WO2023042974A1 - 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법 - Google Patents

피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법 Download PDF

Info

Publication number
WO2023042974A1
WO2023042974A1 PCT/KR2021/019365 KR2021019365W WO2023042974A1 WO 2023042974 A1 WO2023042974 A1 WO 2023042974A1 KR 2021019365 W KR2021019365 W KR 2021019365W WO 2023042974 A1 WO2023042974 A1 WO 2023042974A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
less
equation
residual stress
deformation due
Prior art date
Application number
PCT/KR2021/019365
Other languages
English (en)
French (fr)
Inventor
배규열
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202180073600.9A priority Critical patent/CN116829297A/zh
Priority to JP2022543498A priority patent/JP2023545225A/ja
Priority to US18/031,821 priority patent/US20230390873A1/en
Priority to MX2023004766A priority patent/MX2023004766A/es
Publication of WO2023042974A1 publication Critical patent/WO2023042974A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a wire and a welding member for gas shielded arc welding having excellent fatigue resistance and resistance to deformation due to residual stress at a welded portion, and a manufacturing method thereof.
  • Chassis parts which are important for automobile driving performance, also require application of high-strength steel materials for weight reduction according to this trend.
  • high-strength materials are essential, and guaranteeing durability of parts made of high-strength steel materials in an environment where repeated fatigue loads are applied is an important factor.
  • arc welding which is mainly used to secure strength when assembling automobile chassis parts, overlapping joints between parts are welded by welding wires, so it is inevitable to give geometric shapes to the joints.
  • Patent Document 1 in order to improve the fatigue characteristics of an arc welded part manufactured using steel with a plate thickness of 5 mm or less and a tensile strength of 780 MPa or more, the concept of material control for each temperature zone position of the weld bead toe, that is, the heat-affected zone (HAZ) (For example, the location of the minimum hardness at a depth of 0.1 mm from the surface must be at least 0.3 mm away from the melting line), but the strength of the weld metal is improved through the improvement of the properties of the welding material and the stress characteristics of the welded part are improved. Control technology has limitations that cannot be presented
  • Patent Document 2 suggests that fatigue characteristics can be improved by applying compressive stress by forming a plastic deformation region by continuously hitting the end of a weld bead with a chipper (hitting pin), and in Patent Document 3, a subframe and In order to reduce the toe angle of the arc welding bead between brackets, a method of re-melting the end of the welding bead through a plasma heat source after welding was proposed.
  • the above proposed methods have a problem in that processing costs increase when manufacturing parts due to the addition of a post-welding process.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013-220431
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2014-014831
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2014-004609
  • One aspect of the present invention is to provide a wire for gas shielded arc welding capable of imparting excellent fatigue resistance characteristics and resistance to deformation due to residual stress to a welded portion.
  • Another aspect of the present invention is to provide a welding member having excellent fatigue resistance and resistance to deformation due to residual stress of a welded portion and a manufacturing method thereof.
  • One embodiment of the present invention in weight%, C: 0.06 ⁇ 0.16%, Si: 0.001 ⁇ 0.2%, Mn: 1.6 ⁇ 1.9%, Cr: 1.2 ⁇ 6.0%, Mo: 0.4 ⁇ 0.65%, P: 0.015% or less (excluding 0%), S: 0.01% or less (excluding 0%), Al: 0.20% or less (excluding 0%), the balance including Fe and other unavoidable impurities, and the value of formula 1 below is 300 to Provided is a wire for gas shielded arc welding having excellent fatigue resistance characteristics of 500 and resistance to deformation due to residual stress at a welded portion.
  • Another embodiment of the present invention is a welding member including a base material and a welded portion, wherein the welded portion, in weight%, C: 0.05 ⁇ 0.16%, Si: 0.001 ⁇ 1.0%, Mn: 1.4 ⁇ 2.5%, Cr: 0.4 ⁇ 5.0%, Mo: 0.1 to 1.5%, P: 0.015% or less (excluding 0%), S: 0.01% or less (excluding 0%), Al: 0.20% or less (excluding 0%), balance Fe and others contains unavoidable impurities, and includes bainite; acicular ferrite; and at least one of granular ferrite, martensite, and retained austenite; has a microstructure including, wherein the microstructure has an average effective grain size of 10 ⁇ m or less, and a misorientation angle between grains relative to the entire grain boundary ) is 55 ⁇ or more, the ratio of high angle grain boundaries is 40% or more, and the value of R expressed by the following formula 2 is 10.5 to 18.5, providing a welding member with excellent resistance to de
  • K is the ratio (%) of grain boundaries with an orientation difference angle between grains of 55 ⁇ or more relative to all grain boundaries in the weld
  • G is the average effective grain size of the weld ( ⁇ m)
  • T is the thickness of the base material ( mm)
  • Q mean the welding heat input (kJ / cm)
  • the Q is defined by the following [Equation 3].
  • Another embodiment of the present invention is a method for manufacturing a welding member in which two or more base materials are prepared and gas shielded arc welding is performed using a welding wire, wherein the welding wire is % by weight, C: 0.06 ⁇ 0.16%, Si: 0.001 to 0.2%, Mn: 1.6 to 1.9%, Cr: 1.2 to 6.0%, Mo: 0.4 to 0.65%, P: 0.015% or less (excluding 0%), S: 0.01% or less (excluding 0%), Al: 0.20% or less (excluding 0%), the balance includes Fe and other unavoidable impurities, the value of Equation 1 below is 300 to 500, and the value of Equation 4 below is 1.2 to 1.6 during the gas shielded arc welding Provided is a method for manufacturing a welding member having excellent fatigue resistance characteristics and resistance to deformation due to residual stress of a welded portion.
  • T means the thickness of the base material (mm) and Q means the welding heat input (kJ/cm).
  • a wire for gas shielded arc welding capable of imparting excellent fatigue resistance characteristics and resistance to deformation due to residual stress to a welded portion.
  • Example 1 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 1 according to an embodiment of the present invention observed by EBSD.
  • FIG. 2 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Inventive Example 1 according to an embodiment of the present invention.
  • Example 3 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 2 according to an embodiment of the present invention observed by EBSD.
  • FIG. 4 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Inventive Example 2 according to an embodiment of the present invention.
  • Example 5 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 3 according to an embodiment of the present invention observed by EBSD.
  • FIG. 6 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Inventive Example 3 according to an embodiment of the present invention.
  • Example 7 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 4 according to an embodiment of the present invention observed by EBSD.
  • FIG. 8 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Inventive Example 4 according to an embodiment of the present invention.
  • FIG. 10 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Comparative Example 1 according to an embodiment of the present invention.
  • the content of the alloy composition described below is % by weight.
  • the C is an element that is advantageous for the action of atomizing the volume by stabilizing the arc, and is also advantageous for securing hardenability. If the content of C is less than 0.06%, the arc becomes unstable due to coarsening of the volume, the amount of spatter increases, and it may be difficult to secure sufficient strength of the weld metal, and if it exceeds 0.16%, the molten metal There may be disadvantages in that the viscosity of the bead is lowered, resulting in a poor bead shape, and excessive hardening of the weld metal, resulting in a decrease in toughness.
  • the lower limit of the C content is more preferably 0.062%, even more preferably 0.065%, and most preferably 0.07%.
  • the upper limit of the C content is more preferably 0.12%, even more preferably 0.10%, and most preferably 0.09%.
  • the Si is an element that promotes deoxidation of molten metal during arc welding (deoxidation element) and is an element that is advantageous for suppressing the occurrence of blowholes. If the content of Si is less than 0.001%, there may be a disadvantage in that the deoxidation effect is insufficient and blowholes are easily generated. Due to deoxidation, the surface activation of the welded part is insufficient, and there may be a disadvantage in that the weldability of the molten metal is lowered.
  • the lower limit of the Si content is more preferably 0.01%, even more preferably 0.02%, and most preferably 0.04%.
  • the upper limit of the Si content is more preferably 0.15%, even more preferably 0.10%, and most preferably 0.08%.
  • Mn is a deoxidizing element and is advantageous for suppressing blowhole generation by accelerating deoxidation of molten metal during arc welding. If the content of Mn is less than 1.6%, there may be a disadvantage in that the deoxidation effect is insufficient and blowholes are easily generated. There may be a disadvantage in that molten metal cannot be introduced and a bead shape defect is likely to occur as a humping bead is formed.
  • the lower limit of the Mn content is more preferably 1.65%, even more preferably 1.7%, and most preferably 1.75%.
  • the upper limit of the Mn content is more preferably 1.87%, even more preferably 1.85%, and most preferably 1.8%.
  • the Cr is a ferrite stabilizing element and is an element advantageous to securing hardenability for improving the strength of the weld metal. If the Cr content is less than 1.2%, it may be difficult to secure sufficient strength of the weld metal, and if it exceeds 6.0%, in some cases, the brittleness of the weld metal may be unnecessarily increased, making it difficult to secure sufficient toughness. there is.
  • the lower limit of the Cr content is more preferably 1.25%, more preferably 1.30%, and most preferably 1.35%.
  • the upper limit of the Cr content is more preferably 5.8%, more preferably 5.5%, and most preferably 5.2%.
  • the Mo is a ferrite stabilizing element and is an element advantageous to securing hardenability for improving the strength of the weld metal. If the Mo content is less than 0.4%, it may be difficult to secure sufficient strength of the weld metal, and if it exceeds 0.65%, the toughness of the weld metal may deteriorate in some cases.
  • the lower limit of the Mo content is more preferably 0.42%, even more preferably 0.44%, and most preferably 0.46%.
  • the upper limit of the Mo content is more preferably 0.62%, more preferably 0.60%, and most preferably 0.58%.
  • P is an element that is generally incorporated as an unavoidable impurity in steel, and is also an element included as a common impurity in a solid wire for arc welding. When the P content exceeds 0.015%, hot cracking of the weld metal may become significant.
  • the P content is more preferably 0.014% or less, even more preferably 0.012% or less, and most preferably 0.01% or less.
  • S is an element that is generally incorporated as an unavoidable impurity in steel, and is also an element included as a common impurity in a solid wire for arc welding.
  • the S content is more preferably 0.008% or less, even more preferably 0.006% or less, and most preferably 0.005% or less.
  • Al is a deoxidizing element that can improve the strength of the weld metal by promoting deoxidation of the molten metal during arc welding even in a small amount.
  • the Al content exceeds 0.20%, the production of Al-based oxides increases, and in some cases, the strength and toughness of the weld metal are lowered, and the electrodeposition coating defect of the welded part due to the non-conductive oxide may be sensitive.
  • the Al content is more preferably 0.15% or less, even more preferably 0.12% or less, and most preferably 0.10% or less.
  • the remaining components of the present invention are iron (Fe).
  • Fe iron
  • the above impurities can be known to anyone skilled in the art, all of them are not specifically mentioned in the present invention.
  • the wire of the present invention may further include one or more of Ni: 0.40% or less and Cu: 0.50% or less in addition to the above-described alloy composition.
  • the Ni is an element that can improve the strength and toughness of the weld metal. However, when the content of Ni exceeds 0.40%, there may be a disadvantage of being sensitive to cracking.
  • the Ni content is more preferably 0.30% or less, more preferably 0.20% or less, and most preferably 0.10% or less.
  • the Cu is usually contained in about 0.02% as an impurity in the steel constituting the wire, but in the case of a solid wire for arc welding, the content can be determined mainly due to copper plating performed on the surface of the wire.
  • the Cu is an element capable of stabilizing the supply and conductivity of the wire.
  • the Cu content is more preferably 0.45% or less, even more preferably 0.40% or less, and most preferably 0.30% or less.
  • the wire of the present invention preferably satisfies the alloy composition described above and has a value of 300 to 500 in Equation 1 below.
  • Equation 1 below utilizes the lower bainite transformation including acicular ferrite to make the microstructure of the weld metal part a dense structure in which acicular ferrite and bainite are interlocked in a complex form, and the transformation expansion by lowering the low-temperature transformation start temperature This is to offset the contraction tensile stress generated during the solidification of the molten pool or to add additional compressive stress to the compressive residual stress of the welded part.
  • Equation 1 below If the value of Equation 1 below is less than 300, the hardenability is too increased and the low-temperature transformation structure is excessively developed, resulting in insufficient toughness of the weld metal, and the low-temperature transformation initiation temperature is too low, resulting in an increase in the retained austenite fraction and the transformation expansion effect.
  • the lower limit of the value of the following formula 1 is more preferably 312, even more preferably 315, and most preferably 318.
  • the upper limit of the value of Formula 1 below is more preferably 498, even more preferably 496, and most preferably 494.
  • the shape or type of the wire is not particularly limited, but, for example, the wire of the present invention may be one of a solid wire, a metal cored wire, and a flux cored wire.
  • the welding member of the present invention includes a base material and a welding part.
  • the alloy composition of the welded portion will be described first.
  • the content of the alloy composition described below is % by weight.
  • C is a main element that can lower the temperature at which acicular ferrite, bainite, and martensite transformations start through diffusionless transformation as the weld metal is continuously cooled in the high-temperature austenite phase during the solidification process. If the content of C is less than 0.05%, the hardenability is reduced, making it difficult to secure sufficient strength of the weld metal, and the low-temperature transformation initiation temperature is not sufficiently lowered according to the above-described principle, resulting in a low-temperature transformation expansion effect in the cooling process. There may be disadvantages in that a tensile residual stress offset effect is remarkably low and a high-angle grain boundary structure having a large azimuthal difference between grains cannot be formed.
  • the C content exceeds 0.16%, the viscosity of the molten metal is lowered, resulting in poor bead shape, excessive hardening of the weld metal, deterioration in toughness, and excessively lowering of the low-temperature transformation initiation temperature, resulting in tensile residual stress at the welded part.
  • the lower limit of the C content is more preferably 0.052%, even more preferably 0.055%, and most preferably 0.58%.
  • the upper limit of the C content is more preferably 0.12%, even more preferably 0.1%, and most preferably 0.09%.
  • Si is an element that promotes deoxidation of molten metal during arc welding (deoxidation element), is advantageous for suppressing the occurrence of blowholes, and increases the low-temperature transformation initiation temperature. If the Si content is less than 0.001%, there may be a disadvantage in that the deoxidation effect is insufficient and blowholes are likely to occur, and the low-temperature transformation initiation temperature is excessively lowered, thereby reducing the effect of offsetting the tensile residual stress of the welded part.
  • the lower limit of the Si content is more preferably 0.01%, even more preferably 0.02%, and most preferably 0.04%.
  • the upper limit of the Si content is more preferably 0.85%, even more preferably 0.75%, and most preferably 0.65%.
  • Mn is a deoxidizing element, promotes deoxidation of molten metal during arc welding, is advantageous in suppressing the generation of blowholes, and, like C, is an element that reduces the low-temperature transformation initiation temperature. If the content of Mn is less than 1.4%, the deoxidation effect is insufficient, so blowholes are easily generated, and the low-temperature transformation initiation temperature rises, so that a sufficient compressive stress effect due to low-temperature transformation may not be obtained.
  • the low-temperature transformation initiation temperature may be too low, and the effect of offsetting the tensile residual stress of the welded part may be degraded.
  • the lower limit of the Mn content is more preferably 1.45%, even more preferably 1.50%, and most preferably 1.55%.
  • the upper limit of the Mn content is more preferably 2.47%, even more preferably 2.45%, and most preferably 2.43%.
  • the Cr is a ferrite stabilizing element, lowers the low-temperature transformation initiation temperature, and is an element advantageous to improving strength by securing hardenability of the weld metal. If the Cr content is less than 0.4%, the ratio of high-angle grain boundaries of the weld metal decreases, and it is difficult to sufficiently obtain a compressive stress effect due to low-temperature transformation, and it may be difficult to secure sufficient strength of the weld metal. On the other hand, if the Cr content exceeds 5.0%, brittleness of the weld metal unnecessarily increases in some cases, making it difficult to secure sufficient toughness, and the low-temperature transformation initiation temperature may be too low to sufficiently secure the compressive stress of the welded part.
  • the lower limit of the Cr content is more preferably 0.44%, even more preferably 0.47%, and most preferably 0.50%.
  • the upper limit of the Cr content is more preferably 4.8%, more preferably 4.5%, and most preferably 4.2%.
  • Mo is a ferrite stabilizing element, lowers the low-temperature transformation initiation temperature, and is advantageous for improving strength by securing hardenability of the weld metal. If the content of Mo is less than 0.1%, it may be difficult to obtain sufficient strength of the weld metal, as well as to reduce the ratio of high-angle grain boundaries of the weld metal and to obtain a sufficient compressive stress effect due to low-temperature transformation. On the other hand, when the content of Mo exceeds 1.5%, the toughness of the weld metal is lowered in some cases, and the low-temperature transformation initiation temperature is too low, so that the compressive stress of the welded part may not be sufficiently secured.
  • the lower limit of the Mo content is more preferably 0.16%, more preferably 0.18%, and most preferably 0.2%.
  • the upper limit of the Mo content is more preferably 1.48%, even more preferably 1.46%, and most preferably 1.44%.
  • the P is an element that is generally incorporated as an unavoidable impurity. When the P content exceeds 0.015%, hot cracking of the weld metal may become significant.
  • the P content is more preferably 0.014% or less, even more preferably 0.012% or less, and most preferably 0.01% or less.
  • the S is an element that is generally incorporated as an unavoidable impurity.
  • the content of S exceeds 0.01%, the toughness of the weld metal deteriorates in some cases, and the surface tension of the molten metal becomes insufficient during welding, so that it is melted by gravity during high-speed high-speed welding (welding from top to bottom during vertical welding).
  • the S content is more preferably 0.008% or less, even more preferably 0.006% or less, and most preferably 0.005% or less.
  • Al is a deoxidizing element that can improve the strength of the weld metal by promoting deoxidation of the molten metal during arc welding even in a small amount.
  • the Al content exceeds 0.20%, the production of Al-based oxides increases, and in some cases, the strength and toughness of the weld metal are lowered, and the electrodeposition coating defect of the welded part due to the non-conductive oxide may be sensitive.
  • the Al content is more preferably 0.15% or less, even more preferably 0.12% or less, and most preferably 0.10% or less.
  • the remaining components of the present invention are iron (Fe).
  • Fe iron
  • the above impurities can be known to anyone skilled in the art, all of them are not specifically mentioned in the present invention.
  • the welding member of the present invention may contain at least one of Ni: 0.40% or less and Cu: 0.50% or less.
  • the Ni is an element that can improve the strength and toughness of the weld metal. However, when the content of Ni exceeds 0.40%, there may be a disadvantage of being sensitive to cracking.
  • the Ni content is more preferably 0.30% or less, more preferably 0.20% or less, and most preferably 0.10% or less.
  • the Cu is an element effective in improving the strength of the weld metal.
  • the Cu content is more preferably 0.45% or less, even more preferably 0.40% or less, and most preferably 0.30% or less.
  • 0.01% or more of Cu may be contained in the weld metal.
  • the welding portion of the welding member of the present invention is bainite; It is preferable to have a microstructure including acicular ferrite; and at least one of granular ferrite, martensite, and retained austenite.
  • the microstructure of the weld metal part is formed by utilizing the lower bainite transformation including acicular ferrite in the former austenite crystal grains generated in the cooling process after welding.
  • a dense structure in which bainite is interlocked in a complex form that is, a structure in which the azimuth angle between crystal grains has a high angle, and the low-temperature transformation initiation temperature is lowered to solidify the molten pool with the compressive residual stress of the weldment generated through low-temperature transformation expansion It is possible to obtain the effect of offsetting the contraction tensile stress that occurs during application or adding additional compressive stress.
  • the average effective crystal grain size of the microstructure of the welded part is 10 ⁇ m or less. In this way, by finely controlling the size of the average effective crystal grain, an effect of securing relatively excellent strength and toughness of the weld metal can be obtained. When the size of the average effective crystal grain exceeds 10 ⁇ m, it is difficult to simultaneously secure sufficient strength and toughness of the weld metal as described above.
  • the average effective crystal grain size is more preferably 7 ⁇ m or less, even more preferably 5 ⁇ m or less, and most preferably 4 ⁇ m or less. Meanwhile, the average effective grain size may be defined as an average size of grains converted from the number of grains per unit area.
  • the microstructure of the welded part preferably has a ratio of high-angle grain boundaries having an orientation difference angle of 55° or more to total grain boundaries of 40% or more.
  • a ratio of high-angle grain boundaries having an orientation difference angle of 55° or more to total grain boundaries of 40% or more.
  • the ratio of the high angle grain boundaries is more preferably 44% or more, even more preferably 47% or more, and most preferably 50% or more.
  • the value of R represented by the following formula 2 is 10.5 to 18.5 for the welded part.
  • Equation 2 below is intended to increase the orientation difference angle between crystal grains implemented according to the effect of Equation 1 described above, and to form a microstructure having a more dense and complex structure by refining effective crystal grains constituting this. If the value of Equation 2 below is less than 10.5, there may be a disadvantage in that the strength and toughness of the weld metal are not sufficiently secured, and if it exceeds 18.5, the brittleness of the weld metal is too high and there may be a disadvantage in that it is sensitive to cracking.
  • the lower limit of the value of the following formula 2 is more preferably 10.6, still more preferably 10.8, and most preferably 11.
  • an orientation difference angle between crystal grains may be defined as an angle formed by each grain boundary when a series of lattice arrangements constituting crystal grains are regarded as one crystal grain.
  • K is the ratio (%) of grain boundaries with an orientation angle between grains of 55 ⁇ or more relative to all grain boundaries in the weld
  • G is the average effective grain size of the weld ( ⁇ m)
  • T is the thickness of the base material (mm)
  • Q means welding heat input (kJ / cm)
  • the Q is defined by the following [Equation 3].
  • I means welding current (A)
  • E means welding voltage (V)
  • means welding speed (cm/min).
  • the welded portion of the present invention provided as described above may have a fatigue strength of 140 MPa or more.
  • the welded portion may have a compressive residual stress of 90 MPa or more in an area within 5 mm from the end of the weld bead in a direction perpendicular to the base material.
  • there are tensile residual stress and compressive residual stress as types of the residual stress and in the case of tensile residual stress, it may cause a problem of deteriorating the fatigue resistance characteristic of the welded part in particular.
  • an appropriate level of compressive residual stress is applied to the welded portion.
  • the welding member of the present invention is excellent in fatigue resistance and resistance to deformation due to residual stress at the welded part, so that when applied to automotive parts, etc., it is possible to effectively improve the durability and assembly quality of the product.
  • the alloy composition of the base material is not particularly limited.
  • the base material contains, by weight, C: 0.05 to 0.13%, Si: 0.2 to 2.0%, Mn: 1.3 to 3.0%, Cr: 0.01 to 2.0%, Mo: 0.01 to 2.0%, Al: 0.01 ⁇ 0.1%, P: 0.001 ⁇ 0.05%, S: 0.001 ⁇ 0.05%, balance Fe and other unavoidable impurities.
  • the base material may further include one or more of Ti: 0.01 to 0.2% and Nb: 0.01 to 0.1%.
  • the base material may have a thickness of 0.8 to 4.0 mm.
  • the manufacturing method of the welding member is not particularly limited. However, one of the advantageous methods for manufacturing the welding member of the present invention will be described as follows.
  • the welding wire in manufacturing a welding member by preparing two or more base materials and then performing gas shielded arc welding using a welding wire, the welding wire preferably satisfies the above-described alloy composition and the value of Equation 1.
  • the base material may also have the above-described alloy composition.
  • the lower limit of the value of Equation 4 below is more preferably 1.24, even more preferably 1.26, and most preferably 1.28.
  • the upper limit of the value of the following formula 1 is more preferably 1.58, even more preferably 1.56, and most preferably 1.54.
  • T means the thickness of the base material (mm) and Q means the welding heat input (kJ/cm).
  • the microstructure was observed with an optical microscope after taking a specimen from the welded part, micropolishing the cross-sectional structure and etching with a Nital solution.
  • the Kikuchi pattern was analyzed through EBSD (Electron Backscattered Diffraction) to obtain IQ (Image Quality) and IPF (Inverse Pole Figure) Maps visualizing grain boundary and grain orientation information.
  • IQ Image Quality
  • IPF Inverse Pole Figure Maps visualizing grain boundary and grain orientation information.
  • the average effective grain size was calculated by calculating the average size of the grains converted from the number of grains per unit area. measured.
  • the ratio of high-angle grain boundaries with an orientation angle between grains of 55 ⁇ or more relative to all grain boundaries in the weld is considered as a series of lattice arrays that form grains through the above-mentioned EBSD analysis method, and at this time, the angle formed by each grain boundary is After the measurement, it was measured by a method of extracting the ratio of grain boundaries having an orientation angle of 55° or more among the entire distribution of orientation angles between grains.
  • Fatigue strength was defined as the maximum load that satisfies 2 ⁇ 10 6 Cycles of fatigue life by conducting a fatigue test after taking a specimen from the welded part of the welding member.
  • the fatigue life (Cycles) was measured using a tensile-tensile high cycle fatigue test for each load. At this time, the ratio of the minimum load and the maximum load was 0.1, and the repetition load frequency was 15 Hz.
  • the fatigue life corresponding to the converted strength (MPa) was derived by dividing the load (kN) by the area according to the width and thickness of each specimen.
  • the minimum load means the minimum value of the repeated load having the above-described constant load application frequency
  • the maximum load means the maximum value of the repeated load.
  • Residual stress is calculated by measuring the amount of added stress change by measuring the change in distance between lattices constituting crystal grains using the principle of X-ray diffraction for an area within 5 mm from the end of the weld bead in the direction perpendicular to the base metal. did At this time, X-rays were generated from the Cr tube with a voltage of 30 kV and a current of 6.7 mA. On the other hand, if the value of residual stress is negative (-), it is determined as compressive residual stress, and if it is positive (+), it is determined as tensile residual stress.
  • the bead start part means a weld bead formed after welding starts
  • the bead end part means a weld bead formed after welding is finished
  • the bead center part means a weld bead located in the middle of the bead start part and the bead end part.
  • FIG. 1 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 1 observed by EBSD
  • FIG. 2 is a graph of a grain boundary ratio according to an orientation difference angle between crystal grains of Inventive Example 1.
  • FIG. 3 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 2 observed by EBSD
  • FIG. 4 is a graph of a grain boundary ratio according to an orientation difference angle between crystal grains of Inventive Example 2.
  • FIG. 5 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 3 observed by EBSD
  • FIG. 6 is a graph of a grain boundary ratio according to an orientation difference angle between crystal grains of Inventive Example 3.
  • FIG. 7 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Inventive Example 4 observed by EBSD
  • FIG. 8 is a graph of a grain boundary ratio according to an orientation difference angle between crystal grains of Inventive Example 4.
  • FIG. 9 is an image quality (IQ) and inverse pole figure (IPF) photograph of Comparative Example 1 observed by EBSD
  • FIG. 10 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Comparative Example 1.
  • FIG. 11 is an IQ (Image Quality) and IPF (Inverse Pole Figure) photograph of Comparative Example 2 observed by EBSD
  • FIG. 12 is a graph of a grain boundary ratio according to an orientation difference angle between grains of Comparative Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

