WO2023044606A1 - 电池系统 - Google Patents

电池系统 Download PDF

Info

Publication number
WO2023044606A1
WO2023044606A1 PCT/CN2021/119630 CN2021119630W WO2023044606A1 WO 2023044606 A1 WO2023044606 A1 WO 2023044606A1 CN 2021119630 W CN2021119630 W CN 2021119630W WO 2023044606 A1 WO2023044606 A1 WO 2023044606A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switch
converter
bidirectional
energy
Prior art date
Application number
PCT/CN2021/119630
Other languages
English (en)
French (fr)
Inventor
叶楠
毕路
甘银华
方杰
王林峰
吴杰
Original Assignee
蔚然(南京)动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚然(南京)动力科技有限公司 filed Critical 蔚然(南京)动力科技有限公司
Priority to PCT/CN2021/119630 priority Critical patent/WO2023044606A1/zh
Publication of WO2023044606A1 publication Critical patent/WO2023044606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of battery systems, and in particular to a battery system with multi-functional dual-battery backup circuits.
  • the battery system 1 includes batteries 10 and 12 , pre-charging modules 14 and 16 , protection switches F1 and F2 , and switches SW1 - SW4 .
  • the pre-charging modules 14 and 16 are used to alleviate the phenomenon of inrush current, so as to improve the reliability of the system and prolong the life of the electronic components.
  • the switches SW1 - SW4 are used to connect or disconnect the batteries 10 , 12 and the load 18 .
  • the first mode of operation of the existing batteries is that the batteries 10 and 12 are simultaneously powered and charged at the same time. Provide electricity.
  • the second existing battery mode of operation is that the batteries 10 and 12 do not supply power at the same time. One of them is used as the main battery and the other as the backup battery. When the main battery breaks down, the backup battery is put into work. However, when the main battery breaks down and quits work, the delay for another backup battery to work is too long (for example, fault judgment is required, the switch of the main battery is turned off, and the switch of the backup battery is turned on after the backup battery is pre-charged, and then put into operation. power supply work).
  • the purpose of this application is to provide a battery system with a multi-functional dual battery backup circuit to solve the above technical problems.
  • the battery system includes: a first battery; a second battery; a first switch, coupled to the first end of the first battery and a first load of a load between the terminals; the second switch is coupled between the second terminal of the first battery and the second terminal of the load; the third switch is coupled between the first terminal of the second battery and the bidirectional DC between the first terminals of the DC converter; the fourth switch is coupled between the second terminal of the second battery and the second terminal of the load; a bidirectional DC to DC converter, wherein the bidirectional DC The first end of the DC-to-DC converter is coupled to the first end of the load and the first switch, the second end of the bidirectional DC-to-DC converter is coupled to the third switch; and a fifth switch , the first end of the fifth switch is coupled to the first end of the bidirectional DC-DC converter, the first switch and the first end of the load, and the second end of the fifth switch coupled to the second end of the bidirectional DC-DC converter and the third switch
  • FIG. 1 is a schematic diagram of a conventional battery system for an electric vehicle.
  • FIG. 2 is a schematic diagram of a battery system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of the bidirectional DC-DC converter in FIG. 2 .
  • FIG. 4 is a schematic diagram of the operation of the battery system in the first charging mode according to the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the battery system operating in the second charging mode according to the embodiment of the present application.
  • FIG. 6 and FIG. 7 are schematic diagrams of the operation of the battery system in the hot backup mode according to the embodiment of the present application.
  • FIG. 8 is a timing diagram of waveforms of load voltages when the embodiment of the present application is operating in the hot backup mode.
  • 9 to 11 are schematic diagrams of the operation of the battery system in the failover mode according to the embodiment of the present application.
  • FIG. 12 is a time sequence diagram of the waveform of the load voltage when the embodiment of the present application operates in the failover mode.
  • FIG. 13 is a schematic diagram of the operation of the battery system (12) in the embodiment of the present application when it operates in the (1) fast discharge mode.
  • FIG. 14 is a schematic diagram of the operation of the battery system (12) according to the embodiment of the present application when it operates in (11) a first battery heating mode.
  • FIG. 15 is a schematic diagram of the operation of the battery system (12) according to the embodiment of the present application when it operates in (11) a second battery heating mode.
  • FIG. 16 is a schematic diagram of the operation of the battery system (12) according to the embodiment of the present application when it operates in (11) a third battery heating mode.
  • FIG. 2 is a schematic diagram of a battery system 2 according to an embodiment of the present application.
  • the battery system 2 can be applied to electric vehicles, but not limited thereto.
  • the battery system 2 includes batteries 20 , 22 , a bidirectional DC-DC converter 24 , a power connection portion 26 , protection switches F1 and F2 , and switches SW1 - SW7 .
  • battery 20 may be a primary battery and battery 22 may be a backup or auxiliary battery.
  • the battery 20 can be a replaceable vehicle battery to support a battery replacement solution.
  • the battery 20 can be a quick-detachable swappable vehicle battery.
  • the battery 22 may be a stationary vehicle battery.
  • the switches SW1-SW7 can be relays, but not limited thereto.
  • the switches SW1 - SW2 are used to control the connection between the battery 20 and the load 28 and the bidirectional DC-DC converter 24 .
  • the switches SW3 - SW4 are used to control the connection between the battery 22 and the bidirectional DC-DC converter 24 , the switch SW5 and the load 28 .
  • the switch SW5 is connected in parallel with the bidirectional DC-DC converter 24 .
  • the switch SW5 can be a bypass switch of the bidirectional DC-DC converter 24 .
  • the switches SW6 - SW7 are used to control the connection between the power connection part 26 and the batteries 20 , 22 and the load 28 .
  • a first end and a second end of the bidirectional DC-to-DC converter 24 are respectively coupled to a first end and a second end of the switch SW5, and a third end of the bidirectional DC-to-DC converter 24 is coupled to the switch SW2, SW4, SW6, SW7 and a ground wire.
  • the bidirectional DC-DC converter 24 has a buck-boost bidirectional conversion function, which can control the flow direction of energy to realize the bidirectional flow of energy.
  • the bidirectional DC-DC converter 24 when the bidirectional DC-DC converter 24 is operating, energy (eg, in the form of current) can flow from the terminal 240 of the bidirectional DC-DC converter 24 to the terminal 242 of the bidirectional DC-DC converter 24 or from the bidirectional The terminal 242 of the DC-to-DC converter 24 flows to the terminal 240 of the bidirectional DC-to-DC converter 24 .
  • FIG. 3 is a schematic diagram of an embodiment of the bidirectional DC-DC converter 24 in FIG. 2 .
  • the bidirectional DC-to-DC converter 24 includes transistors Q1 - Q4 , diodes D1 - D4 , capacitors C1 - C2 and an inductor L. As shown in FIG.
  • the protection switches F1 and F2 are used to prevent overload or short circuit events.
  • the protection switches F1 and F2 can be fuses, but not limited thereto.
  • the power connection part 26 is used for receiving an external power source to provide energy to at least one of the batteries 20 , 22 and the load 28 .
  • the power connection part 26 can be a high voltage DC charging port.
