WO2023041081A1 - 包括柔性屈曲构件的换能器 - Google Patents

包括柔性屈曲构件的换能器 Download PDF

Info

Publication number
WO2023041081A1
WO2023041081A1 PCT/CN2022/119626 CN2022119626W WO2023041081A1 WO 2023041081 A1 WO2023041081 A1 WO 2023041081A1 CN 2022119626 W CN2022119626 W CN 2022119626W WO 2023041081 A1 WO2023041081 A1 WO 2023041081A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
force
flexible
rigid base
activation element
Prior art date
Application number
PCT/CN2022/119626
Other languages
English (en)
French (fr)
Inventor
单保祥
Original Assignee
单保祥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 单保祥 filed Critical 单保祥
Publication of WO2023041081A1 publication Critical patent/WO2023041081A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness

Definitions

  • the present invention relates to a transducer comprising a flexible flexure member adapted to convert a specific detected external stimulus into a corresponding detectable change in a mechanical, electrical, magnetic or physical property of the flexible flexure member.
  • Biosensors have become invaluable tools for detecting and adapting to events and changes in our physical environment. Sensors have a wide range of applications from simple utility monitors to complex healthcare equipment. Specifically, biosensors capable of detecting and classifying biological objects or chemicals play a huge role. Biosensing applications include food safety testing, metabolic engineering and biodefense. In medicine, biosensors enable scientists to perform early detection of many diseases and conditions and aid in drug discovery and cancer research.
  • Biosensors usually consist of at least two components, including molecular recognition probes and physicochemical sensors.
  • Molecular recognition probes selectively interact with biological materials such as DNA, aptamers, antibodies, ligands, enzymes, microorganisms, cells and/or tissues.
  • biological or chemical material to be identified or measured is called an analyte.
  • Physicochemical transducers convert specific biological interactions into physical signals based on the selected properties of the transducer.
  • biosensors One form of classification of biosensors is based on the type of signal conversion mechanism employed.
  • the categories of biosensors include optical, electrochemical, and piezoelectric biosensors. While the selectivity of biosensors mainly depends on the properties of molecular recognition probes, the sensitivity of biosensors largely depends on the physicochemical properties of the sensors.
  • the disclosed invention is a neutral stable system capable of detecting the presence of external stimuli with high sensitivity and can be applied in biosensors and many other applications in medical or non-medical fields.
  • the present invention discloses a transducer comprising a flexible flexing member comprising a rigid base member having a first surface; a flexible member having a second surface; one or more compressive elements adapted to force the first surface and the second contact between the surfaces to form a flexure having a flexure apex; wherein stress induced in at least one region of the flexible member displaces the flexure apex relative to the rigid member.
  • the present invention provides a sensing device comprising a flexible sensing member adapted to convert a specific detected external stimulus into a mechanical, electrical, magnetic or physical property of the flexible flexing member corresponding detectable changes.
  • the sensing device may comprise a flexible sensing member disposed on a rigid base member, wherein the flexible sensing member is longer than the rigid base member. Both the flexible sensing member and the rigid base member may have a first end and a second end. The first and second ends of the flexible sensing member may be secured to respective first and second ends of the rigid base member.
  • the compression element can provide a normal compressive force on the flexible sensing member to the rigid base member, thereby deforming the flexible member, which can include a flexure having two inflection points, a flexure apex, and two contact points.
  • the flexible sensing member may be formed from a relatively inextensible yet flexible material such as fabric reinforced silicone, fabric reinforced polyurethane, titanium alloy, stainless steel alloy, copper alloy, or aluminum alloy.
  • the flexible sensing member can also be any soft magnetic metal, metal alloy or ferromagnetic material.
  • the flexible sensing member is formed of a material with high magnetic permeability, such as steel or silicon steel.
  • the flexible sensing member may also be fitted with an activation element that responds to an external stimulus.
  • the activation element may be provided as a thin strip of material on or embedded in the flexible sensing member.
  • the activation element should be located at the inflection point of the flexure.
  • the activation element can apply stress to the flexible sensing member when exposed to an external stimulus. To relieve such stresses, the flexure and flexure apex may be displaced relative to the rigid base member until the local area surrounding the activation element migrates to the region of maximum positive and negative curvature on the flexure.
  • the activation element may comprise any one or more materials capable of responding to one or more external stimuli.
  • Activation elements may also include materials that respond to chemical, biological, thermal, gravitational, buoyant, radiation, electrostatic, magnetic or electromagnetic forces.
  • the activation element will respond to external stimuli to a greater extent than the substrate of the flexible member on which the activation element is mounted.
  • the detection unit can be used to determine any displacement of the activation element in response to an external stimulus.
  • the detection unit may be any device capable or adapted to detect mechanical, electrical, magnetic or physical changes of the flexible sensing member or activation element.
  • the detection unit can be selected based on the external stimulus to be detected or measured and the activation element material.
  • the cross-section of the inner surface can be circular or elliptical for higher sensitivity.
  • FIG. 1A and 1B show schematic cross-sectional views of a transducer in one embodiment of the invention.
  • FIGS. 2A, 2B and 2C show schematic cross-sectional views of transducers in another embodiment of the invention.
  • Figure 3A shows a schematic cross-sectional view of a buckling member sensing device with a curved compression member according to one embodiment of the present invention.
  • Figure 3B shows a schematic cross-sectional view of an activated buckling member sensing device with a curved compression member according to one embodiment of the present invention.
  • Figure 3C shows a schematic cross-sectional view of an activated buckling member sensing device with a curved compression member according to one embodiment of the present invention.
  • Figure 4A shows a schematic cross-sectional view of a buckled member sensing device with a buckled flexible member compressed under electromagnetic force, according to one embodiment of the present invention.
  • Figure 4B shows a schematic cross-sectional view of the embodiment in Figure 4A having a base member formed from a series of discrete members.
  • Figure 5 shows a schematic cross-sectional view of an embodiment of a buckling member sensing device for a compression member having a complex surface profile, according to an embodiment of the present invention.
  • Figure 6A shows a schematic cross-sectional view of an embodiment of a buckled member sensing device of the present invention comprising a buckled flexible member having an initial curvature.
  • Figure 6B shows a schematic top view of an embodiment of a buckling member sensing device having a flexible sensing member of complex geometry.
  • Figure 6C shows a schematic cross-sectional view of an embodiment of a buckling member sensing device having a buckling flexible laminate member.
  • FIG. 7A and 7B show schematic cross-sectional views of a transducer in a continuous annular embodiment of the invention.
  • Figure 8A shows a schematic perspective view of a buckling band sensing device according to an embodiment of the present invention.
  • Figure 8B shows a schematic perspective view of an array of buckling zone sensing devices according to an embodiment of the present invention.
  • Fig. 9 shows a schematic perspective view of a buckling band sensing device according to an embodiment of the present invention.
  • FIG. 1A and 1B show schematic cross-sectional views of a transducer in one embodiment of the invention.
  • the transducer may be a buckling member sensing device comprising a fixed length flexible sensing member 120 having first and second ends, wherein each end of the flexible sensing member 120 is fixedly fixed to the first transverse constraint 110A and the second transverse constraint 110A.
  • the length of the flexible sensing member 120 is greater than the distance between the first lateral constraint 110A and the second lateral constraint 110B.
  • the first lateral constraint 110A and the second lateral constraint 110B may be permanently affixed to each other or to a surface in a manner that maintains and maintains a fixed distance between the first lateral constraint 110A and the second lateral constraint 110B.
  • the buckling member sensing device exhibits bistable behavior because the system has at least two stable states of local minimum potential energy. These two stable states are shown in Figures 1A and 1B.
  • the state transition can be achieved by applying an activation force to the flexible sensing member 120, where the activation force is sufficient to overcome the local energy maximum between the two stable states.
  • the flexible sensing member 120 may be formed from a relatively inextensible but flexible material, such as fabric reinforced silicone, fabric reinforced polyurethane, titanium alloy, stainless steel alloy, copper alloy, or aluminum alloy.
  • the buckling flexible member may also be any soft magnetic metal, metal alloy or ferromagnetic material.
  • the buckling flexible member is made of materials with high magnetic permeability such as steel or silicon steel.
  • FIGS. 2A, 2B and 2C show schematic cross-sectional views of transducers in another embodiment of the invention.
  • the transducer may be a buckling member sensing device comprising a compression element 100, a rigid base member 130A, and a flexible sensing member 120, wherein the length of the flexible sensing member 120 may be greater than the length of the rigid base member 130A.
  • rigid base member 130A may have a first end that is securely attached to first lateral constraint 110A and a second end that is securely attached to second lateral constraint 110B.
  • the flexible sensing member 120 may also have a first end that is securely attached to the first lateral constraint 110A and a second end that is securely attached to the second lateral constraint 110B.
  • the first lateral constraint 110A and the second lateral constraint 110B may be removed, and the first end of the rigid base member 130A may be fixedly fixed directly to the first end of the flexible sensing member 120 and rigidly The second end of the base member 130A may be fixedly secured to the second end of the flexible sensing member 120 .
  • the flexible sensing member 120 may be constrained such that the first and second ends of the flexible sensing member 120 are in frictional contact with the first and second ends of the rigid base member 130A, respectively.
  • the length of the flexible sensing member 120 is greater than the length of the rigid base member 130A.
  • the first lateral restraint 110A and the second lateral restraint 110B have a significant impact on the flexible sensing member. Lateral constraints caused by 120 may cause flexible sensing member 120 to deviate from rigid base member 130A, resulting in a monostable system.
  • the compressive element is adapted to exert a compressive force on the flexible sensing member 120, thereby forming a buckle.
  • the flexure may be defined by the flexure apex 160, the first and second inflection points 140A, 140B, and the first and second regions of maximum negative curvature relative to the rigid base member 130A.
  • the first and second regions of greatest negative curvature are equivalent to localized regions surrounding the contact points 165A, 165B.
  • Compression elements may be used to ensure frictional contact between portions of the flexible sensing member 120 and the rigid base member 130A. For example, as shown in the embodiment of FIGS.
  • the compression element is a rigid compression member parallel to the rigid base member 130A and is configured to exert a compressive force on the flexible sensing member 120 toward the rigid base member 130A
  • the rigid compression member may be formed of the same material as the rigid base member 130A.
  • the base member may be fixed relative to the compression member 130B to constrain the flexure to one-dimensional lateral movement, wherein the flexure apex 160 is displaceable relative to the transverse axis of the rigid base member 130A.
  • the compressive element may be any one or more components capable of maintaining frictional contact between the flexible sensing member and the rigid base member, such as shown in Figures 2B and 4A.
  • the compressive element may use self-transverse compression, magnetic force, electromagnetic force, electrostatic force, gravity, buoyancy, or a combination of forces to force a buckle in the flexible sensing member.
  • compression induced by the compression element refers to compression of the flexible sensing member towards the rigid base member, as opposed to the type of resultant force induced by the compression element.
  • the rigid base member 130A of the buckling member sensing device may be curved, as shown in Figure 3A.
  • the strain energy on the flexible sensing member 120 allows the flexible sensing member 120 to be largely conforms to the shape of the bending rigid base member 130A, thereby avoiding the need for a rigid compression member 130B.
  • the strain energy generated by the deformation of the flexible sensing element 120 acts to compress the element 100 .
  • the flexible sensing member 120 may also be fitted with the activation element 150 .
  • the activation element 150 may be mounted on one of the first inflection point 140A, the second inflection point 140B of the buckling flexible member, whereby the curvature is zero.
  • the activation element 150 may be a thin strip of material on or embedded in the buckling flexible member.
  • the external stimulus may be provided in the form of an aqueous solution, a gaseous state, or a powder solution through the opening 231 exposing the activation element 150 to the external stimulus.
  • activation element 150 may be stressed when exposed to a solution containing an external stimulus to be detected or measured.
  • the stress induced in the activation element 150 may be greater than the stress induced in the base material of the buckling flexible member, and both the activation element 150 and the base material of the buckling flexible member may be exposed to external stimuli.
  • the stress generated in the activation element 150 may be tensile stress or compressive stress. If the solution does not contain the external stimulus to be detected or measured, no stress will be generated in the activation element 150 .
  • the activation element 150 may comprise any one or more materials capable of responding to one or more external stimuli. Activation element 150 may also include materials that respond to chemicals, biological agents, heat, radiation, or electromagnetic forces. Preferably, the activation element 150 will respond to external stimuli to a greater extent than the substrate of the flexible member on which the activation element 150 is mounted.
  • the activation strip may be formed of a material having a coefficient of linear thermal expansion greater than 5 x 10-6 m/m/°C, such as, but not limited to, fabric reinforced silicone, fabric reinforced polyurethane, titanium alloy, stainless steel alloy, copper alloy, or aluminum alloy.
  • Particularly suitable materials may include titanium alloys such as, but not limited to, so-called beta titanium alloys mixed in varying amounts with one or more of molybdenum, vanadium, niobium, tantalum, zirconium, manganese, iron, chromium, cobalt, nickel and copper Titanium in various alloys.
  • the strength/modulus ratio of this type of alloy is almost twice that of 18-8 austenitic stainless steel, allowing greater elastic deformation in the spring and reducing the force per unit of displacement.
  • Suitable alloys may include, but are not limited to, "BETA III” (Ti-11.5Mo-6.5Zr-4.6Sn), Transage 129 (Ti-2Al-11.5V-2Sn-11.3Zr), or Ti-6Al-4V.
  • a biological receptor can selectively or specifically bind an analyte.
  • a bioreceptor adapted to interact with one or more particular analytes may induce a physical change, such as stress, in activation element 150 when the bioreceptor is exposed to the one or more analytes.
  • the compressive element 100 of the exemplary embodiment of the present invention may also be a dielectric layer disposed between the flexible sensing member 120 and the rigid base member 130A.
  • the rigid base member 130A may include multiple discrete sections, as shown in Figure 4B. Each part may be formed from the same material or different materials.
  • the embodiment disclosed in FIG. 4A does not use compression member 130B as a compression element. Instead, flexible sensing member 120 may be pressed against rigid base member 130A by magnetic or electromagnetic force.
  • the flexible sensing member 120 may be formed of a material with high magnetization sensitivity, such as ferromagnet, steel, amorphous ferrous metal.
  • the rigid base member 130A is a magnet
  • the attractive force between the magnet and the ferromagnetic material can act as a compressive element 100 and cause the flexible sensing member 120 to press against the rigid base member 130A forming a buckle.
  • compressive element 100 may be a dielectric layer disposed between flexible sensing member 120 and rigid base member 130A, wherein the dielectric layer may be polarized to attract and compress flexible sensing member 120 .
  • the rigid member serves as the substrate
  • the dielectric layer may be in contact with the substrate layer extending along one surface and with the portion of the buckling flexible member on the opposite surface.
  • the dielectric layer may be a thin film coating.
  • the dielectric layer may be formed from any suitable dielectric material, including oxides (eg, silicon oxide) and nitrides (eg, silicon nitride). In some embodiments, the dielectric layer can be any dielectric material suitable for MEMS fabrication.
  • the substrate layer may be formed from any conductive or semiconducting material or any substrate material suitable for MEMS fabrication (eg silicon). In some embodiments, the substrate layer may be a high resistivity substrate. In further embodiments, the substrate layer may be any material with suitable magnetic or electrostatic properties configured to engage the buckling flexible member.
  • the base layer can also be formed from any material with high permeability, such as MetglasTM.
  • the compressive elements in the buckling strap arrangement shown in Figures 2A-4B can be used to switch a bistable buckling system with two stable states.
  • a neutral or near-neutral stable system is achieved by limiting the magnitude of the out-of-plane deflection of the flexible sensing member 120 .
  • the potential energy at each state or position of the flexure relative to the rigid base member 130A remains constant.
  • the constant energy is attributable to the constant bending strain energy of the buckled deflected shape of the flexible sensing member 120 .
  • This neutral stable system allows detection of the presence of stimuli, including micro stimuli.
  • Figure 5 shows an embodiment of the invention wherein the compressive element is a compressive member 130B.
  • the compression member 130B has a complex surface profile with peaks and valleys associated with local maximum and local minimum potential energy states. Incorporating a compression member 130B with a complex surface profile may allow tuning of the transducer into a system with any number of stable states.
  • FIG. 6A-6C illustrate means for adjusting the energy distribution of a bistable buckling transducer system.
  • Figure 6A shows a flexible sensing member with negative curvature to ensure a compressed state between the flexible sensing strip and compression member 130B.
  • the embodiment of FIG. 6B uses the geometry of the flexible sensing member 120 to achieve performance tuning.
  • Another embodiment of Figure 6C can use thermal stress or inelastic strain to tune the properties of a laminated flexible member.
  • the flexible sensing member 120 may be a continuous strip or strip having a uniform thickness and a uniform width with no endpoints, where the width of the strip is greater than the thickness.
  • the material composition 14 of the strip may be made of the same material as the flexible sensing member.
  • the rigid base member may be a continuous magnetic member.
  • Activation element 150 may be selected for its ability to elicit a detectable response to a specific, recognizable external stimulus. Upon detection of a predetermined stimulus, a stress may be induced in the activation element 150 causing the flexor to move laterally relative to the rigid base member 130A. For example, as shown in FIG. 3B , stress on activation element 150 may cause flexible member to change shape from 120A to 120B, effectively shifting the relative position of the flexure laterally along longitudinal axis 105 of rigid base member 130A.
  • the coefficient of thermal expansion of activation element 150 may be greater than the coefficient of thermal expansion of flexible sensing member 120 .
  • a localized area of the activation element 150 may expand or contract faster than the underlying flexible sensing member 120 .
  • the activation element 150 may be located at the first inflection point 140A or the second inflection point 140B of the flexor. To relieve the resulting stress, localized regions of the activation element 150 may migrate to locations of maximum or minimum curvature.
  • the stressed portion of the flexible member at or near the activation element 150 can effectively migrate to a region of the flexible member where the curvature imparted to the stressed portion more closely matches the curvature of the flexure, such as Contact points 165A, 165B or local areas of flexure apex 160 .
  • Whether the activation element 150 moves laterally toward the contact points 165A, 165B or toward the flexor apex 160 may depend on factors including the mounting of the activation element 150 on the surface of the flexure flexible member facing or away from the rigid base member 130A and the time of activation. Whether the stress induced in the element 150 is tensile or compressive. In each configuration, the activation element 150 will tend to migrate towards the region of the flexure where the induced stress of the activation element 150 can be relieved.
  • activation element 150 may be exposed to an external stimulus in a liquid, gaseous or powder solution.
  • the activation element 150 may be soaked or submerged in a liquid solution containing the external stimulus.
  • a liquid solution containing an external stimulus can be titrated directly onto the activation element 150 through the inlet channel.
  • the activation element 150 may be fully or partially enclosed in a container and exposed to a gaseous solution. The activation element 150 may be exposed to external stimuli in other ways or methods, and the exposure method is not limited to the disclosure herein.
  • the activation element 150 may comprise any one or more materials capable of responding to one or more external stimuli. Activation element 150 may also include materials that respond to chemicals, biological agents, heat, gravity, buoyancy, radiation, static electricity, magnetic or electromagnetic forces. Preferably, the activation element 150 will respond to external stimuli to a greater extent than the substrate of the flexible member on which the activation element 150 is mounted. In some preferred embodiments, eg in a buckling member sensing device adapted to detect changes in gravity, the activation element 150 may also be formed by a flexible sensing member.
  • At least one activation element 150 may be provided on one surface of the flexed flexible member, and at least one detection unit may be positioned on the other surface of the flexed flexible member. In other embodiments, at least one detection unit 16 is not mounted or positioned on the flexible sensing member 120 . In some embodiments, at least one detection unit may be positioned external to the buckling member sensing device.
  • an access channel extending through the rigid cylindrical shell is provided.
  • the access channel is a bore extending through the rigid cylindrical shell.
  • the external stimulus may be provided in the form of an aqueous solution, a gas, or a powder solution through an inlet channel that exposes the activation element 150 to the external stimulus.
  • the access channel is located directly above or adjacent to the activation element 150 .
  • activation element 150 may be exposed to an external stimulus in a liquid, gaseous or powder solution.
  • the activation element 150 may be soaked or submerged in a liquid solution containing the external stimulus.
  • a liquid solution containing an external stimulus can be titrated directly onto the activation element 150 through the inlet channel.
  • the activation element 150 may be fully or partially enclosed in a container and exposed to a gaseous solution. The activation element 150 may be exposed to external stimuli in other ways or methods, and the exposure method is not limited to the disclosure herein.
  • the detection unit may be used to determine any displacement of the activation element 150 in response to an external stimulus.
  • the detection unit may be any device capable or adapted to detect mechanical, electrical, magnetic or physical changes of the buckling flexible member or activation element 150 .
  • the detection unit may be selected based on the external stimulus to be detected or measured and the material of the activation element 150 .
  • the cross-section of the inner surface can be circular or oval for higher sensitivity.
  • the detection unit may be an electromagnetic detection coil or a piezoelectric element. Electromagnetic detection coils or piezoelectric elements can be utilized to detect static or dynamic pressure in the flexed flexible member or activation element 150 before and after exposure to an external stimulus.
  • the detection unit may be a strain gauge device mounted on the buckling flexible member, which is adapted to detect the static strain or dynamic strain or other stress-induced strain of the buckling flexible member or the activation element 150 in response to an external stimulus.
  • the detection unit may be a proximity switch (eg, infrared, acoustic, capacitive, inductive) including a light sensor and a pressure sensor.
  • the detection unit may be an analog sensing device.
  • the detection unit may be a camera or an imaging device equipped with a high optical zoom, which allows a visual inspection of the flexure or the displacement of the flexure apex 160 .
  • FIG. 7A and 7B show schematic cross-sectional views of a transducer in a continuous annular embodiment of the invention.
  • the annular transducer may be a sensing device consisting of a rigid base member 130A and a buckling member of a flexible sensing member 120 , wherein the length of the flexible sensing member 120 may be greater than the length of the rigid base member 130A.
  • the rigid base member 130A may be a continuous permanent magnetic or electromagnetic member, or may be an annular base member formed by a series of discrete members (such as the rigid base member 130A in FIG. 4B ), the flexible sensing member 120 Can be a continuous soft magnetic belt or chain.
  • the flexible sensing member 120 When the flexible sensing member 120 is installed on the outer annular surface of the rigid base member 130A, the magnetic force can press a part of the flexible sensing member 120 tightly against the surface of the rigid base member 130 . Since the length of the flexible sensing member 120 may be greater than the length of the rigid base member 130A, the flexible sensing member 120 may form one or more flexures, such as the flexure at location 120A shown in FIG. 7B .
  • the initial buckle may be at location 120A on flexible sensing member 120 .
  • Different positions of the flexure correspond to different states.
  • the state transition can be achieved by applying an activation force to the flexible sensing member 120, where the activation force is sufficient to overcome the local energy maximum between the two stable states.
  • the activation force may be at an inflection point in the middle of the flexure.
  • the activation force can drive the flexion from position 120A to position 120B and position 120C. Even if the flexures are in different positions, the deformed shape of the flexures can be consistent. In this way, the elastic deformation of the flexible sensing member 120 can remain unchanged under different buckling states, and the required activation force can be very small.
  • FIG 8A shows a schematic perspective view of a buckling member sensing device according to one embodiment of the present invention.
  • multiple buckling member sensing devices may be arranged in series or in an array, as shown in Figure 8B.
  • Each individual sensor may have an activation element 150 adapted to respond to the same external stimulus or a different stimulus or a combination of different stimuli.
  • Each individual sensor can be integrated with a microfluidic pump to deliver external stimuli to the active element 150 in the buckling member sensing device.
  • the activation element may be formed as a thin coating on the flexible sensing member.
  • the activation element may comprise a material that is responsive to chemical or biochemical stimuli, allowing the use of the flexure member sensing device as a biosensor.
  • the activation element may comprise a material having a higher coefficient of thermal expansion than that of the flexible sensing member.
  • This embodiment can be used as a temperature sensor.
  • the active element is a fixed load placed on the flexible sensing member at the inflection point of the flexure, allowing the sensing device to function as an acceleration or inertial sensor.
  • Buckling member sensing devices can be fabricated in a variety of sizes, such as microscale or nanoscale, and claimed subject matter is not limited in this respect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种包括柔性屈曲构件的换能器,包括:具有第一表面的刚性基座构件(130A);具有第二表面的柔性构件(120);一个或多个压缩元件(100),适合于迫使第一表面和第二表面之间的接触以形成一个具有屈曲部顶点(160)的屈曲部;其中,在柔性构件(120)的至少一个区域中产生的应力使屈曲部顶点(160)相对于刚性基座构件(130A)发生位移。换能器还可以包括激活元件(150),所述激活元件(150)被配置为在所述柔性构件(120)的至少一个区域中引起应力。在检测到外部刺激时,可以在激活元件(150)中以表面应力、电磁力、静电力、机械力、浮力、流体压力、重力、热应力、温度变化或化学反应力的形式产生应力。该换能器能够以高灵敏度检测外部刺激的存在。

Description

包括柔性屈曲构件的换能器
相关申请的交叉引用
本申请要求于2021年9月20日提交的美国专利申请号为“17/480,132”的优先权,其全部内容作为整体并入本申请中。
技术领域
本发明涉及包括柔性屈曲构件的换能器(transducer),该柔性屈曲构件适于将特定检测到的外部刺激转换成柔性屈曲构件的机械、电、磁或物理特性的相应可检测变化。
背景技术
传感器已成为检测和适应我们物理环境中的事件和变化的宝贵工具。传感器具有从简单的实用监视器到复杂的医疗保健设备的广泛应用。具体而言,能够检测和分类生物对象或化学物质的生物传感器发挥了巨大的作用。生物传感应用包括食品安全测试、代谢工程和生物防御。在医学领域,生物传感器使科学家能够对许多疾病和病症进行早期检测,并有助于药物发现和癌症研究。
生物传感器通常由至少两个组件组成,包括分子识别探针和物理化学传感器。分子识别探针选择性地与生物材料如DNA、适体、抗体、配体、酶、微生物、细胞和/或组织相互作用。待识别或测量的生物或化学材料称为分析物。物理化学换能器根据换能器的选择特性将特定的生物相互作用转换为物理信号。
一种形式的生物传感器分类是基于所采用的信号转换机制的类型。生物传感器的类别包括光学、电化学和压电生物传感器。虽然生物传感器的选择性主要取决于分子识别探针的特性,但生物传感器的灵敏度很 大程度上取决于传感器的物理化学特性。所公开的发明是一种能够以高灵敏度检测外部刺激的存在并且可以适用于生物传感器以及医学或非医学领域中的许多其他应用的中性稳定系统。
发明内容
本发明公开了一种包括柔性屈曲构件的换能器,包括具有第一表面的刚性基座构件;具有第二表面的柔性构件;一个或多个压缩元件,适合于迫使第一表面和第二表面之间的接触以形成一个具有屈曲部顶点的屈曲部;其中,在柔性构件的至少一个区域中产生的应力使屈曲部顶点相对于刚性构件发生位移。
在优选实施例中,本发明提供了一种传感装置,包括柔性传感构件,该柔性传感构件适于将特定检测到的外部刺激转换成柔性屈曲构件的机械、电、磁或物理特性的相应可检测变化。
在本发明的一个实施例中,传感装置可以包括设置在刚性基座构件上的柔性传感构件,其中柔性传感构件比刚性基座构件长。柔性传感构件和刚性基座构件都可以具有第一端和第二端。柔性传感构件的第一端和第二端可以固定到刚性基座构件的相应第一端和第二端。压缩元件可以在柔性传感构件上向刚性基座构件提供法向压缩力,从而使柔性构件变形,该柔性构件可以包括具有两个拐点、屈曲部顶点和两个接触点的屈曲部。
柔性传感构件可以由相对不可延伸但柔性的材料形成,例如织物增强硅树脂、织物增强聚氨酯、钛合金、不锈钢合金、铜合金或铝合金。柔性传感构件也可以是任何软磁金属、金属合金或铁磁材料。优选地,柔性传感构件由具有高磁导率的材料形成,例如钢或硅钢。
在一些实施例中,柔性传感构件还可以与响应外部刺激的激活元件相适配。激活元件可以作为材料薄带设置在柔性传感构件上或嵌入柔性传感构件中。优选地,激活元件应位于屈曲部的拐点处。当暴露于外部刺激时,激活元件可以向柔性传感构件施加应力。为了减轻这种应力,屈曲部和屈曲部顶点可以相对于刚性基座构件移位,直到围绕激活元件的局部区域迁移到屈曲部上最大正曲率和负曲率的区域。
激活元件可以包括能够响应一种或多种外部刺激的任何一种或多种材料。激活元件还可以包括对化学物质、生物制剂、热、重力、浮力、辐射、静电、磁力或电磁力作出响应的材料。优选地,激活元件将比其上安装激活元件的柔性构件的基材更大程度地响应外部刺激。
检测单元可用于确定激活元件响应于外部刺激的任何位移。检测单元可以是能够或适于检测柔性传感构件或激活元件的机械、电、磁或物理变化的任何装置。可以基于要检测或测量的外部刺激和激活元件材料来选择检测单元。内表面的横截面可以是圆形或椭圆形,以实现更高的灵敏度。
附图说明
图1A和1B示出了本发明的一个实施例中的换能器的示意性截面图。
图2A、2B和2C示出了本发明另一实施例中的换能器的示意性截面图。
图3A示出了根据本发明的一个实施例的具有弯曲压缩构件的屈曲构件传感装置的示意性截面图。
图3B示出了根据本发明的一个实施例的具有弯曲压缩构件的激活的屈曲构件传感装置的示意性截面图。
图3C示出了根据本发明的一个实施例的具有弯曲压缩构件的激活的屈曲构件传感装置的示意性截面图。
图4A示出了根据本发明的一个实施例的具有在电磁力下压缩的屈曲柔性构件的屈曲构件传感装置的示意性截面图。
图4B示出了图4A中的实施例的示意性截面图,图4A中的实施例具有由一系列离散构件形成的基座构件。
图5示出了根据本发明的一个实施例的具有复杂表面轮廓的压缩构件的屈曲构件传感装置的实施例的示意性截面图。
图6A示出了本发明的包括具有初始曲率的屈曲柔性构件的屈曲构件传感装置的实施例的示意性截面图。
图6B示出了具有复杂几何形状的柔性传感构件的屈曲构件传感装置的实施例的示意性俯视图。
图6C示出了具有屈曲柔性层压构件的屈曲构件传感装置的实施例的示意性截面图。
图7A和7B示出了本发明一连续环形实施例中的换能器的示意性截面图。
图8A示出了根据本发明实施例的屈曲带传感装置的示意性立体图。
图8B示出了根据本发明实施例的屈曲带传感装置阵列的示意性立体图。
图9示出了根据本发明实施例的屈曲带传感装置的示意性立体图。
具体实施方式
现在将参照附图更详细地描述本发明的优选实施例,其中各个图中的相同元件尽可能用相同的附图标记表示。这些实施例是作为对本发明的解释而提供的,然而,本发明并不限于此。本领域的普通技术人员在阅读本说明书和查看本附图时可以理解,在不背离本发明的精神的情况下,可以对其进行各种修改和变化。
图1A和1B示出了本发明的一个实施例中的换能器的示意性截面图。
换能器可以是屈曲构件传感装置,其包括具有第一和第二端的固定 长度的柔性传感构件120,其中柔性传感构件120的每一端牢固地固定到第一横向约束件110A和第二横向约束件110B。在优选实施例中,柔性传感构件120的长度大于第一横向约束件110A和第二横向约束件110B之间的距离。第一横向约束件110A和第二横向约束件110B可以以保持和维持第一横向约束件110A和第二横向约束件110B之间的固定距离的方式永久地固定到彼此或表面上。
在图1A和1B公开的实施例中,屈曲构件传感装置表现出双稳态特性,因为系统具有至少两个局部最小势能的稳定状态。这两种稳定状态示于图1A和1B中。在该实施例中,状态转变可以通过向柔性传感构件120施加激活力来实现,其中激活力足以克服两个稳定状态之间的局部最大能量。
柔性传感构件120可以由相对不可延伸但柔性的材料形成,例如织物增强硅树脂、织物增强聚氨酯、钛合金、不锈钢合金、铜合金或铝合金。屈曲柔性构件也可以是任何软磁金属、金属合金或铁磁材料。优选地,所述屈曲柔性构件由钢或硅钢等具有高磁导率的材料制成。
图2A、2B和2C示出了本发明另一实施例中的换能器的示意性截面图。
换能器可以是包括压缩元件100、刚性基座构件130A和柔性传感构件120的屈曲构件传感装置,其中柔性传感构件120的长度可以大于刚性基座构件130A的长度。
在一些实施例中,刚性基座构件130A可以具有牢固地附接到第一横向约束件110A的第一端和牢固地附接到第二横向约束件110B的第二端。柔性传感构件120也可以具有牢固地附接到第一横向约束件110A的第一端和牢固地附接到第二横向约束件110B的第二端。在替代实施例中,可以移除第一横向约束件110A和第二横向约束件110B,并且刚 性基座构件130A的第一端可以直接牢固地固定到柔性传感构件120的第一端并且刚性基座构件130A的第二端可以牢固地固定到柔性传感构件120的第二端。在一些实施例中,可以约束柔性传感构件120,使得柔性传感构件120的第一端和第二端分别与刚性基座构件130A的第一端和第二端摩擦接触。
在优选实施例中,柔性传感构件120的长度大于刚性基座构件130A的长度。当柔性传感构件120和刚性基座构件130A固定在同一组第一横向约束件110A和第二横向约束件110B上时,第一横向约束件110A和第二横向约束件110B对柔性传感构件120造成的横向约束力可以导致柔性传感构件120偏离刚性基座构件130A,导致单稳态系统。
在图2C的实施例中,压缩元件适于在柔性传感构件120上施加压缩力,从而形成屈曲部。屈曲部可以由屈曲部顶点160、第一拐点140A和第二拐点140B以及相对于刚性基座构件130A具有最大负曲率的第一区域和第二区域限定。在本公开中,最大负曲率的第一和第二区域等同于围绕接触点165A、165B的局部区域。压缩元件可以用于确保柔性传感构件120的部分和刚性基座构件130A之间的摩擦接触。例如,如图1A和1B的实施例所示,压缩元件是平行于刚性基座构件130A的刚性压缩构件,并且被配置为在柔性传感构件120上朝着刚性基座构件130A施加压缩力,其中刚性压缩构件可以由与刚性基座构件130A相同的材料形成。随着压缩力的增加,屈曲部顶点160和刚性基座构件130A之间的中间距离会开始减小,并且柔性传感构件120和刚性基座构件130A之间的第一和第二接触区域会开始变宽,导致柔性传感构件120上的至少一个正曲率局部区域和至少一个负曲率局部区域。如图1D所示,基座构件可相对于压缩构件130B固定以将屈曲部限制为一维横向运动,其中在屈曲部顶点160处可相对于刚性基座构件130A的横向轴 线移位。
压缩元件可以是能够保持柔性传感构件和刚性基座构件之间的摩擦接触的任何一个或多个组件,例如如图2B和4A所示。例如,压缩元件可以使用自横向压缩、磁力、电磁力、静电力、重力、浮力或力的组合来迫使在柔性传感构件中形成屈曲部。如本文所用,由压缩元件引起的压缩是指柔性传感构件朝向刚性基座构件的压缩,与由压缩元件引起的合力类型相反。
在一些实施例中,屈曲构件传感装置的刚性基座构件130A可以是弯曲的,如图3A所示。当被约束在刚性基座构件130A的弯曲内并被第一横向约束件110A和第二横向约束件110B压缩时,柔性传感构件120上的应变能允许柔性传感构件120在很大程度上符合弯曲刚性基座构件130A的形状,从而避免了需要刚性压缩构件130B。在本实施例中,柔性传感元件120的变形所产生的应变能起到压缩元件100的作用。
柔性传感构件120也可以与激活元件150适配。激活元件150可以安装在屈曲柔性构件的第一拐点140A、第二拐点140B之一上,由此曲率为零。激活元件150可以是在屈曲柔性构件上或嵌入在屈曲柔性构件中的材料薄带。
可以通过将激活元件150暴露于外部刺激的开口231提供呈水溶液、气态或粉末溶液形式的外部刺激。
在优选实施例中,当暴露于含有待检测或测量的外部刺激的溶液时,激活元件150可能会受到应力。在激活元件150中产生的应力可能大于在屈曲柔性构件的基材中产生的应力,激活元件150和屈曲柔性构件的基材都可能受到外部刺激。在激活元件150中产生的应力可以是张应力或压应力。如果溶液不包含要检测或测量的外部刺激,则不会在激活元件150中产生应力。
激活元件150可以包括能够响应外部一种或多种刺激的任何一种或多种材料。激活元件150还可以包括对化学物质、生物制剂、热、辐射或电磁力作出响应的材料。优选地,激活元件150将比安装激活元件150的柔性构件的基材更大程度地响应外部刺激。例如,激活带可以由线性热膨胀系数大于5×10-6m/m/℃的材料形成,例如但不限于织物增强硅树脂、织物增强聚氨酯、钛合金、不锈钢合金、铜合金或铝合金。特别合适的材料可包括钛合金,例如但不限于所谓的β钛合金,即以不同量与钼、钒、铌、钽、锆、锰、铁、铬、钴、镍和铜中的一种或多种合金化的钛。这种类型的合金的强度/弹性模量比几乎是18-8奥氏体不锈钢的两倍,从而允许弹簧中更大的弹性变形,并减少每单位位移的力。合适的合金可以包括但不限于“BETA III”(Ti-11.5Mo-6.5Zr-4.6Sn)、Transage 129(Ti-2Al-11.5V-2Sn-11.3Zr)或Ti-6Al-4V。
在一个示例中,生物受体可以选择性地或特异性地与分析物结合。当适于与一种或多种特定分析物相互作用的生物受体暴露于所述一种或多种分析物时,该生物受体可在激活元件150中引起物理变化,例如应力。
如图4A所示,本发明的示例性实施例的压缩元件100也可以是设置在柔性传感构件120和刚性基座构件130A之间的介电层。在一些实施例中,刚性基座构件130A可以包括多个离散部分,如图4B所示。每个部分可以由相同的材料或不同的材料形成。与图2A中公开的实施例相反,图4A中公开的实施例没有使用压缩构件130B作为压缩元件。相反,柔性传感构件120可以通过磁力或电磁力压靠刚性基座构件130A。
例如,柔性传感构件120可以由具有高磁化敏感性的材料形成,例如铁磁铁、钢、非晶铁金属。当刚性基座构件130A为磁体时,磁体与铁磁材料之间的吸引力可充当压缩元件100并导致柔性传感构件120压 靠在刚性基座构件130A上而形成屈曲部。在替代实施例中,压缩元件100可以是设置在柔性传感构件120和刚性基座构件130A之间的介电层,其中该介电层可以被极化以吸引和压缩柔性传感构件120。在这样的实施例中,刚性构件用作衬底,并且介电层可以与沿一个表面延伸的衬底层接触并且与相对表面上的屈曲柔性构件的部分接触。在一些实施例中,介电层可以是薄膜涂层。
介电层可以由任何合适的介电材料形成,包括氧化物(例如,氧化硅)和氮化物(例如,氮化硅)。在一些实施例中,介电层可以是适用于MEMS制造的任何介电材料。衬底层可以由任何导电或半导体材料或任何适用于MEMS制造的衬底材料(例如硅)形成。在一些实施例中,衬底层可以是高电阻率衬底。在进一步的实施例中,衬底层可以是具有合适的磁性或静电特性的任何材料,其被配置为接合屈曲柔性构件。基座层也可以由任何具有高渗透性的材料形成,例如MetglasTM。
如图2A-4B所示的屈曲带装置中的压缩元件可以用于转换具有两个稳定状态的双稳态屈曲系统。参考图1A和1B,通过限制柔性传感构件120的平面外偏转的幅度来达到中性或接近中性的稳定系统。在这种中性稳定系统中,屈曲部相对于刚性基座构件130A的每个状态或位置处的势能保持不变。恒定能量可归因于柔性传感构件120的屈曲偏转形状的恒定弯曲应变能。这种中性稳定系统允许检测刺激(包括微量刺激)的存在。
图5示出了本发明的一个实施例,其中压缩元件是压缩构件130B。这里,压缩构件130B具有复杂的表面轮廓,其具有与局部最大和局部最小势能状态相关联的峰和谷。结合具有复杂表面轮廓的压缩构件130B可以允许将换能器调整到具有任意数量的稳定状态的系统中。
图6A-6C说明了调节双稳态屈曲换能器系统的能量分布的装置。例 如,图6A示出了具有负曲率的柔性传感构件,以确保柔性传感带和压缩构件130B之间的压缩状态。图6B的实施例使用柔性传感构件120的几何形状来实现性能调整。图6C的另一个实施例可以使用热应力或非弹性应变来调整层压柔性构件的性能。
在本发明的一些实施例中,柔性传感构件120可以是具有均匀厚度和均匀宽度并且没有端点的连续带或条,其中带的宽度大于厚度。带的材料成分14可以由与柔性传感构件相同的材料制成。如图7所示,刚性基座构件可以是连续的磁性构件。
在此描述了根据本发明的一个实施例的屈曲带传感装置对外部刺激的响应。可以选择激活元件150,因为它能够引发对特定的、可识别的外部刺激的可检测响应。在检测到预定刺激时,可在激活元件150中引起应力,从而使屈曲部相对于刚性基座构件130A横向移动。例如,如图3B所示,激活元件150上的应力可导致柔性构件从120A改变形状到120B,从而有效地沿刚性基座构件130A的纵向轴线105横向移动屈曲部的相对位置。
在一些实施例中,激活元件150的热膨胀系数可以大于柔性传感构件120的热膨胀系数。当检测刺激时,激活元件150的局部区域可以比下面的柔性传感构件120更快地膨胀或收缩。在激活元件150不暴露于外部刺激的实施例中,激活元件150可以位于屈曲部的第一拐点140A或第二拐点140B处。为了减轻产生的应力,激活元件150的局部区域可以迁移到最大或最小曲率的位置。换言之,在激活元件150处或附近的柔性构件的受应力部分可以有效地迁移到柔性构件的一个区域,在该区域赋予受力部分的曲率更紧密地匹配屈曲部的曲率,所述区域例如是接触点165A、165B或屈曲部顶点160的局部区域。
激活元件150是向接触点165A、165B还是向屈曲部顶点160横向 移动可以取决于以下因素,所述因素包括激活元件150安装在屈曲柔性构件朝向或背离刚性基座构件130A的表面上以及在激活元件150中产生的应力是张应力还是压应力。在每种配置中,激活元件150将趋向于向激活元件150的感应应力可以被释放的屈曲部的区域迁移。
在一些实施例中,激活元件150可以暴露于液态、气态或粉末溶液中的外部刺激。例如,激活元件150可以浸泡或浸没在包含外部刺激的液体溶液中。在另一个实施例中,包含外部刺激的液体溶液可以通过入口通道直接滴定在激活元件150上。在又一个实施例中,激活元件150可以完全或部分地封闭在容器中并暴露于气态溶液。激活元件150可以以其他方式或方法暴露于外部刺激,并且暴露方法不限于本文的公开内容。
激活元件150可以包括能够响应外部一种或多种刺激的任何一种或多种材料。激活元件150还可以包括对化学品、生物制剂、热、重力、浮力、辐射、静电、磁力或电磁力作出响应的材料。优选地,激活元件150将比安装激活元件150的柔性构件的基材更大程度地响应外部刺激。在一些优选实施例中,例如在适于检测重力变化的屈曲构件传感装置中,激活元件150也可以由柔性传感构件形成。
至少一个激活元件150可以设置在被屈曲柔性构件的一个表面上,并且至少一个检测单元可以被定位在屈曲柔性构件的另一表面上。在其他实施例中,至少一个检测单元16未安装或定位在柔性传感构件120上。在一些实施例中,至少一个检测单元可以定位在屈曲构件传感装置的外部。
在优选实施例中,提供了延伸穿过刚性圆柱形外壳的进入通道。在其他实施例中,进入通道是延伸穿过刚性圆柱形外壳的孔。可以通过将激活元件150暴露于外部刺激的入口通道提供呈水溶液、气体或粉末溶 液形式的外部刺激。优选地,进入通道直接位于激活元件150的上方或附近。
在一些实施例中,激活元件150可以暴露于液态、气态或粉末溶液中的外部刺激。例如,激活元件150可以浸泡或浸没在包含外部刺激的液体溶液中。在另一个实施例中,包含外部刺激的液体溶液可以通过入口通道直接滴定在激活元件150上。在又一个实施例中,激活元件150可以完全或部分地封闭在容器中并暴露于气态溶液。激活元件150可以以其他方式或方法暴露于外部刺激,并且暴露方法不限于本文的公开内容。
检测单元可用于确定激活元件150响应于外部刺激的任何位移。检测单元可以是能够或适用于检测屈曲柔性构件或激活元件150的机械、电、磁或物理变化的任何装置。可以基于要检测或测量的外部刺激和激活元件150的材料来选择检测单元。内表面的截面图可以是圆形或椭圆形,以实现更高的灵敏度。
例如,检测单元可以是电磁检测线圈或压电元件。可以利用电磁检测线圈或压电元件来检测在暴露于外部刺激之前和之后的屈曲柔性构件或激活元件150中的静态或动态压力。
在另一个实施例中,检测单元可以是安装在屈曲柔性构件上的应变仪装置,其适于检测屈曲柔性构件或激活元件150响应外部刺激而产生的静态应变或动态应变或其他应力引起的应变。
在其他实施例中,检测单元可以是包括光传感器和压力传感器的接近开关(例如,红外、声学、电容、电感)。在进一步的实施例中,检测单元可以是模拟感应装置。
在进一步的实施例中,检测单元可以是配置有高光学变焦的照相机或成像装置,其允许对屈曲部或屈曲部顶点160的位移进行视觉检查。
图7A和7B示出了本发明一连续环形实施例中的换能器的示意性截面图。
如图7A所示,环形换能器可以是刚性基座构件130A和柔性传感构件120的屈曲构件组成的传感装置,其中柔性传感构件120的长度可以大于刚性基座构件130A的长度。
在一些实施例中,刚性基座构件130A可以是连续永磁性或电磁构件,也可以由一系列离散构件形成(如图4B中刚性基座构件130A)的环形基座构件,柔性传感构件120可以是连续软磁铁带或链条。当把柔性传感构件120安装在刚性基座构件130A的外环形表面上,磁力可以把柔性传感构件120的一部分紧紧地压在刚性基座构件130的表面。由于柔性传感构件120的长度可以大于刚性基座构件130A的长度,柔性传感构件120可以形成一个或多个屈曲部,如图7B所示的位置120A处的屈曲部。
如图7B所示,初始的屈曲部可以在柔性传感构件120上的位置120A。屈曲部在不同的位置对应着不同的状态。在该实施例中,状态转变可以通过向柔性传感构件120施加激活力来实现,其中激活力足以克服两个稳定状态之间的局部最大能量。优选地,激活力可以在位于屈曲部中间的拐点。激活力可以驱动屈曲部从位置120A移动到位置120B和位置120C。即使屈曲部在不同位置,屈曲部的变形形状可以一致。这样柔性传感构件120的弹性变形能在屈曲的不同状态下可以保持不变,所需激活力可以非常小。
图8A示出了根据本发明的一个实施例的屈曲构件传感装置的示意性立体图。例如,多个屈曲构件传感装置可以串联或以阵列形式布置,如图8B所示。每个单独的传感器可以具有适于响应相同的外部刺激或不同的刺激或不同的刺激组合的激活元件150。每个单独的传感器可以 与微流体泵集成以将外部刺激传递到屈曲构件传感装置中的有源元件150。在图8A的实施例中,激活元件可以形成为柔性传感构件上的薄涂层。激活元件可以包括对化学或生物化学刺激有反应性的材料,从而允许使用屈曲构件传感装置作为生物传感器。在另一个实施例中,激活元件可以包括具有比柔性传感构件的热膨胀系数更高的热膨胀系数的材料。本实施例可以用作温度传感器。如图9所示,在一些实施例中,有源元件是在屈曲部的拐点处设置在柔性传感构件上的固定负载,从而允许传感装置用作加速度或惯性传感器。
屈曲构件传感装置可以以多种尺寸制造,例如微米级或纳米级制造,并且要求保护的主题在这方面不受限制。
术语“或”旨在表示包含性的“或”而不是排他性的“或”。也就是说,除非另有说明,或从上下文中清楚,否则短语“X采用A或B”旨在表示任何自然包含性排列。即,“X采用A或B”这一短语满足下列任一情况:X采用A;X采用B;或X使用A和B。此外,除非另有说明或从上下文中清楚地表明指向一个,否则本申请和所附权利要求中所提及的对象通常应解释为“一个或多个”。
尽管前述公开讨论了说明性的方面和/或实施例,但应当注意,在不脱离所附权利要求限定的所描述的方面和/或实施例的范围的情况下,可以在本文中进行各种改变和修改。此外,虽然所描述的方面和/或实施例的元素可以以单数形式进行描述或要求保护,但复数是可以预期的,除非明确说明对单数的限制。此外,除非另有说明,否则任何方面和/或实施例的全部或部分可以与任何其他方面和/或实施例的全部或部分一起使用。

Claims (18)

  1. 一种换能器,包括:
    具有第一表面的刚性基座构件;
    具有第二表面的柔性构件;
    一个或多个压缩元件,适合于迫使第一表面和第二表面之间的接触以形成具有屈曲部顶点的屈曲部;
    其中,在柔性构件的至少一个区域中产生的应力使屈曲部顶点相对于刚性基座构件发生位移。
  2. 根据权利要求1所述的换能器,其中,所述刚性基座构件是弯曲的。
  3. 根据权利要求1所述的换能器,其中,所述刚性基座构件包括一个或多个段。
  4. 根据权利要求1所述的换能器,其中,所述刚性基座构件包括介电层和衬底层,其中,所述介电层与所述柔性构件的第二表面接触。
  5. 根据权利要求1所述的换能器,其中,所述刚性基座构件是磁体。
  6. 根据权利要求1所述的换能器,其中,所述一个或多个压缩元件是刚性构件。
  7. 根据权利要求1所述的换能器,其中,所述一个或多个压缩元件是刚性基座构件,其形成弯曲以通过横向压缩迫使所述第一表面和所述第二表面之间的接触。
  8. 根据权利要求1所述的换能器,其中所述一个或多个压缩元件是由铁磁材料形成的柔性构件,其中所述柔性构件通过磁力或电磁力向所述刚性基座构件吸引。
  9. 根据权利要求1所述的换能器,其中,所述一个或多个压缩元件 通过自横向压缩、磁力、电磁力、静电力、重力、浮力中的任意一种或任意几种的组合来迫使第一表面和第二表面之间的接触。
  10. 根据权利要求1所述的换能器,其中,所述一个或多个压缩元件位于所述柔性构件、所述刚性基座构件或其组合之一上。
  11. 根据权利要求1所述的换能器,其中,所述一个或多个压缩元件嵌入在所述柔性构件、所述刚性基座构件或其组合之一中。
  12. 根据权利要求1所述的换能器,还包括激活元件,所述激活元件被配置为在所述柔性构件的至少一个区域中引起应力。
  13. 根据权利要求12所述的换能器,其中,所述激活元件设置在所述柔性构件上。
  14. 根据权利要求12所述的换能器,其中,所述激活元件被配置为引起表面应力、电磁力、静电力、机械力、浮力、流体压力、重力、热应力、温度变化、化学反应力中的任意一种或任意几种的组合。
  15. 根据权利要求12所述的换能器,其中,所述激活元件响应于外部刺激而引起应力。
  16. 根据权利要求13所述的换能器,其中,所述激活元件位于所述屈曲部的拐点处或附近。
  17. 根据权利要求13所述的换能器,其中,所述激活元件由热膨胀系数大于所述柔性构件的材料形成。
  18. 根据权利要求12所述的换能器,其中,所述外部刺激是化学、热、光、辐射、重力、运动、电、磁、压力中的任意一种或任意几种的组合。
PCT/CN2022/119626 2021-09-20 2022-09-19 包括柔性屈曲构件的换能器 WO2023041081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202117480132A 2021-09-20 2021-09-20
US17/480,132 2021-09-20

Publications (1)

Publication Number Publication Date
WO2023041081A1 true WO2023041081A1 (zh) 2023-03-23

Family

ID=85602465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119626 WO2023041081A1 (zh) 2021-09-20 2022-09-19 包括柔性屈曲构件的换能器

Country Status (1)

Country Link
WO (1) WO2023041081A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357486A (en) * 1992-12-02 1994-10-18 Innovative Transducers Inc. Acoustic transducer
JP2002232996A (ja) * 2001-01-15 2002-08-16 Ge Medical Systems Global Technology Co Llc 超音波プローブおよびその製造方法並びに超音波撮影装置
CN106999163A (zh) * 2014-12-11 2017-08-01 皇家飞利浦有限公司 具有交错列的微加工超声换能器的导管换能器
CN108025331A (zh) * 2015-06-30 2018-05-11 皇家飞利浦有限公司 超声系统和超声脉冲发射方法
CN110434044A (zh) * 2019-07-30 2019-11-12 西安交通大学 一种电极形状调控的高超声波收发性能CMUTs
CN110681877A (zh) * 2019-09-30 2020-01-14 东北大学 一种并联与螺旋槽组合式单激励三维曲面超声辅助车削装置
CN114669463A (zh) * 2021-04-24 2022-06-28 单保祥 包括柔性屈曲构件的换能器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357486A (en) * 1992-12-02 1994-10-18 Innovative Transducers Inc. Acoustic transducer
JP2002232996A (ja) * 2001-01-15 2002-08-16 Ge Medical Systems Global Technology Co Llc 超音波プローブおよびその製造方法並びに超音波撮影装置
CN106999163A (zh) * 2014-12-11 2017-08-01 皇家飞利浦有限公司 具有交错列的微加工超声换能器的导管换能器
CN108025331A (zh) * 2015-06-30 2018-05-11 皇家飞利浦有限公司 超声系统和超声脉冲发射方法
CN110434044A (zh) * 2019-07-30 2019-11-12 西安交通大学 一种电极形状调控的高超声波收发性能CMUTs
CN110681877A (zh) * 2019-09-30 2020-01-14 东北大学 一种并联与螺旋槽组合式单激励三维曲面超声辅助车削装置
CN114669463A (zh) * 2021-04-24 2022-06-28 单保祥 包括柔性屈曲构件的换能器

Similar Documents

Publication Publication Date Title
Fiorillo et al. Theory, technology and applications of piezoresistive sensors: A review
JP5743026B2 (ja) 両面被覆表面応力センサー
KR101451697B1 (ko) 표면 응력 센서
Thanh-Vinh et al. High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers
US10768058B2 (en) Magnetic nanocomposite sensor
US7086288B2 (en) Thin membrane transducer
Alfadhel et al. A magnetoresistive tactile sensor for harsh environment applications
CN114669463B (zh) 包括柔性屈曲构件的换能器
Koch et al. Skin attachable flexible sensor array for respiratory monitoring
KR102162145B1 (ko) 크랙 기반의 고 민감도 굽힘 센서 제조방법
Noda et al. Flexible tactile sensor for shear stress measurement using transferred sub-µm-thick Si piezoresistive cantilevers
JP4320028B2 (ja) 微小硬度測定法及び微小硬度計
Hasegawa et al. An active tactile sensor for detecting mechanical characteristics of contacted objects
WO2023041081A1 (zh) 包括柔性屈曲构件的换能器
Lamba et al. Effect of Stiffness in Sensitivity Enhancement of MEMS Force Sensor Using Rectangular Spade Cantilever for Micromanipulation Applications
Sohgawa et al. Tactle array sensor with inclined chromium/silicon piezoresistive cantilevers embedded in elastomer
Jeong et al. Motion Artifact‐Resilient Zone for Implantable Sensors
Kale et al. Design and fabrication issues in affinity cantilevers for bioMEMS applications
JP2003337071A (ja) 触覚センサ
Priyadarsini et al. Analysis of MEMS cantilever geometry for designing of an array sensor
Mathew et al. Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor
Nilsen et al. Direct polymer microcantilever fabrication from free-standing dry film photoresists
JP2007064786A (ja) 力センサ
Ansari et al. Effect of p-type and n-type piezoresistors on characteristics of high sensitive silicon piezoresistive microcantilever designs
Neethu et al. Sensitivity analysis of rectangular microcantilever structure with piezoresistive detection technique using Coventorware FEA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE