WO2023042450A1 - Method for manufacturing semiconductor device, semiconductor device, and wiring board for semiconductor device - Google Patents

Method for manufacturing semiconductor device, semiconductor device, and wiring board for semiconductor device Download PDF

Info

Publication number
WO2023042450A1
WO2023042450A1 PCT/JP2022/013330 JP2022013330W WO2023042450A1 WO 2023042450 A1 WO2023042450 A1 WO 2023042450A1 JP 2022013330 W JP2022013330 W JP 2022013330W WO 2023042450 A1 WO2023042450 A1 WO 2023042450A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
wiring board
semiconductor device
semiconductor chip
chip
Prior art date
Application number
PCT/JP2022/013330
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 茅野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023548112A priority Critical patent/JPWO2023042450A1/ja
Publication of WO2023042450A1 publication Critical patent/WO2023042450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present technology (technology according to the present disclosure) relates to a method for manufacturing a semiconductor device, a semiconductor device, and a wiring board for a semiconductor device.
  • the present invention relates to a technique effectively applied to a wiring board for a semiconductor device.
  • a semiconductor chip is formed by singulating a plurality of chip regions set on a semiconductor wafer into individual pieces in the manufacturing process of a semiconductor device.
  • a semiconductor wafer that has been irradiated with a dicing laser is mounted on a dicing tape via an adhesive layer, and then the dicing tape is stretched from the outer circumference. This tension separates the chip regions from each other, resulting in a plurality of singulated semiconductor chips. Then, the separated semiconductor chips are picked up from the dicing tape. The individualized semiconductor chips are then assembled into packages.
  • JP-A-2007-250598 Japanese Patent Application Laid-Open No. 2021-27099 JP 2019-195978 A
  • the process will increase accordingly.
  • the silicon of the semiconductor chip may be exposed.
  • the purpose of this technology is to suppress the occurrence of exposed portions on the surface of the semiconductor chip.
  • a method for manufacturing a semiconductor device includes a semiconductor wafer provided with a plurality of chip regions, which are regions in which constituent elements of a semiconductor chip are formed, and a base material made of an elastic material.
  • the semiconductor wafer is cut so as not to divide the wiring board aggregate, the chip regions are separated into semiconductor chips, and the wiring board aggregate is horizontally extended to form the semiconductor chips. and covering the semiconductor chips with a resin sealing body while maintaining the widened spacing between the semiconductor chips, the resin sealing body and the wiring between the semiconductor chips It includes cutting the substrate assembly to individualize the semiconductor device.
  • a semiconductor device includes a semiconductor chip and a base material made of a stretchable material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less, and from one surface of the base material to the other surface.
  • a wiring board having a plurality of electrically connected wirings and superimposed and joined to the bottom surface of the semiconductor chip, and a resin sealing body covering the semiconductor chip.
  • a wiring substrate for a semiconductor device is a substrate that is superimposed and bonded to the bottom surface of a semiconductor chip, and has a base material made of an elastic material having an elastic modulus of 200% or more and an elastic modulus of 100 MPa or less. and a plurality of wirings electrically connected from one surface of the base material to the other surface thereof.
  • FIG. 1 is a plan view schematically showing a semiconductor device according to a first embodiment of the present technology
  • FIG. 1B is a cross-sectional view schematically showing a cross-sectional structure taken along the line AA of FIG. 1A
  • It is a figure which shows the planar structure of a semiconductor wafer.
  • 2B is a diagram showing the configuration of a chip area by enlarging the C area of FIG. 2A
  • FIG. 2 is a diagram showing a configuration of a wiring board area by enlarging a part of the wiring board assembly
  • It is a schematic process sectional view showing a manufacturing method of a semiconductor device concerning a 1st embodiment of this art.
  • FIG. 3B is a schematic process cross-sectional view following FIG.
  • FIG. 3A is a schematic process cross-sectional view following FIG. 3B;
  • FIG. 3C is a schematic process cross-sectional view following FIG. 3C;
  • FIG. 3D is a schematic process cross-sectional view following FIG. 3D;
  • FIG. 3D is a schematic process cross-sectional view following FIG. 3E;
  • FIG. 3F is a schematic process cross-sectional view following FIG. 3F;
  • FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to Modification 1-1 of the first embodiment of the present technology; It is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to Modification 1-2 of the first embodiment of the present technology.
  • FIG. 10 is a plan view schematically showing a schematic configuration of a semiconductor chip included in a semiconductor device according to a second embodiment of the present technology; It is a typical process sectional view showing a manufacturing method of a semiconductor device concerning a 2nd embodiment of this art.
  • FIG. 8B is a schematic process cross-sectional view following FIG. 8A;
  • FIG. 8B is a schematic process cross-sectional view following FIG. 8B;
  • FIG. 8D is a schematic process cross-sectional view following FIG. 8C;
  • FIG. 8D is a schematic process cross-sectional view following FIG. 8D;
  • FIG. 8F is a schematic process cross-sectional view following FIG.
  • FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to modification 2-1 of the second embodiment of the present technology; It is a schematic process cross-sectional view showing a method of manufacturing a semiconductor device according to Modification 2-1 of the second embodiment of the present technology.
  • the first direction and the second direction which are orthogonal to each other in the same plane, are the X direction and the Y direction, respectively.
  • a third direction orthogonal to each of the second directions is the Z direction.
  • the thickness direction of a semiconductor device 1A which will be described later, will be described as the Z direction.
  • a semiconductor device 1A according to the first embodiment of the present technology is a semiconductor chip 10 and an interposer called an interposer that is overlapped and joined to a first surface S1 of the semiconductor chip 10.
  • a wiring board 20 is provided.
  • the semiconductor device 1A according to the first embodiment of the present technology further includes a storage body (package) 30 that stores the semiconductor chip 10 .
  • the housing body 30 includes a wiring board 20 and a resin sealing body 31 provided on the fourth surface S4 side, which is the upper surface of the wiring board 20, and sealing the semiconductor chip 10 therein.
  • the semiconductor chip 10 has a rectangular planar shape that intersects with its thickness direction (Z direction).
  • the semiconductor chip 10 mainly includes, but is not limited to, a semiconductor substrate 11 and a plurality of transistors (not shown) provided on an element forming surface (main surface) of the semiconductor substrate 11. and a laminated body (multilayer wiring layer) 12 formed by alternately stacking insulating layers and wiring layers on the element forming surface side of the semiconductor substrate 11 .
  • the semiconductor chip 10 has a first surface S1 and a second surface S2 located opposite to each other.
  • the first surface S1 may be called the bottom surface of the semiconductor chip 10
  • the second surface S2 may be called the top surface of the semiconductor chip 10.
  • the bottom surface of the semiconductor chip 10 is the surface closer to the wiring substrate 20
  • the top surface of the semiconductor chip 10 is the surface opposite to the bottom surface of the semiconductor chip 10 .
  • a third surface S3 shown in FIG. 1B is a side surface of the semiconductor chip 10.
  • the third surface S3 is a surface forming the outer peripheral surface of the semiconductor chip 10, and is a surface connecting the first surface S1 and the second surface S2 in the Z direction.
  • the wiring substrate 20 and the resin sealing body 31 overlap the entire semiconductor chip 10 in plan view. In other words, the contours of the wiring board 20 and the resin sealing body 31 are outside the contour of the semiconductor chip 10 in plan view.
  • the semiconductor substrate 11 shown in FIG. 1B is made of single crystal silicon, for example.
  • the insulating layer of the laminate 12 is composed of, for example, a silicon oxide film.
  • the wiring layer of the laminate 12 is composed of, for example, a copper (Cu) film, an aluminum (Al) film, or an aluminum alloy film in which at least one of silicon (Si) and copper (Cu) is added to Al.
  • Si is added mainly for the purpose of improving electromigration resistance.
  • Cu is added mainly for the purpose of improving alloy spike resistance.
  • the wiring layer of the first embodiment is composed of, for example, an Al alloy film having an Al--Si--Cu composition in which Si and Cu are added to Al.
  • the semiconductor chip 10 contains an integrated circuit.
  • This integrated circuit is mainly composed of transistor elements formed on the semiconductor substrate 11 and wires formed in the wiring layer of the laminate 12 .
  • the semiconductor chip 10 has a plurality of electrode pads 13 provided on the first surface S1 side.
  • the electrode pads 13 are arranged, for example, along four sides in the two-dimensional plane of the semiconductor chip 10 .
  • the electrode pads 13 are formed as components of an integrated circuit and function as external terminals such as signal input/output terminals and power supply terminals.
  • the electrode pads 13 are provided so as to face the first surface S1, and are overlapped and joined to electrode pads 22a of the wiring board 20, which will be described later.
  • the wiring board 20 has a rectangular planar shape that intersects the thickness direction (Z direction), and is, for example, a square in the first embodiment.
  • the wiring board 20 has a fourth surface S4 and a fifth surface S5 located on opposite sides of each other.
  • the fourth surface S4 is sometimes referred to as the top surface of the wiring board 20
  • the fifth surface S5 is sometimes referred to as the bottom surface of the wiring board 20.
  • the top surface of the wiring board 20 is closer to the semiconductor chip 10
  • the bottom surface of the wiring board 20 is the surface opposite to the top surface of the wiring board 20 .
  • the upper surface (fourth surface S4) of the wiring board 20 is joined to the bottom surface (first surface S1) of the semiconductor chip 10.
  • first surface S1 first surface S1
  • the wiring board 20 has a base material 21 and a plurality of wirings 22 provided on the base material 21 .
  • the base material 21 is made of an insulating stretchable material, and can be stretched by applying force.
  • the base material 21 is made of, for example, an elastic material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less.
  • Elastic materials include, for example, elastomers.
  • stretchable materials include silicon resin, urethane resin, epoxy resin, acrylic resin, and fluororubber.
  • the elastic material may be the material described in Patent Document 2 or Patent Document 3.
  • the wiring board 20 includes a central portion 20a that overlaps the semiconductor chip 10 in the thickness direction (overlaps in plan view) and a peripheral edge portion 20b that does not overlap the semiconductor chip 10 in the thickness direction (does not overlap in plan view).
  • the peripheral portion 20b is thinner than the central portion 20a. More specifically, the thickness of the peripheral portion 20b becomes thinner as the distance from the central portion 20a increases.
  • the thickness of the central portion 20a is preferably, for example, 200 ⁇ m or more and 300 ⁇ m or less.
  • a plurality of wirings 22 are provided in the central portion 20a of the wiring board 20 between the central portion 20a and the peripheral edge portion 20b. That is, the central portion 20a is a region in which a plurality of wirings 22 are provided. Although not limited to this, a plurality of wirings 22 are provided so as to occupy about 80% of the central portion 20a, for example.
  • the wiring 22 is electrically connected from one surface of the fourth surface S4 and the fifth surface S5 to the other surface. Also, the wiring 22 is electrically connected to the semiconductor chip 10 on one side of the base material 21 .
  • the wiring 22 is an electrode pad 22a provided on the fourth surface S4 side, an electrode pad 22b provided on the fifth surface S5 side, and a connection portion that electrically connects the electrode pad 22a and the electrode pad 22b. 22c.
  • the electrode pads 22 a are arranged at positions corresponding to the electrode pads 13 of the semiconductor chip 10 .
  • the electrode pads 22a face the fourth surface S4 and are overlapped with and joined to the electrode pads 13 of the semiconductor chip 10. As shown in FIG. Thereby, the electrode pad 22 a is electrically connected to the electrode pad 13 .
  • the electrode pads 22b are arranged at positions corresponding to terminals of a mother board (not shown).
  • the configuration of 22c is not limited to the example shown in FIG. 1B, and may have other configurations as long as the electrode pads 22a and 22b are electrically connected.
  • a bump electrode 61 is fixed to the electrode pad 22b and is electrically and mechanically connected.
  • the bump electrode 61 for example, a Pb-free composition solder bump that does not substantially contain Pb is used.
  • the bump electrodes 61 may be provided at positions corresponding to the terminals of the motherboard (not shown), and the positions and number thereof are not limited to those shown in FIG. 1B.
  • the resin sealing body 31 has a square planar shape that intersects the thickness direction (Z direction), and is, for example, a square in the first embodiment.
  • the resin sealing body 31 has the same size as the wiring substrate 20 in plan view.
  • the resin sealing body 31 covers the semiconductor chip 10 . More specifically, as shown in FIG. 1B, the resin sealing body 31 covers the second surface S2 and the third surface S3 of the semiconductor chip 10. As shown in FIG. Also, the resin sealing body 31 covers the peripheral edge portion 20 b of the wiring board 20 . More specifically, the resin sealing body 31 covers the fourth surface S4 of the peripheral portion 20b. With such a configuration, the resin sealing body 31 seals the semiconductor chip 10 .
  • the resin sealing body 31 is made of, for example, an epoxy-based thermosetting resin. As a method for forming the resin sealing body 31, for example, a transfer molding method suitable for mass production is used.
  • the resin sealing body 31 also enters the interior of the gap B, which is slightly formed between the first surface S1 of the semiconductor chip 10 and the fourth surface S4 of the wiring board 20 and has a wedge-shaped cross section.
  • FIG. 2A is a diagram showing the planar configuration of a semiconductor wafer used for manufacturing the semiconductor device 1A
  • FIG. 2B is a diagram showing the configuration of the chip area by enlarging the C area in FIG. 2A
  • FIG. 2C is a diagram showing the configuration of the wiring board area by enlarging a part of the wiring board assembly to be described later.
  • 3A to 3G are schematic cross-sectional views for explaining the manufacturing method of the semiconductor device 1A.
  • a semiconductor wafer 40 and a wiring substrate assembly 50 are prepared.
  • the prepared semiconductor wafer 40 has multiple chip regions 41 .
  • An integrated circuit is fabricated in the chip area 41 . That is, the chip area 41 is an area in which the components of the semiconductor chip 10 have already been formed.
  • the chip regions 41 are partitioned by scribe lines (dicing regions) 42 and arranged repeatedly in the X and Y directions via the scribe lines 42 . That is, a plurality of chip regions 41 are arranged in a matrix.
  • the semiconductor chip 10 on which the integrated circuit is mounted is formed. That is, FIG. 2A is a diagram showing the entire semiconductor substrate in a wafer state before singulation into a plurality of semiconductor chips. Note that the scribe line 42 is not physically formed.
  • an integrated circuit is formed in the chip area 41 shown in FIG. 2B.
  • An integrated circuit is constructed by forming transistor elements on an element forming surface of a semiconductor substrate 11 and then forming a laminate 12 on the element forming surface of the semiconductor substrate 11 .
  • the laminated body 12 is formed by alternately laminating insulating layers and wiring layers on the element forming surface side of the semiconductor substrate 11 .
  • Electrode pads 13 are formed on the uppermost wiring layer of the laminate 12 .
  • the semiconductor substrate 11 is made of single crystal silicon, for example.
  • As the transistor element for example, a p-channel conductivity type MOSFET ((Metal Oxide Semiconductor Field Effect Transistor)) and an n-channel conductivity type MOSFET are used.
  • the integrated circuit has a CMOS (Complementary MOS) circuit configuration.
  • the electrode pads 13 are formed as components of an integrated circuit and function as external terminals such as signal input/output terminals and power supply terminals.
  • the semiconductor wafer 40 shown in FIGS. 2A and 2B is almost completed.
  • components such as transistor elements, laminates 12, integrated circuits, and electrode pads 13 are formed.
  • the wiring board assembly 50 is obtained by providing a plurality of wiring board regions 51 in a base material 21 made of an elastic material.
  • a central portion 20 a having a plurality of wirings 22 is manufactured in the wiring substrate region 51 .
  • the wiring board area 51 is an area in which a plurality of wirings 22 have already been formed.
  • the wiring substrate region 51 is partitioned by regions 52 where no wiring 22 is provided, and the regions 52 are repeatedly arranged in the X direction and the Y direction. That is, a plurality of wiring board regions 51 are arranged in a matrix.
  • the wiring substrate 20 is formed by singulating the plurality of wiring substrate regions 51 individually along the regions 52 .
  • the wiring substrate regions 51 are arranged in a matrix at the same pitch as the chip regions 41 .
  • the wiring board aggregate 50 may be prepared using, for example, MSAP (Modified Semi Additive Process).
  • MSAP Modem Semi Additive Process
  • vias are formed in an elastic material with copper foil by laser, and wiring 22 is formed by photolithography.
  • the next layer of stretchable material with copper foil is laminated thereon by heating while applying pressure, and the same steps are repeated to form a wiring pattern.
  • the MSAP method repeats the process of forming the wiring pattern described above.
  • the dimension (thickness) in the Z direction of the wiring board assembly 50 is preferably, for example, 200 ⁇ m or more and 300 ⁇ m or less.
  • the first surface S1 of the semiconductor wafer 40 and the fourth surface S4 of the wiring substrate assembly 50 shown in FIG. 3A are irradiated with plasma to activate the surfaces.
  • the semiconductor wafer 40 and the wiring substrate assembly 50 are overlapped and bonded.
  • the electrode pad 13 and the electrode pad 22a are overlapped and joined to be electrically connected. After that, heat treatment may be performed.
  • the semiconductor wafer 40 is cut so as not to divide the wiring board assembly 50, and the chip regions 41 are separated into individual semiconductor chips 10. Then, as shown in FIG. More specifically, the semiconductor wafer 40 is cut along the scribe lines 42 shown in FIG. A dicing blade, for example, is used to cut the semiconductor wafer 40 .
  • a gap of about 100 ⁇ m for example, is formed between the semiconductor chips 10, although not limited to this.
  • grooves may be cut out in the wiring board assembly 50 as shown in FIG. 3C.
  • the individualized semiconductor chips 10 are maintained in a state of being joined to the wiring board assembly 50 .
  • the wiring board aggregate 50 (base material 21) is extended in the horizontal direction (direction perpendicular to the Z direction) to widen the space between the semiconductor chips 10.
  • the dimension (thickness) of the wiring board assembly 50 in the Z direction is, for example, 200 ⁇ m or more and 300 ⁇ m or less, it is possible to prevent the wiring substrate assembly 50 from being cut when stretched in the horizontal direction.
  • the gap between the semiconductor chips 10 was about 100 ⁇ m before stretching, the wiring board aggregate 50 is stretched until the gap becomes, for example, about 300 ⁇ m, although it is not limited to this.
  • the extent to which the wiring board assembly 50 is extended may be determined according to the thickness of the resin sealing body 31 to be left on the side surface of the semiconductor chip 10 and the width to be scraped by singulation.
  • a plurality of wirings 22 are provided in the portion of the wiring board assembly 50 that is bonded to the semiconductor chip 10 .
  • the wirings 22 are densely provided in the portion of the wiring substrate aggregate 50 that is joined to the semiconductor chip 10 . Therefore, the portion of the wiring board assembly 50 that is stretched is mainly the portion between the wiring board regions 51 (the region 52 in FIG. 2C). No wiring is provided in the region 52, and grooves are cut out in the region 52 when the semiconductor wafer 40 is cut with a dicing blade. It mainly acts to stretch the base material 21 in the region 52 .
  • the Z-direction dimension of the region 52 after being stretched is not limited to this, but is, for example, about half before being stretched.
  • the thickness of the region 52 after stretching is, for example, 150 ⁇ m.
  • a resin sealing body for sealing the semiconductor chips 10 and the like is placed on the fourth surface S4 side of the wiring substrate 20 while maintaining the state in which the distance between the semiconductor chips 10 is widened. 31 is formed. More specifically, in the state shown in FIG. 3D, the semiconductor chip 10 and the wiring board assembly 50 are placed in a mold (not shown), and the resin sealing body is heated and melted in the mold. Pour in 31. Then, it waits until the temperature of the resin sealing body 31 drops and solidifies. As a result, the semiconductor chip 10 is covered with the resin sealing body 31 as shown in FIG. 3E. More specifically, both the upper surface (second surface S2) and the side surface (third surface S3) of the semiconductor chip 10 are covered with the resin sealing body 31. As shown in FIG.
  • the resin sealing body 31 and the wiring board assembly 50 between the semiconductor chips 10 are cut. More specifically, the resin sealing body 31 between the semiconductor chips 10 and the region 52 of the wiring board assembly 50 are cut together. Thus, the semiconductor device 1A is singulated. Furthermore, a housing body (package) 30 that houses the semiconductor chip 10 including the wiring board 20 and the resin sealing body 31 is formed. More specifically, a housing (package) 30 including a wiring board 20 and a resin sealing body 31 covering both the upper surface (second surface S2) and the side surface (third surface S3) of the semiconductor chip 10. is formed.
  • bump electrodes 61 are formed on the electrode pads 22b. Thereby, the semiconductor device 1A shown in FIGS. 1A and 1B is almost completed.
  • Fan-Out Wafer Level Packaging In order to avoid such exposed silicon, a technology called Fan-Out Wafer Level Packaging (FOWLP) is sometimes used.
  • the fan-out type wafer level package diced semiconductor chips are rearranged on another member with a gap therebetween, and a resin sealing body is formed thereon to form a pseudo wafer. Then, the separate members are removed, and a rewiring layer, bump electrodes, etc. are formed on the surface of the pseudo wafer on which the resin sealing body is not formed, and the wafer is singulated.
  • the resin sealing body is formed between the upper surfaces of the semiconductor chips rearranged with a space therebetween and between the semiconductor chips, it is possible to suppress the occurrence of exposed portions on the surface of the semiconductor chip 10. can.
  • the diced semiconductor chips are rearranged, the number of steps increases and the process becomes complicated.
  • the bottom surface of the semiconductor wafer 40 and the wiring board assembly 50 are overlapped and joined together so that the wiring board assembly 50 is not divided.
  • the semiconductor wafer 40 is cut to separate the chip regions 41 into individual semiconductor chips 10, and the wiring board assembly 50 is extended horizontally to widen the space between the semiconductor chips 10, thereby increasing the space between the semiconductor chips 10.
  • the semiconductor chips 10 are covered with the resin sealing body 31 while keeping the space widened, and the resin sealing body 31 and the wiring board assembly 50 between the semiconductor chips 10 are cut to separate the semiconductor devices 1A. fragmented. Therefore, both the upper surface and side surfaces of the semiconductor chip 10 can be covered with the resin sealing body 31, and the upper surface and side surfaces of the semiconductor chip 10 can be prevented from being exposed. Thereby, chipping of the semiconductor chip 10 can be suppressed.
  • the wiring board assembly includes a base material made of an elastic material and wiring electrically connected from one surface to the other surface of the base material. are provided. Therefore, the wiring board assembly is not a disposable member, but is stretched to widen the space between the semiconductor chips 10, undergoes other processes, is cut into individual wiring boards 20, and is divided into the semiconductor devices 1A. used as part of Therefore, there is no need to rearrange the semiconductor chips 10 , an increase in the number of steps can be suppressed, and complication of the process can be suppressed.
  • the base material 21 is made of a stretchable material having an expansion ratio of 200% or more, and the region 52 includes wiring lines for suppressing expansion and contraction of the base material 21. 22 is not provided, the space between the semiconductor chips 10 can be sufficiently widened. Further, since the base material 21 has an elastic modulus of 100 MPa or less, it is possible to suppress an increase in the force required to stretch the base material 21 .
  • the dimension (thickness) in the Z direction of the wiring board assembly 50 is, for example, 200 ⁇ m or more and 300 ⁇ m or less. Even if it is stretched, it can be prevented from breaking.
  • the material forming the semiconductor device 1A and the material forming the mother board have different coefficients of thermal expansion, so when the temperature reaches normal temperature after the heat treatment, strain may occur between the two. Therefore, the bump electrode may be distorted.
  • the base material 21 included in the wiring board 20 is made of an elastic material. Therefore, the extension of the wiring board 20 can absorb the strain generated between the semiconductor device 1A and the motherboard, so that the application of stress to the bump electrodes 61 can be suppressed. As a result, it is possible to suppress the occurrence of cracks in the bump electrode 61, thereby suppressing the decrease in reliability.
  • the semiconductor device 1A according to the first embodiment of the present technology can absorb the strain generated between the semiconductor device 1A and the mother board due to the extension of the wiring substrate 20 as described above, after mounting on the mother board, It is possible to suppress deterioration in reliability against temperature changes.
  • the semiconductor device 1A was mounted on a mother board and a temperature cycle test was conducted, the experimental results showed improved reliability compared to the conventional redistribution layer (RDL).
  • RDL redistribution layer
  • the experimental results depend on the thickness and stretchability of the wiring board 20, there were cases where the reliability was improved by ten times or more compared to the conventional rewiring layer at a specific thickness and stretchability.
  • the resin sealing body 31 enters the wedge-shaped gap B as shown in FIG. 1B. Therefore, the semiconductor device 1A is suppressed from becoming weak against physical loads and environmental loads.
  • the semiconductor chip 10 and the wiring substrate 20 are bonded by irradiating the bonding surface with plasma, but the present technology is not limited to this.
  • microbumps 14 are formed on the electrode pads 13 of the semiconductor chip 10 (semiconductor wafer 40), and the microbumps 14 and the electrode pads 22a of the wiring board 20 are bonded to form the semiconductor chip 10 (semiconductor wafer 40).
  • the wafer 40) and the wiring substrate 20 (wiring substrate assembly 50) may be bonded.
  • the electrode pads 13 and the electrode pads 22a are electrically connected via the microbumps 14.
  • a sealing body 62 is provided between the semiconductor chip 10 and the wiring board 20 .
  • the sealing body 62 joins the first surface S ⁇ b>1 of the wiring board 20 and the fourth surface S ⁇ b>4 of the wiring board 20 .
  • the encapsulant 62 may be, for example, an underfill made of epoxy resin or the like. The underfill is injected between the bonded semiconductor chip 10 and wiring board 20 and then cured.
  • the sealing body 62 may be an anisotropic conductive material such as an anisotropic conductive film.
  • the anisotropic conductive material is composed of a mixed material of conductive particles responsible for conduction and an adhesive responsible for adhesion. A portion of the anisotropic conductive material located between the microbump 14 and the electrode pad 22a exhibits conductivity when a pressure higher than the surroundings is applied, thereby creating a gap between the microbump 14 and the electrode pad 22a. electrically connected.
  • microbumps 14 are formed on the semiconductor chip 10 (semiconductor wafer 40) side in Modification 1-1 described above, the present technology is not limited to this.
  • microbumps 23 may be formed on the wiring substrate 20 (wiring substrate assembly 50) side. That is, the microbumps 23 may be formed on the electrode pads 22a.
  • the semiconductor chip 10 (semiconductor wafer 40) and the wiring substrate 20 (wiring substrate assembly 50) may be bonded.
  • the electrode pads 13 and the electrode pads 22a are electrically connected via the microbumps 23.
  • the encapsulant 62 has already been described.
  • the semiconductor device 1A according to Modification 1-2 also provides the same effects as the semiconductor device 1A according to the above-described first embodiment.
  • the resin sealing body 31 is made of, for example, an epoxy-based thermosetting resin, and is formed using a transfer molding method.
  • the present technology is not limited to this.
  • the resin is cured.
  • the resin is cured by heat, ultraviolet rays, or the like, for example.
  • the semiconductor chip 10 may be covered with the resin sealing body 31 .
  • the semiconductor device 1A according to the modified example 1-3 can also obtain the same effect as the semiconductor device 1A according to the above-described first embodiment.
  • the resin sealing body 31 according to Modification 1-3 may be applied to Modifications 1-1 and 1-2 described above.
  • a rewiring layer having a thickness in the Z direction approximately equal to that of the wiring board assembly 50 and having an expansion/contraction rate and an elastic modulus approximately equal to those of the wiring board assembly 50 is formed. It may be formed by stacking. Such a rewiring layer is formed by coating a stretchable insulating layer on the first surface S1 of the semiconductor wafer 40, exposing it, and developing it. After that, the semiconductor wafer 40 is cut or half-cut so as not to divide the rewiring layer. Subsequent steps are the same as the steps described in the first embodiment, so description thereof is omitted here.
  • CMOS Complementary Metal Oxide Semiconductor
  • the semiconductor device 1B according to the second embodiment differs from the semiconductor device 1A according to the above-described first embodiment in that it has a semiconductor chip 10B instead of the semiconductor chip 10, and a housing body instead of the housing body 30. 30B, and other than that, the configuration of the semiconductor device 1B is basically the same as that of the semiconductor device 1A of the above-described first embodiment.
  • symbol is attached
  • a semiconductor device 1B includes a semiconductor chip 10B and a housing (package) 30B.
  • the semiconductor chip 10B is equipped with a photodetector.
  • a photodetector for example, image light (incident light) from a subject is taken in via an optical lens, and the amount of light of the incident light formed on the image pickup surface is converted into an electric signal for each pixel, which is then used as a pixel signal.
  • a solid-state image pickup device that emits irradiation light toward an object, detects the reflected light that is reflected by the surface of the object, and receives the reflected light after the irradiation light is emitted.
  • a distance measuring sensor Time of Flight, ToF sensor
  • the photodetector is described as being the solid-state imaging device 70 mounted on the semiconductor chip 10B shown in FIG. 7, but it is not limited to this.
  • the solid-state imaging device 70 (semiconductor chip 10B) according to the second embodiment of the present technology has a square two-dimensional planar shape when viewed in plan.
  • the solid-state imaging device 70 includes a rectangular pixel region 2A provided in the center and a pixel region 2A surrounding the pixel region 2A outside the pixel region 2A on a two-dimensional plane including the X direction and the Y direction that intersect each other. and a peripheral region 2B.
  • the pixel area 2A is a light receiving surface that receives light condensed by, for example, an optical lens (optical system).
  • a plurality of pixels 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction.
  • the pixels 3 are repeatedly arranged in the X direction and the Y direction that are orthogonal to each other within the two-dimensional plane.
  • a plurality of electrode pads 13B are arranged in the peripheral region 2B.
  • the electrode pads 13B are arranged, for example, along four sides in the two-dimensional plane of the semiconductor chip 10B.
  • the electrode pads 13B are input/output terminals used when electrically connecting the solid-state imaging device 70 to an external device.
  • the solid-state imaging device 70 has logic circuits including a vertical drive circuit, a column signal processing circuit, a horizontal drive circuit, an output circuit, a control circuit, and the like.
  • the logic circuit is composed of, for example, a CMOS (Complementary MOS) circuit.
  • Each pixel 3 of the plurality of pixels 3 has a photoelectric conversion element.
  • a readout circuit is connected to the photoelectric conversion element of each pixel 3 .
  • a photoelectric conversion element is formed for each pixel 3 on the semiconductor substrate 11B shown in FIG. Then, the photoelectric conversion element photoelectrically converts the light into a signal charge corresponding to the amount of received light and holds the signal charge.
  • the semiconductor chip 10B has a first surface S1 and a second surface S2 located on opposite sides in the thickness direction (Z direction).
  • the semiconductor chip 10B includes a semiconductor substrate 11B, a laminate (multilayer wiring layer) 12B formed by alternately stacking insulating layers and wiring layers on the element forming surface side of the semiconductor substrate 11B, and electrode pads 13B. It has
  • a plurality of MOSFETs are configured on the semiconductor substrate 11B as field effect transistors that configure circuits such as the above-described logic circuit and readout circuit.
  • a single crystal silicon substrate for example, can be used as the semiconductor substrate 11B.
  • the laminated body 12B has a laminated structure in which insulating layers and wiring layers are alternately laminated in multiple stages.
  • the electrode pads 13B penetrate through the semiconductor chip 10B.
  • the electrode pad 13B is joined and electrically connected to the electrode pad 22a.
  • the semiconductor chip 10B further includes a flattening film (not shown), a color filter (not shown), and a microlens 15 which are sequentially stacked from the second surface S2 side (light receiving surface side) on the second surface S2 side (light receiving surface side). .
  • the planarizing film planarizes the second surface S2 side.
  • the microlens 15 collects incident light to the semiconductor substrate 11B.
  • the color filter color-separates the incident light to the semiconductor substrate 11B.
  • a color filter and a microlens 15 are provided for each pixel 3, respectively.
  • the color filters and microlenses 15 are made of resin material, for example.
  • the housing body 30B includes the wiring substrate 20, the resin sealing body 31, and the light transmission substrate 32, and seals the semiconductor chip 10B.
  • the semiconductor device 1B has a light transmitting substrate 32 on the light receiving surface side. More specifically, the semiconductor device 1B has a light transmitting substrate 32 on the light receiving surface side of the semiconductor chip 10B.
  • the light-transmitting substrate 32 seals the light-receiving surface side (second surface S2 side) of the semiconductor chip 10B. More specifically, the light-transmitting substrate 32 seals the light-receiving surface side (second surface S2 side) of the semiconductor chip 10B with a gap from the semiconductor chip 10B.
  • the light-transmitting substrate 32 is adhered with a resin 33 to the second surface S2 side of the semiconductor chip 10B.
  • the light-transmitting substrate 32 is configured using a member having light-transmitting properties, and for example, a glass substrate is used, but the present invention is not limited to this.
  • a glass substrate is used, but the present invention is not limited to this.
  • an acrylic resin substrate, a sapphire substrate, or the like may be used as the light transmission substrate 32 .
  • the light transmitted through the light-transmitting substrate 32 is incident on the photoelectric conversion element provided on the semiconductor substrate 11B, and is photoelectrically converted by the photoelectric conversion element into signal charges corresponding to the amount of light.
  • the resin sealing body 31 is provided on the side of the fourth surface S4, which is the upper surface of the wiring board 20, and mainly covers the side surface (third surface S3) of the semiconductor chip 10B.
  • the resin sealant 31 covers the side surface of the light-transmitting substrate 32 (the surface perpendicular to the Z direction) and also enters the gap between the light-transmitting substrate 32 and the semiconductor chip 10B.
  • a semiconductor wafer 40, a wiring board assembly 50, and a light transmissive board 80 are prepared.
  • a solid-state imaging device 70 is manufactured in the chip area 41 of the semiconductor wafer 40 .
  • the light transmissive substrate 80 has the same size as the semiconductor wafer 40 .
  • the semiconductor wafer 40 and the wiring board assembly 50 are overlapped and bonded.
  • the light transmission substrate 80 is adhered to the second surface S2 side of the semiconductor wafer 40 using the resin 33 .
  • the light-transmitting substrate 80 and the semiconductor wafer 40 are cut so as not to divide the wiring substrate assembly 50 .
  • the light-transmitting substrate 80 is singulated into the light-transmitting substrates 32
  • the semiconductor wafer 40 is singulated into the semiconductor chips 10B.
  • the light-transmissive substrate 32 and the semiconductor chip 10B are separated into individual pieces while they are bonded together.
  • the wiring board assembly 50 is extended in the horizontal direction (direction perpendicular to the Z direction) to widen the space between the semiconductor chips 10B. Then, in the state shown in FIG. 8D, the semiconductor chip 10B with the light-transmitting substrate 32 adhered thereto and the wiring board assembly 50 are placed in a mold (not shown), and heated and melted in the mold.
  • the resin sealing body 31 is poured. More specifically, a film is provided on the mold on the side that contacts the light-transmitting substrate 32 so that the resin sealing body 31 does not adhere to the surface of the light-transmitting substrate 32 when the resin sealing body 31 is filled. I'm trying Then, it waits until the temperature of the resin sealing body 31 drops and solidifies.
  • FIG. 8E a resin sealing body 31 covering the side surface of the light-transmitting substrate 32 and the side surface (third surface S3) of the semiconductor chip 10B is formed.
  • FIG. 8F the semiconductor device 1B is separated into individual pieces, and the bump electrodes 61 are provided on the electrode pads 22b as described with reference to FIG. 3G of the first embodiment, thereby completing the semiconductor device 1B shown in FIG.
  • a light transmitting substrate 32 is provided on the light receiving surface side. Therefore, light can enter the semiconductor chip 10B, and the photoelectric conversion element can perform photoelectric conversion. Furthermore, it is possible to prevent the upper surface of the semiconductor chip 10B from being exposed. Moreover, the side surfaces of the semiconductor chip 10B can be mainly covered with the resin sealing body 31, and the side surfaces of the semiconductor chip 10B can be prevented from being exposed. As a result, it is possible to suppress the occurrence of an exposed portion on the surface of the semiconductor chip 10B, and it is possible to suppress chipping of the semiconductor chip 10B.
  • the light transmissive substrate 32 has substantially the same size as the semiconductor chip 10B in plan view, but the present technology is not limited to this.
  • the light transmission substrate 32 may be smaller than the semiconductor chip 10B in plan view. More specifically, it may be smaller than the semiconductor chip 10B as long as it can cover the pixel region 2A shown in FIG. 7 in plan view.
  • the light-transmitting substrate 80 is singulated in advance to prepare the light-transmitting substrate 32. For example, as shown in FIG. The light-transmitting substrate 32 is adhered with the resin 33 . After that, the semiconductor wafer 40 may be singulated. Note that the subsequent steps are the same as those of the second embodiment, so description thereof will be omitted here.
  • the semiconductor device 1B according to the modified example 2-1 can also obtain the same effect as the semiconductor device 1B according to the above-described second embodiment.
  • the semiconductor device 1A according to Modification 1-1 of the first embodiment described above includes the microbump 14, and the semiconductor device 1A according to Modification 1-2 of the first embodiment includes the microbump 23.
  • such a technical idea may be applied to the semiconductor device 1B described in the second embodiment and its modifications.
  • various combinations are possible according to the respective technical ideas, such as applying the rewiring layers according to Modifications 1-4 of the first embodiment to the second embodiment.
  • the semiconductor devices 1A and 1B are provided with the bump electrodes 61 in the above-described embodiments, they may not be provided.
  • the semiconductor devices 1A and 1B can also be referred to as semiconductor devices 1A and 1B after singulation and before forming the bump electrodes 61, as shown in FIGS. 3F and 8F.
  • the present technology may be configured as follows. (1) A semiconductor wafer provided with a plurality of chip regions, which are regions in which components of a semiconductor chip are already formed; preparing a wiring board assembly in which a plurality of wiring board regions, which are already formed regions, are provided; overlapping and bonding the bottom surface of the semiconductor wafer and the wiring board assembly; cutting the semiconductor wafer so as not to divide the wiring board assembly, and singulating the chip regions into semiconductor chips; extending the wiring board assembly in the horizontal direction to widen the space between the semiconductor chips; covering the semiconductor chips with a resin encapsulant while maintaining a state in which the distance between the semiconductor chips is widened; A method of manufacturing a semiconductor device, wherein the resin sealing body and the wiring board assembly between the semiconductor chips are cut to singulate the semiconductor device.
  • a wiring board superimposed and joined to the and a resin sealing body covering the semiconductor chip.
  • the resin sealing body covers at least the side surface out of the upper surface and the side surface of the semiconductor chip.
  • the electrode pads of the semiconductor chip are electrically connected to the wiring of the wiring substrate.
  • (7) Having a light-transmitting substrate on the light-receiving surface side, The semiconductor device according to any one of (4) to (6), wherein the semiconductor chip has a photoelectric conversion element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A purpose of the present invention is to suppress the occurrence of exposed parts on the surface of a semiconductor chip. This method for manufacturing a semiconductor device includes: preparing a semiconductor wafer on which are provided a plurality of chip regions, which are regions on which constituent elements of a semiconductor chip are already formed, and a wiring board assembly on which are provided, on a base material made of elastic material, a plurality of wiring board regions, which are regions in which a plurality of wires that electrically lead from one surface of the base material to the other surface are already formed; overlapping and joining the bottom surface of the semiconductor wafer and the wiring board assembly; cutting the semiconductor wafer so as to not divide the wiring board assembly; dicing the chip regions to make semiconductor chips, and extending the wiring board assembly in the horizontal direction to widen the gap between semiconductor chips; covering the semiconductor chips with a resin sealant while maintaining the widened state of the gap between semiconductor chips; cutting the resin sealant and the wiring board assembly between the semiconductor chips; and dicing the semiconductor device.

Description

半導体装置の製造方法、半導体装置、及び半導体装置用の配線基板Semiconductor device manufacturing method, semiconductor device, and wiring substrate for semiconductor device
 本技術(本開示に係る技術)は、半導体装置の製造方法、半導体装置、及び半導体装置用の配線基板に関し、特に、半導体チップを収納する収納体を有する半導体装置の製造方法、半導体装置、及び半導体装置用の配線基板に適用して有効な技術に関するものである。 The present technology (technology according to the present disclosure) relates to a method for manufacturing a semiconductor device, a semiconductor device, and a wiring board for a semiconductor device. The present invention relates to a technique effectively applied to a wiring board for a semiconductor device.
 半導体チップは、半導体装置の製造プロセスにおいて、半導体ウエハに設定された複数のチップ領域を個々に個片化することによって形成される。例えば特許文献1に開示されたように、ダイシング用レーザ照射が行われた半導体ウエハを、ダイシングテープ上に接着層を介して搭載し、その後ダイシングテープを外周から引き延ばす。この張力により、チップ領域が互いに分離し、個片化された複数の半導体チップが得られる。そして、個片化された半導体チップは、ダイシングテープ上からピックアップされる。
 そして、個片化された半導体チップはパッケージに組み込まれる。
A semiconductor chip is formed by singulating a plurality of chip regions set on a semiconductor wafer into individual pieces in the manufacturing process of a semiconductor device. For example, as disclosed in Patent Document 1, a semiconductor wafer that has been irradiated with a dicing laser is mounted on a dicing tape via an adhesive layer, and then the dicing tape is stretched from the outer circumference. This tension separates the chip regions from each other, resulting in a plurality of singulated semiconductor chips. Then, the separated semiconductor chips are picked up from the dicing tape.
The individualized semiconductor chips are then assembled into packages.
特開2007-250598号公報JP-A-2007-250598 特開2021-27099号公報Japanese Patent Application Laid-Open No. 2021-27099 特開2019-195978号公報JP 2019-195978 A
 ところで、半導体チップをピックアップすると、その分工程が増えることになる。また、半導体チップをパッケージに組み込む方法によっては、半導体チップのシリコンがむき出しになる場合があった。 By the way, if you pick up a semiconductor chip, the process will increase accordingly. Moreover, depending on the method of incorporating the semiconductor chip into the package, the silicon of the semiconductor chip may be exposed.
 本技術の目的は、半導体チップの表面にむき出しの部分が生じることを抑制することにある。 The purpose of this technology is to suppress the occurrence of exposed portions on the surface of the semiconductor chip.
 本技術の一態様に係る半導体装置の製造方法は、半導体チップの構成要素が形成済みの領域であるチップ領域が複数設けられた半導体ウエハと、伸縮材料製の母材に、上記母材の一方の面から他方の面へ電気的に通じる配線が複数形成済みの領域である配線基板領域が複数設けられた配線基板集合体とを準備し、上記半導体ウエハの底面と上記配線基板集合体とを重ねて接合し、上記配線基板集合体を分断しないように上記半導体ウエハを切断して、上記チップ領域を個片化して半導体チップとし、上記配線基板集合体を水平方向に伸ばして上記半導体チップ同士の間の間隔を広げ、上記半導体チップ同士の間の間隔を広げた状態を維持したまま、上記半導体チップを樹脂封止体で覆い、上記半導体チップ同士の間の上記樹脂封止体及び上記配線基板集合体を切断して、半導体装置を個片化することを含む。 A method for manufacturing a semiconductor device according to an aspect of the present technology includes a semiconductor wafer provided with a plurality of chip regions, which are regions in which constituent elements of a semiconductor chip are formed, and a base material made of an elastic material. A wiring substrate assembly having a plurality of wiring substrate regions, which are regions in which a plurality of wirings electrically communicating from one surface to the other surface are formed, is prepared, and the bottom surface of the semiconductor wafer and the wiring substrate assembly are separated. The semiconductor wafer is cut so as not to divide the wiring board aggregate, the chip regions are separated into semiconductor chips, and the wiring board aggregate is horizontally extended to form the semiconductor chips. and covering the semiconductor chips with a resin sealing body while maintaining the widened spacing between the semiconductor chips, the resin sealing body and the wiring between the semiconductor chips It includes cutting the substrate assembly to individualize the semiconductor device.
 本技術の一態様に係る半導体装置は、半導体チップと、伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製の母材を有し、上記母材の一方の面から他方の面へ電気的に通じる配線を複数有し、上記半導体チップの底面に重ねて接合された配線基板と、上記半導体チップを覆う樹脂封止体と、を備えている。 A semiconductor device according to an aspect of the present technology includes a semiconductor chip and a base material made of a stretchable material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less, and from one surface of the base material to the other surface. A wiring board having a plurality of electrically connected wirings and superimposed and joined to the bottom surface of the semiconductor chip, and a resin sealing body covering the semiconductor chip.
 本技術の一態様に係る半導体装置用の配線基板は、半導体チップの底面に重ねて接合される基板であり、伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製の母材を有し、上記母材の一方の面から他方の面へ電気的に通じる配線を複数有している。 A wiring substrate for a semiconductor device according to an aspect of the present technology is a substrate that is superimposed and bonded to the bottom surface of a semiconductor chip, and has a base material made of an elastic material having an elastic modulus of 200% or more and an elastic modulus of 100 MPa or less. and a plurality of wirings electrically connected from one surface of the base material to the other surface thereof.
本技術の第1実施形態に係る半導体装置を模式的に示す平面図である。1 is a plan view schematically showing a semiconductor device according to a first embodiment of the present technology; FIG. 図1AのA-A切断線に沿った断面構造を模式的に示す断面図である。FIG. 1B is a cross-sectional view schematically showing a cross-sectional structure taken along the line AA of FIG. 1A; 半導体ウエハの平面構成を示す図である。It is a figure which shows the planar structure of a semiconductor wafer. 図2AのC領域を拡大してチップ領域の構成を示す図である。2B is a diagram showing the configuration of a chip area by enlarging the C area of FIG. 2A; FIG. 配線基板集合体の一部を拡大して配線基板領域の構成を示す図である。FIG. 2 is a diagram showing a configuration of a wiring board area by enlarging a part of the wiring board assembly; 本技術の第1実施形態に係る半導体装置の製造方法を示す模式的工程断面図である。It is a schematic process sectional view showing a manufacturing method of a semiconductor device concerning a 1st embodiment of this art. 図3Aに続く模式的工程断面図である。FIG. 3B is a schematic process cross-sectional view following FIG. 3A; 図3Bに続く模式的工程断面図である。FIG. 3B is a schematic process cross-sectional view following FIG. 3B; 図3Cに続く模式的工程断面図である。FIG. 3C is a schematic process cross-sectional view following FIG. 3C; 図3Dに続く模式的工程断面図である。FIG. 3D is a schematic process cross-sectional view following FIG. 3D; 図3Eに続く模式的工程断面図である。FIG. 3D is a schematic process cross-sectional view following FIG. 3E; 図3Fに続く模式的工程断面図である。FIG. 3F is a schematic process cross-sectional view following FIG. 3F; 本技術の第1実施形態の変形例1-1に係る半導体装置の概略構成を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to Modification 1-1 of the first embodiment of the present technology; 本技術の第1実施形態の変形例1-2に係る半導体装置の概略構成を模式的に示す断面図である。It is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to Modification 1-2 of the first embodiment of the present technology. 本技術の第2実施形態に係る半導体装置の概略構成を模式的に示す断面図である。It is a sectional view showing typically a schematic structure of a semiconductor device concerning a 2nd embodiment of this art. 本技術の第2実施形態に係る半導体装置が有する半導体チップの概略構成を模式的に示す平面図である。FIG. 10 is a plan view schematically showing a schematic configuration of a semiconductor chip included in a semiconductor device according to a second embodiment of the present technology; 本技術の第2実施形態に係る半導体装置の製造方法を示す模式的工程断面図である。It is a typical process sectional view showing a manufacturing method of a semiconductor device concerning a 2nd embodiment of this art. 図8Aに続く模式的工程断面図である。FIG. 8B is a schematic process cross-sectional view following FIG. 8A; 図8Bに続く模式的工程断面図である。FIG. 8B is a schematic process cross-sectional view following FIG. 8B; 図8Cに続く模式的工程断面図である。FIG. 8D is a schematic process cross-sectional view following FIG. 8C; 図8Dに続く模式的工程断面図である。FIG. 8D is a schematic process cross-sectional view following FIG. 8D; 図8Eに続く模式的工程断面図である。FIG. 8F is a schematic process cross-sectional view following FIG. 8E; 本技術の第2実施形態の変形例2-1に係る半導体装置の概略構成を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to modification 2-1 of the second embodiment of the present technology; 本技術の第2実施形態の変形例2-1に係る半導体装置の製造方法を示す模式的工程断面図である。It is a schematic process cross-sectional view showing a method of manufacturing a semiconductor device according to Modification 2-1 of the second embodiment of the present technology.
 以下、図面を参照して本技術の実施形態を詳細に説明する。
 以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。
Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings.
In the description of the drawings referred to in the following description, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between thickness and planar dimension, the ratio of thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined with reference to the following description.
 また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 In addition, it goes without saying that there are parts with different dimensional relationships and ratios between the drawings. Moreover, the effects described in this specification are only examples and are not limited, and other effects may be obtained.
 また、以下の実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものではない。即ち、本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 In addition, the following embodiments exemplify devices and methods for embodying the technical idea of the present technology, and do not specify the configurations as those below. That is, the technical idea of the present technology can be modified in various ways within the technical scope described in the claims.
 また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本技術の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。 Also, the definitions of directions such as up and down in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present technology. For example, if an object is observed after being rotated by 90°, it will be read with its top and bottom converted to left and right, and if it is observed after being rotated by 180°, it will of course be read with its top and bottom reversed.
 また、以下の実施形態では、空間内で互に直交する三方向において、同一平面内で互に直交する第1の方向及び第2の方向をそれぞれX方向、Y方向とし、第1の方向及び第2の方向のそれぞれと直交する第3の方向をZ方向とする。そして、以下の実施形態では、後述する半導体装置1Aの厚み方向をZ方向として説明する。 Further, in the following embodiments, among the three mutually orthogonal directions in space, the first direction and the second direction, which are orthogonal to each other in the same plane, are the X direction and the Y direction, respectively. A third direction orthogonal to each of the second directions is the Z direction. In the following embodiments, the thickness direction of a semiconductor device 1A, which will be described later, will be described as the Z direction.
 なお、説明は以下の順序で行う。
1.第1実施形態
2.第2実施形態
The description will be given in the following order.
1. First Embodiment 2. Second embodiment
 〔第1実施形態〕
 ≪半導体装置の全体構成≫
 図1A及び図1Bに示すように、本技術の第1実施形態に係る半導体装置1Aは、半導体チップ10と、半導体チップ10の第1の面S1に重ねて接合された、インターポーザと呼称される配線基板20と、を備える。また、本技術の第1実施形態に係る半導体装置1Aは、半導体チップ10を収納する収納体(パッケージ)30を更に備えている。収納体30は、配線基板20と、この配線基板20の上面である第4の面S4側に設けられ、かつ半導体チップ10を封止する樹脂封止体31とを含む。
[First embodiment]
<<Overall Configuration of Semiconductor Device>>
As shown in FIGS. 1A and 1B, a semiconductor device 1A according to the first embodiment of the present technology is a semiconductor chip 10 and an interposer called an interposer that is overlapped and joined to a first surface S1 of the semiconductor chip 10. A wiring board 20 is provided. In addition, the semiconductor device 1A according to the first embodiment of the present technology further includes a storage body (package) 30 that stores the semiconductor chip 10 . The housing body 30 includes a wiring board 20 and a resin sealing body 31 provided on the fourth surface S4 side, which is the upper surface of the wiring board 20, and sealing the semiconductor chip 10 therein.
 <半導体チップ>
 図1Aに示すように、半導体チップ10は、その厚み方向(Z方向)と交差する平面形状が方形状で形成され、この第1実施形態では例えば正方形で形成されている。図1Bに示すように、半導体チップ10は、これに限定されないが、主に、半導体基板11と、半導体基板11の素子形成面(主面)に設けられた複数のトランジスタ(図示せず)と、半導体基板11の素子形成面側において絶縁層及び配線層を交互に複数段積み重ねて形成された積層体(多層配線層)12と、を含む。半導体チップ10は、互いに反対側に位置する第1の面S1及び第2の面S2を有する。ここでは、第1の面S1を半導体チップ10の底面と呼び、第2の面S2を半導体チップ10の上面と呼ぶこともある。半導体チップ10の底面は、配線基板20寄りの面であり、半導体チップ10の上面は、半導体チップ10の底面とは反対側の面である。また、図1Bに示す第3の面S3は、半導体チップ10の側面である。第3の面S3は、半導体チップ10の外周面を構成する面であり、第1の面S1と第2の面S2とをZ方向に接続する面である。また、図1Aに示すように、平面視において、配線基板20及び樹脂封止体31は、半導体チップ10の全体と重なっている。換言すると、平面視において、配線基板20及び樹脂封止体31の輪郭は、半導体チップ10の輪郭より外側にある。
<Semiconductor chip>
As shown in FIG. 1A, the semiconductor chip 10 has a rectangular planar shape that intersects with its thickness direction (Z direction). As shown in FIG. 1B, the semiconductor chip 10 mainly includes, but is not limited to, a semiconductor substrate 11 and a plurality of transistors (not shown) provided on an element forming surface (main surface) of the semiconductor substrate 11. and a laminated body (multilayer wiring layer) 12 formed by alternately stacking insulating layers and wiring layers on the element forming surface side of the semiconductor substrate 11 . The semiconductor chip 10 has a first surface S1 and a second surface S2 located opposite to each other. Here, the first surface S1 may be called the bottom surface of the semiconductor chip 10, and the second surface S2 may be called the top surface of the semiconductor chip 10. As shown in FIG. The bottom surface of the semiconductor chip 10 is the surface closer to the wiring substrate 20 , and the top surface of the semiconductor chip 10 is the surface opposite to the bottom surface of the semiconductor chip 10 . A third surface S3 shown in FIG. 1B is a side surface of the semiconductor chip 10. As shown in FIG. The third surface S3 is a surface forming the outer peripheral surface of the semiconductor chip 10, and is a surface connecting the first surface S1 and the second surface S2 in the Z direction. Further, as shown in FIG. 1A, the wiring substrate 20 and the resin sealing body 31 overlap the entire semiconductor chip 10 in plan view. In other words, the contours of the wiring board 20 and the resin sealing body 31 are outside the contour of the semiconductor chip 10 in plan view.
 図1Bに示す半導体基板11は、例えば単結晶シリコンで構成されている。積層体12の絶縁層は例えば酸化シリコン膜で構成されている。積層体12の配線層は、例えば、銅(Cu)、アルミニウム(Al)膜、又はAlにシリコン(Si)及び銅(Cu)の少なくとも何れかが添加されたアルミニウム合金膜で構成されている。Siは主にエレクトロマイグレーション耐性の向上を図る目的で添加される。Cuは主にアロイスパイク耐性の向上を図る目的で添加される。この第1実施形態の配線層は、例えばAlにSi及びCuが添加されたAl-Si-Cu組成のAl合金膜で構成されている。 The semiconductor substrate 11 shown in FIG. 1B is made of single crystal silicon, for example. The insulating layer of the laminate 12 is composed of, for example, a silicon oxide film. The wiring layer of the laminate 12 is composed of, for example, a copper (Cu) film, an aluminum (Al) film, or an aluminum alloy film in which at least one of silicon (Si) and copper (Cu) is added to Al. Si is added mainly for the purpose of improving electromigration resistance. Cu is added mainly for the purpose of improving alloy spike resistance. The wiring layer of the first embodiment is composed of, for example, an Al alloy film having an Al--Si--Cu composition in which Si and Cu are added to Al.
 半導体チップ10には、集積回路が内蔵されている。この集積回路は、主に、半導体基板11に形成されたトランジスタ素子と、積層体12の配線層に形成された配線によって構成されている。 The semiconductor chip 10 contains an integrated circuit. This integrated circuit is mainly composed of transistor elements formed on the semiconductor substrate 11 and wires formed in the wiring layer of the laminate 12 .
 半導体チップ10は、第1の面S1側に設けられた電極パッド13を複数備えている。電極パッド13は、例えば、半導体チップ10の二次元平面における4つの辺に沿って配列されている。電極パッド13は、集積回路の構成要素として形成され、信号入出力端子や、電源供給端子などの外部端子として機能する。電極パッド13は、第1の面S1に臨むように設けられていて、配線基板20の後述する電極パッド22aと重ねられて接合されている。 The semiconductor chip 10 has a plurality of electrode pads 13 provided on the first surface S1 side. The electrode pads 13 are arranged, for example, along four sides in the two-dimensional plane of the semiconductor chip 10 . The electrode pads 13 are formed as components of an integrated circuit and function as external terminals such as signal input/output terminals and power supply terminals. The electrode pads 13 are provided so as to face the first surface S1, and are overlapped and joined to electrode pads 22a of the wiring board 20, which will be described later.
 <配線基板>
 図1Aに示すように、配線基板20は、その厚み方向(Z方向)と交差する平面形状が方形状で形成され、この第1実施形態では例えば正方形で形成されている。図1Bに示すように、配線基板20は、互いに反対側に位置する第4の面S4及び第5の面S5を有している。ここでは、第4の面S4を配線基板20の上面と呼び、第5の面S5を配線基板20の底面と呼ぶこともある。配線基板20の上面は、半導体チップ10寄りの面であり、配線基板20の底面は、配線基板20の上面とは反対側の面である。配線基板20の上面(第4の面S4)は、半導体チップ10の底面(第1の面S1)に接合されている。
<Wiring board>
As shown in FIG. 1A, the wiring board 20 has a rectangular planar shape that intersects the thickness direction (Z direction), and is, for example, a square in the first embodiment. As shown in FIG. 1B, the wiring board 20 has a fourth surface S4 and a fifth surface S5 located on opposite sides of each other. Here, the fourth surface S4 is sometimes referred to as the top surface of the wiring board 20, and the fifth surface S5 is sometimes referred to as the bottom surface of the wiring board 20. As shown in FIG. The top surface of the wiring board 20 is closer to the semiconductor chip 10 , and the bottom surface of the wiring board 20 is the surface opposite to the top surface of the wiring board 20 . The upper surface (fourth surface S4) of the wiring board 20 is joined to the bottom surface (first surface S1) of the semiconductor chip 10. As shown in FIG.
 配線基板20は、母材21と、母材21に複数設けられた配線22とを有する。母材21は、絶縁性を有する伸縮材料製であり、力を加えることで伸ばすことができる。母材21は、例えば、伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製である。伸縮材料としては、例えば、エラストマーが挙げられる。また、例えば、伸縮材料としては、シリコン樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、フッ素ゴムが挙げられる。また、例えば、伸縮材料は、特許文献2又は特許文献3に記載された材料であっても良い。 The wiring board 20 has a base material 21 and a plurality of wirings 22 provided on the base material 21 . The base material 21 is made of an insulating stretchable material, and can be stretched by applying force. The base material 21 is made of, for example, an elastic material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less. Elastic materials include, for example, elastomers. Further, for example, stretchable materials include silicon resin, urethane resin, epoxy resin, acrylic resin, and fluororubber. Further, for example, the elastic material may be the material described in Patent Document 2 or Patent Document 3.
 配線基板20は、半導体チップ10と厚み方向で重なる(平面視で重なる)中央部20aと、半導体チップ10と厚み方向で重ならない(平面視で重ならない)周縁部20bとを含む。周縁部20bは、中央部20aより厚みが薄い。より具体的には、周縁部20bの厚みは、中央部20aから離れれば離れるほど薄くなっている。また、中央部20aの厚みは、例えば、200μm以上300μm以下であることが好ましい。 The wiring board 20 includes a central portion 20a that overlaps the semiconductor chip 10 in the thickness direction (overlaps in plan view) and a peripheral edge portion 20b that does not overlap the semiconductor chip 10 in the thickness direction (does not overlap in plan view). The peripheral portion 20b is thinner than the central portion 20a. More specifically, the thickness of the peripheral portion 20b becomes thinner as the distance from the central portion 20a increases. Moreover, the thickness of the central portion 20a is preferably, for example, 200 μm or more and 300 μm or less.
 配線22は、配線基板20の中央部20aと周縁部20bとのうちの中央部20aに複数設けられている。すなわち、中央部20aは配線22が複数設けられた領域である。配線22は、これには限定されないが、例えば、中央部20aの80%程度を占めるよう複数設けられている。そして、配線22は、第4の面S4及び第5の面S5の一方の面から他方の面へ電気的に通じている。また、配線22は、母材21の一方の面側において半導体チップ10に電気的に接続されている。配線22は、第4の面S4側に設けられた電極パッド22aと、第5の面S5側に設けられた電極パッド22bと、電極パッド22aと電極パッド22bとを電気的に接続する接続部22cとを含む。電極パッド22aは、半導体チップ10の電極パッド13に対応した位置に配置されている。電極パッド22aは第4の面S4に臨み、半導体チップ10の電極パッド13と重ねられて接合されている。これにより、電極パッド22aは、電極パッド13と電気的に接続されている。電極パッド22bは、図示しないマザーボードの端子に対応した位置に配置されている。22cの構成は図1Bに示す例に限定されず、電極パッド22aと電極パッド22bとを電気的に接続していれば、他の構成を有していても良い。 A plurality of wirings 22 are provided in the central portion 20a of the wiring board 20 between the central portion 20a and the peripheral edge portion 20b. That is, the central portion 20a is a region in which a plurality of wirings 22 are provided. Although not limited to this, a plurality of wirings 22 are provided so as to occupy about 80% of the central portion 20a, for example. The wiring 22 is electrically connected from one surface of the fourth surface S4 and the fifth surface S5 to the other surface. Also, the wiring 22 is electrically connected to the semiconductor chip 10 on one side of the base material 21 . The wiring 22 is an electrode pad 22a provided on the fourth surface S4 side, an electrode pad 22b provided on the fifth surface S5 side, and a connection portion that electrically connects the electrode pad 22a and the electrode pad 22b. 22c. The electrode pads 22 a are arranged at positions corresponding to the electrode pads 13 of the semiconductor chip 10 . The electrode pads 22a face the fourth surface S4 and are overlapped with and joined to the electrode pads 13 of the semiconductor chip 10. As shown in FIG. Thereby, the electrode pad 22 a is electrically connected to the electrode pad 13 . The electrode pads 22b are arranged at positions corresponding to terminals of a mother board (not shown). The configuration of 22c is not limited to the example shown in FIG. 1B, and may have other configurations as long as the electrode pads 22a and 22b are electrically connected.
 <バンプ電極>
 電極パッド22bには、バンプ電極61が固着され、電気的及び機械的に接続されている。バンプ電極61としては、例えばPbを実質的に含まないPbフリー組成の半田バンプを用いている。なお、バンプ電極61は図示しないマザーボードの端子に対応した位置に設けられていれば良く、その位置及び数は、図1Bに限定されない。
<Bump electrode>
A bump electrode 61 is fixed to the electrode pad 22b and is electrically and mechanically connected. As the bump electrode 61, for example, a Pb-free composition solder bump that does not substantially contain Pb is used. The bump electrodes 61 may be provided at positions corresponding to the terminals of the motherboard (not shown), and the positions and number thereof are not limited to those shown in FIG. 1B.
 <樹脂封止体>
 図1Aに示すように、樹脂封止体31は、その厚み方向(Z方向)と交差する平面形状が方形状で形成され、この第1実施形態では例えば正方形で形成されている。樹脂封止体31は、平面形状が配線基板20と同じ大きさに設けられている。樹脂封止体31は、半導体チップ10を覆っている。より具体的には、図1Bに示すように、樹脂封止体31は、半導体チップ10の第2の面S2と第3の面S3とを覆っている。また、樹脂封止体31は、配線基板20の周縁部20bを覆っている。より具体的には、樹脂封止体31は、周縁部20bの第4の面S4を覆っている。このような構成により、樹脂封止体31は、半導体チップ10を封止している。樹脂封止体31は、例えばエポキシ系の熱硬化性樹脂で構成されている。樹脂封止体31の形成方法としては、例えば大量生産に好適なトランスファモールディング法を用いている。
<Resin sealing body>
As shown in FIG. 1A, the resin sealing body 31 has a square planar shape that intersects the thickness direction (Z direction), and is, for example, a square in the first embodiment. The resin sealing body 31 has the same size as the wiring substrate 20 in plan view. The resin sealing body 31 covers the semiconductor chip 10 . More specifically, as shown in FIG. 1B, the resin sealing body 31 covers the second surface S2 and the third surface S3 of the semiconductor chip 10. As shown in FIG. Also, the resin sealing body 31 covers the peripheral edge portion 20 b of the wiring board 20 . More specifically, the resin sealing body 31 covers the fourth surface S4 of the peripheral portion 20b. With such a configuration, the resin sealing body 31 seals the semiconductor chip 10 . The resin sealing body 31 is made of, for example, an epoxy-based thermosetting resin. As a method for forming the resin sealing body 31, for example, a transfer molding method suitable for mass production is used.
 また、樹脂封止体31は、半導体チップ10の第1の面S1と配線基板20の第4の面S4との間に僅かに形成された、断面が楔状の隙間Bの内部にも入り込んでいる。 In addition, the resin sealing body 31 also enters the interior of the gap B, which is slightly formed between the first surface S1 of the semiconductor chip 10 and the fourth surface S4 of the wiring board 20 and has a wedge-shaped cross section. there is
 ≪半導体装置の製造方法≫
 次に、半導体装置1Aの製造方法について、図2Aから図2Cまで、及び図3Aから図3Gまでを用いて説明する。
<<Method for manufacturing semiconductor device>>
Next, a method for manufacturing the semiconductor device 1A will be described with reference to FIGS. 2A to 2C and FIGS. 3A to 3G.
 図2Aは、半導体装置1Aの製造に用いられる半導体ウエハの平面構成を示す図であり、図2Bは、図2AのC領域を拡大してチップ領域の構成を示す図である。そして、図2Cは、後述の配線基板集合体の一部を拡大して配線基板領域の構成を示す図である。また、図3Aから図3Gは、半導体装置1Aの製造方法を説明するための模式的断面図である。 FIG. 2A is a diagram showing the planar configuration of a semiconductor wafer used for manufacturing the semiconductor device 1A, and FIG. 2B is a diagram showing the configuration of the chip area by enlarging the C area in FIG. 2A. FIG. 2C is a diagram showing the configuration of the wiring board area by enlarging a part of the wiring board assembly to be described later. 3A to 3G are schematic cross-sectional views for explaining the manufacturing method of the semiconductor device 1A.
 まず、図3Aに示すように、半導体ウエハ40と、配線基板集合体50とを準備する。図2A及び図2Bに示すように、準備された半導体ウエハ40は、チップ領域41を複数有している。チップ領域41には、集積回路が製作されている。すなわち、チップ領域41は、半導体チップ10の構成要素が形成済みの領域である。チップ領域41は、スクライブライン(ダイシング領域)42で区画され、スクライブライン42を介してX方向及びY方向のそれぞれの方向に繰り返し配置されている。即ち、チップ領域41は、行列状に複数配置されている。そして、この複数のチップ領域41をスクライブライン42に沿って個々に個片化することにより、集積回路を搭載した半導体チップ10が形成される。つまり、図2Aは、複数の半導体チップに個片化する前の、ウエハ状態での半導体基板全体を示す図である。なお、スクライブライン42は、物理的に形成されているものではない。 First, as shown in FIG. 3A, a semiconductor wafer 40 and a wiring substrate assembly 50 are prepared. As shown in FIGS. 2A and 2B, the prepared semiconductor wafer 40 has multiple chip regions 41 . An integrated circuit is fabricated in the chip area 41 . That is, the chip area 41 is an area in which the components of the semiconductor chip 10 have already been formed. The chip regions 41 are partitioned by scribe lines (dicing regions) 42 and arranged repeatedly in the X and Y directions via the scribe lines 42 . That is, a plurality of chip regions 41 are arranged in a matrix. By singulating the plurality of chip regions 41 along the scribe lines 42, the semiconductor chip 10 on which the integrated circuit is mounted is formed. That is, FIG. 2A is a diagram showing the entire semiconductor substrate in a wafer state before singulation into a plurality of semiconductor chips. Note that the scribe line 42 is not physically formed.
 半導体ウエハ40の準備としては、まず、図2Bに示すチップ領域41に集積回路を形成する。集積回路は、半導体基板11の素子形成面にトランジスタ素子を形成し、その後、半導体基板11の素子形成面上に積層体12を形成することによって構築される。積層体12は、半導体基板11の素子形成面側において、絶縁層及び配線層を交互に積層することによって形成される。また、積層体12の最上層の配線層には電極パッド13が形成されている。半導体基板11は、例えば単結晶シリコンで構成されている。トランジスタ素子としては、例えば、pチャネル導電型のMOSFET((Metal Oxide Semiconductor Field Effect Transistor))及びnチャネル導電型のMOSFETが用いられている。即ち、集積回路は、CMOS(Complementary MOS)回路構成になっている。電極パッド13は、集積回路の構成要素として形成され、信号入出力端子や、電源供給端子などの外部端子として機能する。これにより、図2A及び図2Bに示す半導体ウエハ40がほぼ完成する。半導体ウエハ40の複数のチップ領域41の各々には、トランジスタ素子、積層体12、集積回路、及び電極パッド13などの構成要素が形成されている。 To prepare the semiconductor wafer 40, first, an integrated circuit is formed in the chip area 41 shown in FIG. 2B. An integrated circuit is constructed by forming transistor elements on an element forming surface of a semiconductor substrate 11 and then forming a laminate 12 on the element forming surface of the semiconductor substrate 11 . The laminated body 12 is formed by alternately laminating insulating layers and wiring layers on the element forming surface side of the semiconductor substrate 11 . Electrode pads 13 are formed on the uppermost wiring layer of the laminate 12 . The semiconductor substrate 11 is made of single crystal silicon, for example. As the transistor element, for example, a p-channel conductivity type MOSFET ((Metal Oxide Semiconductor Field Effect Transistor)) and an n-channel conductivity type MOSFET are used. That is, the integrated circuit has a CMOS (Complementary MOS) circuit configuration. The electrode pads 13 are formed as components of an integrated circuit and function as external terminals such as signal input/output terminals and power supply terminals. Thereby, the semiconductor wafer 40 shown in FIGS. 2A and 2B is almost completed. In each of the plurality of chip regions 41 of the semiconductor wafer 40, components such as transistor elements, laminates 12, integrated circuits, and electrode pads 13 are formed.
 図2Cに示すように、配線基板集合体50は、伸縮材料製の母材21に配線基板領域51が複数設けられたものである。配線基板領域51内には、配線22を複数設けた中央部20aが製作されている。すなわち、配線基板領域51は、配線22を複数形成済みの領域である。配線基板領域51は、配線22が設けられていない領域52で区画され、領域52を介してX方向及びY方向のそれぞれの方向に繰り返し配置されている。即ち、配線基板領域51は、行列状に複数配置されている。そして、この複数の配線基板領域51を領域52に沿って個々に個片化することにより、配線基板20が形成される。なお、配線基板領域51は、チップ領域41と同じピッチで行列状に配置されている。これにより、半導体ウエハ40と配線基板集合体50とを重ね合わせた際に、チップ領域41と配線基板領域51とを重ねることができる。なお、配線基板領域51と領域52との境界は、明確に識別できるとは限らない。配線基板集合体50は、例えば、MSAP(Modified Semi Additive Process)工法を用いて準備しても良い。MSAP工法とは、例えば、銅箔付伸縮材料にレーザでビアを形成し、フォトリソグラフィーで配線22を形成する。そして、その上に次の層の銅箔付伸縮材料を加圧しながら加熱して積層し、同様の工程を繰り返し、配線パターンを形成する。このように、MSAP工法とは、上述の配線パターンを形成する工程を繰り返し行う。また、配線基板集合体50のZ方向の寸法(厚み)は、例えば、200μm以上300μm以下であることが好ましい。 As shown in FIG. 2C, the wiring board assembly 50 is obtained by providing a plurality of wiring board regions 51 in a base material 21 made of an elastic material. A central portion 20 a having a plurality of wirings 22 is manufactured in the wiring substrate region 51 . That is, the wiring board area 51 is an area in which a plurality of wirings 22 have already been formed. The wiring substrate region 51 is partitioned by regions 52 where no wiring 22 is provided, and the regions 52 are repeatedly arranged in the X direction and the Y direction. That is, a plurality of wiring board regions 51 are arranged in a matrix. Then, the wiring substrate 20 is formed by singulating the plurality of wiring substrate regions 51 individually along the regions 52 . The wiring substrate regions 51 are arranged in a matrix at the same pitch as the chip regions 41 . As a result, when the semiconductor wafer 40 and the wiring board assembly 50 are overlapped, the chip area 41 and the wiring board area 51 can be overlapped. Note that the boundary between the wiring board region 51 and the region 52 cannot always be clearly identified. The wiring board aggregate 50 may be prepared using, for example, MSAP (Modified Semi Additive Process). In the MSAP method, for example, vias are formed in an elastic material with copper foil by laser, and wiring 22 is formed by photolithography. Then, the next layer of stretchable material with copper foil is laminated thereon by heating while applying pressure, and the same steps are repeated to form a wiring pattern. As described above, the MSAP method repeats the process of forming the wiring pattern described above. The dimension (thickness) in the Z direction of the wiring board assembly 50 is preferably, for example, 200 μm or more and 300 μm or less.
 そして、図3Aに示す半導体ウエハ40の第1の面S1と、配線基板集合体50の第4の面S4とにプラズマを照射して、表面を活性化させる。その後、図3Bに示すように、半導体ウエハ40と配線基板集合体50とを重ねて接合する。その際、電極パッド13と電極パッド22aとが重ねられて接合され、電気的に接続される。その後、熱処理を行っても良い。 Then, the first surface S1 of the semiconductor wafer 40 and the fourth surface S4 of the wiring substrate assembly 50 shown in FIG. 3A are irradiated with plasma to activate the surfaces. After that, as shown in FIG. 3B, the semiconductor wafer 40 and the wiring substrate assembly 50 are overlapped and bonded. At that time, the electrode pad 13 and the electrode pad 22a are overlapped and joined to be electrically connected. After that, heat treatment may be performed.
 次に、図3Cに示すように、配線基板集合体50を分断しないように半導体ウエハ40を切断して、チップ領域41を個片化して半導体チップ10とする。より具体的には、図2Bに示すスクライブライン42に沿って半導体ウエハ40を切断してチップ領域41を個片化して半導体チップ10とする。半導体ウエハ40を切断には例えばダイシングブレードが用いられる。ダイシングブレードで半導体ウエハ40を切断すると、半導体チップ10同士の間に、これに限定されないが、例えば、100μm程度の隙間ができる。また、半導体ウエハ40を切断する際に、図3Cに示すように、配線基板集合体50に、溝が削り出されても良い。なお、個片化された半導体チップ10は、配線基板集合体50に接合された状態が維持されている。 Next, as shown in FIG. 3C, the semiconductor wafer 40 is cut so as not to divide the wiring board assembly 50, and the chip regions 41 are separated into individual semiconductor chips 10. Then, as shown in FIG. More specifically, the semiconductor wafer 40 is cut along the scribe lines 42 shown in FIG. A dicing blade, for example, is used to cut the semiconductor wafer 40 . When the semiconductor wafer 40 is cut with a dicing blade, a gap of about 100 μm, for example, is formed between the semiconductor chips 10, although not limited to this. Further, when cutting the semiconductor wafer 40, grooves may be cut out in the wiring board assembly 50 as shown in FIG. 3C. The individualized semiconductor chips 10 are maintained in a state of being joined to the wiring board assembly 50 .
 そして、図3Dに示すように、配線基板集合体50(母材21)を水平方向(Z方向に垂直な方向)に伸ばして半導体チップ10同士の間の間隔を広げる。配線基板集合体50のZ方向の寸法(厚み)は、例えば、200μm以上300μm以下であるため、水平方向に伸ばした際に配線基板集合体50が切れるのを抑制することができる。なお、半導体チップ10同士の間の間隔は、伸ばす前は100μm程度であったが、この隙間が、これには限定されないが、例えば、300μm程度になるまで、配線基板集合体50を伸ばす。これは、後述の工程において半導体チップ10に個片化された後、半導体チップ10の側面(第3の面S3)に100μm程度の樹脂封止体31が残るようにするためである。配線基板集合体50をどの程度伸ばすのかは、半導体チップ10の側面に残したい樹脂封止体31の厚み及び個片化により削られる幅に応じて求めれば良い。 Then, as shown in FIG. 3D, the wiring board aggregate 50 (base material 21) is extended in the horizontal direction (direction perpendicular to the Z direction) to widen the space between the semiconductor chips 10. As shown in FIG. Since the dimension (thickness) of the wiring board assembly 50 in the Z direction is, for example, 200 μm or more and 300 μm or less, it is possible to prevent the wiring substrate assembly 50 from being cut when stretched in the horizontal direction. Although the gap between the semiconductor chips 10 was about 100 μm before stretching, the wiring board aggregate 50 is stretched until the gap becomes, for example, about 300 μm, although it is not limited to this. This is to leave the resin sealing body 31 with a thickness of about 100 μm on the side surface (third surface S3) of the semiconductor chip 10 after the semiconductor chip 10 is separated into individual pieces in the process described later. The extent to which the wiring board assembly 50 is extended may be determined according to the thickness of the resin sealing body 31 to be left on the side surface of the semiconductor chip 10 and the width to be scraped by singulation.
 また、上述のように半導体チップ10と配線基板集合体50とは接合されているのに加えて、配線基板集合体50のうち半導体チップ10と接合されている部分には配線22が複数設けられている。より具体的には、配線基板集合体50のうち半導体チップ10と接合されている部分には配線22が密に設けられている。そのため、配線基板集合体50のうち伸ばされるのは、主に配線基板領域51同士の間(図2Cの領域52)の部分である。領域52には配線が設けられておらず、ダイシングブレードで半導体ウエハ40を切断する際に領域52には溝が削り出されているので、配線基板集合体50に力を加えると、その力は主に領域52の母材21を伸ばすように作用する。 In addition to the semiconductor chip 10 and the wiring board assembly 50 being bonded as described above, a plurality of wirings 22 are provided in the portion of the wiring board assembly 50 that is bonded to the semiconductor chip 10 . ing. More specifically, the wirings 22 are densely provided in the portion of the wiring substrate aggregate 50 that is joined to the semiconductor chip 10 . Therefore, the portion of the wiring board assembly 50 that is stretched is mainly the portion between the wiring board regions 51 (the region 52 in FIG. 2C). No wiring is provided in the region 52, and grooves are cut out in the region 52 when the semiconductor wafer 40 is cut with a dicing blade. It mainly acts to stretch the base material 21 in the region 52 .
 伸ばされた後の領域52のZ方向の寸法は、これには限定されないが、例えば、伸ばされる前の半分程度である。伸ばす前の配線基板集合体50の厚みが300μmであった場合、伸ばされた後の領域52の厚みは、例えば150μmである。 The Z-direction dimension of the region 52 after being stretched is not limited to this, but is, for example, about half before being stretched. When the wiring board assembly 50 has a thickness of 300 μm before stretching, the thickness of the region 52 after stretching is, for example, 150 μm.
 その後、図3Eに示すように、半導体チップ10同士の間の間隔を広げた状態を維持したまま、配線基板20の第4の面S4側に、半導体チップ10などを封止する樹脂封止体31を形成する。より具体的には、図3Dに示す状態のまま、図示しない金型の中に半導体チップ10及び配線基板集合体50を配置し、金型の中に熱せられて溶けた状態の樹脂封止体31を流し入れる。そして、樹脂封止体31の温度が下がって固まるまで待つ。これにより、図3Eに示すように、半導体チップ10を樹脂封止体31で覆う。より具体的には、半導体チップ10の上面(第2の面S2)及び側面(第3の面S3)の両方を、樹脂封止体31で覆う。 Thereafter, as shown in FIG. 3E, a resin sealing body for sealing the semiconductor chips 10 and the like is placed on the fourth surface S4 side of the wiring substrate 20 while maintaining the state in which the distance between the semiconductor chips 10 is widened. 31 is formed. More specifically, in the state shown in FIG. 3D, the semiconductor chip 10 and the wiring board assembly 50 are placed in a mold (not shown), and the resin sealing body is heated and melted in the mold. Pour in 31. Then, it waits until the temperature of the resin sealing body 31 drops and solidifies. As a result, the semiconductor chip 10 is covered with the resin sealing body 31 as shown in FIG. 3E. More specifically, both the upper surface (second surface S2) and the side surface (third surface S3) of the semiconductor chip 10 are covered with the resin sealing body 31. As shown in FIG.
 次に、図3Fに示すように、半導体チップ10同士の間の樹脂封止体31及び配線基板集合体50を切断する。より具体的には、半導体チップ10同士の間の樹脂封止体31及び配線基板集合体50の領域52を一緒に切断する。これより、半導体装置1Aを個片化する。さらには配線基板20及び樹脂封止体31を含み、半導体チップ10を収納する収納体(パッケージ)30が形成される。より具体的には、配線基板20と、半導体チップ10の上面(第2の面S2)及び側面(第3の面S3)の両方を覆う樹脂封止体31とを含む収納体(パッケージ)30が形成される。 Next, as shown in FIG. 3F, the resin sealing body 31 and the wiring board assembly 50 between the semiconductor chips 10 are cut. More specifically, the resin sealing body 31 between the semiconductor chips 10 and the region 52 of the wiring board assembly 50 are cut together. Thus, the semiconductor device 1A is singulated. Furthermore, a housing body (package) 30 that houses the semiconductor chip 10 including the wiring board 20 and the resin sealing body 31 is formed. More specifically, a housing (package) 30 including a wiring board 20 and a resin sealing body 31 covering both the upper surface (second surface S2) and the side surface (third surface S3) of the semiconductor chip 10. is formed.
 その後、図3Gに示すように、バンプ電極61を電極パッド22bに形成する。これにより、図1A及び図1Bに示す半導体装置1Aがほぼ完成する。 After that, as shown in FIG. 3G, bump electrodes 61 are formed on the electrode pads 22b. Thereby, the semiconductor device 1A shown in FIGS. 1A and 1B is almost completed.
 ≪第1実施形態の主な効果≫
 次に、この第1実施形態の主な効果について説明する。従来の半導体装置の製造、より具体的には、ウエハーレベルCSP(Wafer level Chip Size Package)では、ウエハの一方の面に再配線層、樹脂封止体、バンプ電極等を形成し、その後、ウエハ及び樹脂封止体を切断して、個片化していた。その場合、ダイシング後に得られたパッケージは、ウエハの他方の面及び切断面である側面がシリコンむき出しの状態であった。
<<Main effects of the first embodiment>>
Next, main effects of this first embodiment will be described. In conventional semiconductor device manufacturing, more specifically, wafer level chip size package (CSP), a rewiring layer, a resin encapsulant, bump electrodes, etc. are formed on one side of a wafer, and then the wafer is And, the resin sealing body was cut into individual pieces. In that case, in the package obtained after dicing, the silicon was exposed on the other surface of the wafer and the side surface which was the cut surface.
 そのようにシリコンがむき出しになることを回避するために、ファンアウト型ウェハレベルパッケージ(Fan-Out Wafer Level Packaging:FOWLP)という技術が用いられることがある。ファンアウト型ウェハレベルパッケージでは、ダイシングされた半導体チップを、間隔を空けて別部材の上に再配置し、その上に樹脂封止体を形成して擬似ウエハを形成していた。そして、別部材を除去し、擬似ウエハの樹脂封止体が形成されていない面に再配線層、バンプ電極等を形成し、個片化していた。この方法では、間隔を空けて再配置された半導体チップの上面及び半導体チップ同士の間に樹脂封止体が形成されるので、半導体チップ10の表面にむき出しの部分が生じることを抑制することができる。その一方で、ダイシングされた半導体チップを再配置するため、工程が増え、プロセスが複雑になっていた。 In order to avoid such exposed silicon, a technology called Fan-Out Wafer Level Packaging (FOWLP) is sometimes used. In the fan-out type wafer level package, diced semiconductor chips are rearranged on another member with a gap therebetween, and a resin sealing body is formed thereon to form a pseudo wafer. Then, the separate members are removed, and a rewiring layer, bump electrodes, etc. are formed on the surface of the pseudo wafer on which the resin sealing body is not formed, and the wafer is singulated. In this method, since the resin sealing body is formed between the upper surfaces of the semiconductor chips rearranged with a space therebetween and between the semiconductor chips, it is possible to suppress the occurrence of exposed portions on the surface of the semiconductor chip 10. can. On the other hand, since the diced semiconductor chips are rearranged, the number of steps increases and the process becomes complicated.
 これに対して、本技術の第1実施形態に係る半導体装置1Aの製造方法では、半導体ウエハ40の底面と配線基板集合体50とを重ねて接合し、配線基板集合体50を分断しないように半導体ウエハ40を切断して、チップ領域41を個片化して半導体チップ10とし、配線基板集合体50を水平方向に伸ばして半導体チップ10同士の間の間隔を広げ、半導体チップ10同士の間の間隔を広げた状態を維持したまま、半導体チップ10を樹脂封止体31で覆い、半導体チップ10同士の間の樹脂封止体31及び配線基板集合体50を切断して、半導体装置1Aを個片化している。そのため、半導体チップ10の上面及び側面の両方を樹脂封止体31で覆うことができ、半導体チップ10の上面及び側面がむき出しの状態になることを抑制できる。これにより、半導体チップ10が欠けることを抑制できる。 On the other hand, in the manufacturing method of the semiconductor device 1A according to the first embodiment of the present technology, the bottom surface of the semiconductor wafer 40 and the wiring board assembly 50 are overlapped and joined together so that the wiring board assembly 50 is not divided. The semiconductor wafer 40 is cut to separate the chip regions 41 into individual semiconductor chips 10, and the wiring board assembly 50 is extended horizontally to widen the space between the semiconductor chips 10, thereby increasing the space between the semiconductor chips 10. The semiconductor chips 10 are covered with the resin sealing body 31 while keeping the space widened, and the resin sealing body 31 and the wiring board assembly 50 between the semiconductor chips 10 are cut to separate the semiconductor devices 1A. fragmented. Therefore, both the upper surface and side surfaces of the semiconductor chip 10 can be covered with the resin sealing body 31, and the upper surface and side surfaces of the semiconductor chip 10 can be prevented from being exposed. Thereby, chipping of the semiconductor chip 10 can be suppressed.
 また、本技術の第1実施形態に係る半導体装置1Aの製造方法では、配線基板集合体は、伸縮材料製の母材に、前記母材の一方の面から他方の面へ電気的に通じる配線が複数形成済みの領域である配線基板領域が複数設けられている。そのため、配線基板集合体は使い捨ての部材ではなく、半導体チップ10同士の間の間隔を広げるために伸ばされ、その他の工程を経た後、切断されて配線基板20に個片化され、半導体装置1Aの一部として使用される。そのため、半導体チップ10の再配置を行う必要がなく、工程数が増えることを抑制でき、プロセスが複雑になることを抑制できる。 In addition, in the method for manufacturing the semiconductor device 1A according to the first embodiment of the present technology, the wiring board assembly includes a base material made of an elastic material and wiring electrically connected from one surface to the other surface of the base material. are provided. Therefore, the wiring board assembly is not a disposable member, but is stretched to widen the space between the semiconductor chips 10, undergoes other processes, is cut into individual wiring boards 20, and is divided into the semiconductor devices 1A. used as part of Therefore, there is no need to rearrange the semiconductor chips 10 , an increase in the number of steps can be suppressed, and complication of the process can be suppressed.
 さらに、本技術の第1実施形態に係る半導体装置1Aの製造方法では、母材21は、伸縮率が200パーセント以上の伸縮材料製であり、領域52には母材21の伸縮を抑制する配線22が設けられていないので、半導体チップ10同士の間を十分に広げることができる。また、母材21は弾性率が100MPa以下であるので、母材21を伸ばすために必要な力が大きくなることを抑制できる。 Further, in the method for manufacturing the semiconductor device 1A according to the first embodiment of the present technology, the base material 21 is made of a stretchable material having an expansion ratio of 200% or more, and the region 52 includes wiring lines for suppressing expansion and contraction of the base material 21. 22 is not provided, the space between the semiconductor chips 10 can be sufficiently widened. Further, since the base material 21 has an elastic modulus of 100 MPa or less, it is possible to suppress an increase in the force required to stretch the base material 21 .
 また、本技術の第1実施形態に係る半導体装置1Aの製造方法では、配線基板集合体50のZ方向の寸法(厚み)は、例えば、200μm以上300μm以下であるので、配線基板集合体50を伸ばしても、切れることを抑制できる。 In addition, in the method for manufacturing the semiconductor device 1A according to the first embodiment of the present technology, the dimension (thickness) in the Z direction of the wiring board assembly 50 is, for example, 200 μm or more and 300 μm or less. Even if it is stretched, it can be prevented from breaking.
 さらに、一般的に、半導体装置1Aを構成する材料とマザーボードを構成する材料とでは熱膨張係数が異なるので、熱処理後に常温になった際に、両者の間にひずみが生じる場合がある。そのため、バンプ電極にひずみが生じる場合があった。これに対して、本技術の第1実施形態に係る半導体装置1Aは、配線基板20が有する母材21が伸縮材料製である。そのため、配線基板20が伸びることにより、半導体装置1Aとマザーボードとの間に生じたひずみを吸収できるので、バンプ電極61に応力がかかることを抑制できる。これにより、バンプ電極61にクラックが生じることを抑制でき、信頼性が低下することを抑制できる。 Further, generally, the material forming the semiconductor device 1A and the material forming the mother board have different coefficients of thermal expansion, so when the temperature reaches normal temperature after the heat treatment, strain may occur between the two. Therefore, the bump electrode may be distorted. In contrast, in the semiconductor device 1A according to the first embodiment of the present technology, the base material 21 included in the wiring board 20 is made of an elastic material. Therefore, the extension of the wiring board 20 can absorb the strain generated between the semiconductor device 1A and the motherboard, so that the application of stress to the bump electrodes 61 can be suppressed. As a result, it is possible to suppress the occurrence of cracks in the bump electrode 61, thereby suppressing the decrease in reliability.
 また、本技術の第1実施形態に係る半導体装置1Aは、上述のように配線基板20が伸びることにより、半導体装置1Aとマザーボードとの間に生じたひずみを吸収できるので、マザーボードに実装後、温度変化に対する信頼性が低下するのを抑制できる。半導体装置1Aをマザーボードに実装して温度サイクル試験を行ったところ、従来の再配線層(ReDistribution. Layer:RDL)と比べて、信頼性が向上した実験結果が得られている。実験結果は、配線基板20の厚み及び伸縮性に依存するが、特定の厚み及び伸縮性において、従来の再配線層に比べて信頼性が10倍以上向上する場合もあった。 In addition, since the semiconductor device 1A according to the first embodiment of the present technology can absorb the strain generated between the semiconductor device 1A and the mother board due to the extension of the wiring substrate 20 as described above, after mounting on the mother board, It is possible to suppress deterioration in reliability against temperature changes. When the semiconductor device 1A was mounted on a mother board and a temperature cycle test was conducted, the experimental results showed improved reliability compared to the conventional redistribution layer (RDL). Although the experimental results depend on the thickness and stretchability of the wiring board 20, there were cases where the reliability was improved by ten times or more compared to the conventional rewiring layer at a specific thickness and stretchability.
 さらに、本技術の第1実施形態に係る半導体装置1Aでは、図1Bに示すように、樹脂封止体31が楔状の隙間Bの内部に入り込んでいる。そのため、半導体装置1Aは、物理的負荷及び環境負荷に対して弱くなることが抑制されている。 Furthermore, in the semiconductor device 1A according to the first embodiment of the present technology, the resin sealing body 31 enters the wedge-shaped gap B as shown in FIG. 1B. Therefore, the semiconductor device 1A is suppressed from becoming weak against physical loads and environmental loads.
 ≪第1実施形態の変形例≫
 <変形例1-1>
 上述の第1実施形態では、半導体チップ10と配線基板20とが接合面にプラズマを照射することにより接合されていたが、本技術はこれに限定されない。図4に示すように、半導体チップ10(半導体ウエハ40)の電極パッド13にマイクロバンプ14を形成し、マイクロバンプ14と配線基板20の電極パッド22aとを接合することにより、半導体チップ10(半導体ウエハ40)と配線基板20(配線基板集合体50)とを接合しても良い。これにより、電極パッド13と電極パッド22aとが、マイクロバンプ14を介して電気的に接続されている。
<<Modification of First Embodiment>>
<Modification 1-1>
In the first embodiment described above, the semiconductor chip 10 and the wiring substrate 20 are bonded by irradiating the bonding surface with plasma, but the present technology is not limited to this. As shown in FIG. 4, microbumps 14 are formed on the electrode pads 13 of the semiconductor chip 10 (semiconductor wafer 40), and the microbumps 14 and the electrode pads 22a of the wiring board 20 are bonded to form the semiconductor chip 10 (semiconductor wafer 40). The wafer 40) and the wiring substrate 20 (wiring substrate assembly 50) may be bonded. Thus, the electrode pads 13 and the electrode pads 22a are electrically connected via the microbumps 14. As shown in FIG.
 半導体チップ10と配線基板20とをマイクロバンプ14により接合する場合、半導体チップ10と配線基板20との間に封止体62が設けられている。封止体62は、配線基板20の第1の面S1と配線基板20の第4の面S4とを接合している。封止体62は、一例として、エポキシ樹脂等からなるアンダーフィルであっても良い。アンダーフィルは、接合された半導体チップ10と配線基板20との間に注入され、その後硬化される。また、封止体62は、他の例として、異方性導電フィルム等の異方性導電材料であっても良い。異方性導電材料は、導電を担う導電性粒子と固着を担う接着剤の混合材料から構成されている。異方性導電材料のうちマイクロバンプ14と電極パッド22aとの間に位置する部分は、周囲より高い圧力がかかることにより導電性を発揮し、これによりマイクロバンプ14と電極パッド22aとの間が電気的に接続されている。 When the semiconductor chip 10 and the wiring board 20 are joined by the microbumps 14 , a sealing body 62 is provided between the semiconductor chip 10 and the wiring board 20 . The sealing body 62 joins the first surface S<b>1 of the wiring board 20 and the fourth surface S<b>4 of the wiring board 20 . The encapsulant 62 may be, for example, an underfill made of epoxy resin or the like. The underfill is injected between the bonded semiconductor chip 10 and wiring board 20 and then cured. Alternatively, the sealing body 62 may be an anisotropic conductive material such as an anisotropic conductive film. The anisotropic conductive material is composed of a mixed material of conductive particles responsible for conduction and an adhesive responsible for adhesion. A portion of the anisotropic conductive material located between the microbump 14 and the electrode pad 22a exhibits conductivity when a pressure higher than the surroundings is applied, thereby creating a gap between the microbump 14 and the electrode pad 22a. electrically connected.
 この変形例1-1に係る半導体装置1Aであっても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。 Even with the semiconductor device 1A according to this modified example 1-1, effects similar to those of the semiconductor device 1A according to the above-described first embodiment can be obtained.
 <変形例1-2>
 上述の変形例1-1では、半導体チップ10(半導体ウエハ40)側にマイクロバンプ14を形成していたが、本技術はこれに限定されない。図5に示すように、配線基板20(配線基板集合体50)側にマイクロバンプ23を形成しても良い。すなわち、電極パッド22aにマイクロバンプ23を形成しても良い。そして、マイクロバンプ23と半導体チップ10の電極パッド13とを接合することにより、半導体チップ10(半導体ウエハ40)と配線基板20(配線基板集合体50)とを接合しても良い。これにより、電極パッド13と電極パッド22aとがマイクロバンプ23を介して電気的に接続される。封止体62は、すでに説明した通りである。
<Modification 1-2>
Although the microbumps 14 are formed on the semiconductor chip 10 (semiconductor wafer 40) side in Modification 1-1 described above, the present technology is not limited to this. As shown in FIG. 5, microbumps 23 may be formed on the wiring substrate 20 (wiring substrate assembly 50) side. That is, the microbumps 23 may be formed on the electrode pads 22a. By bonding the microbumps 23 and the electrode pads 13 of the semiconductor chip 10, the semiconductor chip 10 (semiconductor wafer 40) and the wiring substrate 20 (wiring substrate assembly 50) may be bonded. As a result, the electrode pads 13 and the electrode pads 22a are electrically connected via the microbumps 23. As shown in FIG. The encapsulant 62 has already been described.
 この変形例1-2に係る半導体装置1Aであっても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。 The semiconductor device 1A according to Modification 1-2 also provides the same effects as the semiconductor device 1A according to the above-described first embodiment.
 <変形例1-3>
 上述の第1実施形態では、樹脂封止体31は、例えばエポキシ系の熱硬化性樹脂で構成されていて、トランスファモールディング法を用いて形成すると説明したが、本技術はこれに限定されない。例えば、図3Dに示す半導体チップ10同士の間の間隔を広げた状態を維持したまま、配線基板20の第4の面S4側に、流動性のある状態の樹脂(樹脂封止体31)をスピンコートにより塗布する。その後、樹脂を硬化させる。樹脂は、例えば、熱、紫外線等により硬化させる。これにより、樹脂封止体31で半導体チップ10を覆っても良い。
<Modification 1-3>
In the first embodiment described above, the resin sealing body 31 is made of, for example, an epoxy-based thermosetting resin, and is formed using a transfer molding method. However, the present technology is not limited to this. For example, while maintaining the state in which the distance between the semiconductor chips 10 shown in FIG. Apply by spin coating. After that, the resin is cured. The resin is cured by heat, ultraviolet rays, or the like, for example. Thereby, the semiconductor chip 10 may be covered with the resin sealing body 31 .
 この変形例1-3に係る半導体装置1Aであっても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。
 なお、変形例1-3に係る樹脂封止体31を、上述の変形例1-1及び変形例1-2に適用しても良い。
The semiconductor device 1A according to the modified example 1-3 can also obtain the same effect as the semiconductor device 1A according to the above-described first embodiment.
The resin sealing body 31 according to Modification 1-3 may be applied to Modifications 1-1 and 1-2 described above.
 <変形例1-4>
 上述の第1実施形態では、半導体ウエハ40と配線基板集合体50とを貼り合わせていたが、本技術はこれに限定されない。半導体ウエハ40の第1の面S1に、Z方向の寸法が配線基板集合体50と同等程度の厚みを有し、伸縮率及び弾性率も配線基板集合体50と同等程度である再配線層を積層して形成しても良い。このような再配線層は、半導体ウエハ40の第1の面S1に伸縮性絶縁層を塗布し、露光、現像して形成される。その後、再配線層を分断しないように半導体ウエハ40を切断又はハーフカットする。その後の工程は、実施の形態1で説明した工程と同様であるので、ここではその説明を省略する。
<Modification 1-4>
In the first embodiment described above, the semiconductor wafer 40 and the wiring substrate assembly 50 are bonded together, but the present technology is not limited to this. On the first surface S1 of the semiconductor wafer 40, a rewiring layer having a thickness in the Z direction approximately equal to that of the wiring board assembly 50 and having an expansion/contraction rate and an elastic modulus approximately equal to those of the wiring board assembly 50 is formed. It may be formed by stacking. Such a rewiring layer is formed by coating a stretchable insulating layer on the first surface S1 of the semiconductor wafer 40, exposing it, and developing it. After that, the semiconductor wafer 40 is cut or half-cut so as not to divide the rewiring layer. Subsequent steps are the same as the steps described in the first embodiment, so description thereof is omitted here.
 この変形例1-4に係る半導体装置1Aであっても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。 Even with the semiconductor device 1A according to Modification 1-4, effects similar to those of the semiconductor device 1A according to the above-described first embodiment can be obtained.
 〔第2実施形態〕
 この第2実施形態では、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の光検出装置(半導体チップ)を備えた半導体装置に本技術を適用した一例について説明する。
[Second embodiment]
In the second embodiment, an example in which the present technology is applied to a semiconductor device including a photodetector (semiconductor chip) such as a backside illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor will be described.
 本第2実施形態に係る半導体装置1Bが上述の第1実施形態に係る半導体装置1Aと相違するのは、半導体チップ10に代えて半導体チップ10Bを有する点、及び収納体30に代えて収納体30Bを有する点であり、それ以外の半導体装置1Bの構成は、基本的に上述の第1実施形態の半導体装置1Aと同様の構成になっている。なお、すでに説明した構成要素については、同じ符号を付してその説明を省略する。 The semiconductor device 1B according to the second embodiment differs from the semiconductor device 1A according to the above-described first embodiment in that it has a semiconductor chip 10B instead of the semiconductor chip 10, and a housing body instead of the housing body 30. 30B, and other than that, the configuration of the semiconductor device 1B is basically the same as that of the semiconductor device 1A of the above-described first embodiment. In addition, the same code|symbol is attached|subjected about the component already demonstrated, and the description is abbreviate|omitted.
 <半導体チップ>
 図6に示すように、第2実施形態に係る半導体装置1Bは、半導体チップ10Bと、収納体(パッケージ)30Bとを含む。まず、半導体チップ10Bから説明する。半導体チップ10Bは、光検出装置を搭載している。光検出装置としては、例えば、光学レンズを介して被写体からの像光(入射光)を取り込み、撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する固体撮像素子、及び物体に向かって照射光を発光し、その照射光が物体の表面で反射され返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出する測距センサ(Time of Flight、ToFセンサ)等を挙げることができる。本実施形態では、光検出装置が、図7に示す半導体チップ10Bに搭載された固体撮像素子70であるとして説明するが、これに限定されるものではない。
<Semiconductor chip>
As shown in FIG. 6, a semiconductor device 1B according to the second embodiment includes a semiconductor chip 10B and a housing (package) 30B. First, the semiconductor chip 10B will be described. The semiconductor chip 10B is equipped with a photodetector. As a photodetector, for example, image light (incident light) from a subject is taken in via an optical lens, and the amount of light of the incident light formed on the image pickup surface is converted into an electric signal for each pixel, which is then used as a pixel signal. A solid-state image pickup device that emits irradiation light toward an object, detects the reflected light that is reflected by the surface of the object, and receives the reflected light after the irradiation light is emitted. A distance measuring sensor (Time of Flight, ToF sensor) that calculates the distance to an object based on the flight time of the object can be used. In this embodiment, the photodetector is described as being the solid-state imaging device 70 mounted on the semiconductor chip 10B shown in FIG. 7, but it is not limited to this.
 図7に示すように、本技術の第2実施形態に係る固体撮像素子70(半導体チップ10B)は、平面視したときの二次元平面形状が方形状である。固体撮像素子70は、互いに交差するX方向及びY方向を含む二次元平面において、中央部に設けられた方形状の画素領域2Aと、この画素領域2Aの外側に画素領域2Aを囲むようにして設けられた周辺領域2Bとを備えている。 As shown in FIG. 7, the solid-state imaging device 70 (semiconductor chip 10B) according to the second embodiment of the present technology has a square two-dimensional planar shape when viewed in plan. The solid-state imaging device 70 includes a rectangular pixel region 2A provided in the center and a pixel region 2A surrounding the pixel region 2A outside the pixel region 2A on a two-dimensional plane including the X direction and the Y direction that intersect each other. and a peripheral region 2B.
 画素領域2Aは、例えば光学レンズ(光学系)により集光される光を受光する受光面である。そして、画素領域2Aには、X方向及びY方向を含む二次元平面において複数の画素3が行列状に配置されている。換言すれば、画素3は、二次元平面内で互いに直交するX方向及びY方向のそれぞれの方向に繰り返し配置されている。 The pixel area 2A is a light receiving surface that receives light condensed by, for example, an optical lens (optical system). In the pixel region 2A, a plurality of pixels 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction. In other words, the pixels 3 are repeatedly arranged in the X direction and the Y direction that are orthogonal to each other within the two-dimensional plane.
 周辺領域2Bには、電極パッド13Bが複数配置されている。電極パッド13Bは、例えば、半導体チップ10Bの二次元平面における4つの辺に沿って配列されている。電極パッド13Bは、固体撮像素子70を外部装置と電気的に接続する際に用いられる入出力端子である。 A plurality of electrode pads 13B are arranged in the peripheral region 2B. The electrode pads 13B are arranged, for example, along four sides in the two-dimensional plane of the semiconductor chip 10B. The electrode pads 13B are input/output terminals used when electrically connecting the solid-state imaging device 70 to an external device.
 固体撮像素子70は、垂直駆動回路、カラム信号処理回路、水平駆動回路、出力回路及び制御回路などを含むロジック回路を備えている。ロジック回路は、例えば、CMOS(Complenentary MOS)回路で構成されている。 The solid-state imaging device 70 has logic circuits including a vertical drive circuit, a column signal processing circuit, a horizontal drive circuit, an output circuit, a control circuit, and the like. The logic circuit is composed of, for example, a CMOS (Complementary MOS) circuit.
 複数の画素3の各々の画素3は、光電変換素子を有している。そして、各画素3の光電変換素子には、読出し回路が接続されている。光電変換素子は、図6に示す半導体基板11Bに画素3毎に構成されている。そして、光電変換素子は、光を受光量に応じた信号電荷に光電変換して保持する。 Each pixel 3 of the plurality of pixels 3 has a photoelectric conversion element. A readout circuit is connected to the photoelectric conversion element of each pixel 3 . A photoelectric conversion element is formed for each pixel 3 on the semiconductor substrate 11B shown in FIG. Then, the photoelectric conversion element photoelectrically converts the light into a signal charge corresponding to the amount of received light and holds the signal charge.
 図6に示すように、半導体チップ10Bは、厚み方向(Z方向)において互いに反対側に位置する第1の面S1及び第2の面S2を有する。そして、半導体チップ10Bは、半導体基板11Bと、半導体基板11Bの素子形成面側において絶縁層及び配線層を交互に複数段積み重ねて形成された積層体(多層配線層)12Bと、電極パッド13Bとを備えている。 As shown in FIG. 6, the semiconductor chip 10B has a first surface S1 and a second surface S2 located on opposite sides in the thickness direction (Z direction). The semiconductor chip 10B includes a semiconductor substrate 11B, a laminate (multilayer wiring layer) 12B formed by alternately stacking insulating layers and wiring layers on the element forming surface side of the semiconductor substrate 11B, and electrode pads 13B. It has
 半導体基板11Bには、上述のロジック回路や、読出し回路などの回路を構成する電界効果トランジスタとして、例えば複数のMOSFETが構成されている。半導体基板11Bとしては、例えば単結晶シリコン基板を用いることができる。積層体12Bは、絶縁層及び配線層を交互に複数段積層した積層構造になっている。電極パッド13Bは、半導体チップ10Bを貫通している。電極パッド13Bは、電極パッド22aと接合され、電気的に接続されている。 A plurality of MOSFETs, for example, are configured on the semiconductor substrate 11B as field effect transistors that configure circuits such as the above-described logic circuit and readout circuit. A single crystal silicon substrate, for example, can be used as the semiconductor substrate 11B. The laminated body 12B has a laminated structure in which insulating layers and wiring layers are alternately laminated in multiple stages. The electrode pads 13B penetrate through the semiconductor chip 10B. The electrode pad 13B is joined and electrically connected to the electrode pad 22a.
 半導体チップ10Bは、第2の面S2側(受光面側)に、この第2の面S2側から順次積層された図示しない平坦化膜、図示しないカラーフィルタ、及びマイクロレンズ15を更に備えている。平坦化膜は、第2の面S2側を平坦化する。マイクロレンズ15は、半導体基板11Bへの入射光を集光する。カラーフィルタは、半導体基板11Bへの入射光を色分離する。カラーフィルタ及びマイクロレンズ15は、それぞれ画素3毎に設けられている。カラーフィルタ及びマイクロレンズ15は、例えば樹脂性の材料で構成されている。 The semiconductor chip 10B further includes a flattening film (not shown), a color filter (not shown), and a microlens 15 which are sequentially stacked from the second surface S2 side (light receiving surface side) on the second surface S2 side (light receiving surface side). . The planarizing film planarizes the second surface S2 side. The microlens 15 collects incident light to the semiconductor substrate 11B. The color filter color-separates the incident light to the semiconductor substrate 11B. A color filter and a microlens 15 are provided for each pixel 3, respectively. The color filters and microlenses 15 are made of resin material, for example.
 <収納体>
 次に、収納体(パッケージ)30Bについて説明する。収納体30Bは、配線基板20と、樹脂封止体31と、光透過基板32と、を含み、半導体チップ10Bを封止している。
<Storage body>
Next, the container (package) 30B will be described. The housing body 30B includes the wiring substrate 20, the resin sealing body 31, and the light transmission substrate 32, and seals the semiconductor chip 10B.
 半導体装置1Bは、受光面側に光透過基板32を有する。より具体的には、半導体装置1Bは、半導体チップ10Bの受光面側に光透過基板32を有する。光透過基板32は、半導体チップ10Bの受光面側(第2の面S2側)を封止している。より具体的には、光透過基板32は、半導体チップ10Bと間隔を空けて半導体チップ10Bの受光面側(第2の面S2側)を封止している。光透過基板32は、半導体チップ10Bの第2の面S2側に樹脂33により接着されている。光透過基板32は、光透過性を有する部材を用いて構成されており、例えば、ガラス基板が用いられるがこれに限らない。例えば、光透過基板32には、アクリル樹脂基板やサファイア基板等を用いるようにしてもよい。光透過基板32を透過した光は、半導体基板11Bに設けられた光電変換素子に入射し、光電変換素子により光量に応じた信号電荷に光電変換される。 The semiconductor device 1B has a light transmitting substrate 32 on the light receiving surface side. More specifically, the semiconductor device 1B has a light transmitting substrate 32 on the light receiving surface side of the semiconductor chip 10B. The light-transmitting substrate 32 seals the light-receiving surface side (second surface S2 side) of the semiconductor chip 10B. More specifically, the light-transmitting substrate 32 seals the light-receiving surface side (second surface S2 side) of the semiconductor chip 10B with a gap from the semiconductor chip 10B. The light-transmitting substrate 32 is adhered with a resin 33 to the second surface S2 side of the semiconductor chip 10B. The light-transmitting substrate 32 is configured using a member having light-transmitting properties, and for example, a glass substrate is used, but the present invention is not limited to this. For example, an acrylic resin substrate, a sapphire substrate, or the like may be used as the light transmission substrate 32 . The light transmitted through the light-transmitting substrate 32 is incident on the photoelectric conversion element provided on the semiconductor substrate 11B, and is photoelectrically converted by the photoelectric conversion element into signal charges corresponding to the amount of light.
 樹脂封止体31は、配線基板20の上面である第4の面S4側に設けられ、半導体チップ10Bの主に側面(第3の面S3)を覆っている。また、樹脂封止体31は、光透過基板32の側面(Z方向に垂直な方向の面)を覆っていて、さらに光透過基板32と半導体チップ10Bとの間の隙間にも入り込んでいる。 The resin sealing body 31 is provided on the side of the fourth surface S4, which is the upper surface of the wiring board 20, and mainly covers the side surface (third surface S3) of the semiconductor chip 10B. In addition, the resin sealant 31 covers the side surface of the light-transmitting substrate 32 (the surface perpendicular to the Z direction) and also enters the gap between the light-transmitting substrate 32 and the semiconductor chip 10B.
 ≪半導体装置の製造方法≫
 次に、半導体装置1Bの製造方法について、図8Aから図8Fまでを用いて説明する。ここでは、第1実施形態で説明した製造方法と異なる部分を中心に説明する。
<<Method for manufacturing semiconductor device>>
Next, a method for manufacturing the semiconductor device 1B will be described with reference to FIGS. 8A to 8F. Here, the description will focus on the parts that are different from the manufacturing method described in the first embodiment.
 まず、図8Aに示すように、半導体ウエハ40と、配線基板集合体50と、光透過基板80とを準備する。半導体ウエハ40のチップ領域41には、固体撮像素子70が製作されている。光透過基板80は、半導体ウエハ40と同等の大きさを有している。その後、図8Bに示すように、半導体ウエハ40と配線基板集合体50とを重ねて接合する。そして、半導体ウエハ40の第2の面S2側に、樹脂33を用いて光透過基板80を接着する。 First, as shown in FIG. 8A, a semiconductor wafer 40, a wiring board assembly 50, and a light transmissive board 80 are prepared. A solid-state imaging device 70 is manufactured in the chip area 41 of the semiconductor wafer 40 . The light transmissive substrate 80 has the same size as the semiconductor wafer 40 . After that, as shown in FIG. 8B, the semiconductor wafer 40 and the wiring board assembly 50 are overlapped and bonded. Then, the light transmission substrate 80 is adhered to the second surface S2 side of the semiconductor wafer 40 using the resin 33 .
 次に、図8Cに示すように、配線基板集合体50を分断しないように、光透過基板80及び半導体ウエハ40を切断する。これにより、光透過基板80が光透過基板32に個片化され、半導体ウエハ40が半導体チップ10Bに個片化される。このように、光透過基板32と半導体チップ10Bとが接着された状態で個片化される。 Next, as shown in FIG. 8C, the light-transmitting substrate 80 and the semiconductor wafer 40 are cut so as not to divide the wiring substrate assembly 50 . As a result, the light-transmitting substrate 80 is singulated into the light-transmitting substrates 32, and the semiconductor wafer 40 is singulated into the semiconductor chips 10B. In this way, the light-transmissive substrate 32 and the semiconductor chip 10B are separated into individual pieces while they are bonded together.
 その後、図8Dに示すように、配線基板集合体50を水平方向(Z方向に垂直な方向)に伸ばして半導体チップ10B同士の間の間隔を広げる。そして、図8Dに示す状態のまま、図示しない金型の中に光透過基板32が接着された半導体チップ10B及び配線基板集合体50を配置し、金型の中に熱せられて溶けた状態の樹脂封止体31を流し入れる。より具体的には、光透過基板32に接する側の金型にフィルムが設けてあり、樹脂封止体31を充填する際に光透過基板32の表面に際に樹脂封止体31が付かないようにしている。そして、樹脂封止体31の温度が下がって固まるまで待つ。これにより、図8Eに示すように、光透過基板32の側面と半導体チップ10Bの側面(第3の面S3)とを覆う樹脂封止体31を形成する。その後、図8Fに示すように個片化し、第1実施形態の図3Gを用いて説明したように、電極パッド22bにバンプ電極61を設けて、図6に示す半導体装置1Bがほぼ完成する。 After that, as shown in FIG. 8D, the wiring board assembly 50 is extended in the horizontal direction (direction perpendicular to the Z direction) to widen the space between the semiconductor chips 10B. Then, in the state shown in FIG. 8D, the semiconductor chip 10B with the light-transmitting substrate 32 adhered thereto and the wiring board assembly 50 are placed in a mold (not shown), and heated and melted in the mold. The resin sealing body 31 is poured. More specifically, a film is provided on the mold on the side that contacts the light-transmitting substrate 32 so that the resin sealing body 31 does not adhere to the surface of the light-transmitting substrate 32 when the resin sealing body 31 is filled. I'm trying Then, it waits until the temperature of the resin sealing body 31 drops and solidifies. As a result, as shown in FIG. 8E, a resin sealing body 31 covering the side surface of the light-transmitting substrate 32 and the side surface (third surface S3) of the semiconductor chip 10B is formed. Thereafter, as shown in FIG. 8F, the semiconductor device 1B is separated into individual pieces, and the bump electrodes 61 are provided on the electrode pads 22b as described with reference to FIG. 3G of the first embodiment, thereby completing the semiconductor device 1B shown in FIG.
 ≪第2実施形態の主な効果≫
 この第2実施形態に係る半導体装置1Bであっても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。
<<Main effects of the second embodiment>>
Even with the semiconductor device 1B according to the second embodiment, effects similar to those of the semiconductor device 1A according to the above-described first embodiment can be obtained.
 また、この第2実施形態に係る半導体装置1Bでは、受光面側に光透過基板32を設けている。そのため、半導体チップ10Bに光が入射でき、光電変換素子が光電変換を行うことができる。さらに、半導体チップ10Bの上面がむき出しの状態になることを抑制できる。また、半導体チップ10Bの主に側面を樹脂封止体31で覆うことができ、半導体チップ10Bの側面がむき出しの状態になることを抑制できる。これにより、半導体チップ10Bの表面にむき出しの部分が生じることを抑制でき、半導体チップ10Bが欠けることを抑制できる。 Also, in the semiconductor device 1B according to the second embodiment, a light transmitting substrate 32 is provided on the light receiving surface side. Therefore, light can enter the semiconductor chip 10B, and the photoelectric conversion element can perform photoelectric conversion. Furthermore, it is possible to prevent the upper surface of the semiconductor chip 10B from being exposed. Moreover, the side surfaces of the semiconductor chip 10B can be mainly covered with the resin sealing body 31, and the side surfaces of the semiconductor chip 10B can be prevented from being exposed. As a result, it is possible to suppress the occurrence of an exposed portion on the surface of the semiconductor chip 10B, and it is possible to suppress chipping of the semiconductor chip 10B.
 ≪第2実施形態の変形例≫
 <変形例2-1>
 上述の第2実施形態では、光透過基板32は、平面視において半導体チップ10Bとほぼ同じ大きさであったが、本技術はこれに限定されない。図9に示すように、光透過基板32は、平面視において半導体チップ10Bより小さくても良い。より具体的には、平面視で図7に示す画素領域2Aを覆うことができれば、半導体チップ10Bより小さくても良い。その場合、光透過基板80を予め個片化して光透過基板32を準備しておき、例えば、図10に示すように、個片化される前の半導体ウエハ40に対して、個片化された光透過基板32を樹脂33により接着する。その後、半導体ウエハ40を個片化すれば良い。なお、これ以降の工程は第2実施形態の工程と同様であるので、ここでは説明を省略する。
<<Modification of Second Embodiment>>
<Modification 2-1>
In the second embodiment described above, the light transmissive substrate 32 has substantially the same size as the semiconductor chip 10B in plan view, but the present technology is not limited to this. As shown in FIG. 9, the light transmission substrate 32 may be smaller than the semiconductor chip 10B in plan view. More specifically, it may be smaller than the semiconductor chip 10B as long as it can cover the pixel region 2A shown in FIG. 7 in plan view. In that case, the light-transmitting substrate 80 is singulated in advance to prepare the light-transmitting substrate 32. For example, as shown in FIG. The light-transmitting substrate 32 is adhered with the resin 33 . After that, the semiconductor wafer 40 may be singulated. Note that the subsequent steps are the same as those of the second embodiment, so description thereof will be omitted here.
 この変形例2-1に係る半導体装置1Bであっても、上述の第2実施形態に係る半導体装置1Bと同様の効果が得られる。 The semiconductor device 1B according to the modified example 2-1 can also obtain the same effect as the semiconductor device 1B according to the above-described second embodiment.
 〔その他の実施形態〕
 上記のように、本技術は第1実施形態から第2実施形態までによって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。この開示から当業者には様々な代替の実施形態、実施例及び運用技術が明らかとなろう。
[Other embodiments]
As described above, the present technology has been described by the first to second embodiments, but the statements and drawings forming part of this disclosure should not be understood to limit the present technology. Various alternative embodiments, implementations and operational techniques will become apparent to those skilled in the art from this disclosure.
 例えば、第1実施形態から第2実施形態までにおいて説明したそれぞれの技術的思想を互いに組み合わせることも可能である。例えば、上述の第1実施形態の変形例1-1に係る半導体装置1Aはマイクロバンプ14を備え、第1実施形態の変形例1-2に係る半導体装置1Aはマイクロバンプ23を備えていたが、このような技術的思想を、第2実施形態及びその変形例に記載の半導体装置1Bに適用しても良い。また、例えば、第1実施形態の変形例1-4に係る再配線層を第2実施形態に適用する等、それぞれの技術的思想に沿った種々の組み合わせが可能である。
 また、上述の実施形態では、半導体装置1A,1Bはバンプ電極61を備えていたが、備えていなくても良い。また、図3F、図8F等に示す個片化後かつバンプ電極61を形成する前の状態のものも、半導体装置1A,1Bと呼ぶことができる。
For example, it is possible to combine the technical ideas described in the first to second embodiments with each other. For example, the semiconductor device 1A according to Modification 1-1 of the first embodiment described above includes the microbump 14, and the semiconductor device 1A according to Modification 1-2 of the first embodiment includes the microbump 23. , such a technical idea may be applied to the semiconductor device 1B described in the second embodiment and its modifications. Also, various combinations are possible according to the respective technical ideas, such as applying the rewiring layers according to Modifications 1-4 of the first embodiment to the second embodiment.
Moreover, although the semiconductor devices 1A and 1B are provided with the bump electrodes 61 in the above-described embodiments, they may not be provided. The semiconductor devices 1A and 1B can also be referred to as semiconductor devices 1A and 1B after singulation and before forming the bump electrodes 61, as shown in FIGS. 3F and 8F.
 このように、本技術はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本技術の技術的範囲は上記の説明から妥当な特許請求の範囲に記載された発明特定事項によってのみ定められるものである。 In this way, the present technology naturally includes various embodiments and the like that are not described here. Therefore, the technical scope of the present technology is defined only by the matters specifying the invention described in the scope of claims that are valid from the above description.
 なお、本技術は、以下のような構成としてもよい。
(1)
 半導体チップの構成要素が形成済みの領域であるチップ領域が複数設けられた半導体ウエハと、伸縮材料製の母材に、前記母材の一方の面から他方の面へ電気的に通じる配線が複数形成済みの領域である配線基板領域が複数設けられた配線基板集合体とを準備し、
 前記半導体ウエハの底面と前記配線基板集合体とを重ねて接合し、
 前記配線基板集合体を分断しないように前記半導体ウエハを切断して、前記チップ領域を個片化して半導体チップとし、
 前記配線基板集合体を水平方向に伸ばして前記半導体チップ同士の間の間隔を広げ、
 前記半導体チップ同士の間の間隔を広げた状態を維持したまま、前記半導体チップを樹脂封止体で覆い、
 前記半導体チップ同士の間の前記樹脂封止体及び前記配線基板集合体を切断して、半導体装置を個片化する、半導体装置の製造方法。
(2)
 前記半導体チップを前記樹脂封止体で覆う際には、前記半導体チップの上面及び側面のうち、少なくとも前記側面を前記樹脂封止体で覆う、(1)に記載の半導体装置の製造方法。
(3)
 前記半導体ウエハと前記配線基板集合体とを接合する際には、前記チップ領域に設けられた電極パッドと前記配線基板集合体の前記配線とを電気的に接続する、(1)又は(2)に記載の半導体装置の製造方法。
(4)
 半導体チップと、
 伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製の母材を有し、前記母材の一方の面から他方の面へ電気的に通じる配線を複数有し、前記半導体チップの底面に重ねて接合された配線基板と、
 前記半導体チップを覆う樹脂封止体と、を備えた半導体装置。
(5)
 前記樹脂封止体は、前記半導体チップの上面及び側面のうち、少なくとも前記側面を覆っている、(4)に記載の半導体装置。
(6)
 前記半導体チップの電極パッドは、前記配線基板の前記配線と電気的に接続されている、(4)又は(5)に記載の半導体装置。
(7)
 受光面側に光透過基板を有し、
 前記半導体チップは光電変換素子を有する、(4)から(6)のいずれかに記載の半導体装置。
(8)
 前記配線基板の周縁部は、中央部より厚みが薄い、(4)から(7)のいずれかに記載の半導体装置。
(9)
 半導体チップの底面に重ねて接合される基板であり、伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製の母材を有し、前記母材の一方の面から他方の面へ電気的に通じる配線を複数有した、
 半導体装置用の配線基板。
(10)
 前記配線基板の中央部の厚みは、200μm以上300μm以下である、(9)に記載の半導体装置用の配線基板。
(11)
 前記配線は、前記母材の一方の面側において前記半導体チップに電気的に接続されている、(9)又は(10)に記載の半導体装置用の配線基板。
Note that the present technology may be configured as follows.
(1)
A semiconductor wafer provided with a plurality of chip regions, which are regions in which components of a semiconductor chip are already formed; preparing a wiring board assembly in which a plurality of wiring board regions, which are already formed regions, are provided;
overlapping and bonding the bottom surface of the semiconductor wafer and the wiring board assembly;
cutting the semiconductor wafer so as not to divide the wiring board assembly, and singulating the chip regions into semiconductor chips;
extending the wiring board assembly in the horizontal direction to widen the space between the semiconductor chips;
covering the semiconductor chips with a resin encapsulant while maintaining a state in which the distance between the semiconductor chips is widened;
A method of manufacturing a semiconductor device, wherein the resin sealing body and the wiring board assembly between the semiconductor chips are cut to singulate the semiconductor device.
(2)
The method of manufacturing a semiconductor device according to (1), wherein when the semiconductor chip is covered with the resin encapsulant, at least the side surface out of the upper surface and the side surface of the semiconductor chip is covered with the resin encapsulant.
(3)
(1) or (2) electrically connecting the electrode pads provided in the chip area and the wirings of the wiring board assembly when the semiconductor wafer and the wiring board assembly are joined together; A method of manufacturing the semiconductor device according to 1.
(4)
a semiconductor chip;
A base material made of a stretchable material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less, having a plurality of wirings electrically connected from one surface to the other surface of the base material, and the bottom surface of the semiconductor chip. a wiring board superimposed and joined to the
and a resin sealing body covering the semiconductor chip.
(5)
The semiconductor device according to (4), wherein the resin sealing body covers at least the side surface out of the upper surface and the side surface of the semiconductor chip.
(6)
The semiconductor device according to (4) or (5), wherein the electrode pads of the semiconductor chip are electrically connected to the wiring of the wiring substrate.
(7)
Having a light-transmitting substrate on the light-receiving surface side,
The semiconductor device according to any one of (4) to (6), wherein the semiconductor chip has a photoelectric conversion element.
(8)
The semiconductor device according to any one of (4) to (7), wherein the peripheral portion of the wiring board is thinner than the central portion.
(9)
A substrate that is overlaid and bonded to the bottom surface of a semiconductor chip, and has a base material made of an elastic material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less, and an electric current is transferred from one surface of the base material to the other surface. It has multiple wiring that leads to the target,
Wiring substrate for semiconductor devices.
(10)
The wiring board for a semiconductor device according to (9), wherein the wiring board has a central portion thickness of 200 μm or more and 300 μm or less.
(11)
The wiring board for a semiconductor device according to (9) or (10), wherein the wiring is electrically connected to the semiconductor chip on one surface side of the base material.
 本技術の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本技術が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本技術の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 The scope of the present technology is not limited to the illustrated and described exemplary embodiments, but also includes all embodiments that achieve effects equivalent to those intended by the present technology. Furthermore, the scope of the technology is not limited to the combination of inventive features defined by the claims, but may be defined by any desired combination of the particular features of each and every disclosed feature.
 1A,1B 半導体装置
 2A 画素領域
 2B 周辺領域
 3 画素
 10,10B 半導体チップ
 11,11B 半導体基板
 12,12B 積層体
 13,13B,22a,22b 電極パッド
 14,23 マイクロバンプ
 15 マイクロレンズ
 20 配線基板
 20a 中央部
 20b 周縁部
 21 母材
 22 配線
 22c 接続部
 30,30B 収納体
 31 樹脂封止体
 32 光透過基板
 33 樹脂
 40 半導体ウエハ
 41 チップ領域
 42 スクライブライン
 50 配線基板集合体
 51 配線基板領域
 52 領域
 61 バンプ電極
 62 封止体
 70 固体撮像素子
 80 光透過基板
 B 隙間
 
1A, 1B semiconductor device 2A pixel region 2B peripheral region 3 pixel 10, 10B semiconductor chip 11, 11B semiconductor substrate 12, 12B laminate 13, 13B, 22a, 22b electrode pad 14, 23 microbump 15 microlens 20 wiring substrate 20a center Part 20b Peripheral part 21 Base material 22 Wiring 22c Connection part 30, 30B Storage body 31 Resin sealing body 32 Light transmission substrate 33 Resin 40 Semiconductor wafer 41 Chip area 42 Scribe line 50 Wiring board assembly 51 Wiring board area 52 Area 61 Bump Electrode 62 Sealing body 70 Solid-state imaging device 80 Light-transmitting substrate B Gap

Claims (11)

  1.  半導体チップの構成要素が形成済みの領域であるチップ領域が複数設けられた半導体ウエハと、伸縮材料製の母材に、前記母材の一方の面から他方の面へ電気的に通じる配線が複数形成済みの領域である配線基板領域が複数設けられた配線基板集合体とを準備し、
     前記半導体ウエハの底面と前記配線基板集合体とを重ねて接合し、
     前記配線基板集合体を分断しないように前記半導体ウエハを切断して、前記チップ領域を個片化して半導体チップとし、
     前記配線基板集合体を水平方向に伸ばして前記半導体チップ同士の間の間隔を広げ、
     前記半導体チップ同士の間の間隔を広げた状態を維持したまま、前記半導体チップを樹脂封止体で覆い、
     前記半導体チップ同士の間の前記樹脂封止体及び前記配線基板集合体を切断して、半導体装置を個片化する、半導体装置の製造方法。
    A semiconductor wafer provided with a plurality of chip regions, which are regions in which components of a semiconductor chip are already formed; preparing a wiring board assembly in which a plurality of wiring board regions, which are already formed regions, are provided;
    overlapping and bonding the bottom surface of the semiconductor wafer and the wiring board assembly;
    cutting the semiconductor wafer so as not to divide the wiring board assembly, and singulating the chip regions into semiconductor chips;
    extending the wiring board assembly in the horizontal direction to widen the space between the semiconductor chips;
    covering the semiconductor chips with a resin encapsulant while maintaining a state in which the distance between the semiconductor chips is widened;
    A method of manufacturing a semiconductor device, wherein the resin sealing body and the wiring board assembly between the semiconductor chips are cut to singulate the semiconductor device.
  2.  前記半導体チップを前記樹脂封止体で覆う際には、前記半導体チップの上面及び側面のうち、少なくとも前記側面を前記樹脂封止体で覆う、請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein when the semiconductor chip is covered with the resin encapsulant, at least the side surface out of the upper surface and the side surface of the semiconductor chip is covered with the resin encapsulant.
  3.  前記半導体ウエハと前記配線基板集合体とを接合する際には、前記チップ領域に設けられた電極パッドと前記配線基板集合体の前記配線とを電気的に接続する、請求項1に記載の半導体装置の製造方法。 2. The semiconductor according to claim 1, wherein when bonding said semiconductor wafer and said wiring board aggregate, electrode pads provided in said chip region and said wiring of said wiring board aggregate are electrically connected. Method of manufacturing the device.
  4.  半導体チップと、
     伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製の母材を有し、前記母材の一方の面から他方の面へ電気的に通じる配線を複数有し、前記半導体チップの底面に重ねて接合された配線基板と、
     前記半導体チップを覆う樹脂封止体と、を備えた半導体装置。
    a semiconductor chip;
    A base material made of a stretchable material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less, having a plurality of wirings electrically connected from one surface to the other surface of the base material, and the bottom surface of the semiconductor chip. a wiring board superimposed and joined to the
    and a resin sealing body covering the semiconductor chip.
  5.  前記樹脂封止体は、前記半導体チップの上面及び側面のうち、少なくとも前記側面を覆っている、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein said resin sealing body covers at least said side surface out of a top surface and a side surface of said semiconductor chip.
  6.  前記半導体チップの電極パッドは、前記配線基板の前記配線と電気的に接続されている、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the electrode pads of said semiconductor chip are electrically connected to said wiring of said wiring board.
  7.  受光面側に光透過基板を有し、
     前記半導体チップは光電変換素子を有する、請求項4に記載の半導体装置。
    Having a light-transmitting substrate on the light-receiving surface side,
    5. The semiconductor device according to claim 4, wherein said semiconductor chip has a photoelectric conversion element.
  8.  前記配線基板の周縁部は、中央部より厚みが薄い、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the peripheral portion of the wiring board is thinner than the central portion.
  9.  半導体チップの底面に重ねて接合される基板であり、伸縮率が200パーセント以上かつ弾性率が100MPa以下の伸縮材料製の母材を有し、前記母材の一方の面から他方の面へ電気的に通じる配線を複数有した、
     半導体装置用の配線基板。
    A substrate that is overlaid and bonded to the bottom surface of a semiconductor chip, and has a base material made of an elastic material having an expansion ratio of 200% or more and an elastic modulus of 100 MPa or less, and an electric current is transferred from one surface of the base material to the other surface. It has multiple wiring that leads to the target,
    Wiring substrate for semiconductor devices.
  10.  前記配線基板の中央部の厚みは、200μm以上300μm以下である、請求項9に記載の半導体装置用の配線基板。 The wiring board for a semiconductor device according to claim 9, wherein the central portion of the wiring board has a thickness of 200 µm or more and 300 µm or less.
  11.  前記配線は、前記母材の一方の面側において前記半導体チップに電気的に接続されている、請求項9に記載の半導体装置用の配線基板。
     
    10. The wiring board for a semiconductor device according to claim 9, wherein said wiring is electrically connected to said semiconductor chip on one surface side of said base material.
PCT/JP2022/013330 2021-09-14 2022-03-23 Method for manufacturing semiconductor device, semiconductor device, and wiring board for semiconductor device WO2023042450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548112A JPWO2023042450A1 (en) 2021-09-14 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-149232 2021-09-14
JP2021149232 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042450A1 true WO2023042450A1 (en) 2023-03-23

Family

ID=85601973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013330 WO2023042450A1 (en) 2021-09-14 2022-03-23 Method for manufacturing semiconductor device, semiconductor device, and wiring board for semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2023042450A1 (en)
WO (1) WO2023042450A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246174A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Semiconductor module, method of manufacturing semiconductor module, and portable equipment
JP2009267409A (en) * 2008-04-24 2009-11-12 Mutual-Pak Technology Co Ltd Package structure for integrated circuit device and method of the same
JP2010114243A (en) * 2008-11-06 2010-05-20 Toppan Printing Co Ltd Semiconductor device
WO2021111716A1 (en) * 2019-12-04 2021-06-10 ソニーセミコンダクタソリューションズ株式会社 Imaging device and manufacturing method for imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246174A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Semiconductor module, method of manufacturing semiconductor module, and portable equipment
JP2009267409A (en) * 2008-04-24 2009-11-12 Mutual-Pak Technology Co Ltd Package structure for integrated circuit device and method of the same
JP2010114243A (en) * 2008-11-06 2010-05-20 Toppan Printing Co Ltd Semiconductor device
WO2021111716A1 (en) * 2019-12-04 2021-06-10 ソニーセミコンダクタソリューションズ株式会社 Imaging device and manufacturing method for imaging device

Also Published As

Publication number Publication date
JPWO2023042450A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
TWI700753B (en) Chip package and method for forming the same
US10079159B2 (en) Die package with openings surrounding end-portions of through package vias (TPVs) and package on package (PoP) using the die package
US9685426B2 (en) Package-on-package semiconductor device
US9691706B2 (en) Multi-chip fan out package and methods of forming the same
KR101730691B1 (en) Mechanisms for forming package structure
KR101562709B1 (en) Warpage control of semiconductor die package
TWI662667B (en) Package structure and manufacturing method thereof
US8012776B2 (en) Methods of manufacturing imaging device packages
KR101476883B1 (en) Stress compensation layer for 3d packaging
US9911687B2 (en) Molding compound structure
TW201803056A (en) Semiconductor package and manufacturing method thereof
US9520304B2 (en) Semiconductor package and fabrication method thereof
KR101366455B1 (en) Semiconductor devices, packaging methods and structures
WO2010080068A1 (en) Method for manufacturing a low cost three dimensional stack package and resulting structures using through silicon vias and assemblies
WO2017221589A1 (en) Semiconductor chip package
CN103295925A (en) Semiconductor device and method for forming a low profile embedded wafer level ball grid array molded laser package (ewlp-mlp)
TW201409641A (en) Semiconductor package and method of forming a semiconductor package
TW201511209A (en) Semiconductor device and method of manufacturing the semiconductor device
JP2009088459A (en) Wafer-level image sensor module and its manufacturing method, and camera module
JP2010278040A (en) Method of manufacturing semiconductor device, and semiconductor device
KR20140081858A (en) Package assembly including a semiconductor substrate with stress relief structure
TW200522379A (en) Image sensor package ahd method for manufacturing the same
US20170186678A1 (en) Fan-out chip package and its fabricating method
TWI587415B (en) Method of manufacturing semiconductor device
JP2004281920A (en) Semiconductor device, electronic device, electronic apparatus, process for producing semiconductor device, and process for producing electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548112

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE