WO2023041046A1 - Photoelectric device and manufacturing method therefor, and display device - Google Patents
Photoelectric device and manufacturing method therefor, and display device Download PDFInfo
- Publication number
- WO2023041046A1 WO2023041046A1 PCT/CN2022/119360 CN2022119360W WO2023041046A1 WO 2023041046 A1 WO2023041046 A1 WO 2023041046A1 CN 2022119360 W CN2022119360 W CN 2022119360W WO 2023041046 A1 WO2023041046 A1 WO 2023041046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phthalocyanine
- transport layer
- electron transport
- fluorinated
- zno
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims abstract description 102
- 229910052751 metal Inorganic materials 0.000 claims abstract description 73
- 239000002184 metal Substances 0.000 claims abstract description 73
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000002245 particle Substances 0.000 claims abstract description 17
- 239000011787 zinc oxide Substances 0.000 claims description 115
- 230000005693 optoelectronics Effects 0.000 claims description 50
- 239000000243 solution Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 35
- 239000002096 quantum dot Substances 0.000 claims description 33
- 239000011701 zinc Substances 0.000 claims description 30
- 239000002243 precursor Substances 0.000 claims description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- 230000005525 hole transport Effects 0.000 claims description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 18
- 150000003751 zinc Chemical class 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 15
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 claims description 13
- -1 magnesium fluorinated phthalocyanine Chemical class 0.000 claims description 13
- LBAIJNRSTQHDMR-UHFFFAOYSA-N magnesium phthalocyanine Chemical compound [Mg].C12=CC=CC=C2C(N=C2NC(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2N1 LBAIJNRSTQHDMR-UHFFFAOYSA-N 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 239000011258 core-shell material Substances 0.000 claims description 12
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 10
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 10
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 10
- 229910004613 CdTe Inorganic materials 0.000 claims description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 6
- 239000011592 zinc chloride Substances 0.000 claims description 5
- 235000005074 zinc chloride Nutrition 0.000 claims description 5
- 229920001167 Poly(triaryl amine) Polymers 0.000 claims description 4
- 150000003378 silver Chemical class 0.000 claims description 4
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 claims description 3
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 claims description 3
- YWKKLBATUCJUHI-UHFFFAOYSA-N 4-methyl-n-(4-methylphenyl)-n-phenylaniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C)=CC=1)C1=CC=CC=C1 YWKKLBATUCJUHI-UHFFFAOYSA-N 0.000 claims description 3
- FWXNJWAXBVMBGL-UHFFFAOYSA-N 9-n,9-n,10-n,10-n-tetrakis(4-methylphenyl)anthracene-9,10-diamine Chemical compound C1=CC(C)=CC=C1N(C=1C2=CC=CC=C2C(N(C=2C=CC(C)=CC=2)C=2C=CC(C)=CC=2)=C2C=CC=CC2=1)C1=CC=C(C)C=C1 FWXNJWAXBVMBGL-UHFFFAOYSA-N 0.000 claims description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 3
- 229910017083 AlN Inorganic materials 0.000 claims description 3
- 229910004611 CdZnTe Inorganic materials 0.000 claims description 3
- 229910005540 GaP Inorganic materials 0.000 claims description 3
- 229910005542 GaSb Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 3
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 3
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 claims description 3
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 claims description 3
- 229910007709 ZnTe Inorganic materials 0.000 claims description 3
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 3
- 239000002585 base Substances 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 125000003983 fluorenyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 3
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000327 poly(triphenylamine) polymer Polymers 0.000 claims description 3
- 150000003220 pyrenes Chemical class 0.000 claims description 3
- 229910052950 sphalerite Inorganic materials 0.000 claims description 3
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 claims description 3
- 239000004246 zinc acetate Substances 0.000 claims description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 235000021286 stilbenes Nutrition 0.000 claims description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims 1
- OJDHPAQEFDMEMC-UHFFFAOYSA-N N#C[Cu]C#N Chemical class N#C[Cu]C#N OJDHPAQEFDMEMC-UHFFFAOYSA-N 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 13
- 239000007924 injection Substances 0.000 abstract description 13
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 214
- 239000010410 layer Substances 0.000 description 128
- 239000002086 nanomaterial Substances 0.000 description 37
- 239000000758 substrate Substances 0.000 description 11
- 229910044991 metal oxide Inorganic materials 0.000 description 9
- 238000000576 coating method Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000000053 physical method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011257 shell material Substances 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910003363 ZnMgO Inorganic materials 0.000 description 1
- 229910007717 ZnSnO Inorganic materials 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 125000004556 carbazol-9-yl group Chemical group C1=CC=CC=2C3=CC=CC=C3N(C12)* 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present application relates to the field of display technology, in particular to an optoelectronic device, a manufacturing method thereof, and a display device.
- Optoelectronic devices refer to devices made according to the photoelectric effect, which have a wide range of applications in new energy, sensing, communication, display, lighting and other fields, such as solar cells, photodetectors, organic electroluminescent devices (OLED) or quantum dots Electroluminescent devices (QLEDs).
- OLED organic electroluminescent devices
- QLEDs quantum dots Electroluminescent devices
- the structure of a traditional photoelectric device mainly includes an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer (ie, an electron transport layer), an electron injection layer, and a cathode.
- anode Under the action of the electric field, the holes generated by the anode of the photoelectric device and the electrons generated by the cathode move, inject into the hole transport layer and the electron transport layer respectively, and finally migrate to the light-emitting layer.
- a Energy excitons which excite light-emitting molecules and eventually produce visible light.
- ZnO is an n-type semiconductor material with a direct bandgap. It has a wide band gap of 3.37eV and a low work function of 3.7eV. It has the advantages of good stability, high transparency, safety and non-toxicity, making ZnO an ideal choice for preparing optoelectronic devices.
- ZnO also has many potential advantages.
- the exciton binding energy of ZnO is as high as 60meV, which is much higher than other wide-bandgap semiconductor materials (for example, the exciton binding energy of GaN is 2meV), and the exciton binding energy of ZnO is 2meV.
- ZnO nanomaterials also have the advantages of high electron mobility, simple preparation, and low cost, and are widely used in optoelectronic devices.
- the present application provides an optoelectronic device, a manufacturing method thereof, and a display device.
- the present application provides a photoelectric device, comprising a laminated anode, a light-emitting layer, an electron transport layer and a cathode, wherein the material of the electron transport layer includes ZnO particles and metal phthalocyanine complexes connected on the surface of the ZnO particles.
- the metal phthalocyanine complex is selected from one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
- the molar ratio of the metal phthalocyanine complex to the ZnO particles is in the range of 1:(0.01-0.2).
- the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex.
- the fluorinated metal phthalocyanine complex is selected from one or more of fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine kind.
- the average particle diameter of the ZnO particles is in the range of 10-100 nm.
- the light-emitting layer is an organic light-emitting layer or a quantum dot light-emitting layer
- the material of the organic light-emitting layer is selected from diarylanthracene derivatives, stilbene aromatic derivatives, pyrene derivatives, fluorene derivatives, One or more of TBPe fluorescent materials, TTPA fluorescent materials, TBRb fluorescent materials and DBP fluorescent materials
- the material of the quantum dot light-emitting layer is selected from one or more of single-structure quantum dots and core-shell structure quantum dots
- the single-structure quantum dots are selected from one or more of II-VI group compounds, III-V group compounds and I-III-VI group compounds
- the II-VI group compounds are selected from CdSe, CdS, CdTe , ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, Cd
- the photoelectric device further includes a hole transport layer, and the hole transport layer is located between the anode and the light emitting layer.
- the material of the hole transport layer is selected from poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetra [N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline ], N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine, 4,4'-bis(N- carbazole)-1,1'-biphenyl, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl )) diphenylamine)], poly(9-vinylcarbazole), polytriphenylamine, poly[
- the present application also provides a method for preparing a photoelectric device, comprising the following steps:
- the light emitting layer being formed on the first electrode
- the second electrode being formed on the light emitting layer
- the preparation method also includes: providing zinc salt, alkali and solvent, mixing to obtain a ZnO precursor solution, mixing the ZnO precursor solution with a metal phthalocyanine complex to obtain a material for an electron transport layer, and depositing the electron transport layer layer materials to obtain an electron transport layer, and the electron transport layer and the light emitting layer are stacked between the first electrode and the second electrode.
- the first electrode is an anode
- the second electrode is a cathode
- the deposition of the material of the electron transport layer is performed between the formation of the light-emitting layer and the formation of the second electrode, and includes: The material of the electron transport layer is deposited on the light emitting layer.
- the first electrode is a cathode
- the second electrode is an anode
- the depositing the material of the electron transport layer is performed before the formation of the light-emitting layer, and includes: depositing on the first electrode The material of the electron transport layer.
- the zinc salt is selected from one or more of zinc acetate, zinc nitrate, zinc chloride and zinc acetate dihydrate.
- the alkali is selected from one or more of sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide
- the solvent is selected from one or more of methanol, ethanol and butanol.
- the molar ratio of OH - in the base to Zn 2+ in the zinc salt ranges from (1.5-3):1.
- the molar ratio of Zn 2+ in the ZnO precursor solution to the metal phthalocyanine complex ranges from 1:(0.01-0.2).
- the pH range of the ZnO precursor solution is 12-14.
- the metal phthalocyanine complex is selected from one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
- the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex
- the fluorinated metal phthalocyanine complex is selected from fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorine One or more of silver phthalocyanine and fluorinated copper phthalocyanine.
- a step of stirring at 60-120° C. is also included.
- the present application also provides a display device, which includes the above-mentioned optoelectronic device.
- the material of the electron transport layer of the optoelectronic device of the present application includes ZnO nanomaterials modified by metal phthalocyanine complexes, through the coordination effect of metal phthalocyanine, the Fermi energy level of ZnO is moved up into the conduction band, and the surface of ZnO is connected with M (Pc)-O-Zn bond and Zn-N(Pc) bond, and the M(Pc)-O-Zn bond and Zn-N(Pc) bond are composed of the 3d orbital and the subsurface Zn atom of ZnO
- Fig. 1 is a schematic structural diagram of an optoelectronic device provided by an embodiment of the present application
- Fig. 2 is a schematic structural diagram of another optoelectronic device provided by the embodiment of the present application.
- Fig. 3 is a flow chart of a method for preparing an optoelectronic device provided in an embodiment of the present application
- Fig. 4 is a flow chart of another method for preparing an optoelectronic device provided in an embodiment of the present application.
- the embodiment of the present application provides a photoelectric device and a preparation method thereof. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments. In addition, in the description of the present application, the term “including” means “including but not limited to”.
- expressions such as “one or more” refer to one or more of the listed items, and “multiple” refers to any combination of two or more of these items, including single items (species) ) or any combination of plural items (species), for example, "at least one (species) of a, b, or c" or "at least one (species) of a, b, and c" can mean: a ,b,c,a-b (that is, a and b),a-c,b-c, or a-b-c, where a,b,c can be single or multiple.
- an embodiment of the present application provides an optoelectronic device 100 , and the optoelectronic device 100 may be a solar cell, a photodetector, an organic electroluminescent device (OLED) or a quantum dot electroluminescent device (QLED).
- the optoelectronic device 100 includes an anode 10 , a light emitting layer 20 , an electron transport layer 30 and a cathode 40 stacked in sequence.
- the material of the electron transport layer 30 includes ZnO nanomaterials modified by metal phthalocyanine complexes, that is, MPc-ZnO, wherein M is metal and Pc is phthalocyanine.
- the material of the electron transport layer 30 includes ZnO nanomaterials and metal phthalocyanine complexes connected on the surface of the ZnO nanomaterials.
- the metal phthalocyanine complex may be selected from, but not limited to, one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
- the ZnO nanomaterials are ZnO nanomaterials known in the art to be used for electron transport layers.
- the particle diameter of the ZnO nanomaterial is ZnO nanoparticles in the range of 10-100 nm. If the particle size of the ZnO nanoparticles is too small, there will be more surface defects on the ZnO surface, which will affect the electron transport performance of the electron transport layer 30; The film uniformity, in turn, affects the electron transport performance of the electron transport layer 30 .
- the ZnO nanomaterial modified by the metal phthalocyanine complex moves the Fermi energy level of ZnO upwards and enters the conduction band through the coordination effect of metal phthalocyanine, so that the surface of ZnO is connected with M(Pc)-O-Zn bonds and Zn -N(Pc) bond, and the M(Pc)-O-Zn bond and Zn-N(Pc) bond are composed of the 3d orbital of the ZnO surface and the subsurface Zn atom and the 2p orbital of the surface O atom, thus Metallize the surface of ZnO so that ZnO presents a metallic state, thereby improving the conductivity of ZnO nanomaterials, promoting the electron transport of ZnO nanomaterials, and improving the electron transport efficiency of the electron transport layer 30, which is conducive to including the electron transport layer 30.
- the electron-hole injection of the optoelectronic device 100 is balanced, thereby improving the luminous efficiency of the optoelectronic device 100 and reducing the turn
- the molar ratio of the metal phthalocyanine complex to the ZnO nano material is in the range of 1:(0.01- 0.2). If the content of the metal phthalocyanine complex is too low, it is difficult to improve the electron transport efficiency of the electron transport layer 30; if the content of the metal phthalocyanine complex is too high, the charge transport performance of the electron transport layer 30 will be reduced.
- the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex, namely F-MPc-ZnO.
- the fluorinated metal phthalocyanine complex can be selected from but not limited to one or more of fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine kind.
- the fluorinated metal phthalocyanine complex uses fluorine atoms or fluorine-containing groups to chemically modify the benzene ring in the metal phthalocyanine complex, and utilizes the electron-withdrawing effect of the fluorine atoms to reduce
- the electron cloud density makes it easier for the central metal atom of the metal phthalocyanine complex to combine with the oxygen vacancies on the ZnO surface to induce electron localization through coordination, thereby enhancing the metallicity of the ZnO surface, reducing the work function of ZnO, and making ZnO
- the work function of is more matched with the work function of the cathode, so that the electron transport layer 30 has good conductivity. In this way, an ohmic contact can be formed by evaporating an electrode on the electron transport layer 30 comprising the ZnO nanomaterial modified by the metal phthalocyanine complex, thereby effectively improving the electron injection of the optoelectronic device 100.
- the N atoms on the metal phthalocyanine complex coordinate with the Zn dangling bonds in ZnO, the metal atoms on the metal phthalocyanine complex coordinate with the oxygen vacancies in ZnO, and the introduction of fluorine can enhance the The solubility in the solvent can passivate the surface defects of ZnO, reduce the capture of electrons by ZnO, and thus promote the effective injection of electrons into the light-emitting layer of the optoelectronic device 100 .
- the fluorine-containing groups act as ligands to modify the metal phthalocyanine complex, which can reduce the surface roughness of the ZnO film, improve the contact interface between ZnO and the cathode, and synergistically improve the electron injection efficiency. This is beneficial to the electron-hole injection balance of the optoelectronic device 100 including the electron transport layer 30 , thereby improving the luminous efficiency of the optoelectronic device 100 and reducing the turn-on voltage of the optoelectronic device 100 .
- the material of the electron transport layer is the ZnO nanomaterial modified by the metal phthalocyanine complex.
- the material of the electron transport layer may also include nano-metal oxides or doped nano-metal oxides.
- Nano-metal oxides include but are not limited to ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, One or more of TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO and InSnO, the doping element in the doped nano metal oxide is one or more of magnesium, aluminum, gallium, lithium, indium, tin and molybdenum Various.
- the material of the electron transport layer is composed of the ZnO nanomaterial modified by the metal phthalocyanine complex and the nano metal oxide or doped nano metal oxide.
- the material of the anode 10 is known in the art for anode materials, for example, can be selected from but not limited to doped metal oxide electrodes, composite electrodes and the like.
- the doped metal oxide electrode may be selected from but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO), One or more of gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), magnesium-doped zinc oxide (MZO) and aluminum-doped magnesium oxide (AMO).
- the composite electrode is a composite electrode with a metal sandwiched between doped or non-doped transparent metal oxides, such as AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, etc.
- "/" means a laminated layer, for example, AZO/Ag/AZO means a composite electrode formed by sequentially stacking AZO, Ag, and AZO.
- the light emitting layer 20 can be an organic light emitting layer or a quantum dot light emitting layer.
- the optoelectronic device 100 may be an organic electroluminescent device.
- the optoelectronic device 100 may be a quantum dot electroluminescent device.
- the material of the organic light-emitting layer is a material known in the art to use an organic light-emitting layer, for example, it can be selected from but not limited to diaryl anthracene derivatives, distyryl aromatic derivatives, pyrene derivatives or fluorene derivatives, One or more of TBPe fluorescent material emitting blue light, TTPA fluorescent material emitting green light, TBRb fluorescent material emitting orange light, and DBP fluorescent material emitting red light.
- the material of the quantum dot light-emitting layer is a quantum dot material known in the art for the quantum dot light-emitting layer of an optoelectronic device, for example, it can be selected from but not limited to one or more of a single-structure quantum dot and a core-shell structure quantum dot Various.
- the single-structure quantum dots may be selected from, but not limited to, one or more of II-VI compounds, III-V compounds and I-III-VI compounds.
- the II-VI group compound can be selected from but not limited to CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, One or more of CdZnSeTe and CdZnSTe;
- the III-V compound can be selected from but not limited to one of InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP one or more;
- the I-III-VI compound may be selected from but not limited to one or more of CuInS 2 , CuInSe 2 and AgInS 2 .
- the core of the quantum dot of the core-shell structure can be selected from one or more of the above-mentioned single-structure quantum dots
- the shell material of the quantum dot of the core-shell structure can be selected from but not limited to CdS, CdTe, CdSeTe, One or more of CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS, and ZnS.
- the quantum dots of the core-shell structure can be selected from but not limited to CdZnSe/CdZnS/ZnS, CdZnSe/ZnSe/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS One or more of ZnS, InP/ZnSe/ZnS and InP/ZnSeS/ZnS.
- the cathode 40 is a cathode known in the art for electroluminescent devices, for example, may be selected from but not limited to one or more of Ag electrodes, Al electrodes, Au electrodes, Pt electrodes or alloy electrodes.
- the photoelectric device 100 further includes a hole transport layer 50 , and the hole transport layer 50 is located between the anode 10 and the light emitting layer 20 .
- the material of the hole transport layer 50 can also be a material known in the art for the hole transport layer, for example, can be selected from but not limited to poly[bis(4-phenyl)(2,4,6-tri Methylphenyl)amine] (PTAA), 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro -omeTAD), 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline](TAPC), N,N'-bis(1-naphthyl)-N,N'- Diphenyl-1,1'-diphenyl-4,4'-diamine (NPB), 4,4'-bis(N-carbazole)-1,1'-biphenyl (CBP), poly[ (9,9-dioctylfluorenyl-2,7-diyl
- the optoelectronic device 100 can also add some functional layers that are conventionally used in optoelectronic devices to help improve the performance of optoelectronic devices, such as electron blocking layers, hole blocking layers, electron injection layers, Hole injection layer, interface modification layer, etc.
- each layer of the optoelectronic device 100 can be adjusted according to the light emission requirements of the optoelectronic device 100 .
- the optoelectronic device 100 may be a positive optoelectronic device or an inverted optoelectronic device.
- the embodiment of the present application also provides a method for preparing the optoelectronic device 100, including the following steps:
- Step S11 providing a first electrode, and forming a light-emitting layer 20 on the first electrode;
- Step S12 forming an electron transport layer 30 on the light-emitting layer 20, specifically:
- A. Provide zinc salt, alkali and solvent, and mix to obtain ZnO precursor solution
- the ZnO precursor solution is mixed with the metal phthalocyanine complex and reacted to obtain the ZnO nanomaterial modified by the metal phthalocyanine complex, i.e. the material of the electron transport layer;
- Step S13 forming a second electrode on the electron transport layer 30 .
- the first electrode is the anode 10
- the second electrode is the cathode 40 .
- the step S11 is: providing a first electrode, and sequentially forming a stacked hole transport layer 50 and a light emitting layer 20 on the first electrode.
- the embodiment of the present application also provides another method for preparing the optoelectronic device 100, which includes the following steps:
- Step S21 providing a first electrode
- Step S22 forming an electron transport layer 30 on the first electrode, specifically:
- A. Provide zinc salt, alkali and solvent, and mix to obtain ZnO precursor solution
- the ZnO precursor solution is mixed with the metal phthalocyanine complex and reacted to obtain the ZnO nanomaterial modified by the metal phthalocyanine complex, i.e. the material of the electron transport layer;
- Step S23 sequentially forming a laminated light emitting layer 20 and a second electrode on the electron transport layer 30 .
- the first electrode is the cathode 40
- the second electrode is the anode 10 .
- the step S23 is: sequentially forming a stacked light emitting layer 20 , a hole transport layer 50 and a second electrode on the electron transport layer 30 .
- the zinc salt can be selected from but not limited to one or more of soluble inorganic zinc salts and soluble organic zinc salts, for example, can be selected from but not limited to zinc acetate, zinc nitrate, zinc chloride and one or more of zinc acetate dihydrate.
- the base may be selected from but not limited to one or more of sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide.
- the solvent may be an organic solvent.
- the organic solvent may be selected from but not limited to one or more of methanol, ethanol and butanol.
- the range of the molar ratio of OH- in the alkali to Zn 2+ in the zinc salt is (1.5-3):1.
- the pH range of the ZnO precursor solution is 12-14. Alkaline environment is conducive to the synthesis of ZnO nanometer material, and the pH of described alkali is too low, and the surface of ZnO nanomaterial easily forms more hydroxyl ligands; The diameter is too small and has more surface defects.
- the mixing method of the salt, alkali and solvent is as follows: add an appropriate amount of zinc salt to 50ml of solvent to form a solution with a concentration of 0.1-1M, stir to dissolve, then add 10ml of alcoholic lye, and continue to stir 10min-2h to get a clear and transparent solution, which is the ZnO precursor solution.
- the alcohol may be selected from but not limited to one or more of methanol, ethanol and butanol.
- the step of stirring at constant temperature is also included after mixing.
- the temperature range of constant temperature is 60-120°C.
- the stirring time is not limited, and the stirring can be stopped after obtaining a clear and transparent solution. In one embodiment, the stirring time range is 10min-2h.
- the constant temperature stirring can reduce the reaction barrier, increase the activity of reactants, and then accelerate the reaction. If the temperature is too low, the effect is not good, and if the temperature is too high, the solvent evaporates quickly and affects the reaction.
- the metal phthalocyanine complex can be selected from but not limited to one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
- the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex.
- the fluorinated metal phthalocyanine complex can be selected from but not limited to one or more of fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine kind.
- the range of the molar ratio of Zn 2+ in the ZnO precursor solution to the metal phthalocyanine complex is 1:(0.01-0.2).
- the type of the substrate is not limited.
- the substrate is a cathode substrate, and the cathode can be selected from but not limited to one or more of Ag electrodes, Al electrodes, Au electrodes, Pt electrodes or alloy electrodes, and the substrate can be The conventionally used substrate such as glass, the ZnO nanometer material modified by the metal phthalocyanine complex is arranged on the cathode.
- the substrate includes a laminated anode and a light emitting layer, and the ZnO nanomaterial modified by the metal phthalocyanine complex is disposed on the light emitting layer.
- the step B after mixing the ZnO precursor solution and the metal phthalocyanine complex, further includes: stirring the ZnO precursor solution and the metal phthalocyanine complex to react to obtain a reaction product, and then using a precipitation agent to precipitate the reaction product .
- the reaction time is 1-4h.
- the eluting agent can be selected from but not limited to one or more of acetone, ethyl acetate, hexane and heptane.
- the method of arranging the ZnO nanomaterial modified by the metal phthalocyanine complex on the substrate may be a chemical method or a physical method.
- the chemical method can be chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodic oxidation method, electrolytic deposition method and co-precipitation method, etc.
- the physical method can be physical coating method or solution processing method, and the physical coating method can be thermal evaporation coating method CVD, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method PVD, atomic layer deposition method and pulse laser deposition method, etc.; the solution processing method can be spin coating method, printing method, inkjet printing method, scraping method, printing method, dipping method, soaking method, spraying method, roller coating method, casting method, Slot coating method and strip coating method, etc.
- the physical coating method can be thermal evaporation coating method CVD, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method PVD, atomic layer deposition method and pulse laser deposition method, etc.
- the solution processing method can be spin coating method, printing method, inkjet printing method, scraping method, printing method, dipping method, soaking method, spraying method, roller coating method, casting method
- the method of arranging the ZnO nanomaterial modified by the metal phthalocyanine complex on the substrate is a solution method.
- the ZnO nano material modified by the metal phthalocyanine complex needs to be used first.
- the dispersant is dispersed to obtain the metal phthalocyanine complex modified ZnO nano material dispersion, and then the metal phthalocyanine complex modified ZnO nano material dispersion is arranged on the substrate by a solution method.
- the dispersant may be selected from but not limited to one or more of methanol, ethanol, butanol and pentanol.
- the methods for forming the anode 10 , the hole transport layer 50 , the light emitting layer 20 and the cathode 40 can be realized by conventional techniques in the art, such as chemical or physical methods.
- the chemical method or physical method can be referred to above, and will not be repeated here.
- the preparation method of the photoelectric device 100 also includes forming the Describe the steps of each functional layer.
- the embodiment of the present application also provides a display device, which includes the optoelectronic device 100 .
- This embodiment is basically the same as Embodiment 1, the difference is that in this embodiment, the ZnO precursor solution is mixed with fluorinated cobalt phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to fluorinated cobalt phthalocyanine is 1:0.05.
- This embodiment is basically the same as Embodiment 1, the difference is that in this embodiment, the ZnO precursor solution is mixed with fluorinated magnesium phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to fluorinated magnesium phthalocyanine is 1:0.05.
- This embodiment is basically the same as Embodiment 1, the difference is that in this embodiment, the ZnO precursor solution is mixed with zinc phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to zinc phthalocyanine is 1:0.1, The ZnO nanometer particles modified by the zinc phthalocyanine and the ZnO nanometer material dispersion liquid modified by the zinc phthalocyanine are obtained.
- ZnO nanomaterials wherein the ZnO nanomaterials have a particle size of 10-100nm, and disperse them with ethanol to obtain a ZnO nanomaterial dispersion;
- the external quantum efficiency EQE and turn-on voltage of the photoelectric device 100 of the above-mentioned Examples 1-4 and the photoelectric device of the comparative example were tested.
- the external quantum efficiency EQE and the turn-on voltage are measured by EQE optical testing equipment.
- the turn-on voltage is the voltage when the brightness of the device is 1 nits.
- Table 1 The test results are shown in Table 1.
- the optoelectronic device 100 in which the electron transport layer 30 material of Examples 1-4 is a ZnO nanomaterial modified by a metal phthalocyanine complex has a higher External quantum efficiency and lower turn-on voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
The present application discloses a photoelectric device and a manufacturing method therefor, and a display device. The photoelectric device comprises an anode, a light-emitting layer, an electron transport layer, and a cathode which are stacked; the material of the electron transport layer comprises a ZnO particle and a metal phthalocyanine complex attached to the surface of the ZnO particle. The electron transport layer of the photoelectric device has high electron transport efficiency, and it is beneficial to electron-hole injection balance of the photoelectric device, thereby improving the luminous efficiency of the photoelectric device and reducing the turn-on voltage of the photoelectric device.
Description
本申请要求于2021年09月18日在中国专利局提交的、申请号为202111112237.5、申请名称为“一种光电器件及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application with the application number 202111112237.5 and the application title "An optoelectronic device and its preparation method and display device" filed at the China Patent Office on September 18, 2021, the entire content of which is passed References are incorporated in this application.
本申请涉及显示技术领域,尤其涉及一种光电器件及其制备方法、显示装置。The present application relates to the field of display technology, in particular to an optoelectronic device, a manufacturing method thereof, and a display device.
光电器件是指根据光电效应制作的器件,其在新能源、传感、通信、显示、照明等领域具有广泛的应用,如太阳能电池、光电探测器、有机电致发光器件(OLED)或量子点电致发光器件(QLED)。Optoelectronic devices refer to devices made according to the photoelectric effect, which have a wide range of applications in new energy, sensing, communication, display, lighting and other fields, such as solar cells, photodetectors, organic electroluminescent devices (OLED) or quantum dots Electroluminescent devices (QLEDs).
传统的光电器件的结构主要包括阳极、空穴注入层、空穴传输层、发光层、电子传输层(即电子传输层)、电子注入层及阴极。在电场的作用下,光电器件的阳极产生的空穴和阴极产生的电子发生移动,分别向空穴传输层和电子传输层注入,最终迁移到发光层,当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。The structure of a traditional photoelectric device mainly includes an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer (ie, an electron transport layer), an electron injection layer, and a cathode. Under the action of the electric field, the holes generated by the anode of the photoelectric device and the electrons generated by the cathode move, inject into the hole transport layer and the electron transport layer respectively, and finally migrate to the light-emitting layer. When the two meet in the light-emitting layer, a Energy excitons, which excite light-emitting molecules and eventually produce visible light.
ZnO是一种直接带隙的n型半导体材料,具有3.37eV的高宽禁带和3.7eV的低功函,且具有稳定性好、透明度高、安全无毒等优点,使得ZnO成为制备光电子器件电子传输层的主要材料。此外,ZnO还具有很多潜在的优点,例如,ZnO的激子束缚能高达60meV,远远高于其它宽禁带半导体材料(例如,GaN的激子束缚能为2meV),且ZnO的激子束缚能是室温热能(26meV)的2.3倍,因此ZnO的激子可以在室温下稳定存在。此外,ZnO纳米材料还具有高电子迁移率、制备简单、成本低廉等优势,而被广泛应用于光电器件。ZnO is an n-type semiconductor material with a direct bandgap. It has a wide band gap of 3.37eV and a low work function of 3.7eV. It has the advantages of good stability, high transparency, safety and non-toxicity, making ZnO an ideal choice for preparing optoelectronic devices. The main material of the electron transport layer. In addition, ZnO also has many potential advantages. For example, the exciton binding energy of ZnO is as high as 60meV, which is much higher than other wide-bandgap semiconductor materials (for example, the exciton binding energy of GaN is 2meV), and the exciton binding energy of ZnO is 2meV. The energy is 2.3 times that of the thermal energy (26meV) at room temperature, so the excitons of ZnO can exist stably at room temperature. In addition, ZnO nanomaterials also have the advantages of high electron mobility, simple preparation, and low cost, and are widely used in optoelectronic devices.
现有的包括ZnO电子传输层的光电器件的发光效率较低,开启电压较高, 在一定程度上影响了光电器件的使用。Existing optoelectronic devices including ZnO electron transport layer have low luminous efficiency and high turn-on voltage, which affect the use of optoelectronic devices to a certain extent.
因此,本申请提供一种光电器件及其制备方法、显示装置。Therefore, the present application provides an optoelectronic device, a manufacturing method thereof, and a display device.
本申请提供一种光电器件,包括层叠的阳极、发光层、电子传输层及阴极,其中,所述电子传输层的材料包括ZnO颗粒及连接在所述ZnO颗粒表面的金属酞菁配合物。The present application provides a photoelectric device, comprising a laminated anode, a light-emitting layer, an electron transport layer and a cathode, wherein the material of the electron transport layer includes ZnO particles and metal phthalocyanine complexes connected on the surface of the ZnO particles.
可选的,所述金属酞菁配合物选自酞菁锌、酞菁镁、酞菁钴、酞菁银及酞菁铜中的一种或多种。Optionally, the metal phthalocyanine complex is selected from one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
可选的,所述电子传输层的材料中,金属酞菁配合物与ZnO颗粒的摩尔比的范围为1:(0.01-0.2)。Optionally, in the material of the electron transport layer, the molar ratio of the metal phthalocyanine complex to the ZnO particles is in the range of 1:(0.01-0.2).
可选的,所述金属酞菁配合物为氟化金属酞菁配合物。Optionally, the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex.
可选的,所述氟化金属酞菁配合物选自氟化酞菁锌、氟化酞菁镁、氟化酞菁钴、氟化酞菁银及氟化酞菁铜中的一种或多种。Optionally, the fluorinated metal phthalocyanine complex is selected from one or more of fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine kind.
可选的,所述ZnO颗粒的平均粒径范围为10-100nm。Optionally, the average particle diameter of the ZnO particles is in the range of 10-100 nm.
可选的,所述发光层为有机发光层或量子点发光层,所述有机发光层的材料选自二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物、芴衍生物、TBPe荧光材料、TTPA荧光材料、TBRb荧光材料及DBP荧光材料中的一种或多种,所述量子点发光层的材料选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物及I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS
2、CuInSe
2及AgInS
2中的一种或多种,所述核壳结构的量子点的核选自上述单一结构量子点中的一种或多种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
Optionally, the light-emitting layer is an organic light-emitting layer or a quantum dot light-emitting layer, and the material of the organic light-emitting layer is selected from diarylanthracene derivatives, stilbene aromatic derivatives, pyrene derivatives, fluorene derivatives, One or more of TBPe fluorescent materials, TTPA fluorescent materials, TBRb fluorescent materials and DBP fluorescent materials, the material of the quantum dot light-emitting layer is selected from one or more of single-structure quantum dots and core-shell structure quantum dots , the single-structure quantum dots are selected from one or more of II-VI group compounds, III-V group compounds and I-III-VI group compounds, and the II-VI group compounds are selected from CdSe, CdS, CdTe , ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe one or more, the III-V compound is selected from InP , InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP one or more, the I-III-VI compound is selected from CuInS 2 , CuInSe 2 and AgInS 2 One or more, the core of the quantum dot with the core-shell structure is selected from one or more of the above-mentioned single-structure quantum dots, and the shell material of the quantum dot with the core-shell structure is selected from CdS, CdTe, One or more of CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS and ZnS.
可选的,所述光电器件还包括空穴传输层,所述空穴传输层位于所述阳极与所述发光层之间。Optionally, the photoelectric device further includes a hole transport layer, and the hole transport layer is located between the anode and the light emitting layer.
可选的,所述空穴传输层的材料选自聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺、4,4'-双(N-咔唑)-1,1'-联苯、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)]、聚(9-乙烯基咔唑)、聚三苯胺、PEDOT:PSS及4,4',4”-三(咔唑-9-基)三苯胺中的一种或多种。Optionally, the material of the hole transport layer is selected from poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetra [N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline ], N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine, 4,4'-bis(N- carbazole)-1,1'-biphenyl, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl )) diphenylamine)], poly(9-vinylcarbazole), polytriphenylamine, PEDOT:PSS and 4,4',4"-tri(carbazol-9-yl) triphenylamine or one or more kind.
相应的,本申请还提供一种光电器件的制备方法,包括如下步骤:Correspondingly, the present application also provides a method for preparing a photoelectric device, comprising the following steps:
提供第一电极;providing a first electrode;
形成发光层,所述发光层形成在所述第一电极上;forming a light emitting layer, the light emitting layer being formed on the first electrode;
形成第二电极,所述第二电极形成在所述发光层上;forming a second electrode, the second electrode being formed on the light emitting layer;
所述制备方法还包括:提供锌盐、碱及溶剂,混合,得到ZnO前驱体溶液,将所述ZnO前驱体溶液与金属酞菁配合物混合,得到电子传输层的材料,沉积所述电子传输层的材料,得到电子传输层,所述电子传输层与所述发光层层叠设置于所述第一电极与所述第二电极之间。The preparation method also includes: providing zinc salt, alkali and solvent, mixing to obtain a ZnO precursor solution, mixing the ZnO precursor solution with a metal phthalocyanine complex to obtain a material for an electron transport layer, and depositing the electron transport layer layer materials to obtain an electron transport layer, and the electron transport layer and the light emitting layer are stacked between the first electrode and the second electrode.
可选的,所述第一电极为阳极,所述第二电极为阴极,所述沉积所述电子传输层的材料在所述形成发光层与所述形成第二电极之间进行,且包括:在所述发光层上沉积所述电子传输层的材料。Optionally, the first electrode is an anode, the second electrode is a cathode, and the deposition of the material of the electron transport layer is performed between the formation of the light-emitting layer and the formation of the second electrode, and includes: The material of the electron transport layer is deposited on the light emitting layer.
可选的,所述第一电极为阴极,所述第二电极为阳极,所述沉积所述电子传输层的材料在所述形成发光层之前进行,且包括:在所述第一电极上沉积所述电子传输层的材料。Optionally, the first electrode is a cathode, and the second electrode is an anode, and the depositing the material of the electron transport layer is performed before the formation of the light-emitting layer, and includes: depositing on the first electrode The material of the electron transport layer.
可选的,所述锌盐选自醋酸锌、硝酸锌、氯化锌及二水合乙酸锌中的一种或多种。Optionally, the zinc salt is selected from one or more of zinc acetate, zinc nitrate, zinc chloride and zinc acetate dihydrate.
可选的,所述碱选自氢氧化钠、氢氧化钾及四甲基氢氧化铵中的一种或多种,所述溶剂选自甲醇、乙醇及丁醇中的一种或多种。Optionally, the alkali is selected from one or more of sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide, and the solvent is selected from one or more of methanol, ethanol and butanol.
可选的,所述碱中的OH
-与所述锌盐中的Zn
2+的摩尔比的范围为(1.5-3):1。
Optionally, the molar ratio of OH - in the base to Zn 2+ in the zinc salt ranges from (1.5-3):1.
可选的,所述ZnO前驱体溶液中的Zn
2+与所述金属酞菁配合物的摩尔比的范围为1:(0.01-0.2)。
Optionally, the molar ratio of Zn 2+ in the ZnO precursor solution to the metal phthalocyanine complex ranges from 1:(0.01-0.2).
可选的,所述ZnO前驱体溶液的pH范围为12-14。Optionally, the pH range of the ZnO precursor solution is 12-14.
可选的,所述金属酞菁配合物选自酞菁锌、酞菁镁、酞菁钴、酞菁银及酞菁铜中的一种或多种。Optionally, the metal phthalocyanine complex is selected from one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
可选的,所述金属酞菁配合物为氟化金属酞菁配合物,所述氟化金属酞菁配合物选自氟化酞菁锌、氟化酞菁镁、氟化酞菁钴、氟化酞菁银及氟化酞菁铜中的一种或多种。Optionally, the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex, and the fluorinated metal phthalocyanine complex is selected from fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorine One or more of silver phthalocyanine and fluorinated copper phthalocyanine.
可选的,所述混合后还包括60-120℃搅拌的步骤。Optionally, after the mixing, a step of stirring at 60-120° C. is also included.
相应的,本申请还提供一种显示装置,所述显示装置包括上述光电器件。Correspondingly, the present application also provides a display device, which includes the above-mentioned optoelectronic device.
本申请的光电器件的电子传输层的材料包括金属酞菁配合物修饰的ZnO纳米材料,通过酞菁金属的配位效应,使ZnO的费米能级向上移动进入导带,使ZnO表面连接M(Pc)-O-Zn键和Zn-N(Pc)键,且所述M(Pc)-O-Zn键和Zn-N(Pc)键由ZnO的表面和亚表面Zn原子的3d轨道和表面O原子的2p轨道所组成,从而使ZnO的表面金属化,使ZnO呈现金属态,从而提高ZnO纳米材料的导电性,促进ZnO纳米材料的电子传输,提高电子传输层的电子传输效率,有利于光电器件的电子-空穴注入平衡,从而提升光电器件的发光效率并降低光电器件的开启电压。The material of the electron transport layer of the optoelectronic device of the present application includes ZnO nanomaterials modified by metal phthalocyanine complexes, through the coordination effect of metal phthalocyanine, the Fermi energy level of ZnO is moved up into the conduction band, and the surface of ZnO is connected with M (Pc)-O-Zn bond and Zn-N(Pc) bond, and the M(Pc)-O-Zn bond and Zn-N(Pc) bond are composed of the 3d orbital and the subsurface Zn atom of ZnO The 2p orbital of the surface O atoms, so that the surface of ZnO is metallized, and ZnO presents a metallic state, thereby improving the conductivity of ZnO nanomaterials, promoting the electron transport of ZnO nanomaterials, and improving the electron transport efficiency of the electron transport layer. It is beneficial to the electron-hole injection balance of the photoelectric device, thereby improving the luminous efficiency of the photoelectric device and reducing the turn-on voltage of the photoelectric device.
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1是本申请实施例提供的一种光电器件的结构示意图;Fig. 1 is a schematic structural diagram of an optoelectronic device provided by an embodiment of the present application;
图2是本申请实施例提供的另一种光电器件的结构示意图;Fig. 2 is a schematic structural diagram of another optoelectronic device provided by the embodiment of the present application;
图3是本申请实施例提供的一种光电器件的制备方法流程图;Fig. 3 is a flow chart of a method for preparing an optoelectronic device provided in an embodiment of the present application;
图4是本申请实施例提供的另一种光电器件的制备方法流程图。Fig. 4 is a flow chart of another method for preparing an optoelectronic device provided in an embodiment of the present application.
本申请的实施方式Embodiment of this application
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the application with reference to the drawings in the embodiments of the application. Apparently, the described embodiments are only some of the embodiments of the application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of this application.
本申请实施例提供一种光电器件及其制备方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。The embodiment of the present application provides a photoelectric device and a preparation method thereof. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments. In addition, in the description of the present application, the term "including" means "including but not limited to".
本申请中“一种或多种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合,例如,“a、b或c中的至少一项(种)”或“a、b和c中的至少一项(种)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。In this application, expressions such as "one or more" refer to one or more of the listed items, and "multiple" refers to any combination of two or more of these items, including single items (species) ) or any combination of plural items (species), for example, "at least one (species) of a, b, or c" or "at least one (species) of a, b, and c" can mean: a ,b,c,a-b (that is, a and b),a-c,b-c, or a-b-c, where a,b,c can be single or multiple.
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。Various embodiments of the present application may exist in the form of a range; it should be understood that the description in the form of a range is only for convenience and brevity, and should not be construed as a rigid limitation on the scope of the application; therefore, the described range should be regarded as The description has specifically disclosed all possible subranges as well as individual values within that range. For example, a description of a range from 1 to 6 should be considered to have specifically disclosed subranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., and Single numbers within the stated ranges, eg 1, 2, 3, 4, 5 and 6, apply regardless of the range. Additionally, whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
请参阅图1,本申请实施例提供一种光电器件100,所述光电器件100可以为太阳能电池、光电探测器、有机电致发光器件(OLED)或量子点电致发光器件(QLED)。所述光电器件100包括依次层叠的阳极10、发光层20、电子传输层30及阴极40。Referring to FIG. 1 , an embodiment of the present application provides an optoelectronic device 100 , and the optoelectronic device 100 may be a solar cell, a photodetector, an organic electroluminescent device (OLED) or a quantum dot electroluminescent device (QLED). The optoelectronic device 100 includes an anode 10 , a light emitting layer 20 , an electron transport layer 30 and a cathode 40 stacked in sequence.
所述电子传输层30的材料包括金属酞菁配合物修饰的ZnO纳米材料,即MPc-ZnO,其中,M为金属,Pc为酞菁。换言之,所述电子传输层30的材料包括ZnO纳米材料及连接在所述ZnO纳米材料表面的金属酞菁配合物。The material of the electron transport layer 30 includes ZnO nanomaterials modified by metal phthalocyanine complexes, that is, MPc-ZnO, wherein M is metal and Pc is phthalocyanine. In other words, the material of the electron transport layer 30 includes ZnO nanomaterials and metal phthalocyanine complexes connected on the surface of the ZnO nanomaterials.
所述金属酞菁配合物可以选自但不限于酞菁锌、酞菁镁、酞菁钴、酞菁银及酞菁铜中的一种或多种。The metal phthalocyanine complex may be selected from, but not limited to, one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
所述ZnO纳米材料为本领域已知用于电子传输层的ZnO纳米材料。在一实施例中,所述ZnO纳米材料的粒径范围为10-100nm的ZnO纳米颗粒。ZnO纳米颗粒的粒径过小,则ZnO表面会具有较多的表面缺陷,而影响电子传输层30的电子传输性能;ZnO纳米颗粒的粒径过大,会导致电子传输层的平整度及成膜均匀性,进而影响电子传输层30的电子传输性能。The ZnO nanomaterials are ZnO nanomaterials known in the art to be used for electron transport layers. In one embodiment, the particle diameter of the ZnO nanomaterial is ZnO nanoparticles in the range of 10-100 nm. If the particle size of the ZnO nanoparticles is too small, there will be more surface defects on the ZnO surface, which will affect the electron transport performance of the electron transport layer 30; The film uniformity, in turn, affects the electron transport performance of the electron transport layer 30 .
所述金属酞菁配合物修饰的ZnO纳米材料,通过酞菁金属的配位效应,使ZnO的费米能级向上移动进入导带,使ZnO表面连接M(Pc)-O-Zn键和Zn-N(Pc)键,且所述M(Pc)-O-Zn键和Zn-N(Pc)键由ZnO的表面和亚表面Zn原子的3d轨道和表面O原子的2p轨道所组成,从而使ZnO的表面金属化,使ZnO呈现金属态,从而提高ZnO纳米材料的导电性,促进ZnO纳米材料的电子传输,提高电子传输层30的电子传输效率,有利于包括所述电子传输层30的光电器件100的电子-空穴注入平衡,从而提升光电器件100的发光效率并降低光电器件100的开启电压。The ZnO nanomaterial modified by the metal phthalocyanine complex moves the Fermi energy level of ZnO upwards and enters the conduction band through the coordination effect of metal phthalocyanine, so that the surface of ZnO is connected with M(Pc)-O-Zn bonds and Zn -N(Pc) bond, and the M(Pc)-O-Zn bond and Zn-N(Pc) bond are composed of the 3d orbital of the ZnO surface and the subsurface Zn atom and the 2p orbital of the surface O atom, thus Metallize the surface of ZnO so that ZnO presents a metallic state, thereby improving the conductivity of ZnO nanomaterials, promoting the electron transport of ZnO nanomaterials, and improving the electron transport efficiency of the electron transport layer 30, which is conducive to including the electron transport layer 30. The electron-hole injection of the optoelectronic device 100 is balanced, thereby improving the luminous efficiency of the optoelectronic device 100 and reducing the turn-on voltage of the optoelectronic device 100 .
所述金属酞菁配合物修饰的ZnO纳米材料中,即,所述电子传输层30的材料中,所述金属酞菁配合物与所述ZnO纳米材料的摩尔比的范围为1:(0.01-0.2)。所述金属酞菁配合物的含量过低,难以达到提高电子传输层30的电子传输效率的效果;所述金属酞菁配合物的含量过高,则会降低电子传输层30的电荷传输性能。In the ZnO nanomaterial modified by the metal phthalocyanine complex, that is, in the material of the electron transport layer 30, the molar ratio of the metal phthalocyanine complex to the ZnO nano material is in the range of 1:(0.01- 0.2). If the content of the metal phthalocyanine complex is too low, it is difficult to improve the electron transport efficiency of the electron transport layer 30; if the content of the metal phthalocyanine complex is too high, the charge transport performance of the electron transport layer 30 will be reduced.
在一实施例中,所述金属酞菁配合物为氟化金属酞菁配合物,即F-MPc-ZnO。所述氟化金属酞菁配合物可以选自但不限于氟化酞菁锌、氟化酞菁镁、氟化酞菁钴、氟化酞菁银及氟化酞菁铜中的一种或多种。In one embodiment, the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex, namely F-MPc-ZnO. The fluorinated metal phthalocyanine complex can be selected from but not limited to one or more of fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine kind.
所述氟化金属酞菁配合物使用氟原子或者含氟基团对金属酞菁配合物中的苯环进行化学基团修饰,利用氟原子的吸电子作用降低酞菁分子中大π键上的电子云密度,使得金属酞菁配合物的中心金属原子与ZnO表面的氧空位更容易结合,以通过配位诱导电子局域化,从而增强ZnO表面的金属性,降低ZnO的功函,使ZnO的功函数与阴极的功函更匹配,从而使电子传输层30具有良好的导电性。如此,在所述包括金属酞菁配合物修饰的ZnO纳米材料的 电子传输层30上蒸镀电极,可以形成欧姆接触,从而有效地提升光电器件100的电子注入。The fluorinated metal phthalocyanine complex uses fluorine atoms or fluorine-containing groups to chemically modify the benzene ring in the metal phthalocyanine complex, and utilizes the electron-withdrawing effect of the fluorine atoms to reduce The electron cloud density makes it easier for the central metal atom of the metal phthalocyanine complex to combine with the oxygen vacancies on the ZnO surface to induce electron localization through coordination, thereby enhancing the metallicity of the ZnO surface, reducing the work function of ZnO, and making ZnO The work function of is more matched with the work function of the cathode, so that the electron transport layer 30 has good conductivity. In this way, an ohmic contact can be formed by evaporating an electrode on the electron transport layer 30 comprising the ZnO nanomaterial modified by the metal phthalocyanine complex, thereby effectively improving the electron injection of the optoelectronic device 100.
此外,金属酞菁配合物上的N原子与ZnO中的Zn悬挂键配位,金属酞菁配合物上的金属原子与ZnO中的氧空位配位,而氟的引入可以提升金属酞菁配合物在溶剂中的溶解度,钝化ZnO的表面缺陷,减少ZnO对电子的捕获,从而促进电子有效地注入光电器件100的发光层中。In addition, the N atoms on the metal phthalocyanine complex coordinate with the Zn dangling bonds in ZnO, the metal atoms on the metal phthalocyanine complex coordinate with the oxygen vacancies in ZnO, and the introduction of fluorine can enhance the The solubility in the solvent can passivate the surface defects of ZnO, reduce the capture of electrons by ZnO, and thus promote the effective injection of electrons into the light-emitting layer of the optoelectronic device 100 .
进一步的,含氟基团充当配体修饰于金属酞菁配合物中,可以减小ZnO薄膜的表面粗糙度,改善ZnO与阴极的接触界面,协同提升电子注入效率。从而有利于包括所述电子传输层30的光电器件100的电子-空穴注入平衡,进而提升光电器件100的发光效率并降低光电器件100的开启电压。Furthermore, the fluorine-containing groups act as ligands to modify the metal phthalocyanine complex, which can reduce the surface roughness of the ZnO film, improve the contact interface between ZnO and the cathode, and synergistically improve the electron injection efficiency. This is beneficial to the electron-hole injection balance of the optoelectronic device 100 including the electron transport layer 30 , thereby improving the luminous efficiency of the optoelectronic device 100 and reducing the turn-on voltage of the optoelectronic device 100 .
在一实施例中,所述电子传输层的材料为所述金属酞菁配合物修饰的ZnO纳米材料。In one embodiment, the material of the electron transport layer is the ZnO nanomaterial modified by the metal phthalocyanine complex.
所述电子传输层的材料还可以包括纳米金属氧化物或掺杂的纳米金属氧化物,纳米金属氧化物包括但不限于是ZnO、TiO
2、SnO
2、Ta
2O
3、ZrO
2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO以及InSnO中的一种或多种,掺杂的纳米金属氧化物中的掺杂元素为镁、铝、镓、锂、铟、锡以及钼中的一种或多种。在一实施例中,所述电子传输层的材料由所述金属酞菁配合物修饰的ZnO纳米材料与所述纳米金属氧化物或掺杂的纳米金属氧化物组成。
The material of the electron transport layer may also include nano-metal oxides or doped nano-metal oxides. Nano-metal oxides include but are not limited to ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, One or more of TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO and InSnO, the doping element in the doped nano metal oxide is one or more of magnesium, aluminum, gallium, lithium, indium, tin and molybdenum Various. In one embodiment, the material of the electron transport layer is composed of the ZnO nanomaterial modified by the metal phthalocyanine complex and the nano metal oxide or doped nano metal oxide.
所述阳极10的材料为本领域已知用于阳极的材料,例如,可以选自但不限于掺杂金属氧化物电极、复合电极等。所述掺杂金属氧化物电极可以选自但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)、镓掺杂氧化锌(GZO)、铟掺杂氧化锌(IZO)、镁掺杂氧化锌(MZO)及铝掺杂氧化镁(AMO)中的一种或多种。所述复合电极为掺杂或非掺杂的透明金属氧化物之间夹着金属的复合电极,如AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO
2/Ag/TiO
2、TiO
2/Al/TiO
2、ZnS/Ag/ZnS、ZnS/Al/ZnS等。其中,“/”表示叠层,例如AZO/Ag/AZO表示由AZO、Ag、AZO依次层叠形成的复合电极。
The material of the anode 10 is known in the art for anode materials, for example, can be selected from but not limited to doped metal oxide electrodes, composite electrodes and the like. The doped metal oxide electrode may be selected from but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO), One or more of gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), magnesium-doped zinc oxide (MZO) and aluminum-doped magnesium oxide (AMO). The composite electrode is a composite electrode with a metal sandwiched between doped or non-doped transparent metal oxides, such as AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, etc. Wherein, "/" means a laminated layer, for example, AZO/Ag/AZO means a composite electrode formed by sequentially stacking AZO, Ag, and AZO.
所述发光层20可以为有机发光层或量子点发光层。当所述发光层20为有机发光层时,所述光电器件100可以为有机电致发光器件。当所述发光层20为量子点发光层时,所述光电器件100可以为量子点电致发光器件。The light emitting layer 20 can be an organic light emitting layer or a quantum dot light emitting layer. When the light emitting layer 20 is an organic light emitting layer, the optoelectronic device 100 may be an organic electroluminescent device. When the light emitting layer 20 is a quantum dot light emitting layer, the optoelectronic device 100 may be a quantum dot electroluminescent device.
所述有机发光层的材料为本领域已知用有机发光层的材料,例如,可以选自但不限于二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物或芴衍生物、发蓝色光的TBPe荧光材料、发绿色光的TTPA荧光材料、发橙色光的TBRb荧光材料、及发红色光的DBP荧光材料中的一种或多种。The material of the organic light-emitting layer is a material known in the art to use an organic light-emitting layer, for example, it can be selected from but not limited to diaryl anthracene derivatives, distyryl aromatic derivatives, pyrene derivatives or fluorene derivatives, One or more of TBPe fluorescent material emitting blue light, TTPA fluorescent material emitting green light, TBRb fluorescent material emitting orange light, and DBP fluorescent material emitting red light.
所述量子点发光层的材料为本领域已知用于光电器件的量子点发光层的量子点材料,例如,可以选自但不限于单一结构量子点及核壳结构量子点中的一种或多种。所述单一结构量子点可以选自但不限于II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种。作为举例,所述II-VI族化合物可以选自但不限于CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种;所述III-V族化合物可以选自但不限于InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种;所述I-III-VI族化合物可以选自但不限于CuInS
2、CuInSe
2及AgInS
2中的一种或多种。所述核壳结构的量子点的核可以选自上述单一结构量子点中的一种或多种,所述核壳结构的量子点的壳层材料可以选自但不限于CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。作为示例,所述核壳结构的量子点可以选自但不限于CdZnSe/CdZnS/ZnS、CdZnSe/ZnSe/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS及InP/ZnSeS/ZnS中的一种或多种。
The material of the quantum dot light-emitting layer is a quantum dot material known in the art for the quantum dot light-emitting layer of an optoelectronic device, for example, it can be selected from but not limited to one or more of a single-structure quantum dot and a core-shell structure quantum dot Various. The single-structure quantum dots may be selected from, but not limited to, one or more of II-VI compounds, III-V compounds and I-III-VI compounds. As an example, the II-VI group compound can be selected from but not limited to CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, One or more of CdZnSeTe and CdZnSTe; the III-V compound can be selected from but not limited to one of InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP one or more; the I-III-VI compound may be selected from but not limited to one or more of CuInS 2 , CuInSe 2 and AgInS 2 . The core of the quantum dot of the core-shell structure can be selected from one or more of the above-mentioned single-structure quantum dots, and the shell material of the quantum dot of the core-shell structure can be selected from but not limited to CdS, CdTe, CdSeTe, One or more of CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS, and ZnS. As an example, the quantum dots of the core-shell structure can be selected from but not limited to CdZnSe/CdZnS/ZnS, CdZnSe/ZnSe/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS One or more of ZnS, InP/ZnSe/ZnS and InP/ZnSeS/ZnS.
所述阴极40为本领域已知用于电致发光器件的阴极,例如,可以选自但不限于Ag电极、Al电极、Au电极、Pt电极或合金电极的一种或多种。The cathode 40 is a cathode known in the art for electroluminescent devices, for example, may be selected from but not limited to one or more of Ag electrodes, Al electrodes, Au electrodes, Pt electrodes or alloy electrodes.
请参阅图2,在一实施例中,所述光电器件100还包括空穴传输层50,所述空穴传输层50位于所述阳极10与所述发光层20之间。Please refer to FIG. 2 , in one embodiment, the photoelectric device 100 further includes a hole transport layer 50 , and the hole transport layer 50 is located between the anode 10 and the light emitting layer 20 .
所述空穴传输层50的材料还可以为本领域已知用于空穴传输层的材料,例如,可以选自但不限于聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'- 四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-omeTAD)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺(NPB)、4,4'-双(N-咔唑)-1,1'-联苯(CBP)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚三苯胺(Poly-TPD)、PEDOT:PSS及4,4',4”-三(咔唑-9-基)三苯胺(TCTA)中的一种或多种。The material of the hole transport layer 50 can also be a material known in the art for the hole transport layer, for example, can be selected from but not limited to poly[bis(4-phenyl)(2,4,6-tri Methylphenyl)amine] (PTAA), 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro -omeTAD), 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline](TAPC), N,N'-bis(1-naphthyl)-N,N'- Diphenyl-1,1'-diphenyl-4,4'-diamine (NPB), 4,4'-bis(N-carbazole)-1,1'-biphenyl (CBP), poly[ (9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)](TFB), poly(9- One or more of vinyl carbazole) (PVK), polytriphenylamine (Poly-TPD), PEDOT:PSS and 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA) kind.
可以理解,所述光电器件100除上述各功能层外,还可以增设一些常规用于光电器件的有助于提升光电器件性能的功能层,例如电子阻挡层、空穴阻挡层、电子注入层、空穴注入层、界面修饰层等。It can be understood that, in addition to the above-mentioned functional layers, the optoelectronic device 100 can also add some functional layers that are conventionally used in optoelectronic devices to help improve the performance of optoelectronic devices, such as electron blocking layers, hole blocking layers, electron injection layers, Hole injection layer, interface modification layer, etc.
可以理解,所述光电器件100的各层的材料可以依据光电器件100的发光需求进行调整。It can be understood that the material of each layer of the optoelectronic device 100 can be adjusted according to the light emission requirements of the optoelectronic device 100 .
可以理解,所述光电器件100可以为正置光电器件或倒置光电器件。It can be understood that the optoelectronic device 100 may be a positive optoelectronic device or an inverted optoelectronic device.
请参阅图3,本申请实施例还提供一种所述光电器件100的制备方法,包括如下步骤:Please refer to FIG. 3 , the embodiment of the present application also provides a method for preparing the optoelectronic device 100, including the following steps:
步骤S11:提供第一电极,在所述第一电极上形成发光层20;Step S11: providing a first electrode, and forming a light-emitting layer 20 on the first electrode;
步骤S12:在所述发光层20上形成电子传输层30,具体的:Step S12: forming an electron transport layer 30 on the light-emitting layer 20, specifically:
A、提供锌盐、碱及溶剂,混合,得到ZnO前驱体溶液;A. Provide zinc salt, alkali and solvent, and mix to obtain ZnO precursor solution;
B、将所述ZnO前驱体溶液与金属酞菁配合物混合,反应,得到金属酞菁配合物修饰的ZnO纳米材料,即电子传输层的材料;B. The ZnO precursor solution is mixed with the metal phthalocyanine complex and reacted to obtain the ZnO nanomaterial modified by the metal phthalocyanine complex, i.e. the material of the electron transport layer;
C、将所述金属酞菁配合物修饰的ZnO纳米材料设置在所述发光层20上,得到电子传输层30。C. disposing the ZnO nanomaterial modified by the metal phthalocyanine complex on the light-emitting layer 20 to obtain the electron transport layer 30 .
步骤S13:在所述电子传输层30上形成第二电极。Step S13 : forming a second electrode on the electron transport layer 30 .
可以理解,此时,所述第一电极为阳极10,所述第二电极为阴极40。It can be understood that at this time, the first electrode is the anode 10 , and the second electrode is the cathode 40 .
可以理解,在所述光电器件100还包括空穴传输层50时,所述步骤S11为:提供第一电极,在所述第一电极上依次形成层叠的空穴传输层50及发光层20。It can be understood that when the optoelectronic device 100 further includes a hole transport layer 50 , the step S11 is: providing a first electrode, and sequentially forming a stacked hole transport layer 50 and a light emitting layer 20 on the first electrode.
请参阅图4,本申请实施例还提供另一种所述光电器件100的制备方法,包括如下步骤:Please refer to FIG. 4, the embodiment of the present application also provides another method for preparing the optoelectronic device 100, which includes the following steps:
步骤S21:提供第一电极;Step S21: providing a first electrode;
步骤S22:在所述第一电极上形成电子传输层30,具体的:Step S22: forming an electron transport layer 30 on the first electrode, specifically:
A、提供锌盐、碱及溶剂,混合,得到ZnO前驱体溶液;A. Provide zinc salt, alkali and solvent, and mix to obtain ZnO precursor solution;
B、将所述ZnO前驱体溶液与金属酞菁配合物混合,反应,得到金属酞菁配合物修饰的ZnO纳米材料,即电子传输层的材料;B. The ZnO precursor solution is mixed with the metal phthalocyanine complex and reacted to obtain the ZnO nanomaterial modified by the metal phthalocyanine complex, i.e. the material of the electron transport layer;
C、将所述金属酞菁配合物修饰的ZnO纳米材料设置在所述阴极40上,得到电子传输层30。C. Arranging the ZnO nanomaterial modified by the metal phthalocyanine complex on the cathode 40 to obtain the electron transport layer 30 .
步骤S23:在所述电子传输层30上依次形成层叠的发光层20及第二电极。Step S23 : sequentially forming a laminated light emitting layer 20 and a second electrode on the electron transport layer 30 .
可以理解,此时,所述第一电极为阴极40,所述第二电极为阳极10。It can be understood that, at this time, the first electrode is the cathode 40 , and the second electrode is the anode 10 .
可以理解,在所述光电器件100还包括空穴传输层50时,所述步骤S23为:在所述电子传输层30上依次形成层叠的发光层20、空穴传输层50及第二电极。It can be understood that when the optoelectronic device 100 further includes a hole transport layer 50 , the step S23 is: sequentially forming a stacked light emitting layer 20 , a hole transport layer 50 and a second electrode on the electron transport layer 30 .
以上两种制备方法中:In the above two preparation methods:
所述步骤A中,所述锌盐可以选自但不限于可溶性无机锌盐及可溶性有机锌盐中的一种或多种,例如,可以选自但不限于醋酸锌、硝酸锌、氯化锌及二水合乙酸锌中的一种或多种。In the step A, the zinc salt can be selected from but not limited to one or more of soluble inorganic zinc salts and soluble organic zinc salts, for example, can be selected from but not limited to zinc acetate, zinc nitrate, zinc chloride and one or more of zinc acetate dihydrate.
所述碱可以选自但不限于氢氧化钠、氢氧化钾及四甲基氢氧化铵中的一种或多种。The base may be selected from but not limited to one or more of sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide.
所述溶剂可以为有机溶剂。所述有机溶剂可以选自但不限于甲醇、乙醇及丁醇中的一种或多种。The solvent may be an organic solvent. The organic solvent may be selected from but not limited to one or more of methanol, ethanol and butanol.
所述碱中的OH
-与所述锌盐中的Zn
2+的摩尔比的范围为(1.5-3):1。所述ZnO前驱体溶液的pH范围为12-14。碱性环境有利于ZnO纳米材料的合成,所述碱的pH过低,ZnO纳米材料的表面易形成更多的羟基配体;所述碱的pH过高,会导致合成的ZnO纳米材料的粒径过小,而具有较多的表面缺陷。
The range of the molar ratio of OH- in the alkali to Zn 2+ in the zinc salt is (1.5-3):1. The pH range of the ZnO precursor solution is 12-14. Alkaline environment is conducive to the synthesis of ZnO nanometer material, and the pH of described alkali is too low, and the surface of ZnO nanomaterial easily forms more hydroxyl ligands; The diameter is too small and has more surface defects.
在一实施例中,所述盐、碱及溶剂的混合方法为:将适量的锌盐加入到50ml溶剂中形成浓度为0.1-1M的溶液,搅拌溶解,然后加入10ml醇的碱液,继续搅拌10min-2h得到澄清透明溶液,即为ZnO前驱体溶液。所述醇可以选自但不限于甲醇、乙醇及丁醇中的一种或多种。In one embodiment, the mixing method of the salt, alkali and solvent is as follows: add an appropriate amount of zinc salt to 50ml of solvent to form a solution with a concentration of 0.1-1M, stir to dissolve, then add 10ml of alcoholic lye, and continue to stir 10min-2h to get a clear and transparent solution, which is the ZnO precursor solution. The alcohol may be selected from but not limited to one or more of methanol, ethanol and butanol.
所述步骤A中,混合后还包括恒温搅拌的步骤。其中,恒温的温度范围为60-120℃。搅拌的时间没有限制,得到澄清透明的溶液后即可停止搅拌,在 一实施例中,所述搅拌的时间范围为10min-2h。所述恒温搅拌可以降低反应势垒,提升反应物的活泼度,进而加速反应。温度过低效果不佳,温度过高,溶剂蒸发快而影响反应。In said step A, the step of stirring at constant temperature is also included after mixing. Wherein, the temperature range of constant temperature is 60-120°C. The stirring time is not limited, and the stirring can be stopped after obtaining a clear and transparent solution. In one embodiment, the stirring time range is 10min-2h. The constant temperature stirring can reduce the reaction barrier, increase the activity of reactants, and then accelerate the reaction. If the temperature is too low, the effect is not good, and if the temperature is too high, the solvent evaporates quickly and affects the reaction.
所述步骤B中,所述金属酞菁配合物可以选自但不限于酞菁锌、酞菁镁、酞菁钴、酞菁银及酞菁铜中的一种或多种。In the step B, the metal phthalocyanine complex can be selected from but not limited to one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
在一实施例中,所述金属酞菁配合物为氟化金属酞菁配合物。所述氟化金属酞菁配合物可以选自但不限于氟化酞菁锌、氟化酞菁镁、氟化酞菁钴、氟化酞菁银及氟化酞菁铜中的一种或多种。In one embodiment, the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex. The fluorinated metal phthalocyanine complex can be selected from but not limited to one or more of fluorinated zinc phthalocyanine, fluorinated magnesium phthalocyanine, fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine kind.
所述ZnO前驱体溶液中的Zn
2+与所述金属酞菁配合物的摩尔比的范围为1:(0.01-0.2)。
The range of the molar ratio of Zn 2+ in the ZnO precursor solution to the metal phthalocyanine complex is 1:(0.01-0.2).
可以理解,所述基板的种类没有限制。在一实施例中,所述基板为阴极衬底,所述阴极可以选自但不限于Ag电极、Al电极、Au电极、Pt电极或合金电极的一种或多种,所述衬底可以为玻璃等常规使用的衬底,所述金属酞菁配合物修饰的ZnO纳米材料设置在所述阴极上。在又一实施例中,所述基板包括层叠的阳极及发光层,所述金属酞菁配合物修饰的ZnO纳米材料设置在所述发光层上。It can be understood that the type of the substrate is not limited. In one embodiment, the substrate is a cathode substrate, and the cathode can be selected from but not limited to one or more of Ag electrodes, Al electrodes, Au electrodes, Pt electrodes or alloy electrodes, and the substrate can be The conventionally used substrate such as glass, the ZnO nanometer material modified by the metal phthalocyanine complex is arranged on the cathode. In yet another embodiment, the substrate includes a laminated anode and a light emitting layer, and the ZnO nanomaterial modified by the metal phthalocyanine complex is disposed on the light emitting layer.
所述步骤B,将所述ZnO前驱体溶液与金属酞菁配合物混合后,还包括:搅拌使ZnO前驱体溶液与金属酞菁配合物反应,得到反应产物,然后用析出剂使反应产物析出。在一实施例中,所述反应时间为1-4h。所述析出剂可以选自但不限于丙酮、乙酸乙酯、己烷及庚烷中的一种或多种。The step B, after mixing the ZnO precursor solution and the metal phthalocyanine complex, further includes: stirring the ZnO precursor solution and the metal phthalocyanine complex to react to obtain a reaction product, and then using a precipitation agent to precipitate the reaction product . In one embodiment, the reaction time is 1-4h. The eluting agent can be selected from but not limited to one or more of acetone, ethyl acetate, hexane and heptane.
所述步骤C中,将所述金属酞菁配合物修饰的ZnO纳米材料设置在所述基板上的方法可以为化学法或物理法。其中,化学法可以为化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法及共沉淀法等。物理法可以为物理镀膜法或溶液加工法,物理镀膜法可以为热蒸发镀膜法CVD、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法PVD、原子层沉积法及脉冲激光沉积法等;溶液加工法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。In the step C, the method of arranging the ZnO nanomaterial modified by the metal phthalocyanine complex on the substrate may be a chemical method or a physical method. Among them, the chemical method can be chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodic oxidation method, electrolytic deposition method and co-precipitation method, etc. The physical method can be physical coating method or solution processing method, and the physical coating method can be thermal evaporation coating method CVD, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method PVD, atomic layer deposition method and pulse laser deposition method, etc.; the solution processing method can be spin coating method, printing method, inkjet printing method, scraping method, printing method, dipping method, soaking method, spraying method, roller coating method, casting method, Slot coating method and strip coating method, etc.
在一实施例中,将所述金属酞菁配合物修饰的ZnO纳米材料设置在所述基板上的方法为溶液法,此时,需要先将所述金属酞菁配合物修饰的ZnO纳米材料使用分散剂分散,得到金属酞菁配合物修饰的ZnO纳米材料分散液,然后将金属酞菁配合物修饰的ZnO纳米材料分散液通过溶液法设置在所述基板上。所述分散剂可以选自但不限于甲醇、乙醇、丁醇及戊醇中的一种或多种。In one embodiment, the method of arranging the ZnO nanomaterial modified by the metal phthalocyanine complex on the substrate is a solution method. At this time, the ZnO nano material modified by the metal phthalocyanine complex needs to be used first. The dispersant is dispersed to obtain the metal phthalocyanine complex modified ZnO nano material dispersion, and then the metal phthalocyanine complex modified ZnO nano material dispersion is arranged on the substrate by a solution method. The dispersant may be selected from but not limited to one or more of methanol, ethanol, butanol and pentanol.
所述形成阳极10、空穴传输层50、发光层20及阴极40的方法可采用本领域常规技术实现,例如可以为化学法或物理法。所述化学法或物理法参上文所述,在此不再赘述。The methods for forming the anode 10 , the hole transport layer 50 , the light emitting layer 20 and the cathode 40 can be realized by conventional techniques in the art, such as chemical or physical methods. The chemical method or physical method can be referred to above, and will not be repeated here.
可以理解,在所述光电器件100还包括电子阻挡层、空穴阻挡层、电子注入层、空穴注入层或界面修饰层等其它功能层时,所述光电器件100的制备方法还包括形成所述各功能层的步骤。It can be understood that when the photoelectric device 100 further includes other functional layers such as an electron blocking layer, a hole blocking layer, an electron injection layer, a hole injection layer or an interface modification layer, the preparation method of the photoelectric device 100 also includes forming the Describe the steps of each functional layer.
本申请实施例还提供一种显示装置,所述显示装置包括所述光电器件100。The embodiment of the present application also provides a display device, which includes the optoelectronic device 100 .
下面通过具体实施例来对本申请进行具体说明,以下实施例仅是本申请的部分实施例,不是对本申请的限定。The present application will be described in detail through specific examples below, and the following examples are only part of the examples of the present application, and are not intended to limit the present application.
实施例1Example 1
提供具有ITO阳极10的玻璃衬底,其中,阳极10的厚度为50nm;Provide a glass substrate with an ITO anode 10, wherein the thickness of the anode 10 is 50nm;
在所述阳极10上旋涂TFB材料,得到厚度为30nm的空穴传输层50;Spin coating TFB material on the anode 10 to obtain a hole transport layer 50 with a thickness of 30 nm;
在所述空穴传输层50上旋涂CdSe/ZnS核壳结构的蓝色量子点,得到厚度为40nm的发光层20;Spin-coat blue quantum dots with a CdSe/ZnS core-shell structure on the hole transport layer 50 to obtain a light-emitting layer 20 with a thickness of 40 nm;
将适量的氯化锌加入到30ml甲醇中,搅拌溶解,形成总浓度为0.5M的溶液,然后,加入10ml甲醇的碱液,其中碱液中的OH
-与氯化锌中的Zn
2+的摩尔比为1.5:1,继续搅拌1h,得到澄清透明溶液,即ZnO前驱体溶液;
Add an appropriate amount of zinc chloride into 30ml of methanol, stir and dissolve to form a solution with a total concentration of 0.5M, and then add 10ml of methanol lye, wherein the OH in the lye and the Zn 2+ in the zinc chloride The molar ratio is 1.5:1, and the stirring is continued for 1 hour to obtain a clear and transparent solution, which is the ZnO precursor solution;
将上述ZnO前驱体溶液与氟化酞菁锌混合,其中,ZnO前驱体溶液中的Zn与氟化酞菁锌的摩尔比为1:0.1,搅拌1h,用丙酮析出反应产物,得到氟化酞菁锌修饰的ZnO纳米颗粒,其中,ZnO纳米颗粒的粒径为10-100nm,用乙醇分散,得到氟化酞菁锌修饰的ZnO纳米材料分散液;Mix the above ZnO precursor solution with fluorinated zinc phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to fluorinated zinc phthalocyanine is 1:0.1, stir for 1 h, and precipitate the reaction product with acetone to obtain fluorinated phthalocyanine Zinc cyanine-modified ZnO nanoparticles, wherein the ZnO nanoparticles have a particle size of 10-100 nm and are dispersed with ethanol to obtain a ZnO nanomaterial dispersion liquid modified with fluorinated zinc phthalocyanine;
将所述氟化酞菁锌修饰的ZnO纳米材料分散液旋涂在所述发光层20上,得到厚度为40nm的电子传输层30;Spin-coating the ZnO nanomaterial dispersion modified with fluorinated zinc phthalocyanine on the light-emitting layer 20 to obtain an electron transport layer 30 with a thickness of 40 nm;
在所述电子传输层30上蒸镀Al,得到厚度为100nm的阴极40;Evaporating Al on the electron transport layer 30 to obtain a cathode 40 with a thickness of 100 nm;
封装,得到光电器件100。packaged to obtain the photoelectric device 100 .
实施例2Example 2
本实施例与实施例1基本相同,区别在于,本实施例中,将ZnO前驱体溶液与氟化酞菁钴混合,其中,ZnO前驱体溶液中的Zn与氟化酞菁钴的摩尔比为1:0.05。This embodiment is basically the same as Embodiment 1, the difference is that in this embodiment, the ZnO precursor solution is mixed with fluorinated cobalt phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to fluorinated cobalt phthalocyanine is 1:0.05.
实施例3Example 3
本实施例与实施例1基本相同,区别在于,本实施例中,将ZnO前驱体溶液与氟化酞菁镁混合,其中,ZnO前驱体溶液中的Zn与氟化酞菁镁的摩尔比为1:0.05。This embodiment is basically the same as Embodiment 1, the difference is that in this embodiment, the ZnO precursor solution is mixed with fluorinated magnesium phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to fluorinated magnesium phthalocyanine is 1:0.05.
实施例4Example 4
本实施例与实施例1基本相同,区别在于,本实施例中,将ZnO前驱体溶液与酞菁锌混合,其中,ZnO前驱体溶液中的Zn与酞菁锌的摩尔比为1:0.1,得到的是酞菁锌修饰的ZnO纳米颗粒及酞菁锌修饰的ZnO纳米材料分散液。This embodiment is basically the same as Embodiment 1, the difference is that in this embodiment, the ZnO precursor solution is mixed with zinc phthalocyanine, wherein the molar ratio of Zn in the ZnO precursor solution to zinc phthalocyanine is 1:0.1, The ZnO nanometer particles modified by the zinc phthalocyanine and the ZnO nanometer material dispersion liquid modified by the zinc phthalocyanine are obtained.
对比例comparative example
提供具有ITO阳极的玻璃衬底,其中阳极的厚度为50nm;Provide a glass substrate with an ITO anode, wherein the thickness of the anode is 50 nm;
在所述阳极上旋涂TFB材料,得到厚度为30nm的空穴传输层;Spin coating TFB material on the anode to obtain a hole transport layer with a thickness of 30nm;
在所述空穴传输层上旋涂CdSe/ZnS核壳结构的蓝色量子点,得到厚度为40nm的发光层;Spin-coat blue quantum dots with a CdSe/ZnS core-shell structure on the hole transport layer to obtain a light-emitting layer with a thickness of 40 nm;
提供ZnO纳米材料,其中,ZnO纳米材料的粒径为10-100nm,用乙醇分散,得到ZnO纳米材料分散液;Provide ZnO nanomaterials, wherein the ZnO nanomaterials have a particle size of 10-100nm, and disperse them with ethanol to obtain a ZnO nanomaterial dispersion;
将所述ZnO纳米材料分散液旋涂在所述发光层上,得到厚度为40nm的电子传输层;Spin-coating the ZnO nanomaterial dispersion on the light-emitting layer to obtain an electron transport layer with a thickness of 40 nm;
在所述电子传输层上蒸镀Al,得到厚度为100nm的阴极;Evaporating Al on the electron transport layer to obtain a cathode with a thickness of 100 nm;
封装,得到光电器件。Encapsulate to obtain an optoelectronic device.
对上述实施例1-4的光电器件100及对比例的光电器件的外量子效率EQE及开启电压进行测试。其中,外量子效率EQE及开启电压均采用EQE光学测试仪器测定。其中,开启电压为器件亮度为1nits时的电压。测试结果参表一。The external quantum efficiency EQE and turn-on voltage of the photoelectric device 100 of the above-mentioned Examples 1-4 and the photoelectric device of the comparative example were tested. Among them, the external quantum efficiency EQE and the turn-on voltage are measured by EQE optical testing equipment. Wherein, the turn-on voltage is the voltage when the brightness of the device is 1 nits. The test results are shown in Table 1.
表一:Table I:
the | EQE(%)EQE(%) | 开启电压(V)Turn on voltage (V) |
对比例comparative example | 2.772.77 | 5.595.59 |
实施例1Example 1 | 6.816.81 | 2.212.21 |
实施例2Example 2 | 6.476.47 | 2.202.20 |
实施例3Example 3 | 6.126.12 | 2.232.23 |
实施例4Example 4 | 4.814.81 | 4.444.44 |
由表一可知,相较于电子传输层材料为ZnO纳米材料的光电器件,实施例1-4的电子传输层30材料为金属酞菁配合物修饰的ZnO纳米材料的光电器件100具有更高的外量子效率及更低的开启电压。As can be seen from Table 1, compared with the optoelectronic device in which the electron transport layer material is ZnO nanomaterial, the optoelectronic device 100 in which the electron transport layer 30 material of Examples 1-4 is a ZnO nanomaterial modified by a metal phthalocyanine complex has a higher External quantum efficiency and lower turn-on voltage.
以上对本申请实施例所提供的光电器件及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The optoelectronic device provided by the embodiment of the present application and its preparation method have been introduced in detail above. The principles and implementation methods of the present application have been explained by using specific examples in this paper. The description of the above embodiments is only used to help understand the application. method and its core idea; at the same time, for those skilled in the art, according to the idea of this application, there will be changes in the specific implementation and application scope. limits.
Claims (20)
- 一种光电器件,包括层叠的阳极、发光层、电子传输层及阴极,其中,所述电子传输层的材料包括ZnO颗粒及连接在所述ZnO颗粒表面的金属酞菁配合物。A photoelectric device, comprising a laminated anode, a light-emitting layer, an electron transport layer and a cathode, wherein the material of the electron transport layer includes ZnO particles and metal phthalocyanine complexes connected on the surface of the ZnO particles.
- 如权利要求1所述的光电器件,其中,所述金属酞菁配合物选自酞菁锌、酞菁镁、酞菁钴、酞菁银及酞菁铜中的一种或多种。The optoelectronic device according to claim 1, wherein the metal phthalocyanine complex is selected from one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
- 如权利要求1所述的光电器件,其中,所述电子传输层的材料中,金属酞菁配合物与ZnO颗粒的摩尔比的范围为1:(0.01-0.2)。The photoelectric device according to claim 1, wherein, in the material of the electron transport layer, the molar ratio of the metal phthalocyanine complex to the ZnO particles is in the range of 1:(0.01-0.2).
- 如权利要求1所述的光电器件,其中,所述金属酞菁配合物为氟化金属酞菁配合物。The photoelectric device according to claim 1, wherein the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex.
- 如权利要求4所述的光电器件,其中,所述氟化金属酞菁配合物选自氟化酞菁锌、氟化酞菁镁、氟化酞菁钴、氟化酞菁银及氟化酞菁铜中的一种或多种。The optoelectronic device according to claim 4, wherein said fluorinated metal phthalocyanine complex is selected from the group consisting of fluorinated zinc phthalocyanine, magnesium fluorinated phthalocyanine, cobalt fluorinated phthalocyanine, silver fluorinated phthalocyanine and fluorinated phthalocyanine One or more of copper cyanides.
- 如权利要求1所述的光电器件,其中,所述ZnO颗粒的平均粒径范围为10-100nm。The photoelectric device according to claim 1, wherein the average particle diameter of the ZnO particles is in the range of 10-100 nm.
- 如权利要求1所述的光电器件,其中,所述发光层为有机发光层或量子点发光层,所述有机发光层的材料选自二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物、芴衍生物、TBPe荧光材料、TTPA荧光材料、TBRb荧光材料及DBP荧光材料中的一种或多种,所述量子点发光层的材料选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物及I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种,所述核壳结构的量子点的核选自上述单一结构量子点中的一种或多种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。 The optoelectronic device according to claim 1, wherein the light-emitting layer is an organic light-emitting layer or a quantum dot light-emitting layer, and the material of the organic light-emitting layer is selected from diaryl anthracene derivatives, stilbene aromatic derivatives, One or more of pyrene derivatives, fluorene derivatives, TBPe fluorescent materials, TTPA fluorescent materials, TBRb fluorescent materials and DBP fluorescent materials, the material of the quantum dot light-emitting layer is selected from single-structure quantum dots and core-shell structure quantum dots One or more of the dots, the single-structure quantum dots are selected from one or more of II-VI group compounds, III-V group compounds and I-III-VI group compounds, and the II-VI group The compound is selected from one or more of CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe, the The III-V group compound is selected from one or more of InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP, and the I-III-VI group compound is selected from CuInS 2. One or more of CuInSe 2 and AgInS 2 , the core of the quantum dot with the core-shell structure is selected from one or more of the above-mentioned single-structure quantum dots, and the shell of the quantum dot with the core-shell structure The layer material is selected from one or more of CdS, CdTe, CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS and ZnS.
- 如权利要求1所述的光电器件,其中,所述光电器件还包括空穴传输层,所述空穴传输层位于所述阳极与所述发光层之间,所述空穴传输层的材料选自聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺、4,4'-双(N-咔唑)-1,1'-联苯、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)]、聚(9-乙烯基咔唑)、聚三苯胺、PEDOT:PSS及4,4',4”-三(咔唑-9-基)三苯胺中的一种或多种。The photoelectric device according to claim 1, wherein the photoelectric device further comprises a hole transport layer, the hole transport layer is located between the anode and the light-emitting layer, and the material of the hole transport layer is selected from Self-poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl) base)amino]-9,9'-spirobifluorene, 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline], N,N'-bis(1-naphthyl )-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine, 4,4'-bis(N-carbazole)-1,1'-biphenyl, poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)], poly(9-vinyl One or more of carbazole), polytriphenylamine, PEDOT:PSS and 4,4',4"-tris(carbazol-9-yl)triphenylamine.
- 一种光电器件的制备方法,其中,包括如下步骤:A method for preparing an optoelectronic device, comprising the steps of:提供第一电极;providing a first electrode;形成发光层,所述发光层形成在所述第一电极上;forming a light emitting layer, the light emitting layer being formed on the first electrode;形成第二电极,所述第二电极形成在所述发光层上;forming a second electrode, the second electrode being formed on the light emitting layer;所述制备方法还包括:提供锌盐、碱及溶剂,混合,得到ZnO前驱体溶液,将所述ZnO前驱体溶液与金属酞菁配合物混合,得到电子传输层的材料,沉积所述电子传输层的材料,得到电子传输层,所述电子传输层与所述发光层层叠设置于所述第一电极与所述第二电极之间。The preparation method also includes: providing zinc salt, alkali and solvent, mixing to obtain a ZnO precursor solution, mixing the ZnO precursor solution with a metal phthalocyanine complex to obtain a material for an electron transport layer, and depositing the electron transport layer layer materials to obtain an electron transport layer, and the electron transport layer and the light emitting layer are stacked between the first electrode and the second electrode.
- 如权利要求9所述的制备方法,其中,The preparation method as claimed in claim 9, wherein,所述第一电极为阳极,所述第二电极为阴极,所述沉积所述电子传输层的材料在所述形成发光层与所述形成第二电极之间进行,且包括:在所述发光层上沉积所述电子传输层的材料。The first electrode is an anode, the second electrode is a cathode, and the deposition of the material of the electron transport layer is performed between the formation of the light emitting layer and the formation of the second electrode, and includes: The material of the electron transport layer is deposited on the layer.
- 如权利要求9所述的制备方法,其中,所述第一电极为阴极,所述第二电极为阳极,所述沉积所述电子传输层的材料在所述形成发光层之前进行,且包括:在所述第一电极上沉积所述电子传输层的材料。The preparation method according to claim 9, wherein the first electrode is a cathode, and the second electrode is an anode, and the deposition of the material of the electron transport layer is performed before the formation of the light-emitting layer, and includes: The material of the electron transport layer is deposited on the first electrode.
- 如权利要求9所述的制备方法,其中,所述锌盐选自醋酸锌、硝酸锌、氯化锌及二水合乙酸锌中的一种或多种。The preparation method according to claim 9, wherein the zinc salt is selected from one or more of zinc acetate, zinc nitrate, zinc chloride and zinc acetate dihydrate.
- 如权利要求9所述的制备方法,其中,所述碱选自氢氧化钠、氢氧化钾及四甲基氢氧化铵中的一种或多种,所述溶剂选自甲醇、乙醇及丁醇中的一种或多种。The preparation method according to claim 9, wherein the alkali is selected from one or more of sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide, and the solvent is selected from methanol, ethanol and butanol one or more of.
- 如权利要求9所述的制备方法,其中,所述碱中的OH -与所述锌盐中的Zn 2+的摩尔比的范围为(1.5-3):1。 The preparation method according to claim 9, wherein the molar ratio of OH in the alkali to Zn in the zinc salt ranges from ( 1.5-3 ):1.
- 如权利要求9所述的制备方法,其中,所述ZnO前驱体溶液中的Zn 2+与所述金属酞菁配合物的摩尔比的范围为1:(0.01-0.2)。 The preparation method according to claim 9, wherein the molar ratio of Zn 2+ in the ZnO precursor solution to the metal phthalocyanine complex is in the range of 1:(0.01-0.2).
- 如权利要求9所述的制备方法,其中,所述ZnO前驱体溶液的pH范围为12-14。The preparation method according to claim 9, wherein the pH range of the ZnO precursor solution is 12-14.
- 如权利要求9所述的制备方法,其中,所述金属酞菁配合物选自酞菁锌、酞菁镁、酞菁钴、酞菁银及酞菁铜中的一种或多种。The preparation method according to claim 9, wherein the metal phthalocyanine complex is selected from one or more of zinc phthalocyanine, magnesium phthalocyanine, cobalt phthalocyanine, silver phthalocyanine and copper phthalocyanine.
- 如权利要求9所述的制备方法,其中,所述金属酞菁配合物为氟化金属酞菁配合物,所述氟化金属酞菁配合物选自氟化酞菁锌、氟化酞菁镁、氟化酞菁钴、氟化酞菁银及氟化酞菁铜中的一种或多种。The preparation method according to claim 9, wherein the metal phthalocyanine complex is a fluorinated metal phthalocyanine complex, and the fluorinated metal phthalocyanine complex is selected from the group consisting of fluorinated zinc phthalocyanine and fluorinated magnesium phthalocyanine One or more of fluorinated cobalt phthalocyanine, fluorinated silver phthalocyanine and fluorinated copper phthalocyanine.
- 如权利要求9所述的制备方法,其中,所述混合后还包括60-120℃搅拌的步骤。The preparation method according to claim 9, wherein, after the mixing, a step of stirring at 60-120° C. is also included.
- 一种显示装置,其中,所述显示装置包括权利要求1至8任意一项所述的光电器件。A display device, wherein the display device comprises the optoelectronic device according to any one of claims 1-8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111112237.5 | 2021-09-18 | ||
CN202111112237.5A CN115915801A (en) | 2021-09-18 | 2021-09-18 | Photoelectric device, preparation method thereof and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023041046A1 true WO2023041046A1 (en) | 2023-03-23 |
Family
ID=85602466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/119360 WO2023041046A1 (en) | 2021-09-18 | 2022-09-16 | Photoelectric device and manufacturing method therefor, and display device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115915801A (en) |
WO (1) | WO2023041046A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103456895A (en) * | 2012-05-30 | 2013-12-18 | 海洋王照明科技股份有限公司 | Organic electroluminescence device and manufacturing method thereof |
CN104124367A (en) * | 2013-04-24 | 2014-10-29 | 海洋王照明科技股份有限公司 | Organic light-emitting device and preparation method thereof |
US20150255745A1 (en) * | 2012-09-28 | 2015-09-10 | Ocean's King Lighting Science & Technology Co., Ltd | Organic electroluminescent device and preparation method thereof |
JP2020132844A (en) * | 2019-02-12 | 2020-08-31 | 東洋インキScホールディングス株式会社 | Quantum dot, quantum dot-containing composition, inkjet ink and printed matter |
-
2021
- 2021-09-18 CN CN202111112237.5A patent/CN115915801A/en active Pending
-
2022
- 2022-09-16 WO PCT/CN2022/119360 patent/WO2023041046A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103456895A (en) * | 2012-05-30 | 2013-12-18 | 海洋王照明科技股份有限公司 | Organic electroluminescence device and manufacturing method thereof |
US20150255745A1 (en) * | 2012-09-28 | 2015-09-10 | Ocean's King Lighting Science & Technology Co., Ltd | Organic electroluminescent device and preparation method thereof |
CN104124367A (en) * | 2013-04-24 | 2014-10-29 | 海洋王照明科技股份有限公司 | Organic light-emitting device and preparation method thereof |
JP2020132844A (en) * | 2019-02-12 | 2020-08-31 | 東洋インキScホールディングス株式会社 | Quantum dot, quantum dot-containing composition, inkjet ink and printed matter |
Also Published As
Publication number | Publication date |
---|---|
CN115915801A (en) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110416421B (en) | Quantum dot film and quantum dot light-emitting diode | |
US20220328781A1 (en) | Composite material, quantum dot light-emitting diode and preparation method thereof | |
WO2021136044A1 (en) | Quantum dot light-emitting diode and manufacturing method therefor | |
US20240067872A1 (en) | Quantum dot film and preparation method therefor, photoelectric device, display apparatus and preparation method for quantum dot light-emitting device | |
WO2023041046A1 (en) | Photoelectric device and manufacturing method therefor, and display device | |
WO2022143676A1 (en) | Composite material and preparation method therefor, and quantum dot light-emitting diode | |
CN113130790B (en) | Nano material, preparation method thereof and quantum dot light-emitting diode | |
CN113707777B (en) | Composite material, preparation method thereof and light-emitting device | |
CN115477944A (en) | Quantum dot material, quantum dot light-emitting diode and preparation method thereof | |
CN110635055B (en) | Quantum dot film and quantum dot light-emitting diode | |
WO2023051317A1 (en) | Tungsten oxide nanomaterial and preparation method therefor, and optoelectronic device | |
WO2023124550A1 (en) | Preparation method for light-emitting device, light-emitting device, and display apparatus | |
WO2023051461A1 (en) | Molybdenum oxide nanomaterial, preparation method therefor, and photoelectric device | |
WO2024021335A1 (en) | Composite material and preparation method therefor, and light-emitting diode | |
WO2023193427A1 (en) | Light-emitting device and preparation method therefor, and display apparatus | |
WO2023056829A1 (en) | Quantum dot light-emitting layer, preparation method for quantum dot light-emitting layer, and quantum dot light-emitting diode device | |
WO2023082970A1 (en) | Composite material, preparation method therefor, and electroluminescent device | |
WO2023056838A1 (en) | Thin film and preparation method therefor, photoelectric device | |
CN113120952B (en) | Zinc sulfide nano material and preparation method thereof, zinc sulfide thin film and quantum dot light-emitting diode | |
CN116156918A (en) | Nano material, preparation method thereof, electronic transmission film and photoelectric device | |
CN117410410A (en) | Composite material, preparation method thereof and light-emitting diode | |
CN115867094A (en) | Photoelectric device and preparation method thereof, and preparation method of carbon-coated cuprous oxide particles | |
CN115707264A (en) | Core-shell nano material, preparation method thereof and display device | |
CN113054143A (en) | Nano material, preparation method thereof and quantum dot light-emitting diode | |
CN116156927A (en) | Composite material, photoelectric device, preparation method of photoelectric device and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22869412 Country of ref document: EP Kind code of ref document: A1 |