  • the power connection part 26 can be connected to a charging pile system to receive external power.
  • the load 28 can be an electric drive system or a high-pressure air conditioner, but it is not limited thereto.
  • the battery system 2 also includes a switch control circuit (not shown in the figure), which is used to control the on-operation or off-operation of the switches SW1 - SW7 according to practical applications.
  • the battery system 2 also includes a converter control circuit (not shown in the figure), which is used to control the bidirectional DC-to-DC converter 24 according to actual applications so that energy flows from the terminal 240 of the bidirectional DC-to-DC converter 24 to the bidirectional DC pair
  • the terminal 242 of the DC converter 24 may flow from the terminal 242 of the bidirectional DC-DC converter 24 to the terminal 240 of the bidirectional DC-DC converter 24 , and control the DC-DC converter 24 to perform other related operations.
  • FIG. 4 is a schematic diagram of the battery system 2 operating in a first charging mode according to the embodiment of the present application.
  • the switches SW1 - SW4 are switched to an on state, and the switches SW5 - SW7 are switched to an off state.
  • the battery 20 can supply energy to at least one of the load 28 and the battery 22 . That is to say, the energy required by the load 28 is provided by the battery 20 , and the battery 20 can also charge the battery 22 .
  • the bidirectional DC-to-DC converter 24 is in the step-down conversion mode and the energy supplied by the battery 20 flows from the terminal 240 of the bidirectional DC-to-DC converter 24 to the terminal 242 of the bidirectional DC-to-DC converter 24 and is provided through the switch SW3 to the battery 22 to charge the battery 22.
  • FIG. 5 is a schematic diagram of the battery system 2 operating in a second charging mode according to the embodiment of the present application.
  • An external power supply can be received through the power connection part, for example, the power connection part 26 can be connected to a DC charging pile system to receive the external power supply.
  • the switches SW1 - SW4 , SW6 - SW7 are switched to the on state, and the switch SW5 is switched to the off state.
  • the battery 20 can supply energy to the load 28 and to at least one of the batteries 20 , 22 . That is to say, the external power received by the power connection part 26 can provide energy to the load 28 and charge the batteries 20 and 22 .
  • the energy supplied by the external power supply flows from the terminal 240 of the bidirectional DC-DC converter 24 to the terminal 242 of the bidirectional DC-DC converter 24 and is supplied to the battery 22 through the switch SW3 to charge the battery 22 .
  • the voltage of the two batteries must be the same before they can be charged.
  • the bidirectional DC-to-DC converter 24 even if the voltages of the batteries 20, 22 are not equal, the batteries 20, 22 can still be charged by the external power received by the power connection part.
  • the battery system 2 when the battery system 2 is applied to an electric vehicle and the battery 20 is being used to provide the electric energy required by the electric vehicle (i.e., the load 28) to make the electric vehicle run in a driving state, the battery system 2 can operate in a The hot backup mode can quickly switch from the battery 20 to the battery 22 for power supply when the battery supply needs to be changed.
  • FIG. 6 and FIG. 7 are schematic diagrams of the operation of the battery system 2 in a hot backup mode according to the embodiment of the present application.
  • FIG. 8 is a timing diagram of the waveform of the voltage on the load 28 when the embodiment of the present application is operating in the hot backup mode. As shown in FIG. 6 and FIG.
  • the switches SW1 - SW4 are turned on, and the switches SW5 - SW7 are turned off.
  • the battery 20 supplies energy to the load 28, and the electric vehicle runs in a driving state.
  • the bidirectional DC-to-DC converter 24 operates in the hot backup mode and does not allow energy to flow from the terminal 240 of the bidirectional DC-to-DC converter 24 to the terminal 242 of the bidirectional DC-to-DC converter 24, and does not allow energy to be converted from bidirectional DC-to-DC Terminal 242 of converter 24 flows to terminal 240 of bidirectional DC-to-DC converter 24 .
  • the DC-to-DC converter 24 monitors the voltage change on the load 28 .
  • the energy required by the load 28 is provided by the battery 20 .
  • the voltage on the load 28 will gradually drop.
  • the switches SW1-SW2 switch to the off state, and the switch SW3 ⁇ SW4 is still in the conduction state.
  • the bidirectional DC-to-DC converter 24 will control the energy supplied by the battery 22 to flow from the terminal 242 of the bidirectional DC-to-DC converter 24 to the terminal 240 of the bidirectional DC-to-DC converter 24, so that the battery 22 supplies energy to the load 28 . That is to say, after the time point T1, the energy required by the load 28 is provided by the battery 22 instead. In the hot backup mode of the battery system 2, the switches SW3-SW4 are continuously on. Once it is detected that the voltage on the load 28 is lower than the voltage threshold value VR, the bidirectional DC-to-DC converter 24 will control the energy from the bidirectional DC pair. The terminal 242 of the DC converter 24 flows to the terminal 240 of the bidirectional DC-to-DC converter 24 , so that the battery 22 can quickly supply energy to the load 28 to achieve the purpose of safe and fast power backup switching.
  • the battery system 2 when the battery system 2 is applied to an electric vehicle and the battery 20 is being used to provide the electric energy required by the electric vehicle (i.e., the load 28) to make the electric vehicle run in a driving state, the battery system 2 can operate in a The failover working mode is used to quickly switch from the battery 20 to the battery 22 for power supply when the battery supply needs to be changed.
  • FIG. 9 to FIG. 11 are schematic diagrams of the operation of the battery system 2 in the embodiment of the present application when it operates in a failover mode.
  • FIG. 12 is a timing diagram of the waveform of the voltage on the load 28 when the embodiment of the present application operates in a failover mode. As shown in FIG. 9 and FIG.
  • the battery system operates in the hot backup mode, switches SW1 - SW4 are turned on, and switches SW5 - SW7 are turned off.
  • the battery 20 supplies energy to the load 28, and the electric vehicle runs in a driving state.
  • the battery 20 fails, and the battery 20 stops providing energy.
  • the battery system 2 diagnoses that the battery 20 is faulty, and the switches SW1-SW2 are switched to the off state, at this time, the switches SW3-SW4 are in the on-state, and the switches SW5-SW7 are in the off-state. open state.
  • the battery system 2 notifies the load 28 that the battery 20 is faulty and needs to switch to the minimum safe load mode.
  • the load 28 switches to the minimum safe load mode.
  • the bidirectional DC-to-DC converter 24 is in the step-down conversion mode and the energy supplied by the battery 22 flows from the terminal 242 of the bidirectional DC-to-DC converter 24 to the bidirectional DC pair.
  • the terminal 240 of the DC converter 24 enables the battery 22 to supply energy to the load 28 , so that the voltage of the load 28 increases according to a default slope between the time point T4 and the time point T5 . That is to say, after the time point T4, the energy required by the load 28 is provided by the battery 22 instead.
  • the voltage at the terminal 24 of the bidirectional DC-to-DC converter 24 is equal to the voltage of the battery 22, the switch SW5 is switched to the conduction state, and the bidirectional DC-to-DC converter 24 is stopped.
  • the battery 22 supplies energy to the load 28 through the switches SW5 and SW3, and the load 28 works in a conservative load mode. In this way, in this embodiment, when the battery 20 fails, the energy supplied by the battery 22 to the load 28 can be switched to achieve the purpose of safe and fast power backup switching.
  • the battery 20 is responsible for providing the energy required by the load 28 after the electric vehicle (ie, the load 28 ) is started.
  • the electric vehicle that is, the load 28
  • the battery system 2 executes a pre-charging operation mode, as shown in FIG. SW2, SW5 ⁇ SW7 are switched to off state.
  • the bidirectional DC-to-DC converter 24 will control the energy supplied by the battery 22 to flow from the terminal 242 of the bidirectional DC-to-DC converter 24 to the terminal 240 of the bidirectional DC-to-DC converter 24, so that the battery 22 supplies energy to load 28.
  • the voltage of the load 28 will increase with a default slope.
  • the switches SW1 ⁇ SW2 are turned on, and the battery system 2 finishes executing the pre-charging working mode.
  • the battery 20 starts to provide the energy required by the load 28.
  • the load 28 will not have the problem of a sharp rise in voltage, and the load can be effectively protected. 28 electronic assemblies.
  • FIG. 13 is a schematic diagram of the operation of the battery system 2 in the embodiment of the present application when it operates in a fast discharge mode.
  • the battery system 2 executes a fast discharge working mode, as shown in FIG. Switch to disconnected state.
  • the bidirectional DC-DC converter 24 controls energy to flow from the terminal 240 of the bidirectional DC-DC converter 24 to the terminal 242 of the bidirectional DC-DC converter 24 , and transfers the energy on the load 28 to the battery 22 with maximum power. After that, switch SW1-SW7 to off state.
  • FIG. 14 is a schematic diagram of the operation of the battery system 2 in the embodiment of the present application when it operates in a first battery heating mode. It is assumed that the battery 20 and the battery 22 need to be heated, and the battery 20 can charge the battery 22 . As shown in FIG. 14 , in the first battery heating mode of the battery system 2 , the switches SW1 - SW4 are switched to the ON state, and the switches SW5 - SW7 are switched to the OFF state.
  • the battery 20 charges the battery 22 , and the battery 20 supplies energy and transfers the energy to the battery 22 via the bidirectional DC-to-DC converter 24 for storage in the battery 22 .
  • the battery 20 is supplying energy (for example, outputting energy through discharge operation)
  • the resistance of the battery 20 will generate heat energy.
  • the battery 22 is storing energy (for example, storing energy through charging operation)
  • the resistance of the battery 22 will generate heat energy.
  • the energy provided by the battery 20 flows from the terminal 240 of the bidirectional DC-to-DC converter 24 to the terminal 242 of the bidirectional DC-to-DC converter 24 to be supplied to the battery 22 .
  • the battery 22 transports the energy supplied by the battery 22 to the battery 20 through the bidirectional DC-to-DC converter 24 .
  • the energy supplied by the battery 22 flows from the terminal 242 of the bidirectional DC-to-DC converter 24 to the terminal 240 of the bidirectional DC-to-DC converter 24 to provide to the battery 20 for storage in the battery 20.
  • the battery 22 is supplying energy (for example, outputting energy through discharge operation)
  • the resistance of the battery 20 will generate heat energy.
  • the battery 20 is storing energy (for example, storing energy through charging operation)
  • the resistance of the battery 22 will generate heat energy. In this way, energy is transferred from the battery 20 to the battery 22 through the cooperative operation of the battery 20 and the bidirectional DC-DC converter 24 .
  • the battery 20 and the battery 22 can generate heat energy due to energy supply and energy storage operations (such as charging and discharging), and the heat energy generated can provide the battery 20 and the battery 22 to heat up themselves to realize the battery self-heating process .
  • energy supply and energy storage operations such as charging and discharging
  • the heat energy generated can provide the battery 20 and the battery 22 to heat up themselves to realize the battery self-heating process .
  • it is usually necessary to install additional heating components to heat the battery which results in additional costs and parts procurement requirements.
  • the purpose of self-heating the battery can be achieved without increasing the original manufacturing cost in the implementation of the present application.
  • FIG. 15 is a schematic diagram of the operation of the battery system 2 in the embodiment of the present application when it operates in a second battery heating mode. Assume that battery 20 needs to be heated while battery 22 does not. As shown in FIG. 15 , in the second battery heating mode of the battery system 2 , the switches SW1 - SW2 , SW5 are switched to the on state, and the switches SW3 - SW4 , SW6 - SW7 are switched to the off state. In the first half of each working cycle, the battery 20 supplies energy to the bidirectional DC-to-DC converter 24 and stores energy into the energy storage component of the bidirectional DC-to-DC converter 24 .
  • the bidirectional DC-to-DC converter 24 retransmits the stored energy to the battery 20 .
  • the energy is transferred from the battery 20 to the energy storage component in the bidirectional DC-to-DC converter 24 in the first half cycle, and the energy is transferred from the energy storage component of the bidirectional DC-to-DC converter 24 to the battery in the second half cycle.
  • 20 to be stored in the battery 20.
  • the resistance of the battery 20 will generate heat energy.
  • the battery 20 can generate heat energy when performing energy supply and energy storage operations (such as charging and discharging), and the generated heat energy can provide the battery 20 itself for self-heating, so as to To achieve the purpose of heating up and realize the battery self-heating procedure.
  • energy supply and energy storage operations such as charging and discharging
  • FIG. 16 is a schematic diagram of the operation of the battery system 2 in the embodiment of the present application when it operates in a third battery heating mode. Assume that battery 22 needs to be heated while battery 20 does not. As shown in FIG. 16 , in the third battery heating mode of the battery system 2 , the switches SW3 - SW5 are switched to the on state, and the switches SW1 - SW2 , SW6 - SW7 are switched to the off state. In the first half of each working cycle, the battery 22 supplies energy to the bidirectional DC-DC converter 24 and stores the energy in the energy storage component of the bidirectional DC-DC converter 24 .
  • the bidirectional DC-DC converter 24 transmits the stored energy to the battery 22 for storage in the battery 22 .
  • the battery 22 is storing energy (for example, storing energy through charging operation)
  • the resistance of the battery 22 will generate heat energy.
  • the energy is transferred from the battery 22 to the energy storage component in the bidirectional DC-to-DC converter 24 in the first half cycle, and the energy is transferred from the energy storage component of the bidirectional DC-to-DC converter 24 to the battery in the second half cycle. twenty two.
  • the battery 22 self-heats itself through the heat energy generated by its own resistance charge and discharge operation, so as to achieve the purpose of temperature rise.
  • the embodiment of the present application provides a multifunctional dual-battery backup circuit under the architecture of multiple batteries and bidirectional DC-DC converters.
  • the embodiment of the present application realizes the operation of battery hot backup, can effectively eliminate the problem of switching delay, and provides safe and fast switching of battery backup circuits.
  • the embodiment of the present application also implements a flexible charging method to prevent the battery from running out of power, and provides an integrated pre-charging function, an integrated fast discharging function, and a self-heating function.

Abstract

本申请公开了一种电池系统,所述电池系统包括:第一电池;第二电池;第一开关,耦接于第一电池的第一端及一负载的第一端之间;第二开关,耦接于第一电池的第二端及负载的第二端之间;第三开关,耦接于第二电池的第一端及一双向直流对直流变换器的第一端之间;第四开关,耦接于第二电池的第二端及负载的第二端之间;双向直流对直流变换器,其中双向直流对直流变换器的第一端耦接于负载的第一端以及第一开关,双向直流对直流变换器的第二端耦接于第三开关;以及一第五开关,第五开关的第一端耦接于双向直流对直流变换器的第一端、第一开关及负载的第一端,以及第五开关的第二端耦接于双向直流对直流变换器的第二端及第三开关。

Description

电池系统 技术领域
本申请涉及电池系统技术领域,尤其涉及一种具备多功能双电池备份线路的电池系统。
背景技术
电动汽车的技术日益成熟,电动汽车以电池作为储能系统取代传统内燃机为汽车提供能量,从而减少了传统内燃机带来的环境问题。此外,自动驾驶汽车不仅要满足功能安全(例如标准规范ISO 26262,GB/T 34590)中失效安全(fail safe)的要求,而且要满足预期功能安全(例如标准规范ISO 21448)中失效运行(fail operation)的要求。因此对于纯电动车,为了防止高压电池因故障断电后造成的动力中断无法移动的风险,通常采取两个高压电池相互备份的解决方案。请参考图1,图1为现有用于电动汽车的电池系统1的示意图。如图1所示,电池系统1包括电池10及12、预充电模组14及16、保护开关F1及F2以及开关SW1~SW4。预充电模组14、16用来缓解涌浪电流的现象发生,以提升系统的可靠度以及延长电子组件的寿命。开关SW1~SW4用来导通或是断开电池10、12与负载18之间的连接。一般来说,现有电池运作的方式有二,第一种现有电池运作方式为电池10、12同时供电,且同时充电,当其中一电池发生故障时将故障的电池排除,由另一个电池提供电力。然而,由于两电池同时 工作,当一个电池发生故障退出工作时,有一定几率另一个电池处于无电状态。第二种现有电池运作方式为电池10、12不同时供电,先使用其中之一作为主电池,另一个作为备用电池,当主电池发生故障时,备用电池投入工作。然而,当主电池发生故障而退出工作时,另一个备用电池投入工作的延时过长(例如需要进行故障判断,待主电池的开关断开,备用电池预充电之后备用电池的开关导通之后投入供电工作)。再者,当电动汽车采用电池10、12的其中一个电池为换电补能,另一个电池为固定在车身时,如图1的连接方式,则存在固定车身的电池没有办法充电的情况。因此,现有技术实有改进的必要。
发明内容
本申请的目的是提供一种具备多功能双电池备份线路的电池系统,以解决上述技术问题。
为了解决上述问题,本申请提供了一种电池系统,所述电池系统包括:第一电池;第二电池;第一开关,耦接于所述第一电池的第一端及一负载的第一端之间;第二开关,耦接于所述第一电池的第二端及所述负载的第二端之间;第三开关,耦接于所述第二电池的第一端及双向直流对直流变换器的第一端之间;第四开关,耦接于所述第二电池的第二端及所述负载的第二端之间;双向直流对直流变换器,其中所述双向直流对直流变换器的第一端耦接于所述负载的第一端以及所述第一开关,所述双向直流对直流变换器的第二端耦接于所述第三开关;以及第五开关,所述第五开关的第一端耦接于所述双向直流对直流变换器的第一端、所述第一开关及所述负载的第一端,以及所 述第五开关的第二端耦接于所述双向直流对直流变换器的第二端及所述第三开关。
附图说明
图1为现有用于电动汽车的电池系统的示意图。
图2为本申请实施例的一电池系统的示意图。
图3为图2中的双向直流对直流变换器的实施例示意图。
图4为本申请实施例的电池系统运作在第一充电模式时的运作示意图。
图5为本申请实施例的电池系统运作在第二充电模式时的运作示意图。
图6及图7为本申请实施例的电池系统运作在热备份模式时的运作示意图。
图8为本申请实施例运作在热备份模式时负载的电压的波形时序图。
图9至图11为本申请实施例的电池系统运作在故障切换工作模式时的运作示意图。
图12为本申请实施例运作在故障切换工作模式时负载的电压的波形时序图。
图13为本申请实施例的电池系统ㄒ2运作在ㄒ一快速放电工作模式时的运作示意图。于
图14为本申请实施例的电池系统ㄒ2运作在ㄒ一第一电池加热模式时的运作示意图。
图15为本申请实施例的电池系统ㄒ2运作在ㄒ一第二电池加热模式时的运作示意图。
图16为本申请实施例的电池系统ㄒ2运作在ㄒ一第三电池加热模式时的运作示意图。
其中,附图标记说明如下:
1、2 电池系统
10、12、20、22 电池
14、16 预充电模组
18、28 负载
24 双向直流对直流变换器
240、242 端点
26 电源连接部
C1~C2 电容
D1~D4 二极管
F1、F2 保护开关
L 电感
Q1~Q4 晶体管
SW1~SW7 开关
T0~T4 时间点
VR 电压临限值
具体实施方式
在说明书及后续的权利要求书当中使用了某些词汇来指称特定的组件。本领域技术人员应可理解,制造商可能会用不同的名词来称呼同样的组件。本说明书及后续的权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的基准。在通篇说明书及后续的权利要求书当中所提及的“包含”或“包括” 为一开放式的用语,故应解释成“包括但不限定于”。另外,“耦接”一词在此包含任何直接及间接的电气连接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表该第一装置可直接电气连接于该第二装置,或通过其他装置或连接手段间接地电气连接至该第二装置。
请参考图2,图2为本申请实施例的一电池系统2的示意图。电池系统2可应用在电动汽车,但不以此为限。如图2所示,电池系统2包括电池20、22、一双向直流对直流变换器24、电源连接部26、保护开关F1及F2以及开关SW1~SW7。例如,电池20可为主电池,电池22可为备份电池或辅助电池。例如,电池20可为可换电式车载电池,以支持一电池更换方案。例如电池20可为一可快速拆卸的换电式车载电池。电池22可为固定式车载电池。开关SW1~SW7可为继电器,但不以此为限。开关SW1~SW2用以控制电池20与负载28及双向直流对直流变换器24之间的连接。开关SW3~SW4用以控制电池22与双向直流对直流变换器24、开关SW5及负载28之间的连接。开关SW5与双向直流对直流变换器24并联连接。开关SW5可为双向直流对直流变换器24的旁路开关。开关SW6~SW7用以控制电源连接部26与电池20、22及负载28之间的连接。双向直流对直流变换器24的一第一端及一第二端分别耦接于开关SW5的一第一端及一第二端,双向直流对直流变换器24的一第三端耦接于开关SW2、SW4、SW6、SW7以及一地线。双向直流对直流变换器24具备升降压双向变换功能,其可控制能量的流动方向以实现能量的双向流动。例如,依据系 统应用,于双向直流对直流变换器24运作时,能量(例如以电流形式)可由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242或是由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240。例如,请参考图3,图3为图2中的双向直流对直流变换器24的一实施例示意图。如图3所示,双向直流对直流变换器24包括晶体管Q1~Q4、二极管D1~D4、电容C1~C2以及电感L。
请继续参考图2,保护开关F1及F2用以防止发生过载或短路的事件。例如保护开关F1及F2可为熔丝,但不以此为限。电源连接部26用以接收外接电源,以对电池20、22及负载28当中的至少一者提供能量。电源连接部26可为一高压直流充电口。例如电源连接部26可连接至一充电桩系统以接收外接电源。负载28可为电驱动系统、高压空调,但不以此为限。此外,电池系统2还包括一开关控制电路(未绘示于图中),用来依据实际应用控制开关SW1~SW7的导通操作或是断开操作。电池系统2还包括一变换器控制电路(未绘示于图中),用来依据实际应用控制双向直流对直流变换器24以使能量由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242或是由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240,以及控制直流对直流变换器24进行其他相关运作。
在一些实施例中,当电池20已完成换电补能或是目前具有较多电能,电池20可供应能量至负载28及对电池22进行充电。请参考 图4,图4为本申请实施例的电池系统2运作在一第一充电模式时的运作示意图。如图4所示,在电池系统2的第一充电模式中,开关SW1~SW4切换至导通状态,开关SW5~SW7切换至断开状态。电池20可供应能量至负载28以及电池22当中的至少一者。也就是说,负载28所需的能量是由电池20提供,且电池20也可对电池22进行充电。在运作时双向直流对直流变换器24处于降压变换模式且电池20所供应的能量由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242并通过开关SW3而提供至电池22,以对电池22进行充电。
在一些实施例中,请参考图5,图5为本申请实施例的电池系统2运作在一第二充电模式时的运作示意图。可通过电源连接部接收一外接电源,例如电源连接部26可连接至一直流充电桩系统以接收外接电源。如图5所示,在电池系统2的第二充电模式中,开关SW1~SW4、SW6~SW7切换至导通状态,开关SW5切换至断开状态。如此一来,电池20可供应能量至负载28以及对电池20、22当中的至少一者。也就是说,可通过电源连接部26所接收的外接电源来提供能量至负载28以及对电池20、22进行充电。当运作时,外接电源所供应的能量由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242并通过开关SW3而提供至电池22,以对电池22进行充电。由于传统双电池的系统中,两电池的电压要相同始能进行充电。在本实施例中,通过双向直流对直流变换器24的能量方向控制,即便电池20、22的电压不相等时,仍可通过电源连接部所接收 的外接电源对电池20、22进行充电。
在一些实施例中,当电池系统2应用在电动汽车且电池20正用于提供电动汽车(即负载28)所需的电能而使电动汽车运行在行驶状态,此时电池系统2可运作在一热备份模式,以于需要变换电池供给时能从电池20快速切换至电池22来进行供电。请参考图6至图8,图6及图7为本申请实施例的电池系统2运作在一热备份模式时的运作示意图。图8为本申请实施例运作在热备份模式时负载28上的电压的波形时序图。如图6以及图8所示,在电池系统2的热备份模式中,于时间点T0至时间点T1的期间,开关SW1~SW4切换至导通状态,开关SW5~SW7切换至断开状态。电池20供应能量至负载28,电动汽车运行在行驶状态。双向直流对直流变换器24运作于热备份模式而不让能量由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242,并且也不让能量由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240。同时,直流对直流变换器24会监测负载28上的电压变化情况。也就是说,于时间点T0至时间点T1的期间,负载28所需的能量是由电池20所提供。当电池20发生故障或是快没电时,负载28上的电压将会逐渐下降。如图7及图8所示,于时间点T1,当双向直流对直流变换器24监测到负载28上的电压小于一电压临限值VR时,开关SW1~SW2切换至断开状态,开关SW3~SW4仍处于导通状态。并且,双向直流对直流变换器24会控制让电池22所供应的能量由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点 240,以使电池22供应能量至负载28。也就是说,于时间点T1之后,负载28所需的能量是改由电池22所提供。在电池系统2的热备份模式中,开关SW3~SW4持续处于导通状态,一旦监测到负载28上的电压小于电压临限值VR时双向直流对直流变换器24会控制让能量由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240,如此一来,将可以快速地让电池22供应能量至负载28而实现安全且快速地电能备份切换目的。
在一些实施例中,当电池系统2应用在电动汽车且电池20正用于提供电动汽车(即负载28)所需的电能而使电动汽车运行在行驶状态,此时电池系统2可运作在一故障切换工作模式,以于需要变换电池供给时能从电池20能快速切换至电池22来进行供电。请参考图7、图9至图12,图9至图11为本申请实施例的电池系统2运作在一故障切换工作模式时的运作示意图。图12为本申请实施例运作在一故障切换工作模式时负载28上的电压的波形时序图。如图9及图12所示,于时间点T0至时间点T1的期间,电池系统运作于热备份工作模式,开关SW1~SW4切换至导通状态,开关SW5~SW7切换至断开状态。电池20供应能量至负载28,电动汽车运行在行驶状态。于时间点T1时电池20发生故障,电池20停止提供能量。如图10及图12所示,于时间点T2,电池系统2诊断出电池20发生故障,开关SW1~SW2切换至断开状态,此时开关SW3~SW4处于导通状态,SW5~SW7处于断开状态。电池系统2通知负载28目前电池20发生故障而需切换至最小安全负载模式。于时间点T3,负载28切换到最小安全 负载模式。接着,如图7及图12所示,于时间点T4,双向直流对直流变换器24处于降压变换模式且电池22所供应的能量由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240,以使电池22供应能量至负载28,如此一来,于时间点T4至时间点T5之间负载28的电压会依照默认斜率提升。也就是说,于时间点T4之后,负载28所需的能量是改由电池22所提供。接着,如图11及图12所示,于时间点T5,双向直流对直流变换器24的端点24的电压等于电池22的电压,开关SW5切换至导通状态,双向直流对直流变换器24停止工作,电池22通过开关SW5及SW3供应能量至负载28,负载28工作在一保守负载模式。如此一来,本实施例将可以于电池20发生故障时切换由电池22供应能量至负载28而实现安全且快速地电能备份切换目的。
为了避免电动汽车(即负载28)在车辆启动过程中受到涌浪电流的影响而导致急遽抬升压降的问题。在一实施例中,请继续参考图7,假设在电动汽车(即负载28)启动之后将要由电池20负责提供负载28所需的能量。首先电动汽车(即负载28)被致能而开始执行一车辆启动程序。于执行车辆启动程序的过程中(此时电池20尚未提供电能至负载28),电池系统2执行一预充电工作模式,如图7所示,开关SW3~SW4切换至导通状态,开关SW1~SW2、SW5~SW7切换至断开状态。在此情况下,双向直流对直流变换器24会控制让电池22所供应的能量由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240,以使电池22供应能量至负载28。如 此一来,负载28的电压会一默认斜率提升。直至负载28的电压等于电池20的电压之后,开关SW1~SW2切换为导通状态,电池系统2结束执行预充电工作模式。接着,由电池20开始提供负载28所需的能量,此时由于负载28的电压与电池20的电压相近,当电池20供应电能时负载28也不会发生电压急遽抬升的问题而能有效保护负载28的电子组件。
另一方面,当车辆在下电或者发生故障时,必须让电动汽车的组件电压尽可能快速地降到安全电压范围或是安全值以下,以确保人员在车辆下电后一定时间内触碰到电动汽车的相关组件时时不会有高压触电的危险并维护乘客的安全。因此,电动汽车必需具备主动放电安全方案。为了避免电动汽车(即负载28)在车辆下电过程中受到放电电流的影响而导致急遽抬升压降的问题。在一实施例中,请参考图13,图13为本申请实施例的电池系统2运作在一快速放电工作模式时的运作示意图。于车辆下电的过程中,电池系统2执行一快速放电工作模式,如图13所示,于车辆下电的过程中,开关SW3~SW4切换至导通状态,开关SW1~SW2、SW5~SW7切换至断开状态。双向直流对直流变换器24会控制让能量由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242,以最大功率将将负载28上的能量转移至电池22。之后,再将SW1~SW7切换至断开状态。
此外,针对电动汽车在寒冷充电环境下使用时,由于电池特性而需要将电池加热到合适的使用温度以实现最佳的使用条件。在一实施例中,请参考图14,图14为本申请实施例的电池系统2运作在一第 一电池加热模式时的运作示意图。假设电池20及电池22需要进行加热,而且电池20可以对电池22进行充电。如图14所示,在电池系统2的第一电池加热模式中,开关SW1~SW4切换至导通状态,开关SW5~SW7切换至断开状态。每个工作周期中,电池20对电池22进行充电,电池20供应能量并经由双向直流对直流变换器24将能量搬运至电池22,以存储至电池22中。其中电池20在供应能量(例如通过放电运作方式输出能量)时,电池20的电阻会产生热能。电池22在存储能量(例如通过充电运作方式存储能量)时,电池22的电阻会产生热能。此时,电池20所提供的能量由双向直流对直流变换器24的端点240流向双向直流对直流变换器24的端点242,以提供至至电池22。接着,电池22将电池22所供应的能量经由双向直流对直流变换器24搬运至电池20。此时,电池22所供应的能量(例如将原先电池20所供应的能量而存储下来的能量)由双向直流对直流变换器24的端点242流向双向直流对直流变换器24的端点240,以提供至电池20以存储至电池20中。其中电池22在供应能量(例如通过放电运作方式输出能量)时,电池20的电阻会产生热能。电池20在存储能量(例如通过充电运作方式存储能量)时,电池22的电阻会产生热能。如此一来,通过电池20与双向直流对直流变换器24的协同运作,能量从电池20搬运至电池22。接着,通过电池22与双向直流对直流变换器24的协同运作,原先电池20所供应的能量再从电池22搬运至电池20。在能量搬运的过程中电池20与电池22因为能量供应以及能量储存的运作(例如充放电)而能产生热能,其 所产生的热能便能提供电池20与电池22自身升温而实现电池自加热程序。现有技术通常必须要额外加装加热组件来对电池加热而产生了额外的成本和零部件采购需求。相较之下,在本申请实施中不增加原有制造成本的情况下便可实现对电池自加热的目的。
在一些实施例中,请参考图15,图15为本申请实施例的电池系统2运作在一第二电池加热模式时的运作示意图。假设电池20需要进行加热,而电池22不需要进行加热。如图15所示,在电池系统2的第二电池加热模式中,开关SW1~SW2、SW5切换至导通状态,开关SW3~SW4、SW6~SW7切换至断开状态。每个工作周期的前半周期中,电池20供应能量至双向直流对直流变换器24,将能量存储至双向直流对直流变换器24的储能组件中。其中电池20在供应能量(例如通过放电运作方式输出能量)时,电池20的电阻会产生热能。每个工作周期的后半周期中,双向直流对直流变换器24将所存储的能量再传送给电池20。如此一来,在前半周期中将能量由电池20搬运给双向直流对直流变换器24中的储能组件,在后半个周期将能量由双向直流对直流变换器24的储能组件搬运给电池20,以存储至电池20中。电池20在存储能量(例如通过充电运作方式存储能量)时,电池20的电阻会产生热能。如此一来,在此能量搬运的过程中,电池20在执行能量供应以及能量储存的运作(例如充放电)时能产生热能,其所产生的热能便能提供电池20自身来进行自加热,以达升温的目的而实现电池自加热程序。
在一些实施例中,请参考图16,图16为本申请实施例的电池系 统2运作在一第三电池加热模式时的运作示意图。假设电池22需要进行加热,而电池20不需要进行加热。如图16所示,在电池系统2的第三电池加热模式中,开关SW3~SW5切换至导通状态,开关SW1~SW2、SW6~SW7切换至断开状态。每个工作周期的前半周期中,电池22供应能量至双向直流对直流变换器24,将能量存储至双向直流对直流变换器24的储能组件中。其中电池22在供应能量(例如通过放电运作方式输出能量)时,电池22的电阻会产生热能。每个工作周期的后半周期中,双向直流对直流变换器24将所存储的能量再传送给电池22,以存储至电池22中。其中电池22在存储能量(例如通过充电运作方式存储能量)时,电池22的电阻会产生热能。如此一来,在前半周期中将能量由电池22搬运给双向直流对直流变换器24中的储能组件,在后半个周期将能量由双向直流对直流变换器24的储能组件搬运给电池22。在此能量搬运的过程中,电池22通过自身的电阻充放电运作所产生的热能来进行自加热,以达升温的目的。
综上所述,本申请实施例在多个电池与双向直流对直流变换器的架构下,提供多功能的双电池备份线路。本申请实施例实现了电池热备份的运作能有效消除切换延时的问题,并且提供了安全又快速的电池备份线路的切换。本申请实施例还实现了灵活的充电方式而能避免电池无电,并且提供集成预充电功能、集成快速放电功能以及自加热的功能。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本 申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种电池系统,所述电池系统包括:
    第一电池;
    第二电池;
    第一开关,耦接于所述第一电池的第一端及一负载的第一端之间;
    第二开关,耦接于所述第一电池的第二端及所述负载的第二端之间;
    第三开关,耦接于所述第二电池的第一端及所述负载的第一端之间;
    第四开关,耦接于所述第二电池的第二端及所述负载的第二端之间;
    双向直流对直流变换器,其中所述双向直流对直流变换器的第一端耦接于所述负载的第一端以及所述第一开关,所述双向直流对直流变换器的第二端耦接于所述第三开关;以及
    第五开关,所述第五开关的第一端耦接于所述双向直流对直流变换器的第一端、所述第一开关及所述负载的第一端,以及所述第五开关的第二端耦接于所述双向直流对直流变换器的第二端及所述第三开关。
  2. 根据权利要求1所述的电池系统,其中,在第一充电工作模式中,所述第一开关、所述第二开关、所述第三开关及所述第四开关为导通状态,所述第五开关为断开状态,所述第一电池供应能量至所述 负载以及所述第二电池当中的至少一者,所述第一电池所供应的能量由所述双向直流对直流变换器的第一端流向由所述双向直流对直流变换器的第二端以提供至所述第二电池。
  3. 根据权利要求1所述的电池系统,其中,所述电池系统还包括:
    电源连接部,用以接收一外接电源;
    第六开关,所述第六开关的第一端耦接于所述电源连接部,所述第六开关的第二端耦接于所述第一开关、所述第五开关、所述双向直流对直流变换器的第一端以及所述负载的第一端;以及
    第七开关,所述第七开关的第一端耦接于所述电源连接部,所述第七开关的第二端耦接于所述第二开关、所述第四开关以及所述负载的第二端;
    其中,在第二充电工作模式中,所述第一开关、所述第二开关、所述第三开关、所述第四开关、所述第六开关及所述第七开关为导通状态,所述第五开关为断开状态,通过所述电源连接部所接收到的所述外接电源供应能量至所述负载、所述第二电池以及所述第二电池当中的至少一者,所述外接电源所供应的能量由所述双向直流对直流变换器的第一端流向由所述双向直流对直流变换器的第二端以提供至所述第二电池。
  4. 根据权利要求1所述的电池系统,其中,在热备份模式中,所述第一开关、所述第二开关、所述第三开关及所述第四开关为导通状态,所述第五开关为断开状态,所述第一电池供应能量至所述负载,以及当侦测出所述负载上的电压小于一电压临限值时所述第一开关 及所述第二开关切换至断开状态,所述双向直流对直流变换器控制让所述第二电池所供应的能量由所述双向直流对直流变换器的第二端流向由所述双向直流对直流变换器的第一端,以使所述第二电池供应能量至负载。
  5. 根据权利要求1所述的电池系统,其中,在故障切换工作模式中,在第一时间点,所述第一开关、所述第二开关、所述第三开关、所述第四开关均为导通状态且所述第五开关为断开状态,所述第一电池供应能量至所述负载;在第二时间点,所述电池系统诊断出所述第一电池发生故障且所述第一开关及所述第二开关切换至断开状态;在第三时间点,所述负载切换至一最小安全负载模式;在第四时间点,所述双向直流对直流变换器处于降压变换模式且所述第二电池所供应的能量由所述双向直流对直流变换器的第二端流向所述双向直流对直流变换器的第一端以使所述第二电池供应能量至所述负载。
  6. 根据权利要求1所述的电池系统,其中,在预充电工作模式中,所述第三开关及所述第四开关为导通状态,所述第一开关、所述第二开关及所述第五开关为断开状态,所述第二电池所供应的能量由所述双向直流对直流变换器的第二端流向由所述双向直流对直流变换器的第一端以使所述第二电池供应能量至所述负载,直到所述负载的电压等于所述第一电池的电压,之后第一开关,第二开关切换为导通状态。
  7. 根据权利要求1所述的电池系统,其中,在快速放电工作模式中,所述第三开关及所述第四开关为导通状态,所述第一开关、所述 第二开关及所述第五开关为断开状态,所述负载上的能量由所述双向直流对直流变换器的第一端流向由所述双向直流对直流变换器的第二端以存储至所述第二电池。
  8. 根据权利要求1所述的电池系统,其中,在第一电池加热模式中,所述第一开关、所述第二开关、所述第三开关及所述第四开关为导通状态,所述第五开关为断开状态,所述第一电池通过所述双向直流对直流变换器供应能量至所述第二电池,所述第一电池所供应的能量由所述双向直流对直流变换器的第一端流向由所述双向直流对直流变换器的第二端以供应至所述第二电池,所述第二电池存储所述第一电池所供应的能量,以及所述第二电池通过所述双向直流对直流变换器将所存储的能量供应至所述第一电池,所述第二电池所供应的能量由所述双向直流对直流变换器的第二端流向由所述双向直流对直流变换器的第一端以供应至所述第一电池,所述第一电池存储所述第二电池所供应的能量,其中所述第一电池在能量供应及存储的运作时所产生的热能会提供给所述第一电池使所述第一电池升温,以及所述第二电池在能量供应及存储的运作时所产生的热能会提供给所述第二电池使所述第二电池升温以实现一电池加热程序。
  9. 根据权利要求1所述的电池系统,其中,在第一电池加热模式中,所述第一开关、所述第二开关及所述第五开关为导通状态,所述第三开关及所述第四开关为断开状态,所述第一电池供应能量至所述双向直流对直流变换器,所述双向直流对直流变换器存储所述第一电池所供应的能量,以及所述双向直流对直流变换器将所存储的能量供 应至所述第一电池,所述第一电池存储所述双向直流对直流变换器所供应的能量,其中所述第一电池在能量供应及存储的运作时所产生的热能会提供给所述第一电池,使所述第一电池升温以实现一电池加热程序。
  10. 根据权利要求1所述的电池系统,其中,在第二电池加热模式中,所述第三开关、所述第四开关及所述第五开关为导通状态,所述第一开关及所述第二开关为断开状态,所述第二电池供应能量至所述双向直流对直流变换器,所述双向直流对直流变换器存储所述第二电池所供应的能量,以及所述双向直流对直流变换器将所存储的能量供应至所述第二电池,所述第二电池存储所述双向直流对直流变换器所供应的能量,其中所述第二电池在能量供应及存储的运作时所产生的热能会提供给所述第二电池,使所述第二电池升温以实现一电池加热程序。
  11. 根据权利要求1所述的电池系统,其中,所述第一电池为可换电式车载电池,以及所述第二电池为固定式车载电池。
  12. 根据权利要求1所述的电池系统,其中,所述电池系统还包括:
    第一保护开关,用以防止过载或短路,所述第一保护开关的第一端耦接于所述第一开关,以及所述第一保护开关的第二端耦接于所述第五开关、所述双向直流对直流变换器的第一端以及所述负载的第一端;以及
    第二保护开关,用以防止过载或短路,所述第二保护开关的第一 端耦接于所述第五开关、所述双向直流对直流变换器的第二端,以及所述第二保护开关的第二端耦接于所述第三开关。
PCT/CN2021/119630 2021-09-22 2021-09-22 电池系统 WO2023044606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119630 WO2023044606A1 (zh) 2021-09-22 2021-09-22 电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119630 WO2023044606A1 (zh) 2021-09-22 2021-09-22 电池系统

Publications (1)

Publication Number Publication Date
WO2023044606A1 true WO2023044606A1 (zh) 2023-03-30

Family

ID=85719777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119630 WO2023044606A1 (zh) 2021-09-22 2021-09-22 电池系统

Country Status (1)

Country Link
WO (1) WO2023044606A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447301A (zh) * 2010-09-24 2012-05-09 光宝动力储能科技股份有限公司 混合式电池模块与电池管理方法
CN102891522A (zh) * 2012-09-28 2013-01-23 郑州宇通客车股份有限公司 具有车载充电功能的双储能装置
CN111373596A (zh) * 2017-11-28 2020-07-03 宁波吉利汽车研究开发有限公司 电池的内部加热
CN113228462A (zh) * 2019-02-01 2021-08-06 住友电气工业株式会社 电源系统以及具备该电源系统的车辆
US20210265856A1 (en) * 2018-06-27 2021-08-26 Panasonic Intellectual Property Management Co., Ltd. Battery system and battery management device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447301A (zh) * 2010-09-24 2012-05-09 光宝动力储能科技股份有限公司 混合式电池模块与电池管理方法
CN102891522A (zh) * 2012-09-28 2013-01-23 郑州宇通客车股份有限公司 具有车载充电功能的双储能装置
CN111373596A (zh) * 2017-11-28 2020-07-03 宁波吉利汽车研究开发有限公司 电池的内部加热
US20210265856A1 (en) * 2018-06-27 2021-08-26 Panasonic Intellectual Property Management Co., Ltd. Battery system and battery management device
CN113228462A (zh) * 2019-02-01 2021-08-06 住友电气工业株式会社 电源系统以及具备该电源系统的车辆

Similar Documents

Publication Publication Date Title
US7642755B2 (en) Method and apparatus to maximize stored energy in UltraCapacitor Systems
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
US7898110B2 (en) On-line uninterruptible power system
CN110481468B (zh) 用于l3级自动驾驶的汽车双电源系统及车辆
US20140117925A1 (en) Apparatus and method for connecting multiple-voltage onbaord power supply systems
EP3506457B1 (en) Charging power system with low standby power consumption and method of controlling the same
CN103875170B (zh) 电力转换器及其预充电电路
CN112671069B (zh) 超级电容模组和协作机器人系统
US9748796B2 (en) Multi-port energy storage system and control method thereof
WO2021057437A1 (zh) 一种实现对驻车控制器多重保护的备用电源系统
US20220190733A1 (en) Power conversion apparatus
WO2022166364A1 (zh) 配电系统、配电系统的控制方法及新能源汽车
CN102611162A (zh) 电动汽车主电源唤醒装置
WO2023044606A1 (zh) 电池系统
WO2006136100A1 (en) Power supplying device and power supplying method
US20230234473A1 (en) Converter system for transferring electric power
CN216034204U (zh) 一种驻车控制器的备用电源系统
CN215154397U (zh) 多合一控制装置、电子设备及车辆
CN115940382A (zh) 一种备用电源充电装置及车载lcd播放控制器备用电源系统
CN112769103B (zh) 一种用于超级电容器的暂态支撑保护系统
CN113922447A (zh) 车辆供电电路、设备及汽车
CN110829818A (zh) 供电电路、供电电路的控制方法、装置及空调器
CN116111843B (zh) 一种适用于储能型风电机组的直流-直流变换电路
CN219759443U (zh) 用于隔离开关的动作组件及隔离开关
WO2022022468A1 (zh) 电压转换电路、控制方法、dc/dc变换器以及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957751

Country of ref document: EP

Kind code of ref document: A1