WO2023040925A1 - 葡萄糖浓度水平的葡萄糖监测系统 - Google Patents

葡萄糖浓度水平的葡萄糖监测系统 Download PDF

Info

Publication number
WO2023040925A1
WO2023040925A1 PCT/CN2022/118890 CN2022118890W WO2023040925A1 WO 2023040925 A1 WO2023040925 A1 WO 2023040925A1 CN 2022118890 W CN2022118890 W CN 2022118890W WO 2023040925 A1 WO2023040925 A1 WO 2023040925A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
time
glucose concentration
fluctuation
sleep
Prior art date
Application number
PCT/CN2022/118890
Other languages
English (en)
French (fr)
Inventor
洛佩
彭璨
何宇星
刘石山
熊晓辉
谭良
李健
詹仕欣
陈中钊
韩明松
郝强
龚明利
黄修良
Original Assignee
深圳硅基仿生科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111078114.4A external-priority patent/CN115804593A/zh
Priority claimed from CN202111078335.1A external-priority patent/CN115804594A/zh
Priority claimed from CN202111078338.5A external-priority patent/CN115804595A/zh
Application filed by 深圳硅基仿生科技股份有限公司 filed Critical 深圳硅基仿生科技股份有限公司
Publication of WO2023040925A1 publication Critical patent/WO2023040925A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue

Definitions

  • the invention specifically relates to a glucose monitoring system for glucose concentration levels, which is a glucose monitoring system for detecting the glucose concentration of an object to be tested and giving guidance information.
  • CGMS continuous glucose monitoring system
  • the dynamic glucose monitoring system generally has a high and low glucose early warning mechanism, so that it can send an early warning signal when the glucose is too low or too high.
  • clinicians can design more individualized treatment plans through the high and low glucose early warning mechanism. .
  • the existing technology does not provide users with diet, sleep or exercise reason analysis and guidance information or suggestions based on the thinking of the CGMS dynamic curve, but only gives some simple suggestions based on the glucose level in the curve (such as whether to find a doctor, etc.) Educational guidance suggestions), and doctors or diabetes educators need to spend 30-60 minutes to interpret the dynamic curves of meal time, sleep time or exercise time to output risk level assessment and auxiliary decision-making suggestions.
  • the present invention is completed in view of the above-mentioned state of the art, and its purpose is to provide a glucose monitoring system for glucose concentration level, which is a glucose monitoring system for detecting the glucose concentration of the object to be measured and giving guidance information, which can
  • the dynamic curve analyzes the fluctuation characteristics and helps the subject and the doctor to read the report quickly and accurately, and provides suggestions or guidance information related to eating behavior, sleeping behavior or exercise behavior.
  • the present invention discloses a glucose monitoring system for glucose concentration levels, which is a glucose monitoring system for detecting the glucose concentration of the object to be measured and giving guidance information, and is characterized in that it includes a sensing module, a communication module and a processing module , the sensing module is configured to detect the glucose data of the subject to be tested, the glucose data includes the glucose concentration of the subject to be tested changing with time within the time interval to be tested; the communication module is configured to receive the The glucose data is sent to the processing module; the processing module is configured to determine the fluctuation type of glucose concentration based on the glucose data, the fluctuation type reflects the change trend of the glucose concentration in the time interval to be tested, and according to the Generate guidance information or suggestions related to eating behavior, exercise behavior, and sleep behavior based on the above-mentioned fluctuation types.
  • the sensing module can continuously monitor the glucose concentration of the object to be measured in real time and change with time in the time interval to be measured, and generate data to send to the communication module, which is more convenient and faster than manual collection of glucose concentration; in addition, communication The module can send the real-time glucose data of the object to be tested to the processing module to generate real-time and continuous dynamic glucose data, the sampling period is short, and the data accuracy rate is improved; in addition, the processing module can receive and determine the glucose data to be tested According to the fluctuation type of the glucose concentration of the object, according to the fluctuation type, guidance information or suggestions related to eating behavior, sleep behavior or exercise behavior are generated and provided to the object to be tested or the doctor in a timely manner, and the traditional manual collection of glucose concentration and seeking doctor’s advice are reduced. time spent.
  • the glucose monitoring system optionally, it also includes a recording module, which is used to record the time interval to be tested, and the time interval to be tested includes the time interval from before meal to after meal, sleep The time interval from before to waking up, and the time interval from before exercise to after exercise.
  • the glucose monitoring system can determine the meal time, sleep time or exercise time of the subject to provide more accurate guidance information or advice for the subject or the doctor according to the glucose dynamic curve.
  • the glucose data includes the glucose concentration of multiple detection points and the detection time matching the multiple detection points, if the meal time entered by the subject to be measured Located at the midpoint of the detection time corresponding to two adjacent detection points, any one of the two adjacent detection points is used as a meal detection point. Between two detection points and or not at the midpoint of the corresponding detection time, the detection point closest to the meal time entered by the subject to be tested is used as the meal detection point, and the time before the meal is the meal detection point. Corresponding to the detection time, the time after the meal is 3 hours to 5 hours after the time before the meal. In this case, the glucose monitoring system can more accurately grasp the glucose data of the subject to determine the corresponding fluctuation characteristics, and the glucose monitoring system can also determine the fluctuation type according to the change of the glucose concentration of the subject to provide Physician's corresponding guidance information or advice.
  • the processing module acquires the glucose concentration at the meal detection point, the first maximum glucose fluctuation range, and the meal glucose fluctuation range based on the glucose data, and based on the meal
  • the glucose concentration at the detection point, the first maximum glucose fluctuation amplitude and the meal glucose fluctuation amplitude obtain the fluctuation type, wherein the first maximum glucose fluctuation amplitude is the time before the meal and the time after the meal
  • the meal glucose fluctuation range is the difference between the glucose concentration at the meal detection point and the time before the meal and the meal
  • the glucose monitoring system can compare the obtained glucose concentration, the first maximum glucose fluctuation range and the meal glucose fluctuation range with the glucose concentration and fluctuation type algorithms configured in the processing module To determine the corresponding fluctuation type.
  • the processing module classifies the fluctuation type of the glucose concentration based on the classification conditions related to the glucose concentration, and the classification conditions include a first classification condition, a second classification condition, The third classification condition, and the fourth classification condition, the first classification condition is that the meal glucose fluctuation range is less than the first preset value; the second classification condition is that the first maximum glucose fluctuation range is not less than the second preset value; the third classification condition is that the first peak value of the glucose data occurs within the first preset time after the meal time; the fourth classification condition is the glucose corresponding to the meal detection point The density is not less than the third preset value.
  • the glucose monitoring system can more quickly obtain the fluctuation type of the glucose concentration corresponding to a certain meal time of the subject to be tested according to the classified conditions in the processing module, and provide corresponding guidance information or suggestions in time.
  • the first preset value is 1.5 to 2.0 mmol/L
  • the second preset value is 4.0 to 5.0 mmol/L
  • the third preset value is not less than 7.0mmol/L
  • the first preset time is 0.5 to 2 hours.
  • the glucose concentration curve measured by the glucose monitoring system can more accurately classify the fluctuation type, and the glucose monitoring system can also accurately monitor the glucose concentration at the meal time.
  • the glucose data includes the glucose concentration of multiple detection points and the detection time matching the multiple detection points, if the sleep time entered by the subject to be measured is Located at the midpoint of the detection time corresponding to two adjacent detection points, any one detection point among the two adjacent detection points is used as a sleep detection point, if the sleep time entered by the subject to be tested is not between the two adjacent Between two detection points or not at the midpoint of the detection time corresponding to two adjacent detection points, the detection point closest to the sleep time entered by the subject to be measured will be used as the sleep detection point, if the If the wake-up time is located at the midpoint of the detection time corresponding to two adjacent detection points, any one of the two adjacent detection points will be used as the wake-up detection point.
  • the glucose monitoring system can more accurately grasp the glucose data of the subject to determine the corresponding fluctuation characteristics, and the glucose monitoring system can also determine the fluctuation type according to the change of the glucose concentration of the subject to provide Physician's corresponding guidance information or advice.
  • the processing module obtains the glucose concentration, the minimum glucose concentration, the second maximum glucose fluctuation range, and the sleep glucose fluctuation range of the sleep detection point based on the glucose data, and
  • the fluctuation type is obtained based on the glucose concentration at the sleep detection point, the second maximum glucose fluctuation amplitude, and the sleep glucose fluctuation amplitude, wherein the lowest glucose concentration is the time before sleep and the sleep
  • the second maximum glucose fluctuation range is the maximum glucose concentration and the lowest among the detection points between the time before sleep and the time of waking up
  • the difference between glucose concentrations, the sleep glucose fluctuation range is the difference between the glucose concentration at the sleep detection point and the lowest glucose concentration.
  • the glucose monitoring system can obtain the glucose concentration, the lowest glucose concentration, the second largest glucose fluctuation range and the sleep glucose fluctuation range and the glucose concentration and fluctuation type configured in the processing module. Algorithms are compared to determine the corresponding volatility type.
  • the processing module classifies the fluctuation type of the glucose concentration based on the classification conditions related to the glucose concentration, and the classification conditions include the fifth classification condition, the sixth classification condition, The seventh classification condition, and the eighth classification condition, the fifth classification condition is that the glucose concentration corresponding to the sleep detection point is not less than the fourth preset value; the sixth classification condition is that the lowest glucose concentration is not less than the first Five preset values; the seventh classification condition is that the second maximum glucose fluctuation range is not less than the sixth preset value; the eighth classification condition is that the sleep glucose fluctuation range is not less than the seventh preset value.
  • the glucose monitoring system can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject at a certain sleep time according to the classified conditions in the processing module and provide corresponding guidance information or suggestions in time.
  • the fourth preset value is not less than 7.0mmol/L
  • the fifth preset value is 3.6 to 4.4mmol/L
  • the sixth preset value 3.0 to 3.8mmol/L
  • the seventh preset value is 3.0 to 3.8mmol/L.
  • the glucose concentration curve measured by the glucose monitoring system can more accurately classify the fluctuation type.
  • the glucose data includes the glucose concentration of multiple detection points and the detection time matching the multiple detection points, if the exercise time entered by the subject to be measured Located at the midpoint of the detection time corresponding to two adjacent detection points, any one of the two adjacent detection points is used as a motion detection point, if the motion time entered by the object to be measured is not between Between two detection points or not located at the midpoint of the detection time corresponding to two adjacent detection points, then the detection point closest to the motion time entered by the object to be measured is used as the motion detection point, and the time before the motion is The detection time corresponding to the motion detection point, the post-exercise time is 3 hours to 5 hours after the pre-exercise time.
  • the glucose monitoring system can more accurately grasp the glucose data of the subject to determine the corresponding fluctuation characteristics, and the glucose monitoring system can also determine the fluctuation type according to the change of the glucose concentration of the subject to provide Physician's corresponding guidance information or advice.
  • the processing module obtains the glucose concentration, the first glucose fluctuation amplitude and the second glucose fluctuation amplitude at the motion detection point based on the glucose data, and based on the motion
  • the glucose concentration at the detection point, the first glucose fluctuation amplitude and the second glucose fluctuation amplitude obtain the fluctuation type, wherein the first glucose fluctuation amplitude is the time before the exercise and the time after the exercise
  • the difference between the maximum glucose concentration among the detection points between times and the glucose concentration at the exercise detection point, the second glucose fluctuation range is the difference between the glucose concentration at the exercise detection point and the time before the exercise
  • the glucose monitoring system can compare the obtained glucose concentration, the first glucose fluctuation range and the second glucose fluctuation range with the algorithm of glucose concentration and fluctuation type configured in the processing module To determine the corresponding fluctuation type.
  • the processing module classifies the fluctuation type of the glucose concentration based on the classification conditions related to the glucose concentration, and the classification conditions include the ninth classification condition, the tenth classification condition, The eleventh classification condition and the twelfth classification condition, the ninth classification condition is that the first glucose fluctuation range is not less than the eighth preset value; the tenth classification condition is that the second glucose fluctuation range is not less than less than the ninth preset value; the eleventh classification condition is that the first peak of the glucose data occurs within the second preset time after the exercise time; the twelfth classification condition is that the exercise The glucose concentration corresponding to the detection point is not less than the tenth preset value.
  • the glucose monitoring system can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject to be measured at a certain exercise time according to the classified conditions in the processing module, and provide corresponding guidance information or suggestions in a timely manner.
  • the eighth preset value is 1.5 to 2.0 mmol/L
  • the ninth preset value is 1.5 to 2.0 mmol/L
  • the tenth preset value is The value is not less than 7.0mmol/L
  • the second preset time is 10 minutes to 1 hour.
  • the glucose concentration curve measured by the glucose monitoring system can more accurately classify the fluctuation type.
  • the fluctuation types include rise, fall, first rise and then fall, first fall and then rise, normal fluctuation not high before meal, normal fluctuation high before meal, normal fluctuation Pre-exercise low and normal fluctuations Pre-exercise high, persistently high, high fluctuations, normal fluctuations, high fluctuations with low glucose, and normal fluctuations with low glucose.
  • the glucose monitoring system can determine whether one of the above-mentioned fluctuation types occurs in the subject to be tested according to the obtained glucose data, and according to the determined fluctuation The type provides corresponding guidance information or suggestions for the subject to be tested or the doctor.
  • the guidance information or suggestions related to eating behavior include suggestions for meal order, meal speed, meal time, and insulin intake time before and after meals.
  • instructions or recommendations related to sleep behavior include recommendations for sleep time, recommendations for sleep before sleep , a recommendation for exercise before sleep, a recommendation for when to take insulin before and after sleep, a recommendation for the type of insulin to take before and after sleep, and a recommendation for the amount of insulin to take before and after sleep
  • the information or suggestions include at least one of suggestions for exercise intensity, suggestions for exercise time, and suggestions for exercise methods.
  • the glucose monitoring system can provide the test subject or the doctor with recommendations on the order of meals, the speed of meals, the timing of meals, the timing of insulin intake before and after meals, the timing of insulin before and after meals, and One of the suggestions on the type of insulin intake and the advice on the amount of insulin intake before and after meals.
  • the suggestions can guide the subject to be tested, thereby improving the quality of life of the subject to be tested, and can also reduce the need for the subject to seek a doctor. and the time it takes for the doctor to provide evaluation recommendations; in addition, the glucose monitoring system can provide the subject with recommendations for sleep time, sleep before sleep, exercise before sleep, and exercise before and after sleep according to the determined fluctuation type.
  • the suggestions can guide the subject to be tested, thereby improving the quality of life of the subject, It can also reduce the time it takes for the subject to be tested to seek a doctor and the doctor to provide evaluation advice; in addition, the glucose monitoring system can provide the subject or the doctor with advice on exercise intensity, advice on exercise time, At least one of the suggestions for the exercise method can guide the subject to be tested, thereby improving the quality of life of the subject, and reducing the time spent by the subject seeking a doctor and providing evaluation suggestions.
  • the processing module performs noise reduction processing on the glucose data, and the processing module obtains a glucose concentration curve based on the glucose data and smooths the glucose concentration curve Processing; the sensing module is used to obtain the glucose concentration in the interstitial fluid, and the sensing module obtains the glucose concentration at a preset frequency.
  • the glucose monitoring system can eliminate the variables that may affect the determination of the fluctuation type in the glucose data to obtain a more accurate fluctuation type; the glucose monitoring system can also display smoother glucose for the subject or doctor The dynamic curve can improve user experience; the glucose monitoring system can also measure interstitial fluid glucose concentration, which has a good correlation with venous glucose concentration and finger glucose concentration, and can be used as an auxiliary glucose monitoring method to improve measurement accuracy.
  • the glucose monitoring system further includes a display module configured to display at least one of guidance information, glucose concentration curve and fluctuation type.
  • the subject or the doctor can observe the glucose data of the subject in real time, and can obtain corresponding fluctuation types and guidance information or suggestions without analysis and evaluation by the doctor.
  • the input module, the processing module and the display module are integrated into a mobile terminal device, and the mobile terminal device has a software program configured to pass
  • the input module records the meal time, sleep time, and exercise time of the subject to be measured, obtains the fluctuation type and guidance information through the processing module, and displays the guidance information through the display module.
  • the subject to be tested can monitor his own glucose concentration in real time through a convenient way such as a mobile terminal device, and can obtain corresponding guidance and suggestions to improve the quality of life.
  • the sensing module detects the glucose concentration of the interstitial fluid of the subject to be measured through a sensor component capable of reacting with glucose;
  • the glucose data is transmitted to the processing module;
  • the wireless method includes at least one of Bluetooth, Wi-Fi, 3G/4G/5G, NFC, UWB and Zig-Bee.
  • the glucose monitoring system can obtain the required glucose data of the subject to be tested from the sensor module and can analyze and process it, and then provide corresponding guidance information to the subject or the doctor; in addition;
  • the way to transmit glucose data to the processing module can be more convenient for the object to be tested and can form a good user experience.
  • the glucose data can be transmitted to the processing module by wire to improve the integrity and stability of the data; in addition, the glucose data can be transmitted wirelessly. Transmission to the processing module can be more convenient for the subject to be tested and can form a good user experience, and can remotely observe the glucose concentration of the subject to be tested, which is convenient for doctors to provide professional guidance information or advice and medical care.
  • a glucose monitoring system for glucose concentration level can be provided, which is a glucose monitoring system for detecting the glucose concentration of the subject to be tested and giving guidance information, which can analyze fluctuation characteristics according to the glucose dynamic curve and help the subject and the subject to be tested
  • the doctor reads the report quickly and accurately and provides advice or guidance information related to eating behavior, sleeping behavior or exercise behavior.
  • FIG. 1 is a schematic diagram of an application scenario of a glucose monitoring system for glucose concentration levels according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a glucose monitoring system for glucose concentration levels according to an embodiment of the present invention.
  • Fig. 3a is a schematic diagram of the real-time monitoring interface of the mobile terminal device in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 3b is a schematic diagram of the interface of the mobile terminal device for food analysis before and after meals in the glucose monitoring system according to the embodiment of the present invention
  • Fig. 3c is a schematic interface diagram of the guidance information for the mobile terminal device before and after meals in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 3d is a schematic diagram of the interface of the mobile terminal device for food records before and after meals in the glucose monitoring system according to the embodiment of the present invention
  • Fig. 3e is a schematic diagram of an interface shown in the glucose monitoring system according to the embodiment of the present invention for the recording of eating behaviors of the mobile terminal device before and after meals.
  • Fig. 4a is a schematic interface diagram of the sleep record of the mobile terminal device before and after sleep in the glucose monitoring system according to the embodiment of the present invention
  • Fig. 4b is a schematic interface diagram of the glucose record of the mobile terminal device before and after sleep in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 4c is a schematic diagram of the interface of the sleep analysis of the mobile terminal device before and after sleep in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 4d is a schematic interface diagram of the sleep guidance information for the mobile terminal device before and after sleep in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 5a is a schematic diagram of an interface of a mobile terminal device before and after exercise in a glucose monitoring system according to an embodiment of the present invention
  • Fig. 5b is a schematic interface diagram of the guidance information for the mobile terminal device before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 5c is a schematic interface diagram of the exercise records of the mobile terminal device before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 5d is a schematic interface diagram of the glucose concentration record of the mobile terminal device before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 6a is a graph of the glucose concentration curve for the fluctuation type before and after meals in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 6b is a glucose concentration curve graph of decreasing fluctuation type before and after a meal in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 6c is a glucose concentration curve graph of the glucose monitoring system according to the embodiment of the present invention for the type of fluctuation before and after a meal, which is rising first and then falling;
  • Fig. 6d is a graph of the glucose concentration curve of the glucose monitoring system according to the embodiment of the present invention, for the type of fluctuation before and after a meal, which is first falling and then rising;
  • Fig. 6e-1 is a graph of the glucose concentration curve before and after meals in the glucose monitoring system according to the embodiment of the present invention, the fluctuation type is fluctuation normal and not high before meals;
  • Fig. 6e-2 is a graph of the glucose concentration curve before and after a meal in which the fluctuation type is fluctuation normal in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 7a is a graph of glucose concentration in the glucose monitoring system according to the embodiment of the present invention, for the type of fluctuation before and after sleep is elevated fasting blood glucose;
  • Fig. 7b is a graph of glucose concentration curves for persistently high fluctuations before and after sleep in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 7c is a glucose concentration curve graph of the glucose monitoring system according to the embodiment of the present invention, which first decreases and then increases for the type of fluctuation before and after sleep;
  • Fig. 7d is a graph of glucose concentration in the glucose monitoring system according to the embodiment of the present invention for the type of fluctuation before and after sleep;
  • Fig. 7e-1 is a graph of glucose concentration in the glucose monitoring system according to the embodiment of the present invention, for the type of fluctuation before and after sleep is normal fluctuation;
  • Fig. 7e-2 is a graph of glucose concentration in the glucose monitoring system according to the embodiment of the present invention for the type of fluctuations before and after sleep: large fluctuations and low glucose;
  • Fig. 7e-3 is a graph of glucose concentration in the glucose monitoring system according to the embodiment of the present invention for the fluctuation type before and after sleep with normal fluctuation but low glucose.
  • Fig. 8a is a graph of the glucose concentration curve for the type of fluctuation before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 8b is a glucose concentration curve graph with decreasing fluctuation type before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Fig. 8c is a graph of the glucose concentration curve of the glucose monitoring system according to the embodiment of the present invention, for the type of fluctuation before and after exercise, which is rising first and then falling;
  • Fig. 8d is a glucose concentration curve graph in which the fluctuation type before and after exercise in the glucose monitoring system according to the embodiment of the present invention falls first and then rises;
  • Fig. 8e-1 is a graph of the glucose concentration before and after exercise in the glucose monitoring system according to the embodiment of the present invention, for the type of fluctuation before and after exercise is small;
  • Fig. 8e-2 is a graph of the glucose concentration curve before and after exercise with small fluctuations in the glucose monitoring system according to the embodiment of the present invention.
  • the glucose monitoring system of the glucose concentration level provided by the present invention is a glucose monitoring system for detecting the glucose concentration of the subject to be tested and giving guidance information, which can analyze fluctuation characteristics according to the glucose dynamic curve and help the subject to be tested and the doctor Quickly and accurately read reports and provide guidance information or advice or guidance information related to eating behavior, sleeping behavior or exercise behavior.
  • a glucose monitoring system for a glucose concentration level may also be referred to as a glucose concentration monitoring system or a glucose monitoring system for short.
  • Fig. 1 is a schematic diagram of an application scene of a glucose monitoring system of a glucose concentration level according to an embodiment of the present invention
  • Fig. 2 is a structural block diagram of a glucose monitoring system of a glucose concentration level according to an embodiment of the present invention.
  • the present invention discloses a glucose monitoring system 1 for glucose concentration levels, which is a glucose monitoring system 1 for detecting the glucose concentration of an object 2 to be tested and giving guidance information, and may include a sensing module 11.
  • the communication module 12 and the processing module 134, the sensing module 11 can be configured to detect the glucose data of the subject 2 to be tested, and the glucose data can include the glucose concentration of the subject 2 changing with time within the time interval to be tested;
  • the communication module 12 It can be configured to receive glucose data and send it to the processing module 134;
  • the processing module 134 can be configured to determine the fluctuation type of the glucose concentration based on the glucose data, the fluctuation type reflects the change trend of the glucose concentration in the time interval to be measured, and can be generated according to the fluctuation type Instructions or advice related to eating behaviour, sleeping behaviour, or exercise behaviour.
  • the time interval to be tested may include the time interval from before meal to after meal, the time interval from before sleep to waking up, and the time interval from before exercise to post exercise.
  • the sensing module 11 can continuously monitor the glucose concentration of the subject 2 in real time and changes over time within the time interval to be measured and generate data to send to the communication module 12, which is more convenient and faster than manual collection of glucose concentration
  • the communication module 12 can send the real-time glucose data of the subject 2 to the processing module 134 to generate real-time and continuous dynamic glucose data, the sampling period is short, and the data accuracy rate is improved;
  • the processing module 134 can receive and process according to The received glucose data determines the fluctuation type of the glucose concentration of the subject 2, and then generates guidance information or suggestions related to eating behavior, sleep behavior or exercise behavior according to the fluctuation type and provides it to the subject 2 or the doctor in time, and subtracts less The traditional manual collection of glucose concentrations and the time it takes to seek medical advice.
  • glucose monitoring system 1 may include sensing module 11 as shown in FIG. 2 .
  • the glucose monitoring system 1 is able to collect glucose concentration information.
  • the sensing module 11 may be an implantable or semi-implantable glucose detection sensor.
  • the sensing module 11 may be an implantable glucose detection sensor.
  • the implantable or semi-implantable sensor can reduce the physiological pain caused by the traditional blood collection method of the subject 2, and has the advantages of short collection period, large sampling data, and continuous sampling.
  • the sensing module 11 may also be a non-implantable sensor. In this case, the sampled patient needs to collect blood regularly, and the data accuracy is high.
  • the sensing module 11 can be used to acquire the glucose concentration in the interstitial fluid, in other words, the sensing module 11 can be a subcutaneous implanted sensor.
  • the rate of change of the blood glucose concentration in a short period of time after the intake of high-sugar food or glucose injection It is ahead of the interstitial fluid, so it can accurately reflect the glucose concentration of the object to be measured, that is, the glucose concentration of the interstitial fluid that can be measured by the glucose monitoring system 1 has a good correlation with the venous glucose concentration and finger glucose concentration , and can be used as an auxiliary glucose monitoring method to improve measurement accuracy.
  • the sensing module 11 can acquire the glucose concentration at a preset frequency (or a preset collection frequency). In this case, a plurality of glucose concentrations can be obtained, so that an approximately continuous glucose concentration curve can be formed.
  • the sensing module 11 can be adjusted at a preset frequency. For example, when the glucose concentration of the subject 2 varies in a small range, the sensing module 11 can obtain the glucose concentration at a lower preset frequency. When the glucose concentration of the measured object 2 changes greatly, the sensing module 11 can acquire the glucose concentration at a relatively high preset frequency. In this case, the preset frequency of the sensing module 11 can be adjusted according to actual conditions.
  • the sensing module 11 can also be used to acquire glucose data in other body fluids of the subject 2 to be measured. For example, glucose concentration in urine.
  • the sensing module 11 can detect the glucose concentration of the interstitial fluid of the subject 2 through a sensor component capable of reacting with glucose.
  • the glucose monitoring system 1 can acquire the required glucose data of the subject 2 from the sensing module 11 and analyze and process it, and then provide corresponding guidance information to the subject 2 or the doctor.
  • the sensing module 11 may be composed of bioactive substances and micro-electrodes.
  • the biologically active substance is able to react with glucose and have a chemical signal on the tiny electrodes to form an electrical signal and generate data.
  • the sensing module 11 can be arranged near the upper arm of the subject 2 to be measured, thereby reducing the influence of the sensing module 11 on the daily life behavior of the subject 2 to be measured.
  • the sensing module 11 and the communication module 12 can be integrated into one body and can be implanted into the body of the object 2 to be measured in implantable or semi-implantable manners.
  • the sensing module 11 can directly send the glucose data of the subject 2 to the communication module 12 after detecting the glucose data of the subject 2 to realize instant detection, which is quick and fast, and reduces the trouble that the subject 2 needs to carry the communication module 12 in real time .
  • the communication module 12 may transmit the glucose data to the processing module 134 wirelessly or by wire.
  • transmitting the glucose data to the processing module 134 in a wireless manner can be more convenient for the subject 2 to be measured and can form a good user experience, and transmitting the glucose data to the processing module 134 in a wired manner can improve data integrity and stability.
  • the communication module 12 can wirelessly transmit the glucose data to the processing module 134 .
  • the glucose monitoring system 1 can bring better user experience to the subject 2 or other users.
  • the wireless manner may include at least one of Bluetooth, Wi-Fi, 3G/4G/5G, NFC, UWB, and Zig-Bee. In this case, transmitting the glucose data to the processing module 134 in a wireless manner can be more convenient for the subject 2 to be measured and can form a good user experience, and can remotely observe the glucose concentration of the subject 2 to be measured, which is convenient for doctors to provide professional guidance Advice and care.
  • the communication module 12 can perform data transmission in a Bluetooth manner.
  • the processing module 134 can acquire the monitoring data of the sensing module 11 within a limited range.
  • the communication module 12 may be a wireless communication device, and the communication mode of the wireless communication device may be at least one of Bluetooth, Wi-Fi, 3G/4G/5G, NFC, UWB and Zig-Bee.
  • the communication module 12 may be a wired communication device. In this case, interference such as radiation and noise can be prevented to improve the stability and effectiveness of data transmission.
  • the glucose monitoring system 1 may further include a display module 131 configured to display at least one of guidance information, a glucose concentration curve, and a fluctuation type.
  • the display module 131 can also be integrated in the mobile terminal device, in other words, the display module can be a display interface of the mobile terminal device.
  • Figures 3a to 5c are diagrams respectively showing the real-time monitoring interface of the mobile terminal device before and after meals, the interface diagram of diet analysis, the interface diagram of guidance information, and the interface of diet record in the glucose monitoring system according to the embodiment of the present invention.
  • the guidance information includes a cause of the fluctuation type and guidance information or suggestions related to eating behavior, sleeping behavior or exercise behavior.
  • the subject 2 or the doctor can observe the glucose data of the subject 2 in real time, and can obtain corresponding fluctuation types and guidance suggestions without analysis and evaluation by the doctor.
  • the glucose monitoring system 1 can also include a recording module 132, which can be used to record the meal time when the subject 2 begins to eat, the sleep time, the wake-up time or the exercise time when the subject 2 begins to sleep. time.
  • the glucose monitoring system 1 can determine the meal time, sleep time or exercise time of the subject 2 so as to provide more accurate guidance information or advice for the subject 2 or the doctor according to the glucose dynamic curve.
  • the entry module 132 can be integrated with the processing module 134 .
  • the information recorded by the subject 2 on meals, sleep or exercise can be received by the processing module 134 in real time and used for processing and analysis.
  • the entry module 132 can automatically identify meal times, sleep times, or exercise times based on glucose concentration. In this case, the operation steps of the object to be tested 2 can be reduced, thereby improving the convenience of the glucose monitoring system 1 .
  • the input module 132 can also input at least one of the food name, food type, and food amount of the meal.
  • the food type can be carbohydrate, fat or protein.
  • the recording module 132 may also record sleep and wake-up time, sleep quality, pre-sleep diet records, pre-sleep exercise records, and the like.
  • the input module 132 may also input at least one of the time, type, and amount of exercise.
  • the input module 132 can also input whether there is exercise, exercise time or exercise type before and after meals.
  • the input module 132 can also input whether there is exercise, exercise time or exercise type before and after sleep.
  • the subject 2 to be tested can enter his diet-related information, such as check-in time and diet menu, in the mobile terminal device of the glucose monitoring system 1 through the input module.
  • his diet-related information such as check-in time and diet menu
  • the glucose monitoring system 1 may also include a storage module 133 configured to store glucose data.
  • the glucose monitoring system 1 can store more days of glucose data at meal time, sleep time or exercise time, and can compare the glucose data of multiple days or multiple times to give the test object 2 or Doctors provide more reference information.
  • the storage module 133 may be disposed on the sensing module 11 .
  • the glucose data acquired by the sensing module 11 can be temporarily stored in the storage module 133 .
  • the storage module 133 may be disposed in the processing module 134 .
  • the glucose data from the sensing module 11 is collected and stored in the storage module 133 for a long time.
  • the storage module 133 may include a first storage module and a second storage module, the first storage module is integrated in the sensing module 11, the second storage module is integrated in the mobile terminal device 13, and the first storage module can be used to temporarily store glucose data , and transmit the glucose data of the first storage module to the second storage module when the communication module 12 is working normally.
  • the storage module 133 may overwrite the old glucose data with the new glucose data, and the detection time difference between the new glucose data and the old glucose data may be more than 14 days. In this case, the storage space of the storage module 133 can be fully utilized.
  • the processing module 134 is located in the mobile terminal device 13 (described later).
  • the mobile terminal device 13 a personal mobile phone, a laptop, a computer, a custom processor, etc.
  • observers such as the subject 2 or a doctor can obtain the glucose data of the subject 2 conveniently and quickly.
  • the processing module 134 may also be a cloud processing device. In this case, the processing module 134 can monitor the glucose concentration of each test object 2 at the same time.
  • the input device of the mobile terminal device 13 can be used to input meal time, sleep time or exercise time information
  • the input module 132 can be the input device of the mobile terminal device 13, in this case, voice can be used Enter the meal time, sleep time or exercise time information of the subject 2 to be tested by means of input, touch screen input or keyboard input.
  • the input information can be conveniently and quickly processed and analyzed by the processing module 134 and generate corresponding guidance information based on the glucose data to be fed back to the subject 2 or the doctor.
  • the storage module 133 and the processing module 134 can be integrated in the same mobile terminal device 13 .
  • the processing module 134 and the storage module 133 can coordinate and process the glucose data of the subject 2 to generate multiple data types and store multi-day data.
  • the display module 131 and the processing module 134 can be integrated in the same mobile terminal device 13 .
  • the processing module 134 can display the glucose concentration of the test subject 2 to the test subject 2 or the doctor in real time after data processing, and can control the display module 131 to display corresponding guidance information or suggestions in time.
  • the input module 132, the processing module 134 and the display module 131 can be integrated into the mobile terminal device 13, and the mobile terminal device 13 has a software program configured to input the meal time through the input module 132, and obtain the fluctuation time through the processing module 134. type and guide information, and display the guide information through the display module 131.
  • the subject 2 to be tested can monitor his own glucose concentration in real time through the mobile terminal device 13, and can obtain corresponding guidance and suggestions to improve the quality of life.
  • the input module 132, the processing module 134 and the display module 131 may not be integrated with the mobile terminal device 13, that is, the input module 132, the processing module 134 and the display module 131 may be set separately. In this case, the functions of the input module 132 , the processing module 134 and the display module 131 can be respectively implemented in different positions.
  • the glucose data may include glucose concentrations at multiple detection points and detection times that match the multiple detection points. Midpoint, any one of the two adjacent detection points is taken as the behavior occurrence detection point, if the behavior occurrence time entered by the object to be measured 2 is not between the two adjacent detection points or not at the midpoint of the corresponding detection time , then the detection point closest to the behavior occurrence time entered by the subject 2 is taken as the behavior occurrence detection point. In this case, the glucose monitoring system 1 can more accurately grasp the glucose data of the subject 2 to determine corresponding fluctuation characteristics.
  • the behavior recorded by the subject 2 may include but not limited to meals, sleep and exercise.
  • the behavior occurrence time entered by the subject 2 may include meal time, sleep time, wake-up time, and exercise time.
  • the time before the meal may be the detection time corresponding to the detection point of the meal, and the time after the meal may be 3 hours to 5 hours after the time before the meal.
  • the time before going to sleep may be the detection time corresponding to the sleep detection point, and the time of waking up may be the detection time corresponding to the wake-up detection point.
  • the time before exercise may be the detection time corresponding to the motion detection point, and the time after exercise may be 3 hours to 5 hours after the time before exercise.
  • the processing module 134 may obtain the glucose concentration at the meal detection point, the first maximum glucose fluctuation magnitude, and the meal glucose fluctuation magnitude based on the glucose data, and may obtain the glucose concentration at the meal detection point, the first maximum glucose fluctuation magnitude, and the meal glucose concentration at the meal detection point based on the glucose data.
  • Glucose volatility gets the volatility type.
  • the first maximum meal glucose fluctuation magnitude may be a difference between a maximum glucose concentration and a minimum glucose concentration among detection points between a time before a meal and a time after a meal.
  • the meal glucose fluctuation magnitude may be the difference between the glucose concentration at the test point of the meal and the smallest glucose concentration among the test points between the time before the meal and the time after the meal.
  • the glucose monitoring system 1 can obtain the glucose concentration at the meal detection point of the subject 2, the first maximum glucose fluctuation range and the meal glucose fluctuation range and the glucose concentration and fluctuation type configured in the processing module 134. Algorithms are compared to determine the corresponding wave type.
  • the processing module 134 can obtain the glucose concentration at the sleep detection point, the second maximum glucose fluctuation magnitude and the sleep glucose fluctuation magnitude based on the glucose data, and can obtain the glucose concentration at the sleep detection point, the second maximum glucose fluctuation magnitude and the sleep Glucose volatility gets the volatility type.
  • the second maximum sleep glucose fluctuation amplitude may be the difference between the maximum glucose concentration and the minimum glucose concentration among the detection points between the time before sleep and the time of waking up.
  • the sleep glucose swing magnitude may be the difference between the glucose concentration at the sleep checkpoint and the lowest glucose concentration among the checkpoints between the time before sleep and the time of waking up.
  • the glucose monitoring system 1 can obtain the glucose concentration at the sleep detection point of the subject 2, the second maximum glucose fluctuation range, and the sleep glucose fluctuation range and the glucose concentration and fluctuation type configured in the processing module 134. Algorithms are compared to determine the corresponding wave type.
  • the processing module 134 may obtain the glucose concentration at the motion detection point, the first glucose fluctuation magnitude, and the second glucose fluctuation magnitude based on the glucose data, and based on the glucose concentration at the motion detection point, the first glucose fluctuation magnitude, and the second glucose Volatility Gets the volatility type.
  • the first glucose fluctuation amplitude may be the difference between the maximum glucose concentration among the detection points between the time before exercise and the time after exercise and the glucose concentration at the detection point of exercise.
  • the second glucose fluctuation magnitude may be the difference between the glucose concentration at the exercise detection point and the minimum glucose concentration among the detection points between the time before exercise and the time after exercise.
  • the glucose monitoring system 1 can obtain the glucose concentration at the motion detection point of the subject 2, the first glucose fluctuation amplitude and the second glucose fluctuation amplitude and the glucose concentration and fluctuation type configured in the processing module 134. Algorithms are compared to determine the corresponding wave type.
  • the fluctuation type may include rising, falling, rising and then falling, falling and rising, fluctuation normal low before meal, fluctuation normal high before meal, fluctuation normal low before exercise, fluctuation normal before exercise High, persistently high, fluctuating, fluctuating normally, fluctuating with low glucose, and fluctuating normally with low glucose.
  • the glucose monitoring system 1 can determine whether one of the above-mentioned fluctuation types occurs in the subject 2 according to the obtained glucose data during the meal time, sleep time or exercise time, and according to the determined fluctuation type is Subject 2 or the doctor provides corresponding guidance information or suggestions.
  • the fluctuation type may divide the fluctuation type at each meal time according to three meals.
  • the guidance information or suggestion can be provided according to the monitoring days and fluctuation types of the glucose monitoring system 1 and is not limited to one kind of guidance information or suggestion.
  • the monitoring days of the glucose monitoring system 1 can be set to 15 consecutive days, or longer or shorter days.
  • the glucose monitoring system 1 can provide guidance information or suggestions to adapt to the glucose concentration of the subject 2 so as to help them improve their quality of life.
  • the fluctuation type may divide the fluctuation type of each sleep moment according to sleep.
  • the guidance information or suggestion can be provided according to the monitoring days and fluctuation types of the glucose monitoring system 1 and is not limited to one kind of guidance information or suggestion.
  • the monitoring days of the glucose monitoring system 1 can be set to 15 consecutive days, or longer or shorter days.
  • the glucose monitoring system 1 can provide guidance information or suggestions to adapt to the glucose concentration of the subject 2 so as to help them improve their quality of life.
  • the fluctuation type may correspond to multiple guidance suggestions according to the monitoring days of the glucose monitoring system 1 .
  • the guidance information or suggestion can be provided according to the monitoring days and fluctuation types of the glucose monitoring system 1 and is not limited to one kind of guidance information or suggestion.
  • the monitoring days of the glucose monitoring system 1 can be set to 15 consecutive days, or longer or shorter days.
  • the glucose monitoring system 1 can provide guidance information or suggestions to adapt to the glucose concentration of the subject 2 to help them improve their quality of life.
  • the reasons for the fluctuation types in each guidance recommendation may be different from each other. In this case, it is possible to make the object 2 to be measured fully understand the multiple reasons for the occurrence of the corresponding fluctuation type.
  • Fig. 3a is a schematic diagram of the real-time monitoring interface of the mobile terminal device in the glucose monitoring system according to the embodiment of the present invention
  • Fig. 3b is an interface for the diet analysis of the mobile terminal device before and after meals in the glucose monitoring system according to the embodiment of the present invention Schematic diagram
  • FIG. 3c is a schematic diagram of the interface of the guidance information for the mobile terminal device before and after meals in the glucose monitoring system involved in the embodiment of the present invention
  • FIG. 3e is a schematic diagram of the interface displayed for the diet behavior record of the mobile terminal device before and after meals in the glucose monitoring system according to the embodiment of the present invention.
  • the guidance suggestions may include guidance suggestions for eating at different times of the day.
  • the guidance suggestion may include guidance suggestions corresponding to breakfast, lunch, and dinner.
  • the glucose monitoring system 1 may give the fluctuation type at breakfast time as rising, and give the fluctuation type at lunch time as rising.
  • the fluctuation type at dinner time is given as decreasing, and corresponding guidance and suggestions are given for different fluctuation types in breakfast, lunch and dinner.
  • the coaching suggestions may include coaching suggestions for sleep at different times of the day.
  • guidance information or recommendations related to eating behavior may also include recommendations for meal order, meal speed, meal timing, insulin timing before and after meals, insulin intake before and after meals.
  • the glucose monitoring system 1 can provide the subject 2 or the doctor with suggestions on the sequence of meals, the speed of meals, the time of meals, the timing of insulin intake before and after meals, and the time of taking insulin before and after meals for the subject 2 or the doctor according to the determined fluctuation type.
  • One of the recommendations for the type of insulin intake before and after a meal and the recommendation for the amount of insulin intake before and after a meal can be used to guide the subject 2 to improve the quality of life of the subject 2, and also reduce the amount of insulin intake. The time it takes for subject 2 to seek a doctor and for the doctor to provide evaluation advice.
  • the guidance advice may also include a dietary reference menu that may include food names and food weights.
  • the dietary reference menu given by the guidance advice may be different each time. In this case, the test subject 2 can obtain a plurality of different recipes.
  • Fig. 4a is a schematic diagram of the sleep record interface of the mobile terminal device before and after sleep in the glucose monitoring system according to the embodiment of the present invention; A schematic diagram of the interface of glucose recording; FIG. 4c is a schematic interface diagram of the sleep analysis of the mobile terminal device before and after sleep in the glucose monitoring system involved in the embodiment of the present invention; FIG. 4d is a schematic diagram of the interface of the glucose monitoring system involved in the embodiment of the present invention. A schematic diagram of the interface of the sleep guidance information of the mobile terminal device before and after sleep.
  • the guidance advice may include guidance advice given for sleep at different times of the day.
  • the guidance advice may include the number of days to monitor, for example, the guidance advice may indicate that day is day 1 of using glucose monitoring system 1, the guidance advice may indicate that day is day 2 of use of glucose monitoring system 1, the guidance advice may indicate The current day is the 14th day when the glucose monitoring system 1 is used, etc.
  • guidance information or suggestions related to sleep behavior may also include recommendations for sleep time, sleep before sleep, exercise before sleep, insulin time before and after sleep, sleep before and after sleep At least one of suggestions for the type of insulin intake, and suggestions for insulin intake before and after sleep.
  • the glucose monitoring system 1 can provide the subject 2 with recommendations for sleep time, sleep before sleep, exercise before sleep, and insulin intake time before and after sleep for the subject 2 according to the determined fluctuation type. At least one of suggestions, suggestions for the type of insulin intake before and after sleep, and suggestions for the amount of insulin intake before and after sleep.
  • the suggestions can guide the subject 2 to improve the quality of life of the subject 2, or Subtract the time spent by the test subject 2 in seeking a doctor and in providing evaluation advice.
  • the guidance suggestion may also include a prevention suggestion, and different analysis reasons and different prevention suggestions are provided corresponding to different fluctuation types.
  • Figure 5a is a schematic diagram of the interface of the mobile terminal device before and after exercise in the glucose monitoring system involved in the embodiment of the present invention
  • Figure 5c is a schematic diagram of the interface of the glucose monitoring system related to the embodiment of the present invention for the exercise records of the mobile terminal device before and after exercise
  • Figure 5d is a schematic diagram of the interface of the glucose monitoring system related to the embodiment of the invention Schematic interface diagram of the glucose concentration record of the mobile terminal device before and after exercise.
  • the guidance suggestion may include guidance suggestions for different types of exercise and punch times of the same exercise intensity.
  • the guidance suggestion may include guidance suggestions corresponding to walking, brisk walking, housework and ball games.
  • the guidance advice may include a reason for the type of fluctuation. For example, if the fluctuation type is increased, there may be various reasons, such as excessive intake of carbohydrates, excessive intake of fat, single breakfast structure, or more secretion of glycemic hormone in the morning, etc., the guidance and advice can be given one or more reasons. In this case, it is possible for the subject 2 to preliminarily deduce the cause of the corresponding fluctuation type.
  • the guidance information or suggestions related to exercise behavior may also include at least one of suggestions for exercise intensity, exercise time, and exercise methods.
  • the glucose monitoring system 1 can provide the subject 2 or the doctor with at least one of suggestions for exercise intensity, suggestions for exercise time, and suggestions for exercise methods according to the determined fluctuation type.
  • the processing module 134 may perform noise reduction processing on the glucose data.
  • the glucose monitoring system 1 can eliminate possible variables in the glucose data that affect the determination of the fluctuation type to obtain a more accurate fluctuation type.
  • the processing module 134 may obtain and smooth the glucose concentration profile based on the glucose data.
  • the glucose monitoring system 1 can display a smoother glucose dynamic curve for the subject 2 or the doctor, which can facilitate the doctor to interpret and classify the glucose dynamic curve, thereby giving more accurate guidance and suggestions, Can improve user experience.
  • the processing module 134 may classify the fluctuation type of the glucose concentration based on classification conditions related to the glucose concentration, the classification conditions including a first classification condition, a second classification condition, a third classification condition, and a fourth classification condition,
  • the first classification condition is that the meal glucose fluctuation range is less than the first preset value
  • the second classification condition is that the first maximum glucose fluctuation range is not less than the second preset value
  • the third classification condition is that the first peak of the glucose data occurs during the meal Within the first preset time after the time
  • the fourth classification condition is that the glucose concentration corresponding to the meal detection point is not less than the third preset value.
  • the glucose monitoring system 1 can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject 2 at a meal time according to the classified conditions in the processing module 134 and the fluctuation characteristics of the glucose data curve, and provide corresponding information in time. guidance recommendations.
  • the second preset value may be greater than the first preset value
  • the third preset value may be greater than the second preset value.
  • the glucose monitoring system 1 can be optimized in algorithm and can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject 2 at a certain meal time according to the classified conditions in the processing module 134 and provide corresponding information in time. guidance recommendations.
  • the first preset value can be 1.5 to 2.0mmol/L, for example, the first preset value can be 1.5mmol/L, 1.6mmol/L, 1.7mmol/L, 1.8mmol/L, 1.9mmol/L L, or 2.0mmol/L, etc., preferably, the first preset value may be 1.7mmol/L or 1.8mmol/L. In this case, it can be judged whether the glucose fluctuation before and after a meal is large.
  • the second preset value can be 4.0 to 5.0mmol/L, for example, the second preset value can be 4.1mmol/L, 4.2mmol/L, 4.3mmol/L, 4.4mmol/L, 4.5mmol/L L, 4.6mmol/L, 4.7mmol/L, 4.8mmol/L, 4.9mmol/L or 2.mmol/L 0 etc., preferably, the second preset value can be 4.4mmol/L, 4.5mmol/L, or 4.6mmol/L. In this case, it can be judged whether the glucose fluctuation after a meal is large.
  • the third preset value may not be less than 7.0 mmol/L.
  • the third preset value can be 7.0mmol/L, 7.2mmol/L, 7.4mmol/L, 7.6mmol/L, 7.8mmol/L, 8.0mmol/L, 8.2mmol/L, 8.4mmol/L, 8.8mmol /L, 9.0mmol/L or 10.0mmol/L, etc., preferably, the third preset value may be 7.0mmol/L, 7.2mmol/L, or 7.4mmol/L. In this case, it is possible to determine whether the pre-meal glucose is high. Therefore, the glucose concentration curve measured by the glucose monitoring system 1 can more accurately classify fluctuation types.
  • the first preset time may be 0.5 to 2 hours.
  • the first preset time can be 0.5h, 0.6h, 0.7h, 0.8h, 0.9h, 1.0h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h, Or 2.0h, preferably, the first preset time may be 0.8h, 0.9h, 1.0h, or 1.2h.
  • the glucose monitoring system 1 can determine whether the glucose concentration drops first and then rises or rises first and then falls, so as to accurately monitor the glucose concentration at the meal time.
  • the first preset time may be set to a greater or lesser range of 0.5 to 2 hours. In this case, the glucose monitoring system 1 can accurately monitor the glucose concentration at meal times. For example, according to the above four classification conditions of the first classification condition, the second classification condition, the third classification condition, and the fourth classification condition, a variety of different fluctuation types can be obtained.
  • Fig. 6a is a glucose concentration curve graph for the fluctuation type before and after a meal in the glucose monitoring system according to the embodiment of the present invention
  • Fig. 6b is a graph of the glucose concentration before and after the meal for Reduced glucose concentration curve
  • Figure 6c is a glucose concentration curve for the fluctuation type before and after a meal in the glucose monitoring system involved in the embodiment of the present invention
  • Figure 6d is the glucose concentration curve involved in the embodiment of the present invention
  • the glucose concentration curve for the type of fluctuation before and after a meal is firstly decreased and then increased
  • Fig. 6e-1 is the glucose concentration curve for the type of fluctuation before and after a meal in the glucose monitoring system according to the embodiment of the present invention.
  • Concentration curve diagram FIG.
  • the meal glucose fluctuation range may be the glucose value (unfixed value) during the meal minus the lowest value of the trough
  • the first maximum glucose fluctuation range may be the highest value of the peak minus the lowest value of the trough
  • the meal detection point corresponds to
  • the glucose concentration may be pre-meal glucose
  • the after-meal time may be the time after the meal time.
  • the analysis period of the glucose concentration curve whose fluctuation type is rising is from the meal time point to 4 hours after the meal.
  • the fluctuation type is the rising glucose concentration curve.
  • the fluctuation characteristics of the curve are: 1. The crest rises as a whole (some can fall); 2. The lowest value of the trough is not lower than the glucose value (undetermined value) at mealtime minus the first preset value.
  • the analysis period of the glucose concentration curve whose fluctuation type is postprandial glucose decrease is from the meal time point to 4 hours after the meal.
  • the fluctuation type is that the glucose concentration curve of postprandial glucose decreases.
  • the fluctuation characteristics of the glucose concentration curve are 1.
  • the peak decreases as a whole (some can rise); 2.
  • the lowest value of the trough is lower than the glucose value (indeterminate value) during the meal minus the first preset value .
  • the formula algorithm of the glucose concentration curve whose fluctuation type is postprandial glucose reduction is 1.
  • Glucose value (indeterminate value) during meals minus the lowest value of the trough> the first preset value; 2.
  • the analysis period of the glucose concentration curve whose fluctuation type is that the postprandial glucose rises first and then falls is from the meal time point to 4 hours after the meal.
  • the fluctuation type is that the postprandial glucose first rises and then falls.
  • the fluctuation characteristics of the glucose concentration curve are 1. First, there is a rise-based fluctuation, and then a decline-based fluctuation; value) minus the first preset value; 3. The start time of the first rising peak is within 1 hour from the meal time.
  • the analysis period of the glucose concentration curve whose fluctuation type is that the postprandial glucose drops first and then rises is from the meal time point to 4 hours after the meal.
  • the fluctuation type is that the glucose concentration curve first drops and then rises after a meal.
  • the fluctuation characteristics of the glucose concentration curve are 1. First, there is a fluctuation that is mainly a decline, and then a fluctuation that is mainly an increase; Subtract the first preset value; 3. The start time of the first wave peak mainly descending is within 1 hour from the meal time.
  • the formula algorithm of the glucose concentration curve whose fluctuation type is that the postprandial glucose drops first and then rises is 1.
  • the glucose value (indeterminate value) during the meal minus the lowest value of the trough > the first preset value; 2.
  • the fluctuation type is postprandial glucose fluctuation
  • the analysis period of the glucose concentration curve with normal preprandial not high is from the meal time point to 4 hours after the meal.
  • the fluctuation type is postprandial glucose fluctuation.
  • the fluctuation characteristics of the glucose concentration curve that is not high before meals are: 1. The peak rises first and then falls (there may be partial rises and partial falls alternately); Go to first preset value) (indeterminate value).
  • the fluctuation type is postprandial glucose fluctuation.
  • the formula algorithm of the glucose concentration curve that is not high before meals is 1. The highest value of the peak minus the lowest value of the trough ⁇ the second preset value; 2. Glucose value during meals (unfixed value) Subtract the lowest value of the trough ⁇ the first preset value; 3. The pre-meal glucose ⁇ the third preset value.
  • the fluctuation type is postprandial glucose fluctuation
  • the analysis period of the glucose concentration curve of normal preprandial high glucose concentration is from the meal time point to 4 hours after the meal.
  • the fluctuation type is postprandial glucose fluctuation.
  • the fluctuation characteristics of the high preprandial glucose concentration curve are 1. The peak rises first and then falls (there may be partial rises and partial falls alternately); Go to first preset value) (indeterminate value).
  • the fluctuation type is postprandial glucose fluctuation.
  • the formula algorithm of the glucose concentration curve with high preprandial is 1. The highest value of the peak minus the lowest value of the trough ⁇ the second preset value; 2.
  • the analysis period is from the meal time to 4 hours after the meal, and the judgment logic or fluctuation characteristics do not meet the above five types, then the evaluation result of the fluctuation trend is that the postprandial glucose fluctuates irregularly.
  • the processing module 134 may classify the fluctuation type of glucose concentration based on classification conditions related to glucose concentration, which may include a fifth classification condition, a sixth classification condition, a seventh classification condition, and an eighth classification condition , the fifth classification condition can be that the glucose concentration corresponding to the sleep detection point is not less than the fourth preset value; the sixth classification condition can be that the lowest glucose concentration is not less than the fifth preset value; the seventh classification condition can be the second maximum glucose fluctuation The amplitude is not less than the sixth preset value; the eighth classification condition may be that the sleep glucose fluctuation amplitude is not less than the seventh preset value.
  • classification conditions related to glucose concentration which may include a fifth classification condition, a sixth classification condition, a seventh classification condition, and an eighth classification condition , the fifth classification condition can be that the glucose concentration corresponding to the sleep detection point is not less than the fourth preset value; the sixth classification condition can be that the lowest glucose concentration is not less than the fifth preset value; the seventh classification condition can be the second maximum glucose fluctuation The amplitude is not
  • the glucose monitoring system 1 can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject 2 at a certain sleep time according to the classified conditions in the processing module 134 and the fluctuation characteristics of the glucose data curve, and provide corresponding information in time. guidance recommendations.
  • the fourth preset value may be greater than the fifth preset value
  • the fifth preset value may be greater than the sixth preset value
  • the sixth preset value may be equal to the seventh preset value.
  • the glucose monitoring system 1 can be optimized in algorithm and can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject 2 at a certain sleep time according to the classified conditions in the processing module 134 and provide corresponding information in time. guidance recommendations.
  • the fourth preset value may not be less than 7.0mmol/L, for example, the fourth preset value may be 7mmol/L, 7.2mmol/L, 7.4mmol/L, 7.6mmol/L, 7.8mmol/L, or 8mmol/L, etc., preferably, the fourth preset value may be 7mmol/L or 7.2mmol/L. In this case, it can be judged whether the glucose fluctuation before and after sleep is large, and the glucose concentration curve measured by the glucose monitoring system 1 can more accurately classify the fluctuation type.
  • the fifth preset value can be 3.6 to 4.4mmol/L, for example, the fifth preset value can be 3.6mmol/L, 3.7mmol/L, 3.8mmol/L, 3.9mmol/L, 4.0mmol/L L, 4.1mmol/L, 4.2mmol/L, 4.3mmol/L or 4.4mmol/L, etc., preferably, the fifth preset value can be 3.6mmol/L, 3.8mmol/L, 3.9mmol/L or 4.0mmol /L. In this case, it can be judged whether the glucose fluctuation of waking up is large, and the glucose concentration curve measured by the glucose monitoring system 1 can more accurately classify the fluctuation type.
  • the sixth preset value may be 3.0 to 3.8 mmol/L
  • the seventh preset value may be 3.0 to 3.8 mmol/L.
  • the sixth preset value and the seventh preset value can be 3.0mmol/L, 3.2mmol/L, 3.4mmol/L, 3.6mmol/L, 3.8mmol/L, etc., preferably, the sixth preset value and the seventh preset value Seven preset values can be 3.2mmol/L, 3.3mmol/L, or 3.4mmol/L.
  • the following fluctuation types can be obtained.
  • Fig. 7a is a graph of glucose concentration in the glucose monitoring system according to the embodiment of the present invention for the type of fluctuation before and after sleep: fasting blood glucose rise; The glucose concentration curve whose type is continuously high;
  • Fig. 7c is a glucose concentration curve graph for the fluctuation type before and after sleep in the glucose monitoring system according to the embodiment of the present invention;
  • Fig. 7d is an embodiment of the present invention In the glucose monitoring system involved, the glucose concentration curve of the fluctuating type before and after sleep is large;
  • Figures; Figure 7e-2 is a graph of glucose concentration in a glucose monitoring system according to an embodiment of the present invention for fluctuations before and after sleep, with large fluctuations and low glucose;
  • Figure 7e-3 is a glucose concentration curve related to an embodiment of the present invention
  • the glucose concentration curve in the monitoring system is normal fluctuation but low glucose before and after sleep.
  • the fasting blood glucose can be the glucose concentration corresponding to the detection point of waking up
  • the minimum glucose concentration can be the lowest blood glucose at night
  • the second maximum glucose fluctuation can be the highest peak value minus the lowest trough value
  • the sleep glucose fluctuation can be Fasting blood glucose minus nocturnal blood glucose minimum.
  • nighttime is the time before going to sleep to the time of waking up.
  • the analysis period of the glucose concentration curve whose fluctuation type is rising fasting blood glucose is from the time before going to sleep to the time of waking up.
  • the fluctuation type of the glucose concentration curve with fasting blood sugar rising is characterized by 1. fasting hyperglycemia; 2. no hypoglycemia at night; 3. nocturnal fasting blood sugar showing an obvious rising trend.
  • the formula algorithm of the glucose concentration curve whose fluctuation type is an increase in fasting blood sugar is 1.
  • Fasting blood sugar > the fourth preset value; 2.
  • Fasting blood sugar minus the lowest night blood sugar > Seventh default value.
  • the evaluation result of the glucose concentration curve whose fluctuation type is elevated fasting blood glucose is: the dawn phenomenon is possible.
  • the analysis period of the glucose concentration curve whose fluctuation type is continuous high is from the time before sleep to the time of waking up.
  • the fluctuation type is continuous high glucose concentration curve.
  • the fluctuation characteristics of the curve are 1. fasting hyperglycemia; 2. no hypoglycemia at night;
  • the evaluation result of the glucose concentration curve whose fluctuation type is persistently high is: nocturnal hyperglycemia.
  • the analysis period of the glucose concentration curve whose fluctuation type is firstly decreased and then increased is from the time before going to sleep to the time of waking up.
  • the fluctuation type of the glucose concentration curve is decreased first and then increased.
  • the fluctuation characteristics of the glucose concentration curve are 1. Fasting hyperglycemia; 2. Hypoglycemia at night;
  • the evaluation result of the glucose concentration curve whose fluctuation type is first decreased and then increased is: the Somogyi phenomenon is possible.
  • the analysis period of the glucose concentration curve whose fluctuation type is large fluctuation is from the time before going to sleep to the time of waking up.
  • the fluctuation type is the fluctuating large glucose concentration curve.
  • the fluctuation characteristics of the glucose concentration curve are 1.
  • the fasting blood sugar is not high; 2. There is no hypoglycemia at night;
  • the evaluation result of the glucose concentration curve whose fluctuation type is large fluctuation is: nighttime glucose fluctuation is large.
  • the analysis period of the glucose concentration curve whose fluctuation type is normal fluctuation is from the time before going to sleep to the time of waking up.
  • the fluctuation type is fluctuation.
  • the fluctuation characteristics of the normal glucose concentration curve are 1.
  • the fasting blood sugar is not high; 2. There is no hypoglycemia at night;
  • the formula algorithm of the glucose concentration curve whose fluctuation type is normal fluctuation is 1.
  • Fasting blood sugar ⁇ fourth preset value; 2.
  • a glucose concentration profile with a fluctuation type of normal fluctuation is evaluated as: Nocturnal glucose fluctuation is normal.
  • the analysis period of the glucose concentration curve whose fluctuation type is large fluctuation and low glucose is from the time before going to sleep to the time of waking up.
  • the fluctuation type is large fluctuation and low glucose.
  • the fluctuation characteristics of the glucose concentration curve are 1.
  • the fasting blood sugar is not high; 2. There is hypoglycemia at night;
  • the formula algorithm of the glucose concentration curve with large fluctuations and low glucose is 1.
  • the result of the assessment of the glucose concentration curve with fluctuation type being large fluctuation and low glucose is that the risk of large nighttime glucose fluctuation and low glucose is greater.
  • the analysis period of the glucose concentration curve whose fluctuation type is normal fluctuation but low glucose is from the time before sleep to the time of waking up.
  • the fluctuation type is normal fluctuation but the fluctuation characteristics of the glucose concentration curve with low glucose are 1.
  • the fasting blood sugar is not high; 2. There is hypoglycemia at night;
  • Glucose concentration curves with normal fluctuations but low glucose were evaluated with a greater risk of nocturnal glucose fluctuations with normal fluctuations but low glucose.
  • the analysis period is from the time before going to sleep to the time of waking up, and the judgment logic or fluctuation characteristics do not meet the above 6 types, then the evaluation result of the fluctuation trend is that the blood sugar fluctuates irregularly at night.
  • the processing module 134 may classify the fluctuation type of glucose concentration based on classification conditions related to glucose concentration, including a ninth classification condition, a tenth classification condition, an eleventh classification condition, and a twelfth classification condition.
  • classification conditions related to glucose concentration including a ninth classification condition, a tenth classification condition, an eleventh classification condition, and a twelfth classification condition.
  • the ninth classification condition is that the first glucose fluctuation range is not less than the eighth preset value
  • the tenth classification condition is that the second glucose fluctuation range is not less than the ninth preset value
  • the eleventh classification condition is the first glucose data The peak value occurs within the second preset time after the exercise time
  • the twelfth classification condition is that the glucose concentration corresponding to the exercise detection point is not less than the tenth preset value.
  • the glucose monitoring system 1 can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject 2 at a certain exercise time according to the classified conditions in the processing module 134 and the fluctuation characteristics of the glucose data curve, and provide corresponding information in time. guidance recommendations.
  • the ninth preset value may be greater than the eighth preset value
  • the tenth preset value may be greater than the ninth preset value.
  • the glucose monitoring system 1 can be optimized in algorithm and can more quickly obtain the fluctuation type corresponding to the glucose concentration of the subject 2 at a certain exercise time according to the classified conditions in the processing module 134 and provide corresponding information in time. guidance recommendations.
  • the eighth preset value can be 1.5 to 2.0mmol/L, for example, the eighth preset value can be 1.5mmol/L, 1.6mmol/L, 1.7mmol/L, 1.8mmol/L, 1.9mmol/L L, or 2.0mmol/L, etc., preferably, the eighth preset value may be 1.7mmol/L or 1.8mmol/L. In this case, it can be judged whether the glucose fluctuation before and after exercise is large.
  • the ninth preset value can be 1.5 to 2.0mmol/L, for example, the ninth preset value can be 1.5mmol/L, 1.6mmol/L, 1.7mmol/L, 1.8mmol/L, 1.9mmol /L, or 2.0mmol/L, etc., preferably, the ninth preset value can be 1.7mmol/L or 1.8mmol/L. In this case, it can be judged whether the glucose fluctuation before and after exercise is large.
  • the tenth preset value may not be less than 7.0 mmol/L.
  • the tenth preset value can be 7.0mmol/L, 7.2mmol/L, 7.4mmol/L, 7.6mmol/L, 7.8mmol/L, 8.0mmol/L, 8.2mmol/L, 8.4mmol/L, 8.8mmol /L, 9.0mmol/L or 10.0mmol/L, etc., preferably, the tenth preset value can be 7.0mmol/L, 7.2mmol/L, or 7.4mmol/L. In this case, it is possible to tell if the pre-exercise glucose was high.
  • the glucose concentration curve measured by the glucose monitoring system 1 can more accurately classify fluctuation types.
  • the second preset time may be 10 minutes to 1 hour.
  • the second preset time may be 0.5h, 0.6h, 0.7h, 0.8h, 0.9h, 1.0h, preferably, the second preset time may be 0.8h, 0.9h, 1.0h.
  • the glucose monitoring system 1 can determine whether the glucose concentration drops first and then rises or rises first and then falls, so as to accurately monitor the glucose concentration at the time of exercise.
  • the second preset time can be set to a greater or lesser range of 0.5 to 2 hours. In this case, the glucose monitoring system 1 can accurately monitor the glucose concentration at the time of exercise. For example, according to the above four classification conditions of the ninth classification condition, the tenth classification condition, the eleventh classification condition, and the twelfth classification condition, the following fluctuation types can be obtained.
  • Fig. 8a is a glucose concentration curve graph for the type of fluctuation before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Reduced glucose concentration curve is a glucose concentration curve for the fluctuation type before and after exercise in the glucose monitoring system involved in the embodiment of the present invention
  • Figure 8d is the glucose concentration curve involved in the embodiment of the present invention In the monitoring system, the glucose concentration curves for the type of fluctuation before and after exercise are firstly decreased and then increased
  • Fig. 8e-1 is the glucose concentration curve for the type of fluctuation before and after exercise in the glucose monitoring system according to the embodiment of the present invention.
  • Glucose concentration curve FIG.
  • the glucose concentration at the exercise detection point can be the glucose value before exercise
  • the first glucose fluctuation amplitude can be the highest value of the peak minus the glucose value during exercise (indeterminate value)
  • the second glucose fluctuation amplitude can be the peak value during exercise.
  • the glucose value (indeterminate value) minus the lowest value of the trough, the time after exercise can be the time after the moment of exercise.
  • the analysis period of the glucose concentration curve whose fluctuation type is rising is from the exercise time point to 4 hours after the exercise.
  • the fluctuation type is the rising glucose concentration curve.
  • the fluctuation characteristics of the curve are 1.
  • the peak rises as a whole (some can fall) 2.
  • the peak peak value is not lower than the glucose value (indeterminate value) when starting exercise plus the eighth preset value; 3.
  • the lowest value of the trough is not lower than the glucose value (unfixed value) at the start of exercise minus the eighth preset value.
  • the fluctuation type is the formula algorithm of the rising glucose concentration curve: 1.
  • the highest value of the peak minus the glucose value (unfixed value) during exercise> the eighth preset value; 2.
  • the analysis period of the glucose concentration curve whose fluctuation type is decreasing is from the exercise time point to 4 hours after the exercise.
  • the fluctuation type is a reduced glucose concentration curve.
  • the fluctuation characteristics of the curve are 1.
  • the peak decreases as a whole (parts can rise); 2.
  • the peak peak value is lower than the glucose value (indeterminate value) when starting exercise plus the eighth preset value; 3.
  • the lowest value of the trough is lower than the glucose value (unfixed value) at the start of exercise minus the eighth preset value.
  • the formula algorithm of the fluctuation type is a reduced glucose concentration curve: 1.
  • the glucose value during exercise (unfixed value) minus the lowest trough Value> ninth preset value.
  • the analysis period of the glucose concentration curve whose fluctuation type is rising first and then falling is from the exercise time point to 4 hours after exercise.
  • the fluctuation type of the glucose concentration curve is that the fluctuation type is rising first and then falling.
  • the fluctuation characteristics of the glucose concentration curve are 1.
  • the fluctuation mainly rises first, and then the fluctuation mainly falls; 2.
  • the peak peak value is not lower than the glucose value when starting exercise (indefinite ) plus the eighth preset value; 3.
  • the lowest value of the trough is not higher than the glucose value (unfixed value) at the start of exercise minus the eighth preset value; 4.
  • the first rise-based peak starts at the distance exercise within 0.5 hours of the moment.
  • the formula algorithm of the glucose concentration curve whose fluctuation type is rising first and then falling is 1.
  • the peak peak value minus the glucose value during exercise (unfixed value) > the eighth preset value; 2.
  • the analysis period of the glucose concentration curve whose fluctuation type is a drop first and then rise is from the exercise time point to 4 hours after the exercise.
  • the fluctuation type of the glucose concentration curve is that it drops first and then rises.
  • the fluctuation characteristics of the glucose concentration curve are 1. First, there is a fluctuation that mainly falls, and then a fluctuation that mainly rises; 2.
  • the peak peak value is not lower than the glucose value when starting exercise (indefinite ) plus the eighth preset value; 3.
  • the trough is not higher than the glucose value (unfixed value) minus the eighth preset value when the exercise starts; within 0.5 hours.
  • the formula algorithm of the glucose concentration curve whose fluctuation type is first falling and then rising is 1.
  • the peak peak value minus the glucose value during exercise (unfixed value) > the eighth preset value; 2.
  • the fluctuation type is small and the analysis period of the glucose concentration curve before exercise is not high is from the exercise time point to 4 hours after exercise.
  • the fluctuation type is small fluctuation.
  • the fluctuation characteristics of the glucose concentration curve that is not high before exercise are 1.
  • the peak part rises and part falls alternately; 3.
  • the trough is higher than (glucose value minus the eighth preset value when starting exercise) (indeterminate value); 4.
  • the glucose is lower than the tenth preset value when starting exercise.
  • the type of fluctuation is small.
  • the formula algorithm of the glucose concentration curve that is not high before exercise is 1.
  • the fluctuation type is small fluctuations, and the analysis period of the glucose concentration curve before exercise is high and the analysis period is from the time point of exercise to 4 hours after exercise.
  • the fluctuation type is small fluctuation.
  • the fluctuation characteristics of the high glucose concentration curve before exercise are 1. The peak part rises and part falls alternately; 2. The peak is lower than (glucose value during exercise plus the eighth preset value) (indeterminate value ); 3. The trough is higher than (the glucose value during exercise minus the eighth preset value) (indefinite value); 4. The glucose is not lower than the tenth preset value when starting to exercise. The type of fluctuation is small.
  • the formula algorithm of the high glucose concentration curve before exercise is 1.
  • Glucose before exercise> the tenth preset value.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统,包括传感模块、通信模块和处理模块,传感模块配置成检测待测对象的葡萄糖数据,葡萄糖数据包括待测对象在待测时间区间内随时间变化的葡萄糖浓度;通信模块配置成接收葡萄糖数据并发送至处理模块;处理模块配置成基于葡萄糖数据确定葡萄糖浓度的波动类型,波动类型反映葡萄糖浓度在待测时间区间内的变化趋势,并根据波动类型生成与饮食行为、运动行为、和睡眠行为相关的指导信息建议。由此,能够根据葡萄糖动态曲线分析波动特征并帮助待测对象和医生快速准确读报告以及提供与用餐行为、睡眠行为或运动行为相关的建议或指导信息。

Description

葡萄糖浓度水平的葡萄糖监测系统 技术领域
本发明具体涉及一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统。
背景技术
糖尿病及其慢性并发症已经成为当今严重影响人类健康的病症之一。为了延缓和减去少糖尿病的慢性并发症,需要严格控制葡萄糖,由此,用于动态反映葡萄糖波动的动态葡萄糖监测系统(Continuous glucose monitoring system,CGMS)被广泛使用。目前已经有多种动态葡萄糖监测系统得到美国FDA和/或CE认证允许在欧美使用,其中多数为微创型,采用皮下探头监测组织间液葡萄糖,少数在皮肤表面进行监测。CGMS测得的组织间液葡萄糖浓度与静脉葡萄糖浓度和指尖葡萄糖浓度有良好的相关性,可以作为辅助葡萄糖监测手段。
目前,动态葡萄糖监测系统一般情况下具备高低葡萄糖预警机制,由此能够在葡萄糖过低或过高时发出预警信号,同时临床医师可以通过高低葡萄糖预警机制有针对性的设计更个体化的治疗方案。
然而,现有技术未基于CGMS动态曲线的思维去为用户提供饮食、睡眠或运动的原因分析及指导信息或建议,仅根据曲线中的葡萄糖高低给与一些简单的建议(例如是否需要找医生等教育指导建议),且医生或糖尿病教育师需要花费30-60分钟解读用餐时刻、睡眠时刻或运动时刻的动态曲线才能输出风险等级评估及辅助决策建议。
发明内容
本发明有鉴于上述现有技术的状况而完成,其目的在于提供一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统,能够根据葡萄糖动态曲线分析波动特征并帮助待测对象和医生快速准确读报告以及提供与饮食行为、 睡眠行为或运动行为相关的建议或指导信息。
为此,本发明公开一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统,其特征在于,包括传感模块、通信模块和处理模块,所述传感模块配置成检测所述待测对象的葡萄糖数据,所述葡萄糖数据包括所述待测对象在待测时间区间内随时间变化的葡萄糖浓度;所述通信模块配置成接收所述葡萄糖数据并发送至所述处理模块;所述处理模块配置成基于所述葡萄糖数据确定葡萄糖浓度的波动类型,所述波动类型反映所述葡萄糖浓度在待测时间区间内的变化趋势,并根据所述波动类型生成与饮食行为、运动行为、和睡眠行为相关的指导信息或建议。
在这种情况下,传感模块能够实时连续监测待测对象在待测时间区间随时间变化的葡萄糖浓度并生成数据发送给通信模块,相较于人工采集葡萄糖浓度更加上便捷迅速;另外,通信模块能够将待测对象实时的葡萄糖数据发送至处理模块,以生成实时且连续的动态葡萄糖数据,采样周期短,提高数据准确率;另外,处理模块能够接收并根据接收到的葡萄糖数据确定待测对象的葡萄糖浓度的波动类型进而根据波动类型生成与饮食行为、睡眠行为或运动行为相关的指导信息或建议及时提供给待测对象或医生,并减去少传统人工采集葡萄糖浓度以及寻求医生建议所花费的时间。
根据本发明所提供的葡萄糖监测系统,可选地,还包括录入模块,所述录入模块用于录入所述待测时间区间,所述待测时间区间包括用餐前至用餐后的时间区间、睡眠前至睡醒的时间区间、和运动前至运动后的时间区间。在这种情况下,葡萄糖监测系统能够确定待测对象的用餐时刻、睡眠时刻或运动时刻以便根据葡萄糖动态曲线为待测对象或医生提供更加上准确的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述葡萄糖数据包括多个检测点的葡萄糖浓度和与所述多个检测点相匹配的检测时间,若所述待测对象录入的用餐时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为用餐检测点,若所述待测对象录入的用餐时间不在相邻两个检测点之间且或不在对应的检测时间的中点,则将与所述待测对象录入的用餐时间最接 近的检测点作为用餐检测点,所述用餐前的时间为所述用餐检测点对应的检测时间,所述用餐后的时间为所述用餐前的时间之后的3小时至5小时。在这种情况下,葡萄糖监测系统能够更加上精确掌握待测对象的葡萄糖数据以确定相应的波动特征,葡萄糖监测系统还能够根据待测对象葡萄糖浓度的变化确定其波动类型以提供待测对象或医生相应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块基于所述葡萄糖数据获取所述用餐检测点的葡萄糖浓度、第一最大葡萄糖波动幅度和用餐葡萄糖波动幅度,并且基于所述用餐检测点的葡萄糖浓度、所述第一最大葡萄糖波动幅度和所述用餐葡萄糖波动幅度获得所述波动类型,其中,所述第一最大葡萄糖波动幅度为在所述用餐前的时间和所述用餐后的时间之间的检测点当中最大的葡萄糖浓度和最小的葡萄糖浓度之间的差值,所述用餐葡萄糖波动幅度为所述用餐检测点的葡萄糖浓度与在所述用餐前的时间和所述用餐后的时间之间的检测点当中最小的葡萄糖浓度之间的差值。在这种情况下,葡萄糖监测系统可以根据获取的待测对象用餐检测点的葡萄糖浓度、第一最大葡萄糖波动幅度和用餐葡萄糖波动幅度与配置在处理模块中的葡萄糖浓度及波动类型的算法相比较以确定相对应的波动类型。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,所述分类条件包括第一分类条件、第二分类条件、第三分类条件、和第四分类条件,所述第一分类条件为所述用餐葡萄糖波动幅度小于第一预设值;所述第二分类条件为所述第一最大葡萄糖波动幅度不小于第二预设值;所述第三分类条件为所述葡萄糖数据的第一个峰值出现在所述用餐时间后的第一预设时间内;所述第四分类条件为所述用餐检测点对应的葡萄糖浓度不小于第三预设值。在这种情况下,葡萄糖监测系统能够根据处理模块中已分类的条件更加上迅速得到待测对象某一用餐时间的葡萄糖浓度对应的波动类型并及时提供相应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述第一预设值为1.5至2.0mmol/L,所述第二预设值为4.0至5.0mmol/L,第三预设 值不小于7.0mmol/L,所述第一预设时间为0.5至2小时。在这种情况下,葡萄糖监测系统测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类,葡萄糖监测系统还能够精确地对用餐时刻的葡萄糖浓度进行监测。
根据本发明所提供的葡萄糖监测系统,可选地,所述葡萄糖数据包括多个检测点的葡萄糖浓度和与所述多个检测点相匹配的检测时间,若所述待测对象录入的睡眠时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为睡眠检测点,若所述待测对象录入的睡眠时间不在相邻两个检测点之间或不在相邻两个检测点对应的检测时间的中点,则将与所述待测对象录入的睡眠时间最接近的检测点作为睡眠检测点,若所述待测对象录入的睡醒时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为睡醒检测点,若所述待测对象录入的睡醒时间不在相邻两个检测点之间或不在相邻两个检测点对应的检测时间的中点,则将与所述待测对象录入的睡醒时间最接近的检测点作为睡醒检测点,所述睡眠前的时间为所述睡眠检测点对应的检测时间,所述睡醒的时间为所述睡醒检测点对应的检测时间。在这种情况下,葡萄糖监测系统能够更加上精确掌握待测对象的葡萄糖数据以确定相应的波动特征,葡萄糖监测系统还能够根据待测对象葡萄糖浓度的变化确定其波动类型以提供待测对象或医生相应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块基于所述葡萄糖数据获取所述睡眠检测点的葡萄糖浓度、最低葡萄糖浓度、第二最大葡萄糖波动幅度和睡眠葡萄糖波动幅度,并且基于所述睡眠检测点的葡萄糖浓度、所述第二最大葡萄糖波动幅度和所述睡眠葡萄糖波动幅度获得所述波动类型,其中,所述最低葡萄糖浓度为在所述睡眠前的时间和所述睡醒的时间之间的检测点当中最低的葡萄糖浓度,所述第二最大葡萄糖波动幅度为在所述睡眠前的时间和所述睡醒的时间之间的检测点当中最大的葡萄糖浓度和最低的葡萄糖浓度之间的差值,所述睡眠葡萄糖波动幅度为所述睡眠检测点的葡萄糖浓度与最低葡萄糖浓度之间的差值。在这种情况下,葡萄糖监测系统可以根据获取的待测对象睡眠检测点的葡萄糖浓度、最低葡萄糖浓度、第 二最大葡萄糖波动幅度和睡眠葡萄糖波动幅度与配置在处理模块中的葡萄糖浓度及波动类型的算法相比较以确定相对应的波动类型。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,所述分类条件包括第五分类条件、第六分类条件、第七分类条件、和第八分类条件,所述第五分类条件为所述睡眠检测点对应的葡萄糖浓度不小于第四预设值;所述第六分类条件为所述最低葡萄糖浓度不小于第五预设值;所述第七分类条件为所述第二最大葡萄糖波动幅度不小于第六预设值;所述第八分类条件为所述睡眠葡萄糖波动幅度不小于第七预设值。在这种情况下,葡萄糖监测系统能够根据处理模块中已分类的条件更加上迅速得到待测对象某一睡眠时间的葡萄糖浓度对应的波动类型并及时提供相应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述第四预设值不小于7.0mmol/L,所述第五预设值为3.6至4.4mmol/L,所述第六预设值为3.0至3.8mmol/L,所述第七预设值为3.0至3.8mmol/L。在这种情况下,葡萄糖监测系统测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。
根据本发明所提供的葡萄糖监测系统,可选地,所述葡萄糖数据包括多个检测点的葡萄糖浓度和与所述多个检测点相匹配的检测时间,若所述待测对象录入的运动时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为运动检测点,若所述待测对象录入的运动时间不在相邻两个检测点之间或不位于相邻两个检测点对应的检测时间的中点,则将与所述待测对象录入的运动时间最接近的检测点作为运动检测点,所述运动前的时间为所述运动检测点对应的检测时间,所述运动后的时间为所述运动前的时间之后的3小时至5小时。在这种情况下,葡萄糖监测系统能够更加上精确掌握待测对象的葡萄糖数据以确定相应的波动特征,葡萄糖监测系统还能够根据待测对象葡萄糖浓度的变化确定其波动类型以提供待测对象或医生相应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块基于所述葡萄糖数据获取所述运动检测点的葡萄糖浓度、第一葡萄糖波 动幅度和第二葡萄糖波动幅度,并且基于所述运动检测点的葡萄糖浓度、所述第一葡萄糖波动幅度和所述第二葡萄糖波动幅度获得所述波动类型,其中,所述第一葡萄糖波动幅度为在所述运动前的时间和所述运动后的时间之间的检测点当中最大的葡萄糖浓度和所述运动检测点的葡萄糖浓度之间的差值,所述第二葡萄糖波动幅度为所述运动检测点的葡萄糖浓度与在所述运动前的时间和所述运动后的时间之间的检测点当中最小的葡萄糖浓度之间的差值。在这种情况下,葡萄糖监测系统可以根据获取的待测对象运动检测点的葡萄糖浓度、第一葡萄糖波动幅度和第二葡萄糖波动幅度与配置在处理模块中的葡萄糖浓度及波动类型的算法相比较以确定相对应的波动类型。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,所述分类条件包括第九分类条件、第十分类条件、第十一分类条件、和第十二分类条件,所述第九分类条件为所述第一葡萄糖波动幅度不小于第八预设值;所述第十分类条件为所述第二葡萄糖波动幅度不小于第九预设值;所述第十一分类条件为所述葡萄糖数据的第一个峰值出现在所述运动时间后的第二预设时间内;所述第十二分类条件为所述运动检测点对应的葡萄糖浓度不小于第十预设值。在这种情况下,葡萄糖监测系统能够根据处理模块中已分类的条件更加上迅速得到待测对象某一运动时间的葡萄糖浓度对应的波动类型并及时提供相应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,所述第八预设值为1.5至2.0mmol/L,所述第九预设值为1.5至2.0mmol/L,所述第十预设值不小于7.0mmol/L,所述第二预设时间为10分钟至1小时。在这种情况下,葡萄糖监测系统测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。
根据本发明所提供的葡萄糖监测系统,可选地,所述波动类型包括升高、降低、先升后降、先降后升、波动正常餐前不高、波动正常餐前偏高、波动正常运动前不高和波动正常运动前偏高、持续高、波动大、波动正常、波动大且葡萄糖低、和波动正常但葡萄糖低。在这种情况下,在这种情况下,葡萄糖监测系统能够根据获取的葡萄糖数 据确定待测对象在用餐时刻、睡眠时刻或运动时刻是否出现了上述波动类型中的一种并根据已确定的波动类型为待测对象或医生提供相对应的指导信息或建议。
根据本发明所提供的葡萄糖监测系统,可选地,与饮食行为相关的指导信息或建议包括针对用餐顺序的建议、针对用餐速度的建议、针对用餐时间的建议、针对用餐前后的胰岛素摄取时间的建议、针对用餐前后的胰岛素摄取类型的建议、以及针对用餐前后的胰岛素摄取量的建议中的至少一种;与睡眠行为相关的指导信息或建议包括针对睡眠时间的建议、针对睡眠前睡眠的建议、针对睡眠前运动的建议、针对睡眠前后的胰岛素摄取时间的建议、针对睡眠前后的胰岛素摄取类型的建议、以及针对睡眠前后的胰岛素摄取量的建议中的至少一种;与运动行为相关的指导信息或建议包括针对运动强度的建议、针对运动时间的建议、针对运动方式的建议中的至少一种。在这种情况下,葡萄糖监测系统能够根据已确定的波动类型为待测对象或医生提供用餐顺序的建议、用餐速度的建议、用餐时间的建议、用餐前后的胰岛素摄取时间的建议、用餐前后的胰岛素摄取类型的建议、以及用餐前后的胰岛素摄取量的建议中相对应的一种,借由建议可以引导待测对象,进而改善待测对象的生活质量,也可以减去少待测对象寻求医生以及医生提供评估建议所花费的时间;另外,葡萄糖监测系统能够根据已确定的波动类型为待测对象针对睡眠时间的建议、针对睡眠前睡眠的建议、针对睡眠前运动的建议、针对睡眠前后的胰岛素摄取时间的建议、针对睡眠前后的胰岛素摄取类型的建议、以及针对睡眠前后的胰岛素摄取量的建议中的至少一种,借由建议可以引导待测对象,进而改善待测对象的生活质量,也可以减去少待测对象寻求医生以及医生提供评估建议所花费的时间;另外,葡萄糖监测系统能够根据已确定的波动类型为待测对象或医生提供运动强度的建议、针对运动时间的建议、针对运动方式的建议中的至少一种,借由建议可以引导待测对象,进而改善待测对象的生活质量,也可以减去少待测对象寻求医生以及医生提供评估建议所花费的时间。
根据本发明所提供的葡萄糖监测系统,可选地,所述处理模块对所述葡萄糖数据进行降噪处理,所述处理模块基于所述葡萄糖数据获 得葡萄糖浓度曲线并对所述葡萄糖浓度曲线做平滑处理;所述传感模块用于获取组织间液中的葡萄糖浓度,所述传感模块以预设频率获取葡萄糖浓度。在这种情况下,葡萄糖监测系统能够将葡萄糖数据中可能存在的影响波动类型确定的变量消除以得到更加上准确的波动类型;葡萄糖监测系统还能够为待测对象或医生显示更加上平滑的葡萄糖动态曲线,能够提高用户体验;葡萄糖监测系统还能够测得的组织间液葡萄糖浓度与静脉葡萄糖浓度和指葡萄糖浓度有良好的相关性,并可以作为辅助葡萄糖监测手段,提高测量精度。
根据本发明所提供的葡萄糖监测系统,可选地,所述葡萄糖监测系统还包括显示模块,所述显示模块配置成显示指导信息、葡萄糖浓度曲线和波动类型中的至少一种。在这种情况下,待测对象或医生可以实时地观测待测对象的葡萄糖数据,并可以获得相对应的波动类型和指导信息或建议而无需医生的分析评估。
根据本发明所提供的葡萄糖监测系统,可选地,所述录入模块、所述处理模块和所述显示模块集成于移动终端设备,所述移动终端设备具有软件程序,所述软件程序配置为通过录入模块录入所述待测对象的用餐时间、睡眠时间、和运动时间,通过处理模块获得波动类型和指导信息,并且通过所述显示模块显示指导信息。在这种情况下,待测对象能够通过移动终端设备此类便捷方式实时监测自身的葡萄糖浓度,并能够获得相对应的指导建议,提高生活质量。
根据本发明所提供的葡萄糖监测系统,可选地,所述传感模块通过能够与葡萄糖反应的传感器组件来检测待测对象的组织间液的葡萄糖浓度;所述通信模块通过无线方式或有线方式将所述葡萄糖数据传输至所述处理模块;所述无线方式包括蓝牙、Wi-Fi、3G/4G/5G、NFC、UWB和Zig-Bee中的至少一种。在这种情况下,葡萄糖监测系统能够从传感模块获取所需的待测对象的葡萄糖数据并可以对其进行分析处理,进而提供给待测对象或医生相对应的指导信息;另外;通过无线方式将葡萄糖数据传输至处理模块能够更加上方便待测对象并可以形成良好用户体验,通过有线方式将葡萄糖数据传输至处理模块能够提高数据的完整性和稳定性;另外,通过无线方式将葡萄糖数据传输至处理模块能够更加上方便待测对象并可以形成良好用户体验,并可以 远程观测待测对象的葡萄糖浓度,方便医生提供专业的指导信息或建议和医护。
根据本发明,能够提供一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统,能够根据葡萄糖动态曲线分析波动特征并帮助待测对象和医生快速准确读报告以及提供与饮食行为、睡眠行为或运动行为相关的建议或指导信息。
附图说明
图1是本发明的实施方式所涉及的一种葡萄糖浓度水平的葡萄糖监测系统的应用场景示意图。
图2是本发明的实施方式所涉及的一种葡萄糖浓度水平的葡萄糖监测系统的结构框图。
图3a是本发明的实施方式所涉及的葡萄糖监测系统中移动终端设备的实时监测的界面示意图;
图3b是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的饮食分析的界面示意图;
图3c是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的指导信息的界面示意图;
图3d是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的饮食记录的界面示意图;
图3e是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的饮食行为记录展示的界面示意图。
图4a是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的睡眠记录的界面示意图;
图4b是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的葡萄糖记录的界面示意图;
图4c是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的睡眠分析的界面示意图;
图4d是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的睡眠指导信息的界面示意图。
图5a是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的运动分析的界面示意图;
图5b是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的指导信息的界面示意图;
图5c是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的运动记录的界面示意图;
图5d是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的葡萄糖浓度记录的界面示意图。
图6a是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为升高的葡萄糖浓度曲线图;
图6b是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为降低的葡萄糖浓度曲线图;
图6c是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为先升后降的葡萄糖浓度曲线图;
图6d是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为先降后升的葡萄糖浓度曲线图;
图6e-1是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为波动正常餐前不高的葡萄糖浓度曲线图;
图6e-2是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为波动正常餐前偏高的葡萄糖浓度曲线图。
图7a是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为空腹血糖升高的葡萄糖浓度曲线图;
图7b是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为持续高的葡萄糖浓度曲线图;
图7c是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为先降低后升高的葡萄糖浓度曲线图;
图7d是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动大的葡萄糖浓度曲线图;
图7e-1是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动正常的葡萄糖浓度曲线图;
图7e-2是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠 前后波动类型为波动大且葡萄糖低的葡萄糖浓度曲线图;
图7e-3是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动正常但葡萄糖低的葡萄糖浓度曲线图。
图8a是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为升高的葡萄糖浓度曲线图;
图8b是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为降低的葡萄糖浓度曲线图;
图8c是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为先升后降的葡萄糖浓度曲线图;
图8d是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为先降后升的葡萄糖浓度曲线图;
图8e-1是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为波动较小运动前不高的葡萄糖浓度曲线图;
图8e-2是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为波动较小运动前偏高的葡萄糖浓度曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
本发明提供的一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统,其能够根据葡萄糖动态曲线分析波动特征并帮助待测对象和医生快速准确读报告以及提供与饮食行为、睡眠行为或运动行为相关的指导信息或建议或指导信息。以下进行结合附图进行详细描述。
在一些示例中,一种葡萄糖浓度水平的的葡萄糖监测系统也可以简称为葡萄糖浓度监测系统或葡萄糖监测系统。
图1是本发明的实施方式所涉及的一种葡萄糖浓度水平的葡萄糖监测系统的应用场景示意图,图2是本发明的实施方式所涉及的一种葡萄糖浓度水平的葡萄糖监测系统的结构框图。
如图1、2所示,本发明公开了一种葡萄糖浓度水平的葡萄糖监测系统1,是用于检测待测对象2的葡萄糖浓度并给出指导信息的葡萄糖监测系统1,可以包括传感模块11、通信模块12和处理模块134,传感模块11可以配置成检测待测对象2的葡萄糖数据,葡萄糖数据可以包括待测对象2在待测时间区间内随时间变化的葡萄糖浓度;通信模块12可以配置成接收葡萄糖数据并发送至处理模块134;处理模块134可以配置成基于葡萄糖数据确定葡萄糖浓度的波动类型,波动类型反映葡萄糖浓度在待测时间区间内的变化趋势,并可以根据波动类型生成与饮食行为、睡眠行为或运动行为相关的指导信息或建议。在一些示例中,待测时间区间可以包括用餐前至用餐后的时间区间、睡眠前至睡醒的时间区间、和运动前至运动后的时间区间。
在这种情况下,传感模块11能够实时连续监测待测对象2在待测时间区间内随时间变化的葡萄糖浓度并生成数据发送给通信模块12,相较于人工采集葡萄糖浓度更加上便捷迅速;另外,通信模块12能够将待测对象2实时的葡萄糖数据发送至处理模块134,以生成实时且连续的动态葡萄糖数据,采样周期短,提高数据准确率;另外,处理模块134能够接收并根据接收到的葡萄糖数据确定待测对象2的葡萄糖浓度的波动类型进而根据波动类型生成与饮食行为、睡眠行为或运动行为相关的指导信息或建议及时提供给待测对象2或医生,并减去少传统人工采集葡萄糖浓度以及寻求医生建议所花费的时间。
在一些示例中,如图2所示,葡萄糖监测系统1可以包括传感模 块11。在这种情况下,葡萄糖监测系统1能够收集葡萄糖浓度信息。在一些示例中,传感模块11可以是植入式或半植入式的葡萄糖检测传感器。优选地,传感模块11可以是植入式的葡萄糖检测传感器。在这种情况下,植入式或半植入式传感器能够减去轻待测对象2以往传统采集血液的方式带来的生理疼痛,并且具有采集周期短、采样数据多、采样连续等优点。在另外一些示例中,传感模块11也可以是非植入式的传感器,在这种情况下,被采样患者需要定期进行血液采集,数据准确性高。
在一些示例中,传感模块11可以用于获取组织间液中的葡萄糖浓度,换言之,传感模块11可以是皮下植入式传感器。在这种情况下,由于组织间液的葡萄糖浓度在稳态情况下与血浆葡萄糖相等或严格相对应,而在摄入高糖份食物或注射葡萄糖后的短时间内血液的葡萄糖浓度的变化速度超前于组织间液,由此,能够能准确地反应待测对象的葡萄糖浓度,也即葡萄糖监测系统1能够测得的组织间液的葡萄糖浓度与静脉葡萄糖浓度和指葡萄糖浓度有良好的相关性,并可以作为辅助葡萄糖监测手段,提高测量精度。
在一些示例中,传感模块11可以以预设频率(或预设采集频率)获取葡萄糖浓度。在这种情况下,能够获得多个葡萄糖浓度,从而能够形成近似连续的葡萄糖浓度曲线。
在一些示例中,传感模块11可以以预设频率进行调整,例如,当待测对象2的葡萄糖浓度变化幅度较小时,传感模块11可以以较低的预设频率获取葡萄糖浓度,当待测对象2的葡萄糖浓度变化幅度较大时,传感模块11可以以较高的预设频率获取葡萄糖浓度。在这种情况下,能够根据实际情况调整传感模块11的预设频率。
在一些示例中,传感模块11还可以用于获取待测对象2其他体液中的葡萄糖数据。例如,尿液中的葡萄糖浓度。
在另一些示例中,传感模块11可以通过能够与葡萄糖反应的传感器组件来检测待测对象2的组织间液的葡萄糖浓度。在这种情况下,葡萄糖监测系统1能够从传感模块11获取所需的待测对象2的葡萄糖数据并可以对其进行分析处理,进而提供给待测对象2或医生相对应的指导信息。
在一些示例中,传感模块11可以由生物活性物质与微型电极构成。在这种情况下,生物活性物质能够与葡萄糖反应并在微型电极上有化学信号形成电信号并生成数据。
在一些示例中,传感模块11可以设置于待测对象2的手臂的上臂附近,由此,能够减去少传感模块11对待测对象2日常生活行为的影响。
在一些示例中,传感模块11与通信模块12可以集成为一体并可以以植入式或半植入式两种方式植入到待测对象2体内。在这种情况下,传感模块11检测到待测对象2的葡萄糖数据后能够直接发送给通信模块12,实现即时检测,迅速快捷,减去少待测对象2需要实时携带通信模块12的麻烦。
在一些示例中,通信模块12可以通过无线方式或有线方式将葡萄糖数据传输至处理模块134。在这种情况下,通过无线方式将葡萄糖数据传输至处理模块134能够更加上方便待测对象2并可以形成良好用户体验,通过有线方式将葡萄糖数据传输至处理模块134能够提高数据的完整性和稳定性。
在一些示例中,优选地,通信模块12可以通过无线方式将葡萄糖数据传输至处理模块134。在这种情况下,葡萄糖监测系统1能够给待测对象2或其他使用者带来更好的用户体验。在一些示例中,无线方式可以包括蓝牙、Wi-Fi、3G/4G/5G、NFC、UWB和Zig-Bee中的至少一种。在这种情况下,通过无线方式将葡萄糖数据传输至处理模块134能够更加上方便待测对象2并可以形成良好用户体验,并可以远程观测待测对象2的葡萄糖浓度,方便医生提供专业的指导建议和医护。
在一些示例中,通信模块12可以以蓝牙方式进行数据传输。在这种情况下,处理模块134能够在限定范围内即可获取传感模块11的监测数据。
在一些示例中,优选地,通信模块12可以是无线通信装置,无线通信装置的通信方式可以是蓝牙、Wi-Fi、3G/4G/5G、NFC、UWB和Zig-Bee中的至少一种。在另一些示例中,通信模块12可以是有线通信装置,在这种情况下,能够防止辐射、噪音等干扰提高数据的传输的稳定和有效性。
在一些示例中,如图2所示,葡萄糖监测系统1还可以包括显示模块131,显示模块131可以配置成显示指导信息、葡萄糖浓度曲线和波动类型中的至少一种。显示模块131还可以集成在移动终端设备中,换言之,显示模块可以是移动终端设备的显示界面。
例如,图3a至5c是分别示出了本发明的实施方式所涉及的葡萄糖监测系统针对用餐前后移动终端设备的实时监测界面示意图、饮食分析的界面示意图、指导信息的界面示意图、饮食记录的界面示意图、饮食行为记录展示的界面示意图。
在一些示例中,指导信息包括产生波动类型的原因和与饮食行为、睡眠行为或运动行为相关的指导信息或建议。在这种情况下,待测对象2或医生可以实时地观测待测对象2的葡萄糖数据,并可以获得相对应的波动类型和指导建议而无需医生的分析评估。
在一些示例中,如图2所示,葡萄糖监测系统1还可以包括录入模块132,录入模块132可以用于录入待测对象2开始用餐的用餐时间、开始睡眠的睡眠时间、睡醒时间或运动时间。在这种情况下,葡萄糖监测系统1能够确定待测对象2的用餐时刻、睡眠时刻或运动时刻以便根据葡萄糖动态曲线为待测对象2或医生提供更加上准确的指导信息或建议。
在一些示例中,优选地,录入模块132可以和处理模块134集成为一体。在这种情况下,待测对象2录入用餐、睡眠或运动的信息能够实时被处理模块134接收并用于处理分析。
在一些示例中,录入模块132可以根据葡萄糖浓度自动识别用餐时间、睡眠时间或运动时间。在这种情况下,能够减去少待测对象2的操作步骤,进而能够提高葡萄糖监测系统1的便捷性。
在一些示例中,录入模块132还可以录入用餐的食物名称、食物类型、以及食物的量中的至少一种。其中,食物类型可以为碳水化合物、脂肪或蛋白质。在一些示例中,录入模块132还可以录入睡醒时间、睡眠质量、睡眠前饮食记录、睡眠前运动记录等。在一些示例中,录入模块132还可以录入运动的时间、类型、以及运动量中的至少一种。在一些示例中,录入模块132还可以录入用餐前后是否有进行运动、运动时间或运动类型。在一些示例中,录入模块132还可以录入 睡眠前后是否有进行运动、运动时间或运动类型。
例如,如图3b、3e所示,待测对象2可以通过录入模块在葡萄糖监测系统1的移动终端设备中录入其与饮食相关的信息,如打卡时间、饮食菜单等。
在一些示例中,葡萄糖监测系统1还可以包括存储模块133,存储模块133配置成存储葡萄糖数据。在这种情况下,葡萄糖监测系统1能够存储更多天数的用餐时刻、睡眠时刻或运动时刻的葡萄糖数据,并能够将多个天数或多个时刻的葡萄糖数据进行对比以给待测对象2或医生提供更多可参考的信息。
在一些示例中,存储模块133可以设置于传感模块11。在这种情况下,能够将传感模块11获取的葡萄糖数据暂时存储于存储模块133。在一些示例中,存储模块133可以设置于处理模块134。在这种情况下,收集来自于传感模块11的葡萄糖数据并长期存储于存储模块133。换言之,存储模块133可以包括第一存储模块和第二存储模块,第一存储模块集成于传感模块11,第二存储模块集成于移动终端设备13,第一存储模块可以用于暂时存储葡萄糖数据,并在通信模块12正常工作时将第一存储模块的葡萄糖数据传送到第二存储模块。
在一些示例中,存储模块133可以利用新的葡萄糖数据覆盖旧的葡萄糖数据,新的葡萄糖数据和旧的葡萄糖数据的检测时间可以相差14天以上。在这种情况下,能够充分利用存储模块133的存储空间。
在一些示例中,优选地,处理模块134位于移动终端设备13(后续描述)。例如个人手机、笔记本电脑、电脑、定制处理器等,在这种情况下,待测对象2或医生等观测人员可以便捷迅速获取待测对象2的葡萄糖数据。
在一些示例中,处理模块134也可以是云端处理设备。在这种情况下,处理模块134可以同时对各个待测对象2的葡萄糖浓度进行监测。
在一些示例中,移动终端设备13的键入设备可以用于录入用餐时间、睡眠时间或运动时间信息,换言之,录入模块132可以是移动终端设备13的键入设备,在这种情况下,能够使用语音输入、触屏输入或键盘输入的方式录入待测对象2的用餐时间、睡眠时间或运动时间 信息。在这种情况下,录入信息能够便捷迅速地为处理模块134处理分析并根据葡萄糖数据生成相对应的指导信息反馈给待测对象2或医生。
在一些示例中,如上所述,存储模块133可以与处理模块134集成在同一个移动终端设备13中。在这种情况下,处理模块134与存储模块133可以协调处理待测对象2的葡萄糖数据,生成多种数据类型并可以存储多日数据。
在一些示例中,显示模块131可以和处理模块134集成在同一个移动终端设备13中。在这种情况下,处理模块134对待测对象2的葡萄糖浓度进行数据处理后可以实时显示给待测对象2或医生并可以控制显示模块131及时显示相对应的指导信息或建议。
在一些示例中,录入模块132、处理模块134和显示模块131可以集成于移动终端设备13,移动终端设备13具有软件程序,软件程序配置为通过录入模块132录入用餐时间,通过处理模块134获得波动类型和指导信息,并且通过显示模块131显示指导信息。在这种情况下,待测对象2能够通过移动终端设备13实时监测自身的葡萄糖浓度,并能够获得相对应的指导建议,提高生活质量。
在一些示例中,录入模块132、处理模块134和显示模块131可以不与移动终端设备13集成于一体,也即录入模块132、处理模块134和显示模块131可以分开设置。在这种情况下,能够分别在不同的位置实现录入模块132、处理模块134和显示模块131的功能。
在一些示例中,葡萄糖数据可以包括多个检测点的葡萄糖浓度和与多个检测点相匹配的检测时间,若待测对象2录入的行为发生时间位于相邻两个检测点对应的检测时间的中点,则将相邻两个检测点当中的任一个检测点作为行为发生检测点,若待测对象2录入的行为发生时间不在相邻两个检测点之间或不在对应的检测时间的中点,则将与待测对象2录入的行为发生时间最接近的检测点作为行为发生检测点。在这种情况下,葡萄糖监测系统1能够更加上精确掌握待测对象2的葡萄糖数据以确定相应的波动特征。
在一些示例中,待测对象2录入的行为可以包括但不限于用餐、睡眠和运动。在一些示例中,待测对象2录入的行为发生时间可以包 括用餐时间、睡眠时间、睡醒时间、和运动时间。在一些示例中,用餐前的时间可以为用餐检测点对应的检测时间,用餐后的时间可以为用餐前的时间之后的3小时至5小时。在一些示例中,睡眠前的时间可以为睡眠检测点对应的检测时间,睡醒的时间可以为睡醒检测点对应的检测时间。在一些示例中,运动前的时间可以为运动检测点对应的检测时间,运动后的时间可以为运动前的时间之后的3小时至5小时。
在一些示例中,处理模块134可以基于葡萄糖数据获取用餐检测点的葡萄糖浓度、第一最大葡萄糖波动幅度和用餐葡萄糖波动幅度,并且可以基于用餐检测点的葡萄糖浓度、第一最大葡萄糖波动幅度和用餐葡萄糖波动幅度获得波动类型。在一些示例中,第一最大用餐葡萄糖波动幅度可以为在用餐前的时间和用餐后的时间之间的检测点当中最大的葡萄糖浓度和最小的葡萄糖浓度之间的差值。在一些示例中,用餐葡萄糖波动幅度可以为用餐检测点的葡萄糖浓度与在用餐前的时间和用餐后的时间之间的检测点当中最小的葡萄糖浓度之间的差值。在这种情况下,葡萄糖监测系统1可以根据获取的待测对象2用餐检测点的葡萄糖浓度、第一最大葡萄糖波动幅度和用餐葡萄糖波动幅度与配置在处理模块134中的葡萄糖浓度及波动类型的算法相比较以确定相对应的波动类型。
在一些示例中,处理模块134可以基于葡萄糖数据获取睡眠检测点的葡萄糖浓度、第二最大葡萄糖波动幅度和睡眠葡萄糖波动幅度,并且可以基于睡眠检测点的葡萄糖浓度、第二最大葡萄糖波动幅度和睡眠葡萄糖波动幅度获得波动类型。在一些示例中,第二最大睡眠葡萄糖波动幅度可以为在睡眠前的时间和睡醒的时间之间的检测点当中最大的葡萄糖浓度和最低的葡萄糖浓度之间的差值。在一些示例中,睡眠葡萄糖波动幅度可以为睡眠检测点的葡萄糖浓度与在睡眠前的时间和睡醒的时间之间的检测点当中最低的葡萄糖浓度之间的差值。在这种情况下,葡萄糖监测系统1可以根据获取的待测对象2睡眠检测点的葡萄糖浓度、第二最大葡萄糖波动幅度和睡眠葡萄糖波动幅度与配置在处理模块134中的葡萄糖浓度及波动类型的算法相比较以确定相对应的波动类型。
在一些示例中,处理模块134可以基于葡萄糖数据获取运动检测点的葡萄糖浓度、第一葡萄糖波动幅度和第二葡萄糖波动幅度,并且基于运动检测点的葡萄糖浓度、第一葡萄糖波动幅度和第二葡萄糖波动幅度获得波动类型。在一些示例中,第一葡萄糖波动幅度可以为在运动前的时间和运动后的时间之间的检测点当中最大的葡萄糖浓度和运动检测点的葡萄糖浓度之间的差值。在一些示例中,第二葡萄糖波动幅度可以为运动检测点的葡萄糖浓度与在运动前的时间和运动后的时间之间的检测点当中最小的葡萄糖浓度之间的差值。在这种情况下,葡萄糖监测系统1可以根据获取的待测对象2运动检测点的葡萄糖浓度、第一葡萄糖波动幅度和第二葡萄糖波动幅度与配置在处理模块134中的葡萄糖浓度及波动类型的算法相比较以确定相对应的波动类型。
在一些示例中,波动类型可以包括升高、降低、先升后降、先降后升、波动正常餐前不高、波动正常餐前偏高、波动正常运动前不高、波动正常运动前偏高、持续高、波动大、波动正常、波动大且葡萄糖低、和波动正常但葡萄糖低。在这种情况下,葡萄糖监测系统1能够根据获取的葡萄糖数据确定待测对象2在用餐时刻、睡眠时刻或运动时刻中是否出现了上述波动类型中的一种并根据已确定的波动类型为待测对象2或医生提供相对应的指导信息或建议。
在一些示例中,波动类型可以按照三餐来划分每次用餐时刻的波动类型。在一些示例中,指导信息或建议可以根据葡萄糖监测系统1的监测天数及波动类型提供不限于一种指导信息或建议。例如,葡萄糖监测系统1的监测天数可以设置为连续时间的15天,以及或更长、更短的天数。在这种情况下,根据对应的三餐信息、波动类型以及天数,葡萄糖监测系统1可以提供适应待测对象2葡萄糖浓度的指导信息或建议以便帮助其改善生活质量。
在一些示例中,波动类型可以按照睡眠来划分每次睡眠时刻的波动类型。在一些示例中,指导信息或建议可以根据葡萄糖监测系统1的监测天数及波动类型提供不限于一种指导信息或建议。例如,葡萄糖监测系统1的监测天数可以设置为连续时间的15天,以及或更长、更短的天数。在这种情况下,根据对应的睡眠信息、波动类型以及天数,葡萄糖监测系统1可以提供适应待测对象2葡萄糖浓度的指导信 息或建议以便帮助其改善生活质量。
在一些示例中,波动类型可以根据葡萄糖监测系统1的监测天数对应多个指导建议。在一些示例中,指导信息或建议可以根据葡萄糖监测系统1的监测天数及波动类型提供不限于一种指导信息或建议。例如,葡萄糖监测系统1的监测天数可以设置为连续时间的15天,以及或更长、更短的天数。在这种情况下,根据对应的用餐信息、睡眠信息或运动信息、以及波动类型和天数,葡萄糖监测系统1可以提供适应待测对象2葡萄糖浓度的指导信息或建议以便帮助其改善生活质量。
在一些示例中,每一次的指导建议中的波动类型的原因可以互不相同。在这种情况下,能够使待测对象2充分了解出现相应波动类型的多个原因。
图3a是本发明的实施方式所涉及的葡萄糖监测系统中移动终端设备的实时监测的界面示意图;图3b是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的饮食分析的界面示意图;图3c是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的指导信息的界面示意图;图3d是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的饮食记录的界面示意图;图3e是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后移动终端设备的饮食行为记录展示的界面示意图。
参见图3a-3e,在一些示例中,指导建议可以包括针对同一天中不同时刻的饮食给出的指导建议。在一些示例中,指导建议可以包括早餐、午餐和晚餐对应的指导建议,在一些示例中,葡萄糖监测系统1可以给出早餐时刻的波动类型为升高,给出午餐时刻的波动类型为升高,给出晚餐时刻的波动类型为降低,并针对早餐、午餐和晚餐中不同的波动类型给出相应的指导建议。在一些示例中,指导建议可以包括针对同一天中不同时刻的睡眠给出的指导建议。在一些示例中,与饮食行为相关的指导信息或建议还可以包括针对用餐顺序的建议、针对用餐速度的建议、针对用餐时间的建议、针对用餐前后的胰岛素摄取时间的建议、针对用餐前后的胰岛素摄取类型的建议、以及针对用餐前后的胰岛素摄取量的建议中的至少一种。在这种情况下,葡萄糖 监测系统1能够根据已确定的波动类型为待测对象2或医生提供用餐顺序的建议、用餐速度的建议、用餐时间的建议、用餐前后的胰岛素摄取时间的建议、用餐前后的胰岛素摄取类型的建议、以及用餐前后的胰岛素摄取量的建议中相对应的一种,借由建议可以引导待测对象2,进而改善待测对象2的生活质量,也可以减去少待测对象2寻求医生以及医生提供评估建议所花费的时间。在一些示例中,指导建议还可以包括饮食参考菜单,饮食参考菜单可以包括食物名称和食物重量。在一些示例中,指导建议每次给出的饮食参考菜单可以互不相同。在这种情况下,待测对象2能够获得多种不同的菜谱。
图4a是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的睡眠记录的界面示意图;图4b是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的葡萄糖记录的界面示意图;图4c是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的睡眠分析的界面示意图;图4d是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后移动终端设备的睡眠指导信息的界面示意图。
参见图4a-4d,在一些示例中,指导建议可以包括针对同一天中不同时刻的睡眠给出的指导建议。在一些示例中,指导建议可以包括监测天数,例如,指导建议可以指出当天为使用葡萄糖监测系统1的第1天,指导建议可以指出当天为使用葡萄糖监测系统1的第2天,指导建议可以指出当天为使用葡萄糖监测系统1的第14天等。在一些示例中,与睡眠行为相关的指导信息或建议还可以包括针对睡眠时间的建议、针对睡眠前睡眠的建议、针对睡眠前运动的建议、针对睡眠前后的胰岛素摄取时间的建议、针对睡眠前后的胰岛素摄取类型的建议、以及针对睡眠前后的胰岛素摄取量的建议中的至少一种。在这种情况下,葡萄糖监测系统1能够根据已确定的波动类型为待测对象2针对睡眠时间的建议、针对睡眠前睡眠的建议、针对睡眠前运动的建议、针对睡眠前后的胰岛素摄取时间的建议、针对睡眠前后的胰岛素摄取类型的建议、以及针对睡眠前后的胰岛素摄取量的建议中的至少一种,借由建议可以引导待测对象2,进而改善待测对象2的生活质量,也可以减去少待测对象2寻求医生以及医生提供评估建议所花费的时间。 在一些示例中,指导建议还可以包括预防建议,对应不同的波动类型提供不同的分析原因及不同的预防建议。
图5a是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的运动分析的界面示意图;图5b是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的指导信息的界面示意图;图5c是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的运动记录的界面示意图;图5d是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后移动终端设备的葡萄糖浓度记录的界面示意图。
参见图5a-5d,在一些示例中,指导建议可以包括针对同一运动强度不同类型的运动以及打卡次数给出的指导建议。例如指导建议可以包括散步、快走、家务和球类对应的指导建议。在一些示例中,如上,指导建议可以包括波动类型的原因。例如,若波动类型为升高时,可以有多种的原因,例如摄入过多碳水、摄入过多脂肪、早餐结构单一、或早晨升糖激素分泌较多等原因,指导建议可以给出一个或多个原因。在这种情况下,能够令待测对象2初步推断出现相应波动类型的原因。在一些示例中,与运动行为相关的指导信息或建议还可以包括针对运动强度的建议、针对运动时间的建议、针对运动方式的建议中的至少一种。在这种情况下,葡萄糖监测系统1能够根据已确定的波动类型为待测对象2或医生提供运动强度的建议、针对运动时间的建议、针对运动方式的建议中的至少一种,借由建议引导待测对象2,进而可以改善待测对象2的生活质量,也可以减去少待测对象2寻求医生以及医生提供评估建议所花费的时间。
在一些示例中,处理模块134可以对葡萄糖数据进行降噪处理。在这种情况下,葡萄糖监测系统1能够将葡萄糖数据中可能存在的影响波动类型确定的变量消除以得到更加上准确的波动类型。
在一些示例中,处理模块134可以基于葡萄糖数据获得葡萄糖浓度曲线并对葡萄糖浓度曲线做平滑处理。在这种情况下,葡萄糖监测系统1能够为待测对象2或医生显示更加上平滑的葡萄糖动态曲线,进而能够方便医生解读葡萄糖动态曲线并进行分类,从而能够给出更加上准确的指导建议,能够提高用户体验。
在一些示例中,处理模块134可以基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,分类条件包括第一分类条件、第二分类条件、第三分类条件、和第四分类条件,第一分类条件为用餐葡萄糖波动幅度小于第一预设值;第二分类条件为第一最大葡萄糖波动幅度不小于第二预设值;第三分类条件为葡萄糖数据的第一个峰值出现在用餐时间后的第一预设时间内;第四分类条件为用餐检测点对应的葡萄糖浓度不小于第三预设值。在这种情况下,葡萄糖监测系统1能够根据处理模块134中已分类的条件及葡萄糖数据曲线的波动特征更加上迅速得到待测对象2某一用餐时间的葡萄糖浓度对应的波动类型并及时提供相应的指导建议。在一些示例中,第二预设值可以大于第一预设值,第三预设值大于第二预设值。在这种情况下,葡萄糖监测系统1可以在算法上得到优化并能够根据处理模块134中已分类的条件更加上迅速得到待测对象2某一用餐时间的葡萄糖浓度对应的波动类型并及时提供相应的指导建议。
在一些示例中,第一预设值可以为1.5至2.0mmol/L,例如第一预设值可以为1.5mmol/L、1.6mmol/L、1.7mmol/L、1.8mmol/L、1.9mmol/L、或2.0mmol/L等,优选地,第一预设值可以为1.7mmol/L或1.8mmol/L。在这种情况下,能够判断用餐前后的葡萄糖波动是否较大。在一些示例中,第二预设值可以为4.0至5.0mmol/L,例如第二预设值可以为4.1mmol/L、4.2mmol/L、4.3mmol/L、4.4mmol/L、4.5mmol/L、4.6mmol/L、4.7mmol/L、4.8mmol/L、4.9mmol/L或2.mmol/L 0等,优选地,第二预设值可以为4.4mmol/L、4.5mmol/L、或4.6mmol/L。在这种情况下,能够判断用餐后的葡萄糖波动是否较大。在一些示例中,第三预设值可以不小于7.0mmol/L。例如第三预设值可以为7.0mmol/L、7.2mmol/L、7.4mmol/L、7.6mmol/L、7.8mmol/L、8.0mmol/L、8.2mmol/L、8.4mmol/L、8.8mmol/L、9.0mmol/L或10.0mmol/L等,优选地,第三预设值可以为7.0mmol/L、7.2mmol/L、或7.4mmol/L。在这种情况下,能够判断餐前葡萄糖是否较高。由此,葡萄糖监测系统1测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。在一些示例中,第一预设时间可以为0.5至2小时。例如第一预设时间可以为0.5h、0.6h、0.7h、0.8h、0.9h、1.0h、1.2h、1.3h、1.4h、1.5h、 1.6h、1.7h、1.8h、1.9h、或2.0h,优选地,第一预设时间可以为0.8h、0.9h、1.0h、或1.2h。在这种情况下,葡萄糖监测系统1能够判断是否出现葡萄糖浓度先降后升或先升后降的情况,进而能够精确地对用餐时刻的葡萄糖浓度进行监测。在一些示例中,第一预设时间可以设置为0.5至2小时的更大或更小范围。在这种情况下,葡萄糖监测系统1能够精确地对用餐时刻的葡萄糖浓度进行监测。例如,根据上述第一分类条件、第二分类条件、第三分类条件、和第四分类条件四个分类条件,可以得出多种不同的波动类型。
图6a是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为升高的葡萄糖浓度曲线图;图6b是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为降低的葡萄糖浓度曲线图;图6c是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为先升后降的葡萄糖浓度曲线图;图6d是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为先降后升的葡萄糖浓度曲线图;图6e-1是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为波动正常餐前不高的葡萄糖浓度曲线图;图6e-2是本发明的实施方式所涉及的葡萄糖监测系统中针对用餐前后波动类型为波动正常餐前偏高的葡萄糖浓度曲线图。在一些示例中,用餐葡萄糖波动幅度可以为用餐时葡萄糖值(不定值)减去波谷最低值,第一最大葡萄糖波动幅度可以为波峰的最高值减去波谷的最低值,用餐检测点对应的葡萄糖浓度可以为餐前葡萄糖,用餐时间后的可以为距离用餐时刻后的时间。
在一些示例中,如图6a所示:波动类型为升高的葡萄糖浓度曲线的分析时段为用餐时间点至餐后4小时。波动类型为升高的葡萄糖浓度曲线的波动特征为1.波峰整体上升(部分可以下降);2.波谷的最低值不低于用餐时葡萄糖值(不定值)减去第一预设值。波动类型为升高的葡萄糖浓度曲线的公式算法为:1.用餐时葡萄糖值(不定值)减去波谷最低值<第一预设值;2.波峰的最高值减去波谷的最低值>=第二预设值。
在一些示例中,如图6b所示:波动类型为餐后葡萄糖降低的葡萄糖浓度曲线的分析时段为用餐时间点至餐后4小时。波动类型为餐后 葡萄糖降低的葡萄糖浓度曲线的波动特征为1.波峰整体下降(部分可以上升);2.波谷的最低值低于用餐时葡萄糖值(不定值)减去第一预设值。波动类型为餐后葡萄糖降低的葡萄糖浓度曲线的公式算法为1.用餐时葡萄糖值(不定值)减去波谷最低值>=第一预设值;2.波峰最高值减去波谷最低值<第二预设值。
在一些示例中,如图6c所示:波动类型为餐后葡萄糖先升后降的葡萄糖浓度曲线的分析时段为用餐时间点至餐后4小时。波动类型为餐后葡萄糖先升后降的葡萄糖浓度曲线的波动特征为1.先出现上升为主的波动,然后是下降为主的波动;2.波谷最低值低于用餐时葡萄糖值(不定值)减去第一预设值;3.第一个上升为主的波峰开始时间在距离用餐时刻的1小时内。波动类型为餐后葡萄糖先升后降的葡萄糖浓度曲线的公式算法为1.波峰最高值减去波谷最低值>=第二预设值;2.用餐时葡萄糖值(不定值)减去波谷最低值>=第一预设值。
在一些示例中,如图6d所示:波动类型为餐后葡萄糖先降后升的葡萄糖浓度曲线的分析时段为用餐时间点至餐后4小时。波动类型为餐后葡萄糖先降后升的葡萄糖浓度曲线的波动特征为1.先出现下降为主的波动,然后是上升为主的波动;2.波谷低于用餐时葡萄糖值(不定值)减去第一预设值;3.第一个下降为主的波峰开始时间在距离用餐时刻的1小时内。波动类型为餐后葡萄糖先降后升的葡萄糖浓度曲线的公式算法为1.用餐时葡萄糖值(不定值)减去波谷最低值>=第一预设值;2.波峰最高值减去波谷最低值>=第二预设值。
在一些示例中,如图6e-1所示:波动类型为餐后葡萄糖波动正常餐前不高的葡萄糖浓度曲线的分析时段为用餐时间点至餐后4小时。波动类型为餐后葡萄糖波动正常餐前不高的葡萄糖浓度曲线的波动特征为1.波峰整体先上升后下降(可以有部分上升、部分下降交替);2.波谷高于(用餐时葡萄糖值减去第一预设值)(不定值)。波动类型为餐后葡萄糖波动正常餐前不高的葡萄糖浓度曲线的公式算法为1.波峰的最高值减去波谷的最低值<第二预设值;2.用餐时葡萄糖值(不定值)减去波谷最低值<第一预设值;3.餐前葡萄糖<第三预设值。
在一些示例中,如图6e-2所示:波动类型为餐后葡萄糖波动正常餐前偏高的葡萄糖浓度曲线的分析时段为用餐时间点至餐后4小时。 波动类型为餐后葡萄糖波动正常餐前偏高的葡萄糖浓度曲线的波动特征为1.波峰整体先上升后下降(可以有部分上升、部分下降交替);2.波谷高于(用餐时葡萄糖值减去第一预设值)(不定值)。波动类型为餐后葡萄糖波动正常餐前偏高的葡萄糖浓度曲线的公式算法为1.波峰的最高值减去波谷的最低值<第二预设值;2.用餐时葡萄糖值(不定值)减去波谷最低值<第一预设值;3.餐前葡萄糖>=第三预设值。另外其他类型:分析时段为用餐时间点至餐后4小时,判断逻辑或波动特征为不符合上述5种,则波动趋势的评估结果为餐后葡萄糖无规律波动。
在一些示例中,处理模块134可以基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,分类条件可以包括第五分类条件、第六分类条件、第七分类条件、和第八分类条件,第五分类条件可以为睡眠检测点对应的葡萄糖浓度不小于第四预设值;第六分类条件可以为最低葡萄糖浓度不小于第五预设值;第七分类条件可以为第二最大葡萄糖波动幅度不小于第六预设值;第八分类条件可以为睡眠葡萄糖波动幅度不小于第七预设值。在这种情况下,葡萄糖监测系统1能够根据处理模块134中已分类的条件及葡萄糖数据曲线的波动特征更加上迅速得到待测对象2某一睡眠时间的葡萄糖浓度对应的波动类型并及时提供相应的指导建议。
在一些示例中,第四预设值可以大于第五预设值,第五预设值可以大于第六预设值,第六预设值可以等于第七预设值。在这种情况下,葡萄糖监测系统1可以在算法上得到优化并能够根据处理模块134中已分类的条件更加上迅速得到待测对象2某一睡眠时间的葡萄糖浓度对应的波动类型并及时提供相应的指导建议。在一些示例中,第四预设值可以不小于7.0mmol/L,例如第四预设值可以为7mmol/L、7.2mmol/L、7.4mmol/L、7.6mmol/L、7.8mmol/L、或8mmol/L等,优选地,第四预设值可以为7mmol/L或7.2mmol/L。在这种情况下,能够判断睡眠前后的葡萄糖波动是否较大,葡萄糖监测系统1测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。在一些示例中,第五预设值可以为3.6至4.4mmol/L,例如第五预设值可以为3.6mmol/L、3.7mmol/L、3.8mmol/L、3.9mmol/L、4.0mmol/L、4.1mmol/L、4.2mmol/L、 4.3mmol/L或4.4mmol/L等,优选地,第五预设值可以为3.6mmol/L、3.8mmol/L、3.9mmol/L或4.0mmol/L。在这种情况下,能够判断睡醒的葡萄糖波动是否较大,葡萄糖监测系统1测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。在一些示例中,第六预设值可以为3.0至3.8mmol/L,第七预设值可以为3.0至3.8mmol/L。例如第六预设值和第七预设值可以为3.0mmol/L、3.2mmol/L、3.4mmol/L、3.6mmol/L、3.8mmol/L等,优选地,第六预设值和第七预设值可以为3.2mmol/L、3.3mmol/L、或3.4mmol/L。在这种情况下,能够判断睡眠葡萄糖是否较高,葡萄糖监测系统1测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。在一些示例中,例如,根据上述第五分类条件、第六分类条件、第七分类条件、和第八分类条件四个分类条件,可以得出如下波动类型。
图7a是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为空腹血糖升高的葡萄糖浓度曲线图;图7b是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为持续高的葡萄糖浓度曲线图;图7c是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为先降低后升高的葡萄糖浓度曲线图;图7d是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动大的葡萄糖浓度曲线图;图7e-1是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动正常的葡萄糖浓度曲线图;图7e-2是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动大且葡萄糖低的葡萄糖浓度曲线图;图7e-3是本发明的实施方式所涉及的葡萄糖监测系统中针对睡眠前后波动类型为波动正常但葡萄糖低的葡萄糖浓度曲线图。在一些示例中,空腹血糖可以为睡醒检测点对应的葡萄糖浓度,最低葡萄糖浓度可以为夜间最低血糖,第二最大葡萄糖波动幅度可以为波峰最高值减去波谷最低值,睡眠葡萄糖波动幅度可以为空腹血糖减去夜间最低血糖。在一些示例中,夜间也即睡眠前的时间至睡醒的时间。
在一些示例中,如图7a所示:波动类型为空腹血糖升高的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为空腹血糖升高的葡萄糖浓度曲线的波动特征为1.空腹高血糖;2.夜间无低血 糖;3.夜间空腹血糖呈明显升高趋势。波动类型为空腹血糖升高的葡萄糖浓度曲线的公式算法为1.空腹血糖>=第四预设值;2.夜间最低血糖>第五预设值;3.空腹血糖减去夜间最低血糖>=第七预设值。波动类型为空腹血糖升高的葡萄糖浓度曲线的评估结果为:黎明现象可能。
在一些示例中,如图7b所示:波动类型为持续高的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为持续高的葡萄糖浓度曲线的波动特征为1.空腹高血糖;2.夜间无低血糖;3.夜间至空腹血糖呈降低或轻微升高趋势。波动类型为持续高的葡萄糖浓度曲线的公式算法为1.空腹血糖>=第四预设值;2.夜间最低血糖>第五预设值;3.空腹血糖减去夜间最低血糖<第七预设值。波动类型为持续高的葡萄糖浓度曲线的评估结果为:夜间高血糖。
在一些示例中,如图7c所示:波动类型为先降低后升高的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为先降低后升高的葡萄糖浓度曲线的波动特征为1.空腹高血糖;2.夜间有低血糖;3.夜间至空腹血糖呈明显升高趋势。波动类型为先降低后升高的葡萄糖浓度曲线的公式算法为1.空腹血糖>=第四预设值;2.夜间最低血糖<=第五预设值。波动类型为先降低后升高的葡萄糖浓度曲线的评估结果为:苏木杰现象可能。
在一些示例中,如图7d所示:波动类型为波动大的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为波动大的葡萄糖浓度曲线的波动特征为1.空腹血糖不高;2.夜间无低血糖;3.夜间血糖波动部分上升,部分下降,幅度较大。波动类型为波动大的葡萄糖浓度曲线的公式算法为1.空腹血糖<第四预设值;2.夜间最低血糖>第五预设值;3.波峰最高值减去波谷最低值>=第六预设值。波动类型为波动大的葡萄糖浓度曲线的评估结果为:夜间葡萄糖波动大。
在一些示例中,如图7e-1所示:波动类型为波动正常的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为波动正常的葡萄糖浓度曲线的波动特征为1.空腹血糖不高;2.夜间无低血糖;3.夜间血糖波动部分上升,部分下降,幅度较小。波动类型为波动正常的葡萄糖浓度曲线的公式算法为1.空腹血糖<第四预设值;2.夜间最低血糖>第五预设值;3.波峰最高值减去波谷最低值<第六预设值。波动 类型为波动正常的葡萄糖浓度曲线的评估结果为:夜间葡萄糖波动正常。
在一些示例中,如图7e-2所示:波动类型为波动大且葡萄糖低的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为波动大且葡萄糖低的葡萄糖浓度曲线的波动特征为1.空腹血糖不高;2.夜间有低血糖;3.夜间血糖波动部分上升,部分下降,幅度较大。波动类型为波动大且葡萄糖低的葡萄糖浓度曲线的公式算法为1.空腹血糖<第四预设值;2.夜间最低血糖<=第五预设值;3.波峰最高值减去波谷最低值>=第六预设值。波动类型为波动大且葡萄糖低的葡萄糖浓度曲线的评估结果为:夜间葡萄糖波动大且葡萄糖低的风险较大。
在一些示例中,如图7e-3所示:波动类型为波动正常但葡萄糖低的葡萄糖浓度曲线的分析时段为睡眠前的时间至睡醒的时间。波动类型为波动正常但葡萄糖低的葡萄糖浓度曲线的波动特征为1.空腹血糖不高;2.夜间有低血糖;3.夜间血糖波动部分上升,部分下降,幅度较小。波动类型为波动正常但葡萄糖低的葡萄糖浓度曲线的公式算法为1.空腹血糖<第四预设值;2.夜间最低血糖<=第五预设值;3.波峰最高值减去波谷最低值<第六预设值。波动类型为波动正常但葡萄糖低的葡萄糖浓度曲线的评估结果为:夜间葡萄糖波动正常但葡萄糖低的风险较大。另外其他类型:分析时段为睡眠前的时间至睡醒的时间,判断逻辑或波动特征为不符合上述6种,则波动趋势的评估结果为夜间血糖无规律波动。
在一些示例中,处理模块134可以基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,分类条件包括第九分类条件、第十分类条件、第十一分类条件、和第十二分类条件,第九分类条件为第一葡萄糖波动幅度不小于第八预设值;第十分类条件为第二葡萄糖波动幅度不小于第九预设值;第十一分类条件为葡萄糖数据的第一个峰值出现在运动时间后的第二预设时间内;第十二分类条件为运动检测点对应的葡萄糖浓度不小于第十预设值。在这种情况下,葡萄糖监测系统1能够根据处理模块134中已分类的条件及葡萄糖数据曲线的波动特征更加上迅速得到待测对象2某一运动时间的葡萄糖浓度对应的波动类型并及时提供相应的指导建议。在一些示例中,第九预设 值可以大于第八预设值,第十预设值大于第九预设值。在这种情况下,葡萄糖监测系统1可以在算法上得到优化并能够根据处理模块134中已分类的条件更加上迅速得到待测对象2某一运动时间的葡萄糖浓度对应的波动类型并及时提供相应的指导建议。
在一些示例中,第八预设值可以为1.5至2.0mmol/L,例如第八预设值可以为1.5mmol/L、1.6mmol/L、1.7mmol/L、1.8mmol/L、1.9mmol/L、或2.0mmol/L等,优选地,第八预设值可以为1.7mmol/L或1.8mmol/L。在这种情况下,能够判断运动前后的葡萄糖波动是否较大。
在二些示例中,第九预设值可以为1.5至2.0mmol/L,例如第九预设值可以为1.5mmol/L、1.6mmol/L、1.7mmol/L、1.8mmol/L、1.9mmol/L、或2.0mmol/L等,优选地,第九预设值可以为1.7mmol/L或1.8mmol/L。在这种情况下,能够判断运动前后的葡萄糖波动是否较大。
在一些示例中,第十预设值可以不小于7.0mmol/L。例如第十预设值可以为7.0mmol/L、7.2mmol/L、7.4mmol/L、7.6mmol/L、7.8mmol/L、8.0mmol/L、8.2mmol/L、8.4mmol/L、8.8mmol/L、9.0mmol/L或10.0mmol/L等,优选地,第十预设值可以为7.0mmol/L、7.2mmol/L、或7.4mmol/L。在这种情况下,能够判断运动前葡萄糖是否较高。由此,葡萄糖监测系统1测得的葡萄糖浓度曲线能够更加上准确地进行波动类型的分类。在一些示例中,第二预设时间可以为10分钟至1小时。例如第二预设时间可以为0.5h、0.6h、0.7h、0.8h、0.9h、1.0h,优选地,第二预设时间可以为0.8h、0.9h、1.0h。在这种情况下,葡萄糖监测系统1能够判断是否出现葡萄糖浓度先降后升或先升后降的情况,进而能够精确地对运动时刻的葡萄糖浓度进行监测。在一些示例中,第二预设时间可以设置为0.5至2小时的更大或更小范围。在这种情况下,葡萄糖监测系统1能够精确地对运动时刻的葡萄糖浓度进行监测。例如,根据上述第九分类条件、第十分类条件、第十一分类条件、和第十二分类条件四个分类条件,可以得出如下波动类型。
图8a是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为升高的葡萄糖浓度曲线图;图8b是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为降低的葡萄糖浓度曲线图;图8c是本发明的实施方式所涉及的葡萄糖监测系统中针对运 动前后波动类型为先升后降的葡萄糖浓度曲线图;图8d是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为先降后升的葡萄糖浓度曲线图;图8e-1是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为波动较小运动前不高的葡萄糖浓度曲线图;图8e-2是本发明的实施方式所涉及的葡萄糖监测系统中针对运动前后波动类型为波动较小运动前偏高的葡萄糖浓度曲线图。在一些示例中,运动检测点的葡萄糖浓度可以为运动前葡萄糖值,第一葡萄糖波动幅度可以为波峰的最高值减去运动时葡萄糖值(不定值),第二葡萄糖波动幅度可以为运动时葡萄糖值(不定值)减去波谷最低值,运动后的时间可以为距离运动时刻后的时间。
在一些示例中,如图8a所示:波动类型为升高的葡萄糖浓度曲线的分析时段为运动时间点至运动后4小时。波动类型为升高的葡萄糖浓度曲线的波动特征为1、波峰整体上升(部分可以下降)2、波峰最高值不低于开始运动时葡萄糖值(不定值)加上第八预设值;3、波谷的最低值不低于开始运动时葡萄糖值(不定值)减去第八预设值。波动类型为升高的葡萄糖浓度曲线的公式算法为1、波峰的最高值减去运动时葡萄糖值(不定值)>=第八预设值;2、运动时葡萄糖值(不定值)减去波谷最低值<第九预设值。
在一些示例中,如图8b所示:波动类型为降低的葡萄糖浓度曲线的分析时段为运动时间点至运动后4小时。波动类型为降低的葡萄糖浓度曲线的波动特征为1、波峰整体下降(部分可以上升);2、波峰最高值低于开始运动时葡萄糖值(不定值)加上第八预设值;3、波谷的最低值低于开始运动时葡萄糖值(不定值)减去第八预设值。波动类型为降低的葡萄糖浓度曲线的公式算法为1、波峰最高值减去运动时葡萄糖值(不定值)<第八预设值;2、运动时葡萄糖值(不定值)减去波谷最低值>=第九预设值。
在一些示例中,如图8c所示:波动类型为先升后降的葡萄糖浓度曲线的分析时段为运动时间点至运动后4小时。波动类型为先升后降的葡萄糖浓度曲线的波动特征为1、先出现上升为主的波动,然后是下降为主的波动;2、波峰最高值不低于开始运动时葡萄糖值(不定值)加上第八预设值;3、波谷最低值不高于开始运动时葡萄糖值(不定值) 减去第八预设值;4、第一个上升为主的波峰开始时间在距离运动时刻的0.5小时内。波动类型为先升后降的葡萄糖浓度曲线的公式算法为1、波峰最高值减去运动时葡萄糖值(不定值)>=第八预设值;2、运动时葡萄糖值(不定值)减去波谷最低值>=第九预设值。
在一些示例中,如图8d所示:波动类型为先降后升的葡萄糖浓度曲线的分析时段为运动时间点至运动后4小时。波动类型为先降后升的葡萄糖浓度曲线的波动特征为1、先出现下降为主的波动,然后是上升为主的波动;2、波峰最高值不低于开始运动时葡萄糖值(不定值)加上第八预设值;3、波谷不高于开始运动时葡萄糖值(不定值)减去第八预设值;4、第一个下降为主的波峰开始时间在距离运动时刻的0.5小时内。波动类型为先降后升的葡萄糖浓度曲线的公式算法为1、波峰最高值减去运动时葡萄糖值(不定值)>=第八预设值;2、运动时葡萄糖值(不定值)减去波谷最低值>=第九预设值。
在一些示例中,如图8e-1所示:波动类型为波动较小运动前不高的葡萄糖浓度曲线的分析时段为运动时间点至运动后4小时。波动类型为波动较小运动前不高的葡萄糖浓度曲线的波动特征为1、波峰部分上升、部分下降交替;2、波峰低于(开始运动时葡萄糖值加上第八预设值)(不定值);3、波谷高于(开始运动时葡萄糖值减去第八预设值)(不定值);4、开始运动时葡萄糖低于第十预设值。波动类型为波动较小运动前不高的葡萄糖浓度曲线的公式算法为1、波峰的最高值减去运动时葡萄糖值(不定值)<第八预设值;2、运动时葡萄糖值(不定值)减去波谷最低值<第九预设值;3、运动前葡萄糖<第十预设值。
在一些示例中,如图8e-2所示:波动类型为波动较小运动前偏高的葡萄糖浓度曲线的分析时段为运动时间点至运动后4小时。波动类型为波动较小运动前偏高的葡萄糖浓度曲线的波动特征为1、波峰部分上升、部分下降交替;2、波峰低于(运动时葡萄糖值加上第八预设值)(不定值);3、波谷高于(运动时葡萄糖值减去第八预设值)(不定值);4、开始运动时葡萄糖不低于第十预设值。波动类型为波动较小运动前偏高的葡萄糖浓度曲线的公式算法为1、波峰的最高值减去运动时葡萄糖值(不定值)<第八预设值;2、运动时葡萄糖值(不定值)减去波谷最低值<第九预设值;3、运动前葡萄糖>=第十预设值。另外其他类型:分 析时段为运动时间点至运动后4小时,判断逻辑或波动特征为不符合上述5种,则波动趋势的评估结果为运动后葡萄糖无规律波动。
虽然以上结合附图和示例对本发明进行了具体说明,但是可以理解,上述说明不以任何形式限制本发明。本领域技术人员在不偏离本发明的实质精神和范围的情况下可以根据需要对本发明进行变形和变化,这些变形和变化均落入本发明的范围内。

Claims (20)

  1. 一种葡萄糖浓度水平的葡萄糖监测系统,是用于检测待测对象的葡萄糖浓度并给出指导信息的葡萄糖监测系统,其特征在于,包括传感模块、通信模块和处理模块,所述传感模块配置成检测所述待测对象的葡萄糖数据,所述葡萄糖数据包括所述待测对象在待测时间区间内随时间变化的葡萄糖浓度;所述通信模块配置成接收所述葡萄糖数据并发送至所述处理模块;所述处理模块配置成基于所述葡萄糖数据确定葡萄糖浓度的波动类型,所述波动类型反映所述葡萄糖浓度在待测时间区间内的变化趋势,并根据所述波动类型生成与饮食行为、运动行为、或睡眠行为相关的指导信息或建议。
  2. 根据权利要求1所述的葡萄糖监测系统,其特征在于:
    还包括录入模块,所述录入模块用于录入所述待测时间区间,所述待测时间区间包括用餐前的时间至用餐后的时间、睡眠前的时间至睡醒的时间、或运动前的时间至运动后的时间。
  3. 根据权利要求2所述的葡萄糖监测系统,其特征在于:
    所述葡萄糖数据包括多个检测点的葡萄糖浓度和与所述多个检测点相匹配的检测时间,若所述待测对象录入的用餐时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为用餐检测点,若所述待测对象录入的用餐时间不在相邻两个检测点之间或不在对应的检测时间的中点,则将与所述待测对象录入的用餐时间最接近的检测点作为用餐检测点,所述用餐前的时间为所述用餐检测点对应的检测时间,所述用餐后的时间为所述用餐前的时间之后的3小时至5小时。
  4. 根据权利要求3所述的葡萄糖监测系统,其特征在于:
    所述处理模块基于所述葡萄糖数据获取所述用餐检测点的葡萄糖浓度、第一最大葡萄糖波动幅度和用餐葡萄糖波动幅度,并且基于所述用餐检测点的葡萄糖浓度、所述第一最大葡萄糖波动幅度和所述用餐葡萄糖波动幅度获得所述波动类型,其中,所述第一最大葡萄糖波动幅度为在所述用餐前的时间和所述用餐后的时间之间的检测点当中最大的葡萄糖浓度和最小的葡萄糖浓度之间 的差值,所述用餐葡萄糖波动幅度为所述用餐检测点的葡萄糖浓度与在所述用餐前的时间和所述用餐后的时间之间的检测点当中最小的葡萄糖浓度之间的差值。
  5. 根据权利要求4所述的葡萄糖监测系统,其特征在于:
    所述处理模块基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,所述分类条件包括第一分类条件、第二分类条件、第三分类条件、和第四分类条件,
    所述第一分类条件为所述用餐葡萄糖波动幅度小于第一预设值;
    所述第二分类条件为所述第一最大葡萄糖波动幅度不小于第二预设值;
    所述第三分类条件为所述葡萄糖数据的第一个峰值出现在所述用餐时间后的第一预设时间内;
    所述第四分类条件为所述用餐检测点对应的葡萄糖浓度不小于第三预设值。
  6. 根据权利要求5所述的葡萄糖监测系统,其特征在于:
    所述第一预设值为1.5至2.0mmol/L,所述第二预设值为4.0至5.0mmol/L,第三预设值不小于7.0mmol/L,所述第一预设时间为0.5至2小时。
  7. 根据权利要求2所述的葡萄糖监测系统,其特征在于:
    所述葡萄糖数据包括多个检测点的葡萄糖浓度和与所述多个检测点相匹配的检测时间,若所述待测对象录入的睡眠时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为睡眠检测点,若所述待测对象录入的睡眠时间不在相邻两个检测点之间或不在相邻两个检测点对应的检测时间的中点,则将与所述待测对象录入的睡眠时间最接近的检测点作为睡眠检测点,若所述待测对象录入的睡醒时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为睡醒检测点,若所述待测对象录入的睡醒时间不在相邻两个检测点之间或不在相邻两个检测点对应的检测时间的中点,则将与所述待测对象录入的睡醒时间最接近的检测点作为睡醒检测点,所述睡眠前的时间为所述睡眠检测点对应的检测时间,所述睡醒的时间为所述睡醒检测点对应的检测时间。
  8. 根据权利要求7所述的葡萄糖监测系统,其特征在于:
    所述处理模块基于所述葡萄糖数据获取所述睡眠检测点的葡萄糖浓度、最低葡萄糖浓度、第二最大葡萄糖波动幅度和睡眠葡萄糖波动幅度,并且基于所述睡眠检测点的葡萄糖浓度、所述第二最大葡萄糖波动幅度和所述睡眠葡萄糖波动幅度获得所述波动类型,其中,所述最低葡萄糖浓度为在所述睡眠前的时间和所述睡醒的时间之间的检测点当中最低的葡萄糖浓度,所述第二最大葡萄糖波动幅度为在所述睡眠前的时间和所述睡醒的时间之间的检测点当中最大的葡萄糖浓度和最低的葡萄糖浓度之间的差值,所述睡眠葡萄糖波动幅度为所述睡眠检测点的葡萄糖浓度与最低葡萄糖浓度之间的差值。
  9. 根据权利要求8所述的葡萄糖监测系统,其特征在于:
    所述处理模块基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,所述分类条件包括第五分类条件、第六分类条件、第七分类条件、和第八分类条件,
    所述第五分类条件为所述睡眠检测点对应的葡萄糖浓度不小于第四预设值;
    所述第六分类条件为所述最低葡萄糖浓度不小于第五预设值;
    所述第七分类条件为所述第二最大葡萄糖波动幅度不小于第六预设值;
    所述第八分类条件为所述睡眠葡萄糖波动幅度不小于第七预设值。
  10. 根据权利要求9所述的葡萄糖监测系统,其特征在于:
    所述第四预设值不小于7.0mmol/L,所述第五预设值为3.6至4.4mmol/L,所述第六预设值为3.0至3.8mmol/L,所述第七预设值为3.0至3.8mmol/L。
  11. 根据权利要求2所述的葡萄糖监测系统,其特征在于:
    所述葡萄糖数据包括多个检测点的葡萄糖浓度和与所述多个检测点相匹配的检测时间,若所述待测对象录入的运动时间位于相邻两个检测点对应的检测时间的中点,则将所述相邻两个检测点当中的任一个检测点作为运动检测点,若所述待测对象录入的运动时间不在相邻两个检测点之间或不位于相邻两个检测点对应的检测时间的中点,则将与所述待测对象录入的运动时间最接近的 检测点作为运动检测点,所述运动前的时间为所述运动检测点对应的检测时间,所述运动后的时间为所述运动前的时间之后的3小时至5小时。
  12. 根据权利要求11所述的葡萄糖监测系统,其特征在于:
    所述处理模块基于所述葡萄糖数据获取所述运动检测点的葡萄糖浓度、第一葡萄糖波动幅度和第二葡萄糖波动幅度,并且基于所述运动检测点的葡萄糖浓度、所述第一葡萄糖波动幅度和所述第二葡萄糖波动幅度获得所述波动类型,其中,所述第一葡萄糖波动幅度为在所述运动前的时间和所述运动后的时间之间的检测点当中最大的葡萄糖浓度和所述运动检测点的葡萄糖浓度之间的差值,所述第二葡萄糖波动幅度为所述运动检测点的葡萄糖浓度与在所述运动前的时间和所述运动后的时间之间的检测点当中最小的葡萄糖浓度之间的差值。
  13. 根据权利要求12所述的葡萄糖监测系统,其特征在于:
    所述处理模块基于与葡萄糖浓度相关的分类条件对葡萄糖浓度的波动类型进行分类,所述分类条件包括第九分类条件、第十分类条件、第十一分类条件、和第十二分类条件,
    所述第九分类条件为所述第一葡萄糖波动幅度不小于第八预设值;
    所述第十分类条件为所述第二葡萄糖波动幅度不小于第九预设值;
    所述第十一分类条件为所述葡萄糖数据的第一个峰值出现在所述运动时间后的第二预设时间内;
    所述第十二分类条件为所述运动检测点对应的葡萄糖浓度不小于第十预设值。
  14. 根据权利要求13所述的葡萄糖监测系统,其特征在于:
    所述第八预设值为1.5至2.0mmol/L,所述第九预设值为1.5至2.0mmol/L,所述第十预设值不小于7.0mmol/L,所述第二预设时间为10分钟至1小时。
  15. 根据权利要求1所述的葡萄糖监测系统,其特征在于:
    所述波动类型包括升高、降低、先升后降、先降后升、波动正常餐前不高、波动正常餐前偏高、波动正常运动前不高和波动正常运动前偏高、持续高、波动大、波动正常、波动大且葡萄糖低、和波动正常但葡萄糖低。
  16. 根据权利要求1所述的葡萄糖监测系统,其特征在于:
    与饮食行为相关的指导信息或建议包括针对用餐顺序的建议、针对用餐速度的建议、针对用餐时间的建议、针对用餐前后的胰岛素摄取时间的建议、针对用餐前后的胰岛素摄取类型的建议、以及针对用餐前后的胰岛素摄取量的建议中的至少一种;
    与睡眠行为相关的指导信息或建议包括针对睡眠时间的建议、针对睡眠前睡眠的建议、针对睡眠前运动的建议、针对睡眠前后的胰岛素摄取时间的建议、针对睡眠前后的胰岛素摄取类型的建议、以及针对睡眠前后的胰岛素摄取量的建议中的至少一种;
    与运动行为相关的指导信息或建议包括针对运动强度的建议、针对运动时间的建议、针对运动方式的建议中的至少一种。
  17. 根据权利要求1所述的葡萄糖监测系统,其特征在于:
    所述处理模块对所述葡萄糖数据进行降噪处理,所述处理模块基于所述葡萄糖数据获得葡萄糖浓度曲线并对所述葡萄糖浓度曲线做平滑处理;所述传感模块用于获取组织间液中的葡萄糖浓度,所述传感模块以预设频率获取葡萄糖浓度。
  18. 根据权利要求2所述的葡萄糖监测系统,其特征在于:
    所述葡萄糖监测系统还包括显示模块,所述显示模块配置成显示指导信息、葡萄糖浓度曲线和波动类型中的至少一种。
  19. 根据权利要求18所述的葡萄糖监测系统,其特征在于:
    所述录入模块、所述处理模块和所述显示模块集成于移动终端设备,所述移动终端设备具有软件程序,所述软件程序配置为通过录入模块录入所述待测对象的用餐时间、睡眠时间、和运动时间,通过处理模块获得波动类型和指导信息,并且通过所述显示模块显示指导信息。
  20. 根据权利要求1所述的葡萄糖监测系统,其特征在于:
    所述传感模块通过能够与葡萄糖反应的传感器组件来检测待测对象的组 织间液的葡萄糖浓度;所述通信模块通过无线方式或有线方式将所述葡萄糖数据传输至所述处理模块;所述无线方式包括蓝牙、Wi-Fi、3G/4G/5G、NFC、UWB和Zig-Bee中的至少一种。
PCT/CN2022/118890 2021-09-15 2022-09-15 葡萄糖浓度水平的葡萄糖监测系统 WO2023040925A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111078114.4 2021-09-15
CN202111078114.4A CN115804593A (zh) 2021-09-15 2021-09-15 针对用餐前后的葡萄糖浓度水平的葡萄糖监测系统
CN202111078338.5 2021-09-15
CN202111078335.1A CN115804594A (zh) 2021-09-15 2021-09-15 针对运动前后的葡萄糖浓度水平的葡萄糖监测系统
CN202111078335.1 2021-09-15
CN202111078338.5A CN115804595A (zh) 2021-09-15 2021-09-15 针对睡眠前后的葡萄糖浓度水平的葡萄糖监测系统

Publications (1)

Publication Number Publication Date
WO2023040925A1 true WO2023040925A1 (zh) 2023-03-23

Family

ID=85602443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118890 WO2023040925A1 (zh) 2021-09-15 2022-09-15 葡萄糖浓度水平的葡萄糖监测系统

Country Status (1)

Country Link
WO (1) WO2023040925A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053121A1 (en) * 2007-06-18 2011-03-03 Roche Diagnostics International Ag Method and glucose monitoring system for monitoring individual metabolic response and for generating nutritional feedback
US20140188400A1 (en) * 2012-12-31 2014-07-03 Abbott Diabetes Care Inc. Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
CN105160199A (zh) * 2015-09-30 2015-12-16 刘毅 基于持续血糖监测并具有干预信息的糖尿病管理信息处理和展示方法
CN109637677A (zh) * 2019-01-25 2019-04-16 北京中器华康科技发展有限公司 一种基于血糖监测的2型糖尿病监控系统及在疾病监控系统中的应用
CN111655128A (zh) * 2018-02-09 2020-09-11 德克斯康公司 用于决策支持的系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053121A1 (en) * 2007-06-18 2011-03-03 Roche Diagnostics International Ag Method and glucose monitoring system for monitoring individual metabolic response and for generating nutritional feedback
US20140188400A1 (en) * 2012-12-31 2014-07-03 Abbott Diabetes Care Inc. Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
CN105160199A (zh) * 2015-09-30 2015-12-16 刘毅 基于持续血糖监测并具有干预信息的糖尿病管理信息处理和展示方法
CN111655128A (zh) * 2018-02-09 2020-09-11 德克斯康公司 用于决策支持的系统和方法
CN109637677A (zh) * 2019-01-25 2019-04-16 北京中器华康科技发展有限公司 一种基于血糖监测的2型糖尿病监控系统及在疾病监控系统中的应用

Similar Documents

Publication Publication Date Title
US11331051B2 (en) Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
AU2022200642B2 (en) Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
Mazze et al. Ambulatory glucose profile: representation of verified self-monitored blood glucose data
EP2006786B1 (en) Method and glucose monitoring system for monitoring individual metabolic response and for generating nutritional feedback
US11730424B2 (en) Methods and systems to detect eating
CN111588384A (zh) 获得血糖检测结果的方法、装置及设备
WO2023040925A1 (zh) 葡萄糖浓度水平的葡萄糖监测系统
CN115804595A (zh) 针对睡眠前后的葡萄糖浓度水平的葡萄糖监测系统
WO2023124316A1 (zh) 葡萄糖监测系统
CN109788911B (zh) 用于从指示葡萄糖水平的葡萄糖监测数据确定碳水化合物摄入事件的方法和系统以及非暂时性计算机可读介质
CN114159052A (zh) 具个人化饮食代谢监测、分析、预测及管理系统的血糖机
CN115804593A (zh) 针对用餐前后的葡萄糖浓度水平的葡萄糖监测系统
CN116407123A (zh) 用于识别黄昏现象的葡萄糖监测系统
US20230284938A1 (en) Information processing apparatus and information processing program
CN115530765A (zh) 一种呼吸障碍检测方法、装置、设备及存储介质
Wang Research on the Application of Intelligent Wearable Devices in the Diagnosis of Internet of Things Platform Based on Computer Artificial Intelligence
Szántó et al. Utilization of IMU-Based Gesture Recognition in the Treatment of Diabetes
CN202908849U (zh) 无线生命信号管理系统
US20170049370A9 (en) Combined non invasive blood glucose monitor device
TW201338757A (zh) 具運動量測定功能之生物感測器及其遠端醫療系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE