WO2023042266A1 - Video processing device, video processing method, and video processing program - Google Patents

Video processing device, video processing method, and video processing program Download PDF

Info

Publication number
WO2023042266A1
WO2023042266A1 PCT/JP2021/033764 JP2021033764W WO2023042266A1 WO 2023042266 A1 WO2023042266 A1 WO 2023042266A1 JP 2021033764 W JP2021033764 W JP 2021033764W WO 2023042266 A1 WO2023042266 A1 WO 2023042266A1
Authority
WO
WIPO (PCT)
Prior art keywords
viewpoint image
image
parallax
eye position
video processing
Prior art date
Application number
PCT/JP2021/033764
Other languages
French (fr)
Japanese (ja)
Inventor
誉宗 巻口
大樹 吹上
卓 佐野
仁志 瀬下
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/033764 priority Critical patent/WO2023042266A1/en
Publication of WO2023042266A1 publication Critical patent/WO2023042266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]

Definitions

  • the present invention relates to a video processing device, a video processing method, and a video processing program.
  • the "HiddenStereo method” is known as a stereo image generation technology that applies the visual mechanism that works when humans perceive depth.
  • a parallax induced pattern having a phase difference of 90 degrees with respect to a reference image is generated, and a stereo pair of images created by adding or subtracting them to the reference image is displayed on a 3D display.
  • a user wearing 3D glasses can perceive a 3D image with binocular stereoscopic vision, and a user without 3D glasses can see a 2D image (reference image described above) without ghosts or double images. perceptible.
  • An object of the present invention is to provide a video processing device, a video processing method, and a video processing program capable of appropriately reproducing depth even when parallax is left-right asymmetric.
  • the video processing device includes an image acquisition unit, an optimization processing unit, a pattern generation unit, and an image generation unit.
  • the image acquisition unit obtains a left eye viewpoint image obtained by photographing the display area from the left eye position, a right eye viewpoint image obtained by photographing the display area from the right eye position, and an intermediate viewpoint image obtained by photographing the display area from an intermediate position between the left eye position and the right eye position.
  • the optimization processing unit optimizes the phase shift amount and weight calculated based on the intermediate viewpoint image based on the left-eye viewpoint image and the right-eye viewpoint image.
  • a pattern generator generates a parallax induction pattern corresponding to the parallax between the left eye position and the right eye position based on the optimized phase shift amount and the optimized weights.
  • the image generator generates stereo pair images based on the intermediate viewpoint images and the parallax induction pattern.
  • FIG. 1 is an explanatory diagram illustrating parallax that occurs at a user's viewpoint when reproducing a 3D object using the video processing device according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of the video processing device according to the embodiment;
  • FIG. 3 is a diagram illustrating an example of the functional configuration of the video processing device according to the embodiment;
  • FIG. 4 is an explanatory diagram illustrating an example of processing for generating stereo pair images by the video processing device according to the embodiment.
  • FIG. 5 is a flowchart illustrating an example of processing executed by the video processing device according to the embodiment;
  • FIG. 6 is an explanatory diagram illustrating an example of screen division when the video processing device according to the modification of the embodiment generates stereo pair images.
  • FIG. 7 is an explanatory diagram illustrating an example of processing in which the video processing device according to the modification of the embodiment generates stereo pair images.
  • FIG. 8 is a flowchart illustrating an example of processing executed by a video processing device according to
  • FIG. 1 is an explanatory diagram for explaining parallax that occurs at the user's viewpoint when reproducing a 3D object using the video processing device according to the embodiment.
  • a depth direction (direction indicated by arrows Y1 and Y2) and a horizontal direction (direction indicated by arrows X1 and X2) are defined.
  • the depth direction intersects (perpendicularly or substantially perpendicularly to) the vertical direction.
  • the horizontal direction intersects (perpendicular or nearly perpendicular) both the depth direction and the vertical direction.
  • the user is positioned on the near side (arrow Y2 side) with respect to the actual display area RS in the depth direction.
  • distance D be the depth width reproduced by the 3D object.
  • the distance D is the distance in the depth direction between the real display area RS and the virtual display surface VS.
  • a left eye position PL, a right eye position PR, and an intermediate position PC are defined.
  • the left eye position PL is the position of the assumed viewpoint corresponding to the left eye among the assumed viewpoints of both eyes of the user who perceives the 3D object.
  • the right eye position PR is the position of the assumed viewpoint corresponding to the right eye among the assumed viewpoints of both eyes of the user who perceives the 3D object.
  • the intermediate position PC is a horizontal position intermediate between the left eye position PL and the right eye position PR.
  • the user perceives a virtual point VL on a virtual display plane VS at a distance D away.
  • the user sees the horizontal direction.
  • a parallel parallax W1 is generated.
  • the image of the display region RS is perceived at the right eye position PR and when the image of the display region RS is perceived at the intermediate position PC, the user has a parallax W2 along the horizontal direction.
  • the parallax W1 and the parallax W2 are almost equal.
  • parallax W2 is larger than parallax W1, as shown in the enlarged view of visual recognition region DR.
  • the parallax W1 and the parallax W2 change as the user's viewing area changes.
  • the video processing device 20 of the present embodiment by generating a parallax induction pattern corresponding to such a change in parallax, even a 3D object displayed at a position horizontally distant from the user, for example, can be displayed by the user. can be perceived with correct depth representation.
  • FIG. 2 is a diagram showing an example of the configuration of the video processing device 20.
  • the video processing device 20 is, for example, a computer.
  • the video processing device 20 comprises a processor 201, a storage medium 202, a user interface 203, and a communication module 204, for example.
  • Processor 201 , storage medium 202 , user interface 203 and communication module 204 are connected to each other via bus 205 .
  • the processor 201 includes any of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a microcomputer, an FPGA (Field Programmable Gate Array), and a DSP (Digital Signal processor). .
  • the storage medium 202 may include a secondary storage device in addition to a main storage device such as memory.
  • the main memory is a non-temporary storage medium.
  • the main storage device is, for example, a non-volatile memory such as a HDD (Hard Disk Drive) or an SSD (Solid State Drive) that can be written and read at any time, a non-volatile memory such as a ROM (Read Only Memory). Also, a combination of these nonvolatile memories may be used.
  • Secondary storage is a tangible storage medium.
  • the auxiliary storage device is a combination of non-volatile memory and volatile memory such as RAM (Random Access Memory). In the video processing device 20, only one processor 201 and storage medium 202 may be provided, or a plurality of them may be provided.
  • the processor 201 performs processing by executing programs and the like stored in the storage medium 202.
  • the program executed by the processor 201 may be stored in a computer (server) connected via a network such as the Internet, a server in a cloud environment, or the like. In this case, processor 201 downloads the program via the network.
  • the user interface 203 the user of the video processing device 20 inputs various operations and the like, and information and the like to be notified to the user are notified by display or the like.
  • the user interface 203 may be a display unit such as a display, or an input unit such as a touch panel or keyboard.
  • a device connected to the video processing device 20 may be used as the input unit, or an input unit of another processing device capable of communicating via a network may be used.
  • FIG. 3 is a diagram showing an example of the functional configuration of the video processing device 20.
  • the video processing device 20 includes, for example, an image acquisition section 31, an optimization processing section 32, a pattern generation section 33, an image generation section 34, and a communication section .
  • the processes of the image acquisition unit 31, the optimization processing unit 32, the pattern generation unit 33, the image generation unit 34, and the communication unit 35 are realized by the processor 201 and the communication module 204, for example.
  • the image acquisition unit 31 acquires viewpoint images used by the video processing device 20 .
  • the image acquisition unit 31 is, for example, a camera.
  • the optimization processing unit 32 executes predetermined processing based on the viewpoint image acquired by the image acquisition unit 31 .
  • the pattern generation unit 33 generates a parallax induction pattern based on the viewpoint image acquired by the image acquisition unit 31 and the processing result of the optimization processing unit 32 .
  • the parallax induction pattern realizes the parallax W1 and the parallax W2 described with reference to FIG. 1, for example, by performing predetermined processing together with a predetermined image that serves as a reference.
  • the image generation unit 34 generates stereo pair images based on the parallax induction pattern generated by the pattern generation unit 33 and a predetermined reference image.
  • the communication unit 35 transmits the stereo pair images generated by the image generation unit 34 by a predetermined method. For example, the communication unit 35 outputs the stereo pair images from the image output device by transmitting the stereo pair images to the image output device
  • FIG. 4 is an explanatory diagram for explaining an example of a process in which the video processing device 20 generates stereo pair images.
  • the image acquiring unit 31 acquires the left-eye viewpoint image PLP, the intermediate viewpoint image PCP, and the right-eye viewpoint image PRP, as described above.
  • the optimization processing unit 32 generates a parallax induction pattern ID based on these three images.
  • the intermediate viewpoint image PCP is used as a predetermined reference image (reference image).
  • the optimization processing unit 32 transforms each of the left-eye viewpoint image PLP, intermediate-viewpoint image PCP, and right-eye viewpoint image PRP into frequency-phase components.
  • phase component at frequency i and position j after conversion of the intermediate viewpoint image PCP into frequency-phase components is denoted by X(i, j).
  • the phase component of frequency i and position j after conversion of the left eye viewpoint image PLP into frequency-phase components is denoted by L(i, j).
  • the phase component of frequency i and position j after conversion of the right-eye viewpoint image PRP into frequency-phase components is denoted by R(i, j).
  • the optimization processing unit 32 phase-shifts the intermediate viewpoint image PCP by y degrees.
  • the optimization processing unit 32 generates a phase-shifted intermediate viewpoint image PCP shift by adding a phase shift amount y(i, j) to the phase component X(i, j) of the intermediate viewpoint image PCP.
  • the optimization processing unit 32 generates an estimated left-eye viewpoint image PLP asm by estimating the left-eye viewpoint image PLP by adding the intermediate viewpoint image PCP and the phase-shifted intermediate viewpoint image PCP shift .
  • the optimization processing unit 32 multiplies the phase-shifted intermediate viewpoint image PCP shift by the weight A, and performs addition with the intermediate viewpoint image PCP.
  • the value of the weight A for example, a predetermined initial value is set in advance.
  • the optimization processing unit 32 calculates an estimated phase shift amount zL(i, j) from the intermediate viewpoint image PCP in the estimated left-eye viewpoint image PLP asm .
  • the optimization processing unit 32 subtracts the phase-shifted intermediate viewpoint image PCP shift from the intermediate viewpoint image PCP to generate an estimated right-eye viewpoint image PRP asm by estimating the right-eye viewpoint image PRP.
  • the optimization processing unit 32 multiplies the phase-shifted intermediate viewpoint image PCP shift by the weight A, and performs subtraction from the intermediate viewpoint image PCP.
  • the optimization processing unit 32 calculates an estimated phase shift amount zR(i, j) from the intermediate viewpoint image PCP in the estimated right-eye viewpoint image PRP asm .
  • the optimization processing unit 32 optimizes the set (A, y) of the weight A and the phase shift amount y under the condition of minimizing the error N represented by Equation (1). Since the estimated phase shifts zL(i,j) and zR(i,j) vary depending on both the weight A and the phase shift y, minimizing the error N yields the set (A,y) is optimized. A set of weight A and phase shift amount y is determined by exhaustive search, for example. By minimizing the error N, the optimization processing unit 32 calculates a set (A opt , y opt ) of the optimum weight A opt and the optimum phase shift amount y opt .
  • the pattern generation unit 33 Based on the optimum weight A opt and the optimum phase shift amount y opt calculated by the optimization processing unit 32, the pattern generation unit 33 generates a parallax induction pattern ID.