본 발명은 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법에 관한 것이다.

Description

피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법
본 발명은 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법에 관한 것이다.
자동차 분야는 지구 온난화 문제 등 환경보호에 따른 연비규제 정책으로 차체 및 부품류의 경량화 기술 연구가 큰 이슈로 부상하고 있다. 자동차 주행 성능에 중요한 샤시부품류 또한 이러한 기조에 따라 경량화를 위해 고강도 강재의 적용이 필요한 실정이다. 부품 경량화 달성을 위해서는 소재의 고강도화가 필수적이며, 반복적인 피로하중이 가해지는 환경에서 고강도 강재로 제작된 부품의 내구성능 보증이 중요한 요소라 할 수 있다. 자동차 샤시부품의 조립시 강도 확보를 위해 주로 이용되는 아크 용접의 경우, 용접 와이어의 용착에 의해 부품간 겹침이음 용접이 이루어지므로 이음부의 기하학적 형상 부여가 불가피하다. 이는 반복 피로응력 집중부(노치효과)로 작용하여 파단기점이 됨에 따라 결과적으로 부품의 내구성능 저하를 초래하므로 고강도 강재 적용의 이점이 상실되는 한계를 지닌다. 용접부의 피로특성은 주로 응력집중부인 비드 끝단부의 각도(토우각)을 저감하는 것이 무엇보다 중요하며, 용접입열에 따른 열영향부(HAZ)의 연화와는 직접적인 상관성이 없는 것으로 보고되고 있다.
특허문헌 1에 따르면 판 두께 5mm 이하 및 인장강도 780MPa 이상의 강재를 이용하여 제조되는 아크용접부의 피로특성 향상을 위해 용접비드 토우부, 즉 열영향부(HAZ)의 온도구간 위치별 재질 제어에 대한 개념을 제시하였으나(예를 들면, 표면으로부터 0.1mm 깊이에서의 최소 경도의 위치가 용융선으로부터 0.3mm 이상 떨어져 있어야 함), 용접재료의 특성 향상을 통해 용접금속의 강도를 개선하고 용접부의 응력특성을 제어하는 기술은 제시하지 못하는 한계를 갖는다
특허문헌 2에서는 용접비드 끝단부를 치퍼(타격핀)로 연속적으로 타격하여 소성변형 영역을 형성함으로써 압축응력 부여를 통해 피로특성 향상이 가능함을 제시하였고, 특허문헌 3에서는 자동차용 샤시부품인 서브프레임과 브라켓 간 아크용접비드의 토우각을 저감하기 위해 용접후 플라즈마 열원을 통한 용접비드 끝단부의 재용융 처리 방법을 제안하였다. 그러나 상기 제안된 방법들은 용접후 공정이 추가되어 부품제작시 공정비용이 증가하는 문제가 있다.
한편, 통상적으로 인장강도 950MPa급 이상의 박강판의 경우, 샤시부품 제작을 위한 아크 용접후 인장 잔류응력에 의한 변형이 발생하여 조립성을 나쁘게 할 뿐만 아니라 용접부의 인장 잔류응력이 용접부의 피로특성을 저하시키는 문제가 있다.
[선행기술문헌]
(특허문헌 1) 일본 공개특허공보 특개2013-220431호
(특허문헌 2) 일본 공개특허공보 특개2014-014831호
(특허문헌 3) 일본 공개특허공보 특개2014-004609호
본 발명의 일측면은 용접부에 우수한 피로저항특성 및 잔류응력으로 인한 변형에 대한 저항성을 부여할 수 있는 가스 실드 아크 용접용 와이어를 제공하고자 하는 것이다.
본 발명의 다른 측면은, 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재 및 그 제조방법을 제공하고자 하는 것이다.
본 발명의 일 실시형태는 중량%로, C: 0.06~0.16%, Si: 0.001~0.2%, Mn: 1.6~1.9%, Cr: 1.2~6.0%, Mo: 0.4~0.65%, P: 0.015% 이하(0%는 제외), S: 0.01% 이하(0%는 제외), Al: 0.20% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1의 값이 300~500인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어를 제공한다.
[식 1] 732 - 202×C + 216×Si - 85×Mn - 37×Ni - 47×Cr - 39×Mo
(단, 상기 [식 1]에서 각 원소의 함량은 중량%임.)
본 발명의 다른 실시형태는 모재 및 용접부를 포함하는 용접부재로서, 상기 용접부는, 중량%로, C: 0.05~0.16%, Si: 0.001~1.0%, Mn: 1.4~2.5%, Cr: 0.4~5.0%, Mo: 0.1~1.5%, P: 0.015% 이하(0%는 제외), S: 0.01% 이하(0%는 제외), Al: 0.20% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 베이나이트; 침상 페라이트;와 입상 페라이트, 마르텐사이트 및 잔류 오스테나이트 중 하나 이상;을 포함하는 미세조직을 가지며, 상기 미세조직은 평균 유효 결정립 크기가 10㎛ 이하이고, 전체 결정립계 대비 결정립간 방위차 각도(misorientation angle)가 55˚ 이상인 고경각 결정립계의 비율이 40% 이상이며, 하기 식 2로 표현되는 R의 값이 10.5~18.5인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재를 제공한다.
[식 2] R = (K / G) × (Q / T)
(단, 상기 [식 2]에서 K는 용접부 내 전체 결정립계 대비 결정립간 방위차 각도가 55˚ 이상인 결정립계의 비율(%), G는 용접부의 평균 유효 결정립 크기(㎛), T는 모재의 두께(mm) 및 Q는 용접입열량(kJ/cm)를 의미하며, 상기 Q는 하기 [식 3]으로 정의됨.)
[식 3] Q = (I × E) × 0.048 / υ
(단, 상기 [식 3]에서 I는 용접전류(A), E는 용접전압(V) 및 υ는 용접속도(cm/min)를 의미함.)
본 발명의 또 다른 실시형태는 2매 이상의 모재를 준비한 뒤, 용접 와이어를 이용하여 가스 실드 아크 용접하는 용접부재의 제조방법으로서, 상기 용접 와이어는 중량%로, C: 0.06~0.16%, Si: 0.001~0.2%, Mn: 1.6~1.9%, Cr: 1.2~6.0%, Mo: 0.4~0.65%, P: 0.015% 이하(0%는 제외), S: 0.01% 이하(0%는 제외), Al: 0.20% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1의 값이 300~500이고, 상기 가스 실드 아크 용접시, 하기 식 4의 값이 1.2~1.6이 되도록 하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재의 제조방법을 제공한다.
[식 1] 732 - 202×C + 216×Si - 85×Mn - 37×Ni - 47×Cr - 39×Mo
(단, 상기 [식 1]에서 각 원소의 함량은 중량%임.)
[식 4] Q/T
(단, 상기 [식 4]에서 T는 모재의 두께(mm) 및 Q는 용접입열량(kJ/cm)를 의미함.)
본 발명의 일측면에 따르면, 용접부에 우수한 피로저항특성 및 잔류응력으로 인한 변형에 대한 저항성을 부여할 수 있는 가스 실드 아크 용접용 와이어를 제공할 수 있다.
본 발명의 다른 측면에 따르면, 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재 및 그 제조방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 발명예 1을 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이다.
도 2는 본 발명의 일 실시예에 따른 발명예 1의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 3은 본 발명의 일 실시예에 따른 발명예 2를 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이다.
도 4는 본 발명의 일 실시예에 따른 발명예 2의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 5는 본 발명의 일 실시예에 따른 발명예 3을 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이다.
도 6은 본 발명의 일 실시예에 따른 발명예 3의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 7은 본 발명의 일 실시예에 따른 발명예 4를 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이다.
도 8은 본 발명의 일 실시예에 따른 발명예 4의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 9는 본 발명의 일 실시예에 따른 비교예 1을 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이다.
도 10은 본 발명의 일 실시예에 따른 비교예 1의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 11은 본 발명의 일 실시예에 따른 비교예 2를 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이다.
도 12는 본 발명의 일 실시예에 따른 비교예 2의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
이하, 본 발명의 일 실시형태에 따른 가스 실드 아크 용접용 와이어에 대하여 설명한다. 하기 설명되는 합금조성의 함량은 중량%이다.
C: 0.06~0.16%
상기 C는 아크를 안정화해서 용적을 미립화하는 작용에 유리하며, 경화능 확보에도 유리한 원소이다. 상기 C의 함량이 0.06% 미만이면 용적이 조대화되어 아크가 불안정해지고, 스패터 발생량이 많아질 뿐만 아니라, 용접금속의 충분한 강도 확보가 어려워지는 단점이 있을 수 있고, 0.16%를 초과하면 용융금속의 점성이 낮아져 비드 형상이 불량해질 뿐만 아니라 용접금속을 과도하게 경화시켜 인성이 저하되는 단점이 있을 수 있다. 상기 C 함량의 하한은 0.062%인 것이 보다 바람직하고, 0.065%인 것이 보다 더 바람직하며, 0.07%인 것이 가장 바람직하다. 상기 C 함량의 상한은 0.12%인 것이 보다 바람직하고, 0.10%인 것이 보다 더 바람직하며, 0.09%인 것이 가장 바람직하다.
Si: 0.001~0.2%
상기 Si는 아크용접시 용융금속의 탈산을 촉진하는 원소(탈산 원소)로서 블로우홀의 발생 억제에 유리한 원소이다. 상기 Si의 함량이 0.001% 미만이면 탈산 효과가 부족하게 되어 블로우홀이 발생하기 쉬워지는 단점이 있을 수 있고, 0.2%를 초과하면 비전도성 슬래그가 많이 발생하게 되어 용접부의 도장 불량을 야기하고, 과도한 탈산으로 인해 용접부의 표면활성화가 부족하게 되어 용융금속의 용입성이 저하되는 단점이 있을 수 있다. 상기 Si 함량의 하한은 0.01%인 것이 보다 바람직하고, 0.02%인 것이 보다 더 바람직하며, 0.04%인 것이 가장 바람직하다. 상기 Si 함량의 상한은 0.15%인 것이 보다 바람직하고, 0.10%인 것이 보다 더 바람직하며, 0.08%인 것이 가장 바람직하다.
Mn: 1.6~1.9%
상기 Mn은 탈산 원소이며 아크 용접 시에 용융 금속의 탈산을 촉진하여 블로우홀 발생 억제에 유리한 원소이다. 상기 Mn의 함량이 1.6% 미만이면 탈산 효과가 부족하게 되어 블로우홀 발생이 쉬워지는 단점이 있을 수 있고, 1.9%를 초과하면 용융 금속의 점성이 과도하게 높아져서 용접 속도가 빠른 경우 용접 부위에 적절하게 용융 금속이 유입될 수 없어 험핑(humping) 비드가 형성됨에 따라 비드 형상 불량이 발생하기 쉬워지는 단점이 있을 수 있다. 상기 Mn 함량의 하한은 1.65%인 것이 보다 바람직하고, 1.7%인 것이 보다 더 바람직하며, 1.75%인 것이 가장 바람직하다. 상기 Mn 함량의 상한은 1.87%인 것이 보다 바람직하고, 1.85%인 것이 보다 더 바람직하며, 1.8%인 것이 가장 바람직하다.
Cr: 1.2~6.0%
상기 Cr은 페라이트 안정화 원소이며 용접금속의 강도를 향상시키는 경화능 확보에 유리한 원소이다. 상기 Cr의 함량이 1.2% 미만이면 용접금속의 충분한 강도 확보가 어려운 단점이 있을 수 있고, 6.0%를 초과하면 경우에 따라 용접금속의 취성이 불필요하게 증가하여 충분한 인성을 확보하기 곤란한 단점이 있을 수 있다. 상기 Cr 함량의 하한은 1.25%인 것이 보다 바람직하고, 1.30%인 것이 보다 더 바람직하며, 1.35%인 것이 가장 바람직하다. 상기 Cr 함량의 상한은 5.8%인 것이 보다 바람직하고, 5.5%인 것이 보다 더 바람직하며, 5.2%인 것이 가장 바람직하다.
Mo: 0.4~0.65%
상기 Mo는 페라이트 안정화 원소이며 용접금속의 강도를 향상시키는 경화능 확보에 유리한 원소이다. 상기 Mo의 함량이 0.4% 미만이면 용접금속의 충분한 강도 확보가 어려운 단점이 있을 수 있고, 0.65%를 초과하면 경우에 따라 용접금속의 인성이 저하되는 단점이 있을 수 있다. 상기 Mo 함량의 하한은 0.42%인 것이 보다 바람직하고, 0.44%인 것이 보다 더 바람직하며, 0.46%인 것이 가장 바람직하다. 상기 Mo 함량의 상한은 0.62%인 것이 보다 바람직하고, 0.60%인 것이 보다 더 바람직하며, 0.58%인 것이 가장 바람직하다.
P: 0.015% 이하(0%는 제외)
상기 P는 일반적으로 강 내에 불가피한 불순물로 혼입되는 원소이며, 아크 용접용 솔리드 와이어 내에도 통상적인 불순물로서 포함되는 원소이다. 상기 P의 함량이 0.015%를 초과하면 용접 금속의 고온 균열이 현저해지는 단점이 있을 수 있다. 상기 P 함량은 0.014% 이하인 것이 보다 바람직하고, 0.012% 이하인 것이 보다 더 바람직하며, 0.01% 이하인 것이 가장 바람직하다.
S: 0.01% 이하(0%는 제외)
상기 S는 일반적으로 강 내에 불가피한 불순물로 혼입되는 원소이며, 아크 용접용 솔리드 와이어 내에도 통상적인 불순물로서 포함되는 원소이다. 상기 S의 함량이 0.01%를 초과하면 경우에 따라 용접 금속의 인성이 악화되고, 용접시 용융 금속의 표면 장력이 부족하게 되어 고속 하진용접(수직용접시 위에서 아래 방향으로 용접)시 중력에 의해 용융부가 과도하게 흘러내려 용접비드의 형상이 불량해지는 단점이 있을 수 있다. 상기 S 함량은 0.008% 이하인 것이 보다 바람직하고, 0.006% 이하인 것이 보다 더 바람직하며, 0.005% 이하인 것이 가장 바람직하다.
Al: 0.20% 이하(0%는 제외)
상기 Al은 탈산 원소로서 미량으로도 아크 용접시 용융 금속의 탈산을 촉진함으로써 용접 금속의 강도를 향상시킬 수 있는 원소이다. 상기 Al의 함량이 0.20%를 초과하면 Al계 산화물 생성이 증가하여 경우에 따라 용접 금속의 강도와 인성이 저하되고, 비전도성 산화물로 인한 용접부의 전착 도장 불량이 민감해지는 단점이 있을 수 있다. 상기 Al 함량은 0.15% 이하인 것이 보다 바람직하고, 0.12% 이하인 것이 보다 더 바람직하며, 0.10% 이하인 것이 가장 바람직하다.
이외, 본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 상기 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이기 때문에 본 발명에서는 그 모든 내용을 특별히 언급하지는 않는다.
본 발명의 와이어는 전술한 합금조성 외에 추가로 Ni: 0.40% 이하 및 Cu: 0.50% 이하 중 1종 이상을 포함할 수 있다.
Ni: 0.40% 이하
상기 Ni는 용접 금속의 강도와 인성을 향상시킬 수 있는 원소이다. 다만, 상기 Ni의 함량이 0.40%를 초과하면 균열에 민감해지는 단점이 있을 수 있다. 상기 Ni 함량은 0.30% 이하인 것이 보다 바람직하고, 0.20% 이하인 것이 보다 더 바람직하며, 0.10% 이하인 것이 가장 바람직하다.
Cu: 0.50% 이하
상기 Cu는 일반적으로 와이어를 이루는 강 중 불순물로서 0.02% 정도 함유되는 경우가 보통인데, 아크 용접용 솔리드 와이어의 경우 주로 와이어 표면에 실시되는 구리 도금에 기인하여 그 함량이 결정될 수 있다. 상기 Cu는 와이어의 송급성과 통전성을 안정화시킬 수 있는 원소이다. 다만, 상기 Cu의 함량이 0.50%를 초과하면 용접 금속의 균열 감수성이 높아지는 단점이 있을 수 있다. 상기 Cu 함량은 0.45% 이하인 것이 보다 바람직하고, 0.40% 이하인 것이 보다 더 바람직하며, 0.30% 이하인 것이 가장 바람직하다.
한편, 본 발명의 와이어는 상술한 합금조성을 만족함과 동시에, 하기 식 1의 값이 300~500인 것이 바람직하다. 하기 식 1은 침상 페라이트를 포함한 하부 베이나이트 변태를 활용하여 용접금속부의 미세조직을 침상 페라이트와 베이나이트가 서로 복잡한 형태로 얽혀 있는(interlocked) 치밀한 구조가 되도록 하고, 저온 변태 개시 온도를 낮춰 변태 팽창을 통해 발생하는 용접부 압축 잔류응력으로 용융지의 응고시 발생하는 수축 인장응력을 상쇄하거나 추가적인 압축응력을 부가하기 위한 것이다. 하기 식 1의 값이 300 미만이면 경화능이 너무 증가하여 저온 변태 조직이 과도하게 발달함으로써 용접금속의 인성이 부족해지고, 저온 변태 개시 온도가 너무 낮아져 잔류 오스테나이트 분율이 증가함과 동시에 변태 팽창 효과가 떨어지는 단점이 있을 수 있다. 반면, 500을 초과하면 반대로 상술한 침상 페라이트를 포함한 하부 베이나이트 변태 효과를 충분히 얻을 수 없어 용접금속의 미세조직을 치밀하게 할 수 없을 뿐 아니라 저온 변태 개시 온도가 상승하여 용접부의 인장 잔류응력을 상쇄하는 효과가 현저히 떨어지는 단점이 있을 수 있다. 하기 식 1의 값의 하한은 312인 것이 보다 바람직하고, 315인 것이 보다 더 바람직하며, 318인 것이 가장 바람직하다. 하기 식 1의 값의 상한은 498인 것이 보다 바람직하고, 496인 것이 보다 더 바람직하며, 494인 것이 가장 바람직하다.
[식 1] 732 - 202×C + 216×Si - 85×Mn - 37×Ni - 47×Cr - 39×Mo
(단, 상기 [식 1]에서 각 원소의 함량은 중량%임.)
본 발명에서는 와이어의 형태나 종류에 대해서 특별히 한정하지 않으나, 예를 들면, 본 발명의 와이어는 솔리드 와이어, 메탈 코어드 및 플럭스 코어드 와이어 중 하나일 수 있다.
이하, 본 발명의 일 실시형태에 따른 용접부재에 대하여 설명한다. 본 발명의 용접부재는 모재 및 용접부를 포함한다. 이하, 상기 용접부의 합금조성에 대하여 먼저 설명한다. 하기 설명되는 합금조성의 함량은 중량%이다.
C: 0.05~0.16%
상기 C는 용접금속이 응고과정에서 고온의 오스테나이트 상에서 연속 냉각에 따라 무확산 변태를 통한 침상형 페라이트, 베이나이트 및 마르텐사이트 변태가 개시되는 온도를 낮출 수 있는 주요 원소이다. 상기 C의 함량이 0.05% 미만이면 경화능이 감소하여 용접금속의 충분한 강도 확보가 어려워질 뿐만 아니라, 상술한 원리에 따라 저온 변태 개시 온도가 충분히 낮아지지 못해 냉각 과정에서 저온 변태 팽창 효과에 따른 용접부의 인장 잔류 응력 상쇄 효과가 현저히 떨어지고, 결정립간 방위각 차이가 큰 고경각의 결정립계 구조가 형성되지 못하는 단점이 있을 수 있다. 반면, C의 함량이 0.16%를 초과하면 용융금속의 점성이 낮아져 비드 형상이 불량해질 뿐만 아니라 용접금속을 과도하게 경화시켜 인성이 저하되며, 저온 변태 개시 온도가 과도하게 낮아져 용접부의 인장 잔류 응력이 최대에 이르는 상온 근처의 온도에서 저온 변태에 따른 압축 응력을 확보하지 못하고 최종 용접금속 조직에 미 변태 상인 잔류 오스테나이트 상이 증가할 수 있다. 상기 C 함량의 하한은 0.052%인 것이 보다 바람직하고, 0.055%인 것이 보다 더 바람직하며, 0.58%인 것이 가장 바람직하다. 상기 C 함량의 상한은 0.12%인 것이 보다 바람직하고, 0.1%인 것이 보다 더 바람직하며, 0.09%인 것이 가장 바람직하다.
Si: 0.001~1.0%
상기 Si는 아크용접시 용융금속의 탈산을 촉진하는 원소(탈산 원소)로서 블로우홀의 발생 억제에 유리하고, 저온 변태 개시 온도를 상승시키는 원소이다. 상기 Si의 함량이 0.001% 미만이면 탈산 효과가 부족하게 되어 블로우홀이 발생하기 쉬워지는 단점이 있을 수 있고, 저온 변태 개시 온도가 과도하게 낮아져 용접부의 인장 잔류 응력을 상쇄하는 효과가 떨어질 수 있다. 반면, Si의 함량이 1.0%를 초과하면 비전도성 슬래그가 많이 발생하게 되어 용접부의 도장 불량을 야기하고, 과도한 탈산으로 인해 용접부의 표면활성화가 부족하게 되어 용융금속의 용입성이 저하될 수 있을 뿐만 아니라, 저온 변태 개시 온도가 상승하여 저온 변태에 따른 충분한 압축 응력 효과를 얻지 못하는 단점이 있을 수 있다. 상기 Si 함량의 하한은 0.01%인 것이 보다 바람직하고, 0.02%인 것이 보다 더 바람직하며, 0.04%인 것이 가장 바람직하다. 상기 Si 함량의 상한은 0.85%인 것이 보다 바람직하고, 0.75%인 것이 보다 더 바람직하며, 0.65%인 것이 가장 바람직하다.
Mn: 1.4~2.5%
상기 Mn은 탈산 원소이며 아크 용접 시에 용융 금속의 탈산을 촉진하여 블로우홀 발생 억제에 유리하고, C와 같이 저온 변태 개시 온도를 감소시키는 원소이다. 상기 Mn의 함량이 1.4% 미만이면 탈산 효과가 부족하게 되어 블로우홀 발생이 쉬워지고 저온 변태 개시 온도가 상승하여 저온 변태에 따른 충분한 압축 응력 효과를 얻지 못하는 단점이 있을 수 있다. 반면, 2.5%를 초과하면 용융 금속의 점성이 과도하게 높아져서 용접 속도가 빠른 경우 용접 부위에 적절하게 용융 금속이 유입될 수 없어 험핑(humping) 비드가 형성됨에 따라 비드 형상 불량이 발생하기 쉬워지고, 저온 변태 개시 온도가 너무 낮아져 용접부의 인장 잔류 응력을 상쇄하는 효과가 떨어지는 단점이 있을 수 있다. 상기 Mn 함량의 하한은 1.45%인 것이 보다 바람직하고, 1.50%인 것이 보다 더 바람직하며, 1.55%인 것이 가장 바람직하다. 상기 Mn 함량의 상한은 2.47%인 것이 보다 바람직하고, 2.45%인 것이 보다 더 바람직하며, 2.43%인 것이 가장 바람직하다.
Cr: 0.4~5.0%
상기 Cr은 페라이트 안정화 원소이고, 저온 변태 개시 온도를 낮추며, 용접금속의 경화능 확보에 따른 강도 향상에 유리한 원소이다. 상기 Cr의 함량이 0.4% 미만이면 용접금속의 고경각 결정립계 비율이 감소하고 저온 변태에 따른 압축 응력 효과를 충분히 얻기 어려울 뿐만 아니라, 용접금속의 충분한 강도 확보가 어려울 수 있다. 반면, Cr의 함량이 5.0%를 초과하면 경우에 따라 용접금속의 취성이 불필요하게 증가하여 충분한 인성을 확보하기 곤란하고, 저온 변태 개시 온도가 너무 낮아져 용접부의 압축 응력이 충분히 확보되지 못할 수 있다. 상기 Cr 함량의 하한은 0.44%인 것이 보다 바람직하고, 0.47%인 것이 보다 더 바람직하며, 0.50%인 것이 가장 바람직하다. 상기 Cr 함량의 상한은 4.8%인 것이 보다 바람직하고, 4.5%인 것이 보다 더 바람직하며, 4.2%인 것이 가장 바람직하다.
Mo: 0.1~1.5%
상기 Mo는 페라이트 안정화 원소이고, 저온 변태 개시 온도를 낮추며, 용접금속의 경화능 확보에 따른 강도 향상에 유리한 원소이다. 상기 Mo의 함량이 0.1% 미만이면 용접금속의 고경각 결정립계 비율이 감소하고 저온 변태에 따른 압축 응력 효과를 충분히 얻기 어려울 뿐만 아니라, 용접금속의 충분한 강도 확보가 어려울 수 있다. 반면, Mo의 함량이 1.5%를 초과하면 경우에 따라 용접금속의 인성이 저하되고, 저온 변태 개시 온도가 너무 낮아져 용접부의 압축 응력이 충분히 확보되지 못할 수 있다. 상기 Mo 함량의 하한은 0.16%인 것이 보다 바람직하고, 0.18%인 것이 보다 더 바람직하며, 0.2%인 것이 가장 바람직하다. 상기 Mo 함량의 상한은 1.48%인 것이 보다 바람직하고, 1.46%인 것이 보다 더 바람직하며, 1.44%인 것이 가장 바람직하다.
P: 0.015% 이하(0%는 제외)
상기 P는 일반적으로 불가피한 불순물로 혼입되는 원소이다. 상기 P의 함량이 0.015%를 초과하면 용접 금속의 고온 균열이 현저해지는 단점이 있을 수 있다. 상기 P 함량은 0.014% 이하인 것이 보다 바람직하고, 0.012% 이하인 것이 보다 더 바람직하며, 0.01% 이하인 것이 가장 바람직하다.
S: 0.01% 이하(0%는 제외)
상기 S는 일반적으로 불가피한 불순물로 혼입되는 원소이다. 상기 S의 함량이 0.01%를 초과하면 경우에 따라 용접 금속의 인성이 악화되고, 용접시 용융 금속의 표면 장력이 부족하게 되어 고속 하진용접(수직용접시 위에서 아래 방향으로 용접)시 중력에 의해 용융부가 과도하게 흘러내려 용접비드의 형상이 불량해지는 단점이 있을 수 있다. 상기 S 함량은 0.008% 이하인 것이 보다 바람직하고, 0.006% 이하인 것이 보다 더 바람직하며, 0.005% 이하인 것이 가장 바람직하다.
Al: 0.20% 이하(0%는 제외)
상기 Al은 탈산 원소로서 미량으로도 아크 용접시 용융 금속의 탈산을 촉진함으로써 용접 금속의 강도를 향상시킬 수 있는 원소이다. 상기 Al의 함량이 0.20%를 초과하면 Al계 산화물 생성이 증가하여 경우에 따라 용접 금속의 강도와 인성이 저하되고, 비전도성 산화물로 인한 용접부의 전착 도장 불량이 민감해지는 단점이 있을 수 있다. 상기 Al 함량은 0.15% 이하인 것이 보다 바람직하고, 0.12% 이하인 것이 보다 더 바람직하며, 0.10% 이하인 것이 가장 바람직하다.
이외, 본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 상기 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이기 때문에 본 발명에서는 그 모든 내용을 특별히 언급하지는 않는다.
본 발명의 용접부재는 전술한 합금조성 외에 추가로 Ni: 0.40% 이하 및 Cu: 0.50% 이하 중 1종 이상을 포함할 수 있다.
Ni: 0.40% 이하
상기 Ni는 용접 금속의 강도와 인성을 향상시킬 수 있는 원소이다. 다만, 상기 Ni의 함량이 0.40%를 초과하면 균열에 민감해지는 단점이 있을 수 있다. 상기 Ni 함량은 0.30% 이하인 것이 보다 바람직하고, 0.20% 이하인 것이 보다 더 바람직하며, 0.10% 이하인 것이 가장 바람직하다.
Cu: 0.50% 이하
상기 Cu는 용접 금속의 강도 향상에 유효한 원소이다. 다만, 상기 Cu의 함량이 0.50%를 초과하면 용접 금속의 균열 감수성이 높아지는 단점이 있을 수 있다. 상기 Cu 함량은 0.45% 이하인 것이 보다 바람직하고, 0.40% 이하인 것이 보다 더 바람직하며, 0.30% 이하인 것이 가장 바람직하다. 한편, 강도 향상 효과를 충분히 얻기 위해서는 용접 금속 중에 상기 Cu를 0.01% 이상 함유시킬 수 있다.
한편, 본 발명 용접부재의 용접부는 베이나이트; 침상 페라이트;와 입상 페라이트, 마르텐사이트 및 잔류 오스테나이트 중 하나 이상;을 포함하는 미세조직을 갖는 것이 바람직하다. 본 발명에서는 특히 상술한 바와 같이 식 1의 값을 적절히 제어함으로써 용접후 냉각 과정에서 발생하는 구 오스테나이트 결정립 내에서의 침상 페라이트를 포함한 하부 베이나이트 변태를 활용하여 용접금속부의 미세조직을 침상 페라이트와 베이나이트가 서로 복잡한 형태로 얽혀 있는(interlocked) 치밀한 구조, 즉 결정립 간의 방위각이 고경각을 갖는 구조가 되도록 하고, 저온 변태 개시 온도를 낮춰 저온 변태 팽창을 통해 발생하는 용접부 압축 잔류응력으로 용융지의 응고시 발생하는 수축 인장응력을 상쇄하거나 추가적인 압축응력을 부가할 수 있는 효과를 얻을 수 있다.
이때, 상기 용접부의 미세조직은 평균 유효 결정립 크기가 10㎛ 이하인 것이 바람직하다. 이와 같이 상기 평균 유효 결정립의 크기를 미세하게 제어함으로써 비교적 우수한 용접금속의 강도와 인성을 확보할 수 있는 효과를 얻을 수 있다. 상기 평균 유효 결정립의 크기가 10㎛를 초과할 경우에는 상술한 바와 같이 용접금속의 충분한 강도 및 인성을 동시에 확보하기 어려운 단점이 있다. 상기 평균 유효 결정립의 크기는 7㎛ 이하인 것이 보다 바람직하고, 5㎛ 이하인 것이 보다 더 바람직하며, 4㎛ 이하인 것이 가장 바람직하다. 한편, 상기 평균 유효 결정립은 단위면적당 결정립 수로부터 환산된 결정립의 평균 크기로 정의될 수 있다.
또한, 상기 용접부의 미세조직은 전체 결정립계 대비 결정립간 방위차 각도가 55˚ 이상인 고경각 결정립계의 비율이 40% 이상인 것이 바람직하다. 상기와 같이 고경각 결정립계의 비율을 제어함으로써 매우 치밀하고 복잡한 미세조직 형성을 통해 용접금속의 충분한 강도 및 인성을 동시에 확보함과 동시에 특히 인장강도 950MPa급 이상의 박강판 용접부의 인장 잔류응력을 충분히 상쇄할 수 있는 저온변태 팽창 효과를 얻을 수 있다. 다만, 상기 고경각 결정립계의 비율이 40% 미만인 경우에는 상술한 특성이 부족해지는 단점이 있다. 상기 고경각 결정립계의 비율은 44% 이상인 것이 보다 바람직하고, 47% 이상인 것이 보다 더 바람직하며, 50% 이상인 것이 가장 바람직하다.
더하여, 상기 용접부는 하기 식 2로 표현되는 R의 값이 10.5~18.5인 것이 바람직하다. 하기 식 2는 상술한 식 1의 효과에 따라 구현된 결정립간 방위차 각도는 증가하고, 이를 이루는 유효 결정립은 세립화되어 보다 치밀하고 복잡한 구조의 미세조직이 형성되도록 하기 위한 것이다. 하기 식 2의 값이 10.5 미만이면 용접금속의 강도와 인성이 충분히 확보되지 못하는 단점이 있을 수 있고, 18.5를 초과하면 용접금속의 취성이 너무 높아져 균열에 민감해지는 단점이 있을 수 있다. 하기 식 2의 값의 하한은 10.6인 것이 보다 바람직하고, 10.8인 것이 보다 더 바람직하며, 11인 것이 가장 바람직하다. 하기 식 2의 값의 상한은 18.4인 것이 보다 바람직하고, 18.2인 것이 보다 더 바람직하며, 18인 것이 가장 바람직하다. 한편, 하기 식 2에서 결정립간 방위차 각도는 결정립을 이루는 일련의 격자 배열을 하나의 결정립으로 간주하고 이 때 각 결정립계가 이루는 각도로 정의될 수 있다.
[식 2] R = (K / G) × (Q / T)
단, 상기 [식 2]에서 K는 용접부 내 전체 결정립계 대비 결정립간 방위차 각도가 55˚ 이상인 결정립계의 비율(%), G는 용접부의 평균 유효 결정립 크기(㎛), T는 모재의 두께(mm) 및 Q는 용접입열량(kJ/cm)를 의미하며, 상기 Q는 하기 [식 3]으로 정의된다.
[식 3] Q = (I × E) × 0.048 / υ
단, 상기 [식 3]에서 I는 용접전류(A), E는 용접전압(V) 및 υ는 용접속도(cm/min)를 의미한다.
전술한 바와 같이 제공되는 본 발명의 용접부는 피로강도가 140MPa 이상일 수 있다. 또한, 상기 용접부는 용접비드의 끝단부로부터 모재와 수직한 방향으로 5mm 이내의 영역의 압축 잔류응력이 90MPa 이상일 수 있다. 한편, 상기 잔류응력의 종류로는 인장 잔류응력과 압축 잔류응력이 있는데, 인장 잔류응력의 경우에는 특히 용접부의 피로저항특성을 나쁘게 하는 문제를 일으킬 수 있다. 이에, 본 발명에서는 용접부에 적정 수준의 압축 잔류응력이 부여되도록 한다. 이와 같이, 본 발명의 용접부재는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수하여 자동차용 부품 등으로의 적용시 제품의 내구수명과 조립성을 효과적으로 향상시킬 수 있다.
한편, 본 발명에서는 상기 모재의 합금조성에 대해서 특별히 한정하지 않는다. 다만, 일례로서, 상기 모재는 중량%로, C: 0.05~0.13%, Si: 0.2~2.0%, Mn: 1.3~3.0%, Cr: 0.01~2.0%, Mo: 0.01~2.0%, Al: 0.01~0.1%, P: 0.001~0.05%, S: 0.001~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 또한, 상기 모재는 추가로 Ti: 0.01~0.2% 및 Nb: 0.01~0.1% 중 1종 이상을 포함할 수 있다. 아울러, 상기 모재는 0.8~4.0mm의 두께를 가질 수 있다.
또한, 본 발명에서는 용접부재의 제조방법에 대하여 특별히 한정하지 않는다. 다만, 본 발명의 용접부재를 제조하기 위한 유리한 방법 중 하나를 아래와 같이 설명한다.
우선, 2매 이상의 모재를 준비한 뒤, 용접 와이어를 이용하여 가스 실드 아크 용접하여 용접부재를 제조함에 있어, 상기 용접 와이어는 전술한 합금조성과 식 1의 값을 만족하는 것이 바람직하다. 아울러, 모재 또한 전술한 합금조성을 가질 수 있다. 또한, 상기 가스 실드 아크 용접시, 하기 식 4의 값이 1.2~1.6이 되도록 하는 것이 바람직하다. 하기 식 4의 값이 1.2 미만인 경우에는 용접금속 및 조대화 결정립 열영향부(Coarse Grained Heat Affected Zone)의 경화능이 과도하게 증가하여 강도 및 인성이 부족해지는 단점이 있을 수 있고, 1.6을 초과하는 경우에는 용접금속 강도 부족 및 용접 열영향부의 강도 저하가 너무 과해질 뿐만 아니라 용접부에 백비드 및 용락이 발생하기 쉬워져 불량이 되어 버리는 단점이 있을 수 있다. 하기 식 4의 값의 하한은 1.24인 것이 보다 바람직하고, 1.26인 것이 보다 더 바람직하며, 1.28인 것이 가장 바람직하다. 하기 식 1의 값의 상한은 1.58인 것이 보다 바람직하고, 1.56인 것이 보다 더 바람직하며, 1.54인 것이 가장 바람직하다.
[식 4] Q/T
(단, 상기 [식 4]에서 T는 모재의 두께(mm) 및 Q는 용접입열량(kJ/cm)를 의미함.)
이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세하게 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지 않는다.
(실시예)
하기 표 1에 기재된 합금조성을 가지며, 하기 표 4에 기재된 두께를 갖는 인장강도: 980MPa의 강판을 2매 준비한 뒤, 하기 표 2에 기재된 합금조성을 갖는 솔리드 와이어를 이용하여 하기 표 4에 기재된 용접입열량을 부여하면서 가스 실드 아크 용접하여 하기 표 3에 기재된 합금조성을 갖는 용접부를 갖는 용접부재를 제조하였다. 이와 같이 제조된 용접부재에 대하여 용접부의 미세조직, 피로강도 및 잔류응력을 측정한 뒤, 그 결과를 하기 표 4 내지 6에 나타내었다.
미세조직은 용접부로부터 시편을 채취한 후, 단면조직을 미세 연마하여 나이탈(Nital) 용액으로 에칭한 뒤, 광학현미경으로 관찰하였다. 또한, EBSD(Electron Backscattered Diffraction)를 통해 Kikuchi 패턴을 분석하여 결정립계 및 결정립 방위 정보를 시각화한 IQ(Image Quality)와 IPF(Inverse Pole Figure) Map을 얻어 냈다. 이후, 상술한 광학현미경으로 관찰한 미세조직 사진과 함께 EBSD의 IQ 및 IPF Map을 참고하여 결정립을 구분한 뒤, 단위면적당 결정립 수로부터 환산된 결정립의 평균 크기를 산출하는 방법으로 평균 유효 결정립 크기를 측정하였다.
용접부 내 전체 결정립계 대비 결정립간 방위차 각도가 55˚ 이상인 고경각 결정립계의 비율은 상술한 EBSD 분석 방법을 통해 결정립을 이루는 일련의 격자 배열을 하나의 결정립으로 간주하고, 이 때 각 결정립계가 이루는 각도를 측정한 뒤, 이로부터 결정립간 방위차 각도의 전체 분포 중 55˚ 이상의 방위차 각도를 갖는 결정립계의 비율을 추출하는 방법으로 측정하였다.
피로강도는 용접부재의 용접부로부터 시편을 채취한 뒤, 피로시험을 실시하여 피로수명이 2 × 106 Cycles를 만족하는 최대 하중으로 정의하였다. 상기 피로시험은 각 하중에 대한 인장-인장 고주기 피로시험을 이용하여 피로수명(Cycles)을 측정하였으며, 이때, 최소 하중 및 최대 하중의 비는 0.1이고, 반복 하중 주파수는 15Hz로 하였고, 또한, 하중(kN)을 각각의 시편의 폭과 두께에 따른 면적으로 나눠 환산된 강도(MPa)에 해당하는 피로수명을 도출하였다. 이 때, 최소 하중은 상술한 일정 하중 인가 주파수를 갖는 반복 하중의 최소치를 의미하고, 최대 하중은 반복 하중의 최대치를 의미한다.
잔류응력은 용접비드의 끝단부로부터 모재와 수직한 방향으로 5mm 이내의 영역에 대해서 X선 회절 원리를 활용하여 결정립을 구성하는 격자간 거리 변화를 측정하여 부가되어 있는 응력 변화량을 측정하는 방법으로 계산하였다. 이때 X선은 Cr 튜브에서 전압 30kV과 전류 6.7mA의 출력으로 발생시켰다. 한편, 잔류응력의 값이 음(-)인 경우에는 압축 잔류응력, 양(+)인 경우에는 인장 잔류응력으로 판단하였다. 또한, 비드시작부는 용접이 시작되어 형성되는 용접비드, 비드종단부는 용접이 마무리되어 형성되는 용접비드, 비드중심부는 상기 비드시작부와 비드종단부의 중간에 위치하는 용접비드를 의미한다.
모재
No.
합금조성(중량%)
C Si Mn Cr Mo Al P S Ni Cu 잔부
1 0.070 1.100 2.10 0.90 0.01 0.025 0.009 0.001 0.02 0.02 Fe
2 0.090 0.900 2.00 0.20 0.20 0.025 0.009 0.001 0.01 0.02 Fe
와이어No. 합금조성(중량%)
C Si Mn Cr Mo Al P S Ni Cu 잔부 식 1
1 0.16 0.04 1.70 4.80 0.50 0.004 0.006 0.001 0.04 0.14 Fe 317
2 0.08 0.09 1.74 4.92 0.49 0.008 0.004 0.003 - 0.30 Fe 337
3 0.07 0.06 1.77 1.35 0.55 0.009 0.005 0.004 - 0.34 Fe 495
4 0.07 0.37 1.65 0.50 0.30 0.006 0.011 0.006 3.00 0.25 Fe 511
5 0.08 0.08 1.70 0.04 0.007 0.010 0.012 0.005 0.023 0.19 Fe 585
6 0.27 0.04 1.70 4.80 0.50 0.004 0.006 0.001 0.04 0.14 Fe 295
[식 1] 732 - 202×C + 216×Si - 85×Mn - 37×Ni - 47×Cr - 39×Mo
용접부재
No.
모재
No.
와이어
No.
합금조성(중량%)
C Si Mn Cr Mo Al P S Ni Cu 잔부
발명예1 1 1 0.10 0.56 1.87 2.60 0.22 0.013 0.008 0.0013 0.038 0.08 Fe
발명예2 1 2 0.08 0.51 1.82 2.43 0.21 0.017 0.011 0.0015 0.009 0.16 Fe
발명예3 2 2 0.08 0.62 1.90 1.30 0.24 0.014 0.013 0.0022 0.007 0.17 Fe
발명예4 2 3 0.08 0.59 1.90 0.50 0.26 0.011 0.011 0.0028 0.006 0.18 Fe
비교예1 2 4 0.08 0.63 1.80 0.32 0.21 0.008 0.015 0.0041 1.3 0.14 Fe
비교예2 2 5 0.08 0.52 1.80 0.13 0.06 0.010 0.013 0.0031 0.014 0.11 Fe
비교예3 1 6 0.17 0.56 1.87 2.60 0.22 0.013 0.008 0.0013 0.038 0.08 Fe
용접부재
No.
모재두께
(T)(mm)
입열량
(Q)(kJ/cm)
미세조직 전체 결정립계 대비 결정립간 방위차 각도가 55˚ 이상인 고경각 결정립계의 비율(K)(%) 평균 유효
결정립 크기
(G)(㎛)
R
발명예1 3.5 5.2 AF+B+M 40 3.3 18.1
발명예2 2.0 2.6 AF+B 53 6.2 11.2
발명예3 2.9 3.8 AF+B 50 5.6 11.6
발명예4 2.9 3.9 AF+PF+B 40 4.8 11.2
비교예1 2.9 3.7 AF+PF+B 39 4.8 10.3
비교예2 2.9 3.9 AF+PF 39 6.6 8.0
비교예3 2.0 3.4 B+M+RA 37 8.4 7.5
AF: 침상 페라이트, PF: 입상 페라이트, B: 베이나이트, M: 마르텐사이트,
RA: 잔류 오스테나이트
R = (K / G) × (Q / T)
Q = (I × E) × 0.048 / υ(I: 용접전류(A), E: 용접전압(V), υ: 용접속도(cm/min))
No. 최대
하중
(MPa)
최소
하중
(MPa)
피로수명(Cycles)
발명예1 발명예2 발명예3 발명예4 비교예1 비교예2 비교예3
1 240 24 98,430 118,790 102,638 미측정 미측정 미측정 미측정
2 220 22 123,528 155,943 137,269 72,109 미측정 미측정 미측정
3 200 20 213,637 241,957 226,372 131,479 미측정 미측정 미측정
4 180 18 357,832 473,419 382,836 169,252 107,392 84,738 147,392
5 170 17 824,365 2,000,000 2,000,000 231,985 162,498 126,647 212,637
6 160 16 2,000,000 2,000,000 2,000,000 294,719 217,603 158,603 276,423
7 140 14 2,000,000 2,000,000 2,000,000 2,000,000 327,626 252,512 537,246
8 120 12 2,000,000 2,000,000 2,000,000 2,000,000 694,714 361,843 2,000,000
9 110 11 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 853,274 2,000,000
10 100 10 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000
용접부재
No.
측정지점 잔류응력(MPa)
1.0mm 2.0mm 3.0mm 4.0mm 5.0mm
발명예1 비드시작부 -362.4 -309.4 -274.9 -270.5 -370.5
비드중심부 -254.7 -198.6 -247.6 -195.6 -284.3
비드종단부 -424.8 -362.9 -460.6 -522.3 -492.3
발명예2 비드시작부 -170.6 -231.0 -174.1 -207.4 -264.2
비드중심부 -147.9 -221.6 -141.9 -139.2 -102.3
비드종단부 -110.2 -147.0 -167.9 -130.3 -114.6
발명예3 비드시작부 -196.3 -280.7 -260.3 -363.5 -402.9
비드중심부 -389.1 -247.6 -359.4 -316.8 -295.7
비드종단부 -424.3 -409.2 -519.9 -506.5 -435.1
발명예4 비드시작부 -121.3 -178.6 -157.5 -159.0 -194.9
비드중심부 -93.0 -129.9 -182.4 -134.0 -103.4
비드종단부 -239.4 -215.2 -186.7 -181.8 -217.8
비교예1 비드시작부 285.1 144.6 194.3 218.2 153.2
비드중심부 184.2 122.8 170.4 129.8 100.6
비드종단부 218.2 228.1 229.2 202.9 196.4
비교예2 비드시작부 338.3 354.6 318.2 295.4 175.6
비드중심부 243.3 220.5 225.4 274.6 216.8
비드종단부 221.4 284.6 251.6 135.7 110.6
비교예3 비드시작부 -75.2 -87.6 -67.3 -56.7 -83.5
비드중심부 -56.7 -43.8 -62.9 -53.4 -73.6
비드종단부 -84.6 -72.4 -87.2 -86.3 -73.4
도 1은 발명예 1을 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이고, 도 2는 발명예 1의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 3은 발명예 2를 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이고, 도 4는 발명예 2의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 5는 발명예 3을 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이고, 도 6은 발명예 3의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 7은 발명예 4를 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이고, 도 8은 발명예 4의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 9는 비교예 1을 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이고, 도 10은 비교예 1의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
도 11은 비교예 2를 EBSD로 관찰한 IQ(Image Quality) 및 IPF(Inverse Pole Figure) 사진이고, 도 12는 비교예 2의 결정립간 방위차 각도에 따른 결정립계 비율에 대한 그래프이다.
상기 표 1 내지 6과 도 1 내지 12로부터 알 수 있듯이, 발명예 1 내지 4의 경우에는, 본 발명이 제안하는 조건을 만족함에 따라, 우수한 피로강도와 압축 잔류응력을 확보하고 있음을 알 수 있다. 반면, 비교예 1 내지 3의 경우에는 본 발명이 제안하는 조건을 만족하지 않음에 따라, 피로강도가 낮을 뿐만 아니라 인장 잔류응력이 존재하거나 낮은 수준의 압축강도를 가지고 있음을 알 수 있다.

Claims (14)

  1. 중량%로, C: 0.06~0.16%, Si: 0.001~0.2%, Mn: 1.6~1.9%, Cr: 1.2~6.0%, Mo: 0.4~0.65%, P: 0.015% 이하(0%는 제외), S: 0.01% 이하(0%는 제외), Al: 0.20% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    하기 식 1의 값이 300~500인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어.
    [식 1] 732 - 202×C + 216×Si - 85×Mn - 37×Ni - 47×Cr - 39×Mo
    (단, 상기 [식 1]에서 각 원소의 함량은 중량%임.)
  2. 청구항 1에 있어서,
    상기 와이어는 추가로 Ni: 0.40% 이하 및 Cu: 0.50% 이하 중 1종 이상을 포함하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어.
  3. 청구항 1에 있어서,
    상기 와이어는 솔리드 와이어, 메탈 코어드 및 플럭스 코어드 와이어 중 하나인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어.
  4. 모재 및 용접부를 포함하는 용접부재로서,
    상기 용접부는,
    중량%로, C: 0.05~0.16%, Si: 0.001~1.0%, Mn: 1.4~2.5%, Cr: 0.4~5.0%, Mo: 0.1~1.5%, P: 0.015% 이하(0%는 제외), S: 0.01% 이하(0%는 제외), Al: 0.20% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    베이나이트; 침상 페라이트;와 입상 페라이트, 마르텐사이트 및 잔류 오스테나이트 중 하나 이상;을 포함하는 미세조직을 가지며,
    상기 미세조직은 평균 유효 결정립 크기가 10㎛ 이하이고, 전체 결정립계 대비 결정립간 방위차 각도(misorientation angle)가 55˚ 이상인 고경각 결정립계의 비율이 40% 이상이며,
    하기 식 2로 표현되는 R의 값이 10.5~18.5인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
    [식 2] R = (K / G) × (Q / T)
    (단, 상기 [식 2]에서 K는 용접부 내 전체 결정립계 대비 결정립간 방위차 각도가 55˚ 이상인 결정립계의 비율(%), G는 용접부의 평균 유효 결정립 크기(㎛), T는 모재의 두께(mm) 및 Q는 용접입열량(kJ/cm)를 의미하며, 상기 Q는 하기 [식 3]으로 정의됨.)
    [식 3] Q = (I × E) × 0.048 / υ
    (단, 상기 [식 3]에서 I는 용접전류(A), E는 용접전압(V) 및 υ는 용접속도(cm/min)를 의미함.)
  5. 청구항 4에 있어서,
    상기 용접부는 추가로 Ni: 0.40% 이하 및 Cu: 0.50% 이하 중 1종 이상을 포함하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
  6. 청구항 4에 있어서,
    상기 용접부는 피로강도가 140MPa 이상인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
  7. 청구항 4에 있어서,
    상기 용접부는 용접비드의 끝단부로부터 모재와 수직한 방향으로 5mm 이내의 영역의 압축 잔류응력이 90MPa 이상인 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
  8. 청구항 4에 있어서,
    상기 모재는 중량%로, C: 0.05~0.13%, Si: 0.2~2.0%, Mn: 1.3~3.0%, Cr: 0.01~2.0%, Mo: 0.01~2.0%, Al: 0.01~0.1%, P: 0.001~0.05%, S: 0.001~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
  9. 청구항 8에 있어서,
    상기 모재는 추가로 Ti: 0.01~0.2% 및 Nb: 0.01~0.1% 중 1종 이상을 포함하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
  10. 청구항 4에 있어서,
    상기 모재는 0.8~4.0mm의 두께를 갖는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재.
  11. 2매 이상의 모재를 준비한 뒤, 용접 와이어를 이용하여 가스 실드 아크 용접하는 용접부재의 제조방법으로서,
    상기 용접 와이어는 중량%로, C: 0.06~0.16%, Si: 0.001~0.2%, Mn: 1.6~1.9%, Cr: 1.2~6.0%, Mo: 0.4~0.65%, P: 0.015% 이하(0%는 제외), S: 0.01% 이하(0%는 제외), Al: 0.20% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1의 값이 300~500이고,
    상기 가스 실드 아크 용접시, 하기 식 4의 값이 1.2~1.6이 되도록 하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재의 제조방법.
    [식 1] 732 - 202×C + 216×Si - 85×Mn - 37×Ni - 47×Cr - 39×Mo
    (단, 상기 [식 1]에서 각 원소의 함량은 중량%임.)
    [식 4] Q/T
    (단, 상기 [식 4]에서 T는 모재의 두께(mm) 및 Q는 용접입열량(kJ/cm)를 의미하고, 상기 Q는 하기 [식 3]으로 정의됨.)
    [식 3] Q = (I × E) × 0.048 / υ
    (단, 상기 [식 3]에서 I는 용접전류(A), E는 용접전압(V) 및 υ는 용접속도(cm/min)를 의미함.)
  12. 청구항 11에 있어서,
    상기 모재는 중량%로, C: 0.05~0.13%, Si: 0.2~2.0%, Mn: 1.3~3.0%, Cr: 0.01~2.0%, Mo: 0.01~2.0%, Al: 0.01~0.1%, P: 0.001~0.05%, S: 0.001~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재의 제조방법.
  13. 청구항 12에 있어서,
    상기 모재는 추가로 Ti: 0.01~0.2% 및 Nb: 0.01~0.1% 중 1종 이상을 포함하는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재의 제조방법.
  14. 청구항 11에 있어서,
    상기 모재는 0.8~4.0mm의 두께를 갖는 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 용접부재의 제조방법.
PCT/KR2021/019365 2021-09-16 2021-12-20 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법 WO2023042974A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180073600.9A CN116829297A (zh) 2021-09-16 2021-12-20 具有优异的焊缝区的疲劳抗力特性和对残余应力引起的变形的抗力的气体保护电弧焊用焊丝和焊接构件及其制造方法
JP2022543498A JP2023545225A (ja) 2021-09-16 2021-12-20 疲労抵抗特性及び溶接部の残留応力による変形に対する抵抗性に優れたガスシールドアーク溶接用ワイヤと溶接部材、並びにその製造方法
US18/031,821 US20230390873A1 (en) 2021-09-16 2021-12-20 Gas-shielded arc welding wire and welding member having excellent fatigue resistance characteristics and resistance to deformation due to residual stress in weld zone, and method for manufacturing same
MX2023004766A MX2023004766A (es) 2021-09-16 2021-12-20 Alambre y miembro de soldadura para soldar por arco protegido con gas que tienen excelentes caracteristicas de resistencia a la fatiga y resistencia contra la deformacion debido al esfuerzo residual de la zona de soldadura, y metodo de fabricacion para los mismos.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0123734 2021-09-16
KR1020210123734A KR20230040512A (ko) 2021-09-16 2021-09-16 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023042974A1 true WO2023042974A1 (ko) 2023-03-23

Family

ID=85603026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019365 WO2023042974A1 (ko) 2021-09-16 2021-12-20 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법

Country Status (6)

Country Link
US (1) US20230390873A1 (ko)
JP (1) JP2023545225A (ko)
KR (1) KR20230040512A (ko)
CN (1) CN116829297A (ko)
MX (1) MX2023004766A (ko)
WO (1) WO2023042974A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108281A (ja) * 1994-10-05 1996-04-30 Japan Steel & Tube Constr Co Ltd ガスシールドアーク溶接法によるレールの溶接方法
JP2006110581A (ja) * 2004-10-13 2006-04-27 Nippon Steel Corp 高強度高靭性ガスシールドアーク溶接用ワイヤ。
JP2013220431A (ja) 2012-04-13 2013-10-28 Kobe Steel Ltd 疲労強度に優れた溶接継手、熱延鋼板のmag溶接方法、熱延鋼板のmig溶接方法およびフラックス入りワイヤ
JP2014004609A (ja) 2012-06-25 2014-01-16 Jfe Steel Corp 溶接継手およびその形成方法
JP2014014831A (ja) 2012-07-09 2014-01-30 Jfe Steel Corp 溶接部の疲労強度向上方法および溶接継手
KR20170068531A (ko) * 2014-11-19 2017-06-19 신닛테츠스미킨 카부시키카이샤 레이저 용접 조인트, 자동차 부품, 레이저 용접 조인트의 제조 방법, 및 자동차 부품의 제조 방법
WO2021125280A1 (ja) * 2019-12-20 2021-06-24 Jfeスチール株式会社 ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108281A (ja) * 1994-10-05 1996-04-30 Japan Steel & Tube Constr Co Ltd ガスシールドアーク溶接法によるレールの溶接方法
JP2006110581A (ja) * 2004-10-13 2006-04-27 Nippon Steel Corp 高強度高靭性ガスシールドアーク溶接用ワイヤ。
JP2013220431A (ja) 2012-04-13 2013-10-28 Kobe Steel Ltd 疲労強度に優れた溶接継手、熱延鋼板のmag溶接方法、熱延鋼板のmig溶接方法およびフラックス入りワイヤ
JP2014004609A (ja) 2012-06-25 2014-01-16 Jfe Steel Corp 溶接継手およびその形成方法
JP2014014831A (ja) 2012-07-09 2014-01-30 Jfe Steel Corp 溶接部の疲労強度向上方法および溶接継手
KR20170068531A (ko) * 2014-11-19 2017-06-19 신닛테츠스미킨 카부시키카이샤 레이저 용접 조인트, 자동차 부품, 레이저 용접 조인트의 제조 방법, 및 자동차 부품의 제조 방법
WO2021125280A1 (ja) * 2019-12-20 2021-06-24 Jfeスチール株式会社 ガスシールドアーク溶接用鋼ワイヤ、ガスシールドアーク溶接方法、およびガスシールドアーク溶接継手の製造方法

Also Published As

Publication number Publication date
KR20230040512A (ko) 2023-03-23
MX2023004766A (es) 2023-05-09
US20230390873A1 (en) 2023-12-07
JP2023545225A (ja) 2023-10-27
CN116829297A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2015099373A1 (ko) 용접열영향부 인성이 우수한 초고강도 용접구조용 강재 및 이의 제조방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2016104879A1 (ko) 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
WO2015023012A1 (ko) 초고강도 강판 및 그 제조방법
WO2017111526A1 (ko) 응력부식균열 저항성 및 저온인성이 우수한 저항복비 고강도 강재
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2020111874A2 (ko) 용접열영향부 인성이 우수한 강재 및 이의 제조방법
WO2018117766A1 (ko) 저온에서의 파괴 개시 및 전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2018004297A1 (ko) 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법
WO2020111702A1 (ko) 내구성이 우수한 고강도 강재 및 이의 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2021054672A1 (ko) 저온 충격인성이 우수한 고강도 극후물 강재 및 이의 제조방법
WO2018117507A1 (ko) 저온인성이 우수한 저항복비 강판 및 그 제조방법
WO2017111322A1 (ko) 연성이 우수한 초고강도 열연강판 및 그 제조방법
WO2019124809A1 (ko) 취성균열 전파 저항성이 우수한 구조용 강재 및 그 제조방법
WO2018117466A1 (ko) 용접성이 우수한 전봉강관용 열연강판 및 이의 제조방법
WO2023042974A1 (ko) 피로저항특성 및 용접부의 잔류응력으로 인한 변형에 대한 저항성이 우수한 가스 실드 아크 용접용 와이어와 용접부재 및 그 제조방법
WO2020130436A2 (ko) 냉간 벤딩성이 우수한 고강도 구조용 강재 및 그 제조방법
WO2018117539A1 (ko) 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법
WO2022139370A1 (ko) 내균열성이 우수한 용접 구조 부재 및 이의 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2017086745A1 (ko) 전단가공성이 우수한 고강도 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022543498

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18031821

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180073600.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021957640

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957640

Country of ref document: EP

Effective date: 20240416