WO2023216233A1 - Method and apparatus of determining antenna element associated value - Google Patents

Method and apparatus of determining antenna element associated value Download PDF

Info

Publication number
WO2023216233A1
WO2023216233A1 PCT/CN2022/092703 CN2022092703W WO2023216233A1 WO 2023216233 A1 WO2023216233 A1 WO 2023216233A1 CN 2022092703 W CN2022092703 W CN 2022092703W WO 2023216233 A1 WO2023216233 A1 WO 2023216233A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna element
element associated
associated value
value
link
Prior art date
Application number
PCT/CN2022/092703
Other languages
French (fr)
Inventor
Hongmei Liu
Zhi YAN
Yuantao Zhang
Ruixiang MA
Haiming Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/092703 priority Critical patent/WO2023216233A1/en
Publication of WO2023216233A1 publication Critical patent/WO2023216233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • Embodiments of the present application generally relate to wireless communication technologies, especially to a method and apparatus of determining antenna element associated value, e.g., antenna number reporting and/or indication.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, and so on.
  • Wireless communication systems may employ multiple access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) .
  • Examples of wireless communication systems may include fourth generation (4G) systems such as long term evolution (LTE) systems, LTE-advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may also be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems, LTE-advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may also be referred to as new radio (NR) systems.
  • a gNB indicates to a user equipment (UE) a downlink (DL) reception beam and/or uplink (UL) transmission beam for communication between the gNB and the UE.
  • the repeater needs to determine at least one of the reception beam and transmission beam for the BS-repeater link for each DL reception and UL transmission (e.g., for each DL or UL channel, or for each DL or UL reference signal (RS) in the BS-repeater link) and at least one of the transmission beam and reception beam for the repeater-UE link for each DL transmission and UL reception (e.g., for each DL or UL channel, or for each DL or UL RS in the repeater-UE link) . That is, no side control information on beamforming is required by the legacy repeater.
  • the industry needs a technical solution for solving the side control information, e.g., beamforming information to the smart repeaters or the like, which includes but is not limited to how to determine antenna element associated value, e.g., antenna number when spatial domain multiplexing is adopted for UE in scenarios of smarter repeaters.
  • side control information e.g., beamforming information to the smart repeaters or the like
  • antenna element associated value e.g., antenna number when spatial domain multiplexing is adopted for UE in scenarios of smarter repeaters.
  • One objective of the present application is to provide a method and apparatus of determining antenna element associated value, especially a method and apparatus of determining antenna element associated value considering side information control for smarter repeaters.
  • an exemplary RAN node e.g., a repeater includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: receive, via the transceiver from a second RAN node, information requesting antenna element associated value reporting, and transmit, via the transceiver, to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  • Some embodiments of the present application also provide a method, e.g., performed by a repeater, which includes: receiving from a second RAN node, information requesting antenna element associated value reporting, and transmitting to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  • a method e.g., performed by a repeater, which includes: receiving from a second RAN node, information requesting antenna element associated value reporting, and transmitting to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the
  • the first antenna element associated value is an antenna number for the first link, the second antenna element associated value is an antenna number for the second link, and the at least one antenna element associated value is at least one value based on antenna number;
  • the first antenna element associated value is a maximum multiple-input multiple-output (MIMO) layer for the first link, the second antenna element associated value is a maximum MIMO layer for the second link, and the at least one antenna element associated value is at least one value based on maximum MIMO layer;
  • the first antenna element associated value is a number of antenna ports for the first link, the second antenna element associated value is a number of antenna ports for the second link, and the at least one antenna element associated value is at least one value based on antenna port number;
  • the first antenna element associated value is a communication rank for the first link, the second antenna element associated value is a communication rank for the second link, and the at least one antenna element associated value is at least one value based on communication rank;
  • the first antenna element associated value is a number of demodulation reference signal (DMRS
  • the at least one antenna element associated value is a smaller one of the first antenna element associated value and the second antenna element associated value.
  • the at least one antenna element associated value is the first antenna element associated value and the second antenna element associated value.
  • the at least one antenna element associated value is an absolute value and at least one differential value compared with the absolute value.
  • a number of the at least one antenna element associated value is configured by the second RAN node.
  • the at least one antenna element associated value is transmitted aperiodically or periodically.
  • the at least one antenna element associated value is transmitted by physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) or medium access control (MAC) control element (CE) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • CE medium access control control element
  • whether the at least one antenna element associated value is transmitted depends on a priority, wherein the priority is based on at least one of a reporting identifier (ID) of reporting the at least one antenna element associated value, a serving cell index associated with the at least one antenna element associated value, the reporting metric, or whether reporting the at least one antenna element associated value is periodic or aperiodic.
  • ID reporting identifier
  • an exemplary RAN node e.g., a repeater includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: receive, via the transceiver from a second RAN node, information indicating at least one antenna element associated value, and determine a minimum antenna element associated value required for at least one of a first link between the RAN node and the second RAN node or a second link between the RAN node and a third node based on the information indicating the at least one antenna element associated value.
  • Some embodiments of the present application also provide a method, e.g., performed by a repeater, which includes: receiving, from a second RAN node, information requesting antenna element associated value reporting, and transmitting to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  • the at least one antenna element associated value is: at least one value based on antenna number; at least one value based on maximum MIMO layer; at least one value based on antenna ports; at least one value based on communication rank; at least one value based on a number of DMRS ports; at least one value based on a number of DMRS CDM groups without data; at least one value based on a number of SSBs per RACH occasion; or at least one value based on a CSI-RS index, SSB index or SRS index.
  • the information indicating at least one antenna element associated value indicates a first value for the first link between the RAN node and the second RAN node and a second value for the second link between the RAN node and the third node.
  • the information indicating at least one antenna element associated value indicates a minimum value between a first value for the first link between the RAN node and the second RAN node and a second value for the second link between the RAN node and the third node.
  • the information indicating at least one antenna element associated value is valid for a configured duration or is valid until application of a next signalling with the information indicating at least one antenna element associated value.
  • each of the at least one antenna element associated value is associated with a time domain duration.
  • the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration.
  • an application delay between reception of the information indicating at least one antenna element associated value and application of the information indicating at least one antenna element associated value is explicitly configured or predefined.
  • the information indicating at least one antenna element associated value is separately or jointly applied to downlink slot and uplink slot.
  • the spatial relation information for all SRS resources within the one or two SRS resource sets are associated with a same antenna element associated value in the information indicating at least one antenna element associated value.
  • the number of SSBs per RACH occasion is determined by a high layer parameter.
  • the number of DMRS ports and the number of DMRS CDM groups without data are determined by “antenna ports” field in DCI, or SRI in DCI, or “antenna ports” field in high layer signalling, or SRI in high layer signalling.
  • the SRI is to indicate a number of SRS ports in a SRS resource or a number of SRS resources in a SRS resource set.
  • the indicated at least one value has a higher priority than other antenna element associated values.
  • the information in the case that the information indicates at least one value based on a number of DMRS ports or a number of DMRS CDM groups without data, the information is applicable for PDSCH and PUSCH.
  • the information in the case that the information indicates at least one value associated with a CSI-RS index, SSB index or SRS index, the information is applicable for CSI-RS, SSB or SRS.
  • the information in the case that the information indicates at least one value based on a number of SSBs per RACH occasion, the information is applicable for RACH occasion.
  • an exemplary RAN node e.g., a gNB includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: transmit, via the transceiver to a first RAN node information requesting antenna element associated value reporting, and receive, via the transceiver, from the first RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the first RAN node and a second antenna element associated value for a second link between the first RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  • an exemplary RAN node e.g., a gNB includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: configure at least one antenna element associated value for determining a minimum antenna element associated value required for at least one of a first link between the RAN node and a first RAN node or a second link between the first RAN node and a third node; and transmit, via the transceiver to the first RAN node information indicating the at least one antenna element associated value.
  • embodiments of the present application provide a technical solution of determining antenna element associated value for a RAN node, e.g., a repeater in the case of spatial domain multiplexing being adopted for UE, and thus will facilitate the deployment and implementation of the NR.
  • a RAN node e.g., a repeater in the case of spatial domain multiplexing being adopted for UE
  • FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system according to some embodiments of the present application.
  • FIG. 2 illustrates a schematic diagram of an exemplary wireless communication system in a non-multi-TRP scenario according to some embodiments of the present application.
  • FIG. 3 illustrates a schematic diagram of an exemplary wireless communication system in a multi-TRP scenario according to some other embodiments of the present application.
  • FIG. 4 is a flow chart illustrating an exemplary procedure of a method of determining antenna element associated value according to some embodiments of the present application.
  • FIG. 5 is a flow chart illustrating another exemplary procedure of a method of determining antenna element associated value according to some other embodiments of the present application.
  • FIG. 6 illustrates a block diagram of an exemplary apparatus of determining antenna element associated value according to some embodiments of the present application.
  • FIG. 7 illustrates a block diagram of an exemplary apparatus of determining antenna element associated value according to some other embodiments of the present application.
  • FIG. 1 illustrates a schematic diagram of an exemplary wireless communication system 100 according to some embodiments of the present application.
  • the wireless communication system 100 includes a UE 103 and a BS 101. Although merely one BS is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present application. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present application.
  • the wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • the BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art.
  • the BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
  • a BS 101 may be configured with one TRP (or panel) , i.e., in a single-TRP scenario or more TRPs (or panels) , i.e., a multi-TRP scenario. That is, one or more TRPs are associated with the BS 101.
  • a TRP can act like a small BS.
  • Two TRPs can have the same cell ID (identity or index) or different cell IDs.
  • Two TRPs can communicate with each other by a backhaul link.
  • Such a backhaul link may be an ideal backhaul link or a non-ideal backhaul link.
  • Latency of the ideal backhaul link may be deemed as zero, and latency of the non-ideal backhaul link may be tens of milliseconds and much larger, e.g. on the order of tens of milliseconds, than that of the ideal backhaul link.
  • a single TRP can be used to serve one or more UE 103 under the control of a BS 101.
  • a TRP may be referred to as different terms, which may be represented by a TCI state index or CORESETPoolIndex value etc. It should be understood that the TRP (s) (or panel (s) ) configured for the BS 101 may be transparent to a UE 103.
  • the UE 103 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • the UE 103 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • the UE 103 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 103 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • relay nodes such as repeaters may be deployed in a wireless communication system, which can improve the throughput of a mobile device in low signal quality, e.g., a UE that locates in a coverage hole or far from the BS.
  • FIG. 2 and FIG. 3 respectively illustrate an exemplary scenario of a wireless communication system with repeaters, wherein FIG. 2 illustrates a schematic diagram of an exemplary wireless communication system 200 in a non-multi-TRP scenario according to some embodiments of the present application, and FIG. 3 illustrates a schematic diagram of an exemplary wireless communication system 300 in a multi-TRP scenario according to some other embodiments of the present application.
  • a gNB 201 there are multiple nodes, e.g., a gNB 201, a first repeater 203a, a second repeater 203b, a first UE 205a, a second UE 205b, a third UE 205c and a fourth UE 205d.
  • the gNB 201 may be configured with a single TRP or not.
  • the first repeater 203a is connected with the gNB 201 and the first UE 205a
  • the second repeater 203b is connected with the gNB 201 and the second UE 205b and the third UE 205c.
  • a link between a BS, e.g., the gNB 201 and a repeater, e.g., the first repeater 203a or the second repeater 203b can be referred to a BS-repeater link (or gNB-repeater link)
  • a link between a repeater, e.g., the first repeater 203a and a UE, e.g., the first UE 205a can be referred to a repeater-UE link
  • a link between a BS, e.g., the gNB 201 and a UE, e.g., the fourth UE 205d can be referred to as a BS-UE link (or gNB-UE link) .
  • each BS e.g., the gNB 201 can connect with one or more repeaters, e.g., the first repeater 203a and second repeater 203b, and one or more UEs, e.g., the first UE 205a, the second UE 205b, the third UE 205c and the fourth UE 205d; and each repeater, e.g., the first repeater 203a and the second repeater 203b can connect with one or more BSs and one or more UEs.
  • the exemplary nodes in the wireless communication system 200 with a limited number should not be deemed as the limitation to the present application.
  • the exemplary wireless communication system 300 there are multiple nodes, e.g., a gNB 301, a repeater 303 and a UE 305, wherein the gNB 301 is configured with (or associated with) two TRPs, e.g., a first TRP 301a and a second TRP 301b.
  • the repeater 303 is connected with each of the first TRP 301a and the second TRP 301b.
  • BS-repeater link or gNB-repeater link, or TRP-repeater link
  • BS-repeater link or gNB-repeater link, or TRP-repeater link
  • smart repeaters which are transparent to UEs will be studied and identified.
  • the smart repeaters can maintain the BS-repeater link and repeater-UE link simultaneously, and thus side control information including beamforming information is necessary for smart repeaters.
  • side control information including beamforming information is necessary for smart repeaters.
  • antenna element associated value e.g., antenna number when spatial domain multiplexing is adopted for UE in scenarios of smarter repeaters.
  • RACH occasion RO
  • RRC radio resource control
  • IE RACH configuration information element
  • SSB to RO association there may be multiple SSBs associated with a RO.
  • different UEs may use different uplink beams for physical RACH (PRACH) transmission at the same time and/or frequency domain resource.
  • PRACH physical RACH Due to multiple antennas in the gNB side in legacy network, the gNB can distinguish different UE’s preambles by MIMO processing and sequence detection.
  • spatial domain multiplexing can be scheduled by DCI 0-1, 1-1 for PUSCH and PDSCH respectively.
  • the number of DMRS ports is used to determine the transmission rank for a single UE, and the number of DMRS CDM groups without data is used to determine the transmission rank for all UEs in the gNB side.
  • SRI is used to indicate the transmission rank at the UE side (e.g., the number of SRS ports in a SRS resource for codebook based PUSCH, and the number of SRS resources in a SRS set for non-codebook based PUSCH)
  • DMRS ports are used to indicate the used DMRS port index based on the rank for a single UE
  • DMRS CDM groups without data are used to indicated the reception rank for all UEs in the gNB side.
  • the reception rank for all UEs in the gNB side is corresponding to combination of transmission ranks at multiple UEs.
  • PDSCH and/or PUSCH spatial domain multiplexing can be implemented by multiple transmission and/or reception antennas at both the gNB and UE side.
  • Spatial domain multiplexing is used by indicating precoders, DMRS ports or SRS resource (set) to a single UE or multiple UEs.
  • the spatial domain multiplexing is by multiple antennas in the gNB side and the UE side and corresponding precoding/decoding operation.
  • the number of rank and/or spatial domain layers is restricted by the minimum between the gNB’s antenna number and UE’s antenna number.
  • the antenna number in the repeater for transmission and/or reception for DL and/or UL spatial domain multiplexing will restrict possible multiplexing layers.
  • the antenna number may be smaller than the multiplexing layer supported by the direct link between gNB and UE and it should be known by the gNB for suitable scheduling.
  • the antenna number may be larger than the multiplexing layer supported by the direct link between gNB and UE, and to save power in the repeater, it is preferred not always using all the antenna numbers. Instead, it is preferred only using a suitable number of antennas for both spectral efficiency and energy saving.
  • the industry needs a technical solution for solving the side control information in scenarios with smarter repeater, e.g., how to determine reporting and/or indication of antenna element associated value when spatial domain multiplexing is adopted for UE.
  • an antenna element associated value may be various values associated with or based on antenna element.
  • an antenna associated value may be a value based on antenna number, or a value based on maximum MIMO layer, or a value based on antenna ports, or a value based on communication rank (e.g., transmission rank and/or reception rank etc.
  • DMRS ports or a value based on a number of DMRS ports, or a value based on a number of DMRS CDM groups without data, or a value based on SSBs per RO, or a value based on (or associated with) a CSI-RS index, SSB index or SRS index.
  • the gNB may request the repeater to report at least one antenna element associated value on the repeater side in some embodiments of the present application, so that the gNB can make proper configuration when spatial domain multiplexing is adopted for UE.
  • the gNB may directly indicate at least one antenna element associated value to the repeater, and the repeater can determine the minimum antenna element associated value required in the repeater side.
  • the gNB may indicate the at least one antenna element associated value to the repeater based on the at least one antenna element associated value reported by the repeater.
  • the gNB may also indicates an acknowledgement (ACK) to the repeater regarding the reported at least one antenna element associated value.
  • ACK acknowledgement
  • FIG. 4 is a flow chart illustrating an exemplary procedure of a method of determining antenna element associated value according to some embodiments of the present application.
  • a first RAN node e.g., a repeater
  • a second RAN node e.g., a BS
  • the method implemented in the two RAN nodes can be separately implemented and/or incorporated by other apparatus with the like functions.
  • the first RAN node e.g., a repeater is deployed between the second RAN node, e.g., a gNB and a third node, e.g., a UE, and may maintain at least one first link between the first RAN node and the second RAN node, e.g., at least one BS-repeater link and at least one second link between the first RAN node and the third node, e.g., at least one repeater-UE link simultaneously.
  • the second RAN node will provide necessary side control information, e.g., beamforming information to the first RAN node.
  • the second RAN node may transmit information requesting antenna element associated value reporting to the first RAN node in step 401, e.g., by RRC, or medium access control (MAC) control element (CE) , or DCI etc., which requests the first RAN node to report antenna element associated value (s) .
  • RRC radio resource control
  • CE medium access control control element
  • DCI DCI etc.
  • the first RAN node e.g., the repeater may receive the information requesting antenna element associated value reporting (also referred to as a reporting request) in step 402.
  • the first RAN node may transmit at least one antenna element associated value to the second RAN node in step 404 aperiodically or periodically, e.g., by PUCCH or PUSCH or MAC CE.
  • the at least one antenna element associated value is based on a first antenna element associated value for the first link between the first RAN node and the second RAN node and a second antenna element associated value for the second link between the first RAN node and the third node, e.g., the UE.
  • the second RAN node may receive the at least one antenna element associated value in step 405.
  • the first antenna element associated value is an antenna number for the first link
  • the second antenna element associated value is an antenna number for the second link
  • the at least one antenna element associated value is at least one value based on antenna number.
  • the first antenna element associated value is a maximum MIMO layer for the first link
  • the second antenna element associated value is a maximum MIMO layer for the second link
  • the at least one antenna element associated value is at least one value based on maximum MIMO layer.
  • the first antenna element associated value is a number of antenna ports for the first link
  • the second antenna element associated value is a number of antenna ports for the second link
  • the at least one antenna element associated value is at least one value based on the number of antenna ports.
  • the first antenna element associated value is a communication rank (e.g. DL rank or UL rank) for the first link
  • the second antenna element associated value is a communication rank for the second link
  • the at least one antenna element associated value is at least one value based on communication rank.
  • the first antenna element associated value is a number of DMRS ports for the first link
  • the second antenna element associated value is a number of DMRS ports for the second link
  • the at least one antenna element associated value is at least one value based on DMRS port number.
  • the first antenna element associated value is based on a number of DMRS CDM groups without data for the first link
  • the second antenna element associated value is based on a number of DMRS CDM groups without data for the second link
  • the at least one antenna element associated value is at least one value based on a number of DMRS CDM groups without data.
  • the first antenna element associated value is a number of SSBs per RO for the first link
  • the second antenna element associated value is a number of SSBs per RO for the second link
  • the at least one antenna element associated value is at least one value based on SSB number per RO.
  • the first antenna element associated value is based on a CSI-RS index, SSB index or SRS index for the first link
  • the second antenna element associated value is based on a CSI-RS index, SSB index or SRS index for the second link
  • the at least one antenna element associated value is at least one value based on a CSI-RS index, SSB index or SRS index.
  • the at least one antenna element associated value can be reported to the second RAN node in various manners. In some embodiments of the present application, only one antenna element associated value is reported to the second RAN node, e.g., a smaller (or minimum) one of the first antenna element associated value and the second antenna element associated value. In some other embodiments of the present application, two antenna element associated values are reported to the second RAN node, e.g., the first antenna element associated value and the second antenna element associated value. In some other embodiments of the present application, in the case of multiple antenna element associated values being reported, the first RAN node may transmit an absolute value and at least one differential value compared with the absolute value.
  • How many antenna element associated values to be reported to the second RAN node can be determined by the repeater itself or can be configured by the second RAN node.
  • the second RAN node may configure the number of the at least one antenna element associated value to be reported, e.g., one or two or more, and the first RAN node will report the at least one antenna element associated value according to the configured number.
  • a reporting metrics of reporting the at least one antenna element associated value e.g., CSI reporting
  • another reporting metric e.g., CSI reporting
  • An exemplary priority is based on at least one of: a reporting ID of reporting the at least one antenna element associated value, a serving cell index associated with the at least one antenna element associated value, the type (or content) of the reporting metric, or whether reporting the at least one antenna element associated value is periodic or aperiodic.
  • the gNB may indicate at least one antenna element associated value to the repeater so that the repeater can determine the minimum (or smallest) antenna element associated value required in the repeater.
  • FIG. 5 is a flow chart illustrating another exemplary procedure of a method of determining antenna element associated value according to some other embodiments of the present application.
  • a first RAN node e.g., a repeater
  • a second RAN node e.g., a BS
  • the method implemented in the two RAN nodes can be separately implemented and/or incorporated by other apparatus with the like functions.
  • the first RAN node e.g., a repeater is deployed between the second RAN node, e.g., a gNB and a third node, e.g., a UE, and may maintain at least one first link between the first RAN node and the second RAN node, e.g., at least one BS-repeater link and at least one second link between the first RAN node and the third node, e.g., at least one repeater-UE link simultaneously.
  • the second RAN node will provide necessary side control information, e.g., beamforming information to the first RAN node.
  • the second RAN node may configure at least one antenna element associated value in step 501, which is at least used for determining the minimum antenna element associated value required for at least one of the first link between the second RAN node and the first RAN node or the second link between the first RAN node and a third node.
  • the at least one antenna element associated value can be configured by the second RAN node.
  • the configuration can be based on antenna element associated value information reported by the first RAN node or not.
  • the at least one antenna element associated value is various types, e.g., at least one value based on antenna number, at least one value based on maximum MIMO layer, at least one value based on antenna ports, at least one value based on communication rank, at least one value based on a number of DMRS ports, at least one value based on a number of DMRS CDM groups without data, at least one value based on a number of SSBs per RO, or at least one value based on (or associated with) a CSI-RS index, SSB index or SRS index etc.
  • the at least one antenna element associated value is configured in various manners.
  • two antenna element associated values may be configured, e.g., a first value for the first link between the RAN node and the second RAN node and a second value for the second link between the RAN node and the third node.
  • the at least one antenna element associated value is the minimum value or smaller one between the first value for the first link between the RAN node and the second RAN node and the second value for the second link between the RAN node and the third node.
  • the second RAN node will transmit information indicating the at least one antenna element associated value to the first RAN node in step 503, e.g., by or RRC, or MAC CE, DCI etc.
  • the second RAN node can indicate the at least one antenna element associated value in various manners, e.g., by a pattern of antenna element associated value, or by RS indexes, or by DMRS configuration, or by SRS configuration or by SSB configuration etc.
  • the first RAN node may receive the information indicating the at least one antenna element associated value from the second RAN node.
  • the first RAN node Based on the information indicating the at least one antenna element associated value, the first RAN node will determine the minimum antenna element associated value required for at least one of the first link or the second link in step 506. For different types of antenna element associated value, the first RAN node may determine the minimum antenna element associated value required for at least one of the first link or the second link in different manners.
  • the at least one antenna element associated value is based on the number of SSBs per RO
  • the number of SSBs per RO is determined by a high layer parameter, e.g., RRC.
  • the number of DMRS ports and the number of DMRS CDM groups without data are determined by “antenna ports” field in DCI, or SRI in DCI, or “antenna ports” field in high layer signalling, e.g., RRC, or SRI in high layer signalling.
  • the SRI is to indicate a number of SRS ports in a SRS resource or a number of SRS resources in a SRS resource set.
  • the spatial relation information (or spatial domain filter, also referred to as beam) for all SRS resources within the one or two SRS resource sets are associated with the same one of the indicated at least one antenna element associated value.
  • the information indicates at least one value based on a number of DMRS ports or a number of DMRS CDM groups without data
  • the information is applicable for PDSCH and PUSCH.
  • the information indicates at least one value associated with a CSI-RS index, SSB index or SRS index
  • the information is applicable for CSI-RS, SSB or SRS or physical channel quasi co-located (QCLed) with the RS.
  • the information indicates at least one value based on a number of SSBs per RO, the information is applicable for RO.
  • the first RAN node may receive a plurality of information indicating at least one value for different RSs or channels, each indicating different antenna element associated values. For a time instance, the first RAN node needs to determine which indicated value to be applied in the case that there are multiple indicated antenna element associated values applicable. If the indicated antenna element associated value is at least one value based on a CSI-RS index, or SSB index, or SRS index, or a number of DMRS ports, or a number of DMRS CDM groups without data or a number of SSBs per RO, the indicated value has a higher priority than other antenna element associated value (s) . For example, when both a CSI-RS index and an antenna number are indicated to the repeater, the repeater will determine the minimum antenna element associated value required for the first link and/or the second link based on the CSI-RS index rather than the antenna number.
  • the information indicating the at least one antenna element associated value can be separately or jointly applied to downlink slot and uplink slot. There may be an application delay in the repeater between reception of the information indicating at least one antenna element associated value and application of the information indicating at least one antenna element associated value, which can be explicitly configured or predefined in the specification.
  • the information indicating the at least one antenna element associated value is valid for a configured time domain duration or is valid until application of a next signalling with the information indicating at least one antenna element associated value.
  • each of the at least one antenna element associated value is associated with a time domain duration. In some other embodiments of the present application, all the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration.
  • the repeater will report to the gNB at least one antenna element associated value based on the first antenna element associated value for gNB-repeater link and the second antenna element associated value for repeater-UE link, e.g., by PUCCH, or PUSCH or MAC CE.
  • the gNB may configure the repeater to report the at least one antenna element associated value periodically or aperiodically.
  • the first antenna element associated value is the first antenna number for the gNB-repeater link and the second antenna element associated value is the second antenna number for the repeater-UE link.
  • the first antenna element associated value is the reception antenna number for the gNB- repeater link and the second antenna element associated value is the transmission antenna number for the repeater-UE link.
  • the first antenna element associated value is the transmission antenna number for the repeater-UE link and the second antenna element associated value is the reception antenna number for the gNB-repeater link.
  • the at least one antenna element associated value to be reported is the smaller one of the first antenna element associated value and the second antenna element associated value in some embodiments of the present application.
  • the first antenna element associated value is associated with the first panel and the second antenna element associated value is associated with the second panel, or vice versa.
  • multiple antenna element associated values will be reported, e.g., both the first antenna element associated value and the second antenna element associated value.
  • the first antenna element associated value of each panel corresponding to gNB-repeater link can be represent as A1, A2, ...An
  • the second antenna element associated value of each panel corresponding to repeater-UE link can be represent as B1, B2, ..., Bm.
  • A1 represents the first antenna element associated value of panel 1 for gNB-repeater link
  • A2 represents the first antenna element associated value of panel 2 for gNB-repeater link
  • B1 represents the second antenna element associated value of panel 1 for repeater-UE link
  • B2 represents the second antenna element associated value of panel 2 for repeater-UE link, and so on.
  • the at least one antenna element associated value in the case of multi-panel may be reported in a similar manner as a single panel.
  • the repeater may report all the values as absolute values, e.g., A1, A2...An and B1, B2..., Bm, or only report one absolute value and report the differential value of the remaining values with respect to the absolute value for each link.
  • A1 is reported as an absolute value
  • A2 to An and B1 to Bm are reported as differential values with respect to Al.
  • the number of antenna element associated value to be reported can be configured by the gNB.
  • the at least one antenna element associated value is to be transmitted depends on a priority.
  • the priority can be determined based on a formula similar to the following formula for CSI report, which is specified in TS 38.214.
  • c is the serving cell index and N cells is the value of the higher layer parameter maxNrofServingCells;
  • M s is the value of the higher layer parameter maxNrofCSI-ReportConfigurations.
  • parameters y associated with periodic or aperiodic reporting
  • k associated with reporting metric type
  • c associated with serving cell index
  • s associated with reporting ID
  • the gNB may indicate to the repeater a pattern of antenna element associated value, which can be applied to DL slots and UL slots jointly or separately.
  • the information indicating the at least one antenna element associated value is applicable upon reception of the indication signaling or after an application delay.
  • the application delay can be explicitly configured or predefined in 3GPP specification.
  • the information indicating the at least one antenna element associated value is valid for a configured time domain duration or is valid until the application of next information indicating the at least one antenna element associated value.
  • the time domain duration can be configured for each antenna element associated value or a set of antenna element associated value. For example, in some embodiments of the present application, each antenna element associated value is associated with a time domain duration.
  • the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration.
  • a part of the at least one antenna element associated value is associated with a part of the time domain duration.
  • the repeater will determine the minimum antenna element associated value required for at least one of gNB-repeater link and repeater-UE link based on the information indicating the at least one antenna element associated value.
  • the indicated antenna element associated value can be the minimum required antenna element associated value in the repeater for spatial domain multiplexing, e.g., the minimum antenna number in the repeater required for spatial domain multiplexing.
  • the minimum or smallest antenna element associated value in the repeater among transmission or reception for both the gNB-repeater link and repeater-UE link are not larger than the gNB indicated minimum required antenna element associated value.
  • the indicated antenna element associated value can be one of the minimum antenna element associated value in the repeater for gNB-repeater link and the minimum antenna element associated value in the repeater for repeater-UE link. That is, only one antenna element associated value is indicated and determined. In some other embodiments of the present application, the indicated antenna element associated value can be the minimum antenna element associated value in the repeater for gNB-repeater link and the minimum antenna element associated value in the repeater for repeater-UE link. That is, multiple antenna element associated values are indicated and determined.
  • the antenna element associated value (s) in the repeater e.g., the real antenna number should be not larger than the required number for gNB-repeater link and repeater-UE link, respectively. Taking the antenna number as an example, the required antenna number can be 1 to 24 with step size being 1 based on SSB-RO association or the number of DMRS ports within one or more DMRS CDM groups.
  • the gNB may indicate the at least one antenna element associated value by RS (s) , e.g., CSI-RS (s) , or SRS (s) , or SSB(s) etc.
  • RS e.g., CSI-RS (s) , or SRS (s) , or SSB(s) etc.
  • the RS (s) is associated with an antenna element associated value in the repeater for both gNB-repeater link and repeater-UE link.
  • the repeater will determine the minimum antenna element associated value required for at least one of gNB-repeater link and repeater-UE link based on the information indicating the at least one antenna element associated value.
  • a RS is associated with a beam, e.g., a spatial domain filter (or spatial relation information) .
  • the spatial domain filter is corresponding to weighting factors at each antennal element.
  • a RS is associated with both an antenna element associated value in the repeater and corresponding weighting factors in the repeater.
  • the RS can be for at least one of gNB-repeater link or repeater-UE link for each antenna element.
  • the RS can be applied to various scenarios. For example, for a scenario of CSI-RS for beam management, the repeater will decide and maintain the mapping between a CSI-RS index and antenna element associated value for each antenna element in the repeater, which is up to repeater implementation.
  • the number of CSI-RS resource in a CSI-RS resource set is large enough to cover different antenna element associated values and different weighting factors.
  • the repeater can report a CSI-RS resource indicator (CRI) and its corresponding antenna element associated value to the gNB.
  • CRI CSI-RS resource indicator
  • the two CRIs mean that two CSI-RSs can be received simultaneously in the repeater or in the UE with the same panel or different panels.
  • a transmission configuration indication (TCI) state or spatial relation information will be configured.
  • TCI transmission configuration indication
  • the repeater Based on the corresponding configuration or the associated RS, the repeater will determine the spatial domain filter (corresponding to a weighting factor for each antenna element) and antenna element associated value in the repeater side.
  • each SRS resource is associated with a spatial domain filter (corresponding to a weighting factor for each antenna element) in the repeater side and the antenna element associated value in the repeater side. It is up to repeater implementation.
  • each SRS resource will be configured with a spatial domain filter (or spatial relation information) .
  • the repeater can determine both the spatial domain filter (corresponding to a weighting factor for each antenna element) in the repeater and the antenna element associated value in the repeater side based on the spatial domain filter configuration.
  • the spatial relation information for all SRS resources within the one or two SRS resource sets are associated with the same antenna element associated value in the information indicating at least one antenna element associated value.
  • the gNB may indicate the at least one antenna element associated value by DMRS configuration, SRS configuration or SSB configuration etc. These configurations are associated with antenna element associated values in the repeater for both gNB-repeater link and repeater-UE link.
  • the repeater will determine the minimum antenna element associated value required for at least one of gNB-repeater link and repeater-UE link based on the information indicating the at least one antenna element associated value.
  • the minimum required antenna element associated value in the repeater for both gNB-repeater link and repeater-UE link is determined by the number of SSBs per RACH occasion, which can be determined by high layer parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB.
  • Some exemplary numbers are 1, 2, 4, 8, or 16.
  • the minimum required antenna number in the repeater for both gNB-repeater link and repeater-UE link is based on the number of indicated DMRS antenna ports or number of DMRS CDM groups without data, which can be determined based on PDCCH or RRC signaling.
  • Some exemplary numbers are 1 to 24 with a step size being 1.
  • Some exemplary numbers are 4, 8, 12, 16, 20, 24 considering the DMRS CDM group size and up to 24 DMRS antenna ports.
  • the minimum required antenna element associated value in the repeater can be determined by the number of DMRS antenna ports for a single UE.
  • the minimum required antenna element associated value in the repeater can be determined by the number of DMRS antenna ports for multiple UEs. With non-transparent MU MIMO, it can be reflected by the number of DMRS CDM groups without data for each UE.
  • the number of DMRS antenna ports and the number of DMRS CDM groups are determined by the “antenna ports” field in DCI.
  • the number of DMRS antenna ports and the number of DMRS CDM group are determined by the “antenna ports” filed and the number of SRS port in the indicated SRS resource by “SRI” filed in DCI or RRC signaling.
  • the number of SRS ports in the indicated SRS resource is to indicate the rank for a single scheduled UE.
  • the rank and “antenna ports” together can be used determine the number of DMRS ports and number of DMRS CDM groups without data.
  • the number of DMRS antenna ports and the number of DMRS CDM group is determined by the “antenna ports” filed and the number of SRS resources in the indicated SRS resource set by “SRI” field in DCI or RRC signaling.
  • the non-codebook based PUSCH only different from codebook based PUSCH in that the rank is determined by SRS resources within a SRS resource set, and other parts are the same.
  • Scheme 2 and Scheme 4 can be combined together.
  • Scheme 4 when Scheme 4 is applicable, the minimum required antenna number in the repeater for gNB-repeater and repeater-UE link is determined by Scheme 4; otherwise, Scheme 2 is applicable.
  • Scheme 2 and Scheme 3 can be combined together.
  • Scheme 2 is the fallback solution, and Scheme 3 has a higher priority than Scheme 2.
  • the indicated antenna element associated value is at least one value based on a CSI-RS index, or SSB index, or SRS index, or a number of DMRS ports, or a number of DMRS CDM groups without data or a number of SSBs per RO, the indicated value has a higher priority than other antenna element associated value (s) .
  • embodiments of the present application also propose an apparatus of determining antenna element associated value.
  • FIG. 6 is a block diagram of an apparatus of determining antenna element associated value 600 according to some other embodiments of the present application.
  • the apparatus 600 may include at least one processor 602 and at least one transceiver 604 coupled to the at least one processor 602.
  • the transceiver 604 may include at least one separate receiving circuitry 606 and transmitting circuitry 604, or at least one integrated receiving circuitry 606 and transmitting circuitry 604.
  • the at least one processor 902 may be a CPU, a DSP, a microprocessor etc.
  • the processor when the apparatus 600 is a repeater, is configured to: receive, via the transceiver from a second RAN node, information requesting antenna element associated value reporting, and transmit, via the transceiver, to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  • the processor when the apparatus 600 is a repeater, is configured to: receive, via the transceiver from a second RAN node, information indicating at least one antenna element associated value, and determine a minimum antenna element associated value required for at least one of a first link between the RAN node and the second RAN node or a second link between the RAN node and a third node based on the information indicating the at least one antenna element associated value.
  • the processor may be configured to: transmit, via the transceiver to a first RAN node information requesting antenna element associated value reporting, and receive, via the transceiver, from the first RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the first RAN node and a second antenna element associated value for a second link between the first RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  • the processor may be configured to: configure at least one antenna element associated value for determining a minimum antenna element associated value required for at least one of a first link between the RAN node and a first RAN node or a second link between the first RAN node and a third node; and transmit, via the transceiver to the first RAN node information indicating the at least one antenna element associated value.
  • FIG. 7 illustrates a block diagram of an apparatus of determining antenna element associated value 700 according to some embodiments of the present application.
  • the apparatus 700 may include at least one non-transitory computer-readable medium 701, at least one receiving circuitry 702, at least one transmitting circuitry 704, and at least one processor 706 coupled to the non-transitory computer-readable medium 701, the receiving circuitry 702 and the transmitting circuitry 704.
  • the at least one processor 706 may be a CPU, a DSP, a microprocessor etc.
  • the apparatus 700 may be a RAN node, e.g., a gNB or a repeater configured to perform a method illustrated in the above or the like.
  • the at least one processor 706, transmitting circuitry 704, and receiving circuitry 702 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated.
  • the receiving circuitry 702 and the transmitting circuitry 704 can be combined into a single device, such as a transceiver.
  • the apparatus 700 may further include an input device, a memory, and/or other components.
  • the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the first RAN node as described above.
  • the computer-executable instructions when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the first RAN node as depicted above.
  • the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the second RAN node as described above.
  • the computer-executable instructions when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the second RAN node as illustrated above.
  • the method according to embodiments of the present application can also be implemented on a programmed processor.
  • the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like.
  • any device capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application.
  • an embodiment of the present application provides an apparatus, including a processor and a memory. Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method.
  • the method may be a method as stated above or other method according to an embodiment of the present application.
  • An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions.
  • the instructions are preferably executed by computer-executable components preferably integrated with a network security system.
  • the non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device.
  • the computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device.
  • an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein.
  • the computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.
  • the terms “includes, “ “including, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the terms “having, “ and the like, as used herein, are defined as “including. "

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present application are related to a method and apparatus of determining antenna element associated value. According an embodiment of the present application, an exemplary method includes: receiving from a second RAN node, information requesting antenna element associated value reporting, and transmitting to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.

Description

METHOD AND APPARATUS OF DETERMINING ANTENNA ELEMENT ASSOCIATED VALUE TECHNICAL FIELD
Embodiments of the present application generally relate to wireless communication technologies, especially to a method and apparatus of determining antenna element associated value, e.g., antenna number reporting and/or indication.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, and so on. Wireless communication systems may employ multiple access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) . Examples of wireless communication systems may include fourth generation (4G) systems such as long term evolution (LTE) systems, LTE-advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may also be referred to as new radio (NR) systems.
In legacy technology, a gNB indicates to a user equipment (UE) a downlink (DL) reception beam and/or uplink (UL) transmission beam for communication between the gNB and the UE. When there is a legacy repeater, which is not smart, between the gNB and the UE, the repeater needs to determine at least one of the reception beam and transmission beam for the BS-repeater link for each DL reception and UL transmission (e.g., for each DL or UL channel, or for each DL or UL reference signal (RS) in the BS-repeater link) and at least one of the transmission beam and reception beam for the repeater-UE link for each DL transmission and UL reception (e.g., for each DL or UL channel, or for each DL or UL RS in the repeater-UE link) .  That is, no side control information on beamforming is required by the legacy repeater.
Accordingly, the industry needs a technical solution for solving the side control information, e.g., beamforming information to the smart repeaters or the like, which includes but is not limited to how to determine antenna element associated value, e.g., antenna number when spatial domain multiplexing is adopted for UE in scenarios of smarter repeaters.
SUMMARY OF THE DISCLOSURE
One objective of the present application is to provide a method and apparatus of determining antenna element associated value, especially a method and apparatus of determining antenna element associated value considering side information control for smarter repeaters.
According to some embodiments of the present application, an exemplary RAN node, e.g., a repeater includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: receive, via the transceiver from a second RAN node, information requesting antenna element associated value reporting, and transmit, via the transceiver, to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
Some embodiments of the present application also provide a method, e.g., performed by a repeater, which includes: receiving from a second RAN node, information requesting antenna element associated value reporting, and transmitting to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link  between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
In some embodiments of the present application, the first antenna element associated value is an antenna number for the first link, the second antenna element associated value is an antenna number for the second link, and the at least one antenna element associated value is at least one value based on antenna number; the first antenna element associated value is a maximum multiple-input multiple-output (MIMO) layer for the first link, the second antenna element associated value is a maximum MIMO layer for the second link, and the at least one antenna element associated value is at least one value based on maximum MIMO layer; the first antenna element associated value is a number of antenna ports for the first link, the second antenna element associated value is a number of antenna ports for the second link, and the at least one antenna element associated value is at least one value based on antenna port number; the first antenna element associated value is a communication rank for the first link, the second antenna element associated value is a communication rank for the second link, and the at least one antenna element associated value is at least one value based on communication rank; the first antenna element associated value is a number of demodulation reference signal (DMRS) ports for the first link, the second antenna element associated value is a number of DMRS ports for the second link, and the at least one antenna element associated value is at least one value based on DMRS port number; the first antenna element associated value is based on a number of DMRS code division multiplexing (CDM) groups without data for the first link, the second antenna element associated value is based on a number of DMRS CDM groups without data for the second link, and the at least one antenna element associated value is at least one value based on a number of DMRS CDM groups without data; the first antenna element associated value is a number of synchronization signal (SS) /physical broadcast channel (PBCH) blocks (SSB) sper random access channel (RACH) occasion for the first link, the second antenna element associated value is a number of SSBs per RACH occasion for the second link, and the at least one antenna element associated value is at least one value based on SSB number per RACH occasion; or the first antenna element associated value is based on a channel state information-reference signal (CSI-RS) index, SSB index or  sounding reference signal (SRS) index for the first link, the second antenna element associated value is based on a CSI-RS index, SSB index or SRS index for the second link, and the at least one antenna element associated value is at least one value based on a CSI-RS index, SSB index or SRS index.
In some embodiments of the present application, the at least one antenna element associated value is a smaller one of the first antenna element associated value and the second antenna element associated value.
In some embodiments of the present application, the at least one antenna element associated value is the first antenna element associated value and the second antenna element associated value.
In some embodiments of the present application, the at least one antenna element associated value is an absolute value and at least one differential value compared with the absolute value.
In some embodiments of the present application, a number of the at least one antenna element associated value is configured by the second RAN node.
In some embodiments of the present application, the at least one antenna element associated value is transmitted aperiodically or periodically.
In some embodiments of the present application, the at least one antenna element associated value is transmitted by physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) or medium access control (MAC) control element (CE) .
In some embodiments of the present application, in the case that there is a contradiction between a reporting metrics of reporting the at least one antenna element associated value and another reporting metric, whether the at least one antenna element associated value is transmitted depends on a priority, wherein the priority is based on at least one of a reporting identifier (ID) of reporting the at least one antenna element associated value, a serving cell index associated with the at least one antenna element associated value, the reporting metric, or whether reporting the at  least one antenna element associated value is periodic or aperiodic.
According to some yet other embodiments of the present application, an exemplary RAN node e.g., a repeater includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: receive, via the transceiver from a second RAN node, information indicating at least one antenna element associated value, and determine a minimum antenna element associated value required for at least one of a first link between the RAN node and the second RAN node or a second link between the RAN node and a third node based on the information indicating the at least one antenna element associated value.
Some embodiments of the present application also provide a method, e.g., performed by a repeater, which includes: receiving, from a second RAN node, information requesting antenna element associated value reporting, and transmitting to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
In some embodiments of the present application, the at least one antenna element associated value is: at least one value based on antenna number; at least one value based on maximum MIMO layer; at least one value based on antenna ports; at least one value based on communication rank; at least one value based on a number of DMRS ports; at least one value based on a number of DMRS CDM groups without data; at least one value based on a number of SSBs per RACH occasion; or at least one value based on a CSI-RS index, SSB index or SRS index.
In some embodiments of the present application, the information indicating at least one antenna element associated value indicates a first value for the first link between the RAN node and the second RAN node and a second value for the second link between the RAN node and the third node.
In some embodiments of the present application, the information indicating at least one antenna element associated value indicates a minimum value between a first value for the first link between the RAN node and the second RAN node and a second value for the second link between the RAN node and the third node.
In some embodiments of the present application, the information indicating at least one antenna element associated value is valid for a configured duration or is valid until application of a next signalling with the information indicating at least one antenna element associated value.
In some embodiments of the present application, each of the at least one antenna element associated value is associated with a time domain duration.
In some embodiments of the present application, the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration.
In some embodiments of the present application, an application delay between reception of the information indicating at least one antenna element associated value and application of the information indicating at least one antenna element associated value is explicitly configured or predefined.
In some embodiments of the present application, the information indicating at least one antenna element associated value is separately or jointly applied to downlink slot and uplink slot.
In some embodiments of the present application, in the case that there are one or two SRS resource sets for antenna switching, the spatial relation information for all SRS resources within the one or two SRS resource sets are associated with a same antenna element associated value in the information indicating at least one antenna element associated value.
In some embodiments of the present application, the number of SSBs per RACH occasion is determined by a high layer parameter.
In some embodiments of the present application, for physical downlink shared channel (PDSCH) or PUSCH transmission, the number of DMRS ports and the number of DMRS CDM groups without data are determined by “antenna ports” field in DCI, or SRI in DCI, or “antenna ports” field in high layer signalling, or SRI in high layer signalling. The SRI is to indicate a number of SRS ports in a SRS resource or a number of SRS resources in a SRS resource set.
In some embodiments of the present application, in the case that the information indicates at least one value based on a CSI-RS index, or SSB index, or SRS index, or a number of DMRS ports, or a number of DMRS CDM groups without data or a number of SSBs per RACH occasion, the indicated at least one value has a higher priority than other antenna element associated values.
In some embodiments of the present application, in the case that the information indicates at least one value based on a number of DMRS ports or a number of DMRS CDM groups without data, the information is applicable for PDSCH and PUSCH.
In some embodiments of the present application, in the case that the information indicates at least one value associated with a CSI-RS index, SSB index or SRS index, the information is applicable for CSI-RS, SSB or SRS.
In some embodiments of the present application, in the case that the information indicates at least one value based on a number of SSBs per RACH occasion, the information is applicable for RACH occasion.
According to some other embodiments of the present application, an exemplary RAN node, e.g., a gNB includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: transmit, via the transceiver to a first RAN node information requesting antenna element associated value reporting, and receive, via the transceiver, from the first RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the first RAN node and a second antenna element associated value for a second link between the  first RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
According to some yet other embodiments of the present application, an exemplary RAN node, e.g., a gNB includes: a transceiver; and at least one processor coupled to the transceiver, wherein the at least one processor is configured to: configure at least one antenna element associated value for determining a minimum antenna element associated value required for at least one of a first link between the RAN node and a first RAN node or a second link between the first RAN node and a third node; and transmit, via the transceiver to the first RAN node information indicating the at least one antenna element associated value.
Given the above, embodiments of the present application provide a technical solution of determining antenna element associated value for a RAN node, e.g., a repeater in the case of spatial domain multiplexing being adopted for UE, and thus will facilitate the deployment and implementation of the NR.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which the advantages and features of the disclosure can be obtained, a description of the disclosure is rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered limiting of its scope.
FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system according to some embodiments of the present application.
FIG. 2 illustrates a schematic diagram of an exemplary wireless communication system in a non-multi-TRP scenario according to some embodiments of the present application.
FIG. 3 illustrates a schematic diagram of an exemplary wireless communication system in a multi-TRP scenario according to some other embodiments  of the present application.
FIG. 4 is a flow chart illustrating an exemplary procedure of a method of determining antenna element associated value according to some embodiments of the present application.
FIG. 5 is a flow chart illustrating another exemplary procedure of a method of determining antenna element associated value according to some other embodiments of the present application.
FIG. 6 illustrates a block diagram of an exemplary apparatus of determining antenna element associated value according to some embodiments of the present application.
FIG. 7 illustrates a block diagram of an exemplary apparatus of determining antenna element associated value according to some other embodiments of the present application.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of the preferred embodiments of the present application and is not intended to represent the only form in which the present application may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present application.
Reference will now be made in detail to some embodiments of the present application, examples of which are illustrated in the accompanying drawings. To facilitate understanding, embodiments are provided under specific network architecture and new service scenarios, such as 3rd generation partnership project (3GPP) 5G, 3GPP LTE, and so on. It is contemplated that along with the developments of network architectures and new service scenarios, all embodiments in the present application are also applicable to similar technical problems; and  moreover, the terminologies recited in the present application may change, which should not affect the principle of the present application.
FIG. 1 illustrates a schematic diagram of an exemplary wireless communication system 100 according to some embodiments of the present application.
As shown in FIG. 1, the wireless communication system 100 includes a UE 103 and a BS 101. Although merely one BS is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present application. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present application.
The wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
The BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art. The BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
In addition, a BS 101 may be configured with one TRP (or panel) , i.e., in a single-TRP scenario or more TRPs (or panels) , i.e., a multi-TRP scenario. That is, one or more TRPs are associated with the BS 101. A TRP can act like a small BS. Two TRPs can have the same cell ID (identity or index) or different cell IDs. Two  TRPs can communicate with each other by a backhaul link. Such a backhaul link may be an ideal backhaul link or a non-ideal backhaul link. Latency of the ideal backhaul link may be deemed as zero, and latency of the non-ideal backhaul link may be tens of milliseconds and much larger, e.g. on the order of tens of milliseconds, than that of the ideal backhaul link.
A single TRP can be used to serve one or more UE 103 under the control of a BS 101. In different scenarios, a TRP may be referred to as different terms, which may be represented by a TCI state index or CORESETPoolIndex value etc. It should be understood that the TRP (s) (or panel (s) ) configured for the BS 101 may be transparent to a UE 103.
The UE 103 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to an embodiment of the present application, the UE 103 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network. In some embodiments of the present application, the UE 103 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 103 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
To enhance the coverage area of a BS, relay nodes, such as repeaters may be deployed in a wireless communication system, which can improve the throughput of a mobile device in low signal quality, e.g., a UE that locates in a coverage hole or far from the BS.
FIG. 2 and FIG. 3 respectively illustrate an exemplary scenario of a wireless  communication system with repeaters, wherein FIG. 2 illustrates a schematic diagram of an exemplary wireless communication system 200 in a non-multi-TRP scenario according to some embodiments of the present application, and FIG. 3 illustrates a schematic diagram of an exemplary wireless communication system 300 in a multi-TRP scenario according to some other embodiments of the present application.
Referring to FIG. 2, in the exemplary wireless communication system 200, there are multiple nodes, e.g., a gNB 201, a first repeater 203a, a second repeater 203b, a first UE 205a, a second UE 205b, a third UE 205c and a fourth UE 205d. The gNB 201 may be configured with a single TRP or not. The first repeater 203a is connected with the gNB 201 and the first UE 205a, the second repeater 203b is connected with the gNB 201 and the second UE 205b and the third UE 205c. A link between a BS, e.g., the gNB 201 and a repeater, e.g., the first repeater 203a or the second repeater 203b can be referred to a BS-repeater link (or gNB-repeater link) , a link between a repeater, e.g., the first repeater 203a and a UE, e.g., the first UE 205a can be referred to a repeater-UE link; and a link between a BS, e.g., the gNB 201 and a UE, e.g., the fourth UE 205d can be referred to as a BS-UE link (or gNB-UE link) .
Persons skilled in the art should well know that each BS, e.g., the gNB 201 can connect with one or more repeaters, e.g., the first repeater 203a and second repeater 203b, and one or more UEs, e.g., the first UE 205a, the second UE 205b, the third UE 205c and the fourth UE 205d; and each repeater, e.g., the first repeater 203a and the second repeater 203b can connect with one or more BSs and one or more UEs. Thus, the exemplary nodes in the wireless communication system 200 with a limited number should not be deemed as the limitation to the present application.
Referring to FIG. 3, in the exemplary wireless communication system 300, there are multiple nodes, e.g., a gNB 301, a repeater 303 and a UE 305, wherein the gNB 301 is configured with (or associated with) two TRPs, e.g., a first TRP 301a and a second TRP 301b. The repeater 303 is connected with each of the first TRP 301a and the second TRP 301b. Thus, there two links between the gNB 301 and the repeater 303, one is a BS-repeater link (or gNB-repeater link, or TRP-repeater link) between the first TRP 301a and the repeater 303 and the other is a BS-repeater link (or gNB-repeater link, or TRP-repeater link) between the second TRP 301b and the  repeater 303.
According to RP-213592, smart repeaters, which are transparent to UEs will be studied and identified. The smart repeaters can maintain the BS-repeater link and repeater-UE link simultaneously, and thus side control information including beamforming information is necessary for smart repeaters. For example, one issue to be solved concerns how to determine antenna element associated value, e.g., antenna number when spatial domain multiplexing is adopted for UE in scenarios of smarter repeaters.
Regarding spatial domain multiplexing in legacy release, there have been some provisions. For example, with respect to SSB in initial access, there can be multiple SSBs per RACH occasion (RO) configured by radio resource control (RRC) . The possible values are 1, 2, 4, 8, 16. gNB is assumed to perform multi-user spatial domain multiplexing by multiple reception antennas at the gNB side. An exemplary RACH configuration information element (IE) is illustrated below, which is specified in TS 38.331.
RACH-ConfigCommon information element
Figure PCTCN2022092703-appb-000001
It can be seen that based on SSB to RO association, there may be multiple SSBs associated with a RO. In this case, different UEs may use different uplink  beams for physical RACH (PRACH) transmission at the same time and/or frequency domain resource. Due to multiple antennas in the gNB side in legacy network, the gNB can distinguish different UE’s preambles by MIMO processing and sequence detection.
In addition, for PDSCH and PUSCH, spatial domain multiplexing can be scheduled by DCI 0-1, 1-1 for PUSCH and PDSCH respectively. For PDSCH, the number of DMRS ports is used to determine the transmission rank for a single UE, and the number of DMRS CDM groups without data is used to determine the transmission rank for all UEs in the gNB side. For PUSCH, SRI is used to indicate the transmission rank at the UE side (e.g., the number of SRS ports in a SRS resource for codebook based PUSCH, and the number of SRS resources in a SRS set for non-codebook based PUSCH) , DMRS ports are used to indicate the used DMRS port index based on the rank for a single UE, and DMRS CDM groups without data are used to indicated the reception rank for all UEs in the gNB side. The reception rank for all UEs in the gNB side is corresponding to combination of transmission ranks at multiple UEs.
It can be concluded that PDSCH and/or PUSCH spatial domain multiplexing can be implemented by multiple transmission and/or reception antennas at both the gNB and UE side. Spatial domain multiplexing is used by indicating precoders, DMRS ports or SRS resource (set) to a single UE or multiple UEs. The spatial domain multiplexing is by multiple antennas in the gNB side and the UE side and corresponding precoding/decoding operation. The number of rank and/or spatial domain layers is restricted by the minimum between the gNB’s antenna number and UE’s antenna number.
However, when there is a repeater between the gNB and UE, the antenna number in the repeater for transmission and/or reception for DL and/or UL spatial domain multiplexing will restrict possible multiplexing layers. For example, the antenna number may be smaller than the multiplexing layer supported by the direct link between gNB and UE and it should be known by the gNB for suitable scheduling. In another example, the antenna number may be larger than the multiplexing layer supported by the direct link between gNB and UE, and to save power in the repeater,  it is preferred not always using all the antenna numbers. Instead, it is preferred only using a suitable number of antennas for both spectral efficiency and energy saving.
Accordingly, the industry needs a technical solution for solving the side control information in scenarios with smarter repeater, e.g., how to determine reporting and/or indication of antenna element associated value when spatial domain multiplexing is adopted for UE.
At least to solve the above technical problem, embodiments of the present application propose a technical solution of determining antenna element associated value, e.g., a method and apparatus of determining antenna element associated value, when spatial domain multiplexing is adopted for UE. An antenna element associated value may be various values associated with or based on antenna element. For example, an antenna associated value may be a value based on antenna number, or a value based on maximum MIMO layer, or a value based on antenna ports, or a value based on communication rank (e.g., transmission rank and/or reception rank etc. ) , or a value based on a number of DMRS ports, or a value based on a number of DMRS CDM groups without data, or a value based on SSBs per RO, or a value based on (or associated with) a CSI-RS index, SSB index or SRS index.
The gNB may request the repeater to report at least one antenna element associated value on the repeater side in some embodiments of the present application, so that the gNB can make proper configuration when spatial domain multiplexing is adopted for UE. In some other embodiments of the present application, the gNB may directly indicate at least one antenna element associated value to the repeater, and the repeater can determine the minimum antenna element associated value required in the repeater side. In some yet other embodiments of the present application, the gNB may indicate the at least one antenna element associated value to the repeater based on the at least one antenna element associated value reported by the repeater. In some yet other embodiments of the present application, the gNB may also indicates an acknowledgement (ACK) to the repeater regarding the reported at least one antenna element associated value.
FIG. 4 is a flow chart illustrating an exemplary procedure of a method of  determining antenna element associated value according to some embodiments of the present application. Although the method is illustrated in a system level by a first RAN node, e.g., a repeater and a second RAN node, e.g., a BS, persons skilled in the art should understand that the method implemented in the two RAN nodes can be separately implemented and/or incorporated by other apparatus with the like functions.
As shown in FIG. 4, the first RAN node, e.g., a repeater is deployed between the second RAN node, e.g., a gNB and a third node, e.g., a UE, and may maintain at least one first link between the first RAN node and the second RAN node, e.g., at least one BS-repeater link and at least one second link between the first RAN node and the third node, e.g., at least one repeater-UE link simultaneously. The second RAN node will provide necessary side control information, e.g., beamforming information to the first RAN node. For example, the second RAN node may transmit information requesting antenna element associated value reporting to the first RAN node in step 401, e.g., by RRC, or medium access control (MAC) control element (CE) , or DCI etc., which requests the first RAN node to report antenna element associated value (s) .
The first RAN node, e.g., the repeater may receive the information requesting antenna element associated value reporting (also referred to as a reporting request) in step 402. In response to the reporting request, the first RAN node may transmit at least one antenna element associated value to the second RAN node in step 404 aperiodically or periodically, e.g., by PUCCH or PUSCH or MAC CE. The at least one antenna element associated value is based on a first antenna element associated value for the first link between the first RAN node and the second RAN node and a second antenna element associated value for the second link between the first RAN node and the third node, e.g., the UE. Accordingly, the second RAN node may receive the at least one antenna element associated value in step 405.
Regarding the first antenna element associated value, the second antenna element associated value and the at least one antenna element associated value reported to the second RAN node, they can be various values types. In an example, the first antenna element associated value is an antenna number for the first link, the  second antenna element associated value is an antenna number for the second link, and the at least one antenna element associated value is at least one value based on antenna number. In another example, the first antenna element associated value is a maximum MIMO layer for the first link, the second antenna element associated value is a maximum MIMO layer for the second link, and the at least one antenna element associated value is at least one value based on maximum MIMO layer. In yet another example, the first antenna element associated value is a number of antenna ports for the first link, the second antenna element associated value is a number of antenna ports for the second link, and the at least one antenna element associated value is at least one value based on the number of antenna ports. In yet another example, the first antenna element associated value is a communication rank (e.g. DL rank or UL rank) for the first link, the second antenna element associated value is a communication rank for the second link, and the at least one antenna element associated value is at least one value based on communication rank. In yet another example, the first antenna element associated value is a number of DMRS ports for the first link, the second antenna element associated value is a number of DMRS ports for the second link, and the at least one antenna element associated value is at least one value based on DMRS port number. In yet another example, the first antenna element associated value is based on a number of DMRS CDM groups without data for the first link, the second antenna element associated value is based on a number of DMRS CDM groups without data for the second link, and the at least one antenna element associated value is at least one value based on a number of DMRS CDM groups without data. In yet another example, the first antenna element associated value is a number of SSBs per RO for the first link, the second antenna element associated value is a number of SSBs per RO for the second link, and the at least one antenna element associated value is at least one value based on SSB number per RO. In yet another example, the first antenna element associated value is based on a CSI-RS index, SSB index or SRS index for the first link, the second antenna element associated value is based on a CSI-RS index, SSB index or SRS index for the second link, and the at least one antenna element associated value is at least one value based on a CSI-RS index, SSB index or SRS index.
In addition, based on the first and second antenna element associated values,  the at least one antenna element associated value can be reported to the second RAN node in various manners. In some embodiments of the present application, only one antenna element associated value is reported to the second RAN node, e.g., a smaller (or minimum) one of the first antenna element associated value and the second antenna element associated value. In some other embodiments of the present application, two antenna element associated values are reported to the second RAN node, e.g., the first antenna element associated value and the second antenna element associated value. In some other embodiments of the present application, in the case of multiple antenna element associated values being reported, the first RAN node may transmit an absolute value and at least one differential value compared with the absolute value.
How many antenna element associated values to be reported to the second RAN node can be determined by the repeater itself or can be configured by the second RAN node. For example, the second RAN node may configure the number of the at least one antenna element associated value to be reported, e.g., one or two or more, and the first RAN node will report the at least one antenna element associated value according to the configured number.
In the case that there is a contradiction between a reporting metrics of reporting the at least one antenna element associated value and another reporting metric, e.g., CSI reporting, whether the at least one antenna element associated value is to be transmitted or dropped depends on a priority. An exemplary priority is based on at least one of: a reporting ID of reporting the at least one antenna element associated value, a serving cell index associated with the at least one antenna element associated value, the type (or content) of the reporting metric, or whether reporting the at least one antenna element associated value is periodic or aperiodic.
In some other embodiments of the present application, the gNB may indicate at least one antenna element associated value to the repeater so that the repeater can determine the minimum (or smallest) antenna element associated value required in the repeater.
FIG. 5 is a flow chart illustrating another exemplary procedure of a method  of determining antenna element associated value according to some other embodiments of the present application. Similarly, although the method is illustrated in a system level by a first RAN node, e.g., a repeater and a second RAN node, e.g., a BS, persons skilled in the art should understand that the method implemented in the two RAN nodes can be separately implemented and/or incorporated by other apparatus with the like functions.
As shown in FIG. 5, the first RAN node, e.g., a repeater is deployed between the second RAN node, e.g., a gNB and a third node, e.g., a UE, and may maintain at least one first link between the first RAN node and the second RAN node, e.g., at least one BS-repeater link and at least one second link between the first RAN node and the third node, e.g., at least one repeater-UE link simultaneously. The second RAN node will provide necessary side control information, e.g., beamforming information to the first RAN node. For example, the second RAN node may configure at least one antenna element associated value in step 501, which is at least used for determining the minimum antenna element associated value required for at least one of the first link between the second RAN node and the first RAN node or the second link between the first RAN node and a third node. The at least one antenna element associated value can be configured by the second RAN node. The configuration can be based on antenna element associated value information reported by the first RAN node or not.
Similarly, the at least one antenna element associated value is various types, e.g., at least one value based on antenna number, at least one value based on maximum MIMO layer, at least one value based on antenna ports, at least one value based on communication rank, at least one value based on a number of DMRS ports, at least one value based on a number of DMRS CDM groups without data, at least one value based on a number of SSBs per RO, or at least one value based on (or associated with) a CSI-RS index, SSB index or SRS index etc.
In addition, the at least one antenna element associated value is configured in various manners. For example, two antenna element associated values may be configured, e.g., a first value for the first link between the RAN node and the second RAN node and a second value for the second link between the RAN node and the  third node. In another example, the at least one antenna element associated value is the minimum value or smaller one between the first value for the first link between the RAN node and the second RAN node and the second value for the second link between the RAN node and the third node.
The second RAN node will transmit information indicating the at least one antenna element associated value to the first RAN node in step 503, e.g., by or RRC, or MAC CE, DCI etc. The second RAN node can indicate the at least one antenna element associated value in various manners, e.g., by a pattern of antenna element associated value, or by RS indexes, or by DMRS configuration, or by SRS configuration or by SSB configuration etc. In step 504, the first RAN node may receive the information indicating the at least one antenna element associated value from the second RAN node. Based on the information indicating the at least one antenna element associated value, the first RAN node will determine the minimum antenna element associated value required for at least one of the first link or the second link in step 506. For different types of antenna element associated value, the first RAN node may determine the minimum antenna element associated value required for at least one of the first link or the second link in different manners.
For example, in the case that the at least one antenna element associated value is based on the number of SSBs per RO, the number of SSBs per RO is determined by a high layer parameter, e.g., RRC.
For PDSCH and/or PUSCH transmission, the number of DMRS ports and the number of DMRS CDM groups without data are determined by “antenna ports” field in DCI, or SRI in DCI, or “antenna ports” field in high layer signalling, e.g., RRC, or SRI in high layer signalling. The SRI is to indicate a number of SRS ports in a SRS resource or a number of SRS resources in a SRS resource set.
In the case that there are one or two SRS resource sets for antenna switching, the spatial relation information (or spatial domain filter, also referred to as beam) for all SRS resources within the one or two SRS resource sets are associated with the same one of the indicated at least one antenna element associated value.
Different types of antenna element associated value may be applicable for different scenarios. For example, in the case that the information indicates at least one value based on a number of DMRS ports or a number of DMRS CDM groups without data, the information is applicable for PDSCH and PUSCH. In the case that the information indicates at least one value associated with a CSI-RS index, SSB index or SRS index, the information is applicable for CSI-RS, SSB or SRS or physical channel quasi co-located (QCLed) with the RS. In the case that the information indicates at least one value based on a number of SSBs per RO, the information is applicable for RO.
The first RAN node may receive a plurality of information indicating at least one value for different RSs or channels, each indicating different antenna element associated values. For a time instance, the first RAN node needs to determine which indicated value to be applied in the case that there are multiple indicated antenna element associated values applicable. If the indicated antenna element associated value is at least one value based on a CSI-RS index, or SSB index, or SRS index, or a number of DMRS ports, or a number of DMRS CDM groups without data or a number of SSBs per RO, the indicated value has a higher priority than other antenna element associated value (s) . For example, when both a CSI-RS index and an antenna number are indicated to the repeater, the repeater will determine the minimum antenna element associated value required for the first link and/or the second link based on the CSI-RS index rather than the antenna number.
The information indicating the at least one antenna element associated value can be separately or jointly applied to downlink slot and uplink slot. There may be an application delay in the repeater between reception of the information indicating at least one antenna element associated value and application of the information indicating at least one antenna element associated value, which can be explicitly configured or predefined in the specification. In addition, the information indicating the at least one antenna element associated value is valid for a configured time domain duration or is valid until application of a next signalling with the information indicating at least one antenna element associated value. In some embodiments of the present application, each of the at least one antenna element associated value is  associated with a time domain duration. In some other embodiments of the present application, all the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration.
Persons skilled in the art should well know that herein (throughout the specification) , the wordings, such as the first, the second, the third, the fourth and the fifth etc., are only used to distinguish similar features or elements etc., for clearness, and should not be deemed as limitation to the scope of the technical solutions.
Hereafter, taking a repeater as an example of the first RAN node, taking a gNB as an example of the second RAN node, and taking a UE as an example of the third node, more details on how to determine antenna element associated value will be illustrated below in view of various exemplary embodiments (or schemes) of the present application. Persons skilled in the art should well know that the illustrated solutions can also be applied to other nodes with the like functions in a wireless communication system. In addition, different exemplary embodiments may focus on different technical measures, which may be combined by persons skilled in the art under the disclosure and teaching of the present application while not specifically illustrated.
Scheme 1
In some embodiments of the present application, the repeater will report to the gNB at least one antenna element associated value based on the first antenna element associated value for gNB-repeater link and the second antenna element associated value for repeater-UE link, e.g., by PUCCH, or PUSCH or MAC CE. The gNB may configure the repeater to report the at least one antenna element associated value periodically or aperiodically.
For example, the first antenna element associated value is the first antenna number for the gNB-repeater link and the second antenna element associated value is the second antenna number for the repeater-UE link. For DL signal or DL RS, the first antenna element associated value is the reception antenna number for the gNB- repeater link and the second antenna element associated value is the transmission antenna number for the repeater-UE link. For UL signal or UL RS, the first antenna element associated value is the transmission antenna number for the repeater-UE link and the second antenna element associated value is the reception antenna number for the gNB-repeater link.
When there is a single panel for transmission and a single panel for reception in the repeater, the at least one antenna element associated value to be reported is the smaller one of the first antenna element associated value and the second antenna element associated value in some embodiments of the present application. The first antenna element associated value is associated with the first panel and the second antenna element associated value is associated with the second panel, or vice versa. In some other embodiments of the present application, multiple antenna element associated values will be reported, e.g., both the first antenna element associated value and the second antenna element associated value.
In some scenarios of the present application, there are multiple transmission and multiple reception panels in the repeater. For example, in the case that there are n panels for gNB-repeater link, and m panels for repeater-UE link, the first antenna element associated value of each panel corresponding to gNB-repeater link can be represent as A1, A2, …An, and the second antenna element associated value of each panel corresponding to repeater-UE link can be represent as B1, B2, …, Bm. A1 represents the first antenna element associated value of panel 1 for gNB-repeater link, A2 represents the first antenna element associated value of panel 2 for gNB-repeater link, and so on. B1 represents the second antenna element associated value of panel 1 for repeater-UE link, B2 represents the second antenna element associated value of panel 2 for repeater-UE link, and so on.
The at least one antenna element associated value in the case of multi-panel may be reported in a similar manner as a single panel. When all the values for each panel will be reported to the gNB from the repeater, the repeater may report all the values as absolute values, e.g., A1, A2…An and B1, B2…, Bm, or only report one absolute value and report the differential value of the remaining values with respect to the absolute value for each link. The absolute value may be the first one, e.g., A1, or  the last one, e.g., An, or another configured one. Taking the first one as an example, Ai (2<=i<=n) can be a differential value with respect to A1. Taking B1 as an example, Bi (2<=i<=m) can be a differential value with respect to B1. In some embodiments of the present application, there is only one absolute value of the antenna element associated values of panels for gNB-repeater link and repeater-UE link, and all the other values are reported as a different value with respect to the absolute value. For example, A1 is reported as an absolute value, A2 to An and B1 to Bm are reported as differential values with respect to Al.
The number of antenna element associated value to be reported can be configured by the gNB. For example, in the case of multi-panel in the repeater, the number, e.g., L for gNB-repeater link and for repeater-UE link for reporting can be configured by the gNB. If L>n, then the antenna element associated values for the first n panels will reported to the gNB and the remaining numbers for reporting will be a reserved value. If L<=n, then the antenna element associated values of the first L panels will be reported.
When there is a contradiction between a reporting metrics of reporting the at least one antenna element associated value and another reporting metric, whether the at least one antenna element associated value is to be transmitted depends on a priority. The priority can be determined based on a formula similar to the following formula for CSI report, which is specified in TS 38.214.
CSI reports are associated with a priority value Pri iCSI (y, k, c, s) = 2 ·N cells ·M s ·y + N cells ·M s ·k + M s ·c + s where
y = 0 for aperiodic CSI reports to be carried on PUSCH y = 1 for semi-persistent CSI reports to be carried on PUSCH, y = 2 for semi-persistent CSI reports to be carried on PUCCH and y = 3 for periodic CSI reports to be carried on PUCCH;
k = 0 for CSI reports carrying L1-RSRP or L 1-SINR and k = 1 for CSI reports not carrying L1-RSRP or L1-SINR;
c is the serving cell index and N cells is the value of the higher layer parameter maxNrofServingCells;
s is the reportConfigID and M s is the value of the higher layer parameter maxNrofCSI-ReportConfigurations.
Wherein, parameters y (associated with periodic or aperiodic reporting) , k (associated with reporting metric type) , c (associated with serving cell index) and s (associated with reporting ID) can be determined in a similar manner for different types of antenna element associated values.
Scheme 2
In some other embodiments of the present application, the gNB may indicate to the repeater a pattern of antenna element associated value, which can be applied to DL slots and UL slots jointly or separately. The information indicating the at least one antenna element associated value is applicable upon reception of the indication signaling or after an application delay. The application delay can be explicitly configured or predefined in 3GPP specification. In addition, the information indicating the at least one antenna element associated value is valid for a configured time domain duration or is valid until the application of next information indicating the at least one antenna element associated value. The time domain duration can be configured for each antenna element associated value or a set of antenna element associated value. For example, in some embodiments of the present application, each antenna element associated value is associated with a time domain duration. In some other embodiments of the present application, the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration. For example, there are several pairs of antenna element associated values indicated by the pattern, each pair of antenna element associated values is associated with a part of time domain duration of the entire time domain duration for the several pairs of antenna element associated values.
The repeater will determine the minimum antenna element associated value required for at least one of gNB-repeater link and repeater-UE link based on the information indicating the at least one antenna element associated value.
The indicated antenna element associated value can be the minimum required antenna element associated value in the repeater for spatial domain multiplexing, e.g., the minimum antenna number in the repeater required for spatial domain multiplexing. The minimum or smallest antenna element associated value in the repeater among transmission or reception for both the gNB-repeater link and repeater-UE link are not larger than the gNB indicated minimum required antenna element associated value.
In some embodiments of the present application, the indicated antenna element associated value can be one of the minimum antenna element associated value in the repeater for gNB-repeater link and the minimum antenna element associated value in the repeater for repeater-UE link. That is, only one antenna element associated value is indicated and determined. In some other embodiments of the present application, the indicated antenna element associated value can be the minimum antenna element associated value in the repeater for gNB-repeater link and the minimum antenna element associated value in the repeater for repeater-UE link. That is, multiple antenna element associated values are indicated and determined. The antenna element associated value (s) in the repeater, e.g., the real antenna number should be not larger than the required number for gNB-repeater link and repeater-UE link, respectively. Taking the antenna number as an example, the required antenna number can be 1 to 24 with step size being 1 based on SSB-RO association or the number of DMRS ports within one or more DMRS CDM groups.
Scheme 3
In some embodiments of the present application, the gNB may indicate the at least one antenna element associated value by RS (s) , e.g., CSI-RS (s) , or SRS (s) , or SSB(s) etc. The RS (s) is associated with an antenna element associated value in the repeater for both gNB-repeater link and repeater-UE link..
The repeater will determine the minimum antenna element associated value required for at least one of gNB-repeater link and repeater-UE link based on the information indicating the at least one antenna element associated value.
In legacy technology, a RS is associated with a beam, e.g., a spatial domain filter (or spatial relation information) . The spatial domain filter is corresponding to weighting factors at each antennal element. However, according to some embodiments of the present application, a RS is associated with both an antenna element associated value in the repeater and corresponding weighting factors in the repeater. The RS can be for at least one of gNB-repeater link or repeater-UE link for each antenna element.
The RS can be applied to various scenarios. For example, for a scenario of CSI-RS for beam management, the repeater will decide and maintain the mapping between a CSI-RS index and antenna element associated value for each antenna element in the repeater, which is up to repeater implementation. The number of CSI-RS resource in a CSI-RS resource set is large enough to cover different antenna element associated values and different weighting factors. To ensure that, the repeater can report a CSI-RS resource indicator (CRI) and its corresponding antenna element associated value to the gNB. When group reporting is enabled, there will be two CRIs and their corresponding antenna element associated values to be reported. The two CRIs mean that two CSI-RSs can be received simultaneously in the repeater or in the UE with the same panel or different panels.
For a scenario of CSI-RS for CSI measurement or a scenario of CSI-RS for CSI reporting, a transmission configuration indication (TCI) state or spatial relation information will be configured. Based on the corresponding configuration or the associated RS, the repeater will determine the spatial domain filter (corresponding to a weighting factor for each antenna element) and antenna element associated value in the repeater side.
For a scenario of communication rank, e.g., a transmission rank or reception rank, since the antenna element associated value in the repeater side can be used to restrict the reported rank by the UE, there is already rank restriction for UE reporting. Accordingly, there is no impact on the current specification.
For a scenario of SRS for beam management, each SRS resource is associated with a spatial domain filter (corresponding to a weighting factor for each antenna element) in the repeater side and the antenna element associated value in the repeater side. It is up to repeater implementation.
For a scenario of SRS for CSI acquisition, each SRS resource will be configured with a spatial domain filter (or spatial relation information) . The repeater can determine both the spatial domain filter (corresponding to a weighting factor for each antenna element) in the repeater and the antenna element associated value in the repeater side based on the spatial domain filter configuration. In the case that there  are one or two SRS resource sets for antenna switching, the spatial relation information for all SRS resources within the one or two SRS resource sets are associated with the same antenna element associated value in the information indicating at least one antenna element associated value.
Scheme 4
In some embodiments of the present application, the gNB may indicate the at least one antenna element associated value by DMRS configuration, SRS configuration or SSB configuration etc. These configurations are associated with antenna element associated values in the repeater for both gNB-repeater link and repeater-UE link.
The repeater will determine the minimum antenna element associated value required for at least one of gNB-repeater link and repeater-UE link based on the information indicating the at least one antenna element associated value.
For example, for a time domain resource used for RO, the minimum required antenna element associated value in the repeater for both gNB-repeater link and repeater-UE link is determined by the number of SSBs per RACH occasion, which can be determined by high layer parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB. Some exemplary numbers are 1, 2, 4, 8, or 16.
For a time domain resource for spatial domain multiplexing of PDSCH and/or PUSCH, the minimum required antenna number in the repeater for both gNB-repeater link and repeater-UE link is based on the number of indicated DMRS antenna ports or number of DMRS CDM groups without data, which can be determined based on PDCCH or RRC signaling. Some exemplary numbers are 1 to 24 with a step size being 1. Some exemplary numbers are 4, 8, 12, 16, 20, 24 considering the DMRS CDM group size and up to 24 DMRS antenna ports.
When there is single user (SU) MIMO scheduled for PDSCH and/or PUSCH in a cell, the minimum required antenna element associated value in the repeater can be determined by the number of DMRS antenna ports for a single UE.
When there is multi-user (SU) MIMO scheduled for PDSCH and/or PUSCH in a cell, the minimum required antenna element associated value in the repeater can be determined by the number of DMRS antenna ports for multiple UEs. With non-transparent MU MIMO, it can be reflected by the number of DMRS CDM groups without data for each UE.
For PDSCH, the number of DMRS antenna ports and the number of DMRS CDM groups are determined by the “antenna ports” field in DCI.
For codebook based PUSCH, the number of DMRS antenna ports and the number of DMRS CDM group are determined by the “antenna ports” filed and the number of SRS port in the indicated SRS resource by “SRI” filed in DCI or RRC signaling. The number of SRS ports in the indicated SRS resource is to indicate the rank for a single scheduled UE. The rank and “antenna ports” together can be used determine the number of DMRS ports and number of DMRS CDM groups without data.
For non-codebook based PUSCH, the number of DMRS antenna ports and the number of DMRS CDM group is determined by the “antenna ports” filed and the number of SRS resources in the indicated SRS resource set by “SRI” field in DCI or RRC signaling. The non-codebook based PUSCH only different from codebook based PUSCH in that the rank is determined by SRS resources within a SRS resource set, and other parts are the same.
The above illustrated schemes can be combined with each other. For example, in some embodiments of the present application, Scheme 2 and Scheme 4 can be combined together. For a time domain resource, when Scheme 4 is applicable, the minimum required antenna number in the repeater for gNB-repeater and repeater-UE link is determined by Scheme 4; otherwise, Scheme 2 is applicable. In some other embodiments of the present application, Scheme 2 and Scheme 3 can be combined together. For a time domain resource, Scheme 2 is the fallback solution, and Scheme 3 has a higher priority than Scheme 2. For example, if the indicated antenna element associated value is at least one value based on a CSI-RS index, or SSB index, or SRS index, or a number of DMRS ports, or a number of DMRS CDM groups without data  or a number of SSBs per RO, the indicated value has a higher priority than other antenna element associated value (s) .
Besides the methods, embodiments of the present application also propose an apparatus of determining antenna element associated value.
For example, FIG. 6 is a block diagram of an apparatus of determining antenna element associated value 600 according to some other embodiments of the present application.
Referring to FIG. 6, the apparatus 600, for example a gNB or a repeater may include at least one processor 602 and at least one transceiver 604 coupled to the at least one processor 602. The transceiver 604 may include at least one separate receiving circuitry 606 and transmitting circuitry 604, or at least one integrated receiving circuitry 606 and transmitting circuitry 604. The at least one processor 902 may be a CPU, a DSP, a microprocessor etc.
According to some embodiments of the present application, when the apparatus 600 is a repeater, the processor is configured to: receive, via the transceiver from a second RAN node, information requesting antenna element associated value reporting, and transmit, via the transceiver, to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
According to some other embodiments of the present application, when the apparatus 600 is a repeater, the processor is configured to: receive, via the transceiver from a second RAN node, information indicating at least one antenna element associated value, and determine a minimum antenna element associated value required for at least one of a first link between the RAN node and the second RAN node or a second link between the RAN node and a third node based on the information indicating the at least one antenna element associated value.
According to some yet other embodiments of the present application, when the apparatus 600 is a gNB, the processor may be configured to: transmit, via the transceiver to a first RAN node information requesting antenna element associated value reporting, and receive, via the transceiver, from the first RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the first RAN node and a second antenna element associated value for a second link between the first RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
According to some yet other embodiments of the present application, when the apparatus 600 is a gNB, the processor may be configured to: configure at least one antenna element associated value for determining a minimum antenna element associated value required for at least one of a first link between the RAN node and a first RAN node or a second link between the first RAN node and a third node; and transmit, via the transceiver to the first RAN node information indicating the at least one antenna element associated value.
FIG. 7 illustrates a block diagram of an apparatus of determining antenna element associated value 700 according to some embodiments of the present application.
As shown in FIG. 7, the apparatus 700 may include at least one non-transitory computer-readable medium 701, at least one receiving circuitry 702, at least one transmitting circuitry 704, and at least one processor 706 coupled to the non-transitory computer-readable medium 701, the receiving circuitry 702 and the transmitting circuitry 704. The at least one processor 706 may be a CPU, a DSP, a microprocessor etc. The apparatus 700 may be a RAN node, e.g., a gNB or a repeater configured to perform a method illustrated in the above or the like.
Although in this figure, elements such as the at least one processor 706, transmitting circuitry 704, and receiving circuitry 702 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated. In some embodiments of the present application, the receiving circuitry 702 and the  transmitting circuitry 704 can be combined into a single device, such as a transceiver. In certain embodiments of the present application, the apparatus 700 may further include an input device, a memory, and/or other components.
In some embodiments of the present application, the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the first RAN node as described above. For example, the computer-executable instructions, when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the first RAN node as depicted above.
In some embodiments of the present application, the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the second RAN node as described above. For example, the computer-executable instructions, when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the second RAN node as illustrated above.
The method according to embodiments of the present application can also be implemented on a programmed processor. However, the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like. In general, any device capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application. For example, an embodiment of the present application provides an apparatus, including a processor and a memory. Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method. The method may be a method as stated above or other method according to an embodiment of the present application.
An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a network security system. The non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device. For example, an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein. The computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.
In addition, in this disclosure, the terms "includes, " "including, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term "another" is defined as at least a second or more. The terms "having, " and the like, as used herein, are defined as "including. "

Claims (15)

  1. A radio access network (RAN) node, comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    receive, via the transceiver from a second RAN node information requesting antenna element associated value reporting, and
    transmit, via the transceiver, to the second RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the second RAN node and a second antenna element associated value for a second link between the RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
  2. A RAN node of claim 1, wherein,
    the first antenna element associated value is an antenna number for the first link, the second antenna element associated value is an antenna number for the second link, and the at least one antenna element associated value is at least one value based on antenna number;
    the first antenna element associated value is a maximum multiple-input multiple-output (MIMO) layer for the first link, the second antenna element associated value is a maximum MIMO layer for the second link, and the at least one antenna element associated value is at least one value based on maximum MIMO layer;
    the first antenna element associated value is a number of antenna ports for the first link, the second antenna element associated value is a number of antenna ports for the second link, and the at least one antenna element associated value is at least one value based on antenna port number;
    the first antenna element associated value is a communication rank for the first link, the second antenna element associated value is a communication rank for the second link, and the at least one antenna element associated value is at least one value based on communication rank;
    the first antenna element associated value is a number of demodulation reference signal (DMRS) ports for the first link, the second antenna element associated value is a number of DMRS ports for the second link, and the at least one antenna element associated value is at least one value based on DMRS port number;
    the first antenna element associated value is based on a number of DMRS code division multiplexing (CDM) groups without data for the first link, the second antenna element associated value is based on a number of DMRS CDM groups without data for the second link, and the at least one antenna element associated value is at least one value based on a number of DMRS CDM groups without data;
    the first antenna element associated value is a number of synchronization signal (SS) /physical broadcast channel (PBCH) blocks (SSB) s per random access channel (RACH) occasion for the first link, the second antenna element associated value is a number of SSBs per RACH occasion for the second link, and the at least one antenna element associated value is at least one value based on SSB number per RACH occasion; or
    the first antenna element associated value is based on a channel state information-reference signal (CSI-RS) index, SSB index or sounding reference signal (SRS) index for the first link, the second antenna element associated value is based on a CSI-RS index, SSB index or SRS index for the second link, and the at least one antenna element associated value is at least one value based on a CSI-RS index, SSB index or SRS index.
  3. A RAN node of claim 1, wherein, the at least one antenna element associated value is a smaller one of the first antenna element associated value and the second antenna element associated value.
  4. A RAN node of claim 1, wherein, the at least one antenna element associated value is the first antenna element associated value and the second antenna element associated value.
  5. A RAN node of claim 1, wherein, a number of the at least one antenna element associated value is configured by the second RAN node.
  6. A RAN node of claim 1, wherein, in the case that there is a contradiction between a reporting metrics of reporting the at least one antenna element associated value and another reporting metric, whether the at least one antenna element associated value is transmitted depends on a priority, wherein the priority is based on at least one of a reporting identifier (ID) of reporting the at least one antenna element associated value, a serving cell index associated with the at least one antenna element associated value, a type of the reporting metric, or whether reporting the at least one antenna element associated value is periodic or aperiodic.
  7. A radio access network (RAN) node, comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    receive, via the transceiver from a second RAN node information indicating at least one antenna element associated value, and
    determine a minimum antenna element associated value required for at least one of a first link between the RAN node and the second RAN node or a second link between the RAN node and a third node based on the information indicating the at least one antenna element associated value.
  8. A RAN node of claim 7, wherein, the at least one antenna element associated value is:
    at least one value based on antenna number;
    at least one value based on maximum multiple-input multiple-output (MIMO) layer;
    at least one value based on antenna ports;
    at least one value based on communication rank;
    at least one value based on a number of demodulation reference signal (DMRS) ports;
    at least one value based on a number of DMRS code division multiplexing (CDM) groups without data;
    at least one value based on a number of synchronization signal (SS) /physical broadcast channel (PBCH) blocks (SSB) s per random access channel (RACH) occasion; or
    at least one value based on a channel state information-reference signal (CSI-RS) index, SSB index or sounding reference signal (SRS) index.
  9. The RAN node of claim 7, wherein, the information indicating at least one antenna element associated value is valid for a configured duration or is valid until application of a next signalling with the information indicating at least one antenna element associated value .
  10. The RAN node of claim 7, wherein, the at least one antenna element associated value is associated with a time domain duration, and a part of the at least one antenna element associated value is associated with a part of the time domain duration.
  11. The RAN node of claim 7, wherein, an application delay between reception of the information indicating at least one antenna element associated value and application of the information indicating at least one antenna element associated value is explicitly configured or predefined.
  12. The RAN node of claim 8, wherein, for physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) transmission, , the number of DMRS ports and the number of DMRS CDM groups without data are determined by “antenna ports” field in downlink control information (DCI) , or signal resource indicator (SRI) in DCI, or “antenna ports” field in high layer signalling, or SRI in high layer signalling.
  13. The RAN node of claim 11, wherein, in the case that the information indicates at least one value based on a CSI-RS index, or SSB index, or SRS index, or a number of DMRS ports, or a number of DMRS CDM groups without data or a number of SSBs per RACH occasion, the indicated at least one value has a higher priority than other antenna element associated values.
  14. The RAN node of claim 11, wherein, in the case that the information indicates at least one value based on a number of DMRS ports or a number of DMRS CDM groups without data, the information is applicable for physical downlink shared channel (PDSCH) and physical uplink shared channel (PUSCH) .
  15. A radio access network (RAN) node, comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    transmit, via the transceiver to a first RAN node information requesting antenna element associated value reporting, and
    receive, via the transceiver, from the first RAN node, at least one antenna element associated value based on a first antenna element associated value for a first link between the RAN node and the first RAN node and a second antenna element associated value for a second link between the first  RAN node and a third node, in response to the information requesting the antenna element associated value reporting.
PCT/CN2022/092703 2022-05-13 2022-05-13 Method and apparatus of determining antenna element associated value WO2023216233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092703 WO2023216233A1 (en) 2022-05-13 2022-05-13 Method and apparatus of determining antenna element associated value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092703 WO2023216233A1 (en) 2022-05-13 2022-05-13 Method and apparatus of determining antenna element associated value

Publications (1)

Publication Number Publication Date
WO2023216233A1 true WO2023216233A1 (en) 2023-11-16

Family

ID=88729457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092703 WO2023216233A1 (en) 2022-05-13 2022-05-13 Method and apparatus of determining antenna element associated value

Country Status (1)

Country Link
WO (1) WO2023216233A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217301A (en) * 2008-01-10 2008-07-09 北京邮电大学 A collaborative transmission method realized in isomerization wireless network with cooperating relay nodes
WO2009089654A1 (en) * 2008-01-17 2009-07-23 Alcatel Shanghai Bell Company, Ltd. Method for controlling signal transmission in wireless cooperation relay network and device thereof
US20200195310A1 (en) * 2018-12-14 2020-06-18 Qualcomm Incorporated Millimeter wave repeater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217301A (en) * 2008-01-10 2008-07-09 北京邮电大学 A collaborative transmission method realized in isomerization wireless network with cooperating relay nodes
WO2009089654A1 (en) * 2008-01-17 2009-07-23 Alcatel Shanghai Bell Company, Ltd. Method for controlling signal transmission in wireless cooperation relay network and device thereof
US20200195310A1 (en) * 2018-12-14 2020-06-18 Qualcomm Incorporated Millimeter wave repeater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Workplan for Study on NR Access Technology", 3GPP DRAFT; R1-167373 WORK PLAN FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Göteborg; 20160822 - 20160826, 21 August 2016 (2016-08-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051125870 *

Similar Documents

Publication Publication Date Title
JP7063387B2 (en) Setting information transmission / reception method, device and communication system
US11637667B2 (en) Method and apparatus for transmitting and receiving uplink signal, storage medium, and electronic device
CN108260217B (en) Information transmission method, device and communication node
CN111386661B (en) Aperiodic CSI reporting method and apparatus in wireless communication system
US11711812B2 (en) Method and apparatus for configuring uplink signal, and method and apparatus for determining uplink signal
US8565268B2 (en) Method for generating reference signal sequence in multi-antenna wireless communication system and apparatus for same
US20170026156A1 (en) High Resolution Channel Sounding for FDD Communications
CN111587556B (en) User device and wireless communication method
US20130201946A1 (en) Transmission of Reference Signals
US10750565B2 (en) Method and device for performing communication by using virtual terminal in inter-vehicle communication system
US20220124761A1 (en) Systems and methods for signaling pdsch diversity
EP3860091B1 (en) Information receiving method and device and information sending method and device
US20190098638A1 (en) Method for wireless communication, user equipment, and base station
CN107888255B (en) Method, device and system for sending uplink reference signals, base station and terminal
US11159290B2 (en) Device and method for handling a sounding reference signal transmission
US20230361975A1 (en) Method of sharing srs resources between srs resource sets of different usages, and corresponding ue
WO2023216233A1 (en) Method and apparatus of determining antenna element associated value
WO2023150969A1 (en) Method and apparatus of beam indication
WO2023168702A1 (en) Method and apparatus of measurement and reporting for beam determination
WO2024036503A1 (en) Method and apparatus of uplink transmission
WO2024007245A1 (en) Method and apparatus of dynamic adaption of spatial elements
WO2024065170A1 (en) Method and apparatus of radio resource determination
WO2023201714A1 (en) Method and apparatus of beam determination
WO2023193263A1 (en) Method and apparatus of beam determination
WO2022205302A1 (en) Method and apparatus for pusch transmission with repetitions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941187

Country of ref document: EP

Kind code of ref document: A1