WO2023042791A1 - Lane estimation device and lane estimation method - Google Patents

Lane estimation device and lane estimation method Download PDF

Info

Publication number
WO2023042791A1
WO2023042791A1 PCT/JP2022/034053 JP2022034053W WO2023042791A1 WO 2023042791 A1 WO2023042791 A1 WO 2023042791A1 JP 2022034053 W JP2022034053 W JP 2022034053W WO 2023042791 A1 WO2023042791 A1 WO 2023042791A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
lane
vehicle
vehicle speed
driving
Prior art date
Application number
PCT/JP2022/034053
Other languages
French (fr)
Japanese (ja)
Inventor
寛之 鬼丸
武雄 徳永
篤樹 柿沼
康夫 大石
明 飯星
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2023548457A priority Critical patent/JPWO2023042791A1/ja
Publication of WO2023042791A1 publication Critical patent/WO2023042791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map

Definitions

  • the present invention relates to a lane estimation device and lane estimation method for estimating lanes when a vehicle is traveling.
  • this type of device compares the road surface profile of each of a plurality of lanes registered in advance with the road surface profile measured while the vehicle is running, and calculates the similarity of the road surface profile for each of the plurality of lanes,
  • a device is known that estimates a lane with a high degree of similarity as a lane during vehicle travel (see, for example, Patent Document 1).
  • a lane estimation device which is one aspect of the present invention, includes a position information acquisition unit that acquires position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and measures the position of a vehicle; vehicle speed information of the vehicle; and information on the detection value of the detector that changes according to the road surface profile of the road surface on which the vehicle travels; Acquired by a reference information acquisition unit that acquires vehicle speed reference information that serves as a reference for change, a road map information acquisition unit that acquires road map information including driving lane information and road surface profile information, and a travel information acquisition unit.
  • a driving lane identifying unit Based on the traveling information obtained by the vehicle speed reference information obtained by the reference information obtaining unit and the road map information obtained by the road map information obtaining unit, and a driving lane identifying unit that identifies a driving lane corresponding to the position of the vehicle determined by the position information.
  • a lane estimation method comprising the steps of acquiring position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and measures the position of a vehicle; a step of obtaining vehicle travel information including information on the detected value of the detector that changes according to the road surface profile of the road surface on which the vehicle travels; obtaining vehicle speed reference information; obtaining road map information including road driving lane information and road surface profile information; Among them, the step of specifying the driving lane corresponding to the position of the vehicle determined by the position information is executed by the computer.
  • FIG. 1 is a diagram showing the overall configuration of a lane estimation system including a lane estimation device according to an embodiment of the present invention
  • FIG. FIG. 3 is a diagram showing an example of a road surface profile obtained by the server device of FIG. 2;
  • 1 is a block diagram showing the functional configuration of a lane estimation device according to an embodiment of the present invention
  • FIG. FIG. 6 is a flowchart showing an example of processing executed by the controller in FIG. 5;
  • FIG. A lane estimation device is configured to estimate a lane in which a vehicle is traveling on a road having a plurality of driving lanes (sometimes simply referred to as lanes).
  • driving lanes sometimes simply referred to as lanes.
  • creation of a road surface profile showing unevenness of the road surface, estimation of the position where a disabled vehicle is parked, and estimation of a wrong-way vehicle, etc., when the driving lane is estimated. can be done.
  • FIG. 1 is a diagram schematically showing an example of a road to which a lane estimation device according to an embodiment of the invention is applied.
  • FIG. 1 shows a road group RD including an elevated expressway RD1 installed on a pier P and a general road RD2 provided on the ground along the pier P.
  • the road group RD is provided in an area of tall buildings BL.
  • the road group RD includes a plurality of traveling lanes extending parallel to each other, for example, lanes LN1 and LN2 on the highway RD1 and a lane LN3 on the ordinary road RD2.
  • extending parallel to each other is not parallel in a strict sense, but refers to the case where each extends in the same direction or substantially the same direction (substantially parallel case), roads etc. with different heights, Including cases where there are overlapping parts.
  • the vehicle 1 it is estimated which of the plurality of driving lanes LN1 to LN3 shown in FIG. 1, that is, the plurality of lanes LN1 to LN3 that are adjacent to each other in plan view, the vehicle 1 is traveling.
  • a vehicle (object vehicle) 1a whose driving lane is to be estimated is traveling in lane LN3
  • a vehicle 1b other than the object vehicle 1a is traveling in lanes LN1 and LN2 in the directions of the arrows.
  • positioning satellites such as GPS (Global Positioning System)
  • GPS Global Positioning System
  • a positioning sensor such as a GPS receiver (GPS sensor) mounted on the vehicle. and compare the measured vehicle position with the lane position included in the map information. That is, if the positioning accuracy in measuring the position of the vehicle using the positioning sensor is such that the position of the lane can be specified, the position of the lane can be estimated using the positioning sensor.
  • the lane estimation device is configured as follows.
  • FIG. 2 is a diagram showing the overall configuration of the lane estimation system including the lane estimation device according to the embodiment of the present invention.
  • the lane estimation system has an in-vehicle device 100 mounted on a vehicle 1 and a server device 3 capable of communicating with the in-vehicle device 100 via a network 200 .
  • the vehicle 1 is, for example, a manually operated vehicle manually operated by a driver.
  • the in-vehicle device 100 has a positioning sensor 10 that receives positioning signals transmitted from the positioning satellites 2 and a communication unit 11 that communicates with the server device 3 via the network 200 .
  • the positioning satellites 2 are artificial satellites such as GPS satellites and quasi-zenith satellites. Using the positioning information from the positioning satellites 2 received by the positioning sensor 10, the current position (latitude, longitude, altitude) of the vehicle 1 is calculated. can do.
  • the network 200 includes not only public wireless communication networks such as the Internet and mobile phone networks, but also closed communication networks provided for each predetermined management area, such as wireless LAN, Wi-Fi (registered trademark), etc. , Bluetooth (registered trademark), and the like.
  • the server device 3 is configured, for example, as a single server or as a distributed server composed of separate servers for each function.
  • the server device 3 can also be configured as a distributed virtual server created in a cloud environment called a cloud server.
  • the server device 3 includes an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits.
  • the server device 3 has a communication unit 31, a storage unit 32, a road profile generation unit 33, and a vehicle speed change model generation unit 34 as functional configurations.
  • the communication unit 31 is configured to be able to wirelessly communicate with the in-vehicle device 100 via the network 200, and acquires the position information of the vehicle 1 and the travel information of the vehicle 1 via the communication unit 11 of the vehicle 1 respectively.
  • the position information is information indicating the current position of the vehicle 1 calculated from the signal received by the positioning sensor 10 of the vehicle 1 .
  • the traveling information is information indicating the traveling state of the vehicle 1 acquired by various sensors mounted on the vehicle 1 .
  • the travel information includes vehicle speed information of the vehicle 1 and information of values detected by an acceleration sensor (lateral acceleration sensor) that detects acceleration (lateral acceleration) of the vehicle 1 in the left-right direction.
  • the communication unit 31 constantly acquires position information and travel information not only for the target vehicle 1a (FIG. 1) whose driving lane is to be estimated, but also for a plurality of vehicles 1b (FIG. 1) other than the target vehicle 1a.
  • the storage unit 32 stores road map information.
  • Road map information includes road location information, road shape information (curvature, etc.), road gradient information, intersection and branch point location information, number of lanes, lane width, and location information for each lane.
  • the positional information for each lane is information such as the central position of the lane and the boundary of the lane position.
  • the road surface profile generation unit 33 generates a road surface profile indicating road surface properties based on the position information and travel information of a plurality of vehicles 1b other than the target vehicle 1a acquired via the communication unit 31.
  • FIG. 3 is a diagram showing an example of a road surface profile.
  • the horizontal axis in the figure is the position in the traveling direction of the vehicle 1 along the driving lane, that is, the distance, and the vertical axis is the amount of unevenness (depth or height) of the road surface, that is, the road surface roughness.
  • the lateral acceleration of the vehicle 1 increases as the amount of unevenness of the road surface increases. Therefore, road surface properties and lateral acceleration have a predetermined correlation. This predetermined correlation is stored in the storage unit 32 in advance.
  • the road surface profile generator 33 calculates the amount of unevenness of the road surface corresponding to the vehicle position on the road from the lateral acceleration, and generates the road surface profile in the traveling direction of the vehicle 1 as shown in FIG. Generate. Information of the road surface profile at each position of the generated road is stored in the storage unit 32 as part of the road map information.
  • the road profile detected by the lateral acceleration sensor of each vehicle 1 may differ due to the different positions of the tires on the road surface.
  • the road surface profile generator 33 averages the road surface profiles detected by the lateral acceleration sensors of the vehicles 1, for example, to generate a representative road surface profile of each road surface.
  • the road surface profile generation unit 33 can also generate a road surface profile from data obtained by running a dedicated vehicle for measuring road surface properties. For example, it is possible to generate a road profile without using a lateral acceleration sensor by running a dedicated vehicle equipped with a laser profiler and acquiring the measurement data at that time together with the position data of the dedicated vehicle.
  • the road surface profile information is updated each time the road surface profile generation unit 33 generates a road surface profile.
  • Other road map information is updated at predetermined intervals or at arbitrary timing.
  • the road surface profile (reference road surface profile) of each of the lanes LN1 to LN3 at the driving position of the vehicle 1 is already stored in the storage unit 32. .
  • the vehicle speed change model generation unit 34 calculates changes in vehicle speed of the vehicle 1 traveling in each of the lanes LN1 to LN3. Generate a reference vehicle speed change model.
  • Vehicle data is unique data of each vehicle 1 including position information and vehicle speed information of the vehicle 1 .
  • the position information includes the number of satellites captured by the positioning sensor 10 , signal strength received by the positioning sensor 10 , and positioning accuracy information by the positioning sensor 10 .
  • the positioning accuracy information is, for example, information on a rate of accuracy decrease DOP (Dilution of Precision).
  • the vehicle speed change model generation unit 34 can construct a vehicle speed change model by machine learning using vehicle data for each lane obtained via the communication unit 31 .
  • a vehicle speed change model may be constructed by adding road surface profile information for each lane to vehicle data for each lane.
  • FIG. 4A and 4B are diagrams showing examples of vehicle speed change models generated by the vehicle speed change model generation unit 34, respectively.
  • FIG. 4A is a vehicle speed change model during non-traffic traffic (during smooth running)
  • FIG. 4B is a vehicle speed change model during traffic jam.
  • 4A and 4B show a vehicle speed change model that serves as a reference for the vehicle speed of the vehicle 1 traveling in each lane, with characteristics in which the position of the vehicle 1 in the traveling direction (road) is plotted on the horizontal axis and the vehicle speed is plotted on the vertical axis.
  • Characteristics f1 and f3 in the figure are vehicle speed change models of expressway RD1 (lane LN1 or LN2), and characteristics f2 and f4 are vehicle speed change models of general road RD2 (lane LN3). These characteristics are obtained by machine learning using a large number of vehicle data for each lane, and correspond to characteristics obtained by averaging the vehicle data.
  • a vehicle speed change model may be obtained by statistically processing vehicle data.
  • the vehicle speed on expressways is faster than the vehicle speed on general roads.
  • the change in vehicle speed on expressways is smaller than the change in vehicle speed on general roads.
  • the position S represents the position of the intersection on the general road. Vehicles stop frequently at intersections, so the vehicle speed is lower than at other intersections.
  • the vehicle speed change model (characteristics f1, f3) on expressways is significantly different from the vehicle speed change model (characteristics f2, f4) on general roads.
  • the vehicle speed change model generated by the vehicle speed change model generation unit 34 is stored in the storage unit 32 .
  • This vehicle speed change model is updated each time a vehicle speed change model is generated by the vehicle speed change model generator 34 .
  • the vehicle speed change models of the lanes LN1 to LN3 at the driving position of the vehicle 1 are already stored in the storage unit 32.
  • FIG. 5 is a block diagram showing the functional configuration of the lane estimation device 101 according to this embodiment.
  • the lane estimation device 101 constitutes a part of the in-vehicle device 100 in FIG. 2 .
  • lane estimation device 101 includes positioning sensor 10 , communication unit 11 , sensor group 13 , switch group 14 , and controller 20 .
  • the positioning sensor 10, the communication unit 11, the sensor group 13, and the switch group 14 are each connected to the controller 20 so as to be communicable.
  • the sensor group 13 is a general term for a plurality of sensors that detect the running state of the vehicle 1.
  • the sensor group 13 includes a lateral acceleration sensor 131 that detects lateral acceleration of the vehicle 1, a vehicle speed sensor 132 that detects vehicle speed, and a steering angle sensor 133 that detects the steering angle of the steering wheel.
  • the switch group 14 is a general term for a plurality of switches that detect the running state of the vehicle 1 .
  • the switch group 14 includes a winker switch 141 that detects the driver's operation of the direction indicator.
  • the direction indicator is a device for indicating the direction to the surroundings when the vehicle 1 turns left or right or changes course, and is composed of a turn signal lever or the like.
  • the controller 20 is an electronic control unit including a computer having an arithmetic unit such as a CPU, a storage unit such as ROM and RAM, and other peripheral circuits.
  • the calculation unit of the controller 20 has an information acquisition unit 21 and a driving lane identification unit 25 as functional configurations.
  • the information acquisition section 21 has a position information acquisition section 211 , a travel information acquisition section 212 , a reference information acquisition section 213 and a road map information acquisition section 214 .
  • the storage unit of the controller 20 stores a predetermined correlation between the road surface properties and the lateral acceleration used when the road surface profile is generated, and threshold values for various determinations. etc. are stored.
  • the position information acquisition unit 211 acquires current position information of the vehicle 1 detected by the positioning sensor 10 .
  • the travel information acquisition unit 212 acquires travel information of the vehicle 1 including various detection values detected by the sensor group 13 and the switch group 14 .
  • the reference information acquisition unit 213 acquires a vehicle speed change model indicating reference information on vehicle speed from the server device 3 via the communication unit 11 . More specifically, the reference information acquiring unit 213 obtains a vehicle speed change model (Fig. 4A, FIG. 4B).
  • the road map information acquisition unit 214 acquires road map information from the server device 3 via the communication unit 11 .
  • the road map information acquisition unit 214 obtains road information including road lane information (driving lane information) at the current position of the vehicle 1 detected by the positioning sensor 10, and road surface profile information of each of the lanes LN1 to LN3. Get map information.
  • the driving lane identification unit 25 uses the driving information of the vehicle 1 obtained by the driving information obtaining unit 212, the vehicle speed change model obtained by the reference information obtaining unit 213, and the vehicle 1 information obtained by the road map information obtaining unit 214.
  • the driving lane corresponding to the current position of the vehicle 1 acquired by the position information acquisition unit 211 is specified among the plurality of driving lanes LN1 to LN3 based on the road map information of the road on which the vehicle is traveling.
  • the driving lane is identified based on the detected value of the lateral acceleration sensor 131 and road profile information included in the road map information. More specifically, the amount of unevenness of the road surface is calculated from the lateral acceleration detected by the lateral acceleration sensor 131 using the pre-stored correlation between the road surface properties and the lateral acceleration. When the vehicle 1 is undergoing a turn or the like and lateral acceleration is generated in the vehicle 1 , the amount of unevenness of the road surface is calculated from the detection value of the lateral acceleration sensor 131 by correcting the acceleration.
  • a road surface profile representing a change in the amount of unevenness of the road surface along the traveling direction of the vehicle 1, that is, a measured road surface profile that is a measured value of the road surface profile, and a road surface profile for each lane included in the road map information, that is, a reference road surface profile, and the degree of matching between the actually measured road surface profile and the reference road surface profile for each lane is calculated. Then, it is determined whether or not the degree of matching is equal to or greater than a predetermined value, and if there is a reference road surface profile determined to be equal to or greater than the predetermined value, the lane having the reference road surface profile is designated as the current driving lane. Identify.
  • the driving lane identification unit 25 calculates the degree of matching of the road surface profile over a predetermined distance, averages the degrees of matching within the predetermined distance, and determines whether the degree of matching is equal to or greater than a predetermined value.
  • the degree of matching can be calculated using a correlation coefficient or the like. The degree of matching is sometimes called the degree of similarity.
  • the driving lane specifying unit 25 determines the driving lane based on the detected value (detected vehicle speed) of the vehicle speed sensor 132 and the vehicle speed change model. Identify. Specifically, first, it is determined whether or not the road on which the vehicle 1 is traveling is congested based on the degree of change in the vehicle speed detection value. If it is determined that the vehicle is not congested, the degree of matching between the vehicle speed detection value and the vehicle speed change model for each lane (FIG. 4A) is calculated.
  • the degree of matching is equal to or greater than a predetermined value, and if there is a vehicle speed change model determined to be equal to or greater than the predetermined value, the lane corresponding to the vehicle speed change model is specified as the current driving lane. do.
  • the degree of matching between the vehicle speed detection value and the vehicle speed change model for each lane is calculated.
  • the lane corresponding to the vehicle speed change model is identified as the current driving lane.
  • the driving lane identification unit 25 may calculate the degree of matching over a predetermined distance, average the degrees of matching within the predetermined distance, and determine whether the degree of matching is equal to or greater than a predetermined value.
  • the degree of matching can be calculated using a correlation coefficient or the like. The degree of matching is sometimes called the degree of similarity.
  • the driving lane identification unit 25 estimates the driving lane based on the position information of the vehicle 1 obtained by the positioning sensor 10, and then compares the measured road surface profile with the reference road surface profile. Alternatively, the vehicle speed detection value and the vehicle speed change model may be compared to determine whether or not the estimation of the driving lane based on the position information is correct, thereby identifying the driving lane.
  • the weighting of the estimation result based on the detection value of the positioning sensor 10 may be changed according to the positioning accuracy (for example, the DOP value). good.
  • the lane estimation based on the detection value of the positioning sensor 10 is weighted more than the lane estimation based on the matching degree of the road surface profile and the lane estimation based on the vehicle speed matching degree.
  • the driving lane identification unit 25 determines whether or not there is a lane change based on the signal from the turn signal switch 141 when the matching degree of the road surface profile is not equal to or greater than a predetermined value and the matching degree of the vehicle speed is not equal to or greater than a predetermined value. That is, since the direction indicator is generally operated when changing lanes, the lane change of the vehicle 1 to the left or right is determined based on the signal from the winker switch 141 . For example, when the vehicle 1 is traveling in the center (second lane) of three lanes on one side (first, second, and third lanes), the turn signal switch 141 causes the vehicle 1 to change lanes to the right and left lanes.
  • the operation of the direction indicator when turning is detected by, for example, separate switches. As a result, based on the signal from the turn signal switch 141, it can be easily determined to which lane the vehicle 1 has changed lanes, left or right.
  • the driving lane identification unit can also determine whether or not there is a lane change based on the signal from the steering angle sensor 133. That is, since the steering wheel is operated when changing lanes, it is possible to determine whether or not there is a lane change by determining whether or not the detection value of steering angle sensor 133 is equal to or greater than a predetermined value.
  • the direction indicator is not always operated when changing lanes, or the direction indicator may be erroneously operated. Therefore, by using the detection value of the steering angle sensor 133, it is possible to determine whether or not there is a lane change with higher accuracy than when using the turn signal switch 141.
  • FIG. 6 is a flowchart showing an example of processing executed by the controller 20 (CPU) according to a predetermined program.
  • the processing shown in this flowchart is executed when the vehicle 1 is traveling in any one of a plurality of traveling lanes extending substantially parallel to each other. That is, it is executed when it is necessary to estimate the driving lane, and is repeated at a predetermined cycle.
  • step S1 current position information of the vehicle 1 detected by the positioning sensor 10, travel information of the vehicle 1 based on signals from the sensor group 13 and the switch group 14, and travel information obtained via the communication unit 11.
  • the road map information of the middle road and the vehicle speed change model of the road on which the vehicle is running obtained through the communication unit 11 are acquired.
  • step S2 an actually measured road surface profile is obtained based on the detected value of the lateral acceleration sensor 131, and the matching degree between the actually measured road surface profile and the reference road surface profile for each lane included in the road map information (road surface profile matching degree).
  • step S3 it is determined whether or not there is a reference road surface profile whose matching degree with the measured road surface profile is equal to or greater than a predetermined value, that is, whether or not there is a lane whose road surface profile matching degree is equal to or greater than a predetermined value. . If the result in step S3 is affirmative, the process proceeds to step S4, and if the result is negative, the process proceeds to step S5.
  • step S4 the lane having the reference road surface profile whose degree of matching is equal to or greater than a predetermined value is estimated as the driving lane on which the vehicle 1 is traveling, and the process ends.
  • the estimated driving lane is temporarily stored in the storage unit of controller 20 .
  • step S5 the degree of matching (vehicle speed matching) between the detected value of the vehicle speed sensor 132 and the vehicle speed change model for each lane is calculated.
  • step S6 it is determined whether or not there is a vehicle speed change model whose degree of coincidence with the vehicle speed detection value is greater than or equal to a predetermined value, that is, whether or not there is a lane whose degree of vehicle speed coincidence is greater than or equal to a predetermined value. If the result in step S6 is affirmative, the process proceeds to step S7, and if the result is negative, the process proceeds to step S8.
  • step S7 the lane corresponding to the vehicle speed change model whose degree of matching is equal to or greater than a predetermined value is estimated as the driving lane in which the vehicle 1 is traveling, and the process ends.
  • the estimated driving lane is temporarily stored in the storage unit of controller 20 .
  • step S8 based on the signal from the blinker switch 141, it is determined whether or not the direction indicator has been operated. If the result in step S8 is affirmative, the process proceeds to step S9, and if the result is negative, the process proceeds to step S10. In this case, in step S9, the lane of travel is estimated based on the signal from the winker switch 141 assuming that there is a lane change from the lane estimated in step S4 or step S7, and the process ends. In step S10, based on the signal from the steering angle sensor 133, it is determined whether or not the steering wheel has been operated by a predetermined amount or more.
  • step S10 the process proceeds to step S9, and if the result is negative, the process proceeds to step S11.
  • step S9 the lane is estimated based on the signal from the steering angle sensor 133 assuming that there is a lane change from the lane estimated in step S4 or step S7, and the process ends.
  • step S11 the driving lane is estimated assuming that there is no lane change from the lane estimated in step S4 or step S7, and the process ends.
  • an algorithm such as a support vector machine is used to divide the vehicle speed change model into two groups, such as expressways and general roads. You may make it classify
  • a model such as RNN (Recurrent Neural Network) or LSTM (Long Short-term Memory) may be used to estimate the lane from the vehicle speed detection value.
  • RNN Recurrent Neural Network
  • LSTM Long Short-term Memory
  • the road surface profile matching degree determination processing is performed before the vehicle speed matching degree determination processing.
  • the vehicle speed matching degree determination process may be performed with priority over the road surface profile matching degree determination process.
  • the vehicle speed matching degree may be weighted more than the road surface profile matching degree to estimate the driving lane.
  • the operation of the lane estimation device 101 can be summarized as follows. As shown in FIG. 1, attention is paid to a target vehicle 1a in an area surrounded by a group of buildings and having a plurality of lanes LN1 to LN3 extending parallel to each other. Since the target vehicle 1a is traveling on the general road RD2, the vehicle speed is lower than that of the vehicle 1b traveling on the highway RD1. Therefore, when the vehicle speed of the target vehicle 1a (vehicle speed detection value) detected by the vehicle speed sensor 132 is compared with the vehicle speed change model of each lane LN1 to LN3 acquired from the server device 3, the vehicle speed detection value and the vehicle speed of the lane LN3 are compared. Highest agreement with the change model. Accordingly, it can be estimated that the target vehicle 1a is traveling on the travel lane LN3 (step S7).
  • the driving lane By estimating the driving lane based on the vehicle speed detection value in this way, it is possible to accurately estimate the driving lane even in situations where positioning accuracy is degraded due to being surrounded by buildings, etc. Furthermore, in this embodiment, if the degree of matching between the measured road surface profile based on the signal from the lateral acceleration sensor 131 and the reference road surface profile obtained from the server device 3 is equal to or greater than a predetermined value, the lane having the reference road surface profile ( For example, lane LN3) is estimated as the driving lane (step S4). Therefore, even if the degree of matching between the vehicle speed detection value and the vehicle speed change model is less than the predetermined value, the driving lane can be accurately estimated based on the degree of matching of the road surface profile.
  • a predetermined value For example, lane LN3
  • the direction indicator and the steering wheel are operated when changing lanes. be.
  • the target vehicle 1b has changed lanes (step S9).
  • the lane change If it is determined that the vehicle is present, it can be estimated that the vehicle is traveling on the lane LN2.
  • the lane estimation device 101 is a position information acquisition unit that acquires position information of the current position of the vehicle 1 obtained by the positioning sensor 10 that receives signals transmitted from the positioning satellites 2 and measures the position of the vehicle 1.
  • a driving information acquisition unit 212 for acquiring driving information of the vehicle 1 including vehicle speed information of the vehicle 1 and information of the detection value of the lateral acceleration sensor 131 that changes according to the road profile of the road surface on which the vehicle 1 is traveling;
  • a reference information acquisition unit 213 that acquires a vehicle speed change model that serves as a reference for vehicle speed changes in each of a plurality of driving lanes LN1 to LN3 extending substantially parallel to each other, and road map information including road lane information and road surface profile information.
  • the road surface profile information and the vehicle speed information are used to estimate the driving lane, in a situation where the accuracy of positioning by the positioning sensor 10 is degraded, such as in an area where high-rise buildings stand or in a tunnel. can also accurately estimate the driving lane. That is, for example, in a region where an expressway and a general road extend substantially parallel, a plurality of driving lanes LN1 to LN3 with different characteristics of vehicle speed change (vehicle speed change model) extend. , the driving lane can be estimated well.
  • the positions of the tires in the width direction in the lane in which the vehicle 1 travels may differ from vehicle to vehicle, so it is difficult to accurately estimate the driving lane only based on the road surface profile.
  • a vehicle speed change model corresponding to each of the plurality of driving lanes LN1 to LN3 is constructed by machine learning. As a result, it is possible to use a vehicle speed change model that satisfactorily reflects the characteristic of vehicle speed change for each lane, and to perform lane estimation satisfactorily.
  • the vehicle speed change model includes a vehicle speed change model when traffic congestion occurs and a vehicle speed change model when traffic congestion does not occur (Figs. 4A and 4B). Although the characteristics of vehicle speed change are significantly different between congested traffic and non-congested traffic, a vehicle speed change model is prepared in consideration of this point, so lane estimation can be performed with higher accuracy.
  • the travel information acquired by the travel information acquisition unit 212 further includes operation information of the direction indicator.
  • the driving lane identification unit 25 further identifies the driving lane based on the operation information of the direction indicator (signal from the blinker switch 141) (Fig. 5). As a result, it is possible to determine whether or not there is a lane change, and to perform lane estimation with higher accuracy.
  • the travel information acquired by the travel information acquisition unit 212 further includes steering angle information indicating the steering angle of the steering wheel.
  • the driving lane identification unit 25 further identifies the driving lane based on steering angle information of the steering wheel (signal from the steering angle sensor 133) (FIG. 5). As a result, it is possible to determine whether or not there is a lane change, and to further improve the accuracy of lane estimation.
  • the lane estimation device 101 of this embodiment can also be used as a lane estimation method.
  • a computer (controller 20) executes a step (steps S2 to S7) of specifying a driving lane corresponding to the position of the vehicle 1 determined by the positional information among the driving lanes LN1 to LN3 (FIG. 6 ).
  • the lane on which the vehicle 1 is traveling can be accurately estimated.
  • the traveling information acquisition unit 212 acquires the traveling information of the vehicle 1 including the information of the detection value (sensor value) of the lateral acceleration sensor 131, but other detectors that change according to the road surface profile You may make it acquire the driving
  • the reference information acquisition unit 213 serves as a reference for vehicle speed changes in each of the plurality of driving lanes LN1 to LN3 extending substantially parallel to each other in the road group RD including the elevated expressway RD1 and the general road RD2.
  • the vehicle speed change model (FIGS. 4A and 4B) is acquired as the vehicle speed reference information
  • the vehicle speed reference information is not limited to the above. Different vehicle speed reference information may be acquired according to time zones such as daytime and nighttime. Therefore, the vehicle speed change model is not limited to the vehicle speed change model when traffic congestion occurs and the vehicle speed change model when traffic congestion does not occur.
  • the vehicle speed change model may be constructed by techniques other than machine learning (for example, statistical processing).
  • the road group RD having a plurality of driving lanes extending substantially parallel to each other is composed of a plurality of roads RD1 and RD2 having different heights, but is not limited to this, and is composed of a plurality of roads having the same height. You may For example, when a general road extends on the side of an expressway, the expressway and the general road may form a road group.
  • the presence or absence of a lane change is determined based on the operation information of the direction indicator and the operation information of the steering wheel, but it is determined based on signals from other sensors and switches. good too.
  • the lane estimation device 101 is installed in the vehicle 1 in the above embodiment, some or all of the functions of the lane estimation device 101 may be provided in the server device 3 .
  • the lane estimation device 101 is applied to a manually driven vehicle, but the lane estimation device 101 of the present invention can also be applied to an automatically driven vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

This lane estimation device is provided with: a positional information acquisition unit which acquires positional information obtained by a positioning sensor; a travel information acquisition unit which acquires vehicle travel information, including vehicle speed information and information about detected values of the road surface profile of the road surface on which the vehicle is traveling; a reference information acquisition unit which acquires vehicle speed reference information, which is the reference for changing the vehicle speed in each of multiple travel lanes that extend in mutually parallel directions; a road map information acquisition unit which acquires road map information that includes travel lane information about the road and information about the road surface profile; and a travel lane identification unit which, on the basis of the acquired travel information, vehicle speed reference information and road map information, identifies from among the multiple travel lanes the travel lane that corresponds to the position of the vehicle, which is determined on the basis of the positional information.

Description

車線推定装置および車線推定方法Lane estimation device and lane estimation method
 本発明は、車両走行時の車線を推定する車線推定装置および車線推定方法に関する。 The present invention relates to a lane estimation device and lane estimation method for estimating lanes when a vehicle is traveling.
 この種の装置として、従来、予め登録された複数の車線それぞれの路面プロファイルと、車両走行時に測定された路面プロファイルとを比較して、複数の車線についての路面プロファイルの類似度をそれぞれ算出し、類似度が高い車線を、車両走行時の車線として推定するようにした装置が知られている(例えば特許文献1参照)。 Conventionally, this type of device compares the road surface profile of each of a plurality of lanes registered in advance with the road surface profile measured while the vehicle is running, and calculates the similarity of the road surface profile for each of the plurality of lanes, A device is known that estimates a lane with a high degree of similarity as a lane during vehicle travel (see, for example, Patent Document 1).
特開2016-45063号公報JP 2016-45063 A
 しかしながら、車両が走行する車線内の幅方向のタイヤの位置などは、車両毎に異なる場合がある。このため、上記特許文献1記載の装置のように、単に路面プロファイルの類似度に基づいて車線を推定するようにしたのでは、車両走行時の車線を精度よく推定することが困難である。 However, the position of the tires in the width direction within the lane in which the vehicle travels may differ from vehicle to vehicle. Therefore, if the lane is estimated simply based on the similarity of the road profile as in the device described in Patent Document 1, it is difficult to accurately estimate the lane when the vehicle is running.
 本発明の一態様である車線推定装置は、測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得する位置情報取得部と、車両の車速情報と車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報とを含む車両の走行情報を取得する走行情報取得部と、互いに略平行に延びる複数の走行車線の各々における車速変化の基準となる車速基準情報を取得する基準情報取得部と、道路の走行車線情報と路面プロファイルの情報とを含む道路地図情報を取得する道路地図情報取得部と、走行情報取得部により取得された走行情報と、基準情報取得部により取得された車速基準情報と、道路地図情報取得部により取得された道路地図情報とに基づいて、複数の走行車線のうち、位置情報取得部により取得された位置情報により定まる車両の位置に対応する走行車線を特定する走行車線特定部と、を備える。 A lane estimation device, which is one aspect of the present invention, includes a position information acquisition unit that acquires position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and measures the position of a vehicle; vehicle speed information of the vehicle; and information on the detection value of the detector that changes according to the road surface profile of the road surface on which the vehicle travels; Acquired by a reference information acquisition unit that acquires vehicle speed reference information that serves as a reference for change, a road map information acquisition unit that acquires road map information including driving lane information and road surface profile information, and a travel information acquisition unit. Based on the traveling information obtained by the vehicle speed reference information obtained by the reference information obtaining unit and the road map information obtained by the road map information obtaining unit, and a driving lane identifying unit that identifies a driving lane corresponding to the position of the vehicle determined by the position information.
 本発明の他の態様である車線推定方法は、測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得するステップと、車両の車速情報と車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報とを含む車両の走行情報を取得するステップと、互いに略平行に延びる複数の走行車線の各々における車速変化の基準となる車速基準情報を取得するステップと、道路の走行車線情報と路面プロファイルの情報とを含む道路地図情報を取得するステップと、走行情報と車速基準情報と道路地図情報とに基づいて、複数の走行車線のうち、位置情報により定まる車両の位置に対応する走行車線を特定するステップと、をコンピュータにより実行することを含む。 According to another aspect of the present invention, there is provided a lane estimation method comprising the steps of acquiring position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and measures the position of a vehicle; a step of obtaining vehicle travel information including information on the detected value of the detector that changes according to the road surface profile of the road surface on which the vehicle travels; obtaining vehicle speed reference information; obtaining road map information including road driving lane information and road surface profile information; Among them, the step of specifying the driving lane corresponding to the position of the vehicle determined by the position information is executed by the computer.
 本発明によれば、車両が走行中の走行車線を精度よく推定することができる。 According to the present invention, it is possible to accurately estimate the lane in which the vehicle is traveling.
複数の車線が存在する道路の一例を模式的に示す図。The figure which shows typically an example of the road where several lanes exist. 本発明の実施形態に係る車線推定装置を含む車線推定システムの全体構成を示す図。1 is a diagram showing the overall configuration of a lane estimation system including a lane estimation device according to an embodiment of the present invention; FIG. 図2のサーバ装置で得られる路面プロファイルの一例を示す図。FIG. 3 is a diagram showing an example of a road surface profile obtained by the server device of FIG. 2; FIG. 非渋滞走行時の車速変化モデルの一例を示す図。The figure which shows an example of the vehicle speed change model at the time of non-congestion driving. 渋滞走行時の車速変化モデルの一例を示す図。The figure which shows an example of the vehicle speed change model at the time of a traffic jam. 本発明の実施形態に係る車線推定装置の機能的構成を示すブロック図。1 is a block diagram showing the functional configuration of a lane estimation device according to an embodiment of the present invention; FIG. 図5のコントローラで実行される処理の一例を示すフローチャート。FIG. 6 is a flowchart showing an example of processing executed by the controller in FIG. 5; FIG.
 以下、図1~図6を参照して本発明の実施形態について説明する。本発明の実施形態に係る車線推定装置は、複数の走行車線(単に車線と呼ぶこともある)が存在する道路を車両が走行する場合において、走行中の車線を推定するように構成される。走行車線が推定されると、車線毎の渋滞の予測、路面の凹凸状態を示す路面プロファイルの作成、故障車が停車している位置の推定、および逆走車の推定等を容易に実現することができる。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 6. FIG. A lane estimation device according to an embodiment of the present invention is configured to estimate a lane in which a vehicle is traveling on a road having a plurality of driving lanes (sometimes simply referred to as lanes). To easily realize prediction of traffic congestion for each lane, creation of a road surface profile showing unevenness of the road surface, estimation of the position where a disabled vehicle is parked, and estimation of a wrong-way vehicle, etc., when the driving lane is estimated. can be done.
 図1は、本発明の実施形態に係る車線推定装置が適用される道路の一例を模式的に示す図である。図1には、橋脚P上に設置された高架の高速道路RD1と、橋脚Pに沿って地上に設けられる一般道路RD2と、を含む道路群RDが示される。図1に示すように、道路群RDは、高層ビルBLが林立するビル街に設けられる。道路群RDには、互いに平行に延在する複数の走行車線、例えば高速道路RD1上の車線LN1,LN2と一般道路RD2上の車線LN3とが存在する。なお、互いに平行に延在するとは、厳密な意味での平行ではなく、それぞれ同一方向ないしほぼ同一方向に延びる場合(略平行な場合)をいい、高さが異なる道路等であって、平面視で重なる箇所がある場合も含む。 FIG. 1 is a diagram schematically showing an example of a road to which a lane estimation device according to an embodiment of the invention is applied. FIG. 1 shows a road group RD including an elevated expressway RD1 installed on a pier P and a general road RD2 provided on the ground along the pier P. As shown in FIG. As shown in FIG. 1, the road group RD is provided in an area of tall buildings BL. The road group RD includes a plurality of traveling lanes extending parallel to each other, for example, lanes LN1 and LN2 on the highway RD1 and a lane LN3 on the ordinary road RD2. In addition, extending parallel to each other is not parallel in a strict sense, but refers to the case where each extends in the same direction or substantially the same direction (substantially parallel case), roads etc. with different heights, Including cases where there are overlapping parts.
 本実施形態では、図1に示す複数の走行車線LN1~LN3、すなわち平面視で互いに近接する複数の車線LN1~LN3のいずれを車両1が走行しているかを推定する。図1の例では、走行車線の推定の対象である車両(対象車両)1aが車線LN3を、対象車両1a以外の車両1bが車線LN1,LN2を、それぞれ矢印方向に走行中である。 In this embodiment, it is estimated which of the plurality of driving lanes LN1 to LN3 shown in FIG. 1, that is, the plurality of lanes LN1 to LN3 that are adjacent to each other in plan view, the vehicle 1 is traveling. In the example of FIG. 1, a vehicle (object vehicle) 1a whose driving lane is to be estimated is traveling in lane LN3, and a vehicle 1b other than the object vehicle 1a is traveling in lanes LN1 and LN2 in the directions of the arrows.
 走行車線の推定は、例えばGPS(Global Positioning System)などの測位用の人工衛星(測位衛星)からの信号を、車両に搭載されたGPS受信機(GPSセンサ)などの測位センサによって受信して車両の位置を測定し、測定された車両の位置と、地図情報に含まれる車線の位置とを比較することで行うことができる。すなわち、測位センサを用いて車両の位置を測定する場合の測位精度が、車線の位置を特定できる程度の精度であれば、測位センサを用いて車線の位置を推定することができる。 For estimation of the driving lane, for example, signals from positioning satellites (positioning satellites) such as GPS (Global Positioning System) are received by a positioning sensor such as a GPS receiver (GPS sensor) mounted on the vehicle. and compare the measured vehicle position with the lane position included in the map information. That is, if the positioning accuracy in measuring the position of the vehicle using the positioning sensor is such that the position of the lane can be specified, the position of the lane can be estimated using the positioning sensor.
 しかし、高層ビルが林立するビル街やトンネル内等においては、測位の精度が低下するため、測位センサを用いて車線の位置を精度よく推定することが困難である。一方、自車両の走行時に、路面の凹凸等の性状を示す路面プロファイルを検出し、検出された路面プロファイルと予め記憶された車線毎の路面プロファイルとを比較することで、車線の位置を特定することもできる。しかし、車両が走行する車線内の幅方向のタイヤの位置などは、車両毎に異なる場合がある。このため、路面プロファイルを用いるだけでは、車線位置を精度よく推定することが難しい。そこで、本実施形態では、以下のように車線推定装置を構成する。 However, it is difficult to accurately estimate the lane position using a positioning sensor because the accuracy of positioning decreases in areas such as high-rise buildings and tunnels. On the other hand, when the vehicle is running, the road surface profile indicating the characteristics of the road surface such as unevenness is detected, and the detected road surface profile is compared with the pre-stored road surface profile for each lane to specify the position of the lane. can also However, the positions of the tires in the width direction within the lane in which the vehicle travels may differ from vehicle to vehicle. Therefore, it is difficult to accurately estimate the lane position only by using the road surface profile. Therefore, in this embodiment, the lane estimation device is configured as follows.
 図2は、本発明の実施形態に係る車線推定装置を含む車線推定システムの全体構成を示す図である。図2に示すように、車線推定システムは、車両1に搭載された車載装置100と、ネットワーク200を介して車載装置100と通信可能なサーバ装置3とを有する。車両1は、例えばドライバが手動で運転する手動運転車両である。 FIG. 2 is a diagram showing the overall configuration of the lane estimation system including the lane estimation device according to the embodiment of the present invention. As shown in FIG. 2 , the lane estimation system has an in-vehicle device 100 mounted on a vehicle 1 and a server device 3 capable of communicating with the in-vehicle device 100 via a network 200 . The vehicle 1 is, for example, a manually operated vehicle manually operated by a driver.
 車載装置100は、測位衛星2から送信された測位用の信号を受信する測位センサ10と、ネットワーク200を介してサーバ装置3と通信する通信ユニット11とを有する。測位衛星2は、GPS衛星や準天頂衛星などの人工衛星であり、測位センサ10が受信した測位衛星2からの測位情報を利用して、車両1の現在位置(緯度、経度、高度)を算出することができる。 The in-vehicle device 100 has a positioning sensor 10 that receives positioning signals transmitted from the positioning satellites 2 and a communication unit 11 that communicates with the server device 3 via the network 200 . The positioning satellites 2 are artificial satellites such as GPS satellites and quasi-zenith satellites. Using the positioning information from the positioning satellites 2 received by the positioning sensor 10, the current position (latitude, longitude, altitude) of the vehicle 1 is calculated. can do.
 ネットワーク200には、インターネット網や携帯電話網等に代表される公衆無線通信網だけでなく、所定の管理地域ごとに設けられた閉鎖的な通信網、例えば無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)等も含まれる。サーバ装置3は、例えば単一のサーバとして、あるいは機能ごとに別々のサーバから構成される分散サーバとして構成される。クラウドサーバと呼ばれるクラウド環境に作られた分散型の仮想サーバとしてサーバ装置3を構成することもできる。 The network 200 includes not only public wireless communication networks such as the Internet and mobile phone networks, but also closed communication networks provided for each predetermined management area, such as wireless LAN, Wi-Fi (registered trademark), etc. , Bluetooth (registered trademark), and the like. The server device 3 is configured, for example, as a single server or as a distributed server composed of separate servers for each function. The server device 3 can also be configured as a distributed virtual server created in a cloud environment called a cloud server.
 サーバ装置3は、CPU,ROM,RAM、およびその他の周辺回路を有する演算処理装置を含んで構成される。サーバ装置3は、機能的構成として、通信部31と、記憶部32と、路面プロファイル生成部33と、車速変化モデル生成部34と、を有する。 The server device 3 includes an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits. The server device 3 has a communication unit 31, a storage unit 32, a road profile generation unit 33, and a vehicle speed change model generation unit 34 as functional configurations.
 通信部31は、ネットワーク200を介し車載装置100と無線通信可能に構成され、車両1の位置情報と、車両1の走行情報とを、車両1の通信ユニット11を介してそれぞれ取得する。位置情報は、車両1の測位センサ10が受信した信号によって算出された車両1の現在位置を示す情報である。走行情報は、車両1に搭載された各種センサにより取得された車両1の走行状態を示す情報である。走行情報には、車両1の車速情報と、車両1の左右方向の加速度(横加速度)を検出する加速度センサ(横加速度センサ)による検出値の情報とが含まれる。通信部31は、走行車線の推定の対象である対象車両1a(図1)だけでなく、対象車両1a以外の複数の車両1b(図1)の位置情報と走行情報とを常時取得する。 The communication unit 31 is configured to be able to wirelessly communicate with the in-vehicle device 100 via the network 200, and acquires the position information of the vehicle 1 and the travel information of the vehicle 1 via the communication unit 11 of the vehicle 1 respectively. The position information is information indicating the current position of the vehicle 1 calculated from the signal received by the positioning sensor 10 of the vehicle 1 . The traveling information is information indicating the traveling state of the vehicle 1 acquired by various sensors mounted on the vehicle 1 . The travel information includes vehicle speed information of the vehicle 1 and information of values detected by an acceleration sensor (lateral acceleration sensor) that detects acceleration (lateral acceleration) of the vehicle 1 in the left-right direction. The communication unit 31 constantly acquires position information and travel information not only for the target vehicle 1a (FIG. 1) whose driving lane is to be estimated, but also for a plurality of vehicles 1b (FIG. 1) other than the target vehicle 1a.
 記憶部32は、道路地図情報を記憶する。道路地図情報には、道路の位置情報、道路形状(曲率など)の情報、道路の勾配の情報、交差点や分岐点の位置情報、車線数の情報、車線の幅員および車線毎の位置情報が含まれる。車線毎の位置情報とは、車線の中央位置や車線位置の境界の情報などである。 The storage unit 32 stores road map information. Road map information includes road location information, road shape information (curvature, etc.), road gradient information, intersection and branch point location information, number of lanes, lane width, and location information for each lane. be The positional information for each lane is information such as the central position of the lane and the boundary of the lane position.
 路面プロファイル生成部33は、通信部31を介して取得された対象車両1a以外の複数の車両1bの位置情報と走行情報とに基づいて、路面性状を示す路面プロファイルを生成する。図3は、路面プロファイルの一例を示す図である。図中の横軸は、走行車線に沿った車両1の進行方向の位置、つまり道のりであり、縦軸は、路面の凹凸の量(深さまたは高さ)、つまり路面粗さである。一般に、路面の凹凸の量が大きいほど車両1の横加速度は大きい。したがって、路面性状と横加速度とは所定の相関関係を有する。この所定の相関関係は、予め記憶部32に記憶される。路面プロファイル生成部33は、この所定の相関関係を用いて、横加速度から道路上の車両位置に対応する路面の凹凸量を算出し、図3に示すように車両1の進行方向における路面プロファイルを生成する。生成された道路の各位置での路面プロファイルの情報は、道路地図情報の一部として記憶部32に記憶される。 The road surface profile generation unit 33 generates a road surface profile indicating road surface properties based on the position information and travel information of a plurality of vehicles 1b other than the target vehicle 1a acquired via the communication unit 31. FIG. 3 is a diagram showing an example of a road surface profile. The horizontal axis in the figure is the position in the traveling direction of the vehicle 1 along the driving lane, that is, the distance, and the vertical axis is the amount of unevenness (depth or height) of the road surface, that is, the road surface roughness. Generally, the lateral acceleration of the vehicle 1 increases as the amount of unevenness of the road surface increases. Therefore, road surface properties and lateral acceleration have a predetermined correlation. This predetermined correlation is stored in the storage unit 32 in advance. Using this predetermined correlation, the road surface profile generator 33 calculates the amount of unevenness of the road surface corresponding to the vehicle position on the road from the lateral acceleration, and generates the road surface profile in the traveling direction of the vehicle 1 as shown in FIG. Generate. Information of the road surface profile at each position of the generated road is stored in the storage unit 32 as part of the road map information.
 同一車線を異なる車両1が走行する場合に、路面上のタイヤの位置が異なることにより、各車両1の横加速度センサにより検出された路面プロファイルが異なることがある。この場合、路面プロファイル生成部33は、例えば各車両1の横加速度センサにより検出されたそれぞれの路面プロファイルを平均化して、各路面の代表的な路面プロファイルを生成する。 When different vehicles 1 travel in the same lane, the road profile detected by the lateral acceleration sensor of each vehicle 1 may differ due to the different positions of the tires on the road surface. In this case, the road surface profile generator 33 averages the road surface profiles detected by the lateral acceleration sensors of the vehicles 1, for example, to generate a representative road surface profile of each road surface.
 路面プロファイル生成部33は、路面性状の測定用の専用車両を走行させることにより得られたデータから、路面プロファイルを生成することもできる。例えばレーザプロファイラを搭載した専用車両を走行させ、そのときの測定データを、専用車両の位置データとともに取得することで、横加速度センサを用いることなく路面プロファイルを生成することもできる。 The road surface profile generation unit 33 can also generate a road surface profile from data obtained by running a dedicated vehicle for measuring road surface properties. For example, it is possible to generate a road profile without using a lateral acceleration sensor by running a dedicated vehicle equipped with a laser profiler and acquiring the measurement data at that time together with the position data of the dedicated vehicle.
 記憶部32に記憶される道路地図情報のうち、路面プロファイルの情報は、路面プロファイル生成部33により路面プロファイルが生成される度に更新される。他の道路地図情報は、所定周期で、あるいは任意のタイミングで更新される。なお、本実施形態では、車両1の走行車線を推定する場合、車両1の走行位置における各車線LN1~LN3の路面プロファイル(参照用路面プロファイル)が既に記憶部32に記憶されているものとして扱う。 Among the road map information stored in the storage unit 32, the road surface profile information is updated each time the road surface profile generation unit 33 generates a road surface profile. Other road map information is updated at predetermined intervals or at arbitrary timing. In this embodiment, when estimating the driving lane of the vehicle 1, it is assumed that the road surface profile (reference road surface profile) of each of the lanes LN1 to LN3 at the driving position of the vehicle 1 is already stored in the storage unit 32. .
 車速変化モデル生成部34は、記憶部32に記憶された道路地図情報と、通信部31を介して取得された車両データとに基づいて、各車線LN1~LN3を走行する車両1の車速変化の基準となる車速変化モデルを生成する。車両データは、車両1の位置情報と車速情報とを含む各車両1の固有のデータである。位置情報には、測位センサ10により補足された衛星補足数と、測位センサ10が受信する信号強度と、測位センサ10による測位の精度情報とが含まれる。測位の精度情報は、例えば精度低下率DOP(Dilution of Precision)の情報である。車速変化モデル生成部34は、通信部31を介して得られた車線毎の車両データを用いて、機械学習により車速変化モデルを構築することができる。車線毎の車両データに、車線毎の路面プロファイルの情報を加味して、車速変化モデルを構築してもよい。 Based on the road map information stored in the storage unit 32 and the vehicle data acquired via the communication unit 31, the vehicle speed change model generation unit 34 calculates changes in vehicle speed of the vehicle 1 traveling in each of the lanes LN1 to LN3. Generate a reference vehicle speed change model. Vehicle data is unique data of each vehicle 1 including position information and vehicle speed information of the vehicle 1 . The position information includes the number of satellites captured by the positioning sensor 10 , signal strength received by the positioning sensor 10 , and positioning accuracy information by the positioning sensor 10 . The positioning accuracy information is, for example, information on a rate of accuracy decrease DOP (Dilution of Precision). The vehicle speed change model generation unit 34 can construct a vehicle speed change model by machine learning using vehicle data for each lane obtained via the communication unit 31 . A vehicle speed change model may be constructed by adding road surface profile information for each lane to vehicle data for each lane.
 図4A,図4Bは、それぞれ車速変化モデル生成部34により生成された車速変化モデルの一例を示す図である。図4Aは、非渋滞時(スムーズ走行時)の車速変化モデルであり、図4Bは、渋滞時の車速変化モデルである。図4A,図4Bでは、各車線を走行する車両1の車速の基準となる車速変化モデルを、横軸を車両1の進行方向の位置(道のり)、縦軸を車速とした特性で示す。図中の特性f1,f3は高速道路RD1(車線LN1またはLN2)の車速変化モデルであり、特性f2,f4は一般道路RD2(車線LN3)の車速変化である。これらの特性は、車線毎の多数の車両データを用いて機械学習により得られるものであり、車両データを平均化した特性に対応する。なお、車両データを統計処理して、車速変化モデルを得るようにしてもよい。 4A and 4B are diagrams showing examples of vehicle speed change models generated by the vehicle speed change model generation unit 34, respectively. FIG. 4A is a vehicle speed change model during non-traffic traffic (during smooth running), and FIG. 4B is a vehicle speed change model during traffic jam. 4A and 4B show a vehicle speed change model that serves as a reference for the vehicle speed of the vehicle 1 traveling in each lane, with characteristics in which the position of the vehicle 1 in the traveling direction (road) is plotted on the horizontal axis and the vehicle speed is plotted on the vertical axis. Characteristics f1 and f3 in the figure are vehicle speed change models of expressway RD1 (lane LN1 or LN2), and characteristics f2 and f4 are vehicle speed change models of general road RD2 (lane LN3). These characteristics are obtained by machine learning using a large number of vehicle data for each lane, and correspond to characteristics obtained by averaging the vehicle data. A vehicle speed change model may be obtained by statistically processing vehicle data.
 図4Aに示すように、非渋滞時には、高速道路での車速が一般道路での車速よりも速い。また、高速道路での車速の変化は一般道路での車速の変化よりも小さい。なお、位置Sは、一般道路における交差点の位置を表す。交差点では、車両が停止する頻度が高いため、交差点以外と比べ、車速が低くなる。一方、図4Bに示すように、渋滞時には、図4Aと同様、高速道路での車速が一般道路での車速よりも速いが、車速の変化は非渋滞時に比べて大きい。このように高速道路における車速変化モデル(特性f1,f3)は、一般道路における車速変化モデル(特性f2,f4)と大きく異なる。車速変化モデル生成部34により生成された車速変化モデルは、記憶部32に記憶される。この車速変化モデルは、車速変化モデル生成部34により車速変化モデルが生成される度に更新される。なお、本実施形態では、車両1の走行車線を推定する場合、車両1の走行位置における各車線LN1~LN3の車速変化モデルが既に記憶部32に記憶されているものとして扱う。 As shown in Fig. 4A, when there is no congestion, the vehicle speed on expressways is faster than the vehicle speed on general roads. Also, the change in vehicle speed on expressways is smaller than the change in vehicle speed on general roads. Note that the position S represents the position of the intersection on the general road. Vehicles stop frequently at intersections, so the vehicle speed is lower than at other intersections. On the other hand, as shown in FIG. 4B, during traffic congestion, the vehicle speed on the expressway is faster than the vehicle speed on the general road, as in FIG. Thus, the vehicle speed change model (characteristics f1, f3) on expressways is significantly different from the vehicle speed change model (characteristics f2, f4) on general roads. The vehicle speed change model generated by the vehicle speed change model generation unit 34 is stored in the storage unit 32 . This vehicle speed change model is updated each time a vehicle speed change model is generated by the vehicle speed change model generator 34 . In this embodiment, when estimating the driving lane of the vehicle 1, it is assumed that the vehicle speed change models of the lanes LN1 to LN3 at the driving position of the vehicle 1 are already stored in the storage unit 32.
 図5は、本実施形態に係る車線推定装置101の機能的構成を示すブロック図である。車線推定装置101は、図2の車載装置100の一部を構成する。図5に示すように、車線推定装置101は、測位センサ10と、通信ユニット11と、センサ群13と、スイッチ群14と、コントローラ20とを備える。測位センサ10と通信ユニット11とセンサ群13とスイッチ群14とは、それぞれコントローラ20に通信可能に接続される。 FIG. 5 is a block diagram showing the functional configuration of the lane estimation device 101 according to this embodiment. The lane estimation device 101 constitutes a part of the in-vehicle device 100 in FIG. 2 . As shown in FIG. 5 , lane estimation device 101 includes positioning sensor 10 , communication unit 11 , sensor group 13 , switch group 14 , and controller 20 . The positioning sensor 10, the communication unit 11, the sensor group 13, and the switch group 14 are each connected to the controller 20 so as to be communicable.
 センサ群13は、車両1の走行状態を検出する複数のセンサの総称である。センサ群13には、車両1の左右方向の加速度を検出する横加速度センサ131と、車速を検出する車速センサ132と、ステアリングホイールの操舵角を検出する舵角センサ133とが含まれる。スイッチ群14は、車両1の走行状態を検出する複数のスイッチの総称である。スイッチ群14には、ドライバによる方向指示器の操作を検出するウインカースイッチ141が含まれる。なお、方向指示器とは、車両1の右左折や進路変更の際に、その方向を周囲に示すための装置であり、ウインカーレバーなどにより構成される。 The sensor group 13 is a general term for a plurality of sensors that detect the running state of the vehicle 1. The sensor group 13 includes a lateral acceleration sensor 131 that detects lateral acceleration of the vehicle 1, a vehicle speed sensor 132 that detects vehicle speed, and a steering angle sensor 133 that detects the steering angle of the steering wheel. The switch group 14 is a general term for a plurality of switches that detect the running state of the vehicle 1 . The switch group 14 includes a winker switch 141 that detects the driver's operation of the direction indicator. The direction indicator is a device for indicating the direction to the surroundings when the vehicle 1 turns left or right or changes course, and is composed of a turn signal lever or the like.
 コントローラ20は、CPU等の演算部と、ROM,RAM等の記憶部と、その他の周辺回路とを有するコンピュータを含んで構成される電子制御ユニットである。コントローラ20の演算部は、機能的構成として、情報取得部21と、走行車線特定部25とを有する。情報取得部21は、位置情報取得部211と、走行情報取得部212と、基準情報取得部213と、道路地図情報取得部214とを有する。コントローラ20の記憶部には、サーバ装置3の記憶部32と同様、路面プロファイルが生成されるときに用いられる路面性状と横加速度との間の所定の相関関係や、各種判定を行う場合の閾値などが記憶される。 The controller 20 is an electronic control unit including a computer having an arithmetic unit such as a CPU, a storage unit such as ROM and RAM, and other peripheral circuits. The calculation unit of the controller 20 has an information acquisition unit 21 and a driving lane identification unit 25 as functional configurations. The information acquisition section 21 has a position information acquisition section 211 , a travel information acquisition section 212 , a reference information acquisition section 213 and a road map information acquisition section 214 . Like the storage unit 32 of the server device 3, the storage unit of the controller 20 stores a predetermined correlation between the road surface properties and the lateral acceleration used when the road surface profile is generated, and threshold values for various determinations. etc. are stored.
 位置情報取得部211は、測位センサ10により検出された車両1の現在の位置情報を取得する。走行情報取得部212は、センサ群13とスイッチ群14とにより検出された各種検出値を含む車両1の走行情報を取得する。基準情報取得部213は、通信ユニット11を介してサーバ装置3から車速の基準情報を示す車速変化モデルを取得する。より詳しくは、基準情報取得部213は、測位センサ10により検出された車両1の現在位置における道路の複数の走行車線LN1~LN3のそれぞれについての非渋滞時および渋滞時に対応した車速変化モデル(図4A,図4B)を取得する。道路地図情報取得部214は、通信ユニット11を介してサーバ装置3から道路地図情報を取得する。より詳しくは、道路地図情報取得部214は、測位センサ10により検出された車両1の現在位置における道路の車線情報(走行車線情報)と、各車線LN1~LN3の路面プロファイルの情報とを含む道路地図情報を取得する。 The position information acquisition unit 211 acquires current position information of the vehicle 1 detected by the positioning sensor 10 . The travel information acquisition unit 212 acquires travel information of the vehicle 1 including various detection values detected by the sensor group 13 and the switch group 14 . The reference information acquisition unit 213 acquires a vehicle speed change model indicating reference information on vehicle speed from the server device 3 via the communication unit 11 . More specifically, the reference information acquiring unit 213 obtains a vehicle speed change model (Fig. 4A, FIG. 4B). The road map information acquisition unit 214 acquires road map information from the server device 3 via the communication unit 11 . More specifically, the road map information acquisition unit 214 obtains road information including road lane information (driving lane information) at the current position of the vehicle 1 detected by the positioning sensor 10, and road surface profile information of each of the lanes LN1 to LN3. Get map information.
 走行車線特定部25は、走行情報取得部212により取得された車両1の走行情報と、基準情報取得部213により取得された車速変化モデルと、道路地図情報取得部214により取得された車両1の走行中の道路の道路地図情報とに基づいて、複数の走行車線LN1~LN3のうち、位置情報取得部211により取得された車両1の現在位置に対応する走行車線を特定する。 The driving lane identification unit 25 uses the driving information of the vehicle 1 obtained by the driving information obtaining unit 212, the vehicle speed change model obtained by the reference information obtaining unit 213, and the vehicle 1 information obtained by the road map information obtaining unit 214. The driving lane corresponding to the current position of the vehicle 1 acquired by the position information acquisition unit 211 is specified among the plurality of driving lanes LN1 to LN3 based on the road map information of the road on which the vehicle is traveling.
 具体的には、まず、横加速度センサ131の検出値と道路地図情報に含まれる路面プロファイルの情報とに基づいて、走行車線を特定する。より具体的には、予め記憶された路面性状と横加速度との相関関係を用いて、横加速度センサ131により検出された横加速度から路面の凹凸量を算出する。なお、車両1が旋回走行中等で車両1に横加速度が生じている場合には、その分を補正して、横加速度センサ131の検出値から路面の凹凸量を算出する。そして、車両1の進行方向に沿った路面の凹凸量の変化を表す路面プロファイル、すなわち路面プロファイルの実測値である実測路面プロファイルと、道路地図情報に含まれる車線毎の路面プロファイル、すなわち参照用路面プロファイルとを比較し、実測路面プロファイルと車線毎の参照用路面プロファイルとの一致度を算出する。そして、一致度が所定値以上であるか否かを判定し、所定値以上と判定された参照用路面プロファイルが存在するとき、当該参照用路面プロファイルを有する車線を、現在走行中の走行車線として特定する。 Specifically, first, the driving lane is identified based on the detected value of the lateral acceleration sensor 131 and road profile information included in the road map information. More specifically, the amount of unevenness of the road surface is calculated from the lateral acceleration detected by the lateral acceleration sensor 131 using the pre-stored correlation between the road surface properties and the lateral acceleration. When the vehicle 1 is undergoing a turn or the like and lateral acceleration is generated in the vehicle 1 , the amount of unevenness of the road surface is calculated from the detection value of the lateral acceleration sensor 131 by correcting the acceleration. A road surface profile representing a change in the amount of unevenness of the road surface along the traveling direction of the vehicle 1, that is, a measured road surface profile that is a measured value of the road surface profile, and a road surface profile for each lane included in the road map information, that is, a reference road surface profile, and the degree of matching between the actually measured road surface profile and the reference road surface profile for each lane is calculated. Then, it is determined whether or not the degree of matching is equal to or greater than a predetermined value, and if there is a reference road surface profile determined to be equal to or greater than the predetermined value, the lane having the reference road surface profile is designated as the current driving lane. Identify.
 この場合、走行車線特定部25は、路面プロファイルの一致度の算出を所定距離にわたって行い、所定距離内における一致度を平均化して、一致度が所定値以上であるか否かを判定するようにしてもよい。一致度が所定値以上である参照用路面プロファイルが複数存在するとき、一致度が最大である参照用路面プロファイルを有する車線を、現在走行中の走行車線として特定するようにしてもよい。なお、一致度は相関係数等を用いて算出することができる。一致度を類似度と呼ぶこともある。 In this case, the driving lane identification unit 25 calculates the degree of matching of the road surface profile over a predetermined distance, averages the degrees of matching within the predetermined distance, and determines whether the degree of matching is equal to or greater than a predetermined value. may When there are a plurality of reference road surface profiles whose degree of matching is greater than or equal to a predetermined value, the lane having the reference road surface profile with the highest degree of matching may be specified as the current driving lane. Note that the degree of matching can be calculated using a correlation coefficient or the like. The degree of matching is sometimes called the degree of similarity.
 走行車線特定部25は、路面プロファイルの一致度が所定値以上となる参照用路面プロファイルが存在しないとき、車速センサ132の検出値(車速検出値)と車速変化モデルとに基づいて、走行車線を特定する。具体的には、まず、車速検出値の変化の程度に基づいて、車両1が走行中の道路が渋滞中であるか否かを判定する。渋滞中でないと判定されると、車速検出値と車線毎の車速変化モデル(図4A)との一致度を算出する。そして、一致度が所定値以上であるか否かを判定し、所定値以上と判定された車速変化モデルが存在するとき、当該車速変化モデルに対応する車線を、現在走行中の走行車線として特定する。一方、渋滞中であると判定されると、車速検出値と車線毎の車速変化モデル(図4B)との一致度を算出し、一致度が所定値以上である車速変化モデルが存在するとき、当該車速変化モデルに対応する車線を、現在走行中の走行車線として特定する。 When there is no reference road surface profile with a degree of coincidence of the road surface profile equal to or greater than a predetermined value, the driving lane specifying unit 25 determines the driving lane based on the detected value (detected vehicle speed) of the vehicle speed sensor 132 and the vehicle speed change model. Identify. Specifically, first, it is determined whether or not the road on which the vehicle 1 is traveling is congested based on the degree of change in the vehicle speed detection value. If it is determined that the vehicle is not congested, the degree of matching between the vehicle speed detection value and the vehicle speed change model for each lane (FIG. 4A) is calculated. Then, it is determined whether or not the degree of matching is equal to or greater than a predetermined value, and if there is a vehicle speed change model determined to be equal to or greater than the predetermined value, the lane corresponding to the vehicle speed change model is specified as the current driving lane. do. On the other hand, when it is determined that there is a traffic jam, the degree of matching between the vehicle speed detection value and the vehicle speed change model for each lane (FIG. 4B) is calculated. The lane corresponding to the vehicle speed change model is identified as the current driving lane.
 この場合、走行車線特定部25は、一致度の算出を所定距離にわたって行い、所定距離内における一致度を平均化して、一致度が所定値以上であるか否かを判定するようにしてもよい。一致度が所定値以上である車速変化モデルが複数存在するとき、一致度が最大である車速変化モデルに対応する車線を、現在走行中の走行車線として特定するようにしてもよい。なお、一致度は相関係数等を用いて算出することができる。一致度を類似度と呼ぶこともある。 In this case, the driving lane identification unit 25 may calculate the degree of matching over a predetermined distance, average the degrees of matching within the predetermined distance, and determine whether the degree of matching is equal to or greater than a predetermined value. . When there are a plurality of vehicle speed change models with a degree of matching equal to or greater than a predetermined value, the lane corresponding to the vehicle speed change model with the highest degree of matching may be specified as the current driving lane. Note that the degree of matching can be calculated using a correlation coefficient or the like. The degree of matching is sometimes called the degree of similarity.
 走行車線特定部25は、走行車線を特定する際に、測位センサ10により得られた車両1の位置情報に基づいて走行車線を推定した上で、実測路面プロファイルと参照用路面プロファイルとの比較、または車速検出値と車速変化モデルとの比較を行って、位置情報に基づく走行車線の推定が正しいか否かを判定し、これにより走行車線を特定するようにしてもよい。測位センサ10の検出値を用いて走行車線を推定する場合、測位の精度(例えばDOPの値)の大きさに応じて、測位センサ10の検出値による推定結果の重み付けを変更するようにしてもよい。例えば、測位の精度が所定値以上であるとき、路面プロファイルの一致度に基づく車線の推定と車速の一致度に基づく車線の推定よりも、測位センサ10の検出値による車線の推定の重み付けを大きくしてもよい。 When identifying the driving lane, the driving lane identification unit 25 estimates the driving lane based on the position information of the vehicle 1 obtained by the positioning sensor 10, and then compares the measured road surface profile with the reference road surface profile. Alternatively, the vehicle speed detection value and the vehicle speed change model may be compared to determine whether or not the estimation of the driving lane based on the position information is correct, thereby identifying the driving lane. When estimating the driving lane using the detection value of the positioning sensor 10, the weighting of the estimation result based on the detection value of the positioning sensor 10 may be changed according to the positioning accuracy (for example, the DOP value). good. For example, when the positioning accuracy is equal to or greater than a predetermined value, the lane estimation based on the detection value of the positioning sensor 10 is weighted more than the lane estimation based on the matching degree of the road surface profile and the lane estimation based on the vehicle speed matching degree. You may
 走行車線特定部25は、路面プロファイルの一致度が所定値以上でなく、かつ、車速の一致度が所定値以上でないとき、ウインカースイッチ141からの信号に基づいて車線変更の有無を判定する。すなわち、車線変更時には一般に方向指示器が操作されるため、ウインカースイッチ141からの信号に基づいて車両1の左右への車線変更を判定する。例えば車両1が片側3車線(第1車線、第2車線、第3車線)の中央(第2車線)を走行しているとき、ウインカースイッチ141は、車両1を右側および左側の車線へ車線変更する際の方向指示器の操作を、例えば別々のスイッチによりそれぞれ検出する。これにより、ウインカースイッチ141からの信号に基づいて、車両1が左右いずれの車線に車線変更されたかを容易に判定できる。 The driving lane identification unit 25 determines whether or not there is a lane change based on the signal from the turn signal switch 141 when the matching degree of the road surface profile is not equal to or greater than a predetermined value and the matching degree of the vehicle speed is not equal to or greater than a predetermined value. That is, since the direction indicator is generally operated when changing lanes, the lane change of the vehicle 1 to the left or right is determined based on the signal from the winker switch 141 . For example, when the vehicle 1 is traveling in the center (second lane) of three lanes on one side (first, second, and third lanes), the turn signal switch 141 causes the vehicle 1 to change lanes to the right and left lanes. The operation of the direction indicator when turning is detected by, for example, separate switches. As a result, based on the signal from the turn signal switch 141, it can be easily determined to which lane the vehicle 1 has changed lanes, left or right.
 走行車線特定部は、ウインカースイッチ141に代えて、あるいはウインカースイッチ141とともに、舵角センサ133からの信号に基づいて車線変更の有無を判定することもできる。すなわち、車線変更時にはステアリングホイールが操作されるため、舵角センサ133の検出値が所定値以上となったか否かを判定することで、車線変更の有無を判定することができる。車線変更時に方向指示器が常に操作されるとは限らない、あるいは方向指示器が誤って操作されるおそれがある。このため、舵角センサ133の検出値を用いることで、ウインカースイッチ141を用いる場合に比べ、車線変更の有無を精度よく判定することができる。 Instead of the turn signal switch 141, or together with the turn signal switch 141, the driving lane identification unit can also determine whether or not there is a lane change based on the signal from the steering angle sensor 133. That is, since the steering wheel is operated when changing lanes, it is possible to determine whether or not there is a lane change by determining whether or not the detection value of steering angle sensor 133 is equal to or greater than a predetermined value. The direction indicator is not always operated when changing lanes, or the direction indicator may be erroneously operated. Therefore, by using the detection value of the steering angle sensor 133, it is possible to determine whether or not there is a lane change with higher accuracy than when using the turn signal switch 141. FIG.
 図6は、予め定められたプログラムに従いコントローラ20(CPU)で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、互いに略平行に延在する複数の走行車線のいずれかを車両1が走行しているときに実行される。すなわち、走行車線を推定する必要があるときに実行され、所定周期で繰り返される。 FIG. 6 is a flowchart showing an example of processing executed by the controller 20 (CPU) according to a predetermined program. The processing shown in this flowchart is executed when the vehicle 1 is traveling in any one of a plurality of traveling lanes extending substantially parallel to each other. That is, it is executed when it is necessary to estimate the driving lane, and is repeated at a predetermined cycle.
 まず、ステップS1で、測位センサ10により検出された車両1の現在の位置情報と、センサ群13とスイッチ群14からの信号による車両1の走行情報と、通信ユニット11を介して得られた走行中の道路の道路地図情報と、通信ユニット11を介して得られた走行中の道路の車速変化モデルとを取得する。 First, in step S1, current position information of the vehicle 1 detected by the positioning sensor 10, travel information of the vehicle 1 based on signals from the sensor group 13 and the switch group 14, and travel information obtained via the communication unit 11. The road map information of the middle road and the vehicle speed change model of the road on which the vehicle is running obtained through the communication unit 11 are acquired.
 次いで、ステップS2で、横加速度センサ131の検出値に基づいて実測路面プロファイルを求めるとともに、実測路面プロファイルと道路地図情報に含まれる車線毎の参照用路面プロファイルとの一致度(路面プロファイル一致度)を算出する。次いで、ステップS3で、実測路面プロファイルとの一致度が所定値以上である参照用路面プロファイルが存在するか否か、すなわち、路面プロファイル一致度が所定値以上の車線があるか否かを判定する。ステップS3で肯定されるとステップS4に進み、否定されるとステップS5に進む。ステップS4では、一致度が所定値以上である参照用路面プロファイルを有する車線を、車両1が走行中の走行車線として推定し、処理を終了する。推定された走行車線は、コントローラ20の記憶部に一時的に記憶される。 Next, in step S2, an actually measured road surface profile is obtained based on the detected value of the lateral acceleration sensor 131, and the matching degree between the actually measured road surface profile and the reference road surface profile for each lane included in the road map information (road surface profile matching degree). Calculate Next, in step S3, it is determined whether or not there is a reference road surface profile whose matching degree with the measured road surface profile is equal to or greater than a predetermined value, that is, whether or not there is a lane whose road surface profile matching degree is equal to or greater than a predetermined value. . If the result in step S3 is affirmative, the process proceeds to step S4, and if the result is negative, the process proceeds to step S5. In step S4, the lane having the reference road surface profile whose degree of matching is equal to or greater than a predetermined value is estimated as the driving lane on which the vehicle 1 is traveling, and the process ends. The estimated driving lane is temporarily stored in the storage unit of controller 20 .
 ステップS5では、車速センサ132の検出値と車線毎の車速変化モデルとの一致度(車速一致度)を算出する。次いで、ステップS6で、車速検出値との一致度が所定値以上である車速変化モデルが存在するか否か、すなわち、車速一致度が所定値以上の車線があるか否かを判定する。ステップS6で肯定されるとステップS7に進み、否定されるとステップS8に進む。ステップS7では、一致度が所定値以上である車速変化モデルに対応する車線を、車両1が走行中の走行車線として推定し、処理を終了する。推定された走行車線は、コントローラ20の記憶部に一時的に記憶される。 In step S5, the degree of matching (vehicle speed matching) between the detected value of the vehicle speed sensor 132 and the vehicle speed change model for each lane is calculated. Next, in step S6, it is determined whether or not there is a vehicle speed change model whose degree of coincidence with the vehicle speed detection value is greater than or equal to a predetermined value, that is, whether or not there is a lane whose degree of vehicle speed coincidence is greater than or equal to a predetermined value. If the result in step S6 is affirmative, the process proceeds to step S7, and if the result is negative, the process proceeds to step S8. In step S7, the lane corresponding to the vehicle speed change model whose degree of matching is equal to or greater than a predetermined value is estimated as the driving lane in which the vehicle 1 is traveling, and the process ends. The estimated driving lane is temporarily stored in the storage unit of controller 20 .
 ステップS8では、ウインカースイッチ141からの信号に基づいて方向指示器が操作されたか否かを判定する。ステップS8で肯定されるとステップS9に進み、否定されるとステップS10に進む。この場合のステップS9では、ステップS4またはステップS7で推定された車線からの車線変更ありとしてウインカースイッチ141からの信号に基づいて走行車線を推定し、処理を終了する。ステップS10では、舵角センサ133からの信号に基づいてステアリングホイールが所定量以上操作されたか否かを判定する。ステップS10で肯定されるとステップS9に進み、否定されるとステップS11に進む。この場合のステップS9では、ステップS4またはステップS7で推定された車線からの車線変更ありとして舵角センサ133からの信号に基づいて走行車線を推定し、処理を終了する。ステップS11では、ステップS4またはステップS7で推定された車線からの車線変更なしとして走行車線を推定し、処理を終了する。 In step S8, based on the signal from the blinker switch 141, it is determined whether or not the direction indicator has been operated. If the result in step S8 is affirmative, the process proceeds to step S9, and if the result is negative, the process proceeds to step S10. In this case, in step S9, the lane of travel is estimated based on the signal from the winker switch 141 assuming that there is a lane change from the lane estimated in step S4 or step S7, and the process ends. In step S10, based on the signal from the steering angle sensor 133, it is determined whether or not the steering wheel has been operated by a predetermined amount or more. If the result in step S10 is affirmative, the process proceeds to step S9, and if the result is negative, the process proceeds to step S11. In this case, in step S9, the lane is estimated based on the signal from the steering angle sensor 133 assuming that there is a lane change from the lane estimated in step S4 or step S7, and the process ends. In step S11, the driving lane is estimated assuming that there is no lane change from the lane estimated in step S4 or step S7, and the process ends.
 なお、車速検出値に基づいて走行車線を推定する際(図6のステップS5~ステップS7)、サポートベクターマシン等のアルゴリズムを用いて、車速変化モデルを高速道路と一般道路等の2つのグループに分類するようにしてもよい。RNN(Recurrent Neural Network)やLSTM(Long Short-term Memory)などのモデルを用いて車速検出値から車線を推定するようにしてもよい。図6では、路面プロファイル一致度の判定処理を車速一致度の判定処理よりも先に行うようにしているが、これに限らず、車速一致度の判定処理を先に行うようにしてもよく、車速一致度の判定処理を路面プロファイル一致度の判定処理よりも優先して行うようにしてもよい。路面プロファイル一致度よりも車速一致度の重み付けを大きくし、走行車線を推定するようにしてもよい。 When estimating the driving lane based on the vehicle speed detection value (steps S5 to S7 in FIG. 6), an algorithm such as a support vector machine is used to divide the vehicle speed change model into two groups, such as expressways and general roads. You may make it classify|categorize. A model such as RNN (Recurrent Neural Network) or LSTM (Long Short-term Memory) may be used to estimate the lane from the vehicle speed detection value. In FIG. 6, the road surface profile matching degree determination processing is performed before the vehicle speed matching degree determination processing. The vehicle speed matching degree determination process may be performed with priority over the road surface profile matching degree determination process. The vehicle speed matching degree may be weighted more than the road surface profile matching degree to estimate the driving lane.
 本実施形態に係る車線推定装置101による動作をまとめると以下のようになる。図1に示すように、ビル群に囲まれて互いに平行に延在する複数の車線LN1~LN3が存在する領域の対象車両1aに着目する。この対象車両1aは一般道路RD2を走行しているため、高速道路RD1を走行する車両1bよりも車速が低い。このため、車速センサ132により検出された対象車両1aの車速(車速検出値)と、サーバ装置3から取得した各車線LN1~LN3の車速変化モデルとを比較すると、車速検出値と車線LN3の車速変化モデルとの一致度が最も高い。これにより対象車両1aが走行車線LN3を走行中であると推定できる(ステップS7)。 The operation of the lane estimation device 101 according to this embodiment can be summarized as follows. As shown in FIG. 1, attention is paid to a target vehicle 1a in an area surrounded by a group of buildings and having a plurality of lanes LN1 to LN3 extending parallel to each other. Since the target vehicle 1a is traveling on the general road RD2, the vehicle speed is lower than that of the vehicle 1b traveling on the highway RD1. Therefore, when the vehicle speed of the target vehicle 1a (vehicle speed detection value) detected by the vehicle speed sensor 132 is compared with the vehicle speed change model of each lane LN1 to LN3 acquired from the server device 3, the vehicle speed detection value and the vehicle speed of the lane LN3 are compared. Highest agreement with the change model. Accordingly, it can be estimated that the target vehicle 1a is traveling on the travel lane LN3 (step S7).
 このように車速検出値に基づいて走行車線を推定することで、ビル群に囲まれる等により測位の精度が低下する状況であっても、走行車線を精度よく推定することができる。さらに本実施形態では、横加速度センサ131からの信号に基づく実測路面プロファイルと、サーバ装置3から取得した参照用路面プロファイルとの一致度が所定値以上であれば、参照用路面プロファイルを有する車線(例えば車線LN3)が走行車線として推定される(ステップS4)。したがって、車速検出値と車速変化モデルとの一致度が所定値未満の場合であっても、路面プロファイルの一致度に基づき走行車線を精度よく推定することができる。 By estimating the driving lane based on the vehicle speed detection value in this way, it is possible to accurately estimate the driving lane even in situations where positioning accuracy is degraded due to being surrounded by buildings, etc. Furthermore, in this embodiment, if the degree of matching between the measured road surface profile based on the signal from the lateral acceleration sensor 131 and the reference road surface profile obtained from the server device 3 is equal to or greater than a predetermined value, the lane having the reference road surface profile ( For example, lane LN3) is estimated as the driving lane (step S4). Therefore, even if the degree of matching between the vehicle speed detection value and the vehicle speed change model is less than the predetermined value, the driving lane can be accurately estimated based on the degree of matching of the road surface profile.
 図1の車両1bを対象車両として、対象車両1bが複数の車線LN1,LN2を有する高速道路RD1を走行している場合において、車線変更時には方向指示器が操作されるとともに、ステアリングホイールが操作される。この場合には、ウインカースイッチ141または舵角センサ133からの信号に基づき、対象車両1bの車線変更ありと判定される(ステップS9)。これにより、車線変更の有無を良好に判定することができるとともに、車線変更の判定結果を用いて走行車線を精度よく推定することができる。例えば車速検出値に基づいて走行車線LN1を走行中であると推定された後、車速検出値に基づく車線推定が困難になった場合(車速一致度が所定値未満になった場合)、車線変更ありと判定されると、車線LN2を走行中であると推定できる。 Assuming that the vehicle 1b in FIG. 1 is a target vehicle, and the target vehicle 1b is traveling on a highway RD1 having a plurality of lanes LN1 and LN2, the direction indicator and the steering wheel are operated when changing lanes. be. In this case, based on the signal from the turn signal switch 141 or the steering angle sensor 133, it is determined that the target vehicle 1b has changed lanes (step S9). As a result, it is possible to satisfactorily determine whether or not there is a lane change, and to accurately estimate the driving lane using the lane change determination result. For example, if it becomes difficult to estimate the lane based on the vehicle speed detection value after it is estimated that the vehicle is traveling in the lane LN1 based on the vehicle speed detection value (when the vehicle speed coincidence is less than a predetermined value), the lane change If it is determined that the vehicle is present, it can be estimated that the vehicle is traveling on the lane LN2.
 本実施形態によれば以下のような作用効果を奏することができる。
(1)車線推定装置101は、測位衛星2から送信された信号を受信して車両1の位置を測位する測位センサ10により得られた車両1の現在位置の位置情報を取得する位置情報取得部211と、車両1の車速情報と車両1が走行する路面の路面プロファイルに応じて変化する横加速度センサ131の検出値の情報とを含む車両1の走行情報を取得する走行情報取得部212と、互いに略平行に延びる複数の走行車線LN1~LN3の各々における車速変化の基準となる車速変化モデルを取得する基準情報取得部213と、道路の車線情報と路面プロファイルの情報とを含む道路地図情報を取得する道路地図情報取得部214と、走行情報取得部212により取得された走行情報と、基準情報取得部213により取得された車速変化モデルと、道路地図情報取得部214により取得された道路地図情報とに基づいて、複数の走行車線LN1~LN3のうち、位置情報取得部211により取得された位置情報により定まる車両1の位置に対応する走行車線を特定する走行車線特定部25と、を備える(図5)。
According to this embodiment, the following effects can be obtained.
(1) The lane estimation device 101 is a position information acquisition unit that acquires position information of the current position of the vehicle 1 obtained by the positioning sensor 10 that receives signals transmitted from the positioning satellites 2 and measures the position of the vehicle 1. 211, a driving information acquisition unit 212 for acquiring driving information of the vehicle 1 including vehicle speed information of the vehicle 1 and information of the detection value of the lateral acceleration sensor 131 that changes according to the road profile of the road surface on which the vehicle 1 is traveling; A reference information acquisition unit 213 that acquires a vehicle speed change model that serves as a reference for vehicle speed changes in each of a plurality of driving lanes LN1 to LN3 extending substantially parallel to each other, and road map information including road lane information and road surface profile information. The road map information acquisition unit 214 to be acquired, the travel information acquired by the travel information acquisition unit 212, the vehicle speed change model acquired by the reference information acquisition unit 213, and the road map information acquired by the road map information acquisition unit 214 and a driving lane identification unit 25 that identifies the driving lane corresponding to the position of the vehicle 1 determined by the position information acquired by the position information acquisition unit 211 among the plurality of driving lanes LN1 to LN3 based on ( Figure 5).
 このように本実施形態では、路面プロファイル情報と車速情報とを用いて走行車線を推定するため、高層ビルが林立する領域やトンネル内等で測位センサ10による測位の精度が低下するような状況においても、走行車線を精度よく推定することができる。すなわち、例えば高速道路と一般道路とが略平行に延在する領域には、車速変化の特性(車速変化モデル)が異なる複数の走行車線LN1~LN3が延在するため、車速情報を用いることで、走行車線を良好に推定することができる。これに対し、車両1が走行する車線内の幅方向のタイヤの位置などは、車両毎に異なる場合があるため、路面プロファイルに基づくだけでは走行車線を精度よく推定することが困難である。 As described above, in the present embodiment, since the road surface profile information and the vehicle speed information are used to estimate the driving lane, in a situation where the accuracy of positioning by the positioning sensor 10 is degraded, such as in an area where high-rise buildings stand or in a tunnel. can also accurately estimate the driving lane. That is, for example, in a region where an expressway and a general road extend substantially parallel, a plurality of driving lanes LN1 to LN3 with different characteristics of vehicle speed change (vehicle speed change model) extend. , the driving lane can be estimated well. On the other hand, the positions of the tires in the width direction in the lane in which the vehicle 1 travels may differ from vehicle to vehicle, so it is difficult to accurately estimate the driving lane only based on the road surface profile.
(2)複数の走行車線LN1~LN3の各々に対応する車速変化モデルは、機械学習により構築される。これにより車線毎の車速変化の特性を良好に反映した車速変化モデルを用いることができ、車線推定を良好に行うことができる。 (2) A vehicle speed change model corresponding to each of the plurality of driving lanes LN1 to LN3 is constructed by machine learning. As a result, it is possible to use a vehicle speed change model that satisfactorily reflects the characteristic of vehicle speed change for each lane, and to perform lane estimation satisfactorily.
(3)車速変化モデルは、渋滞が発生しているときの車速変化モデルと、渋滞が発生していないときの車速変化モデルとを含む(図4A,図4B)。渋滞時と非渋滞時とでは車速変化の特性が大きくことなるが、この点を考慮して車速変化モデルを準備するので、より精度よく車線推定を行うことができる。 (3) The vehicle speed change model includes a vehicle speed change model when traffic congestion occurs and a vehicle speed change model when traffic congestion does not occur (Figs. 4A and 4B). Although the characteristics of vehicle speed change are significantly different between congested traffic and non-congested traffic, a vehicle speed change model is prepared in consideration of this point, so lane estimation can be performed with higher accuracy.
(4)走行情報取得部212により取得される走行情報には、さらに方向指示器の操作情報が含まれる。走行車線特定部25は、さらに方向指示器の操作情報(ウインカースイッチ141からの信号)に基づいて、走行車線を特定する(図5)。これにより車線変更の有無を良好に判定することができ、車線推定をより精度よく行うことができる。 (4) The travel information acquired by the travel information acquisition unit 212 further includes operation information of the direction indicator. The driving lane identification unit 25 further identifies the driving lane based on the operation information of the direction indicator (signal from the blinker switch 141) (Fig. 5). As a result, it is possible to determine whether or not there is a lane change, and to perform lane estimation with higher accuracy.
(5)走行情報取得部212により取得される走行情報には、さらにステアリングホイールの舵角を示す舵角情報が含まれる。走行車線特定部25は、さらにステアリングホイールの舵角情報(舵角センサ133からの信号)に基づいて、走行車線を特定する(図5)。これにより車線変更の有無を良好に判定することができ、車線推定の精度を一層高めることができる。 (5) The travel information acquired by the travel information acquisition unit 212 further includes steering angle information indicating the steering angle of the steering wheel. The driving lane identification unit 25 further identifies the driving lane based on steering angle information of the steering wheel (signal from the steering angle sensor 133) (FIG. 5). As a result, it is possible to determine whether or not there is a lane change, and to further improve the accuracy of lane estimation.
(6)本実施形態の車線推定装置101は、車線推定方法として用いることもできる。車線推定方法においては、測位衛星2から送信された信号を受信して車両1を測位する測位センサ10により得られた車両1の現在位置の位置情報と、車両1の車速情報と車両1が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報とを含む車両1の走行情報と、互いに略平行に延びる複数の走行車線LN1~LN3の各々における車速変化の基準となる車速基準情報と、道路の車線情報と路面プロファイルの情報とを含む道路地図情報と、をそれぞれ取得するステップ(ステップS1)と、取得された走行情報と車速基準情報と道路地図情報とに基づいて、複数の走行車線LN1~LN3のうち、位置情報により定まる車両1の位置に対応する走行車線を特定するステップ(ステップS2~ステップS7)とを、コンピュータ(コントローラ20)により実行することを含む(図6)。これにより、車両1が走行中の車線を精度よく推定することができる。 (6) The lane estimation device 101 of this embodiment can also be used as a lane estimation method. In the lane estimation method, the position information of the current position of the vehicle 1 obtained by the positioning sensor 10 that receives the signal transmitted from the positioning satellite 2 and positions the vehicle 1, the vehicle speed information of the vehicle 1, and the vehicle 1 traveling driving information of the vehicle 1 including information of the detected value of the detector that changes according to the road profile of the road surface; and road map information including road lane information and road surface profile information (step S1); A computer (controller 20) executes a step (steps S2 to S7) of specifying a driving lane corresponding to the position of the vehicle 1 determined by the positional information among the driving lanes LN1 to LN3 (FIG. 6 ). As a result, the lane on which the vehicle 1 is traveling can be accurately estimated.
 なお、上記実施形態では、測位衛星から送信された信号を受信して測位センサ10により車両位置が測位されるようにしたが、この衛星測位による手法だけでなく慣性航法による手法に基づいて、車両位置を求めるようにしてもよい。上記実施形態では、走行情報取得部212が横加速度センサ131の検出値(センサ値)の情報を含む車両1の走行情報を取得するようにしたが、路面プロファイルに応じて変化する他の検出器の検出値の情報を含む走行情報を取得するようにしてもよい。例えばロール角やロールレートを検出するセンサの検出値や、上下方向の車両の振動を検出するセンサの検出値の情報を含む走行情報を、車速情報とともに走行情報取得部が取得するようにしてもよい。 In the above embodiment, signals transmitted from positioning satellites are received and the position of the vehicle is measured by the positioning sensor 10. A position may be obtained. In the above embodiment, the traveling information acquisition unit 212 acquires the traveling information of the vehicle 1 including the information of the detection value (sensor value) of the lateral acceleration sensor 131, but other detectors that change according to the road surface profile You may make it acquire the driving|running|working information containing the information of the detection value of. For example, even if the driving information acquisition unit acquires the driving information including the detection value of the sensor that detects the roll angle and roll rate and the detection value of the sensor that detects the vibration of the vehicle in the vertical direction together with the vehicle speed information. good.
 上記実施形態では、基準情報取得部213が、高架の高速道路RD1と一般道路RD2とを含む道路群RDにおける、互いに略平行に延びる複数の走行車線LN1~LN3の各々における車速変化の基準となる車速基準情報として車速変化モデル(図4A,図4B)を取得するようにしたが、車速基準情報は上述したものに限らない。昼や夜間等、時間帯に応じた異なる車速基準情報を取得するようにしてもよい。したがって、車速変化モデルは、渋滞が発生しているときの車速変化モデルと渋滞が発生していないときの車速変化モデルに限らない。車速変化モデルを、機械学習以外の手法(例えば統計処理)によって構築してもよい。上記実施形態では、互いに略平行に延びる複数の走行車線を有する道路群RDを、高さの異なる複数の道路RD1,RD2によって構成したが、これに限らず、高さの等しい複数の道路によって構成してもよい。例えば高速道路の側方を一般道路が延在している場合において、この高速道路と一般道路とにより道路群を構成してもよい。 In the above embodiment, the reference information acquisition unit 213 serves as a reference for vehicle speed changes in each of the plurality of driving lanes LN1 to LN3 extending substantially parallel to each other in the road group RD including the elevated expressway RD1 and the general road RD2. Although the vehicle speed change model (FIGS. 4A and 4B) is acquired as the vehicle speed reference information, the vehicle speed reference information is not limited to the above. Different vehicle speed reference information may be acquired according to time zones such as daytime and nighttime. Therefore, the vehicle speed change model is not limited to the vehicle speed change model when traffic congestion occurs and the vehicle speed change model when traffic congestion does not occur. The vehicle speed change model may be constructed by techniques other than machine learning (for example, statistical processing). In the above embodiment, the road group RD having a plurality of driving lanes extending substantially parallel to each other is composed of a plurality of roads RD1 and RD2 having different heights, but is not limited to this, and is composed of a plurality of roads having the same height. You may For example, when a general road extends on the side of an expressway, the expressway and the general road may form a road group.
 上記実施形態では、方向指示器の操作情報およびステアリングホイールの操作情報に基づいて車線変更の有無を判定するようにしたが、他のセンサやスイッチからの信号に基づいてこれを判定するようにしてもよい。上記実施形態では、車線推定装置101を車両1に搭載したが、車線推定装置101の機能の一部または全部をサーバ装置3に設けるようにしてもよい。上記実施形態では、車線推定装置101を手動運転車両に適用したが、本発明の車線推定装置101は自動運転車両に適用することもできる。 In the above embodiment, the presence or absence of a lane change is determined based on the operation information of the direction indicator and the operation information of the steering wheel, but it is determined based on signals from other sensors and switches. good too. Although the lane estimation device 101 is installed in the vehicle 1 in the above embodiment, some or all of the functions of the lane estimation device 101 may be provided in the server device 3 . In the above embodiment, the lane estimation device 101 is applied to a manually driven vehicle, but the lane estimation device 101 of the present invention can also be applied to an automatically driven vehicle.
 以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。 The above description is merely an example, and the present invention is not limited by the above-described embodiments and modifications as long as the features of the present invention are not impaired. It is also possible to arbitrarily combine one or more of the above embodiments and modifications, and it is also possible to combine modifications with each other.
1 車両、10 測位センサ、11 通信ユニット、20 コントローラ、21 情報取得部、25 走行車線特定部、101 車線推定装置、131 横加速度センサ、132 車速センサ、133 舵角センサ、141 ウインカースイッチ、211 位置情報取得部、212 走行情報取得部、213 基準情報取得部、214 道路地図情報取得部 1 Vehicle, 10 Positioning sensor, 11 Communication unit, 20 Controller, 21 Information acquisition unit, 25 Driving lane identification unit, 101 Lane estimation device, 131 Lateral acceleration sensor, 132 Vehicle speed sensor, 133 Rudder angle sensor, 141 Blinker switch, 211 Position Information acquisition unit 212 Driving information acquisition unit 213 Reference information acquisition unit 214 Road map information acquisition unit

Claims (6)

  1.  測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得する位置情報取得部と、
     前記車両の車速情報と前記車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報とを含む前記車両の走行情報を取得する走行情報取得部と、
     互いに略平行に延びる複数の走行車線の各々における車速変化の基準となる車速基準情報を取得する基準情報取得部と、
     道路の走行車線情報と前記路面プロファイルの情報とを含む道路地図情報を取得する道路地図情報取得部と、
     前記走行情報取得部により取得された走行情報と、前記基準情報取得部により取得された車速基準情報と、前記道路地図情報取得部により取得された道路地図情報とに基づいて、前記複数の走行車線のうち、前記位置情報取得部により取得された位置情報により定まる前記車両の位置に対応する走行車線を特定する走行車線特定部と、を備えることを特徴とする車線推定装置。
    a position information acquisition unit that acquires position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and measures the position of the vehicle;
    a travel information acquisition unit that acquires travel information of the vehicle including vehicle speed information of the vehicle and information of a detection value of a detector that changes according to a road surface profile of the road surface on which the vehicle travels;
    a reference information acquisition unit that acquires vehicle speed reference information that serves as a reference for vehicle speed changes in each of a plurality of driving lanes that extend substantially parallel to each other;
    a road map information acquisition unit that acquires road map information including driving lane information of a road and information of the road surface profile;
    The plurality of driving lanes based on the driving information obtained by the driving information obtaining unit, the vehicle speed reference information obtained by the reference information obtaining unit, and the road map information obtained by the road map information obtaining unit. and a traffic lane identification unit that identifies a traffic lane corresponding to the position of the vehicle determined by the position information acquired by the position information acquisition unit.
  2.  請求項1に記載の車線推定装置において、
     前記車速基準情報は、機械学習により構築される前記複数の走行車線の各々に対応する車速変化モデルを含むことを特徴とする車線推定装置。
    In the lane estimation device according to claim 1,
    The lane estimation device, wherein the vehicle speed reference information includes a vehicle speed change model corresponding to each of the plurality of driving lanes constructed by machine learning.
  3.  請求項2に記載の車線推定装置において、
     前記車速変化モデルは、渋滞が発生しているときの車速変化モデルと、渋滞が発生していないときの車速変化モデルとを含むことを特徴とする車線推定装置。
    In the lane estimation device according to claim 2,
    The lane estimation device, wherein the vehicle speed change model includes a vehicle speed change model when traffic congestion occurs and a vehicle speed change model when traffic congestion does not occur.
  4.  請求項1から3のいずれか1項に記載の車線推定装置において、
     前記走行情報取得部により取得される走行情報には、さらに方向指示器の操作情報が含まれ、
     前記走行車線特定部は、さらに前記方向指示器の操作情報に基づいて、走行車線を特定することを特徴とする車線推定装置。
    In the lane estimation device according to any one of claims 1 to 3,
    The travel information acquired by the travel information acquisition unit further includes operation information of a direction indicator,
    The lane estimation device, wherein the driving lane identifying unit further identifies the driving lane based on operation information of the direction indicator.
  5.  請求項1から4のいずれか1項に記載の車線推定装置において、
     前記走行情報取得部により取得される走行情報には、さらにステアリングホイールの舵角を示す舵角情報が含まれ、
     前記走行車線特定部は、さらに前記ステアリングホイールの舵角情報に基づいて、走行車線を特定することを特徴とする車線推定装置。
    In the lane estimation device according to any one of claims 1 to 4,
    The travel information acquired by the travel information acquisition unit further includes steering angle information indicating the steering angle of the steering wheel,
    The lane estimating device according to claim 1, wherein the driving lane identifying unit further identifies the driving lane based on steering angle information of the steering wheel.
  6.  測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得するステップと、
     前記車両の車速情報と前記車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報とを含む前記車両の走行情報を取得するステップと、
     互いに略平行に延びる複数の走行車線の各々における車速変化の基準となる車速基準情報を取得するステップと、
     道路の走行車線情報と前記路面プロファイルの情報とを含む道路地図情報を取得するステップと、
     前記走行情報と前記車速基準情報と前記道路地図情報とに基づいて、前記複数の走行車線のうち、前記位置情報により定まる前記車両の位置に対応する走行車線を特定するステップと、をコンピュータにより実行することを含むことを特徴とする車線推定方法。
    a step of acquiring position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and measures the position of the vehicle;
    a step of acquiring travel information of the vehicle including vehicle speed information of the vehicle and information of detection values of a detector that change according to a road surface profile of the road surface on which the vehicle travels;
    acquiring vehicle speed reference information that serves as a reference for vehicle speed changes in each of a plurality of driving lanes extending substantially parallel to each other;
    obtaining road map information including driving lane information of a road and information of said road surface profile;
    a step of identifying, from among the plurality of driving lanes, a driving lane corresponding to the position of the vehicle determined by the positional information, based on the driving information, the vehicle speed reference information, and the road map information; A lane estimation method, comprising:
PCT/JP2022/034053 2021-09-14 2022-09-12 Lane estimation device and lane estimation method WO2023042791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548457A JPWO2023042791A1 (en) 2021-09-14 2022-09-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021149227 2021-09-14
JP2021-149227 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042791A1 true WO2023042791A1 (en) 2023-03-23

Family

ID=85602881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034053 WO2023042791A1 (en) 2021-09-14 2022-09-12 Lane estimation device and lane estimation method

Country Status (2)

Country Link
JP (1) JPWO2023042791A1 (en)
WO (1) WO2023042791A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152648A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Vehicle control device
JP2011113547A (en) * 2009-11-30 2011-06-09 Sumitomo Electric Ind Ltd Traffic information estimation device, computer program for estimating traffic information, and traffic information estimation method
JP2016045063A (en) * 2014-08-22 2016-04-04 株式会社日立製作所 Road surface property measurement device and road surface property measurement method
JP2017096963A (en) * 2016-12-22 2017-06-01 トムトム ベルギー ネムローゼ フエンノートシャップTomTom Belgium N.V. Navigation method and system
JP2019040378A (en) * 2017-08-25 2019-03-14 住友電気工業株式会社 Computer program, travel road determination method, travel road determination device, on-vehicle device, and data structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152648A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Vehicle control device
JP2011113547A (en) * 2009-11-30 2011-06-09 Sumitomo Electric Ind Ltd Traffic information estimation device, computer program for estimating traffic information, and traffic information estimation method
JP2016045063A (en) * 2014-08-22 2016-04-04 株式会社日立製作所 Road surface property measurement device and road surface property measurement method
JP2017096963A (en) * 2016-12-22 2017-06-01 トムトム ベルギー ネムローゼ フエンノートシャップTomTom Belgium N.V. Navigation method and system
JP2019040378A (en) * 2017-08-25 2019-03-14 住友電気工業株式会社 Computer program, travel road determination method, travel road determination device, on-vehicle device, and data structure

Also Published As

Publication number Publication date
JPWO2023042791A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US11846522B2 (en) Warning polygons for weather from vehicle sensor data
US11685431B2 (en) Steering angle calibration
JP6985203B2 (en) Behavior prediction device
US11613253B2 (en) Method of monitoring localization functions in an autonomous driving vehicle
US9140792B2 (en) System and method for sensor based environmental model construction
JP7020348B2 (en) Vehicle position estimation device
JP6936658B2 (en) Vehicle driving support device
CN110871796A (en) Lane keeping control device
WO2015052577A1 (en) Traffic lane guidance system for vehicle and traffic lane guidance method for vehicle
JP7151187B2 (en) road sign recognition device
US11227420B2 (en) Hazard warning polygons constrained based on end-use device
CN109425861B (en) Device for calculating reliability of vehicle position
CN113753072A (en) Automatic comfort level scoring system based on human driving reference data
US11420632B2 (en) Output device, control method, program and storage medium
JP7037736B2 (en) Road surface information collection system
JP6790951B2 (en) Map information learning method and map information learning device
US20230206750A1 (en) Road management apparatus and road management method
JP2023168399A (en) Map data generation method
WO2021235209A1 (en) Traffic lane estimation device and traffic lane estimation method
WO2023042791A1 (en) Lane estimation device and lane estimation method
US20190295283A1 (en) Other vehicle position estimation apparatus
US20210261116A1 (en) Information processing device and driving assistance device
US20230242102A1 (en) Position estimation system
WO2021230087A1 (en) Wrong-way driving detecting device, and wrong-way driving detecting method
JP2020177314A (en) Vehicle traffic management device, on-vehicle device, vehicle traffic management system, vehicle traffic management method, and vehicle traffic management program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548457

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869938

Country of ref document: EP

Kind code of ref document: A1