  • the parallax induction pattern ID is generated by the same process as the method described in Non-Patent Document 1.
  • the image generation unit 34 generates one of the stereo pair images at the left eye position PL by adding the parallax induction pattern ID generated by the pattern generation unit 33 and the intermediate viewpoint image PCP.
  • the image generation unit 34 generates the other of the stereo pair images at the right eye position PR by subtracting the parallax induction pattern ID generated by the pattern generation unit from the intermediate viewpoint image PCP. In this manner, the image generator 34 generates stereo pair images.
  • the optimization process described above will be described in detail in the case where the level at the viewpoint position phase ⁇ is represented by the intensity of the sine wave.
  • the intensity at the phase X of the intermediate position PC is represented as sin(X).
  • the intensity after the phase shift is expressed as sin(X+y).
  • the optimization processing unit 32 calculates the result of adding the intensity sin(X) at the phase X and Asin(X+y) obtained by weighting the intensity sin(X+y) after the phase shift with the weight A at the phase L at the left eye position PL. Estimated intensity.
  • the estimated intensity at this time is expressed using the phase X, the estimated phase shift amount zL, and the weight BL, it is expressed as Equation (2).
  • Equation (3) the estimated phase shift amount zL is represented by Equation (3).
  • the optimization processing unit 32 subtracts the result of subtracting Asin(X+y), which is obtained by weighting the phase-shifted intensity sin(X+y) with the weight A, from the intensity sin(X) at the phase X, Let be the estimated intensity at phase R.
  • the estimated intensity at this time is expressed using the phase X, the estimated phase shift amount zR, and the weight BR, it is expressed as in Equation (4).
  • Equation (5) the estimated phase shift amount zR is represented by Equation (5).
  • the optimization processing unit 32 optimizes the set (A, y) of the weight A and the phase shift amount y under the condition of minimizing the error N represented by Equation (1).
  • FIG. 5 is a flowchart illustrating an example of processing executed by the video processing device 20 according to the embodiment.
  • the processing in FIG. 5 is repeatedly executed at the timing when the video processing device 20 generates stereo pair images. Therefore, the process of FIG. 5 is an example of a flowchart in one process of image generation processing for generating stereo pair images.
  • the video processing device 20 acquires the viewpoint images by the image acquiring unit 31 (S501).
  • the image acquisition unit 31 acquires the left-eye viewpoint image PLP, the intermediate viewpoint image PCP, and the right-eye viewpoint image PRP.
  • the video processing device 20 converts the acquired left-eye viewpoint image PLP, intermediate-viewpoint image PCP, and right-eye viewpoint image PRP into frequency-phase components as described above (S502).
  • the video processing device 20 generates the phase-shifted intermediate viewpoint image PCP shift as described above (S503).
  • the video processing device 20 generates the estimated left-eye viewpoint image PLP asm and the estimated right-eye viewpoint image PRP asm based on the intermediate viewpoint image PCP and the phase-shifted intermediate viewpoint image PCP shift (S504). .
  • the video processing device 20 estimates an estimated phase shift amount zL(i, j) based on the estimated left-eye viewpoint image PLP asm , and estimates an estimated phase shift amount zR(i, j) based on the estimated right-eye viewpoint image PRP asm . (S505).
  • the image processing device 20 optimizes the set of the phase shift component y(i,j) and the weight A(i,j) under the condition of minimizing the error N as described above (S506).
  • the video processing device 20 generates the parallax induction pattern ID based on the optimum weight A opt and the optimum phase shift amount y opt as described above (S507). As described above, the video processing device 20 generates stereo pair images based on the intermediate viewpoint image PCP and the parallax induction pattern ID (S508). As described above, the video processing device 20 completes the stereo pair image generation processing.
  • the video processing device 20 includes an image acquisition section 31 , an optimization processing section 32 , a pattern generation section 33 and an image generation section 34 .
  • the image acquisition unit 31 obtains a left-eye viewpoint image PLP obtained by photographing the display region RS from the left-eye position PL, a right-eye viewpoint image PRP obtained by photographing the display region RS from the right-eye position PR, and a display region from the middle between the left-eye position PL and the right-eye position PR. and an intermediate viewpoint image PCP obtained by photographing the RS.
  • the optimization processing unit 32 optimizes the phase shift amount y and the weight A calculated based on the intermediate viewpoint image PCP based on the left eye viewpoint image PLP and the right eye viewpoint image PRP.
  • the pattern generator 33 generates a parallax induction pattern ID corresponding to the parallax between the left eye position PL and the right eye position PR based on the optimized optimum phase shift amount y opt and the optimized optimum weight A opt . .
  • the image generator 34 generates stereo pair images based on the intermediate viewpoint image PCP and the parallax induction pattern ID. In this way, since the video processing device 20 optimizes the phase shift amount and the weight A based on the left-eye viewpoint image PLP and the right-eye viewpoint image PRP, it is possible to provide the user with an appropriate parallax even when the parallax is left-right asymmetric. can be done. Therefore, the video processing device 20 can provide appropriate depth representation to the user.
  • FIG. 6 is an explanatory diagram illustrating an example of a method of dividing the display area RS when the video processing device 20 according to the modification generates stereo pair images.
  • the actual display area RS is divided into a predetermined number with reference to the intermediate position PC, and the phase shift amount y and the weight A are optimized for each divided area. That is, the phase shift amount y is the same and the weight A is the same within the divided regions.
  • the actual number of divisions of the display area RS is not particularly limited.
  • the actual display area RS is divided into three areas, left area AL, center area AC, and right area AR.
  • the image processing device 20 optimizes the phase shift amount y and the weight A in the left area AL, optimizes the phase shift amount y and the weight A in the central area AC, and optimizes the phase shift amount y and the weight A in the right area AR. to optimize.
  • FIG. 7 is an explanatory diagram illustrating an example of processing for generating stereo pair images by the video processing device 20 according to the modification.
  • the optimization processing unit 32 phase-shifts the intermediate viewpoint image PCP by y degrees, a common phase shift amount y part is used in each of the divided regions into which the display region RS is divided.
  • the optimization processing unit 32 adds a phase shift amount y part to the phase component X(i, j) of the intermediate viewpoint image PCP in each of the divided regions, thereby obtaining a phase-shifted intermediate viewpoint image (PCP shift ) part . , generated for each segmented region.
  • the optimization processing unit 32 adds the intermediate viewpoint image PCP and the phase-shifted intermediate viewpoint image (PCP shift ) part for each divided region, thereby estimating the corresponding portion of the left eye viewpoint image PLP to obtain an estimated left eye viewpoint image. Generate (PLP asm ) part . At this time, the optimization processing unit 32 multiplies the phase-shifted intermediate viewpoint image (PCP shift ) part by the weight A part , and performs addition with the intermediate viewpoint image PCP. The optimization processing unit 32 estimates the estimated phase shift amount zL part from the intermediate viewpoint image PCP based on the estimated left-eye viewpoint image (PLP asm ) part for each divided area.
  • the optimization processing unit 32 calculates a set (A part , y part ) of the weight A part and the phase shift amount y part for each divided region under the condition of minimizing the error N represented by Equation (1) .
  • Optimize Based on the optimum weight (A part ) opt and the optimum phase shift amount (y part ) opt calculated for each divided area by the optimization processing unit 32, the pattern generation unit 33 generates a parallax induction pattern ID part for each divided area. do.
  • the image generating unit 34 adds the parallax induction pattern ID part generated by the pattern generating unit 33 and the part of the intermediate viewpoint image PCP corresponding to the divided area to obtain a stereo pair at the left eye position PL corresponding to the divided area. Generate one of the images.
  • the image generation unit 34 subtracts the parallax induction pattern ID part generated by the pattern generation unit 33 from the intermediate viewpoint image PCP corresponding to the division area, thereby generating a stereo pair image at the right eye position PR corresponding to the division area. generate the other. After completing the generation of the stereo pair images corresponding to the divided regions in all the divided regions, the image generator 34 synthesizes the stereo pair images corresponding to the respective divided regions to obtain the stereo pair images corresponding to the display region RS. to generate
  • FIG. 8 is a flowchart illustrating an example of processing executed by the video processing device 20 of this modification.
  • the video processing device 20 acquires the viewpoint images by the image acquiring unit 31 (S801).
  • the image acquisition unit 31 acquires the left-eye viewpoint image PLP, the intermediate viewpoint image PCP, and the right-eye viewpoint image PRP.
  • Video processing device 20 converts acquired left eye viewpoint image PLP, middle viewpoint image PCP, and right eye viewpoint image PRP into frequency-phase components as described above (S802).
  • the video processing device 20 generates a phase-shifted intermediate viewpoint image (PCP shift ) part for each divided area as described above (S803).
  • the video processing device 20 generates an estimated left-eye viewpoint image (PLP asm ) part and an estimated right-eye viewpoint image ( PRP asm ) part is generated for each divided area (S804).
  • the video processing device 20 estimates an estimated phase shift amount zL part for each divided area based on the estimated left-eye viewpoint image (PLP asm ) part , and estimates an estimated phase shift amount zR part based on the estimated right-eye viewpoint image (PRP asm ) part . is estimated for each divided area (S805).
  • the image processing device 20 optimizes the set of the phase shift amount y part and the weight A part for each divided area under the condition that the error N is minimized (S806).
  • the image processing device 20 generates the parallax induction pattern ID part for each divided area based on the optimum weight (A part ) opt and the optimum phase shift amount (y part ) opt (S807).
  • the video processing device 20 generates stereo pair images for each divided area based on the intermediate viewpoint image PCP and the parallax induction pattern ID part (S808).
  • the video processing device 20 generates a stereo pair image corresponding to the display area RS by synthesizing the stereo pair images for each divided area (S809).
  • the video processing device 20 completes the generation of stereo pair images.
  • the video processing device 20 optimizes the phase shift amount y and the weight A based on the left-eye viewpoint image PLP and the right-eye viewpoint image PRP, so the parallax is left-right asymmetric. Appropriate parallax can be given to the user even in this case. Therefore, the video processing device 20 can give the user an appropriate representation of depth.
  • the video processing device 20 may acquire the left eye position PL, right eye position PR, and intermediate position PC in real time. Acquisition of the left eye position PL, right eye position PR, and intermediate position PC in real time is performed, for example, by head tracking of the user. In this case, the video processing device 20 generates stereo pair images in real time based on the left eye position PL, right eye position PR, and intermediate position PC acquired in real time. Therefore, the video processing device 20 executes the processing shown in FIG. 5 or 8 each time the left eye position PL, right eye position PR, and intermediate position PC are updated. By acquiring the left eye position PL, the right eye position PR, and the intermediate position PC in real time in this way, stereo pair images reflecting the user's viewpoint in real time are generated. Therefore, the video processing device 20 can provide the user with more appropriate depth representation.
  • the methods described in the above-described embodiments and the like can be stored and distributed as programs (software) that can be executed by computers, for example, in storage media such as magnetic disks, optical disks, and semiconductor memories. Storage media are not limited to those for distribution, and include storage media such as magnetic disks and semiconductor memories provided inside computers or devices connected via a network. Also, the techniques described in the embodiments may be transmitted and distributed over a communication medium.
  • the programs stored on the medium side also include a setting program that configures in the computer software to be executed by the computer.
  • Software includes not only execution programs but also tables and data structures.
  • a computer that realizes this system reads a program recorded in a storage medium and executes the above-described processing by controlling the operation by software.
  • the software may be constructed by a computer using a configuration program.
  • the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.

Abstract

According to an embodiment, this video processing device comprises an image acquiring unit, an optimization processing unit, a pattern generating unit, and an image generating unit. The image acquiring unit acquires a left-eye viewpoint image obtained by imaging a display area from a left-eye position, a right-eye viewpoint image obtained by imaging the display area from a right-eye position, and a center viewpoint image obtained by imaging the display area from a center position between the left-eye position and the right-eye position. The optimization processing unit optimizes, on the basis of the left-eye viewpoint image and the right-eye viewpoint image, a phase shift amount and a weight both calculated on the basis of the center viewpoint image. The pattern generating unit generates, on the basis of the optimized phase shift amount and the optimized weight, a parallax induction pattern corresponding to the parallax between the left-eye position and the right-eye position. The image generating unit generates stereo-paired images on the basis of the center viewpoint image and the parallax induction pattern.

Description

映像処理装置、映像処理方法、及び映像処理プログラムVIDEO PROCESSING DEVICE, VIDEO PROCESSING METHOD, AND VIDEO PROCESSING PROGRAM
 本発明は、映像処理装置、映像処理方法、及び映像処理プログラムに関する。 The present invention relates to a video processing device, a video processing method, and a video processing program.
 人間が奥行きを知覚する際に働く視覚メカニズムを応用したステレオ画像生成技術として、“HiddenStereo手法”が知られている。HiddenStereo手法では、基準画像に対して90度位相の異なる視差誘導パタンを生成し、基準画像に加算又は減算して作成したステレオペア画像を3Dディスプレイで表示する。この手法を用いることで、3Dメガネをかけているユーザは両眼立体視による3D画像を知覚でき、3Dメガネをかけていないユーザはゴーストや2重像のない2D画像(上述の基準画像)を知覚できる。 The "HiddenStereo method" is known as a stereo image generation technology that applies the visual mechanism that works when humans perceive depth. In the HiddenStereo method, a parallax induced pattern having a phase difference of 90 degrees with respect to a reference image is generated, and a stereo pair of images created by adding or subtracting them to the reference image is displayed on a 3D display. By using this method, a user wearing 3D glasses can perceive a 3D image with binocular stereoscopic vision, and a user without 3D glasses can see a 2D image (reference image described above) without ghosts or double images. perceptible.
 しかしながら、当該手法では、基準画像と視差誘導パタンとの位相差が90度に固定されているため、基準画像に対する左右の視差誘導量が常に等しい。その結果、視差が左右対称である場合、例えばユーザの正面位置のオブジェクト等の場合には正確な奥行きを再現できるが、視差が左右非対称である場合、例えばユーザの正面から水平方向に離れた位置のオブジェクト等の場合には正確な奥行きを再現することが難しかった。この現象は、特に大型3Dディスプレイにおける画面端のオブジェクトで顕著に表れる。そこで、視差が左右非対称である場合においても適切に奥行きを再現することができるステレオ画像生成技術が求められている。 However, in this method, since the phase difference between the reference image and the parallax induction pattern is fixed at 90 degrees, the left and right parallax induction amounts with respect to the reference image are always equal. As a result, if the parallax is left-right symmetrical, for example, an object in front of the user can be accurately reproduced in depth, but if the parallax is left-right asymmetric, for example, a position away from the front of the user in the horizontal direction can be reproduced. It has been difficult to reproduce accurate depth in the case of objects such as This phenomenon is particularly conspicuous in objects at the edges of the screen on a large 3D display. Therefore, there is a demand for a stereo image generation technique that can appropriately reproduce depth even when parallax is left-right asymmetric.
 本発明は、視差が左右非対称である場合においても適切に奥行きを再現することができる映像処理装置、映像処理方法、及び映像処理プログラムを提供することを目的とする。 An object of the present invention is to provide a video processing device, a video processing method, and a video processing program capable of appropriately reproducing depth even when parallax is left-right asymmetric.
 実施形態によれば、映像処理装置は、画像取得部、最適化処理部、パタン生成部、及び画像生成部を具備する。画像取得部は、左目位置から表示領域を撮影した左目視点画像と、右目位置から表示領域を撮影した右目視点画像と、左目位置及び右目位置の中間位置から表示領域を撮影した中間視点画像と、を取得する。最適化処理部は、中間視点画像に基づいて算出された位相シフト量及び重みを、左目視点画像及び右目視点画像に基づいて最適化する。パタン生成部は、最適化された位相シフト量及び最適化された重みに基づいて、左目位置及び右目位置の間の視差に対応する視差誘導パタンを生成する。画像生成部は、中間視点画像及び視差誘導パタンに基づいて、ステレオペア画像を生成する。 According to the embodiment, the video processing device includes an image acquisition unit, an optimization processing unit, a pattern generation unit, and an image generation unit. The image acquisition unit obtains a left eye viewpoint image obtained by photographing the display area from the left eye position, a right eye viewpoint image obtained by photographing the display area from the right eye position, and an intermediate viewpoint image obtained by photographing the display area from an intermediate position between the left eye position and the right eye position. to get The optimization processing unit optimizes the phase shift amount and weight calculated based on the intermediate viewpoint image based on the left-eye viewpoint image and the right-eye viewpoint image. A pattern generator generates a parallax induction pattern corresponding to the parallax between the left eye position and the right eye position based on the optimized phase shift amount and the optimized weights. The image generator generates stereo pair images based on the intermediate viewpoint images and the parallax induction pattern.
 実施形態によれば、視差が左右非対称である場合においても適切に奥行きを再現することができる映像処理装置、映像処理方法、及び映像処理プログラムを提供することができる。 According to the embodiments, it is possible to provide a video processing device, a video processing method, and a video processing program capable of appropriately reproducing depth even when parallax is left-right asymmetric.
図1は、実施形態に係る映像処理装置を使用して3Dオブジェクトを再現するときに、ユーザの視点において生じる視差を説明する説明図である。FIG. 1 is an explanatory diagram illustrating parallax that occurs at a user's viewpoint when reproducing a 3D object using the video processing device according to the embodiment. 図2は、実施形態に係る映像処理装置の構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of the video processing device according to the embodiment; 図3は、実施形態に係る映像処理装置の機能構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of the functional configuration of the video processing device according to the embodiment; 図4は、実施形態に係る映像処理装置がステレオペア画像を生成する処理の一例を説明する説明図である。FIG. 4 is an explanatory diagram illustrating an example of processing for generating stereo pair images by the video processing device according to the embodiment. 図5は、実施形態に係る映像処理装置で実行される処理の一例を説明するフローチャートである。FIG. 5 is a flowchart illustrating an example of processing executed by the video processing device according to the embodiment; 図6は、実施形態の変形例に係る映像処理装置がステレオペア画像を生成するときの画面分割の一例を説明する説明図である。FIG. 6 is an explanatory diagram illustrating an example of screen division when the video processing device according to the modification of the embodiment generates stereo pair images. 図7は、実施形態の変形例に係る映像処理装置がステレオペア画像を生成する処理の一例を説明する説明図である。FIG. 7 is an explanatory diagram illustrating an example of processing in which the video processing device according to the modification of the embodiment generates stereo pair images. 図8は、実施形態の変形例に係る映像処理装置で実行される処理の一例を説明するフローチャートである。FIG. 8 is a flowchart illustrating an example of processing executed by a video processing device according to a modification of the embodiment;
 本発明の一実施形態について、適宜図面を参照しながら詳細に説明する。 An embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 図1は、実施形態に係る映像処理装置を使用して3Dオブジェクトを再現するときに、ユーザの視点において生じる視差を説明する説明図である。図1では、奥行き方向(矢印Y1及び矢印Y2で示す方向)及び水平方向(矢印X1及び矢印X2で示す方向)が規定される。奥行き方向は、鉛直方向と交差する(直交又は略直交する)。水平方向は、奥行き方向及び鉛直方向の両方と交差する(直交又は略直交する)。図1では、ユーザは奥行き方向について現実の表示領域RSに対して手前側(矢印Y2側)に位置する。したがって、ユーザは手前側から表示領域RSを視ることで3Dオブジェクトを知覚する。このとき、3Dオブジェクトで再現する奥行き幅を距離Dとする。距離Dは、現実の表示領域RSと仮想表示面VSとの間の、奥行き方向の距離である。また、図1では、左目位置PL、右目位置PR、中間位置PCが規定される。左目位置PLは、3Dオブジェクトを知覚するユーザの両目の想定視点のうち左目に対応する想定視点の位置である。右目位置PRは、3Dオブジェクトを知覚するユーザの両目の想定視点のうち右目に対応する想定視点の位置である。中間位置PCは、左目位置PL及び右目位置PRの中間の、水平方向の位置である。 FIG. 1 is an explanatory diagram for explaining parallax that occurs at the user's viewpoint when reproducing a 3D object using the video processing device according to the embodiment. In FIG. 1, a depth direction (direction indicated by arrows Y1 and Y2) and a horizontal direction (direction indicated by arrows X1 and X2) are defined. The depth direction intersects (perpendicularly or substantially perpendicularly to) the vertical direction. The horizontal direction intersects (perpendicular or nearly perpendicular) both the depth direction and the vertical direction. In FIG. 1, the user is positioned on the near side (arrow Y2 side) with respect to the actual display area RS in the depth direction. Therefore, the user perceives the 3D object by viewing the display area RS from the near side. At this time, let distance D be the depth width reproduced by the 3D object. The distance D is the distance in the depth direction between the real display area RS and the virtual display surface VS. Also, in FIG. 1, a left eye position PL, a right eye position PR, and an intermediate position PC are defined. The left eye position PL is the position of the assumed viewpoint corresponding to the left eye among the assumed viewpoints of both eyes of the user who perceives the 3D object. The right eye position PR is the position of the assumed viewpoint corresponding to the right eye among the assumed viewpoints of both eyes of the user who perceives the 3D object. The intermediate position PC is a horizontal position intermediate between the left eye position PL and the right eye position PR.
 例えば、ユーザが視認領域DLを視ることで3Dオブジェクトを知覚すると、ユーザは距離D離れた仮想表示面VSにおける仮想点VLを知覚する。このとき、視認領域DLの拡大図に示すように、左目位置PLにおいて表示領域RSの画像を知覚する場合と、中間位置PCにおいて表示領域RSの画像を知覚する場合とでは、ユーザにおいて水平方向に沿う視差W1が生じる。同様に、右目位置PRにおいて表示領域RSの画像を知覚する場合と、中間位置PCにおいて表示領域RSの画像を知覚する場合とでは、ユーザにおいて水平方向に沿う視差W2が生じる。この例では、視認領域DLの拡大図に示すように、ユーザが視認領域DLを視るとき、視差W1と視差W2とはほとんど等しい。 For example, when the user perceives a 3D object by viewing the visual recognition area DL, the user perceives a virtual point VL on a virtual display plane VS at a distance D away. At this time, as shown in the enlarged view of the visual recognition area DL, when the image of the display area RS is perceived at the left eye position PL and when the image of the display area RS is perceived at the intermediate position PC, the user sees the horizontal direction. A parallel parallax W1 is generated. Similarly, when the image of the display region RS is perceived at the right eye position PR and when the image of the display region RS is perceived at the intermediate position PC, the user has a parallax W2 along the horizontal direction. In this example, as shown in the enlarged view of the visible area DL, when the user views the visible area DL, the parallax W1 and the parallax W2 are almost equal.
 一方、ユーザが視認領域DRを視る場合、視認領域DRは、水平方向について視認領域DLよりもユーザから離れている。この場合、視認領域DRの拡大図に示すように、視差W2が視差W1より大きい。このように視差W1及び視差W2は、ユーザの視認領域が変わることにともなって変化する。本実施形態の映像処理装置20では、このような視差の変化に対応させた視差誘導パタンを生成することにより、例えばユーザから水平方向に離れた位置に表示される3Dオブジェクトであっても、ユーザが正しい奥行き表現により知覚することを可能とする。 On the other hand, when the user views the visible region DR, the visible region DR is further away from the user than the visible region DL in the horizontal direction. In this case, parallax W2 is larger than parallax W1, as shown in the enlarged view of visual recognition region DR. Thus, the parallax W1 and the parallax W2 change as the user's viewing area changes. In the video processing device 20 of the present embodiment, by generating a parallax induction pattern corresponding to such a change in parallax, even a 3D object displayed at a position horizontally distant from the user, for example, can be displayed by the user. can be perceived with correct depth representation.
 図2は、映像処理装置20の構成の一例を示す図である。映像処理装置20は、例えばコンピュータである。映像処理装置20は、例えばプロセッサ201、記憶媒体202、ユーザインタフェース203、及び通信モジュール204を備える。プロセッサ201、記憶媒体202、ユーザインタフェース203、及び通信モジュール204は、互いに対してバス205を介して接続される。 FIG. 2 is a diagram showing an example of the configuration of the video processing device 20. As shown in FIG. The video processing device 20 is, for example, a computer. The video processing device 20 comprises a processor 201, a storage medium 202, a user interface 203, and a communication module 204, for example. Processor 201 , storage medium 202 , user interface 203 and communication module 204 are connected to each other via bus 205 .
 プロセッサ201は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、マイコン、FPGA(Field Programmable Gate Array)、及び、DSP(Digital Signal processor)等のいずれかを含む。記憶媒体202には、メモリ等の主記憶装置に加え、補助記憶装置が含まれ得る。 The processor 201 includes any of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a microcomputer, an FPGA (Field Programmable Gate Array), and a DSP (Digital Signal processor). . The storage medium 202 may include a secondary storage device in addition to a main storage device such as memory.
 主記憶装置は、非一時的な記憶媒体である。主記憶装置は、例えば、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の書き込み及び読み出しが随時に可能な不揮発性メモリ、ROM(Read Only Memory)等の不揮発性メモリ等である。また、これらの不揮発性メモリが組み合わせて使用されているものであってもよい。補助記憶装置は、有形の記憶媒体である。補助記憶装置は、前述の不揮発性メモリ、RAM(Random Access Memory)等の揮発性メモリが組み合わせて使用されるものである。映像処理装置20では、プロセッサ201及び記憶媒体202のそれぞれは、1つのみ設けられてもよく、複数設けられてもよい。 The main memory is a non-temporary storage medium. The main storage device is, for example, a non-volatile memory such as a HDD (Hard Disk Drive) or an SSD (Solid State Drive) that can be written and read at any time, a non-volatile memory such as a ROM (Read Only Memory). Also, a combination of these nonvolatile memories may be used. Secondary storage is a tangible storage medium. The auxiliary storage device is a combination of non-volatile memory and volatile memory such as RAM (Random Access Memory). In the video processing device 20, only one processor 201 and storage medium 202 may be provided, or a plurality of them may be provided.
 映像処理装置20では、プロセッサ201は、記憶媒体202に記憶されるプログラム等を実行することにより、処理を行う。また、映像処理装置20では、プロセッサ201によって実行されるプログラムは、インターネット等のネットワークを介して接続されたコンピュータ(サーバ)又はクラウド環境のサーバ等に格納されてもよい。この場合、プロセッサ201は、ネットワークを経由でプログラムをダウンロードする。 In the video processing device 20, the processor 201 performs processing by executing programs and the like stored in the storage medium 202. In the video processing device 20, the program executed by the processor 201 may be stored in a computer (server) connected via a network such as the Internet, a server in a cloud environment, or the like. In this case, processor 201 downloads the program via the network.
 ユーザインタフェース203では、映像処理装置20の使用者によって各種の操作等が入力されるとともに、使用者に告知する情報等が表示等によって告知される。ユーザインタフェース203は、ディスプレイなどの表示部であったり、タッチパネルやキーボード等の入力部であったりする。なお、入力部とし映像処理装置20に接続されたデバイスが使用されてもよく、ネットワークを介して通信可能な他の処理装置の入力部が使用されてもよい。 In the user interface 203, the user of the video processing device 20 inputs various operations and the like, and information and the like to be notified to the user are notified by display or the like. The user interface 203 may be a display unit such as a display, or an input unit such as a touch panel or keyboard. A device connected to the video processing device 20 may be used as the input unit, or an input unit of another processing device capable of communicating via a network may be used.
 図3は、映像処理装置20の機能構成の一例を示す図である。図3に示すように、映像処理装置20は、例えば画像取得部31、最適化処理部32、パタン生成部33、画像生成部34、及び通信部35を備える。画像取得部31、最適化処理部32、パタン生成部33、画像生成部34、及び通信部35の処理は、例えば、プロセッサ201及び通信モジュール204によって実現される。 FIG. 3 is a diagram showing an example of the functional configuration of the video processing device 20. As shown in FIG. As shown in FIG. 3, the video processing device 20 includes, for example, an image acquisition section 31, an optimization processing section 32, a pattern generation section 33, an image generation section 34, and a communication section . The processes of the image acquisition unit 31, the optimization processing unit 32, the pattern generation unit 33, the image generation unit 34, and the communication unit 35 are realized by the processor 201 and the communication module 204, for example.
 画像取得部31は、映像処理装置20で使用する視点画像を取得する。画像取得部31は、例えばカメラである。最適化処理部32は、画像取得部31が取得した視点画像に基づいて、所定の処理を実行する。パタン生成部33は、画像取得部31が取得した視点画像及び最適化処理部32の処理結果に基づいて、視差誘導パタンを生成する。視差誘導パタンは、基準となる所定の画像とともに所定の処理が実行されることにより、例えば図1で説明した視差W1及び視差W2を実現する。画像生成部34は、パタン生成部33が生成した視差誘導パタンと基準となる所定の画像とに基づいて、ステレオペア画像を生成する。通信部35は、画像生成部34で生成されたステレオペア画像を所定の方法で送信する。例えば、通信部35は、映像処理装置20に接続された画像出力デバイスにステレオペア画像を送信することにより、画像出力デバイスからステレオペア画像を出力させる。 The image acquisition unit 31 acquires viewpoint images used by the video processing device 20 . The image acquisition unit 31 is, for example, a camera. The optimization processing unit 32 executes predetermined processing based on the viewpoint image acquired by the image acquisition unit 31 . The pattern generation unit 33 generates a parallax induction pattern based on the viewpoint image acquired by the image acquisition unit 31 and the processing result of the optimization processing unit 32 . The parallax induction pattern realizes the parallax W1 and the parallax W2 described with reference to FIG. 1, for example, by performing predetermined processing together with a predetermined image that serves as a reference. The image generation unit 34 generates stereo pair images based on the parallax induction pattern generated by the pattern generation unit 33 and a predetermined reference image. The communication unit 35 transmits the stereo pair images generated by the image generation unit 34 by a predetermined method. For example, the communication unit 35 outputs the stereo pair images from the image output device by transmitting the stereo pair images to the image output device connected to the video processing device 20 .
 次に、映像処理装置20がステレオペア画像を生成する方法について詳細に説明する。図4は、映像処理装置20がステレオペア画像を生成する処理の一例を説明する説明図である。画像取得部31は、前述したように、左目視点画像PLP、中間視点画像PCP、及び右目視点画像PRPを取得する。最適化処理部32は、これら3つの画像に基づいて、視差誘導パタンIDを生成する。本実施形態では、中間視点画像PCPが基準となる所定の画像(基準画像)として使用される。最適化処理部32は、左目視点画像PLP、中間視点画像PCP、及び右目視点画像PRPのそれぞれを周波数-位相成分へと変換する。周波数-位相成分への変換は、非特許文献1に記載の方法と同様の処理により実行される。中間視点画像PCPの周波数-位相成分への変換後における、周波数i及び位置jの位相成分をX(i,j)と表記する。左目視点画像PLPの周波数-位相成分への変換後における、周波数i及び位置jの位相成分をL(i,j)と表記する。右目視点画像PRPの周波数-位相成分への変換後における、周波数i及び位置jの位相成分をR(i,j)と表記する。 Next, the method by which the video processing device 20 generates stereo pair images will be described in detail. FIG. 4 is an explanatory diagram for explaining an example of a process in which the video processing device 20 generates stereo pair images. The image acquiring unit 31 acquires the left-eye viewpoint image PLP, the intermediate viewpoint image PCP, and the right-eye viewpoint image PRP, as described above. The optimization processing unit 32 generates a parallax induction pattern ID based on these three images. In this embodiment, the intermediate viewpoint image PCP is used as a predetermined reference image (reference image). The optimization processing unit 32 transforms each of the left-eye viewpoint image PLP, intermediate-viewpoint image PCP, and right-eye viewpoint image PRP into frequency-phase components. Conversion to frequency-phase components is performed by the same process as the method described in Non-Patent Document 1. The phase component at frequency i and position j after conversion of the intermediate viewpoint image PCP into frequency-phase components is denoted by X(i, j). The phase component of frequency i and position j after conversion of the left eye viewpoint image PLP into frequency-phase components is denoted by L(i, j). The phase component of frequency i and position j after conversion of the right-eye viewpoint image PRP into frequency-phase components is denoted by R(i, j).
 最適化処理部32は、中間視点画像PCPをy度位相シフトさせる。最適化処理部32は、中間視点画像PCPの位相成分X(i,j)に位相シフト量y(i,j)を加えることで、位相シフトさせた中間視点画像PCPshiftを生成する。最適化処理部32は、中間視点画像PCPと位相シフトさせた中間視点画像PCPshiftとを加算することで、左目視点画像PLPを推定した、推定左目視点画像PLPasmを生成する。このとき、最適化処理部32は、位相シフトさせた中間視点画像PCPshiftに重みAを掛け合わせた状態で、中間視点画像PCPとの加算を実行する。重みAの値は、例えば、所定の初期値が予め設定される。最適化処理部32は、推定左目視点画像PLPasmに基づいて、推定左目視点画像PLPasmにおける中間視点画像PCPからの推定位相シフト量zL(i,j)を算出する。 The optimization processing unit 32 phase-shifts the intermediate viewpoint image PCP by y degrees. The optimization processing unit 32 generates a phase-shifted intermediate viewpoint image PCP shift by adding a phase shift amount y(i, j) to the phase component X(i, j) of the intermediate viewpoint image PCP. The optimization processing unit 32 generates an estimated left-eye viewpoint image PLP asm by estimating the left-eye viewpoint image PLP by adding the intermediate viewpoint image PCP and the phase-shifted intermediate viewpoint image PCP shift . At this time, the optimization processing unit 32 multiplies the phase-shifted intermediate viewpoint image PCP shift by the weight A, and performs addition with the intermediate viewpoint image PCP. As for the value of the weight A, for example, a predetermined initial value is set in advance. Based on the estimated left-eye viewpoint image PLP asm , the optimization processing unit 32 calculates an estimated phase shift amount zL(i, j) from the intermediate viewpoint image PCP in the estimated left-eye viewpoint image PLP asm .
 同様にして、最適化処理部32は、中間視点画像PCPから位相シフトさせた中間視点画像PCPshiftを減算することで、右目視点画像PRPを推定した推定右目視点画像PRPasmを生成する。このとき、最適化処理部32は、位相シフトさせた中間視点画像PCPshiftに重みAを掛け合わせた状態で、中間視点画像PCPとの減算を実行する。最適化処理部32は、推定右目視点画像PRPasmに基づいて、推定右目視点画像PRPasmにおける中間視点画像PCPからの推定位相シフト量zR(i,j)を算出する。 Similarly, the optimization processing unit 32 subtracts the phase-shifted intermediate viewpoint image PCP shift from the intermediate viewpoint image PCP to generate an estimated right-eye viewpoint image PRP asm by estimating the right-eye viewpoint image PRP. At this time, the optimization processing unit 32 multiplies the phase-shifted intermediate viewpoint image PCP shift by the weight A, and performs subtraction from the intermediate viewpoint image PCP. Based on the estimated right-eye viewpoint image PRP asm , the optimization processing unit 32 calculates an estimated phase shift amount zR(i, j) from the intermediate viewpoint image PCP in the estimated right-eye viewpoint image PRP asm .
 最適化処理部32は、式(1)で表される誤差Nを最小化する条件の下で、重みA及び位相シフト量yの組(A,y)を最適化する。推定位相シフト量zL(i,j),zR(i,j)が重みA及び位相シフト量yの両方に依存して変化するため、誤差Nを最小化することにより、組(A,y)が最適化される。重みA及び位相シフト量yの組は、例えば、全探索により決定する。この誤差Nの最小化計算により、最適化処理部32は、最適重みAopt及び最適位相シフト量yoptの組(Aopt,yopt)を算出する。 The optimization processing unit 32 optimizes the set (A, y) of the weight A and the phase shift amount y under the condition of minimizing the error N represented by Equation (1). Since the estimated phase shifts zL(i,j) and zR(i,j) vary depending on both the weight A and the phase shift y, minimizing the error N yields the set (A,y) is optimized. A set of weight A and phase shift amount y is determined by exhaustive search, for example. By minimizing the error N, the optimization processing unit 32 calculates a set (A opt , y opt ) of the optimum weight A opt and the optimum phase shift amount y opt .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 最適化処理部32が算出した最適重みAopt及び最適位相シフト量yoptに基づいて、パタン生成部33は視差誘導パタンIDを生成する。視差誘導パタンIDの生成は、非特許文献1に記載の方法と同様の処理により実行される。画像生成部34は、パタン生成部33により生成された視差誘導パタンIDと中間視点画像PCPとを加算することにより、左目位置PLにおける、ステレオぺア画像のうちの一方を生成する。画像生成部34は、中間視点画像PCPからパタン生成部により生成された視差誘導パタンIDを減算することにより、右目位置PRにおける、ステレオぺア画像のうちの他方を生成する。このようにして、画像生成部34は、ステレオペア画像を生成する。 Based on the optimum weight A opt and the optimum phase shift amount y opt calculated by the optimization processing unit 32, the pattern generation unit 33 generates a parallax induction pattern ID. The parallax induction pattern ID is generated by the same process as the method described in Non-Patent Document 1. The image generation unit 34 generates one of the stereo pair images at the left eye position PL by adding the parallax induction pattern ID generated by the pattern generation unit 33 and the intermediate viewpoint image PCP. The image generation unit 34 generates the other of the stereo pair images at the right eye position PR by subtracting the parallax induction pattern ID generated by the pattern generation unit from the intermediate viewpoint image PCP. In this manner, the image generator 34 generates stereo pair images.
 前述した最適化処理を、視点位置の位相θにおけるレベルが正弦波の強度で表される場合で、具体的に説明する。この場合、中間位置PCの位相Xにおける強度はsin(X)と表される。このとき、位相Xをy度位相シフトさせると、位相シフト後の強度はsin(X+y)と表される。最適化処理部32は、位相Xにおける強度sin(X)と、位相シフト後の強度sin(X+y)を重みAにより重み付けしたAsin(X+y)とを加算した結果を、左目位置PLの位相Lにおける推定強度とする。このときの推定強度を、位相X、推定位相シフト量zL、及び重みBLを用いて表すと式(2)のように表される。 The optimization process described above will be described in detail in the case where the level at the viewpoint position phase θ is represented by the intensity of the sine wave. In this case, the intensity at the phase X of the intermediate position PC is represented as sin(X). At this time, if the phase X is phase-shifted by y degrees, the intensity after the phase shift is expressed as sin(X+y). The optimization processing unit 32 calculates the result of adding the intensity sin(X) at the phase X and Asin(X+y) obtained by weighting the intensity sin(X+y) after the phase shift with the weight A at the phase L at the left eye position PL. Estimated intensity. When the estimated intensity at this time is expressed using the phase X, the estimated phase shift amount zL, and the weight BL, it is expressed as Equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 よって、推定位相シフト量zLは式(3)のように表される。 Therefore, the estimated phase shift amount zL is represented by Equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 同様にして、最適化処理部32は、位相Xにおける強度sin(X)から、位相シフト後の強度sin(X+y)を重みAにより重み付けしたAsin(X+y)を減算した結果を、右目位置PRの位相Rにおける推定強度とする。このときの推定強度を、位相X、推定位相シフト量zR、及び重みBRを用いて表すと式(4)のように表される。 Similarly, the optimization processing unit 32 subtracts the result of subtracting Asin(X+y), which is obtained by weighting the phase-shifted intensity sin(X+y) with the weight A, from the intensity sin(X) at the phase X, Let be the estimated intensity at phase R. When the estimated intensity at this time is expressed using the phase X, the estimated phase shift amount zR, and the weight BR, it is expressed as in Equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 よって、推定位相シフト量zRは式(5)のように表される。 Therefore, the estimated phase shift amount zR is represented by Equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 これらを用いて、最適化処理部32は、式(1)で表される誤差Nを最小化する条件の下で、重みA及び位相シフト量yの組(A,y)を最適化する。 Using these, the optimization processing unit 32 optimizes the set (A, y) of the weight A and the phase shift amount y under the condition of minimizing the error N represented by Equation (1).
 図5は、実施形態に係る映像処理装置20で実行される処理の一例を説明するフローチャートである。図5の処理は、映像処理装置20がステレオペア画像を生成するタイミングで繰り返し実行される。したがって、図5の処理は、ステレオペア画像を生成する画像生成処理の1回の処理におけるフローチャートの一例である。 FIG. 5 is a flowchart illustrating an example of processing executed by the video processing device 20 according to the embodiment. The processing in FIG. 5 is repeatedly executed at the timing when the video processing device 20 generates stereo pair images. Therefore, the process of FIG. 5 is an example of a flowchart in one process of image generation processing for generating stereo pair images.
 ステレオペア画像を生成するタイミングでは、映像処理装置20は、画像取得部31により視点画像を取得する(S501)。このとき、画像取得部31は、左目視点画像PLP、中間視点画像PCP、及び右目視点画像PRPをそれぞれ取得する。映像処理装置20は、前述したようにして、取得した左目視点画像PLP、中間視点画像PCP、及び右目視点画像PRPを周波数-位相成分へ変換する(S502)。映像処理装置20は、前述したようにして位相シフトさせた中間視点画像PCPshiftを生成する(S503)。映像処理装置20は、前述したようにして、中間視点画像PCPと位相シフトさせた中間視点画像PCPshiftとに基づいて、推定左目視点画像PLPasm及び推定右目視点画像PRPasmを生成する(S504)。映像処理装置20は、推定左目視点画像PLPasmに基づいて推定位相シフト量zL(i,j)を推定し、推定右目視点画像PRPasmに基づいて推定位相シフト量zR(i,j)を推定する(S505)。映像処理装置20は、前述したようにして、誤差Nを最小化する条件下、位相シフト成分y(i,j)及び重みA(i,j)の組を最適化する(S506)。映像処理装置20は、前述したようにして、最適重みAopt及び最適位相シフト量yoptに基づいて、視差誘導パタンIDを生成する(S507)。映像処理装置20は、前述したようにして、中間視点画像PCP及び視差誘導パタンIDに基づいて、ステレオペア画像を生成する(S508)。以上により、映像処理装置20はステレオペア画像の生成処理を完了する。 At the timing of generating the stereo pair images, the video processing device 20 acquires the viewpoint images by the image acquiring unit 31 (S501). At this time, the image acquisition unit 31 acquires the left-eye viewpoint image PLP, the intermediate viewpoint image PCP, and the right-eye viewpoint image PRP. The video processing device 20 converts the acquired left-eye viewpoint image PLP, intermediate-viewpoint image PCP, and right-eye viewpoint image PRP into frequency-phase components as described above (S502). The video processing device 20 generates the phase-shifted intermediate viewpoint image PCP shift as described above (S503). As described above, the video processing device 20 generates the estimated left-eye viewpoint image PLP asm and the estimated right-eye viewpoint image PRP asm based on the intermediate viewpoint image PCP and the phase-shifted intermediate viewpoint image PCP shift (S504). . The video processing device 20 estimates an estimated phase shift amount zL(i, j) based on the estimated left-eye viewpoint image PLP asm , and estimates an estimated phase shift amount zR(i, j) based on the estimated right-eye viewpoint image PRP asm . (S505). The image processing device 20 optimizes the set of the phase shift component y(i,j) and the weight A(i,j) under the condition of minimizing the error N as described above (S506). The video processing device 20 generates the parallax induction pattern ID based on the optimum weight A opt and the optimum phase shift amount y opt as described above (S507). As described above, the video processing device 20 generates stereo pair images based on the intermediate viewpoint image PCP and the parallax induction pattern ID (S508). As described above, the video processing device 20 completes the stereo pair image generation processing.
 本実施形態では、映像処理装置20は、画像取得部31、最適化処理部32、パタン生成部33、及び画像生成部34を具備する。画像取得部31は、左目位置PLから表示領域RSを撮影した左目視点画像PLPと、右目位置PRから表示領域RSを撮影した右目視点画像PRPと、左目位置PL及び右目位置PRの中間から表示領域RSを撮影した中間視点画像PCPと、を取得する。最適化処理部32は、中間視点画像PCPに基づいて算出された位相シフト量y及び重みAを、左目視点画像PLP及び右目視点画像PRPに基づいて最適化する。パタン生成部33は、最適化された最適位相シフト量yopt及び最適化された最適重みAoptに基づいて、左目位置PL及び右目位置PRの間の視差に対応する視差誘導パタンIDを生成する。画像生成部34は、中間視点画像PCP及び視差誘導パタンIDに基づいて、ステレオペア画像を生成する。このように、映像処理装置20は位相シフト量及び重みAを左目視点画像PLP及び右目視点画像PRPに基づいて最適化するため、視差が左右非対称である場合においても適切な視差をユーザに与えることができる。したがって、映像処理装置20はユーザに適切な奥行き表現を提供することができる。 In this embodiment, the video processing device 20 includes an image acquisition section 31 , an optimization processing section 32 , a pattern generation section 33 and an image generation section 34 . The image acquisition unit 31 obtains a left-eye viewpoint image PLP obtained by photographing the display region RS from the left-eye position PL, a right-eye viewpoint image PRP obtained by photographing the display region RS from the right-eye position PR, and a display region from the middle between the left-eye position PL and the right-eye position PR. and an intermediate viewpoint image PCP obtained by photographing the RS. The optimization processing unit 32 optimizes the phase shift amount y and the weight A calculated based on the intermediate viewpoint image PCP based on the left eye viewpoint image PLP and the right eye viewpoint image PRP. The pattern generator 33 generates a parallax induction pattern ID corresponding to the parallax between the left eye position PL and the right eye position PR based on the optimized optimum phase shift amount y opt and the optimized optimum weight A opt . . The image generator 34 generates stereo pair images based on the intermediate viewpoint image PCP and the parallax induction pattern ID. In this way, since the video processing device 20 optimizes the phase shift amount and the weight A based on the left-eye viewpoint image PLP and the right-eye viewpoint image PRP, it is possible to provide the user with an appropriate parallax even when the parallax is left-right asymmetric. can be done. Therefore, the video processing device 20 can provide appropriate depth representation to the user.
 (変形例)
 図6は、変形例に係る映像処理装置20がステレオペア画像を生成するときの表示領域RSの分割方法の一例を説明する説明図である。本変形例では、中間位置PCを基準として、現実の表示領域RSを所定の個数に分割し、分割された領域ごとに位相シフト量y及び重みAを最適化する。すなわち、分割された領域内において、位相シフト量yは同一であり、重みAは同一である。現実の表示領域RSの分割数は、特に限定されるものではない。図6の一例では、現実の表示領域RSを3分割し、それぞれ左側領域AL、中央領域AC、及び右側領域ARとする。この場合、映像処理装置20は、左側領域ALにおいて位相シフト量y及び重みAを最適化し、中央領域ACにおいて位相シフト量y及び重みAを最適化し、右側領域ARにおいて位相シフト量y及び重みAを最適化する。
(Modification)
FIG. 6 is an explanatory diagram illustrating an example of a method of dividing the display area RS when the video processing device 20 according to the modification generates stereo pair images. In this modification, the actual display area RS is divided into a predetermined number with reference to the intermediate position PC, and the phase shift amount y and the weight A are optimized for each divided area. That is, the phase shift amount y is the same and the weight A is the same within the divided regions. The actual number of divisions of the display area RS is not particularly limited. In the example of FIG. 6, the actual display area RS is divided into three areas, left area AL, center area AC, and right area AR. In this case, the image processing device 20 optimizes the phase shift amount y and the weight A in the left area AL, optimizes the phase shift amount y and the weight A in the central area AC, and optimizes the phase shift amount y and the weight A in the right area AR. to optimize.
 図7は、変形例に係る映像処理装置20がステレオペア画像を生成する処理の一例を説明する説明図である。本変形例では、最適化処理部32が中間視点画像PCPをy度位相シフトさせるとき、表示領域RSが分割された分割領域内のそれぞれにおいて、共通の位相シフト量ypartが用いられる。最適化処理部32は、分割領域内のそれぞれにおける中間視点画像PCPの位相成分X(i,j)に位相シフト量ypartを加えることで、位相シフトさせた中間視点画像(PCPshiftpartを、分割領域ごとに生成する。 FIG. 7 is an explanatory diagram illustrating an example of processing for generating stereo pair images by the video processing device 20 according to the modification. In this modified example, when the optimization processing unit 32 phase-shifts the intermediate viewpoint image PCP by y degrees, a common phase shift amount y part is used in each of the divided regions into which the display region RS is divided. The optimization processing unit 32 adds a phase shift amount y part to the phase component X(i, j) of the intermediate viewpoint image PCP in each of the divided regions, thereby obtaining a phase-shifted intermediate viewpoint image (PCP shift ) part . , generated for each segmented region.
 最適化処理部32は、中間視点画像PCPと位相シフトさせた中間視点画像(PCPshiftpartとを分割領域ごとに加算することで、左目視点画像PLPの対応する部分を推定した推定左目視点画像(PLPasmpartを生成する。このとき、最適化処理部32は、位相シフトさせた中間視点画像(PCPshiftpartに重みApartを掛け合わせた状態で、中間視点画像PCPとの加算を実行する。最適化処理部32は、分割領域ごとの推定左目視点画像(PLPasmpartに基づいて、中間視点画像PCPからの推定位相シフト量zLpartを推定する。 The optimization processing unit 32 adds the intermediate viewpoint image PCP and the phase-shifted intermediate viewpoint image (PCP shift ) part for each divided region, thereby estimating the corresponding portion of the left eye viewpoint image PLP to obtain an estimated left eye viewpoint image. Generate (PLP asm ) part . At this time, the optimization processing unit 32 multiplies the phase-shifted intermediate viewpoint image (PCP shift ) part by the weight A part , and performs addition with the intermediate viewpoint image PCP. The optimization processing unit 32 estimates the estimated phase shift amount zL part from the intermediate viewpoint image PCP based on the estimated left-eye viewpoint image (PLP asm ) part for each divided area.
 最適化処理部32は、分割領域ごとに、式(1)で表される誤差Nを最小化する条件の下で、重みApart及び位相シフト量ypartの組(Apart,ypart)を最適化する。最適化処理部32が、分割領域ごとに算出した最適重み(Apartopt及び最適位相シフト量(ypartoptに基づいて、パタン生成部33は分割領域ごとに視差誘導パタンIDpartを生成する。画像生成部34は、パタン生成部33により生成された視差誘導パタンIDpart及び分割領域に対応する中間視点画像PCPの部分を加算することにより、分割領域に対応する、左目位置PLにおけるステレオぺア画像の一方を生成する。画像生成部34は、分割領域に対応する中間視点画像PCPからパタン生成部33により生成された視差誘導パタンIDpartを減算することにより、分割領域に対応する、右目位置PRにおけるステレオぺア画像の他方を生成する。全分割領域において、分割領域に対応するステレオペア画像の生成が完了した後、画像生成部34は、各分割領域に対応するステレオペア画像を合成することにより、表示領域RSに対応するステレオペア画像を生成する。 The optimization processing unit 32 calculates a set (A part , y part ) of the weight A part and the phase shift amount y part for each divided region under the condition of minimizing the error N represented by Equation (1) . Optimize. Based on the optimum weight (A part ) opt and the optimum phase shift amount (y part ) opt calculated for each divided area by the optimization processing unit 32, the pattern generation unit 33 generates a parallax induction pattern ID part for each divided area. do. The image generating unit 34 adds the parallax induction pattern ID part generated by the pattern generating unit 33 and the part of the intermediate viewpoint image PCP corresponding to the divided area to obtain a stereo pair at the left eye position PL corresponding to the divided area. Generate one of the images. The image generation unit 34 subtracts the parallax induction pattern ID part generated by the pattern generation unit 33 from the intermediate viewpoint image PCP corresponding to the division area, thereby generating a stereo pair image at the right eye position PR corresponding to the division area. generate the other. After completing the generation of the stereo pair images corresponding to the divided regions in all the divided regions, the image generator 34 synthesizes the stereo pair images corresponding to the respective divided regions to obtain the stereo pair images corresponding to the display region RS. to generate
 図8は、本変形例の映像処理装置20で実行される処理の一例を説明するフローチャートである。ステレオペア画像を生成するタイミングでは、映像処理装置20は、画像取得部31により視点画像を取得する(S801)。このとき、画像取得部31は、左目視点画像PLP、中間視点画像PCP、及び右目視点画像PRPをそれぞれ取得する。映像処理装置20は、前述したようにして、取得した左目視点画像PLP、中間視点画像PCP、及び右目視点画像PRPを周波数-位相成分へ変換する(S802)。映像処理装置20は、前述したようにして位相シフトさせた中間視点画像(PCPshiftpartを分割領域ごとに生成する(S803)。映像処理装置20は、前述したようにして、中間視点画像PCPと位相シフトさせた中間視点画像(PCPshiftpartとに基づいて、推定左目視点画像(PLPasmpart及び推定右目視点画像(PRPasmpartを分割領域ごとに生成する(S804)。 FIG. 8 is a flowchart illustrating an example of processing executed by the video processing device 20 of this modification. At the timing of generating the stereo pair images, the video processing device 20 acquires the viewpoint images by the image acquiring unit 31 (S801). At this time, the image acquisition unit 31 acquires the left-eye viewpoint image PLP, the intermediate viewpoint image PCP, and the right-eye viewpoint image PRP. Video processing device 20 converts acquired left eye viewpoint image PLP, middle viewpoint image PCP, and right eye viewpoint image PRP into frequency-phase components as described above (S802). The video processing device 20 generates a phase-shifted intermediate viewpoint image (PCP shift ) part for each divided area as described above (S803). As described above, the video processing device 20 generates an estimated left-eye viewpoint image (PLP asm ) part and an estimated right-eye viewpoint image ( PRP asm ) part is generated for each divided area (S804).
 映像処理装置20は、推定左目視点画像(PLPasmpartに基づいて推定位相シフト量zLpartを分割領域ごとに推定し、推定右目視点画像(PRPasmpartに基づいて推定位相シフト量zRpartを分割領域ごとに推定する(S805)。映像処理装置20は、前述したようにして、誤差Nを最小化する条件下、位相シフト量ypart及び重みApartの組を分割領域ごとに最適化する(S806)。映像処理装置20は、前述したようにして、最適重み(Apartopt及び最適位相シフト量(ypartoptに基づいて、視差誘導パタンIDpartを分割領域ごとに生成する(S807)。映像処理装置20は、前述したようにして、中間視点画像PCP及び視差誘導パタンIDpartに基づいて、ステレオペア画像を分割領域ごとに生成する(S808)。映像処理装置20は、分割領域ごとのステレオペア画像を合成することにより、表示領域RSに対応するステレオペア画像を生成する(S809)。以上により、映像処理装置20はステレオペア画像の生成を完了する。 The video processing device 20 estimates an estimated phase shift amount zL part for each divided area based on the estimated left-eye viewpoint image (PLP asm ) part , and estimates an estimated phase shift amount zR part based on the estimated right-eye viewpoint image (PRP asm ) part . is estimated for each divided area (S805). As described above, the image processing device 20 optimizes the set of the phase shift amount y part and the weight A part for each divided area under the condition that the error N is minimized (S806). As described above, the image processing device 20 generates the parallax induction pattern ID part for each divided area based on the optimum weight (A part ) opt and the optimum phase shift amount (y part ) opt (S807). As described above, the video processing device 20 generates stereo pair images for each divided area based on the intermediate viewpoint image PCP and the parallax induction pattern ID part (S808). The video processing device 20 generates a stereo pair image corresponding to the display area RS by synthesizing the stereo pair images for each divided area (S809). As described above, the video processing device 20 completes the generation of stereo pair images.
 本変形例においても、前述の実施形態と同様に、映像処理装置20は位相シフト量y及び重みAを左目視点画像PLP及び右目視点画像PRPに基づいて最適化するため、視差が左右非対称である場合においても適切な視差をユーザに与えることができる。したがって、映像処理装置20はユーザに適切な奥行き表現を与えることができる。 Also in this modified example, as in the above-described embodiment, the video processing device 20 optimizes the phase shift amount y and the weight A based on the left-eye viewpoint image PLP and the right-eye viewpoint image PRP, so the parallax is left-right asymmetric. Appropriate parallax can be given to the user even in this case. Therefore, the video processing device 20 can give the user an appropriate representation of depth.
 別の変形例では、映像処理装置20は、左目位置PL、右目位置PR、及び中間位置PCをリアルタイムで取得してもよい。左目位置PL、右目位置PR、及び中間位置PCのリアルタイムでの取得は、例えば、ユーザのヘッドトラッキングにより実行される。この場合、映像処理装置20は、リアルタイムで取得した左目位置PL、右目位置PR、及び中間位置PCに基づいて、ステレオペア画像をリアルタイムで生成する。そのため、映像処理装置20は、図5又は図8に示す処理を、左目位置PL、右目位置PR、及び中間位置PCが更新されるたびに実行する。このように、リアルタイムで左目位置PL、右目位置PR、及び中間位置PCを取得することで、ユーザのリアルタイムでの視点を反映したステレオペア画像が生成される。よって、映像処理装置20は、ユーザにさらに適正な奥行き表現を提供することができる。 In another modification, the video processing device 20 may acquire the left eye position PL, right eye position PR, and intermediate position PC in real time. Acquisition of the left eye position PL, right eye position PR, and intermediate position PC in real time is performed, for example, by head tracking of the user. In this case, the video processing device 20 generates stereo pair images in real time based on the left eye position PL, right eye position PR, and intermediate position PC acquired in real time. Therefore, the video processing device 20 executes the processing shown in FIG. 5 or 8 each time the left eye position PL, right eye position PR, and intermediate position PC are updated. By acquiring the left eye position PL, the right eye position PR, and the intermediate position PC in real time in this way, stereo pair images reflecting the user's viewpoint in real time are generated. Therefore, the video processing device 20 can provide the user with more appropriate depth representation.
 前述の実施形態等に記載された手法は、コンピュータに実行させることができるプログラム(ソフトウェア)として、例えば、磁気ディスク、光ディスク、半導体メモリ等の記憶媒体に格納して頒布され得る。記憶媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含む。また、実施形態に記載された手法は、通信媒体により伝送して頒布され得る。媒体側に格納されるプログラムには、コンピュータに実行させるソフトウェアをコンピュータ内に構成させる設定プログラムをも含む。ソフトウェアには、実行プログラムのみならずテーブル、データ構造も含む。本システムを実現するコンピュータは、記憶媒体に記録されたプログラムを読み込むとともに、ソフトウェアにより動作が制御されることで、前述の処理を実行する。ソフトウェアは、コンピュータが設定プログラムにより構築してもよい。 The methods described in the above-described embodiments and the like can be stored and distributed as programs (software) that can be executed by computers, for example, in storage media such as magnetic disks, optical disks, and semiconductor memories. Storage media are not limited to those for distribution, and include storage media such as magnetic disks and semiconductor memories provided inside computers or devices connected via a network. Also, the techniques described in the embodiments may be transmitted and distributed over a communication medium. The programs stored on the medium side also include a setting program that configures in the computer software to be executed by the computer. Software includes not only execution programs but also tables and data structures. A computer that realizes this system reads a program recorded in a storage medium and executes the above-described processing by controlling the operation by software. The software may be constructed by a computer using a configuration program.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.
 20…映像処理装置
 201…プロセッサ
 202…記憶媒体
 203…ユーザインタフェース
 204…通信モジュール
 31…画像取得部
 32…最適化処理部
 33…パタン生成部
 34…画像生成部
 35…通信部
 ID…視差誘導パタン
 RS…表示領域
 PL…左目位置
 PR…右目位置
 PC…中間位置
 PLP…左目視点画像
 PRP…右目視点画像
 PCP…中間視点画像
DESCRIPTION OF SYMBOLS 20... Video processing apparatus 201... Processor 202... Storage medium 203... User interface 204... Communication module 31... Image acquisition part 32... Optimization process part 33... Pattern generation part 34... Image generation part 35... Communication part ID... Parallax induction pattern RS...Display area PL...Left eye position PR...Right eye position PC...Intermediate position PLP...Left eye viewpoint image PRP...Right eye viewpoint image PCP...Intermediate viewpoint image

Claims (7)

  1.  左目位置から表示領域を撮影した左目視点画像と、右目位置から前記表示領域を撮影した右目視点画像と、前記左目位置及び前記右目位置の中間位置から前記表示領域を撮影した中間視点画像と、を取得する画像取得部と、
     前記中間視点画像に基づいて算出された位相シフト量及び重みを、前記左目視点画像及び前記右目視点画像に基づいて最適化する最適化処理部と、
     最適化された前記位相シフト量及び最適化された前記重みに基づいて、前記左目位置及び前記右目位置の間の視差に対応する視差誘導パタンを生成するパタン生成部と、
     前記中間視点画像及び前記視差誘導パタンに基づいて、ステレオペア画像を生成する画像生成部と、
     を具備する、映像処理装置。
    A left eye viewpoint image obtained by photographing the display area from the left eye position, a right eye viewpoint image obtained by photographing the display area from the right eye position, and an intermediate viewpoint image obtained by photographing the display area from the intermediate position between the left eye position and the right eye position. an image acquisition unit to acquire;
    an optimization processing unit that optimizes the phase shift amount and weight calculated based on the intermediate viewpoint image based on the left-eye viewpoint image and the right-eye viewpoint image;
    a pattern generator that generates a parallax induction pattern corresponding to the parallax between the left eye position and the right eye position based on the optimized phase shift amount and the optimized weight;
    an image generation unit that generates a stereo pair image based on the intermediate viewpoint image and the parallax induction pattern;
    A video processing device comprising:
  2.  前記最適化処理部は、
      前記中間視点画像の位相を前記位相シフト量に基づいてシフトさせ、
      前記重み、前記中間視点画像、及び位相シフトされた前記中間視点画像に基づいて、前記左目視点画像を推定した推定左目視点画像、及び、前記右目視点画像を推定した推定右目視点画像を生成し、
      前記推定左目視点画像における前記中間視点画像からの推定位相シフト量、及び、前記推定右目視点画像における前記中間視点画像からの推定位相シフト量を算出し、
      前記推定左目視点画像の推定位相シフト量、及び、前記右目視点画像の推定位相シフト量に基づいて、前記重み及び前記位相シフト量を最適化する、
     請求項1に記載の映像処理装置。
    The optimization processing unit
    shifting the phase of the intermediate viewpoint image based on the phase shift amount;
    generating an estimated left-eye viewpoint image by estimating the left-eye viewpoint image and an estimated right-eye viewpoint image by estimating the right-eye viewpoint image based on the weight, the intermediate viewpoint image, and the phase-shifted intermediate viewpoint image;
    calculating an estimated phase shift amount from the intermediate viewpoint image in the estimated left eye viewpoint image and an estimated phase shift amount from the intermediate viewpoint image in the estimated right eye viewpoint image;
    optimizing the weight and the phase shift amount based on the estimated phase shift amount of the estimated left-eye viewpoint image and the estimated phase shift amount of the right-eye viewpoint image;
    The video processing device according to claim 1.
  3.  前記画像生成部は、
      前記中間視点画像と前記視差誘導パタンとを加算することにより、前記ステレオペア画像のうち前記左目位置に対応する画像を生成し、
      前記中間視点画像から前記視差誘導パタンを減算することにより、前記ステレオペア画像のうち前記右目位置に対応する画像を生成する、
     請求項1に記載の映像処理装置。
    The image generator is
    generating an image corresponding to the left eye position among the stereo pair images by adding the intermediate viewpoint image and the parallax induction pattern;
    generating an image corresponding to the right eye position among the stereo pair images by subtracting the parallax induction pattern from the intermediate viewpoint image;
    The video processing device according to claim 1.
  4.  前記表示領域は、複数の前記表示領域を含み、
     前記最適化処理部は、複数の前記表示領域のそれぞれにおいて前記位相シフト量及び前記重みを最適化し、
     前記パタン生成部は、複数の前記表示領域のそれぞれにおいて前記視差誘導パタンを生成し、
     前記画像生成部は、複数の前記表示領域のそれぞれにおいて前記ステレオペア画像を生成するとともに、複数の前記表示領域のそれぞれに対応する前記ステレオペア画像から前記表示領域の全体に対応する前記ステレオペア画像を生成する、
     請求項1に記載の映像処理装置。
    The display area includes a plurality of the display areas,
    The optimization processing unit optimizes the phase shift amount and the weight in each of the plurality of display areas,
    The pattern generation unit generates the parallax induction pattern in each of the plurality of display areas,
    The image generation unit generates the stereo pair images in each of the plurality of display areas, and converts the stereo pair images corresponding to the plurality of display areas to the stereo pair images corresponding to the entire display area. to generate
    The video processing device according to claim 1.
  5.  前記画像取得部は、前記左目位置、前記右目位置、及び前記中間位置をリアルタイムで取得する、
     請求項1に記載の映像処理装置。
    the image acquisition unit acquires the left eye position, the right eye position, and the intermediate position in real time;
    The video processing device according to claim 1.
  6.  左目位置から表示領域を撮影した左目視点画像と、右目位置から前記表示領域を撮影した右目視点画像と、前記左目位置及び前記右目位置の中間位置から前記表示領域を撮影した中間視点画像と、を取得することと、
     前記中間視点画像に基づいて算出された位相シフト量及び重みを、前記左目視点画像及び前記右目視点画像に基づいて最適化することと、
     最適化された前記位相シフト量及び最適化された前記重みに基づいて、前記左目位置及び前記右目位置の間の視差に対応する視差誘導パタンを生成することと、
     前記中間視点画像及び前記視差誘導パタンに基づいて、ステレオペア画像を生成することと、
     を具備する、映像処理方法。
    A left eye viewpoint image obtained by photographing the display area from the left eye position, a right eye viewpoint image obtained by photographing the display area from the right eye position, and an intermediate viewpoint image obtained by photographing the display area from the intermediate position between the left eye position and the right eye position. to obtain;
    optimizing the phase shift amount and weight calculated based on the intermediate viewpoint image based on the left-eye viewpoint image and the right-eye viewpoint image;
    generating a parallax induced pattern corresponding to the parallax between the left eye position and the right eye position based on the optimized phase shift amount and the optimized weights;
    generating a stereo pair image based on the intermediate viewpoint image and the parallax induction pattern;
    A video processing method comprising:
  7.  コンピュータに、
     左目位置から表示領域を撮影した左目視点画像と、右目位置から前記表示領域を撮影した右目視点画像と、前記左目位置及び前記右目位置の中間位置から前記表示領域を撮影した中間視点画像と、を取得させ、
     前記中間視点画像に基づいて算出された位相シフト量及び重みを、前記左目視点画像及び前記右目視点画像に基づいて最適化させ、
     最適化された前記位相シフト量及び最適化された前記重みに基づいて、前記左目位置及び前記右目位置の間の視差に対応する視差誘導パタンを生成させ、
     前記中間視点画像及び前記視差誘導パタンに基づいて、ステレオペア画像を生成させる、
     映像処理プログラム。
     
    to the computer,
    A left eye viewpoint image obtained by photographing the display area from the left eye position, a right eye viewpoint image obtained by photographing the display area from the right eye position, and an intermediate viewpoint image obtained by photographing the display area from the intermediate position between the left eye position and the right eye position. let me get
    optimizing the phase shift amount and weight calculated based on the intermediate viewpoint image based on the left eye viewpoint image and the right eye viewpoint image;
    generating a parallax induced pattern corresponding to the parallax between the left eye position and the right eye position based on the optimized phase shift amount and the optimized weight;
    generating a stereo pair image based on the intermediate viewpoint image and the parallax induction pattern;
    video processing program.
PCT/JP2021/033764 2021-09-14 2021-09-14 Video processing device, video processing method, and video processing program WO2023042266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033764 WO2023042266A1 (en) 2021-09-14 2021-09-14 Video processing device, video processing method, and video processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033764 WO2023042266A1 (en) 2021-09-14 2021-09-14 Video processing device, video processing method, and video processing program

Publications (1)

Publication Number Publication Date
WO2023042266A1 true WO2023042266A1 (en) 2023-03-23

Family

ID=85602001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033764 WO2023042266A1 (en) 2021-09-14 2021-09-14 Video processing device, video processing method, and video processing program

Country Status (1)

Country Link
WO (1) WO2023042266A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522382A (en) * 2001-07-23 2004-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Stereoscopic image processing apparatus and method
JP2010063083A (en) * 2008-08-06 2010-03-18 Sony Corp Image processor, image processing method, and program
JP2018056983A (en) * 2016-09-23 2018-04-05 日本電信電話株式会社 Image generating device, image generating method, data structure, and program
JP2019185589A (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Image generation device, image generation method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522382A (en) * 2001-07-23 2004-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Stereoscopic image processing apparatus and method
JP2010063083A (en) * 2008-08-06 2010-03-18 Sony Corp Image processor, image processing method, and program
JP2018056983A (en) * 2016-09-23 2018-04-05 日本電信電話株式会社 Image generating device, image generating method, data structure, and program
JP2019185589A (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Image generation device, image generation method, and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAIKI FUKIAGE, SHINYA NISHIDA: "Technical Commentary: "Hidden Stereo", the Stereo Image Generation Method Based on Understanding of Human Visual Angle", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, EIZO JOHO MEDIA GAKKA, JP, vol. 74, no. 3, 1 January 2020 (2020-01-01), JP , pages 485 - 490, XP009544529, ISSN: 1342-6907 *
TAKAMUNE MAKIGUCHI, HIDEAKI TAKADA, TAIKI FUKIAGE, SHINYA NISHIDA: "24D-4 Application Evaluation of Image Quality Fluctuation Reduction Method Using Parallax Guidance Patterns for 360-degree Glasses-free 3D Image Display Technology", PROCEEDINGS OF THE 2018 ITE WINTER ANNUAL CONVENTION; DECEMBER 20 – 21, 2018, INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, JP, vol. 24d-4, 6 December 2018 (2018-12-06) - 21 December 2018 (2018-12-21), JP, pages 1 - 2, XP009544528 *

Similar Documents

Publication Publication Date Title
CN103202026B (en) Image transfer converter and use its display device and method
KR101529812B1 (en) Run-time conversion of native monoscopic 3d into stereoscopic 3d
JP2010039501A (en) Method for generating free viewpoint video image in three-dimensional movement, and recording medium
JP2006325165A (en) Device, program and method for generating telop
WO2012157540A1 (en) Image processing apparatus, image processing method, and program
JPWO2014083949A1 (en) Stereoscopic image processing apparatus, stereoscopic image processing method, and program
JP5809607B2 (en) Image processing apparatus, image processing method, and image processing program
Graziosi et al. Compression for full-parallax light field displays
EP3712711B1 (en) Method and apparatus for processing holographic image
WO2023042266A1 (en) Video processing device, video processing method, and video processing program
KR101208767B1 (en) Stereoscopic image generation method, device and system using circular projection and recording medium for the same
KR20190013100A (en) Method and device for processing image
US11706402B2 (en) Image generation apparatus, image generation method, and program
JP5764097B2 (en) Image processing apparatus, image processing method, and image processing program
US10996627B2 (en) Image data processing method and apparatus
JP4610634B2 (en) Image processing method, program executed by computer to implement the method, and recording medium recording the program
Jeong et al. Direct light field rendering without 2D image generation
WO2023032209A1 (en) Video processing device, video processing method, and program
EP4030752A1 (en) Image generation system and method
Tezuka et al. Superpixel-based 3D warping using view plus depth data from multiple viewpoints
Vismara et al. Analysis of stereoscopic visualization in a consumer-oriented head mounted display
Kim et al. A tangible floating display system for interaction
JP2011066507A (en) Image processing apparatus
JP4145121B2 (en) Image processing device
KR102174465B1 (en) Method for rendering virtual reality contents based on focus angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547973

Country of ref document: JP