
  • FIG. 4 illustrates a schematic view showing an embodiment of the disclosed method for CSI measurement.
  • FIG. 5 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
  • FIG. 6 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
  • FIG. 7 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
  • FIG. 8 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
  • FIG. 9 illustrates a schematic view showing an example of indicated port indices for the two TRPs.
  • FIG. 10 illustrates a schematic view showing a system for wireless communication according to an embodiment of the present disclosure.
  • Multi-TRP/panel based SRS and CSI-RS transmission
  • the main idea of this disclosure is to provide a method for non-PMI based feedback mechanism, through which a transmitter, such as a UE, is allowed to apply the non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis.
  • SRS can be transmitted in different transmission occasions toward a first TRPs 100_1 and a second TRP 100_2 so that the UE 10b has multiple chances to transmit SRS. Additionally, multiple SRS can be transmitted from multiple panels 41, 42, and 43 simultaneously toward multiple TRPs 100_1 and 100_2. SRS transmission targeting towards different TRPs can avoid possible blockage between a single TRP and the UE. As a result, SRS transmission towards multiple TRPs not only enhance the reliability but also improve the coverage.
  • CSI-RS can be transmitted from different TRPs 100_1 and 100_2 so that a base station, such as a gNB, has multiple chances to transmit CSI-RS. Additionally, multiple CSI-RS can be received from multiple panels 41, 42, and 43 simultaneously. CSI-RS transmission transmitted from multiple TRPs not only enhance the reliability but also improve the coverage.
  • SRS can be transmitted from a panel, such as one of the panel 41, 42, or 43, toward the first TRP 100_1. As only one panel is activated, the transmitted power can be saved. Additionally, it can simplify the detection in the gNB.
  • CSI-RS is transmitted from the single TRP 100_1 to the UE 10b.
  • channel reciprocity is an important advantage of a TDD system, in which a base station, such as a gNB, can obtain the downlink CSI based on the uplink channel estimation without additional feedback.
  • a base station such as a gNB
  • MIMO multi-input multi-output
  • channel reciprocity plays an import role in CSI acquisition.
  • the UE transmits SRS to two TRPs and then gNB can determine the best precoder for CSI-RS transmission of each TRP link according to the channel measurement based on SRS.
  • This invention proposes some methods to enhance non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis.
  • an example of the UE 10b in the description may include UE 10a.
  • An example of the base station in the description may include base station 20a or 20b.
  • a first TRP and a second TRP in the description may comprise two radio nodes. The two radio nodes may be connected to one base station or two different base stations.
  • Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station.
  • Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
  • a telecommunication system including a UE 10a, a base station 20a, a base station 20b, and a network entity device 30 executes the disclosed method according to an embodiment of the present disclosure.
  • FIG. 3 is shown for illustrative not limiting, and the system may comprise more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the FIGs.
  • the UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a.
  • the base station 20a may include a processor 21a, a memory 22a, and a transceiver 23a.
  • the base station 20b may include a processor 21b, a memory 22b, and a transceiver 23b.
  • the network entity device 30 may include a processor 31, a memory 32, and a transceiver 33.
  • Each of the processors 11a, 21a, 21b, and 31 may be configured to implement proposed functions, procedures, and/or methods described in this description. Layers of radio interface protocol may be implemented in the processors 11a, 21a, 21b, and 31.
  • Each of the memory 12a, 22a, 22b, and 32 operatively stores a variety of programs and information to operate a connected processor.
  • Each of the transceivers 13a, 23a, 23b, and 33 is operatively coupled with a connected processor, transmits and/or receives a radio signal.
  • Each of the base stations 20a and 20b may be an eNB, a gNB, or one of other radio nodes.
  • Each of the processors 11a, 21a, 21b, and 31 may include a general-purpose central processing unit (CPU) , application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • Each of the memory 12a, 22a, 22b, and 32 may include read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceivers 13a, 23a, 23b, and 33 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein.
  • the modules can be stored in a memory and executed by the processors.
  • the memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
  • the network entity device 30 may be a node in a CN.
  • CN may include LTE CN or 5GC which may include user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
  • UPF user plane function
  • SMF session management function
  • AMF mobility management function
  • UDM unified data management
  • PCF policy control function
  • PCF control plane
  • CP control plane
  • UP user plane
  • CUPS authentication server
  • NSSF network slice selection function
  • NEF network exposure function
  • One or more CSI-RS resources from a TRP means One or more CSI-RS resources configured by and transmitted in a configuration from the TRP.
  • a UE When a UE is configured with CSI feedback without PMI, if a subset of ports in a CSI-RS resource can be semi-statically configured for a rank hypothesis for CSI measurement, there is no mismatch between the precoding that is assumed for CSI calculation and the precoding that is used for PDSCH transmission. That is, the gNB applies the same precoding for PDSCH as for CSI-RS.
  • a base station 20 such as the base station 20a or 20b transmits (210) CSI report configuration to UE 10 through a downlink signal, such as radio resource control (RRC) signaling.
  • the CSI report configuration comprises CSI-RS resources from a first TRP, such as the first TRP 100_1, and CSI-RS resources from a second TRP, such as the second TRP 100_2.
  • the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from the first TRP among port indices for the first TRP.
  • the sequence of the port indices of the CSI-RS resource from the first TRP is configured.
  • the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from the second TRP among port indices for the second TRP.
  • the sequence of the port indices of the CSI-RS resource from the second TRP is configured.
  • a UE 10 determines the sequence of port indices of the CSI-RS resource from the first TRP according to the CSI report configuration to obtain port indices for the first TRP (212) .
  • the sequence of the port indices of the CSI-RS resource from the first TRP is configured.
  • the port indices of one or more of CSI-RS resources from the first TRP may be referred to as port indices for the first TRP.
  • the UE determines the sequence of port indices of the CSI-RS resource from the second TRP according to the CSI report configuration to obtain port indices for the second TRP (212) .
  • the sequence of the port indices of the CSI-RS resource from the second TRP is configured.
  • the port indices of one or more the CSI-RS resources from the second TRP may be referred to as port indices for the second TRP.
  • the UE performs CSI measurement for the first TRP using the port indices for the first TRP and CSI measurement for the second TRP using port indices for the second TRP (214) .
  • the UE reports the CSI measurement for the first TRP and the CSI measurement for the second TRP (216) .
  • the base station 20 receives the CSI measurement for the first TRP and the CSI measurement for the second TRP (218) .
  • the CSI measurement for the first TRP is based on the port indices for the first TRP
  • the CSI measurement for the second TRP is based on the port indices for the second TRP
  • An example of the CSI report configuration comprises a CSI-ReportConfig information element.
  • An example of the CSI-ReportConfig information element in technical specification (TS) 38.331 is shown in following:
  • the port indices of the CSI-RS resource from the first TRP can be configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) and a set of offset values can be indicated to determine the port indices of the CSI-RS resource from the second TRP.
  • the port indices can be configured with less RRC overhead.
  • a UE such as the UE 10, 10a, or 10b
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the report quantity e.g., higher layer parameter reportQuantity
  • the non-PMI port indication parameter determines a sequence of port indices for the first TRP, where the port indices are selected from the CSI-RS resource configured and transmitted from the first TRP.
  • the port indices of CSI-RS resources transmitted from the first TRP can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of an associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) of in linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP.
  • an associated CSI-RS resource index e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • NZP-CSI-RS-Resource information element is shown in following:
  • NZP-CSI-RS-ResourceId information element is shown in following:
  • offset (m-1) is an offset associated with rank m
  • rank m 1, 2, ..., RI max
  • RI max min (8, P)
  • P is the number of ports in the CSI-RS resource.
  • RI max of offsets are the same value, it is equivalent to indicate a single offset value. More specially, if the RI max offset values are equal to 0, it means that for a rank, port indices of CSI-RS resources from two TRPs are the same.
  • non-PMI port indication parameter e.g., non-PMI-PortIndication
  • port indices of a CSI-RS resource from the first TRP and port indices of a CSI-RS resource from the second TRP can be configured in the same non-PMI port indication parameter (e.g., non-PMI-PortIndication) .
  • the port indices for the same rank for CSI-RS resources from different TRPs may be the same.
  • the port indices can be configured with less RRC overhead and less flexibility.
  • the sequence of port indices corresponding to at least 2 CSI-RS resources can be configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) .
  • the port indices is configured for a CSI-RS resource from the first and a CSI-RS resource from second TRPs respectively.
  • the sequence of the port indices of the CSI-RS resource from the first TRP and the sequence of the port indices of the CSI-RS resource from the second TRP are configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) .
  • the non-PMI port indication parameter e.g., non-PMI-PortIndication
  • Port indices is configured based on the order of resource index
  • the port indices of CSI-RS from the two TRPs is configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) , there will be less spec impact.
  • higher layer parameter NZP-CSI-RS-ResourceId e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • the non-PMI port indication parameter determines a sequence of port indices for the first and second TRP, where the port indices for the first TRP are selected from the CSI-RS resource transmitted from the first TRP and the port indices for the second TRP are selected from the CSI-RS resource transmitted from the second TRP.
  • the port indices of at least 2 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where port indices of the CSI-RS resources from the first and second TRP are configured in a single sequence.
  • the associated CSI-RS resource index e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • non-PMI port indication parameter may comprise one or up to K1 instances of the higher layer parameter of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) for the first TRP and one or up to K2 instances of the higher layer parameter of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) for the second TRP.
  • K1 instances of the higher layer parameter of port index for eight ranks parameter e.g., PortIndexFor8Ranks
  • PortIndexFor8Ranks e.g., PortIndexFor8Ranks
  • Port indices are represented by parameters of PortIndex2, PortIndex4, or PortIndex8 in the portIndex2, portIndex4, or portIndex8. Parameters portIndex2, portIndex4, and portIndex8 are included in parameter PortIndexFor8Ranks.
  • the indicated port indices are the same for the same rank.
  • the indicated port indices of the first and second CSI-RS resources are p 0 ,p 1 , p 2 , p 3 . Since the precoder for first and second CSI-RS resources may be different, UE can select the ports of different rank according to the channel condition.
  • Port indices is configured based on two groups:
  • non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the sequence of port indices is divided into two groups and each group of port indices corresponds to the CSI-RS resources from a separate TRP
  • UE can derive the port indices for the two TRPs easily.
  • the non-PMI port indication parameter determines a combined sequence of port indices, and the sequence of port indices is divided into two groups, including a first group and a second group, where the first group of port indices corresponds to the CSI-RS resources from the first TRP, and the second group of port indices corresponds to the CSI-RS resources from the second TRP. That is, the first group of port indices comprises the sequence of the port indices of the CSI-RS resource from the first TRP and the second group of port indices comprises the sequence of the port indices of the CSI-RS resource from the second TRP.
  • the first group of port indices comprises the sequence of the port indices of the CSI-RS resource from the first TRP
  • the second group of port indices comprises the sequence of the port indices of the CSI-RS resource from the second TRP.
  • the port indices of up to K1 CSI-RS resources can be configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP.
  • the associated CSI-RS resource index e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • the port indices of up to K2 CSI-RS resources can be configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the second TRP.
  • the associated CSI-RS resource index e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the CSI report configuration comprises a non-PMI-PortIndication1 and a non-PMI-PortIndication2.
  • the port indices of the CSI-RS resource from the first and the port indices of the CSI-RS resource from second TRPs can be configured in a first non-PMI port indication parameter (e.g., non-PMI-PortIndication) and second non-PMI port indication parameter (e.g., non-PMI-PortIndication) respectively.
  • first non-PMI port indication parameter e.g., non-PMI-PortIndication
  • second non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the sequence of the port indices of the CSI-RS resource from the first TRP may be configured in the first non-PMI port indication parameter (e.g., non-PMI-PortIndication)
  • the sequence of the port indices of the CSI-RS resource from the second TRP may be configured in the second non-PMI port indication parameter (e.g., non-PMI-PortIndication)
  • the port indices for the same rank for CSI-RS resources from different TRPs are the same.
  • the port indices of CSI-RS resource from different TPRs can be configured flexibly and saved RRC overhead.
  • a second non-PMI port indication parameter e.g., higher layer parameter non-PMI-PortIndication
  • the CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the first non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the second non-PMI port indication parameter e.g., higher layer parameter non-PMI-PortIndication
  • the first non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the second non-PMI port indication parameter is used for indicating the port indices of the CSI-RS resource from the second TRP.
  • the first non-PMI port indication parameter determines a sequence of port indices for the first TRP, where the port indices are selected from the CSI-RS resource transmitted from the first TRP.
  • the port indices of up to K1 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP.
  • the associated CSI-RS resource index e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • the second non-PMI port indication parameter determines a sequence of port indices for the second TRP, where the port indices are selected from the CSI-RS resource transmitted from the second TRP.
  • the port indices of up to K2 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the second TRP.
  • the associated CSI-RS resource index e.g., NZP-CSI-RS-ResourceId
  • the indicated port indices are the same for the same rank.
  • the indicated port indices of the first and second CSI-RS resources are p 0 , p 1 , p 2 , p 3 .
  • the CSI report configuration comprises a combination of a non-PMI-PortIndication1 and a PortIndexFor8Ranks1 for TRP 1 and a combination of a non-PMI-PortIndication2 and a PortIndexFor8Ranks2 for TRP 2
  • PortIndexFor8Ranks two higher layer parameters of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) are configured and each of the two higher layer parameters of port index for eight ranks parameter corresponds to a CSI-RS resource transmitted from a separate TRP
  • port indices for the same rank for CSI-RS resources from different TRPs can be different.
  • the port indices and CSI-RS resource for different TPRs can be configured flexibly and adapted to the dynamic change of different links between TRP and UE.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the report quantity e.g., higher layer parameter reportQuantity
  • a second non-PMI port indication parameter e.g., higher layer parameter non-PMI-PortIndication
  • a second port index for eight ranks parameter e.g., higher layer parameter PortIndexFor8Ranks
  • the first non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the first port index for eight ranks parameter e.g., PortIndexFor8Ranks
  • the second non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the second port index for eight ranks parameter e.g., PortIndexFor8Ranks
  • the first non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the first port index for eight ranks parameter e.g., PortIndexFor8Ranks
  • the port indices of up to K1 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP.
  • the associated CSI-RS resource index e.g., higher layer parameter NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., higher layer parameter resourcesForChannelMeasurement
  • the second non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the second port index for eight ranks parameter (e.g., PortIndexFor8Ranks) determine a sequence of port indices for the second TRP, where the port indices are selected from the CSI-RS resource transmitted from the second TRP.
  • the port indices of up to K2 CSI-RS resources can be configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the second TRP.
  • the associated CSI-RS resource index e.g., NZP-CSI-RS-ResourceId
  • resources for channel measurement parameter e.g., resourcesForChannelMeasurement
  • the indicated port indices can be different for the same rank. For example, regarding rank4, the indicated port indices of the first CSI-RS resource are p 0 , p 1 , p 2 , p 3 ; while the indicated port indices of the second CSI-RS resource are p 3 , p 4 , p 5 , p 6 .
  • non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the default assumption on port indices of CSI-RS resource from the two TRPs should be provided.
  • a set of default port indices is provided for the first TRP and several offset values can be indicated to determine the port indices for the second TRP. That is, a set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, and a set of offset values is provided for the second TRP and utilized by the UE to determine the sequence of the port indices of the CSI-RS resource from the second TRP.
  • the port indices for the second TRP are configurable.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the report quantity e.g., higher layer parameter reportQuantity
  • the higher layer parameter of non-PMI port indication parameter e.g., non-PMI-PortIndication
  • a set of default port indices is provided for the first TRP
  • a number RI max of offset values can be indicated to determine the sequence of the port indices of the CSI-RS resource from the second TRP, where the offset values are provided per rank and the offset values can be pre-defined or signaled by downlink control information (DCI) , medium access control (MAC) control element (CE) , or radio resource control (RRC)
  • RI max min (8, P)
  • P is the number of ports in the CSI-RS resource
  • the RI max offsets are the same value, it is equivalent to indicate a single offset value. More specially, if the RI max offsets are equal to 0, it means that for a rank, default port indices of CSI-RS resources from two TRPs are the same.
  • the default port indices can be provided with more flexibility. For example, a first set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, and a second set of default port indices is provided for the second TRP as the sequence of the port indices of the CSI-RS resource from the second TRP.
  • CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • report quantity e.g., higher layer parameter reportQuantity
  • non-PMI port indication parameter e.g., non-PMI-PortIndication
  • the default port indices can be different for the same rank. For example, regarding rank4, the default port indices of the first CSI-RS resource are p 0 , p 1 , p 2 , p 3 ; while the default port indices of the second CSI-RS resource are p 4 , p 5 , p 6 , p 7 .
  • a base station such as a gNB, should transmit precoded CSI-RS resource to the UE, and the UE achieves better link adaptation based on the indicated port indices of CSI-RS resource.
  • the sequence of the port indices of the CSI-RS resource from the first TRP may be indicated port indices of the CSI-RS resource from the first TRP
  • the sequence of the port indices of the CSI-RS resource from the second TRP may be indicated port indices of the CSI-RS resource from the second TRP.
  • the UE determines a rank for transmission from the first TRP based on the indicated port indices of the CSI-RS resource from the first TRP and a rank for transmission from the second TRP based on the indicated port indices of the CSI-RS resource from the second TRP.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the report quantity e.g., higher layer parameter reportQuantity
  • the indicated port indices for the first and second TRPs are determined by the corresponding non-PMI port indication parameter (e.g., non-PMI-PortIndication) and port index for eight ranks parameter (e.g., PortIndexFor8Ranks) respectively.
  • non-PMI port indication parameter e.g., non-PMI-PortIndication
  • port index for eight ranks parameter e.g., PortIndexFor8Ranks
  • the UE determines the rank of the first TRP from all potential ranks based a dedicated criterion (e.g., SINR criterion, an SINR value, or an SINR range) .
  • Potential rank is 1, 2, ..., RI max .
  • the UE determines the rank of the second TRP from all potential ranks based a dedicated criterion (e.g., SINR criterion, an SINR value, or an SINR range) . Potential rank is 1, 2, ..., RI max .
  • the UE determines a rank of multi-TRP associated with the first TRP and the second TRP as the sum of the determined rank of the first TRP and the determined rank of the second TRP.
  • the UE reports the determined rank of multi-TRP associated with the first TRP and the second TRP to the base station. Alternatively, the UE reports the determined rank of the first TRP and the determined rank of the second TRP to the base station.
  • the ranks of two TRPs are reported directly to fully reflect the channel states, the ranks can achieve better link adaptation.
  • the UE for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , the UE directly reports the determined ranks for the first TRP and the second TRP to the base station without any other restriction, where the rank for transmission from the first TRP is determined based on the indicated port indices of CSI-RS resource from the first TRP and the rank for transmission from the second TRP is determined based on the indicated port indices of CSI-RS resource from the second TRP.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • the report quantity e.g., higher layer parameter reportQuantity
  • the rank for transmission from the first TRP is referred to as a rank of the first TRP
  • the rank for transmission from the second TRP is referred to as a rank of the second TRP.
  • the UE reports the determined rank of multi-TRP associated with the first TRP and the second TRP to the base station. Alternatively, the UE reports to the base station the rank of the first TRP as a reported rank of the first TRP, and the rank of the second TRP as a reported rank of the second TRP.
  • the corresponding rank combinations for two TRPs can be (1+1) , (1+2, 2+1) , (2+2) , (2+3) , (3+3) , (3+4) , (4+4) respectively. It means that the reported RIs of two TRPs should be one of the listed rank combinations. Hence, each reported RI should be one of the elements of the rank combinations.
  • a first element in a related rank combination represents a determined rank of the first TRP
  • a second element in a related rank combination represents a determined rank of the second TRP
  • a matched related rank combination of the determined rank of multi-TRP is a related rank combination identical to a combination of the determined rank of the first TRP plus the determined rank of the second TRP. That is, a first element (i.e., the first operand) in the matched related rank combination of the corresponding element equal to the determined rank of the first TRP and a second element (i.e., the second operand) in the matched related rank combination of the corresponding element equal to the determined rank of the second TRP.
  • a corresponding element rank m of the determined rank of multi-TRP is a value of rank m that is associated with a matched related rank combination of the determined rank of multi-TRP and the determined rank of multi-TRP has a RI value equal to m.
  • CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • report quantity e.g., higher layer parameter reportQuantity
  • a determined rank 4 of multi-TRP is obtained from a sum of a determined RI 1 of the first TRP and a determined RI 3 of the second TRP.
  • the determined rank 4 of multi-TRP has a corresponding element rank 4 in the Table 7, but is discarded because the determined rank 4 of multi-TRP does not have a matched related rank combination of the corresponding element.
  • Rank 4 in the Table 7 does not have a related rank combination (1+3) .
  • the determined RI of the first TRP is 1 and determined RI of the second TRP is 2/3/4, the reported RI of two TRPs are (1+2) . If the determined RIs of the first and second TRP are 3 and 1 respectively, the determined RIs are discarded.
  • CQI is calculated based on the reported rank and port indices corresponding to the reported rank, it is necessary to design method to calculate CQI in multi-TRP/panel scenario to achieve better throughput performance.
  • the UE for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , when calculating a CQI for the reported rank of the first TRP, the UE uses the indicated the port indices of CSI-RS resource from the first TRP associated with the reported rank of the first TRP; when calculating a CQI for the reported rank of the second TRP, the UE uses the indicated port indices of CSI-RS resource from the second TRP associated with the reported rank of the second TRP.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • report quantity e.g., higher layer parameter reportQuantity
  • the first m columns of an identity matrix are applied on the indicated port indices of the CSI-RS resource from the first TRP associated with rank m.
  • the UE estimates a channel between the first TRP and the UE based on the CSI-RS resource from the first TRP and obtains a channel estimation matrix H 1 representing the channel between the first TRP and the UE.
  • the first n columns of an identity matrix are applied on the indicated port indices of the CSI-RS resource from the second TRP associated with rank n.
  • the UE estimates a channel between the second TRP and the UE based on the CSI-RS resource from the second TRP and obtains a channel estimation matrix H 2 representing the channel between the second TRP and the UE.
  • the precoder of the first TRP is V 1 and the estimated channels between the first TRP and UE is H 1 ; while the precoder of the second TRP is V 2 and the estimated channels between the first TRP and UE is H 2 .
  • the UE calculates the CQI based on these two precodersV 1 and V 2 and the channel estimation matrix H 1 and the channel estimation matrix H 2 .
  • the CSI (e.g., RI and CQI) is shared between single-TRP and multi-TRP measurement hypotheses, UCI payload can be reduced. Since the CSI-RS resource for non-PMI based CSI measurement technique is precoded, it is not appropriate to share CSI between single-TRP and multi-TRP measurement hypotheses if CSI-RS resource from single-TRP is non-precoded and CSI-RS resource from multi-TRP is precoded. Hence, it is essential to design CSI sharing mechanism.
  • CSI-RS resource for non-PMI based CSI measurement technique is precoded, it is not appropriate to share CSI between single-TRP and multi-TRP measurement hypotheses if CSI-RS resource from single-TRP is non-precoded and CSI-RS resource from multi-TRP is precoded. Hence, it is essential to design CSI sharing mechanism.
  • the UE may operate single-TRP transmission and multi-TRP transmission simultaneously.
  • RI sharing is more flexible.
  • CSI reporting associated with single-TRP and multi-TRP measurement hypotheses if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled. For example, if the UE only reports the RI of multi-TRP measurement hypotheses and does not report the RI of single-TRP measurement hypotheses, the UE can apply the reported RI for single-TRP transmission.
  • CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • report quantity e.g., higher layer parameter reportQuantity
  • the rank is calculated based on the number of ports and port indices of the CSI-RS resource for non-PMI based CSI measurement and reporting, if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, it means that the configuration of CSI-RS resources for single-TRP and multi-TRP measurement are the same. With the same configuration of CSI-RS resource, it is fair to share the RI between single-TRP and multi-TRP measurement hypotheses.
  • CSI reporting associated with single-TRP and multi-TRP measurement hypotheses if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • report quantity e.g., higher layer parameter reportQuantity
  • the port indices of the CSI-RS resource may be indicated by non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) .
  • non-PMI port indication parameter e.g., higher layer parameter non-PMI-PortIndication
  • CSI reporting associated with single-TRP and multi-TRP measurement hypotheses if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a rank indicator (RI) for single-TRP and a RI for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses can be enabled. For example, if UE only reports the RI of multi-TRP measurement hypotheses and does not report the RI of single-TRP measurement hypotheses, UE can apply the reported RI for single-TRP transmission.
  • a CSI report configuration e.g., higher layer parameter CSI-ReportConfig
  • report quantity e.g., higher layer
  • the CQI is calculated based on the number of ports and port indices of the CSI-RS resource for non-PMI based CSI measurement and reporting, if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, it means that the configuration of CSI-RS resources for single-TRP and multi-TRP measurement are the same. With the same configuration of CSI-RS resource, it is fair to share the CQI between single-TRP and multi-TRP measurement hypotheses.
  • CSI reporting associated with single-TRP and multi-TRP measurement hypotheses if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, CQI sharing between single-TRP and multi-TRP measurement hypotheses can be enabled, where the port indices of the CSI-RS resource are indicated by non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) . For example, if UE only reports the C
  • FIG. 10 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • the system may have more or less components, and/or different architectures.
  • the methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

A user equipment (UE) executes method for channel state information (CSI) measurement. The UE determines a sequence of port indices of a CSI-RS resource from a first TRP according to a CSI report configuration to obtain port indices for the first TRP, and a sequence of port indices of a CSI-RS resource from a second TRP according to the CSI report configuration to obtain port indices for the second TRP. The UE performs CSI measurement for the first TRP using the port indices for the first TRP and CSI measurement for the second TRP using port indices for the second TRP. The UE reports the CSI measurement for the first TRP and the CSI measurement for the second TRP.

Description

USER EQUIPMENT, BASE STATION, AND METHOD FOR CHANNEL STATE INFORMATION (CSI) MEASUREMENT Technical Field
The present disclosure relates to the field of multiple input multiple output (MIMO) wireless communication systems, and more particularly, to user equipment and a method for CSI measurement and report.
Background Art
Wireless communication systems, such as the third-generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications. Communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN comprises a set of base stations (BSs) that provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control. As will be appreciated, the RAN and CN each conduct respective functions in relation to the overall network. The 3rd Generation Partnership Project has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells are supported by a base station known as a gNB.
To exploit multiple path propagation, multi-input multi-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmitting antennas and multiple receiving antennas deployed at a transmitter and a receiver. MIMO is a practical technique that improves spectral efficiency by sending and receiving multiple data streams simultaneously over the same radio channel. A UE can be equipped with multiple panel entities (i.e., transmission/reception points, TRPs) of which one or multiple panel entities can be activated at a time.
Technical Problem
When a UE is configured with channel state information (CSI) feedback without precoding matrix indicator (PMI) , if a subset of ports in a CSI reference signal (CSI-RS) resource can be semi-statically configured for a rank hypothesis for CSI measurement, there can be no mismatch between the precoding that is assumed for CSI calculation and the precoding that is used for physical downlink shared channel (PDSCH) transmission. Hence, port indices configuration should be indicated for UE and base station.
Without knowledge of radio interference at the UE, a gNB cannot perfectly determines rank solely based on the UL channel measurement. Hence, a gNB should transmit precoded CSI-RS resources to a UE, and the UE achieves better link adaptation based on the indicated port indices of CSI-RS resources.
If the uplink control information (UCI) payload can be reduced through CSI sharing, including rank indicator (RI) and channel quality indicator (CQI) . Hence, it is essential to design CSI sharing mechanism.
An enhanced method is desired to address the potential issues for non-PMI based CSI measurement and reporting in multi-TRP/panel non-coherent joint transmission (NCJT) measurement hypothesis.
Technical Solution
An object of the present disclosure is to propose a user equipment, a base station, and a method for CSI measurement.
In a first aspect, an embodiment of the invention provides an uplink configuration method, executable in a user equipment (UE) , comprising:
determining a sequence of port indices of a CSI-RS resource from a first TRP according to a CSI report configuration to obtain port indices for the first TRP, wherein the sequence of the port indices of the CSI-RS resource from the first TRP is configured;
determining a sequence of port indices of a CSI-RS resource from a second TRP according to the CSI report configuration to obtain port indices for the second TRP, wherein the sequence of the port indices of the CSI-RS resource from the second TRP is configured;
performing CSI measurement for the first TRP using the port indices for the first TRP and CSI measurement for the second TRP using port indices for the second TRP; and
reporting the CSI measurement for the first TRP and the CSI measurement for the second TRP.
In a second aspect, an embodiment of the invention provides a user equipment (UE) comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
In a third aspect, an embodiment of the invention provides uplink configuration method, executable in a user equipment (UE) , comprising:
transmitting a CSI report configuration to a user equipment (UE) through a downlink, wherein the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from a first TRP among port indices for the first TRP, the sequence of the port indices of the CSI-RS resource from the first TRP is configured, the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from a second TRP among port indices for the second TRP, and the sequence of the port indices of the CSI-RS resource from the second TRP is configured; and receiving CSI measurement for the first TRP that is based on the port indices for the first TRP and CSI measurement for the second TRP that is based on the port indices for the second TRP.
In a fourth aspect, an embodiment of the invention provides a base station comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer-executable instructions stored in a non-transitory computer readable medium. The non-transitory computer-readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method.
The non-transitory computer-readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read-Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read-Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as a computer program product, that causes a computer to execute the disclosed method.
The disclosed method may be programmed as a computer program, that causes a computer to execute the disclosed method.
Advantageous Effects
The disclosed method provides improvement to non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis, including:
● port indices configuration;
● CSI measurement and report; and
● CSI sharing.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 illustrates a schematic view showing an example of multi-TRP/panel SRS transmission and multi-TRP/panel CSI-RS transmission.
FIG. 2 illustrates a schematic view showing an example of single-TRP/panel SRS transmission and single-TRP/panel CSI-RS transmission.
FIG. 3 illustrates a schematic view of a telecommunication system.
FIG. 4 illustrates a schematic view showing an embodiment of the disclosed method for CSI measurement.
FIG. 5 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
FIG. 6 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
FIG. 7 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
FIG. 8 illustrates a schematic view showing an example of sequences of port indices for the two TRPs.
FIG. 9 illustrates a schematic view showing an example of indicated port indices for the two TRPs.
FIG. 10 illustrates a schematic view showing a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
Multi-TRP/panel based SRS and CSI-RS transmission:
The main idea of this disclosure is to provide a method for non-PMI based feedback mechanism, through which a transmitter, such as a UE, is allowed to apply the non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis.
In this disclosure, several solutions are proposed to apply the non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis, which include port index configuration, CSI measurement and reporting, CSI sharing between single-TRP and multi-TRP measurement hypotheses. First of all, regarding port index configuration, several methods are disclosed to indicate port indices according to the non-PMI port indication parameter. Secondly, regarding CSI measurement and reporting, RI and CQI is calculated based on the indicated port indices. Thirdly, regarding CSI sharing between single-TRP and multi-TRP measurement, a method for  RI sharing and CQI sharing is provided to reduce the UCI overhead. Taking these methods into consideration, the support for the non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis is greatly enhanced.
As shown in the FIG 1 (a) , for a UE 10b operating in multi-TRP/panel transmission in NR, SRS can be transmitted in different transmission occasions toward a first TRPs 100_1 and a second TRP 100_2 so that the UE 10b has multiple chances to transmit SRS. Additionally, multiple SRS can be transmitted from  multiple panels  41, 42, and 43 simultaneously toward multiple TRPs 100_1 and 100_2. SRS transmission targeting towards different TRPs can avoid possible blockage between a single TRP and the UE. As a result, SRS transmission towards multiple TRPs not only enhance the reliability but also improve the coverage.
As shown in the FIG. 1 (b) , for the UE 10b operating in multi-TRP/panel transmission in NR, CSI-RS can be transmitted from different TRPs 100_1 and 100_2 so that a base station, such as a gNB, has multiple chances to transmit CSI-RS. Additionally, multiple CSI-RS can be received from  multiple panels  41, 42, and 43 simultaneously. CSI-RS transmission transmitted from multiple TRPs not only enhance the reliability but also improve the coverage.
As shown in the FIG. 2 (a) , for a UE 10b operating in single-TRP/panel transmission in NR, SRS can be transmitted from a panel, such as one of the  panel  41, 42, or 43, toward the first TRP 100_1. As only one panel is activated, the transmitted power can be saved. Additionally, it can simplify the detection in the gNB. As shown in the FIG. 2 (b) , for the UE 10b operating in single-TRP transmission in NR, CSI-RS is transmitted from the single TRP 100_1 to the UE 10b.
Since both uplink and downlink share the same frequency band in a time-division duplex (TDD) system, channel reciprocity is an important advantage of a TDD system, in which a base station, such as a gNB, can obtain the downlink CSI based on the uplink channel estimation without additional feedback. Thus, the overhead and delay of CSI feedback can be greatly reduced especially in a multi-input multi-output (MIMO) system configured with multiple antennas. For non-PMI based CSI measurement and reporting, channel reciprocity plays an import role in CSI acquisition. In this field of technique, the UE transmits SRS to two TRPs and then gNB can determine the best precoder for CSI-RS transmission of each TRP link according to the channel measurement based on SRS.
This invention proposes some methods to enhance non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis.
With reference to FIG. 3, an example of the UE 10b in the description may include UE 10a. An example of the base station in the description may include  base station  20a or 20b. A first TRP and a second TRP in the description may comprise two radio nodes. The two radio nodes may be connected to one base station or two different base stations. Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station. Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
With reference to FIG. 3, a telecommunication system including a UE 10a, a base station 20a, a base station 20b, and a network entity device 30 executes the disclosed method according to an embodiment of the present disclosure. FIG. 3 is shown for illustrative not limiting, and the system may comprise more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the FIGs. The UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a. The base station 20a may include a processor 21a, a memory 22a, and a transceiver 23a. The base station 20b may include a processor 21b, a memory 22b, and a transceiver 23b. The network entity device 30 may include a processor 31, a memory 32, and a transceiver 33. Each of the  processors  11a, 21a, 21b, and 31 may be configured to implement proposed functions, procedures, and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processors  11a, 21a, 21b, and 31. Each of the  memory  12a, 22a, 22b, and 32 operatively stores a variety of programs and information to operate a connected processor. Each of the  transceivers  13a, 23a, 23b, and 33 is operatively coupled with a connected processor, transmits and/or receives a radio signal. Each of the  base stations  20a and 20b may be an eNB, a gNB, or one of other radio nodes.
Each of the  processors  11a, 21a, 21b, and 31 may include a general-purpose central processing unit (CPU) , application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12a, 22a, 22b, and 32 may include read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceivers  13a, 23a, 23b, and 33 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 30 may be a node in a CN. CN may include LTE CN or 5GC which may include user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
One or more CSI-RS resources from a TRP, such as one of the first TRP or the second TRP, means One or more CSI-RS resources configured by and transmitted in a configuration from the TRP.
Port index configuration:
When a UE is configured with CSI feedback without PMI, if a subset of ports in a CSI-RS resource can be semi-statically configured for a rank hypothesis for CSI measurement, there is no mismatch between the precoding that is assumed for CSI calculation and the precoding that is used for PDSCH transmission. That is, the gNB applies the same precoding for PDSCH as for CSI-RS.
With reference to FIG. 4, a base station 20, such as the  base station  20a or 20b, transmits (210) CSI report configuration to UE 10 through a downlink signal, such as radio resource control (RRC) signaling. The CSI report configuration comprises CSI-RS resources from a first TRP, such as the first TRP 100_1, and CSI-RS resources from a second TRP, such as the second TRP 100_2. The CSI report configuration comprises a sequence of port indices of a CSI-RS resource from the first TRP among port indices for the first TRP. The sequence of the port indices of the CSI-RS resource from the first TRP is configured. The CSI report configuration comprises a sequence of port indices of a CSI-RS resource from the second TRP among port indices for the second TRP. The sequence of the port indices of the CSI-RS resource from the second TRP is configured.
UE 10, such as the UE 10a or the UE 10b, determines the sequence of port indices of the CSI-RS resource from the first TRP according to the CSI report configuration to obtain port indices for the first TRP (212) . The sequence of the port indices of the CSI-RS resource from the first TRP is configured. The port indices of one or more of CSI-RS resources from the first TRP may be referred to as port indices for the first TRP.
The UE determines the sequence of port indices of the CSI-RS resource from the second TRP according to the CSI report configuration to obtain port indices for the second TRP (212) . The sequence of the port indices of the  CSI-RS resource from the second TRP is configured. The port indices of one or more the CSI-RS resources from the second TRP may be referred to as port indices for the second TRP.
The UE performs CSI measurement for the first TRP using the port indices for the first TRP and CSI measurement for the second TRP using port indices for the second TRP (214) .
The UE reports the CSI measurement for the first TRP and the CSI measurement for the second TRP (216) . The base station 20 receives the CSI measurement for the first TRP and the CSI measurement for the second TRP (218) . The CSI measurement for the first TRP is based on the port indices for the first TRP, and the CSI measurement for the second TRP is based on the port indices for the second TRP
An example of the CSI report configuration comprises a CSI-ReportConfig information element. An example of the CSI-ReportConfig information element in technical specification (TS) 38.331 is shown in following:
Table 1: CSI-ReportConfig information element
Figure PCTCN2021119717-appb-000001
Figure PCTCN2021119717-appb-000002
Figure PCTCN2021119717-appb-000003
Figure PCTCN2021119717-appb-000004
Figure PCTCN2021119717-appb-000005
Presence of higher layer parameter of non-PMI port indication:
One higher layer parameter of non-PMI port indication:
Based on a set of offset values:
If only one higher layer parameter of non-PMI port indication parameter (e.g., non-PMI-PortIndication) is configured in the CSI report configuration, the port indices of the CSI-RS resource from the first TRP can be configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) and a set of offset values can be indicated to determine the port indices of the CSI-RS resource from the second TRP. Thus, the port indices can be configured with less RRC overhead.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if a UE, such as the  UE  10, 10a, or 10b, is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , the sequence of port indices of the CSI-RS resource from the first TRP can be configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the sequence of port indices of the CSI-RS resource from the second TRP can be determined based on the sequence of port indices for the first TRP and RI max offset values, where the offset values are provided per rank, and the offset values can be pre-defined or signaled by DCI, MAC CE, or RRC, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
In detail, the non-PMI port indication parameter (e.g., non-PMI-PortIndication) determines a sequence of port indices for the first TRP, where the port indices are selected from the CSI-RS resource configured and transmitted from the first TRP. Regarding the sequence of port indices for the first TRP, the port indices of CSI-RS resources  transmitted from the first TRP can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of an associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) of in linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP. In the port indices for each CSI-RS resource, port indices of m ports are indicated in order arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000006
where
Figure PCTCN2021119717-appb-000007
are the CSI-RS port indices of the m port for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
NZP-CSI-RS-Resource information element is shown in following:
Table 2: NZP-CSI-RS-Resource information element
Figure PCTCN2021119717-appb-000008
NZP-CSI-RS-ResourceId information element is shown in following:
Table 3: NZP-CSI-RS-ResourceId information element
Figure PCTCN2021119717-appb-000009
For the CSI-RS resource from the second TRP that is configured in the CSI resource setting linked to the  CSI report configuration (e.g., CSI-ReportConfig) , the port indices (i.e., 
Figure PCTCN2021119717-appb-000010
) for rank m are 
Figure PCTCN2021119717-appb-000011
where, offset  (m-1) is an offset associated with rank m, rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource. In a special case, if a number RI max of offsets are the same value, it is equivalent to indicate a single offset value. More specially, if the RI max offset values are equal to 0, it means that for a rank, port indices of CSI-RS resources from two TRPs are the same.
Two set of port indices configured in the non-PMI port indication parameter:
If only one higher layer parameter of non-PMI port indication parameter (e.g., non-PMI-PortIndication) is configured in the CSI report configuration, port indices of a CSI-RS resource from the first TRP and port indices of a CSI-RS resource from the second TRP can be configured in the same non-PMI port indication parameter (e.g., non-PMI-PortIndication) . Additionally, the port indices for the same rank for CSI-RS resources from different TRPs may be the same. Thus, the port indices can be configured with less RRC overhead and less flexibility.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , the sequence of port indices corresponding to at least 2 CSI-RS resources can be configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) . For example, if the number of the configured CSI-RS resource is 2, the port indices is configured for a CSI-RS resource from the first and a CSI-RS resource from second TRPs respectively. That is, the sequence of the port indices of the CSI-RS resource from the first TRP and the sequence of the port indices of the CSI-RS resource from the second TRP are configured in the non-PMI port indication parameter (e.g., non-PMI-PortIndication) .
(1) Port indices is configured based on the order of resource index
If the port indices of CSI-RS from the two TRPs is configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) , there will be less spec impact.
The non-PMI port indication parameter (e.g., non-PMI-PortIndication) determines a sequence of port indices for the first and second TRP, where the port indices for the first TRP are selected from the CSI-RS resource transmitted from the first TRP and the port indices for the second TRP are selected from the CSI-RS resource transmitted from the second TRP.
Regarding the sequence of port indices, the port indices of at least 2 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where port indices of the CSI-RS resources from the first and second TRP are configured in a single sequence. In the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000012
where
Figure PCTCN2021119717-appb-000013
are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
In an example, non-PMI port indication parameter (e.g., non-PMI-PortIndication) may comprise one or up  to K1 instances of the higher layer parameter of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) for the first TRP and one or up to K2 instances of the higher layer parameter of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) for the second TRP. An example of the detailed sequence of port indices for the first and second TRP is shown in the following:
Table 4:
Figure PCTCN2021119717-appb-000014
Port indices are represented by parameters of PortIndex2, PortIndex4, or PortIndex8 in the portIndex2, portIndex4, or portIndex8. Parameters portIndex2, portIndex4, and portIndex8 are included in parameter PortIndexFor8Ranks.
As shown in FIG. 5, the number of ports of the first and second CSI-RS resources is 8, i.e., a variable of port index p i, where i=0, 1, …, or 7. For the two CSI-RS resources, the indicated port indices are the same for the same rank. For example, regarding rank4, the indicated port indices of the first and second CSI-RS resources are  p 0,p 1, p 2, p 3. Since the precoder for first and second CSI-RS resources may be different, UE can select the ports of different rank according to the channel condition.
(2) Port indices is configured based on two groups:
Since the non-PMI port indication parameter (e.g., non-PMI-PortIndication) determines a sequence of port indices, if the sequence of port indices is divided into two groups and each group of port indices corresponds to the CSI-RS resources from a separate TRP, UE can derive the port indices for the two TRPs easily.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, the non-PMI port indication parameter (e.g., non-PMI-PortIndication) determines a combined sequence of port indices, and the sequence of port indices is divided into two groups, including a first group and a second group, where the first group of port indices corresponds to the CSI-RS resources from the first TRP, and the second group of port indices corresponds to the CSI-RS resources from the second TRP. That is, the first group of port indices comprises the sequence of the port indices of the CSI-RS resource from the first TRP and the second group of port indices comprises the sequence of the port indices of the CSI-RS resource from the second TRP.
For the first group of port indices for the first TRP, the port indices of up to K1 CSI-RS resources can be configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP.
For the second group of port indices for the second TRP, the port indices of up to K2 CSI-RS resources can be configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the second TRP.
In the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000015
where
Figure PCTCN2021119717-appb-000016
are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
Two higher layer parameters of non-PMI port indication:
If two higher layer parameters of non-PMI port indication parameter (e.g., non-PMI-PortIndication) are configured and each corresponds to the CSI-RS resource transmitted from a separate TRP, port indication of different CSI-RS resources from different TRPs can be configured freely.
One higher layer parameter of port index for eight ranks:
In an embodiment, the CSI report configuration comprises a non-PMI-PortIndication1 and a non-PMI-PortIndication2.
If only one higher layer parameter of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) is configured, the port indices of the CSI-RS resource from the first and the port indices of the CSI-RS resource from second TRPs can be configured in a first non-PMI port indication parameter (e.g., non-PMI-PortIndication) and second non-PMI port indication parameter (e.g., non-PMI-PortIndication) respectively. That is, the sequence of the  port indices of the CSI-RS resource from the first TRP may be configured in the first non-PMI port indication parameter (e.g., non-PMI-PortIndication) , and the sequence of the port indices of the CSI-RS resource from the second TRP may be configured in the second non-PMI port indication parameter (e.g., non-PMI-PortIndication) . The port indices for the same rank for CSI-RS resources from different TRPs are the same. Thus, the port indices of CSI-RS resource from different TPRs can be configured flexibly and saved RRC overhead.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , a second non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) can be added in the CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) . That is, the first non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the second non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) are included in the CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) . The first non-PMI port indication parameter (e.g., non-PMI-PortIndication) is used for indicating the port indices of the CSI-RS resource from the first TRP, and the second non-PMI port indication parameter (e.g., non-PMI-PortIndication) is used for indicating the port indices of the CSI-RS resource from the second TRP.
In detail, the first non-PMI port indication parameter (e.g., non-PMI-PortIndication) determines a sequence of port indices for the first TRP, where the port indices are selected from the CSI-RS resource transmitted from the first TRP. In the sequence of the port indices of the CSI-RS resource from the first TRP, the port indices of up to K1 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP. In the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000017
where
Figure PCTCN2021119717-appb-000018
are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
The second non-PMI port indication parameter (e.g., non-PMI-PortIndication) determines a sequence of port indices for the second TRP, where the port indices are selected from the CSI-RS resource transmitted from the second TRP. In the sequence of the port indices of the CSI-RS resource from the second TRP, the port indices of up to K2 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the second TRP. In the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000019
where
Figure PCTCN2021119717-appb-000020
are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
An example of the detailed sequence of port indices for the first TRP and sequence of port indices for the second TRP is shown in the following:
Table 5:
Figure PCTCN2021119717-appb-000021
As shown in FIG. 6, the number of ports of the first and second CSI-RS resources is 8, i.e., p i, i=0, 1, …, 7. For the two CSI-RS resources, the indicated port indices are the same for the same rank. For example, regarding rank4, the indicated port indices of the first and second CSI-RS resources are p 0, p 1, p 2, p 3.
Two higher layer parameters of port index for eight ranks:
In an embodiment, the CSI report configuration comprises a combination of a non-PMI-PortIndication1 and a PortIndexFor8Ranks1 for TRP 1 and a combination of a non-PMI-PortIndication2 and a PortIndexFor8Ranks2 for TRP 2
If two higher layer parameters of port index for eight ranks parameter (e.g., PortIndexFor8Ranks) are configured and each of the two higher layer parameters of port index for eight ranks parameter corresponds to a CSI-RS resource transmitted from a separate TRP, port indices for the same rank for CSI-RS resources from different TRPs can be different. Hence, the port indices and CSI-RS resource for different TPRs can be configured flexibly and adapted to the dynamic change of different links between TRP and UE.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , a second non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) and a second port index for eight ranks parameter (e.g., higher layer parameter PortIndexFor8Ranks) can be added in the CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) . The first non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the first port index for eight ranks parameter (e.g., PortIndexFor8Ranks) are used for indicating the sequence of the port indices of the CSI-RS resource from the first TRP. The second non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the second port index for eight ranks parameter (e.g., PortIndexFor8Ranks) are used for indicating the sequence of the port indices of the CSI-RS resource from the second TRP.
In detail, the first non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the first port index for eight ranks parameter (e.g., PortIndexFor8Ranks) determine a sequence of port indices for the first TRP, where the port indices are selected from the CSI-RS resource transmitted from the first TRP.
In the sequence of port indices for the first TRP, the port indices of up to K1 CSI-RS resources can be configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., higher layer parameter NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., higher layer parameter resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the first TRP. In the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000022
where
Figure PCTCN2021119717-appb-000023
are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
The second non-PMI port indication parameter (e.g., non-PMI-PortIndication) and the second port index for eight ranks parameter (e.g., PortIndexFor8Ranks) determine a sequence of port indices for the second TRP, where the port indices are selected from the CSI-RS resource transmitted from the second TRP.
In the sequence of port indices for the second TRP, the port indices of up to K2 CSI-RS resources can be configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index (e.g., NZP-CSI-RS-ResourceId) in the linked CSI resource setting indicated by resources for channel measurement parameter (e.g., resourcesForChannelMeasurement) linked to the CSI report configuration, where the CSI-RS resources are transmitted from the second TRP. In the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, i.e., the port indices of the m port are indicated as: 
Figure PCTCN2021119717-appb-000024
where
Figure PCTCN2021119717-appb-000025
are the CSI-RS port indices for rank n, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
An example of the detailed sequence of port indices for the first TRP and sequence of port indices for the second TRP is shown in the following:
Table 6:
Figure PCTCN2021119717-appb-000026
Figure PCTCN2021119717-appb-000027
As shown in FIG. 7, the number of ports of the first and second CSI-RS resources is 8, i.e., p i, i=0, 1, …, 7. For the two CSI-RS resources, the indicated port indices can be different for the same rank. For example, regarding rank4, the indicated port indices of the first CSI-RS resource are p 0, p 1, p 2, p 3; while the indicated port indices of the second CSI-RS resource are p 3, p 4, p 5, p 6.
Absence of higher layer parameter of non-PMI port indication:
If UE is not configured with higher layer parameter of non-PMI port indication parameter (e.g., non-PMI-PortIndication) , i.e., the CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) has no non-PMI port indication parameter (e.g., non-PMI-PortIndication) for the UE, the default assumption on port indices of CSI-RS resource from the two TRPs should be provided.
Based on offset:
If a set of default port indices is provided for the first TRP and several offset values can be indicated to determine the port indices for the second TRP. That is, a set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, and a set of offset values is provided for the second TRP and utilized by the UE to determine the sequence of the port indices of the CSI-RS resource from the second TRP. Thus, the port indices for the second TRP are configurable.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' and the higher layer parameter of non-PMI port indication parameter (e.g., non-PMI-PortIndication) is not configured, a set of default port indices is provided for the first TRP, and a number RI max of offset values can be indicated to determine the sequence of the  port indices of the CSI-RS resource from the second TRP, where the offset values are provided per rank and the offset values can be pre-defined or signaled by downlink control information (DCI) , medium access control (MAC) control element (CE) , or radio resource control (RRC) , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
In detail, for the CSI-RS resource from the first TRP that is configured in the CSI resource setting linked to the CSI report configuration (e.g., CSI-ReportConfig) , the default port indices (i.e., 
Figure PCTCN2021119717-appb-000028
) for rank m are {0, …, m-1} , where rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
For the CSI-RS resource from the second TRP that is configured in the CSI resource setting linked to the CSI report configuration (e.g., CSI-ReportConfig) , the port indices (i.e., 
Figure PCTCN2021119717-appb-000029
) for rank n are { (0+offset  (n-1) ) mod P, …, ( (n-1) +offset  (n-1) ) mod P} , where rank n=1, 2, …, RI max , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource. Especially, if the RI max offsets are the same value, it is equivalent to indicate a single offset value. More specially, if the RI max offsets are equal to 0, it means that for a rank, default port indices of CSI-RS resources from two TRPs are the same.
Two sets of default port indices:
If two sets of default port indices are provided and each corresponds to a separate TRP, the default port indices can be provided with more flexibility. For example, a first set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, and a second set of default port indices is provided for the second TRP as the sequence of the port indices of the CSI-RS resource from the second TRP.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' and the higher layer parameter of non-PMI port indication parameter (e.g., non-PMI-PortIndication) is not configured, two sets of default port indices are provided and each corresponds to a separate TRP, where each set of default port indices is provided per rank.
In detail, for the CSI-RS resource from the first TRP that is configured in the CSI resource setting linked to the CSI report configuration (e.g., CSI-ReportConfig) , the default port indices (i.e., 
Figure PCTCN2021119717-appb-000030
) for rank m are {0, …, m-1} , where rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
for the CSI-RS resource from the second TRP that is configured in the CSI resource setting linked to the CSI report configuration (e.g., CSI-ReportConfig) , the default port indices (i.e., 
Figure PCTCN2021119717-appb-000031
) for rank n are { (n) mod P, …, (2·n-1) mod P} , where rank n=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
As shown in FIG. 8, the number of ports of the first and second CSI-RS resources is 8, i.e., p i, i=0, 1, …, 7. For the two CSI-RS resources, the default port indices can be different for the same rank. For example, regarding rank4, the default port indices of the first CSI-RS resource are p 0, p 1, p 2, p 3; while the default port indices of the second CSI-RS resource are p 4, p 5, p 6, p 7.
CSI measurement and report:
Since a gNB is not aware of the interference at the UE, if the gNB determines rank directly based on the  UL channel measurement, the rank selected by gNB may not be the optimal rank. Hence, a base station, such as a gNB, should transmit precoded CSI-RS resource to the UE, and the UE achieves better link adaptation based on the indicated port indices of CSI-RS resource.
RI calculation and report:
RI calculation:
Since different ranks are optimal in different signal-to-interference plus noise ratio (SINR) levels, it is better for UE to determine the optimal transmission rank.
the sequence of the port indices of the CSI-RS resource from the first TRP may be indicated port indices of the CSI-RS resource from the first TRP, and the sequence of the port indices of the CSI-RS resource from the second TRP may be indicated port indices of the CSI-RS resource from the second TRP.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , the UE determines a rank for transmission from the first TRP based on the indicated port indices of the CSI-RS resource from the first TRP and a rank for transmission from the second TRP based on the indicated port indices of the CSI-RS resource from the second TRP. As described in the aforementioned embodiments, the indicated port indices for the first and second TRPs are determined by the corresponding non-PMI port indication parameter (e.g., non-PMI-PortIndication) and port index for eight ranks parameter (e.g., PortIndexFor8Ranks) respectively.
For rank calculation of the rank of the first TRP, for a dedicated rank m, the first m columns of an identity matrix are applied on the indicated port indices of CSI-RS resource from the first TRP associated with rank m, and rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource. The UE determines the rank of the first TRP from all potential ranks based a dedicated criterion (e.g., SINR criterion, an SINR value, or an SINR range) . Potential rank is 1, 2, …, RI max.
For rank calculation of the rank of the second TRP, for a dedicated rank n, the first n columns of an identity matrix are applied on the indicated port indices of CSI-RS resource from the second TRP associated with rank n, and rank n=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource. The UE determines the rank of the second TRP from all potential ranks based a dedicated criterion (e.g., SINR criterion, an SINR value, or an SINR range) . Potential rank is 1, 2, …, RI max. The UE determines a rank of multi-TRP associated with the first TRP and the second TRP as the sum of the determined rank of the first TRP and the determined rank of the second TRP.
The UE reports the determined rank of multi-TRP associated with the first TRP and the second TRP to the base station. Alternatively, the UE reports the determined rank of the first TRP and the determined rank of the second TRP to the base station.
As shown in FIG. 9, the number of ports of the first and second CSI-RS resources is 4, i.e., p i, i=0, 1, …, 3. For the first CSI-RS resources, the indicated port indices for rank m=1, 2, …, 4 are p 0; p 0, p 1; p 0, p 1, p 2; p 0, p 1, p 2, p 3 respectively; while for the second CSI-RS resources, the indicated port indices for rank n=1, 2, …, 4 are p 1; p 2, p 3; p 1, p 2, p 3; p 0, p 1, p 2, p 3 respectively.
RI report:
(1) Report RIs directly:
If the determined ranks of two TRPs are reported directly to fully reflect the channel states, the ranks can  achieve better link adaptation.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , the UE directly reports the determined ranks for the first TRP and the second TRP to the base station without any other restriction, where the rank for transmission from the first TRP is determined based on the indicated port indices of CSI-RS resource from the first TRP and the rank for transmission from the second TRP is determined based on the indicated port indices of CSI-RS resource from the second TRP. The rank for transmission from the first TRP is referred to as a rank of the first TRP, and the rank for transmission from the second TRP is referred to as a rank of the second TRP. The UE reports the determined rank of multi-TRP associated with the first TRP and the second TRP to the base station. Alternatively, the UE reports to the base station the rank of the first TRP as a reported rank of the first TRP, and the rank of the second TRP as a reported rank of the second TRP.
(2) Report the restricted RIs
To reduce the RI feedback overhead, a subset of RI combinations is reported. In multi-TRP/panel scenario, for rankm=2, 3, …, 8 , the corresponding rank combinations for two TRPs can be (1+1) , (1+2, 2+1) , (2+2) , (2+3) , (3+3) , (3+4) , (4+4) respectively. It means that the reported RIs of two TRPs should be one of the listed rank combinations. Hence, each reported RI should be one of the elements of the rank combinations. The Table 7 shows value of rank m of multi-TRP and related rank combinations for two TRPs, where rankm=2, 3, …, or 8.
Table 7:
Rank m Related rank combinations for two TRPs
Rank 2 (1+1)
Rank 3 (1+2) , (2+1)
Rank 4 (2+2) ,
Rank 5 (2+3) , (3+2)
Rank 6 (3+3) ,
Rank 7 (3+4) , (4+3)
Rank 8 (4+4)
In the related rank combinations of rank m of multi-TRP, a first element in a related rank combination represents a determined rank of the first TRP, and a second element in a related rank combination represents a determined rank of the second TRP.
A matched related rank combination of the determined rank of multi-TRP is a related rank combination identical to a combination of the determined rank of the first TRP plus the determined rank of the second TRP. That is, a first element (i.e., the first operand) in the matched related rank combination of the corresponding element equal to the determined rank of the first TRP and a second element (i.e., the second operand) in the matched related rank combination of the corresponding element equal to the determined rank of the second TRP. A corresponding element rank m of the determined rank of multi-TRP is a value of rank m that is associated with a matched related rank combination of the determined rank of multi-TRP and the determined rank of multi-TRP has a RI value equal to m.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with  the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if the determined rank of multi-TRP associated with the first TRP and the second TRP is larger than a corresponding element of a related rank combination, the reported RI is the corresponding element representing the related rank combination; and if the determined rank of multi-TRP is smaller than the corresponding element of rank combination, the determined rank of multi-TRP are discarded. That is, when the determined rank of multi-TRP has only one corresponding element, the UE reports the corresponding element as the reported rank of multi-TRP. When the determined rank of multi-TRP has a plurality of corresponding elements, the UE reports the smallest corresponding element in the plurality of corresponding elements as the reported rank of multi-TRP. When the determined rank of multi-TRP has no corresponding element, the UE discards the determined rank of multi-TRP. For example, with reference to Table 8, a determined rank 4 of multi-TRP is obtained from a sum of a determined RI 1 of the first TRP and a determined RI 3 of the second TRP. The determined rank 4 of multi-TRP has a corresponding element rank 4 in the Table 7, but is discarded because the determined rank 4 of multi-TRP does not have a matched related rank combination of the corresponding element. Rank 4 in the Table 7 does not have a related rank combination (1+3) .
Hence, based on the determined RIs, the corresponding reported RIs can be shown in Table 1.
Table 8: Determined RIs and reported RIs mapping
Figure PCTCN2021119717-appb-000032
As shown in the Table 8, if the determined RI of the first TRP is 1 and determined RI of the second TRP is 2/3/4, the reported RI of two TRPs are (1+2) . If the determined RIs of the first and second TRP are 3 and 1 respectively, the determined RIs are discarded.
CQI calculation:
Since CQI is calculated based on the reported rank and port indices corresponding to the reported rank, it is necessary to design method to calculate CQI in multi-TRP/panel scenario to achieve better throughput performance.
In an embodiment of the invention, for non-PMI based CSI measurement and reporting in multi-TRP/panel scenario, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , when calculating a CQI for the  reported rank of the first TRP, the UE uses the indicated the port indices of CSI-RS resource from the first TRP associated with the reported rank of the first TRP; when calculating a CQI for the reported rank of the second TRP, the UE uses the indicated port indices of CSI-RS resource from the second TRP associated with the reported rank of the second TRP.
For a precoder V 1 of the first TRP, for a reported rank m of the first TRP, the first m columns of an identity matrix are applied on the indicated port indices of the CSI-RS resource from the first TRP associated with rank m. The UE estimates a channel between the first TRP and the UE based on the CSI-RS resource from the first TRP and obtains a channel estimation matrix H 1 representing the channel between the first TRP and the UE.
For a precoder V 2 of the second TRP, for a reported rank n of the second TRP, the first n columns of an identity matrix are applied on the indicated port indices of the CSI-RS resource from the second TRP associated with rank n. The UE estimates a channel between the second TRP and the UE based on the CSI-RS resource from the second TRP and obtains a channel estimation matrix H 2 representing the channel between the second TRP and the UE.
Based on the above analysis, the precoder of the first TRP is V 1 and the estimated channels between the first TRP and UE is H 1; while the precoder of the second TRP is V 2 and the estimated channels between the first TRP and UE is H 2. The UE calculates the CQI based on these two precodersV 1 and V 2 and the channel estimation matrix H 1 and the channel estimation matrix H 2.
As shown in FIG. 9, the number of ports of the first and second CSI-RS resources is 4, i.e., p i, i=0, 1, …, 3. If the ranks of the two TRPs are 2, when calculating CQI, the indicated port indices for rank2 are p 0, p 1 for the first CSI-RS resources; while the indicated port indices for rank2 are p 2, p 3 for the second CSI-RS resources.
CSI sharing between single-TRP and multi-TRP measurement hypotheses:
If the CSI (e.g., RI and CQI) is shared between single-TRP and multi-TRP measurement hypotheses, UCI payload can be reduced. Since the CSI-RS resource for non-PMI based CSI measurement technique is precoded, it is not appropriate to share CSI between single-TRP and multi-TRP measurement hypotheses if CSI-RS resource from single-TRP is non-precoded and CSI-RS resource from multi-TRP is precoded. Hence, it is essential to design CSI sharing mechanism.
RI sharing:
Without limitation:
The UE may operate single-TRP transmission and multi-TRP transmission simultaneously. For the single-TRP and multi-TRP measurement hypotheses with non-PMI based CSI measurement and reporting, if RI sharing between single-TRP and multi-TRP measurement hypotheses is applied without any limitation, RI sharing is more flexible.
In an embodiment of the invention, for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled. For example, if the UE only reports the RI of multi-TRP measurement hypotheses and does not report the RI of single-TRP measurement hypotheses, the UE can apply the reported RI for single-TRP transmission.
CSI-RS resources with the same number of ports and port indices:
Since the rank is calculated based on the number of ports and port indices of the CSI-RS resource for non-PMI based CSI measurement and reporting, if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, it means that the configuration of CSI-RS resources for single-TRP and multi-TRP measurement are the same. With the same configuration of CSI-RS resource, it is fair to share the RI between single-TRP and multi-TRP measurement hypotheses.
In an embodiment of the invention, for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled. As described in the aforementioned embodiments, the port indices of the CSI-RS resource may be indicated by non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) . For example, if UE only reports the RI of multi-TRP measurement hypotheses and does not report the RI of single-TRP measurement hypotheses, the UE can apply the reported RI for single-TRP transmission.
The same RI:
If the RI for single-TRP and multi-TRP measurement are the same, it is fair to share the RI between single-TRP and multi-TRP measurement hypotheses.
In an embodiment of the invention, for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a rank indicator (RI) for single-TRP and a RI for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses can be enabled. For example, if UE only reports the RI of multi-TRP measurement hypotheses and does not report the RI of single-TRP measurement hypotheses, UE can apply the reported RI for single-TRP transmission.
CQI sharing:
Since the CQI is calculated based on the number of ports and port indices of the CSI-RS resource for non-PMI based CSI measurement and reporting, if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, it means that the configuration of CSI-RS resources for single-TRP and multi-TRP measurement are the same. With the same configuration of CSI-RS resource, it is fair to share the CQI between single-TRP and multi-TRP measurement hypotheses.
In an embodiment of the invention, for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with a CSI report configuration (e.g., higher layer parameter CSI-ReportConfig) with the report quantity (e.g., higher layer parameter reportQuantity) set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, CQI sharing between single-TRP  and multi-TRP measurement hypotheses can be enabled, where the port indices of the CSI-RS resource are indicated by non-PMI port indication parameter (e.g., higher layer parameter non-PMI-PortIndication) . For example, if UE only reports the CQI of multi-TRP measurement hypotheses and does not report the CQI of single-TRP measurement hypotheses, UE can apply the reported CQI for single-TRP transmission.
FIG. 10 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, the system may have more or less components, and/or different architectures. Where appropriate, the methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
In this disclosure, several solutions are proposed to apply the non-PMI based CSI measurement and  reporting in multi-TRP/panel NCJT measurement hypothesis, which include port index configuration, CSI measurement and reporting, CSI sharing between single-TRP and multi-TRP measurement hypotheses. First of all, regarding port index configuration, several methods are disclosed to indicate port indices according to the non-PMI port indication parameter. Secondly, regarding CSI measurement and reporting, RI and CQI is calculated based on the indicated port indices. Thirdly, regarding CSI sharing between single-TRP and multi-TRP measurement, a method for RI sharing and CQI sharing is provided to reduce the UCI overhead. Taking these methods into consideration, the support for the non-PMI based CSI measurement and reporting in multi-TRP/panel NCJT measurement hypothesis is greatly enhanced.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (84)

  1. A method for channel state information (CSI) measurement, executable in a user equipment (UE) , comprising:
    determining a sequence of port indices of a CSI-RS resource from a first TRP according to a CSI report configuration to obtain port indices for the first TRP, wherein the sequence of the port indices of the CSI-RS resource from the first TRP is configured;
    determining a sequence of port indices of a CSI-RS resource from a second TRP according to the CSI report configuration to obtain port indices for the second TRP, wherein the sequence of the port indices of the CSI-RS resource from the second TRP is configured;
    performing CSI measurement for the first TRP using the port indices for the first TRP and CSI measurement for the second TRP using port indices for the second TRP; and
    reporting the CSI measurement for the first TRP and the CSI measurement for the second TRP.
  2. The method of claim 1, wherein in the CSI report configuration, only one higher layer parameter of non-PMI port indication parameter method for CSI measurement is configured, the port indices of the CSI-RS resource from the first TRP are configured in the non-PMI port indication parameter, and a set of offset values are indicated to determine the port indices of the CSI-RS resource from the second TRP.
  3. The method of claim 2, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the sequence of port indices of the CSI-RS resource from the first TRP is configured in the non-PMI port indication parameter and the sequence of port indices of the CSI-RS resource from the second TRP is determined based on the sequence of port indices for the first TRP and RI max offset values, and the offset values are provided per rank.
  4. The method of claim 3, wherein the offset values are pre-defined or signaled by DCI, MAC CE, or RRC.
  5. The method of claim 3, wherein RI max=min (8, P) , and P is a number of ports in the CSI-RS resource.
  6. The method of claim 3, wherein port indices of CSI-RS resources transmitted from the first TRP are configured and the port indices for each CSI-RS resource are configured based on order arrangement of an associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration.
  7. The method of claim 6, wherein in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated in the CSI report configuration as: 
    Figure PCTCN2021119717-appb-100001
    wherein
    Figure PCTCN2021119717-appb-100002
    are the CSI-RS port indices of the m port for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  8. The method of claim 7, wherein for the CSI-RS resource from the second TRP that is configured in the CSI resource setting linked to the CSI report configuration, the port indices
    Figure PCTCN2021119717-appb-100003
    for rank m are
    Figure PCTCN2021119717-appb-100004
    Figure PCTCN2021119717-appb-100005
    where, offset  (m-1) is an offset associated with rank m, rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  9. The method of claim 1, wherein in the CSI report configuration, only one higher layer parameter of non-PMI port indication parameter is configured, the port indices of a CSI-RS resource from the first TRP and the port indices of a  CSI-RS resource from the second TRP are configured in the same non-PMI port indication parameter.
  10. The method of claim 9, wherein the port indices for the same rank for CSI-RS resources from different TRPs are the same.
  11. The method of claim 9, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the sequence of port indices corresponding to at least 2 CSI-RS resources is configured in the non-PMI port indication parameter, the sequence of the port indices of the CSI-RS resource from the first TRP and the sequence of the port indices of the CSI-RS resource from the second TRP are configured in the non-PMI port indication parameter.
  12. The method of claim 11, wherein in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100006
    wherein
    Figure PCTCN2021119717-appb-100007
    are the CSI-RS port indices of the m port for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  13. The method of claim 11, wherein the non-PMI port indication parameter determines a combined sequence of port indices, and the combined sequence of port indices is divided into two groups including a first group and a second group, wherein the first group of port indices comprises the sequence of the port indices of the CSI-RS resource from the first TRP and the second group of port indices comprises the sequence of the port indices of the CSI-RS resource from the second TRP.
  14. The method of claim 13, wherein for the first group of port indices for the first TRP, port indices of up to K1 CSI-RS resources are configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the first TRP; and
    for the second group of port indices for the second TRP, port indices of up to K2 CSI-RS resources are configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the second TRP.
  15. The method of claim 14, wherein in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100008
    wherein
    Figure PCTCN2021119717-appb-100009
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  16. The method of claim 1, wherein the sequence of the port indices of the CSI-RS resource from the first TRP is configured in a first non-PMI port indication parameter, and the sequence of the port indices of the CSI-RS resource from the second TRP is configured in a second non-PMI port indication parameter.
  17. The method of claim 16, wherein the port indices for the same rank for CSI-RS resources from different TRPs are the same.
  18. The method of claim 16, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the first non-PMI port indication parameter and the second non-PMI port indication parameter are included in the CSI report configuration.
  19. The method of claim 18, wherein in the sequence of the port indices of the CSI-RS resource from the first TRP, port indices of up to K1 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the first TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100010
    wherein
    Figure PCTCN2021119717-appb-100011
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource; and
    in the sequence of the port indices of the CSI-RS resource from the second TRP, port indices of up to K2 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the second TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100012
    wherein
    Figure PCTCN2021119717-appb-100013
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  20. The method of claim 1, wherein a first non-PMI port indication parameter and a first port index for eight ranks parameter are used for indicating the sequence of the port indices of the CSI-RS resource from the first TRP, and a second non-PMI port indication parameter and a second port index for eight ranks parameter are used for indicating the sequence of the port indices of the CSI-RS resource from the second TRP.
  21. The method of claim 20, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the second non-PMI port indication parameter and the second port index for eight ranks parameter are included in the CSI report configuration.
  22. The method of claim 21, wherein in the sequence of port indices for the first TRP, port indices of up to K1 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the first TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100014
    wherein 
    Figure PCTCN2021119717-appb-100015
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource; and
    in the sequence of port indices for the second TRP, port indices of up to K2 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the second TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100016
    wherein
    Figure PCTCN2021119717-appb-100017
    are the CSI-RS port indices for rank n, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  23. The method of claim 1, wherein a set of default port indices is provided for the first TRP as the sequence of the  port indices of the CSI-RS resource from the first TRP, and a set of offset values is provided for the second TRP and utilized to determine the sequence of the port indices of the CSI-RS resource from the second TRP.
  24. The method of claim 23, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' and the higher layer parameter of non-PMI port indication parameter is not configured, the set of default port indices is provided for the first TRP, and a number RI max of offset values are indicated to determine the sequence of the port indices of the CSI-RS resource from the second TRP, wherein the offset values are provided per rank.
  25. The method of claim 24, wherein the offset values are pre-defined or signaled by DCI, MAC CE, or RRC.
  26. The method of claim 24, wherein for the CSI-RS resource from the first TRP that is configured in CSI resource setting linked to the CSI report configuration, default port indices
    Figure PCTCN2021119717-appb-100018
    for rank m are {0, …, m-1} , wherein rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  27. The method of claim 24, wherein for the CSI-RS resource from the second TRP that is configured in CSI resource setting linked to the CSI report configuration, port indices
    Figure PCTCN2021119717-appb-100019
    for rank n are { (0+offset  (n-1) ) mod P, …, ( (n-1) +offset  (n-1) ) mod P} , wherein rank n=1, 2, …, RI max , and RI max=min(8, P) , and P is the number of ports in the CSI-RS resource.
  28. The method of claim 1, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' and the higher layer parameter of non-PMI port indication parameter is not configured, a first set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, a second set of default port indices is provided for the second TRP as the sequence of the port indices of the CSI-RS resource from the second TRP, and each set of default port indices is provided per rank.
  29. The method of claim 28, wherein for the CSI-RS resource from the first TRP that is configured in CSI resource setting linked to the CSI report configuration, default port indices
    Figure PCTCN2021119717-appb-100020
    for rank m are {0, …, m-1} , wherein rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  30. The method of claim 28, wherein for the CSI-RS resource from the second TRP that is configured in CSI resource setting linked to the CSI report configuration, the default port indices
    Figure PCTCN2021119717-appb-100021
    for rank n are { (n) mod P, …, (2·n-1) mod P} , wherein rank n=1, 2, …, RI max , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  31. The method of claim 1, wherein the sequence of the port indices of the CSI-RS resource from the first TRP comprises indicated port indices of the CSI-RS resource from the first TRP, and the sequence of the port indices of the CSI-RS resource from the second TRP comprises indicated port indices of the CSI-RS resource from the second TRP; and
    if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the UE determines a rank for transmission from the first TRP based on the indicated port indices of the CSI-RS resource from the first TRP and a rank for transmission from the second TRP based on the indicated port indices of the CSI-RS resource from the second TRP, the rank for transmission from the first TRP is referred to as a rank of the first TRP, and the rank for transmission from the second TRP is referred to as a rank of the second TRP.
  32. The method of claim 31, wherein for rank calculation of the rank of the first TRP, for a dedicated rank m, the first m columns of an identity matrix are applied on the indicated port indices of CSI-RS resource from the first TRP associated with rank m, and rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource, and the UE determines the rank of the first TRP from all potential ranks based a dedicated criterion;  for rank calculation of the rank of the second TRP, for a dedicated rank n, the first n columns of an identity matrix are applied on the indicated port indices of CSI-RS resource from the second TRP associated with rank n, and rank n=1,2, …, RI max , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource, and the UE determines the rank from all the potential ranks based a dedicated criterion; and
    the UE determines a rank of multi-TRP associated with the first TRP and the second TRP as a sum of the determined rank of the first TRP and the determined rank of the second TRP.
  33. The method of claim 31, wherein the UE directly reports the determined ranks for the first TRP and the second TRP to the base station.
  34. The method of claim 31, wherein in the related rank combinations of rank m of multi-TRP, a first element in a related rank combination represents a determined rank of the first TRP, a second element in a related rank combination represents a determined rank of the second TRP;
    a matched related rank combination of the determined rank of multi-TRP is a related rank combination identical to a combination of the determined rank of the first TRP plus has the determined rank of the first TRP, a corresponding element rank m of the determined rank of multi-TRP is a value of rank m that is associated with a matched related rank combination of the determined rank of multi-TRP and the determined rank of multi-TRP has a rank indictor (RI) value equal to m;
    when the determined rank of multi-TRP has only one corresponding element, the UE reports the corresponding element as the reported rank of multi-TRP;
    when the determined rank of multi-TRP has a plurality of corresponding elements, the UE reports the smallest corresponding element in the plurality of corresponding elements as the reported rank of multi-TRP; and
    when the determined rank of multi-TRP has no corresponding element, the UE discards the determined rank of multi-TRP.
  35. The method of claim 31, wherein when calculating a CQI for the reported rank of the first TRP, the UE uses the indicated the port indices of CSI-RS resource from the first TRP associated with the reported rank of the first TRP; and
    when calculating a CQI for the reported rank of the second TRP, the UE uses the indicated port indices of CSI-RS resource from the second TRP associated with the reported rank of the second TRP.
  36. The method of claim 35, wherein for a precoder V 1 of the first TRP, for a reported rank m of the first TRP, the first m columns of an identity matrix are applied on the indicated port indices of the CSI-RS resource from the first TRP associated with rank m, the UE estimates a channel between the first TRP and the UE based on the CSI-RS resource from the first TRP and obtains a channel estimation matrix H 1 representing the channel between the first TRP and the UE;
    for a precoder V 2 of the second TRP, for a reported rank n of the second TRP, the first n columns of an identity matrix are applied on the indicated port indices of the CSI-RS resource from the second TRP associated with rank n, the UE estimates a channel between the second TRP and the UE based on the CSI-RS resource from the second TRP and obtains a channel estimation matrix H 2 representing the channel between the second TRP and the UE; and
    the UE calculates the CQI for the reported rank of the first TRP based on the precoderV 1 and the channel estimation matrix H 1 and calculates the CQI for the reported rank of the second TRP based on the precoderV 2 the channel estimation matrix H 2.
  37. The method of claim 1, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  38. The method of claim 1, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with the report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  39. The method of claim 1, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with the report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a rank indicator (RI) for single-TRP and a RI for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  40. The method of claim 1, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, CQI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  41. A user equipment (UE) comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any of claims 1 to 40.
  42. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any of claims 1 to 40.
  43. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any of claims 1 to 40.
  44. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any of claims 1 to 40.
  45. A computer program, wherein the computer program causes a computer to execute the method of any of claims 1 to 40.
  46. A method for channel state information (CSI) measurement, executable in a base station, comprising:
    transmitting a CSI report configuration to a user equipment (UE) through a downlink, wherein the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from a first TRP among port indices for the first TRP, the sequence of the port indices of the CSI-RS resource from the first TRP is configured, the CSI report configuration comprises a sequence of port indices of a CSI-RS resource from a second TRP among port indices for the second TRP, and the sequence of the port indices of the CSI-RS resource from the second TRP is configured; and receiving CSI measurement for the first TRP that is based on the port indices for the first TRP and CSI measurement for the second TRP that is based on the port indices for the second TRP.
  47. The method of claim 46, wherein in the CSI report configuration, only one higher layer parameter of non-PMI port indication parameter method for CSI measurement is configured, the port indices of the CSI-RS resource from the first TRP are configured in the non-PMI port indication parameter, and a set of offset values are indicated to determine the port indices of the CSI-RS resource from the second TRP.
  48. The method of claim 47, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the sequence of port indices of the CSI-RS resource from the first TRP is configured in the non-PMI port indication parameter and the sequence of port indices of the CSI-RS resource from the second TRP is determined based on the sequence of port indices for the first TRP and RI max offset values, and the offset values are provided per rank.
  49. The method of claim 48, wherein the offset values are pre-defined or signaled by DCI, MAC CE, or RRC.
  50. The method of claim 48, wherein RI max=min (8, P) , and P is a number of ports in the CSI-RS resource.
  51. The method of claim 48, wherein port indices of CSI-RS resources transmitted from the first TRP are configured and the port indices for each CSI-RS resource are configured based on order arrangement of an associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration.
  52. The method of claim 51, wherein in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated in the CSI report configuration as: 
    Figure PCTCN2021119717-appb-100022
    wherein
    Figure PCTCN2021119717-appb-100023
    are the CSI-RS port indices of the m port for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  53. The method of claim 52, wherein for the CSI-RS resource from the second TRP that is configured in the CSI resource setting linked to the CSI report configuration, the port indices
    Figure PCTCN2021119717-appb-100024
    for rank m are 
    Figure PCTCN2021119717-appb-100025
    wherein offset (m-1) is an offset associated with rank m, rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  54. The method of claim 46, wherein in the CSI report configuration, only one higher layer parameter of non-PMI port indication parameter is configured, the port indices of a CSI-RS resource from the first TRP and the port indices of a CSI-RS resource from the second TRP are configured in the same non-PMI port indication parameter.
  55. The method of claim 54, wherein the port indices for the same rank for CSI-RS resources from different TRPs are the same.
  56. The method of claim 54, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the sequence of port indices corresponding to at least 2 CSI-RS resources is configured in the non-PMI port indication parameter, the sequence of the port indices of the CSI-RS resource from the first TRP and the sequence of the port indices of the CSI-RS resource from the second TRP are configured in the non-PMI port indication parameter.
  57. The method of claim 56, wherein in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100026
    wherein
    Figure PCTCN2021119717-appb-100027
    are the CSI-RS port indices of the m  port for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  58. The method of claim 56, wherein the non-PMI port indication parameter determines a combined sequence of port indices, and the combined sequence of port indices is divided into two groups including a first group and a second group, wherein the first group of port indices comprises the sequence of the port indices of the CSI-RS resource from the first TRP and the second group of port indices comprises the sequence of the port indices of the CSI-RS resource from the second TRP.
  59. The method of claim 58, wherein for the first group of port indices for the first TRP, port indices of up to K1 CSI-RS resources are configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the first TRP; and
    for the second group of port indices for the second TRP, port indices of up to K2 CSI-RS resources are configured, and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the second TRP.
  60. The method of claim 59, wherein in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100028
    wherein
    Figure PCTCN2021119717-appb-100029
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  61. The method of claim 46, wherein the sequence of the port indices of the CSI-RS resource from the first TRP is configured in a first non-PMI port indication parameter, and the sequence of the port indices of the CSI-RS resource from the second TRP is configured in a second non-PMI port indication parameter.
  62. The method of claim 61, wherein the port indices for the same rank for CSI-RS resources from different TRPs are the same.
  63. The method of claim 61, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the first non-PMI port indication parameter and the second non-PMI port indication parameter are included in the CSI report configuration.
  64. The method of claim 63, wherein in the sequence of the port indices of the CSI-RS resource from the first TRP, port indices of up to K1 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the first TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100030
    wherein
    Figure PCTCN2021119717-appb-100031
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RImax} , and RImax=min (8, P) , and P is the number of ports in the CSI-RS resource; and
    in the sequence of the port indices of the CSI-RS resource from the second TRP, port indices of up to K2 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement  parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the second TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100032
    wherein
    Figure PCTCN2021119717-appb-100033
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  65. The method of claim 46, wherein a first non-PMI port indication parameter and a first port index for eight ranks parameter are used for indicating the sequence of the port indices of the CSI-RS resource from the first TRP, and a second non-PMI port indication parameter and a second port index for eight ranks parameter are used for indicating the sequence of the port indices of the CSI-RS resource from the second TRP.
  66. The method of claim 65, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , the second non-PMI port indication parameter and the second port index for eight ranks parameter are included in the CSI report configuration.
  67. The method of claim 66, wherein in the sequence of port indices for the first TRP, port indices of up to K1 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the first TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100034
    wherein 
    Figure PCTCN2021119717-appb-100035
    are the CSI-RS port indices for rank m, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource; and
    in the sequence of port indices for the second TRP, port indices of up to K2 CSI-RS resources are configured and the port indices for each CSI-RS resource are configured based on order arrangement of the associated CSI-RS resource index in CSI resource setting indicated by resources for channel measurement parameter linked to the CSI report configuration, wherein the CSI-RS resources are transmitted from the second TRP, in the port indices for each CSI-RS resource, port indices of m ports are indicated in arrangement of layer ordering for rank m, the port indices of the m port are indicated as: 
    Figure PCTCN2021119717-appb-100036
    wherein
    Figure PCTCN2021119717-appb-100037
    are the CSI-RS port indices for rank n, and R∈ {1, 2, …, RI max} , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  68. The method of claim 46, wherein a set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, and a set of offset values is provided for the second TRP and utilized to determine the sequence of the port indices of the CSI-RS resource from the second TRP.
  69. The method of claim 68, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' and the higher layer parameter of non-PMI port indication parameter is not configured, the set of default port indices is provided for the first TRP, and a number RI max of offset values are indicated to determine the sequence of the port indices of the CSI-RS resource from the second TRP, wherein the offset values are provided per rank.
  70. The method of claim 69, wherein the offset values are pre-defined or signaled by DCI, MAC CE, or RRC.
  71. The method of claim 69, wherein for the CSI-RS resource from the first TRP that is configured in CSI resource setting linked to the CSI report configuration, default port indices
    Figure PCTCN2021119717-appb-100038
    for rank m are {0, …, m-1} , wherein rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  72. The method of claim 69, wherein for the CSI-RS resource from the second TRP that is configured in CSI resource setting linked to the CSI report configuration, port indices
    Figure PCTCN2021119717-appb-100039
    for rank n are { (0+offset  (n-1) ) mod P, …, ( (n-1) +offset  (n-1) ) mod P} , wherein rank n=1, 2, …, RI max , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  73. The method of claim 46, wherein if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' and the higher layer parameter of non-PMI port indication parameter is not configured, a first set of default port indices is provided for the first TRP as the sequence of the port indices of the CSI-RS resource from the first TRP, a second set of default port indices is provided for the second TRP as the sequence of the port indices of the CSI-RS resource from the second TRP, and each set of default port indices is provided per rank.
  74. The method of claim 73, wherein for the CSI-RS resource from the first TRP that is configured in CSI resource setting linked to the CSI report configuration, default port indices
    Figure PCTCN2021119717-appb-100040
    for rank m are {0, …, m-1} , wherein rank m=1, 2, …, RI max, and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  75. The method of claim 73, wherein for the CSI-RS resource from the second TRP that is configured in CSI resource setting linked to the CSI report configuration, the default port indices
    Figure PCTCN2021119717-appb-100041
    for rank n are { (n) mod P, …, (2·n-1) mod P} , wherein rank n=1, 2, …, RI max , and RI max=min (8, P) , and P is the number of ports in the CSI-RS resource.
  76. The method of claim 46, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  77. The method of claim 46, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with the report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  78. The method of claim 46, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with the report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a rank indicator (RI) for single-TRP and a RI for multi-TRP measurement are the same, RI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  79. The method of claim 46, wherein for CSI reporting associated with single-TRP and multi-TRP measurement hypotheses, if the UE is configured with the CSI report configuration with report quantity set to 'cri-RI-CQI' , and if non-PMI based CSI measurement and reporting is applied in single-TRP and multi-TRP/panel measurement hypotheses, and if a number of ports and port indices of a CSI-RS resource for single-TRP measurement and a number of ports and port indices of a CSI-RS resource for multi-TRP measurement are the same, CQI sharing between single-TRP and multi-TRP measurement hypotheses is enabled.
  80. A base station comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any of claims 46 to 79.
  81. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any of claims 46 to 79.
  82. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any of claims 46 to 79.
  83. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any of claims 46 to 79.
  84. A computer program, wherein the computer program causes a computer to execute the method of any of claims 46 to 79.
PCT/CN2021/119717 2021-09-22 2021-09-22 User equipment, base station, and method for channel state information (csi) measurement WO2023044630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119717 WO2023044630A1 (en) 2021-09-22 2021-09-22 User equipment, base station, and method for channel state information (csi) measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119717 WO2023044630A1 (en) 2021-09-22 2021-09-22 User equipment, base station, and method for channel state information (csi) measurement

Publications (1)

Publication Number Publication Date
WO2023044630A1 true WO2023044630A1 (en) 2023-03-30

Family

ID=85719757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119717 WO2023044630A1 (en) 2021-09-22 2021-09-22 User equipment, base station, and method for channel state information (csi) measurement

Country Status (1)

Country Link
WO (1) WO2023044630A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3621212A1 (en) * 2018-09-10 2020-03-11 Intel Corporation Techniques for acquisition of channel state information
US20210050890A1 (en) * 2019-08-16 2021-02-18 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system
CN112789810A (en) * 2018-09-03 2021-05-11 三星电子株式会社 Method and apparatus for configuring terminal antenna in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789810A (en) * 2018-09-03 2021-05-11 三星电子株式会社 Method and apparatus for configuring terminal antenna in wireless communication system
EP3621212A1 (en) * 2018-09-10 2020-03-11 Intel Corporation Techniques for acquisition of channel state information
US20210050890A1 (en) * 2019-08-16 2021-02-18 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON (MODERATOR): "Summary of CSI enhancements for MTRP and FDD (Round 0)", 3GPP DRAFT; R1-2106070, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 20 May 2021 (2021-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052012830 *
MODERATOR (HUAWEI, HISILICON): "Summary of CSI enhancements for MTRP and FDD (Round 0)", 3GPP DRAFT; R1-2101884, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 27 January 2021 (2021-01-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975967 *

Similar Documents

Publication Publication Date Title
US11522597B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
CN113810090B (en) Communication method and communication device
US20190173534A1 (en) Method for uplink transmisison
US11206064B2 (en) Transmission precoding matrix indication method and device
US9603040B2 (en) CSI measurement and reporting
US9025487B2 (en) Reference signal port discovery involving transmission points
US9742480B1 (en) Channel-state information determination in wireless networks
US10917155B2 (en) Mobile station, base station, and communication control method
US10826664B2 (en) Reference signal sending method, related device, and communications system
KR20150031242A (en) Method for cqi feedback without spatial feedback (pmi/ri) for tdd coordinated multi-point and carrier aggregation scenarios
US20220007298A1 (en) Uplink power control method and device
WO2012124892A1 (en) Method for transceiving channel state information and transceiving device
US20200007213A1 (en) Method of csi reporting
CN113692722A (en) Information configuration method and device, and terminal
US11196522B2 (en) Enhanced sounding reference signal scheme
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
US11902053B2 (en) Methods and devices for channel estimation
CN113728698A (en) Configuration of intermediate set size for frequency domain base reporting
EP4005104A1 (en) Methods and apparatuses for time-domain beam-sweeping
WO2023044630A1 (en) User equipment, base station, and method for channel state information (csi) measurement
CN107453855B (en) Control channel sending method and device
US20240056859A1 (en) Method and apparatus to support ue csi report of time domain channel properties
WO2023216233A1 (en) Method and apparatus of determining antenna element associated value
WO2023077382A1 (en) Methods of codebook based and non‐codebook based pusch transmission and related devices
WO2023050449A1 (en) Enhanced csi reporting for multi-trp operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957770

Country of ref document: EP

Kind code of ref document: A1