WO2023040712A1 - 地图数据处理方法和装置 - Google Patents

地图数据处理方法和装置 Download PDF

Info

Publication number
WO2023040712A1
WO2023040712A1 PCT/CN2022/117432 CN2022117432W WO2023040712A1 WO 2023040712 A1 WO2023040712 A1 WO 2023040712A1 CN 2022117432 W CN2022117432 W CN 2022117432W WO 2023040712 A1 WO2023040712 A1 WO 2023040712A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
shadow
map
area
indicate
Prior art date
Application number
PCT/CN2022/117432
Other languages
English (en)
French (fr)
Inventor
费雯凯
刘建琴
伍勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020247012872A priority Critical patent/KR20240063975A/ko
Publication of WO2023040712A1 publication Critical patent/WO2023040712A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Definitions

  • the present application relates to the technical field of electronic maps, in particular to a map data processing method and device.
  • HD Map High-Definition Map
  • HD MAP high-definition map
  • Such means can improve the accuracy of vehicle perception and decision-making, and can also provide vehicles with traffic information beyond the visual range for forward-looking predictions.
  • the embodiment of the present application proposes a map data processing method and device.
  • a method for processing map data is provided, and the method may be executed by, for example, a map generating device, a server, a vehicle, a portable terminal or an application program.
  • the method includes: acquiring shadow information, the shadow information is used to indicate the shadow area, the shadow information includes position information, the position information is used to indicate the geographic location of the shadow area; and storing the shadow information as the data of the map.
  • the shadow area is a surface area that receives light intensity weaker than the surrounding area, for example, it can be a surface area covered by the shadow of a nearby building, a surface area covered by a roof, a tunnel area, or a spot covered by leaves under a lush tree. covered surface area.
  • the location information is expressed based on coordinates or map elements.
  • the shadow information further includes an identifier of the shadow area, which facilitates maintenance of the shadow information in the map.
  • the embodiment of this application introduces a new type of map carrying content, shadow information for indicating shadow areas, so that the map can provide users with prior information or real-time information on shadow areas, greatly improving the richness of map content To a certain extent, it can meet more map usage needs of users.
  • the acquiring shadow information includes: generating the shadow information.
  • the shadow information can be generated by making statistics on the perception data obtained by map collection vehicles or crowdsourcing vehicles or roadside equipment, combined with other information such as weather conditions.
  • the acquiring shadow information includes: receiving the shadow information.
  • the receiving shadow information includes receiving the shadow information from other devices, components, chips, interfaces, hardware modules or software modules.
  • the shadow information further includes geometric information, time information, shadow degree information, confidence at least one of degree information and cause information, wherein the geometric information is used to indicate the shape or size of the shadow area, the time information is used to indicate the time period in which the shadow area exists, and the shadow degree information is used to indicate the The degree of shadow of the shadow area, the confidence level information is used to indicate the credibility of the shadow area, and the cause information is used to indicate the cause of the shadow area.
  • the time information includes at least one of a year field, a quarter field, a month field, a date field, an hour field, a minute field and a time stamp.
  • the shade degree includes an average light intensity of the shaded area, a light intensity difference between the shaded area and a non-shaded area, an image brightness difference between the shaded area and the non-shaded area, and a difference between the shaded area and the non-shaded area. At least one of image contrast and shadow level of the non-shaded area.
  • the confidence level information is determined according to at least one of the following factors: weather conditions, reliability of collection equipment, reliability of collection methods, and statistical data volume.
  • the shadow information may include at least one of the above-mentioned information as dynamic information in the map.
  • the shadow information may include at least one of the above information, which is static information in the map.
  • storing the shadow information as the map data includes: The data structure for storing events in the map stores the shadow information.
  • the shadow information is stored in units of tiles, and each tile includes a plurality of shadow information for indicating a plurality of shadow regions.
  • sending the shadow information is further included.
  • the map data processing method further includes displaying or controlling to display the shadow area based on the shadow information.
  • displaying the shadow area based on the shadow information includes: receiving a shadow display trigger instruction input by a user; based on the shadow display trigger instruction, superimposing the shadow information on other information of the map for display or controlling display.
  • the display area corresponding to the shaded area has a different grayscale, color, saturation or superposition pattern than other display areas.
  • the shadow information further includes time information
  • the time information is used to indicate the time period in which the shadow area exists
  • displaying the shadow area based on the shadow information includes: displaying or controlling to display the shadow based on the time information Region changes over time.
  • the shading degree information is used to indicate the shading degree of the shading area, and displaying or controlling displaying the shading area based on the shading information includes: , Saturation, or Pattern Density displays or controls display information about the degree of shading.
  • the cause information is used to indicate the cause of the shadow area, and displaying the shadow area based on the shadow information includes: using different grayscales, colors, saturation or patterns
  • the density display or control displays the cause information.
  • displaying or controlling to display the shadow area based on the shadow information includes: determining the display area of the shadow area on the display interface according to the position information and the boundary information of the map elements in the map; on the display area Displays or controls the display of this shaded area.
  • the display area is a section of the road; when the map element is a lane, the display area is a section of the lane.
  • the map data processing method further includes: obtaining perception data about the target object; according to the perception data and The shadow information identifies the target object.
  • identifying the target object includes identifying the category, name, outline, color, pattern, or whether the target object is three-dimensional.
  • the obtaining the sensing data about the target object includes: receiving the sensing data from the vehicle; the method further includes: sending target indicating information to the vehicle, the target indicating information is used to indicate whether the target object exists or to indicate The characteristics of this target object.
  • the feature includes the category, name, outline, color, pattern, or attributes of the target object whether it is three-dimensional.
  • the obtaining the sensing data about the target object includes: obtaining the sensing data sensed by a sensing device; the method further includes: making a driving decision according to the identification result.
  • the sensing device includes a camera, a millimeter-wave radar, a lidar, or a millimeter-wave radar.
  • the map data processing method further includes: obtaining driving data of the vehicle, the driving data is used to indicate the The driving position of the vehicle; according to the driving data and the shadow information, it is determined that the vehicle will enter the shadow area within a time less than the first threshold, or the distance between the vehicle and the shadow area ahead of the driving direction is less than the second threshold.
  • the obtaining the driving data of the vehicle includes receiving the driving data from the vehicle; the method further includes: sending a reminder message to the vehicle, where the reminder message is used to indicate that the vehicle is about to enter a shaded area.
  • the method further includes: reminding the user to perform at least one of the following operations: slow down, turn on a light, turn on a warning light, and sound a horn.
  • the method further includes: controlling the vehicle to perform at least one of the following operations: decelerating, turning on lighting, turning on warning lights and sounding the horn.
  • the map data processing method further includes: acquiring the parking demand information of the user, and the parking demand information is used for Indicating at least one of the estimated parking area, parking start time, parking end time and parking duration; and selecting at least one parking space according to the parking demand information and the shadow information.
  • acquiring the parking demand information of the user includes receiving the parking demand information from the mobile terminal.
  • the method further includes: sending parking space recommendation information to the mobile terminal, where the parking space recommendation information is used to indicate the at least one parking space.
  • the mobile terminal includes but is not limited to a vehicle or a portable terminal (such as a mobile phone, a PAD, a navigator).
  • acquiring the user's parking demand information includes: acquiring the parking demand information through user input, or acquiring the parking demand information through navigation information.
  • the method further includes recommending the parking space to the user on a display interface.
  • the map data processing method also includes: acquiring the travel information of the user; according to the travel information and the shadow The information plans the travel route or boarding location for the user.
  • obtaining the travel information of the user includes: receiving the travel information from the mobile terminal
  • the method further includes: sending travel advice information to the mobile terminal, where the travel advice information is used to indicate the travel route or the boarding location.
  • the mobile terminal includes but is not limited to a vehicle or a portable terminal (such as a mobile phone, a PAD, a navigator).
  • the travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination.
  • the travel route is the route with the longest section length covered by the shaded area, or the route with the largest ratio of the length of the section covered by the shaded area to the total length of the journey, or the shortest length of the section covered by the non-shaded area , or the route with the smallest ratio of the length of the road segment covered by the non-shaded area to the total length of the distance.
  • the method further includes recommending the travel route to the user on a display interface.
  • the map data processing method also includes: acquiring the user's solar charging demand information; according to the solar charging demand The information and the shadow information determine a first location for charging in a stationary state or a first route for charging in a mobile state.
  • acquiring the user's solar charging requirement information includes receiving the user's solar charging requirement information from the mobile terminal.
  • the method further includes: sending solar charging indication information to the mobile terminal, where the solar charging indication information is used to indicate the first location or the first route.
  • the mobile terminal includes but is not limited to a vehicle or a portable terminal (such as a mobile phone, a PAD, a navigator).
  • the solar charging demand information includes at least one of charging location area, charging start time, charging end time and charging duration.
  • the method further includes recommending the first location or the first route to the user on a display interface.
  • the map data processing method further includes: determining the position and brightness for laser projection according to the shadow information and at least one of hue.
  • the shadow information further includes time information, where the time information is used to indicate the time zone in which the shadow area exists.
  • the method further includes: determining the time for laser projection according to the shadow information.
  • a map data processing device in a second aspect, includes: a first acquisition unit, configured to acquire shadow information, the shadow information is used to indicate a shadow area, the shadow information includes position information, and the position information is used Indicating the geographic location of the shadow area; a storage unit configured to store the shadow information as data of the map.
  • the location information is expressed based on coordinates or map elements.
  • the shadow information also includes an identifier of the shadow area.
  • the first acquisition unit is a first processing unit for generating the shadow information.
  • the first acquisition unit is a first receiver for receiving the shadow information unit.
  • the first processing unit is configured to: generate the shadow information by combining with other information such as weather conditions by making statistics on the perception data acquired by the map collection vehicle or the crowdsourcing vehicle or roadside equipment.
  • the first receiving unit is configured to receive the shadow information from other devices, components, chips, interfaces, hardware modules or software modules.
  • the shadow information further includes geometric information, time information, shadow degree information, confidence at least one of degree information and cause information, wherein the geometric information is used to indicate the shape or size of the shadow area, the time information is used to indicate the time period in which the shadow area exists, and the shadow degree information is used to indicate the The degree of shadow of the shadow area, the confidence level information is used to indicate the credibility of the shadow area, and the cause information is used to indicate the cause of the shadow area.
  • the time information includes at least one of a year field, a quarter field, a month field, a date field, an hour field, a minute field and a time stamp.
  • the shade degree includes an average light intensity of the shaded area, a light intensity difference between the shaded area and a non-shaded area, an image brightness difference between the shaded area and the non-shaded area, and a difference between the shaded area and the non-shaded area. At least one of image contrast and shading levels between the non-shaded areas.
  • the confidence level information is determined according to at least one of the following factors: weather conditions, reliability of collection equipment, reliability of collection methods, and statistical data volume.
  • the storage unit is configured to: store the event data in the map The structure stores the shadow information.
  • the shadow information is stored in units of tiles, and each tile includes a plurality of shadow information for indicating a plurality of shadow regions.
  • the device further includes: a first sending unit, configured to send the shadow information .
  • the device further includes: a display unit, configured to display the shaded area.
  • the display unit is independent of the device, and the device further includes a control unit for controlling the display of the shadow area based on the shadow information.
  • the device further includes: an input unit, configured to receive user input for shadow display Trigger command.
  • the input unit is independent from the device, the device further includes a receiving unit for receiving a shadow display trigger instruction input by a user.
  • the display unit based on the shadow display trigger instruction, superimposes the shadow information on other information of the map for display. or a control unit, based on the shadow display trigger command, to control the display of the shadow area
  • the display area corresponding to the shaded area has a different grayscale, color, saturation, or overlay pattern.
  • the shadow information further includes time information, where the time information is used to indicate The period of time that this shaded area exists.
  • the display unit is configured to display changes of the shaded area over time based on the time information.
  • the control unit is used for controlling the display of the shaded area over time based on the time information.
  • the shadow information further includes shadow degree information, where the shadow degree information is represented by to indicate the degree of shading of the shaded area.
  • the display unit is used to display the shade degree information through different grayscales, colors, saturations or pattern densities.
  • the control unit is used to control and display the shade degree information through different gray scales, colors, saturation or pattern densities.
  • the shadow information further includes cause information, where the cause information is used to indicate The reason for this shaded area.
  • the display unit is configured to: display the cause information through different grayscales, colors, saturations or pattern densities.
  • the control unit is used to display the cause information by controlling different gray levels, colors, saturation or pattern densities.
  • the device further includes a second processing unit, configured to The boundary information of the map element in the map determines the display area of the shadow area on the display interface; the display unit is used to display the shadow area on the display area, or the control unit is used to control the display area to display the shadow area on the display area shaded area.
  • the display area is a section of the road; when the map element is a lane, the display area is a section of the lane.
  • the device further includes: a second acquisition unit, configured to obtain information about the target object the perception data; the third processing unit is configured to identify the target object according to the perception data and the shadow information.
  • the third processing unit identifies the category, name, outline, color, pattern, or whether the target object is three-dimensional.
  • the second acquiring unit is a second receiving unit for receiving the sensing data from the vehicle.
  • the device further includes: a second sending unit, configured to send target indication information to the vehicle, where the target indication information is used to indicate the attribute of the target object.
  • a second sending unit configured to send target indication information to the vehicle, where the target indication information is used to indicate the attribute of the target object.
  • the attribute includes the category, name, outline, color, pattern or whether the target object is three-dimensional.
  • the second obtaining unit is configured to obtain the sensing data sensed by the sensing device; the third processing unit is configured to: make a driving decision according to the identification result.
  • the sensing device includes a camera, millimeter wave radar, lidar or millimeter wave radar.
  • the device further includes: a third acquisition unit, configured to obtain the driving data, the driving data is used to indicate the driving position of the vehicle; the fourth processing unit is used to determine, according to the driving data and the shadow information, that the vehicle will enter the shadow area within a time less than the first threshold, or the vehicle The distance to the shaded area ahead in the direction of travel is smaller than a second threshold value.
  • the third acquiring unit is a third receiving unit for receiving the driving data from the vehicle.
  • the device further includes a third sending unit, configured to send a reminder message to the vehicle, where the reminder message is used to indicate that the vehicle is about to enter the shaded area.
  • a third sending unit configured to send a reminder message to the vehicle, where the reminder message is used to indicate that the vehicle is about to enter the shaded area.
  • the device further includes an output unit, configured to remind the user to perform at least one of the following operations: slow down, turn on a light, turn on a warning light, and sound a horn.
  • the device further includes a control unit, configured to control the vehicle to perform at least one of the following operations: decelerate, turn on lighting, turn on warning lights and sound the horn.
  • a control unit configured to control the vehicle to perform at least one of the following operations: decelerate, turn on lighting, turn on warning lights and sound the horn.
  • the device further includes: a fourth acquisition unit, configured to acquire user
  • the parking demand information is used to indicate at least one of the expected parking area, parking start time, parking end time, and parking duration;
  • the fifth processing unit is configured to, according to the parking demand information and the shadow information , select at least one parking space.
  • the fourth acquiring unit is a fourth receiving unit for receiving the parking demand information from the mobile terminal
  • the device further includes a fourth sending unit for sending the parking space recommendation information to the mobile terminal, the parking space
  • the recommendation information is used to indicate the at least one parking space.
  • the mobile terminal includes but is not limited to a vehicle or a portable terminal (such as a mobile phone, a tablet computer, a notebook computer, a navigator or a smart wearable device).
  • the fourth obtaining unit is configured to obtain the parking demand information through user input, or obtain the parking demand information through navigation information.
  • the device further includes a display unit, configured to recommend the parking space to the user on a display interface.
  • a control unit is also included, configured to control the display of the parking space recommended to the user on the display interface.
  • the device further includes:
  • the fifth acquisition unit is used to acquire travel information of the user
  • the sixth processing unit is configured to plan a travel route or a boarding location for the user according to the travel information and the shadow information.
  • the fifth obtaining unit is a fifth receiving unit configured to receive the travel information from a mobile terminal
  • the device further includes a fifth sending unit, configured to send travel advice information to the mobile terminal, where the travel advice information is used to indicate the travel route or the boarding location.
  • the mobile terminal includes but is not limited to vehicles or portable terminals (such as mobile phones, PADs, navigators).
  • the travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination.
  • the travel route satisfies the minimum length of routes not covered by the shaded area.
  • the device further includes a display unit, configured to recommend the travel route to the user on a display interface.
  • a control unit is further included, configured to control the display of the travel route recommended to the user on the display interface.
  • the device further includes: a sixth acquisition unit, configured to acquire the user's solar energy Charging demand information; a seventh processing unit, configured to determine a first location for charging in a stationary state or a first route for charging in a moving state according to the solar charging demand information and the shadow information.
  • the sixth obtaining unit is a sixth receiving unit configured to receive the user's solar charging demand information from the mobile terminal.
  • the device further includes a sixth sending unit, configured to send solar charging indication information to the mobile terminal, where the solar charging indication information is used to indicate the first location or the first route.
  • the mobile terminal includes but is not limited to vehicles or portable terminals (such as mobile phones, PADs, navigators).
  • the solar charging demand information includes at least one of charging location area, charging start time, charging end time and charging duration.
  • the device further includes a display unit, configured to recommend the first location or the first route to the user on a display interface.
  • a control unit is further included, configured to control the display on the display interface recommending the first location or the first route to the user.
  • the device further includes an eighth processing unit, configured to determine according to the shadow information At least one of position, brightness and hue for laser projection.
  • the shadow information further includes time information, where the time information is used to indicate the time zone in which the shadow area exists.
  • the eighth processing unit is further configured to determine the time for laser projection according to the shadow information.
  • a map data processing device in a third aspect, includes a processor and a memory, the memory stores computer instructions, and the processor executes the computer instructions, so that the map data processing device performs the above-mentioned first aspect or The map data processing method described in any possible implementation manner of the first aspect.
  • a map data processing device in a fourth aspect, includes a processor and a communication interface, the processor reads computer instructions through the communication interface, and runs the computer instructions, so that the map data processing device executes The map data processing method described in the above first aspect or any possible implementation manner of the first aspect.
  • a computer-readable storage medium stores computer instructions, and when the computer instructions are executed by a processor, the above-mentioned first aspect or any possible implementation of the first aspect is realized The map data processing method described by the method.
  • a computer program product includes computer instructions, and when the computer instructions are executed by a processor, the map data described in the above-mentioned first aspect or any possible implementation manner of the first aspect is realized. Approach.
  • an electronic map product in a seventh aspect, includes shadow information for indicating a shadow area, and the shadow information includes position information for indicating a geographic location of the shadow area.
  • the shadow information is stored in the map as an event data structure.
  • the location information is expressed based on coordinates or map elements.
  • the shadow information further includes an identifier of the shadow area.
  • the shadow information further includes geometric information, time information, shadow degree information and confidence At least one item of information, wherein the geometric information is used to indicate the shape or size of the shadow area, the time information is used to indicate the time period in which the shadow area exists, and the shadow degree information is used to indicate the shadow of the shadow area Degree, the confidence information is used to indicate the degree of credibility of the shaded area.
  • the time information includes a year field, a quarter field, a month field, a date field, an hour At least one of field, minute field, and timestamp.
  • the shadow degree includes the average light intensity of the shadow area, the shadow area and At least one of an illumination intensity difference between non-shaded areas, an image brightness difference between the shadowed area and the non-shaded area, an image contrast between the shadowed area and the non-shaded area, and a shadow level.
  • the confidence level information is determined according to at least one of the following factors:
  • the weather conditions The reliability of the collection equipment, the reliability of the collection method and the amount of statistical data.
  • the shadow information is stored in units of tiles, and each tile A plurality of shading information indicating a plurality of shading areas is included.
  • a computer-readable storage medium stores the electronic map product described in the seventh aspect or any possible implementation manner of the seventh aspect.
  • a ninth aspect provides a vehicle, which includes the map data processing device described in the second aspect, the third aspect, the fourth aspect, or any possible implementation manner of the second to fourth aspects.
  • a system includes a first map data processing device and a second map data processing device.
  • the first map data processing device is used to execute the map data processing method in the above first aspect or any one of the possible implementations of the first aspect when the acquisition of shadow information is to generate shadow information;
  • the second The map data processing device is configured to execute the map data processing method in the above first aspect or any possible implementation manner of the first aspect when acquiring shadow information is receiving shadow information.
  • FIG. 1 is a schematic diagram of content indicated by map information provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a dynamic layer and a static layer in a map provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an expression of shadow information provided by the embodiment of the present application.
  • Fig. 5A is a schematic diagram of geometric information about shadow areas based on polygonal expression provided by the embodiment of the present application
  • Fig. 5B is a schematic diagram of the geometric information about the shadow area expressed based on the lane section segment provided by the embodiment of the present application
  • Fig. 6 is a flow chart of a map data processing method provided by an embodiment of the present application.
  • Fig. 7 is a flow chart of the first map data processing method executed on the map generation side provided by the embodiment of the present application
  • Fig. 8 is a flow chart of the second map data processing method executed on the map generation side provided by the embodiment of the present application
  • Fig. 9 is a flow chart of the third map data processing method executed on the map generation side provided by the embodiment of the present application
  • Fig. 10 is a flow chart of the fourth map data processing method executed on the map generation side provided by the embodiment of the present application
  • Fig. 11 is a flow chart of the fifth map data processing method executed on the map receiving side provided by the embodiment of the present application
  • Fig. 12A is a flow chart of the sixth map data processing method executed on the map receiving side provided by the embodiment of the present application
  • Fig. 12B is a flow chart of the seventh map data processing method executed on the map receiving side provided by the embodiment of the present application
  • Figure 13 is a schematic diagram of displaying shadow information on a map based on user selection provided by an embodiment of the present application
  • Fig. 14 is a schematic diagram of displaying the shaded area differently from other areas provided by the embodiment of the present application
  • Fig. 15 is a schematic diagram of displaying different shadow information differently on the map provided by the embodiment of the present application
  • Fig. 16A is a first schematic diagram of dynamically displaying shadow information on a map provided by the embodiment of the present application
  • Fig. 16B is a second schematic diagram of dynamically displaying shadow information on a map provided by the embodiment of the present application
  • Fig. 16C is a third schematic diagram of dynamically displaying shadow information on a map provided by the embodiment of the present application
  • Fig. 17 is a schematic diagram of displaying shadow information combined with the boundaries of map elements provided by the embodiment of the present application
  • Figure 18 is a schematic diagram of an application scenario where shadow information is applied to target recognition provided by the embodiment of the present application
  • Fig. 19 is an interaction flow chart of the application of shadow information to object recognition cloud service provided by the embodiment of the present application
  • Fig. 20 is a schematic diagram of an application scenario where shadow information is applied to assisted driving provided by the embodiment of the present application
  • Fig. 21A is the first interaction flow chart of applying shadow information to assisted driving cloud service provided by the embodiment of the present application
  • Fig. 21B is the second interaction flow chart of applying shadow information to assisted driving cloud service provided by the embodiment of the present application
  • Fig. 22 is a schematic diagram of a user input interface where shadow information is applied to an application for finding a parking space provided by an embodiment of the present application
  • Figure 23 is a schematic diagram of the first interface for recommending sun-protected parking spaces in the application program provided by the embodiment of the present application
  • Figure 24 is a schematic diagram of the second interface for recommending sun-protected parking spaces in the application program provided by the embodiment of the present application
  • Figure 25 is a schematic diagram of the third interface for recommending sun-protected parking spaces in the application program provided by the embodiment of the present application
  • Figure 26 is a schematic diagram of the fourth interface for recommending sun-protected parking spaces in the application program provided by the embodiment of the present application
  • Fig. 27 is an interactive flow chart of applying shadow information to parking space recommendation cloud service provided by the embodiment of the present application
  • Fig. 28 is a schematic diagram of a display interface for recommending a travel route in an application provided by an embodiment of the present application
  • Fig. 29 is an interactive flowchart of applying shadow information to travel route recommendation cloud service provided by the embodiment of the present application
  • Fig. 30 is a schematic diagram of a display interface for recommending boarding points in an application provided by an embodiment of the present application
  • Fig. 31 is an interaction flow chart of applying shadow information to the boarding point recommendation cloud service provided by the embodiment of the present application
  • Fig. 32A is a schematic diagram of the first application scenario where shadow information provided by the embodiment of the present application is applied to solar charging
  • Fig. 32B is a schematic diagram of a second application scenario in which shadow information provided by the embodiment of the present application is applied to solar charging
  • Fig. 33 is an interactive flow chart of application of shadow information to solar charging cloud service provided by the embodiment of the present application
  • Fig. 34 is a schematic diagram of an application scenario where shadow information is applied to laser projection provided by an embodiment of the present application
  • Figure 35 is a structural block diagram of the first map data processing device provided by the embodiment of the present application.
  • Fig. 36 is a structural block diagram of the second map data processing device provided by the embodiment of the present application.
  • Fig. 37 is a structural block diagram of the third map data processing device provided by the embodiment of the present application.
  • Fig. 38 is a structural block diagram of the fourth map data processing device provided by the embodiment of the present application.
  • the number of described objects is not limited by the prefixes, and may be one or more. Taking “the first device” as an example, the number of “device” may be one or more.
  • the objects modified by different prefixes can be the same or different, for example, if the described object is "equipment”, then “first equipment” and “second equipment” can be the same equipment, the same type of equipment or different types of equipment ; For another example, if the described object is "information”, then “first information” and “second information” may be information of the same content or information of different content. .
  • the use of prefixes used to distinguish the described objects in the embodiments of the present application does not constitute a restriction on the described objects. For the description of the described objects, please refer to the claims or the description of the context in the embodiments. It should not be because of the use of such prefixes constitute redundant restrictions.
  • a description such as "at least one (or at least one) of a1, a2, ... and an” is used, including any one of a1, a2, ... and an.
  • the case of being alone also includes the case of any combination of any number of a1, a2, ... and an, and each case can exist alone.
  • the description of "at least one of a, b, and c" includes a alone, b alone, c alone, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of abc Condition.
  • the map is the carrier of geographical information, carrying rich geographic location information, such as a city street view shown in Figure 1, in which the topological structure of the road, the division of lanes, the layout and attributes of various buildings and other information can be used as map data are stored as part of the map information.
  • rich geographic location information such as a city street view shown in Figure 1
  • map information becomes more and more abundant.
  • high-precision maps can also include information about moving vehicles, pedestrians, and other non-fixed locations, and even traffic information. Time-varying information such as the status of lights, road construction, weather conditions or traffic flow.
  • the map in the embodiment of the present invention is an electronic map product or the presentation of an electronic map product.
  • an electronic map product can be a map data product that carries map information, such as a map update data package; or it can be a map application that loads map information Products, such as map applications that can be installed on vehicles or portable terminals; or map display products that present map information, such as electronic navigators.
  • a map includes multiple layers, and a layer is a map dataset with an organizational structure.
  • the data in the layer is organized in a certain data structure, which can describe information elements from various sources.
  • information elements can be divided into two types: elements and events: elements are information elements that are relatively fixed, change little, or have a long update cycle, such as road topology, building location, lane line, lane direction or traffic Infrastructure layout, etc.; events are information elements with strong time-varying characteristics, such as traffic accidents, weather changes, road construction, or traffic congestion.
  • elements and events can be recorded in different layers. For example, the information of elements is carried by the static layer in the map, and the information of events is carried by the dynamic layer in the map.
  • the map can include one or more A static layer may further include one or more dynamic layers.
  • the various map information shown in Figure 1 are mapped to the multiple layers of the map shown in Figure 2.
  • Figure 2 presents a static layer and multiple dynamic layers.
  • the static layer records the geographical distribution of buildings, roads, trees, traffic lights and road signs in Figure 1
  • the dynamic layer 1 records the real-time information of the lanes.
  • Speed limit situation, traffic construction situation and traffic flow situation dynamic layer 2 records weather conditions, such as sunny, rainy, snowy, windy, temperature or humidity, etc. It should be noted that, for a certain map record object, it may have both time-varying information elements and time-invariant information elements.
  • the non-time-varying information elements refer to relatively fixed, small changes, or long update cycles.
  • the information elements of the map that is, the map record object is not only related to the elements in the map, but also related to the events in the map, for example: for a certain lane, the geographical location of the lane is the element in the map, and the traffic flow of the lane is the map events in the map; for a certain traffic light, the position of the traffic light at the intersection is an element in the map, and the lighting of the traffic light changes into an event in the map; for a certain speed limit sign, the speed limit sign The position in the intersection is an element in the map, and when the speed limit value indicated by the speed limit sign changes, the speed limit change is an event in the map.
  • the embodiment of this application proposes a map that includes shadow information for describing the shadow area, that is, it will be used to describe the shadow of the shadow area Information is maintained in the map as a new type of map information.
  • the shadow area mentioned here refers to the ground area that receives light intensity weaker than the surrounding area, for example, it can be the ground area covered by the shadow of the nearby buildings, the ground area covered by the roof, the area inside the tunnel or between the lush trees.
  • the ground area below is covered by foliage flares.
  • Shadow area A and shadow area B are produced.
  • the shadow information can be used as a separate layer, such as in addition to the three layers shown in Figure 2, and then generate a dynamic layer 3 to record information about the shadow area A and shadow area B; the shadow information can also be combined with other maps
  • the information is placed together in one layer, for example, the dynamic layer 1 in Figure 2 includes the information of shaded area A and shaded area B.
  • the embodiment of the present application relates to the generation and use of maps.
  • An application scenario of the embodiment of the present invention is illustrated below by using FIG. 3 as an example.
  • Vehicle A is a collection vehicle, which is a professional map information collection vehicle with high cost. It is generally owned by the map manufacturer and is equipped with laser radar, millimeter wave radar, camera or global navigation satellite system (global navigation satellite system, GNSS) and other sensing devices are used to collect maps on the road and provide basic data for map manufacturers to map.
  • the data collected by the collection vehicle can be sent to the map server D through a wireless or wired communication network, and can also be stored on a storage medium, and then manually copy the data on the storage medium to the map server D.
  • the map server D as a map production device and/or storage device, can be either a centralized server or a distributed server.
  • Vehicle B is a crowdsourced vehicle, which is different from a dedicated collection vehicle.
  • the users or owners of the crowdsourced vehicle can provide the collected basic data to the map manufacturer after signing a contract.
  • This method of map data collection is the future trend.
  • the advantage lies in Richer, more real-time and lower-cost basic data can be obtained.
  • Vehicle C is an ordinary car, which does not collect data for the map manufacturer, that is, as a user of the map, but does not need to provide basic data for the update or generation of the map.
  • Ordinary cars can be converted into crowdsourced vehicles through signing contracts. Both ordinary vehicles and crowdsourced vehicles can be used as map users to assist vehicles in positioning, target recognition, driving decision-making, or navigation.
  • the vehicle can be equipped with a map function through pre-installation before leaving the factory or after-installation after leaving the factory, and the map in the vehicle can be updated during use to provide more accurate or real-time reference information.
  • the update period of the high-precision map can be set as required, for example, the unit of the update period is month, week, day, hour, or minute.
  • mobile terminals can also be used as map users, such as portable terminals such as mobile phones, handheld navigators, notebook computers, tablet computers, or wearable devices. These mobile terminals are either preloaded with maps before leaving the factory, or load maps through installing a map application program after leaving the factory, and then receive updated map information to update locally stored maps.
  • vehicles and other types of mobile terminals are collectively referred to as terminals or terminal devices.
  • roadside equipment can also be a producer or user of maps.
  • Roadside equipment is the infrastructure installed on the side of the road, which has computing, communication or storage functions.
  • Roadside equipment includes but is not limited to roadside edge computing (roadside edge computing, REC), roadside unit (roadside unit, RSU) or a device that integrates REC and RSU.
  • roadside infrastructure such as traffic lights, traffic signs, charging piles, garbage bins or billboards can become roadside devices by installing computing units or communication units.
  • the street lamp is transformed into an intelligent roadside device H by installing a camera sensor and a vehicle to everything (V2X) communication module on the street lamp.
  • V2X vehicle to everything
  • the roadside device H can obtain and use the map generated by the map server D; it can also obtain sensing data based on its own sensing device or receive the sensing data sensed by the vehicle from the vehicle, and generate map data based on these sensing data to update its own storage map, or send the acquired perception data or generated map data to the map server D.
  • the map server can provide services for the terminal in the form of cloud.
  • the communication link between the map server and the terminal is bidirectional, that is, the map server can transmit information to the terminal, and the terminal can also transmit information to the map server.
  • the communication between the map server and the terminal can be realized through wireless communication and/or wired communication.
  • the terminal accesses the wireless network through the base station G, and the map server D releases the updated map information to the portable terminal F held by the vehicle A, vehicle B, vehicle C or pedestrian E , can be published by the base station G (shown by the solid line in the figure), or can be forwarded to the terminal by the roadside device H (shown by the dotted line in the figure).
  • the map server D and the base station G can be connected wirelessly or through a wired connection; between the roadside device H and the map server D can be connected wirelessly or through a wired connection; in addition, between the roadside device H and the map server D Communication may be through base station G or other base stations.
  • the aforementioned wireless networks include but are not limited to: 2G cellular communication, such as global system for mobile communication (GSM), general packet radio service (general packet radio service, GPRS); 3G cellular communication, such as broadband code division multiple access (wideband code division multiple access, WCDMA), time division synchronous code division multiple access (time division-synchronous code division multiple access, TS-SCDMA), code division multiple access (code division multiple access, CDMA); 4G cellular Communication, such as long term evolution (long term evolution, LTE); 5G cellular communication, or other evolved cellular communication technologies.
  • GSM global system for mobile communication
  • GPRS general packet radio service
  • 3G cellular communication such as broadband code division multiple access (wideband code division multiple access, WCDMA), time division synchronous code division multiple access (time division-synchronous code division multiple access, TS-SCDMA), code division multiple access (code division multiple access, CDMA); 4G cellular Communication, such as long term evolution (long term evolution, LTE); 5G cellular communication, or other evolved cellular communication technologies
  • roadside devices and terminal devices both have information collection capabilities and computing capabilities
  • roadside devices and terminal devices can not only serve as receivers and users of maps, but also as producers of maps to generate maps locally Information, for its own use or to send to other roadside equipment or terminal equipment.
  • the perception module of the vehicle or roadside equipment has the function of shadow detection.
  • the shadow information can be initially obtained by collecting the shadow detection results of the vehicle or roadside equipment, or based on the location information and height information of the original buildings in the map, combined with the local sun position and The law of height change is initially obtained by calculation, and the results obtained by these two methods can also be fused to obtain preliminary shadow information.
  • the initially obtained shadow information may be dynamically adjusted to obtain real-time changing shadow information. For example, when the weather changes from sunny to cloudy, the coverage of the shadow area may become larger, or the difference in light intensity between the shadow area and the non-shade area may become smaller, resulting in a smaller shade of the shadow area.
  • shadow information is a kind of map information that changes with time
  • the shadow information is described using a data structure similar to that used to describe events in a map.
  • the embodiment of this application does not limit the content and data organization structure of the shadow information, it is only an exemplary description, whether it is the various contents indicated by the shadow information or the data organization structure of the various contents, in the implementation of this application Under the inventive concept of example, all have very many realization forms.
  • a map data structure of shadow information is described by taking a tile map as an example and referring to FIG. 4 .
  • the information about the shadow area is regarded as a special event, that is, the shadow event, and each shadow event in the tile is described separately in units of tiles.
  • a tile map is a map of a pyramid model, that is, a map of a multi-resolution hierarchical model. From the bottom to the top of the tile pyramid, the resolution changes gradually, eg lower and lower, but the geographic extent represented remains the same.
  • N-layer tile map Take an N-layer tile map as an example.
  • the number of zoom levels of the map is N, where N is an integer greater than 1.
  • the map image with the highest zoom level and the largest map scale is taken as the bottom layer of the pyramid, that is, the 0th layer.
  • the picture is sliced and divided into multiple rectangular (can be square) map tiles to form the map picture of the first layer; on the basis of the map picture of the first layer, the map tile of the first layer is divided into multiple rectangles (can be is a square) map tiles to form the second layer map image, and so on until the N-1th layer, thus forming the entire tile pyramid.
  • the slicing of each layer of map tiles can be performed according to the slicing ratio, and the slicing of map tiles of different layers can adopt the same slicing ratio or different slicing ratios. It can be seen that a tile can be understood as a rectangular grid image that slices a map image within a certain range into several rows and columns, and the sliced rectangular grid image is called a tile.
  • a tile of a certain level can be sliced into 4 corresponding tiles of a higher level.
  • tile 1 is a tile of a certain level in the map
  • cross-slicing tile 1 can further generate 4 tiles of one level higher than tile 1
  • the identifiers are 1-00 and 1-01 respectively , 1-10 and 1-11. It can be understood that the geographic coverage of tile 1 is the geographic coverage of tile 1-00, the geographic coverage of tile 1-01, the geographic coverage of tile 1-10 and the geographic coverage of tile 1-11 the union of .
  • the shadow event 1 includes one or more of identification information, location information, geometric information, time information, shadow degree information, confidence information, and cause information, which are introduced below:
  • the identification information is used to indicate the identification of the shadow event, and each shadow event has a unique identification within the tile.
  • the location information is used to indicate the geographic location of the shadow area targeted by the shadow event.
  • the following two expressions describe the geographic location of the shaded area:
  • the geographic location is described based on coordinates.
  • absolute coordinates or relative coordinates are used to represent the position point, and the position point can be one or more points in the shaded area, such as the center point, a point on the boundary, or a vertex of a polygonal area.
  • Absolute coordinates are based on the fixed position coordinates described by the origin of a fixed coordinate system. The absolute coordinates of the target object will not change with the change of the reference object; relative coordinates describe the relative position of the target object relative to the reference object, and the relative coordinates will be Changes with the position of the reference object.
  • the second method combines map elements to describe geographic location. For example, if the map element is a certain lane, the location of the shaded area is a section of the lane; the map element is a tunnel, and the shaded area is the area covered by the tunnel; the map element is an intersection, and the shaded area is the part of multiple lanes that merge into the intersection
  • the entry/exit area of a lane; the map elements are two intersecting viaducts, and the shaded area is the intersection of the two viaducts and is on the pavement of the lower viaduct.
  • the above expression manner of the location information is only an example, and the specific expression manner of the location information is not limited in this embodiment of the present invention.
  • the geometry information is used to indicate the shape or size of the shadow area targeted by the shadow event.
  • the shape includes, but is not limited to, polygon, sector, or circle, and the size includes, but is not limited to, the side length of the polygon, the radian of the sector, or the radius of the circle.
  • the geometric information of the shaded area can also be expressed in combination with map elements, for example, it can be expressed as an interval segment along a road or a certain lane with a starting and ending distance.
  • the geometric information can be defaulted.
  • the location information gives all the boundary points of the shadow area, and the shadow area can be determined by connecting the boundary points.
  • the geometry can not be set. information.
  • Figure 5A is based on the shape of the shadow area expressed by an irregular quadrilateral, which can make the shape and size of the quadrilateral shadow area recorded in the shadow information through the coordinates of the four vertices of the quadrilateral.
  • the shadow information recorded in this way is relatively close to The real shape of the shadow area; when combining map elements to describe the geographical location, the geometric information can also be defaulted, as long as the starting and ending positions of the shadow area on the lane or lane line are given; or the position information and geometric information can be combined
  • Determine the shadow area for example, the starting or ending position of the shadow area on the lane or lane line is given by the position information, and the length of the shadow area on the lane is given by the geometric information.
  • Figure 5B shows the shape of the shadow area expressed based on the lane. The two edges of the vehicle become the edges of the shadow area. This is an expression obtained after certain data processing based on the true shape of the shadow area. This expression can be Simplifying the requirements for shadow information is beneficial to practical applications, because the precise shape and size of shadow regions may not be required in practical applications.
  • the time information is used to indicate the time zone in which the shadow information belonging to the shadow event exists.
  • the time information is optional information, and may not be presented to the user or may be presented to the user, and the time-invariant shadow area may not be set.
  • Shadow information has seasonal characteristics, such as the shadow area or shadow degree under the cover of leaves will change with the four seasons; shadow information has time-period characteristics, such as the shadow position, shadow area size or shadow shape change with the change of the sun's position in a day. Change; shadow information also has relatively stable time statistics, because the buildings and trees around the road are relatively fixed. Therefore, the road shadow information generated by the statistical method has statistical stability and may change at the same time. Therefore, it is very feasible to use the shadow information as dynamic information in the map.
  • the shadow information corresponding to each shadow area can contain multiple different time period information, and each time period information can contain the following fields:
  • a) It may contain a quarter field, such as a value of 1 to 4, and may indicate at least one quarter in which the shadow information is valid by including multiple values;
  • a month field may be included, such as a value from 1 to 12, and multiple values may be included to indicate at least one month in which the shadow information is valid;
  • It may contain a date field, such as a value from 1 to 31, and may indicate at least one day when the shadow information is valid by including multiple values;
  • It can contain an hour field, such as a value of 0-24, which can indicate at least one hour when the shadow information is valid by including multiple values, and can further express the minute value through the decimal place of the floating point number;
  • It can contain an update time field, indicating the update time of the shadow information, which can be in the form of date or timestamp, without limitation;
  • time period information can be used in combination, for example: a shaded area only appears at 10-12 am in July-August every year, then the month field takes values 7 and 8, and the hour field takes values 10 and 8 11.
  • the above expression manner of the time information is only an example, and the embodiment of the present application does not limit the specific expression manner of the time information.
  • the shadow degree information is used to indicate the shadow degree of the shadow area targeted by the shadow event.
  • Different shadow areas may have different shadow degrees, and the shadow degrees of different positions in the same continuous shadow area may also be different. Therefore, in some application scenarios, there is a need to quantify the shadow degree of shadow areas.
  • the first is the numerical form of the indicator.
  • the indicator can be a numerical value or a range interval, including but not limited to the following indicators:
  • the difference in light intensity between the shadowed area and the non-shaded area the difference between the average light intensity of the shadowed area and the average light intensity of the normal non-shaded area;
  • the image brightness difference between the shaded area and the non-shaded area the difference between the average image brightness of the shadowed area collected at a conventional angle and the average image brightness of the non-shaded area;
  • the image contrast between the shaded area and the non-shaded area the average contrast ratio of the image of the shaded area and the image of the non-shaded area collected at a conventional angle;
  • the second is the grading form.
  • similar descriptions such as heavily shaded areas, heavily shaded areas, and lightly shaded areas can be used to distinguish different levels of shadow degrees, or primary shaded areas, secondary shaded areas, and third-level shaded areas can be used This similar description of shaded areas distinguishes between different levels of shade.
  • the above two forms can also be used for expression, that is, the combination of index value and classification, such as expressing the shadow degree of a certain shadow area as "the shadow area belongs to the secondary shadow area and the average light intensity of the shadow area is 50 lux".
  • the shade degree information is optional information, and whether to use it can be determined according to different application requirements. For example, if the shadow information is applied to parking, the shadow degree information can be defaulted in the shadow information; if the shadow information is applied to the auxiliary perception, the shadow degree information can be used.
  • shadow information layers with different levels of fineness can be constructed, which is reflected in: under different shadow information layers, shadow degree information has different classification granularity, different number of classifications, different granularity of indicators, different number of indicators or Accuracy varies.
  • the above expression manner of the shadow degree information is only an example, and the embodiment of the present application does not limit the specific expression manner of the shadow degree information.
  • the confidence level information is used to indicate the degree of credibility of the shadow area targeted by the shadow event, that is, the confidence level.
  • the confidence level may be expressed quantitatively in the form of a numerical value (such as a floating point number between 0 and 1) in the confidence level information.
  • Shadow information is easily affected by natural weather and other environments. For example, a cloudy scene will not form a shadow area with large parallax.
  • the shadow layer integrates the weather data of the area, such as light intensity, temperature, humidity and other information, and gives the effective confidence of the shadow layer.
  • the generation of confidence can also be combined with other factors that affect the reliability of shadow information, such as the accuracy of acquisition equipment and the amount of statistical data.
  • the confidence level information can be determined with reference to at least one of the following multiple factors:
  • Weather status such as sunny, rainy, snowy or smoggy days
  • Weather parameters such as light intensity (directly affecting the degree of shadow), visibility (affecting the degree of shadow in smog and other weather), temperature (used to assist in judging confidence), humidity (used to assist in judging confidence) or wind force ( Used to assist in judging the confidence) and other parameters;
  • the confidence level information can be used as an optional information of the shadow information, and the user of the shadow information can choose whether to use the shadow information or set the weight of the shadow information in use according to the confidence level information.
  • the confidence level information can be further used to indicate the scope of the confidence level.
  • the corresponding confidence level information can be associated with different levels of shadow information, including:
  • the cause information is used to indicate the cause of the shadow area targeted by the shadow event, such as the shadow of the building under the sun, the light spots of the leaves, the roof cover, the cloud cover, the tunnel or the culvert, etc.
  • the method is expressed in the reason information, for example, the above five reasons can be respectively indexed as "01”, “02", “03", “04” and "05".
  • the expression manner of the shadow information shown in FIG. 4 is merely an example, and the embodiment of the present application does not limit the content and data structure of the shadow information.
  • Each of the seven contents of the above-exemplified shadow information is not necessarily included in the shadow information, that is, it can be selectively included in the shadow information according to actual application requirements. Not only can any one of the above seven contents be selected to be expressed independently in the shadow information, but at least two of them can be selected to be expressed in any combination.
  • time information, location information and shadow degree information can be combined to indicate in the shadow information "from 8:00 am to 9:00 am, the shadow is located in the building light shadow on the west side of the building", "11 am to 1 pm, the shadow is on the south side of the building, heavy shadow” and "4 pm to 5 pm, the shadow is on the east side of the building, heavy shadow", etc.
  • Portfolio information For another example, since cloudy weather is less credible than clear weather, shadow information is less credible, time information and confidence level information can be combined to indicate "August 1st, with a confidence level of 1" and "8 On August 2, the confidence level is 0.5” and other combined information (August 1 is sunny and August 2 is cloudy).
  • the position information and the shadow degree information can be combined to indicate "position 1, shadow degree 1", “position 2, shadow degree 2" in the shadow information Combined information with "Position 3, Shading Level 3".
  • the embodiment of the present application provides a map data processing method, including:
  • Step 601 acquire shadow information.
  • the shadow information is used to indicate the shadow area
  • the shadow information includes position information
  • the position information is used to indicate the geographic location of the shadow area.
  • the location information may be described by any one of the above two description methods based on coordinates and in combination with map elements.
  • the shadow information may also include one or more of the above identification information, geometric information, time information, shadow degree information, confidence information, and cause information.
  • the data structure of shadow information includes but is not limited to the way shown in Figure 4, in addition to describing based on the data structure used to describe events in the map in tiles, for example, it is also possible to associate shadow areas with elements in the map, And the shadow information is recorded in the map as attribute information or additional information of the element.
  • the embodiment of the present application does not limit the composition content or data organization mode of the shadow information.
  • acquiring shadow information may include: generating shadow information or receiving shadow information.
  • the method shown in FIG. 6 is executed on the map generation side. Based on the previous description that the cloud, roadside or terminal devices all have map generation capabilities, the method shown in Figure 6 can be executed by a map server, roadside device, vehicle or mobile terminal, for example, or by the component, chip, software module or hardware module implementation.
  • Shadow information When generating shadow information, you can use a variety of methods. The following methods are used as examples, which can be used independently or in combination to generate shadow information:
  • Method 1 Obtain road surface image data collected by sensing devices with sensing capabilities such as map collection vehicles, crowdsourcing vehicles, or roadside equipment, and process the road surface image data by the processor to identify shadow areas, and based on the road surface image data The statistical value of the shadow information such as time information, confidence information or shadow degree information is obtained.
  • Method 2 Obtain map data, including the location of a group of buildings, spatial geometry, height, latitude and longitude, etc., combined with the local changes in the sun's altitude angle in a year or a day, and calculate the shadow area at a specific time through the shadow estimation algorithm , so as to obtain the shadow information about the shadow area.
  • Method 3 After obtaining the preliminary result of the shadow information (for example, through method 1 and/or method 2), further obtain weather conditions, and adjust the preliminary result of the shadow information in combination with the weather. For example, reduce the level of shadows when it is cloudy; and for example, adjust the position of the shadow area under the corresponding cloud coverage according to the movement of clouds when it is cloudy.
  • the method shown in FIG. 6 is executed on the map receiving side, including receiving the above shadow information from other devices, components, chips, interfaces, hardware modules or software modules, and the receiving includes but It is not limited to information receiving operations through wired transmission, wireless transmission, parameter calling or interface feeding.
  • the method shown in Figure 6 can be executed by, for example, a map server, roadside device, vehicle or mobile terminal, or by these four The components, chips, software modules or hardware modules inside the device execute.
  • the shadow information is stored as map data. Specifically, it can be stored on cloud, roadside or terminal storage media.
  • the storage media includes but not limited to magnetic media, optical media, or semiconductor media. Storing shadow information as map data is reflected in using shadow information as a kind of element-related information or event-related information in the map, storing it together with other map information to build a map database, or reflecting shadow information based on map information data
  • the format is stored in order to be called by the map application program, or embodied in the map-based storage unit - the tile stores the shadow information, and the tile is used as the organization unit of the shadow information, and each tile includes a number for indicating multiple shadow areas Multiple shadow information for .
  • the map data processing method shown in Figure 6 enriches the content of the map by adding shadow information to indicate shadow areas in the map data, and can meet more diverse usage requirements.
  • the following shows the shadow information in Figure 7- Figure 13 Various ways to be processed on the map generating side or on the map receiving side.
  • FIGs 7-10 describe the flowcharts of four map data processing methods executed on the map generation side. They are to meet the needs of different map generation side application scenarios.
  • map data processing method shown in Figure 6 by generating It is further expanded on the basis of the implementation method of obtaining shadow information from shadow information).
  • FIG. 7 is a map data processing method for publishing shadow information on the map generating side, which includes steps 701-703. Wherein, step 701 is the same as step 601, and step 702 is the same as step 602, which will not be repeated here.
  • Step 703 is to send the shadow information to the map user side.
  • the shadow information can be added to the map data package or the map upgrade package and sent to the map user side.
  • the sending includes but is not limited to sending by means of wired transmission, wireless transmission, parameter calling or interface feeding.
  • the map usage side includes, but is not limited to, map servers, roadside equipment, vehicles, mobile terminals, or internal components, chips, software modules, or hardware modules of the above four types of equipment.
  • the cloud server packs the shadow information into a map update package and sends it to roadside devices or vehicles.
  • the map generation side and the map receiving side are located in different devices.
  • the shadow information in the map database is sent to the processor for processing the shadow information through the output interface of the memory.
  • the map generating side and the map receiving side are located in the same device.
  • FIG. 8 is a map data processing method for displaying shadow information on the map generating side, which includes steps 801-803. Wherein, step 801 is the same as step 601, and step 802 is the same as step 602, which will not be repeated here.
  • Step 803 is to display the shadow area based on the shadow information.
  • the display includes but is not limited to display on a display screen inside the map generation side or external projection display. The display interface of the shaded area will be described in detail later.
  • the map with the shadowed area can be displayed on the central control screen of the vehicle, or the laser image of the shadowed area can be projected onto the front windshield based on the head up display (HUD) On the glass, the projection screen is superimposed on the real scene seen through the front windshield.
  • HUD head up display
  • FIG. 9 is a map data processing method for running an application program based on shadow information on the map generation side, which includes steps 901-903. Wherein, step 901 is the same as step 601, and step 902 is the same as step 602, which will not be repeated here.
  • Step 903 is to run the application program based on the shadow information.
  • the application program is installed on the device on the map generation side. Since the map generation side has data processing capabilities, after the shadow information is generated and stored as map data on the map generation side, the shadow information can be further used as input locally to run the application program. , to meet the demand for shadow information in various scenarios. For various data processing methods and various data processing results of shadow information according to various requirements, please refer to the specific description of each application scenario later.
  • the map generation side is a vehicle
  • a map database including shadow information is maintained in the vehicle
  • the application program installed on the vehicle can read the shadow information from the map database, and then input the shadow information into the preset algorithm module for data processing
  • the obtained data processing results can meet various needs of users, such as assisted driving, path planning or assisted parking.
  • map generation side is a cloud server
  • a map database including shadow information is maintained in the cloud server
  • the application program installed on the cloud server can read the shadow information from the map database, and then input the shadow information into the preset algorithm module Perform data processing, and the obtained data processing results can be used to provide users with various cloud services.
  • the map generation side can also provide various services to other devices based on information interaction based on shadow information generated locally and stored as map data.
  • cloud services can be provided to users in the form of sending service response information to the terminal-side device or roadside device in response to service request information received from the terminal-side device or roadside device.
  • the device receiving the service can be limited to the device authenticated by the map generation side, for example, the device receiving the service is required to be authenticated or paid.
  • FIG. 10 is a map data processing method used by the map generation side to provide external services, which includes steps 1001-1004. Wherein, step 1001 is the same as step 601, and step 1002 is the same as step 602, which will not be repeated here.
  • Step 1003 is receiving service request information
  • Step 1004 is sending service response information
  • the service response information is generated according to the service request information and the shadow information.
  • the above-mentioned service request information and service response information have different contents, which are illustrated below through several different application scenarios.
  • the service request information includes the perception information about the target object sensed by the terminal side device or the roadside device.
  • the service response information includes target indication information, and the target indication information is used to indicate the attributes of the target object.
  • the attributes of the target object include but not limited to the category, name, outline, color, pattern, or whether the target object is three-dimensional or not.
  • the service request information includes the driving data of the vehicle.
  • the driving data includes in-vehicle data and/or out-of-vehicle data.
  • the in-vehicle data is used to indicate the vehicle status such as
  • the external data is used to indicate the driving environment of the vehicle, such as the position of the vehicle, the slope of the road, the curvature of the curve, the friction coefficient of the road surface, or the distance to the vehicle ahead.
  • the external data can be the camera, laser radar or millimeter wave installed on the vehicle. Sensing data sensed by sensing devices such as radar.
  • the service response information includes reminder information for the user, such as reminding the user that the vehicle is about to enter a shadow area, or includes decision-making control information for the vehicle, which is used to control the vehicle to steer, accelerate or brake.
  • the service request information is used to provide the user's parking needs, such as at least one of the estimated parking area, parking start time, parking end time, and parking duration.
  • the service response information includes parking space recommendation information, and the parking space recommendation information is used for Indicating at least one parking space recommended to the user, further, when there are multiple parking spaces recommended to the user, the parking space recommendation information further indicates the priority ranking of the multiple parking spaces;
  • the service request information includes the user's travel information, such as departure place, destination, travel time, travel strategy, or travel mode (for example, walking, cycling or driving, and driving mode, automatic driving or manual driving or assisted driving) .
  • the service response information is used to recommend at least one path to the user, and the at least one path can satisfy the user's desire to be exposed to the sun as much as possible (or as long as possible) or to avoid being exposed to the sun (or as short as possible).
  • the service response information also includes insolation information of each path in at least one path, for example, the length of the tanning/sunscreening section, the length of the tanning/sunscreening time, the ratio of the length of the tanning/sunscreening section to the total path length, or The ratio of the travel time of the exposed/sun-sunned section to the total route travel time; further, the service response information also includes other cost information of each route in at least one route, such as time cost, fuel consumption cost, labor cost or toll cost; or, further, when the route recommended to the user is multiple routes including at least one of the above-mentioned routes, the service response information can also be based on the travel strategy input by the user (such as the most sunscreen, the shortest distance, the shortest time or the most fuel-efficient) instructions Prioritization of multiple paths.
  • the service response information can also be based on the travel strategy input by the user (such as the most sunscreen, the shortest distance, the shortest time or the most fuel-efficient) instructions Prioritization
  • the service request information includes the user's travel information, such as departure place, destination, travel time or travel mode.
  • the service response information not only recommends rental vehicles (manual driving or unmanned driving) to the user, but also recommends to the user to try to avoid being caught. Sun's pick-up or drop-off point.
  • the service request information is used to indicate the remaining power of the vehicle, the user's planned itinerary, or the area where the vehicle is located.
  • the service response information is used to recommend to the user a driving route for charging while driving or a parking location for charging while stationary.
  • Fig. 11, Fig. 12A and Fig. 12B have described the flowchart of three kinds of map data processing methods that are carried out on the map receiving side, and they are to meet the needs of different map usage scenarios, in the map data processing method shown in Fig. 6 (through It is a further extension based on the implementation of receiving shadow information and obtaining shadow information).
  • FIG. 11 is a map data processing method for displaying shadow information on the map receiving side, which includes steps 1101-1103. Wherein, step 1101 is the same as step 601, and step 1102 is the same as step 602, which will not be repeated here.
  • Step 1103 is to display the shadow area based on the shadow information.
  • the display includes but is not limited to display on a display screen inside the map receiving side or external projection display. The display interface of the shaded area will be described in detail later.
  • the map with the shadowed area can be displayed on the central control screen of the vehicle, or the laser image of the shadowed area can be projected onto the front windshield based on the head-up digital display (HUD), so that The projection screen is superimposed on the real scene seen through the front windshield.
  • HUD head-up digital display
  • FIG. 12A is a map data processing method for running an application program based on shadow information on the map receiving side, which includes steps 1201-1203. Wherein, step 1201 is the same as step 601, and step 1202 is the same as step 602, which will not be repeated here.
  • Step 1203 is to run the application program based on the shadow information.
  • the application program is installed on the device on the map receiving side.
  • the received shadow information can be used as input to run the application program to meet the shadow information requirements in various scenarios.
  • the vehicle when the map receiving side is a vehicle, the vehicle generates a local map database according to the map information obtained from the server, and stores shadow information in the map database.
  • the application program installed on the vehicle can read the shadow information from the map database, and then input the shadow information into the preset algorithm module for data processing.
  • the obtained data processing results can meet the various needs of users, such as assisted driving, path planning or assisted Parking etc.
  • the application server maintains a map database including shadow information according to the map data received from the map server including shadow information, and the application server can read the shadow information from the map database, and then The shadow information is input into the preset algorithm module for data processing, and the obtained data processing results can be used to provide users with various application services.
  • the map receiving side can also provide third-party application services to other devices based on the received shadow information and based on information interaction. For example, when the map receiving side is the travel application server deployed by the travel service provider, the travel service provider purchases the map from the map manufacturer, so that the travel application server can use the map server from the map server (the map server is deployed by the map manufacturer to produce maps) ) receives map data, the map data includes shadow information, and then the travel application server can respond to the service request information received from the terminal side device or roadside device, and send service response information to the terminal side device or roadside device. Users provide travel application services.
  • FIG. 12B is a map data processing method used by the map receiving side to provide external services, which includes steps 1201 , 1202 , 1204 and 1005 .
  • step 1001 is the same as step 601
  • step 1002 is the same as step 602, which will not be repeated here.
  • Step 1204 is receiving service request information
  • Step 1205 is sending service response information
  • the service response information is generated according to the service request information and the shadow information.
  • the above service request information and service response information have different contents.
  • the services are target recognition service, assisted driving service, parking space recommendation service, navigation service, taxi service or solar charging service. The description of the six scenarios at the time.
  • the method for displaying shadow information on a map is introduced below based on FIGS. 13-17 .
  • the embodiment of the present application does not limit the medium or device used for display, and the display includes but is not limited to projection display or display on a display screen.
  • whether to display shadow information can be an optional item, and determine whether to superimpose the shadow information with other information in the map according to user input.
  • the user can set whether to display shadow information in the setting interface of the map application, or more conveniently, a trigger instruction for displaying shadow information can be generated according to user input, so that the user can display or cancel the display of shadow information at any time more conveniently and quickly.
  • User input includes but not limited to user's character input, voice input, gesture input or touch screen input.
  • Figure 13 is an example.
  • a shadow switch is set on the map display interface. The user can touch the shadow switch on the screen with a finger to close the shadow switch and not display the shadow information as shown in the left picture of Figure 13, or realize the shadow switch as shown in the right picture of Figure 13.
  • the shadow switch in the figure is turned on and the shadow information is displayed in a superimposed manner on the map.
  • the display area corresponding to the shadowed area may have a different grayscale, color, saturation or superimposed pattern than other display areas.
  • the shadow areas cast by buildings and trees on the ground are indicated by grid patterns; in the right image of Figure 14, the shadow areas cast by buildings and trees on the ground are indicated by darker colors .
  • the shadow information can also indicate the cause of the shadow area, such as the shadow of the building under the sunlight, the light spots of the leaves, the roof coverage, the cloud cover, the tunnel or the culvert and so on.
  • the shadow information can also indicate the cause of the shadow area, such as the shadow of the building under the sunlight, the light spots of the leaves, the roof coverage, the cloud cover, the tunnel or the culvert and so on.
  • the diagonal line pattern is used to indicate the shadow produced by buildings
  • the grid line pattern is used to indicate the shadow produced by trees. shadows.
  • the shadow information can also indicate the degree of shadow, which includes but not limited to the average light intensity of the shadow area, the light intensity difference between the shadow area and the non-shade area, and the difference between the shadow area and the non-shade area.
  • gray is used to indicate the shaded area (no gray is used to indicate the non-shaded area)
  • a lighter A gray of indicates shaded areas corresponding to the shadows of trees
  • a darker gray indicates shaded areas corresponding to the shadows of buildings.
  • the shadow information can also indicate the time period in which the shadow area exists, and the shadow area also changes with time. Therefore, the shadow information has a dynamic attribute, so that the change of the shadow area over time can be dynamically displayed on the map.
  • the change of the shaded area within a time period can be played in the form of a video, and the playing speed can be set or adjusted.
  • a playback progress bar can be set on the display interface for the user to choose whether to play the changing video about the shadow area, or directly locate and display the shadow area at a certain time point by dragging the progress button in the progress bar.
  • 16A-16C illustrate how to dynamically display the shadow area in the time period from 6:00 to 18:00 in an area including roads, trees on the side of the road and buildings.
  • the user can trigger the playback of the dynamic image above the playback progress bar in the display interface.
  • the position of the circular progress button on the playback progress bar moves to the right, and in the circle
  • the top of the shaped progress button displays the time point corresponding to the currently playing image. Users can also directly drag the circular progress button, so that they can directly view the shaded area at a certain point in time.
  • the image played in Figure 16A is the shadow area at nine o'clock in the morning, and the sun is in the southeast direction, so the shadows of trees are located on the northwest side of trees, and the shadows of buildings are located on the northwest side of buildings;
  • the image played in Figure 16B is twelve o'clock at noon In the shadow area of the point, the sun is in the south direction, so the shadow of the trees is on the north side of the trees, and the shadow of the building is on the north side of the building;
  • the image played in Figure 16C is the shadow area at three o’clock in the afternoon, the sun is at Southwest so that the shadows of the trees are on the northeast side of the trees and the shadows of the buildings are on the northeast side of the buildings.
  • the displayed boundary of the shadow area can be consistent with or similar to the actual boundary of the shadow area, as shown in the left figure of Figure 17.
  • the shadow area of the building is a polygon, corresponding to the shadow area
  • the boundary is composed of straight lines
  • the shadow area of the tree is an irregular figure
  • the boundary corresponding to the shadow area is composed of irregular curves.
  • shaded region boundaries can be trimmed for ease of application or data storage. As a manner of trimming, the display area of the shadow area on the display interface may be determined according to the position of the shadow area in the map and the boundary conditions of other map elements in the map.
  • At least a partial boundary of the shaded area may be trimmed to at least a partial boundary of a map element located close to the shaded area.
  • a road section of Bohai 7th Road heading south from the intersection is a shadow area; since the shadow of trees almost covers a section of lanes from west to east at the intersection of Bohai 7th Road and Huanghe 6th Road to the east, Therefore, when the trees project the shadow area on the road, a lane section of Huanghe Sixth Road eastward from the intersection can be displayed as the shadow area.
  • Target recognition is the process of judging the existence of a target object in the image or extracting the features of the target object from the image collected by the camera, which includes but not limited to the category, name, outline, color, pattern, or stereoscopic attributes of the target object.
  • the following takes a car driving on the road to recognize lane lines as an example.
  • the embodiment of the present application does not limit the subject who performs the target recognition operation and the recognized target.
  • vehicles are equipped with more and more perception capabilities through advanced sensors and processors.
  • the vehicle can identify other vehicles, pedestrians, buildings, traffic signs or obstacles on the road, etc., for Intelligent driving provides important support.
  • target recognition errors may occur during intelligent driving, which greatly threatens driving safety.
  • the embodiment of this application proposes a method for target recognition using shadow information, which can be executed by a terminal, roadside or cloud device, including but not limited to a vehicle, portable terminal, RSU, REC, map server or application server; or It can also be executed by an application program installed on a terminal, roadside or cloud device.
  • the vehicle continues to recognize the lane lines ahead during driving, for example, identifying attributes such as the color of the lane lines or the dashed and solid lines.
  • identifying attributes such as the color of the lane lines or the dashed and solid lines.
  • ABCD there is a shadow area ABCD in front of the vehicle: in this shadow area, there are two lane lines EF and GH represented by dotted lines, which are used to represent the boundary of the lane; there is also a lane line MN represented by yellow, represented by Used to represent the boundary between two roads traveling in different directions.
  • the shaded area the color of the road surface and lane lines has changed greatly compared with the non-shaded area. This change increases the difficulty of target recognition and may cause the vehicle to misjudge the attributes of the lane lines in the shaded area.
  • the shadow information used to indicate the shadow area is used as the input reference information for target recognition.
  • the target recognition device compensates the hue of the image part corresponding to the area ABCD, which can effectively Provides accuracy in object recognition.
  • the vehicle can use the shadow information stored in the vehicle and its own processor Carry out target recognition, that is, use the prior information of the location of the shadow information indicated in the map, and based on the pre-configured image processing algorithm, the image processor installed in the car firstly corresponds to the area ABCD in the picture taken by the car camera Part of the image is processed, such as color compensation or brightness compensation, and the influence of the shadow on the picture has been removed, and then based on the usual lane line recognition algorithm, the image with the influence of the shadow removed is processed, and finally a more accurate target recognition is obtained. result.
  • the vehicle can obtain the target recognition result by receiving the target recognition service provided by the application server deployed in the cloud. See Figure 19 for specific steps.
  • the vehicle sends a message containing sensory data to the server.
  • the sensing data may be sensed by sensors configured on the vehicle, or may be received by the vehicle from other devices (such as other vehicles, mobile phones, or roadside devices); the sensing data includes but is not limited to image data captured by cameras.
  • the server feeds back target indication information to the vehicle, the target indication information is used to indicate whether the target object exists, or to indicate the characteristics of the target object, which includes but not limited to Attributes such as category, name, outline, color, pattern, or whether it is three-dimensional.
  • the perception data may be a picture taken by an on-vehicle camera including the lane line of the road section ahead.
  • the server Since the server stores a map including shadow information, and the server has a strong data processing capability, the server can use the prior information of the location of the shadow information indicated in the map, and based on the pre-configured image processing algorithm, the internally configured image
  • the processor first performs calculations on the part of the image corresponding to the area ABCD in the above picture, such as color compensation or brightness compensation, and removes the influence of shadows on the picture, and then calculates the influence of the removed shadows based on the usual lane line recognition algorithm.
  • the image is processed, and finally a more accurate target recognition result is obtained, such as whether the front lane line is a solid line or a dashed line, whether it is white or yellow, or whether there is a lane line indicating lane merging.
  • the vehicle can make driving decisions based on whether the target object indicated by the target indication information exists or the characteristics of the target object, such as whether to change lanes or whether to slow down.
  • the method of using shadow information to assist driving is introduced below based on FIG. 20 , FIG. 21A and FIG. 21B .
  • the embodiment of the present application provides a method for using shadow information to assist driving, which can more intelligently, accurately, and timely assist driving behavior in a dark environment, and improve driving safety.
  • the driving includes but is not limited to intelligent assisted driving or unmanned driving with the participation of human drivers.
  • the embodiment of this application proposes a method of using shadow information to assist driving, which can be executed by a terminal, roadside or cloud device, including but not limited to a vehicle, a portable terminal, RSU, REC, a map server or an application server; or It can be executed by an application program installed on a terminal, roadside or cloud device.
  • the vehicle is configured with a map including shadow information by generating shadow information or receiving shadow information, and the vehicle is also configured with a positioning system (including but not limited to GNSS Global Navigation Satellite System (Global Navigation Satellite System), inertial guide or wheel speedometer).
  • a positioning system including but not limited to GNSS Global Navigation Satellite System (Global Navigation Satellite System), inertial guide or wheel speedometer.
  • the vehicle first obtains its own position through the positioning system, and then combines the geographic location of the shadow area indicated by the shadow information to determine its own distance relative to the shadow area. Or it may be further combined with the vehicle's current vehicle speed or acceleration and other driving state information to calculate the time interval from the current time to entering the shaded area.
  • the vehicle judges that it is about to enter the shadow area.
  • the shadow area or it is determined according to the above-mentioned determined distance that the distance between the vehicle and the shadow area in front of the driving direction is smaller than the second threshold.
  • the vehicle After the vehicle determines that it is about to enter the shadow area, it can perform various operations for assisting driving in the shadow area.
  • the various operations can be divided into two categories: the first type is reminder operations, including but not limited to reminders The user slows down, turns on the lights, turns on the warning lights, or honks the horn; the second category is control operations, including but not limited to controlling the vehicle to slow down, turn on the lights, turn on the warning lights, or sound the horn.
  • a map including shadow information is not configured in the vehicle, and a cloud service for assisting driving in a shadow area may be received from a map server or an application server.
  • a map server or an application server For the interaction process between the vehicle and the server, reference may be made to FIG. 21A and FIG. 21B , where a map including shadow information is configured in the server.
  • Fig. 21A exemplarily illustrates how the server reminds the vehicle of the interaction of the driving behavior through the cloud service, including:
  • Step 1 the vehicle sends driving data to the server.
  • the driving data can indicate the position of the vehicle, or further can indicate the speed or acceleration of the vehicle.
  • the server returns a reminder message to the vehicle.
  • the server may determine the position of the vehicle through the driving data received from the vehicle, and then determine the distance of the vehicle relative to the shadow area in combination with the geographic location of the shadow area indicated by the shadow information. Or it may be further combined with the vehicle's current vehicle speed or acceleration and other driving state information to calculate the time interval from the current time to entering the shaded area. According to the above-mentioned determined distance, or the above-mentioned calculated time interval, the server judges that the vehicle is about to enter the shadow area. The shadow area, or it is determined according to the above-mentioned determined distance that the distance between the vehicle and the shadow area in front of the driving direction is smaller than the second threshold. After determining that the vehicle is about to enter the shaded area, the server sends a reminder message to the vehicle.
  • the purpose of the reminder message includes but is not limited to reminding the vehicle to slow down, turn on the lights, turn on the warning lights or sound the horn.
  • Figure 21B exemplarily illustrates how the server controls the vehicle through the cloud service, including:
  • Step 1 the vehicle sends driving data to the server.
  • the driving data can indicate the position of the vehicle, or further can indicate the speed or acceleration of the vehicle.
  • the server returns control information to the vehicle.
  • the server may determine the position of the vehicle through the driving data received from the vehicle, and then determine the distance of the vehicle relative to the shadow area in combination with the geographic location of the shadow area indicated by the shadow information. Or it may be further combined with the vehicle's current vehicle speed or acceleration and other driving state information to calculate the time interval from the current time to entering the shaded area. According to the above-mentioned determined distance, or the above-mentioned calculated time interval, the server judges that the vehicle is about to enter the shadow area. The shadow area, or it is determined according to the above-mentioned determined distance that the distance between the vehicle and the shadow area in front of the driving direction is smaller than the second threshold.
  • the server After determining that the vehicle is about to enter the shaded area, the server sends control information to the vehicle.
  • the purpose of the control information includes but is not limited to controlling the vehicle to perform operations such as slowing down, turning on the lights, turning on the warning lights, or sounding the horn.
  • the method for recommending parking spaces using shadow information is introduced below based on FIGS. 22-27 .
  • the application program or device with the function of recommending parking spaces to the user can use part of the data on the shadow information in the map, and use the shadow information as an input when executing the parking space recommendation algorithm.
  • An embodiment of the present application provides a method for recommending a parking space using shadow information, which can be executed by a terminal, roadside or cloud device, including but not limited to a vehicle, a portable terminal, RSU, REC, a map server or an application server; or It can also be executed by an application program installed on a terminal, roadside or cloud device.
  • the application program with the function of recommending parking spaces to the user may be a pre-installed program in the terminal device before leaving the factory, or may be installed in the terminal device after the terminal device leaves the factory.
  • the terminal device includes but is not limited to vehicles, mobile phones, laptops, tablets, navigators or smart wearable devices.
  • the terminal device selects a parking space in the shadow area from multiple parking spaces and recommends it to the user.
  • the map including shadow information is stored in the terminal device.
  • the application program with the function of recommending parking spaces to the user can be installed on a server, such as a map server or an application server, and the server recommends parking spaces in the shade to the vehicle in the form of providing cloud services to the vehicle.
  • the server selects a parking space in the shadow area from multiple parking spaces and recommends it to the user.
  • the server also stores a map including shadow information.
  • the application program or device with the function of recommending parking spaces to the user obtains the user's parking demand information in advance, and the parking demand information is used to indicate the expected parking area, parking start time, and parking end time and at least one of the parking duration. At least part of the content of the parking demand information can be obtained through user input. For example, as shown in FIG.
  • a dialog box for the user to input parking demand information pops up on the screen, which displays the name of the parking lot selected by the user "X shopping center parking lot", and also displays the characters
  • the input box is for the user to enter the parking start time and the estimated parking duration, and also shows a selection button for the user to choose whether to prefer the parking space in the shade.
  • At least part of the parking demand information can be obtained through the output of the application program calling other modules or interfaces, for example, the application program that recommends the parking space function to the user calls the user's destination, departure time or estimated arrival time and other information in the navigation application program , using the information from the navigation application as the user's parking demand information to determine the parking space recommended to the user.
  • At least part of the content of the parking demand information can also be calculated by an application program or device that recommends parking spaces to users. In this way, the most economical parking lot for the user to travel is obtained through calculation, and this parking lot is used as the estimated parking area to further determine the parking space in the parking lot recommended to the user.
  • the above-mentioned multiple ways for obtaining parking demand information can also be used in combination.
  • part of the parking demand information is obtained through user input, and part of the parking information is obtained by calling other modules; another example is part of the parking demand information is obtained through user input, part of the parking information is obtained by calling other modules, and part of the parking demand information is obtained by recommending parking spaces to users calculated by the application itself.
  • 23-26 exemplarily illustrate display interfaces for recommending parking spaces to users.
  • the occupied parking spaces are represented by light gray rectangles without borders; the available parking spaces are represented by rectangles with borders.
  • the rectangular pattern filled with dark gray represents the parking space that is currently in the shadow, or represents the parking space that is partially or completely in the shadow during the parking time period requested by the user; the rectangular pattern filled with white Indicates the parking spaces that are not currently in the shadow, or the parking spaces that are partially or completely not in the shadow during the parking time period requested by the user.
  • the multiple recommended parking spaces can also be prioritized based on a preset strategy, and the priority order of the multiple parking spaces can be displayed on the display interface. For example, in Figure 24, three parking spaces are recommended to the user. On the three dark gray filled rectangular patterns with borders used to represent the three parking spaces, "1", “2” or “3” are also marked respectively. ", these Arabic numerals indicate the priority ranking of the corresponding parking spaces.
  • the shadow information about the parking space can also be displayed on the display interface.
  • three dark gray filled rectangles with borders indicate three recommended parking spaces in the shade, and a percentage is marked below each parking space, which can indicate various shade information.
  • this percentage could be used to indicate the fraction of parking spaces above that percentage that are under shadow coverage at the current time.
  • this percentage may be used to indicate the percentage of the user's parking time for the length of time that the parking spaces above the percentage are covered by shadows within the user's parking time zone.
  • Fig. 27 illustrates an interaction flow chart for the server to provide cloud services to the vehicle.
  • the device that receives the parking space recommendation cloud service from the server is not limited to the vehicle, for example, it can also be a terminal such as a mobile phone, a laptop, a navigator, a tablet computer or a smart wearable device, and the interaction process between it and the server is the same as Figure 27 is similar and will not be repeated here.
  • the methods for applying shadow information to the parking space recommendation cloud service include:
  • Step 1 the vehicle sends parking demand information to the server, and the parking demand information is used to indicate at least one of the expected parking area, parking start time, parking end time and parking duration.
  • Step 2 the server selects at least one parking space that meets the user's parking demand indicated by the above parking demand information from multiple parking spaces, and sends the parking space recommendation information to the vehicle to indicate the at least one parking space. parking space.
  • the method for recommending travel routes using shadow information is introduced below based on FIG. 28 and FIG. 29 .
  • An embodiment of the present application provides a method for recommending a travel route to a user by using shadow information.
  • the method can be executed by a terminal, roadside or cloud device, including but not limited to a vehicle, portable terminal, RSU, REC, map server or application server; or it can also be executed by an application installed on a terminal, roadside or cloud device program execution.
  • the navigation application can recommend travel routes to the user based on travel strategies, such as the shortest distance, the shortest time, the fewest red lights, the most fuel-efficient or the most economical tolls, etc.
  • Vehicles, portable terminals, devices installed on the roadside or in the cloud can use shadow information, and through the installed navigation application, combined with the user's travel needs (including but not limited to the starting point, end point, travel time or travel mode), formulate a plan for the user.
  • the most sun-resistant travel route is included in the user's travel needs.
  • the most sun-resistant travel route can be the route with the longest length of the road segment covered by the shaded area, or the route with the largest ratio of the length of the road segment covered by the shadowed area to the total length of the route, or the shortest length of the road segment covered by the non-shaded area , or the route with the smallest ratio of the length of the road section covered by the non-shaded area to the total length of the journey.
  • This embodiment does not limit the specific calculation method for determining the most sun-resistant travel route.
  • the navigation display interface in Figure 28 recommends multiple travel strategies under different strategies to the user, and the rectangular box in the lower right corner explains each route in text form: route 1 via A-B-F-D-E is the route with the shortest travel distance, and the total distance is 3.6 km; Route 2 via A-B-C-D-E is the most sun-protected route with 800 meters of unshaded distance; Route 3 via A-G-H-E is the least time-consuming route with a total duration of 12 minutes.
  • vehicles, portable terminals, devices installed on the roadside or in the cloud can generate the shadow information by themselves, or obtain the shadow information by receiving map data.
  • the navigation application combines the time information with the travel time information of the user to recommend the most sun-resistant travel route for the user. Therefore, when traveling at different times, the recommended most sun-resistant travel routes are likely to be different.
  • the navigation application program can also obtain the travel mode of the user, such as walking, cycling or driving, and recommend travel routes for the user according to the travel mode.
  • the travel mode of the user such as walking, cycling or driving
  • the sidewalk of a certain road is a shaded area, but non-motor vehicle lanes and motor vehicle lanes are non-shaded areas, so if the user travels on foot, a route including this section of road can be recommended for the user, and if the user travels by bicycle or car, A route that includes this road segment will not be recommended to the user.
  • Figure 29 illustrates the interaction method, including:
  • Step 1 the vehicle sends travel information to the server, and the travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination.
  • travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination.
  • Step 2 Determine the travel route in the server according to the shadow information and travel information in the map, and recommend the travel route to the user in the form of sending recommended route information to the vehicle.
  • the travel route determined according to the shadow information and travel information may be the sunniest route in addition to the most sun-resistant route in the above example, for example, it may be applied to scenarios such as solar-powered travel vehicles.
  • the method for recommending a boarding point or an alighting point using shadow information is introduced below based on FIG. 30 and FIG. 31 .
  • the method can be executed by a terminal, roadside or cloud device, including but not limited to a vehicle, portable terminal, RSU, REC, map server or application server; or it can also be executed by an application installed on a terminal, roadside or cloud device Program execution, including but not limited to navigation applications or online car-hailing applications.
  • a terminal, roadside or cloud device including but not limited to a vehicle, portable terminal, RSU, REC, map server or application server; or it can also be executed by an application installed on a terminal, roadside or cloud device Program execution, including but not limited to navigation applications or online car-hailing applications.
  • the above method for recommending boarding points using shadow information includes steps:
  • the travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination
  • the acquisition method can be obtained according to user input, or based on data calculation Generated, or obtained by calling a program or information in a module, or obtained by receiving a message, no specific limitation is made here;
  • Recommending the at least one boarding point to the user, the recommended manner includes but not limited to displaying text and/or graphics on a user interface, or sending information indicating the at least one boarding point.
  • Figure 30 illustrates a display interface for recommending boarding points in the application.
  • the user wants to take a taxi from Hospital A to Airport B.
  • the display interface of the online car-hailing application the user enters the start point and end point in text, and the display interface displays a map near the user's current location, which marks the boarding at the north gate of the hospital. point and the pick-up point at the south gate of the hospital. Since these two boarding points are not in the shaded area, the app recommends the boarding point under the overpass 100 meters east of the north gate of the hospital to the user, and the recommended boarding point can be placed at the corresponding location on the map. mark.
  • Figure 31 illustrates the interaction method, including:
  • Step 1 the vehicle sends travel information to the server, and the travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination.
  • travel information includes at least one of travel time, travel mode (walking, cycling or driving), departure place and destination.
  • Step 2 Determine the boarding point located in the shadow area in the server according to the shadow information and travel information in the map, and recommend the boarding point to the user in the form of sending recommended boarding point information to the vehicle.
  • the method of recommending the drop-off point using the shadow information is similar to the method of recommending the pick-up point, and will not be repeated here.
  • the method of using shadow information to assist solar charging is introduced below based on FIG. 32A , FIG. 32B and FIG. 33 .
  • Solar energy As a clean energy source, solar energy has great application prospects. Now there have been cars powered by solar energy. Solar panels are installed on the roof, which can be illuminated by collecting solar panels on the roof when the vehicle is parked (as shown in Figure 32A) and in a driving state (as shown in Figure 32B). The solar energy provides energy for the vehicle or charges the vehicle battery.
  • the embodiment of the present application proposes a method of using shadow information to recommend a parking spot or a driving route for a vehicle powered by solar energy, so that the vehicle is exposed to sunlight as much as possible to meet the energy demand of the vehicle.
  • the method can be executed by a terminal, roadside or cloud device, including but not limited to a vehicle, portable terminal, RSU, REC, map server or application server; or it can also be executed by an application installed on a terminal, roadside or cloud device program execution.
  • a terminal, roadside or cloud device including but not limited to a vehicle, portable terminal, RSU, REC, map server or application server; or it can also be executed by an application installed on a terminal, roadside or cloud device program execution.
  • the method includes the following steps:
  • the demand information of the vehicle is acquired, and the demand information indicates the intention of the vehicle to park or to travel. If it is determined that the vehicle will be parked, then further determine the area where the vehicle will be parked, and the demand information may also include information indicating the parked area; if it is determined that the vehicle will be traveling, then further determine the starting position and end point of the trip location, the demand information may also include information indicating the starting location and the ending location. Further, when the shadow information includes time information for indicating the time zone in which the shadow area exists, the time when the vehicle will stop or travel can also be obtained, so that the shadow information corresponding to the time in the map can be used Auxiliary solar charging.
  • the travel route can be the route with the longest length of the road segment covered by the non-shaded area, or the route with the largest ratio of the length of the road segment covered by the non-shaded area to the total length of the route, or the route covered by The route with the shortest section length covered by the shaded area, or the route with the smallest ratio of the length of the section covered by the shaded area to the total length of the journey, this embodiment does not limit the specific calculation method for determining the travel route. For example, when the vehicle is about to travel, one or more of other factors such as driving distance, congestion degree, high-speed priority, and passing location can also be considered, and different weights can be assigned to different factors according to user needs. to determine the travel route.
  • the recommendation method includes but is not limited to displaying text and/or graphics on a user interface, or sending information indicating the parking location or the travel route.
  • Figure 33 illustrates the interaction method, including:
  • Step 1 the vehicle sends solar charging demand information to the server, and the solar charging demand information includes information indicating the intention of the vehicle to park or to travel. Further, the solar charging demand information also includes information indicating the parking area or information indicating the start location and end location of the trip. Further, the solar charging demand information also includes information indicating the time when the vehicle will stop or travel.
  • Step 2 In the server, according to the shadow information in the map and the above-mentioned solar charging demand information, generate solar charging instruction information and send it to the vehicle, the solar charging instruction information is used to indicate the above-mentioned parking position or the above-mentioned driving route.
  • step 1 may be carried in the same message and sent to the server, or may be carried in different messages and sent to the server, which is not limited in this embodiment of the present application.
  • the method of using shadow information to assist projection to the road surface is introduced below based on FIG. 34 .
  • the embodiment of the present application does not limit the equipment used for projection. The following only uses a vehicle as the projection device for illustration.
  • the embodiment of the present application is also applicable to the scene of using a mobile phone or a special projection device for projection. The specific method is the same as that described below. Vehicle projections are similar.
  • Laser projection can be applied to traffic information reminders.
  • Vehicles or roadside equipment can project traffic information in the form of text and/or patterns onto the road or the side of buildings to remind other traffic participants, or as a tool for interacting with other participants.
  • An embodiment of the present application provides a method for assisting projection using shadow information, and at least one of the position, brightness, and hue for laser projection is determined according to the shadow information, so that the laser projection is more likely to attract the attention of other traffic participants .
  • the shadow information includes time information for indicating the time zone in which the shadow area exists
  • the time for laser projection may also be determined according to the time information.
  • the vehicle is driving in a lane from right to left in the picture, and the vehicle knows that the vehicle is currently driving into a shadow area on the lane through the shadow information in the map.
  • the vehicle senses that two pedestrians are standing on the side of the road ahead, and the vehicle judges that the two pedestrians may cross the road, which is a potential risk factor. Therefore, when the vehicle judges that the two pedestrians are in the direction of the vehicle and the distance between the pedestrians and the vehicle satisfies the preset conditions, the vehicle projects a warning projection pattern to the road ahead, and the warning projection pattern acts as a warning to the pedestrian, for example, it can be "Stop (STOP)" or “Attention (ATTENTION)", etc.
  • the projected pattern is positioned on the road where two pedestrians are likely to notice it, so as to remind the two pedestrians that a vehicle is about to pass by and not to cross the road.
  • the projection device of the vehicle acquires shadow information in the map, and adjusts the brightness or hue of the projection based on the road surface projection position indicated by the shadow information being in a shadow area.
  • the vehicle's projection device can adjust the projection distance or angle according to the projection information in the map, so that the vehicle will always be projected during driving.
  • the pattern is projected onto the shadowed area in the road projection location.
  • the embodiment of the present application provides a map data processing device 3500 , which can be used to execute the map data processing method described in any one of FIGS. 4-12B above.
  • the map data processing device 3500 includes:
  • An acquiring unit 3501 configured to acquire shadow information, where the shadow information is used to indicate a shadow area, where the shadow information includes position information, where the position information is used to indicate a geographic location of the shadow area;
  • the storage unit 3502 is configured to store the shadow information as data of the map.
  • shadow information Regarding the shadow information, shadow area, acquisition of shadow information, and storage of shadow information, reference may be made to the foregoing description, which will not be repeated here.
  • the map data processing device 3500 can be located in the cloud, roadside or terminal, including but not limited to map server, application server, RSU, REC, vehicle or portable terminal, or components, chips, software modules or hardware modules inside these devices.
  • the acquisition of shadow information by the map data processing device 3500 may be based on the perception information obtained by itself or the perception information received from other devices to generate shadow information.
  • a side or terminal map using device provides a map product including shading information.
  • the acquisition of shadow information by the map data processing device 3500 may also be receiving shadow information from other devices.
  • the map data processing device 3500 serves as a map storage device or a map use device, maintaining a map database including shadow information.
  • the embodiment of the present application provides a map data processing device 3600, which can be used to execute the map data processing method described in any one of Figs. 4-12B above.
  • the map data processing device 3600 includes at least one of a receiving unit 3601 , a processing unit 3602 , a storage unit 3603 , a sending unit 3604 , a display unit 3605 , an input unit 3606 , an output unit 3607 , and a control unit 3608 .
  • the storage unit 3603 is used to store the shadow information described above as map data.
  • the shadow information stored in the storage unit 3603 comes from the shadow information generated by the processing unit 3602.
  • the map data processing device 3600 can be used as a map generating device for providing map usage devices including Map product for shadow information.
  • the processing unit 3602 can also be used to: generate the shadow information by collecting statistics on the perception data obtained by the map collection vehicle or crowdsourcing vehicles or roadside equipment, combined with other information such as weather conditions
  • the processing unit 3602 is configured to determine the display area of the shadow area on the display interface according to the position information in the shadow information and the boundary information of the map elements in the map.
  • the processing unit 3602 is configured to identify the target object according to the perception data and shadow information, such as identifying the category, name, outline, color, pattern, or whether the target object is three-dimensional.
  • the processing unit 3602 is configured to make a driving decision according to the result of identifying the target object.
  • the processing unit 3602 is configured to determine, according to the driving data and shadow information, that the vehicle will enter the shadow area within a time less than a first threshold, or that the distance between the vehicle and the shadow area ahead of the driving direction is less than a second threshold.
  • the processing unit 3602 is configured to select at least one parking space according to parking demand information and shadow information.
  • the processing unit 3602 is configured to obtain the user's parking demand information through navigation information.
  • the processing unit 3602 is configured to plan a travel route, a boarding point or a boarding point for the user according to the travel information and shadow information.
  • the processing unit 3602 is configured to determine a first location for charging in a stationary state or a first route for charging in a moving state according to solar charging demand information and shadow information.
  • the processing unit 3602 is configured to determine at least one of position, brightness and hue for laser projection according to the shadow information.
  • the shadow information stored in the storage unit 3603 comes from the shadow information received by the receiving unit 3601.
  • the map data processing device 3600 can be used as a map storage device or a map use device, and needs to maintain a map database including shadow information.
  • the receiving unit 3601 is configured to receive the shadow information from other devices, components, chips, interfaces, hardware modules or software modules.
  • the receiving unit 3601 is further configured to receive perception data about the target object, vehicle driving data, user's parking requirement information, user's travel information or user's solar charging requirement information.
  • the map data processing apparatus 3600 may optionally include a sending unit 3604, configured to send the shadow information.
  • the sending unit 3604 is further configured to send target indication information to the vehicle, where the target indication information is used to indicate the attribute of the target object.
  • the attribute includes, for example, the category, name, outline, color, pattern, or whether the target object is three-dimensional.
  • the sending unit 3604 is further configured to send a reminder message to the vehicle, where the reminder message is used to indicate that the vehicle is about to enter the shadow area.
  • the sending unit 3604 is further configured to send parking space recommendation information to the mobile terminal, where the parking space recommendation information is used to indicate at least one parking space.
  • the mobile terminal includes but is not limited to a vehicle or a portable terminal (such as a mobile phone, a notebook computer, a tablet computer, a navigator or a smart wearable device).
  • the sending unit 3604 is further configured to send travel advice information to the mobile terminal, where the travel advice information is used to indicate the travel route, pick-up point or drop-off point.
  • the sending unit 3604 is further configured to send solar charging indication information to the mobile terminal, where the solar charging indication information is used to indicate the first location or the first route.
  • the map data processing apparatus 3600 may optionally include a display unit 3605, configured to display the shadow area based on the shadow information.
  • the display unit 3605 is configured to superimpose the shadow information on other map information for display based on the shadow display trigger instruction.
  • the display unit 3605 is configured to display the change of the shadow area over time based on the time information in the shadow information.
  • the display unit 3605 is configured to display the shadow degree information in the shadow information through different gray scales, colors, saturation or pattern densities.
  • the display unit 3605 is used to display the cause information in the shadow information through different gray scales, colors, saturation or pattern densities.
  • the display unit 3605 is configured to display the shadow area on the display area determined by the processing unit. Or further, the display unit 3605 is configured to recommend the parking space to the user on a display interface. Or further, the display unit 3605 is configured to recommend travel routes to the user on a display interface. Or further, the display unit 3605 is configured to recommend a first location or a first route for solar charging to the user on a display interface.
  • the map data processing device 3600 may optionally include an input unit 3606 for receiving a shadow display trigger instruction input by the user, or for the user to input parking demand information.
  • the map data processing device 3600 may optionally include an output unit 3607 for reminding the user to perform at least one of deceleration, turning on the lights, turning on the warning lights and sounding the whistle.
  • the map data processing device 3600 can optionally include a control unit 3608, which is used to control at least one of the speed of the vehicle, turn on the lights, turn on the warning lights and sound the horn.
  • a control unit 3608 which is used to control at least one of the speed of the vehicle, turn on the lights, turn on the warning lights and sound the horn.
  • the software or firmware includes but is not limited to computer program instructions or codes, and can be executed by a hardware processor.
  • the hardware includes but is not limited to various integrated circuits, such as a central processing unit (CPU, Central Processing Unit), a digital signal processor (DSP, Digital Signal Processor), a field programmable gate array (FPGA, Field Programmable Gate Array) or Application Specific Integrated Circuit (ASIC).
  • CPU central processing unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the embodiment of the present application provides a map data processing apparatus 3700 , including a processor 3701 and a memory 3702 .
  • the memory 3702 stores computer program instructions
  • the processor 3701 reads and executes the computer program instructions from the memory, so that the map data processing device 3700 executes the map data processing method described in any one of FIGS. 4-12B above.
  • the embodiment of the present application provides a map data processing apparatus 3800 , including a processor 3801 and a communication interface 3802 .
  • the processor 3801 obtains computer program instructions through the communication interface 3802, and the processor 3801 executes the computer program instructions, so that the map data processing device 3800 executes the map data processing method described in any one of Figs. 4-12B above.
  • processor 3701 or processor 3801 may be one chip.
  • the processor 3701 or the processor 3801 may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC) ), it can also be a central processing unit (central processor unit, CPU), it can also be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), it can also be a microcontroller (micro controller unit, MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • the memory 3702 in this embodiment of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program executes all or part of the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).
  • SSD Solid State Disk
  • the disclosed systems, devices and methods can be implemented in other ways without exceeding the scope of the present application.
  • the above-described embodiments are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may also be distributed to multiple network units .
  • Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Instructional Devices (AREA)
  • Navigation (AREA)
  • Library & Information Science (AREA)

Abstract

一种地图数据处理方法和装置,用于为地图增加一种新型的地图信息,即描述阴影区域的阴影信息。针对阴影信息的指示内容和在地图中的数据组织形式提出了多种可选方案,使地图能够记录阴影区域的地理位置、形状、尺寸、阴影程度、可信程度、形成原因和随时间变化情况中的至少一项,提高了地图的信息丰富程度,能够满足多样化的应用需求。阴影信息的多种应用方案可应用于目标识别、辅助驾驶、寻找停车位、导航、打车、太阳能充电和激光投影等多种场景。

Description

地图数据处理方法和装置
本申请要求于2021年9月19日提交中国专利局、申请号为202111127585.X、申请名称为“地图数据处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子地图技术领域,尤其涉及一种地图数据处理方法和装置。
背景技术
随着智能驾驶对车辆感知系统和决策系统的准确性要求越来越高,电子地图作为一种交通信息的载体,可以为车辆提供道路拓扑等先验参考信息。尤其是现在快速发展的高精地图(High-Definition Map,HD MAP),又称为高清地图或者高精度地图,在信息的精细度和实时性方面都大大提高,不仅可以通过地图定位、感知融合等手段提高车辆感知决策的准确性,还可以为车辆提供超视距范围的交通信息,供车辆进行前瞻性的预测。
未来的智能驾驶和智能交通对地图信息的丰富程度也提出了更高的要求,然而,现有的地图内容丰富程度还不能充分满足未来使用的需求。
发明内容
针对现有技术中地图内容的丰富程度还不能充分满足使用需求的技术问题,本申请实施例提出一种地图数据处理方法和装置。
第一方面,提供一种地图数据处理方法,该方法例如可以由地图生成设备、服务器、车辆、便携终端或应用程序执行。该方法包括:获取阴影信息,该阴影信息用于指示阴影区域,该阴影信息包括位置信息,该位置信息用于指示该阴影区域的地理位置;将该阴影信息作为该地图的数据进行存储。其中,阴影区域为接受光照的强度弱于周边区域的地表区域,例如可以为被旁边建筑物的阴影覆盖的地表区域、有顶棚覆盖的地表区域、隧道区域或者在茂盛的树木之下被树叶光斑覆盖的地表区域。
可选地,该位置信息基于坐标或者地图元素表达。
可选地,该阴影信息还包括该阴影区域的标识,便于在地图中对该阴影信息进行维护。
本申请实施例在地图中引入用于指示阴影区域的阴影信息这一种新型的地图承载内容,使地图可以为用户提供阴影区域方面的先验信息或实时信息,极大地提高了地图内容的丰富程度,能够满足用户更多的地图使用需求。
根据第一方面,在该地图数据处理方法的一种可能的实现方式中,该获取阴影信息包括:生成该阴影信息。具体可以通过对地图采集车或者众包车辆或路侧设备获取的感知数据,进行统计,结合天气情况等其他信息,生成该阴影信息。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,该获取阴影信息包括:接收该阴影信息。该接收阴影信息包括从其他设备、部件、芯片、接口、硬件模块或软件模块接收该阴影信息。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,该阴影信息还包括几何信息、时间信息、阴影程度信息、置信度信 息和原因信息中的至少一项,其中,该几何信息用于指示该阴影区域的形状或尺寸,该时间信息用于指示该阴影区域存在的时间区段,该阴影程度信息用于指示该阴影区域的阴影程度,该置信度信息用于指示该阴影区域的可信程度,该原因信息用于指示该阴影区域产生的原因。
可选地,该时间信息包括年份字段、季度字段、月份字段、日期字段、小时字段、分钟字段和时间戳中的至少一项。
可选地,该阴影程度包括该阴影区域的光照强度平均值、该阴影区域与非阴影区域之间的光照强度差、该阴影区域与该非阴影区域之间的图像亮度差、该阴影区域与该非阴影区域的图像对比度和阴影级别中的至少一项。
可选地,该置信度信息根据以下因素中的至少一项确定:天气情况、采集设备的可信程度、采集方式的可信程度和统计数据量。
可选地,阴影信息中可能包括上述多种信息中的至少一种信息为地图中的动态信息。
可选地,阴影信息中可能包括上述多种信息中的至少一种信息为地图中的静态信息。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,该将该阴影信息作为该地图的数据进行存储,包括:以该地图中对事件进行存储的数据结构对该阴影信息进行存储。
可选地,将该阴影信息以瓦片为单位进行存储,每个该瓦片包括用于指示多个阴影区域的多个阴影信息。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括发送该阴影信息。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括基于该阴影信息显示或控制显示该阴影区域。
可选地,该基于该阴影信息显示该阴影区域,包括:接收用户输入的阴影显示触发指令;基于该阴影显示触发指令,将该阴影信息叠加在该地图的其他信息上进行显示或控制显示。
可选地,与该阴影区域相对应的显示区域相对于其它显示区域具有不同的灰度、颜色、饱和度或叠加图案。
可选地,当阴影信息还包括时间信息时,该时间信息用于指示该阴影区域存在的时间区段,该基于该阴影信息显示该阴影区域,包括:基于该时间信息显示或控制显示该阴影区域随时间的变化。
可选地,当阴影信息还包括阴影程度信息时,该阴影程度信息用于指示该阴影区域的阴影程度,该基于该阴影信息显示或控制显示该阴影区域,包括:通过不同的灰度、颜色、饱和度或图案密度显示或控制显示该阴影程度信息。
可选地,当阴影信息还包括原因信息时,该原因信息用于指示该阴影区域产生的原因,该基于该阴影信息显示该阴影区域,包括:通过不同的灰度、颜色、饱和度或图案密度显示或控制显示该原因信息。
可选地,该基于该阴影信息显示或控制显示该阴影区域,包括:根据该位置信息和该地图中地图元素的边界信息,确定该阴影区域在显示界面上的显示区域;在该显示区域上显示或控制显示该阴影区域。其中,当地图元素为道路时,该显示区域为该道路的一个区段;当地图元素为车道时,该显示区域为该车道的一个区段。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括:获得关于目标对象的感知数据;根据该感知数据和该阴影信息,识别该目标对象。
可选地,该识别该目标对象包括识别该目标对象的类别、名称、轮廓、颜色、图案或是否立体。
可选地,该获得关于目标对象的感知数据包括:从车辆接收该感知数据;该方法还包括:向该车辆发送目标指示信息,该目标指示信息用于指示该目标对象是否存在或者用于指示该目标对象的特征。进一步地可选地,该特征包括该目标对象的类别、名称、轮廓、颜色、图案或是否立体的属性。
可选地,该获得关于目标对象的感知数据包括:获得感知设备感知得到的该感知数据;该方法还包括:根据该识别的结果进行驾驶决策。进一步地可选地,该感知设备包括摄像头、毫米波雷达、激光雷达或毫米波雷达。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括:获得车辆的行驶数据,该行驶数据用于指示该车辆的行驶位置;根据该行驶数据和该阴影信息,确定该车辆将在小于第一阈值的时间内驶入阴影区域,或者该车辆与位于行驶方向前方的阴影区域的距离小于第二阈值。
可选地,该获得车辆的行驶数据,包括从车辆接收该行驶数据;该方法还包括:向该车辆发送提醒消息,该提醒消息用于指示该车辆即将驶入阴影区域。
可选地,该方法还包括:提醒用户执行以下操作中的至少一项:减速、打开照明灯、打开警示灯和鸣笛。
可选地,该方法还包括:控制该车辆执行以下操作中的至少一项:减速、打开照明灯、打开警示灯和鸣笛。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括:获取用户的停车需求信息,该停车需求信息用于指示预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项;根据该停车需求信息和该阴影信息,选择至少一个停车位。
可选地,该获取用户的停车需求信息,包括从移动终端接收该停车需求信息。
可选地,该方法还包括:向该移动终端发送停车位推荐信息,该停车位推荐信息用于指示该至少一个停车位。该移动终端包括但不限于车辆或者便携终端(例如手机、PAD、导航仪……)。
可选地,该获取用户的停车需求信息包括:通过用户输入获取该停车需求信息,或者通过导航信息获取该停车需求信息。
可选地,该方法还包括在显示界面向该用户推荐该停车位。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括:获取用户的出行信息;根据该出行信息和该阴影信息为该用户规划出行路线或者上车位置。
可选地,该获取用户的出行信息,包括:从移动终端接收该出行信息
可选地,该方法还包括:向该移动终端发送出行建议信息,该出行建议信息用于指示该出行路线或者该上车位置。其中,该移动终端包括但不限于车辆或者便携终端(例如手机、PAD、导航仪……)
可选地,该出行信息包括出行时间、出行方式(步行、骑行或驾车)、出发地和目的地中的至少一项。
可选地,该出行路线是被阴影区域覆盖的路段长度最长的路线,或者是被阴影区域覆盖的路段长度占路程总长度的比值最大的路线,或者是被非阴影区域覆盖的路段长度最短的路 线,或者是被非阴影区域覆盖的路段长度占路程总长度的比值最小的路线。
可选地,该方法还包括在显示界面向该用户推荐该出行路线。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括:获取用户的太阳能充电需求信息;根据该太阳能充电需求信息和该阴影信息确定用于在静止状态下充电的第一位置或用于在移动状态下充电的第一路线。
可选地,该获取用户的太阳能充电需求信息,包括从移动终端接收用户的太阳能充电需求信息。
可选地,该方法还包括:向该移动终端发送太阳能充电指示信息,该太阳能充电指示信息用于指示该第一位置或该第一路线。其中,该移动终端包括但不限于车辆或者便携终端(例如手机、PAD、导航仪……)。
可选地,该太阳能充电需求信息包括充电位置区域、充电开始时间、充电结束时间和充电时长中的至少一项。
可选地,该方法还包括在显示界面向该用户推荐该第一位置或该第一路线。
根据第一方面或以上第一方面的任意一种可能的实现方式,在该地图数据处理方法的又一种可能的实现方式中,还包括:根据该阴影信息确定用于激光投影的位置、亮度和色调中的至少一项。
可选地,该阴影信息还包括时间信息,该时间信息用于指示该阴影区域存在的时间区段。
可选地,该方法还包括:根据该阴影信息确定用于激光投影的时间。
第二方面,提供一种地图数据处理装置,该地图数据处理装置包括:第一获取单元,用于获取阴影信息,该阴影信息用于指示阴影区域,该阴影信息包括位置信息,该位置信息用于指示该阴影区域的地理位置;存储单元,用于将该阴影信息作为该地图的数据进行存储。
可选地,该位置信息基于坐标或者地图元素表达。
可选地,该阴影信息还包括该阴影区域的标识。
根据第二方面,在该地图数据处理装置的一种可能的实现方式中,该第一获取单元为用于生成该阴影信息的第一处理单元。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该第一获取单元为用于接收该阴影信息的第一接收单元。
可选地,该第一处理单元用于:通过对地图采集车或者众包车辆或路侧设备获取的感知数据,进行统计,结合天气情况等其他信息,生成该阴影信息。
可选地,该第一接收单元用于从其他设备、部件、芯片、接口、硬件模块或软件模块接收该阴影信息。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该阴影信息还包括几何信息、时间信息、阴影程度信息、置信度信息和原因信息中的至少一项,其中,该几何信息用于指示该阴影区域的形状或尺寸,该时间信息用于指示该阴影区域存在的时间区段,该阴影程度信息用于指示该阴影区域的阴影程度,该置信度信息用于指示该阴影区域的可信程度,该原因信息用于指示该阴影区域产生的原因。
可选地,该时间信息包括年份字段、季度字段、月份字段、日期字段、小时字段、分钟字段和时间戳中的至少一项。
可选地,该阴影程度包括该阴影区域的光照强度平均值、该阴影区域与非阴影区域之间 的光照强度差、该阴影区域与该非阴影区域之间的图像亮度差、该阴影区域与该非阴影区域之间的图像对比度和阴影级别中的至少一项。
可选地,该置信度信息根据以下因素中的至少一项确定:天气情况、采集设备的可信程度、采集方式的可信程度和统计数据量。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该存储单元用于:以该地图中对事件进行存储的数据结构对该阴影信息进行存储。
可选地,将该阴影信息以瓦片为单位进行存储,每个该瓦片包括用于指示多个阴影区域的多个阴影信息。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:第一发送单元,用于发送该阴影信息。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:显示单元,用于基于该阴影信息显示该阴影区域。或者该显示单元独立于该装置,该装置还包括控制单元,用于基于该阴影信息控制该阴影区域的显示。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:输入单元,用于接收用户输入的阴影显示触发指令。当输入单元独立于该装置上,该装置还包括接收单元,用于接收用户输入的阴影显示触发指令。
可选地,该显示单元,基于该阴影显示触发指令,将该阴影信息叠加在该地图的其他信息上进行显示。或控制单元,基于该阴影显示触发指令,控制该阴影区域的显示
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,与该阴影区域相对应的显示区域相对于其它显示区域具有不同的灰度、颜色、饱和度或叠加图案。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该阴影信息还包括时间信息,其中,该时间信息用于指示该阴影区域存在的时间区段。
可选地,该显示单元用于基于该时间信息显示该阴影区域随时间的变化。或者,该控制单元用于基于该时间信息控制该阴影区域随时间的变化显示。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该阴影信息还包括阴影程度信息,其中,该阴影程度信息用于指示该阴影区域的阴影程度。
可选地,该显示单元用于通过不同的灰度、颜色、饱和度或图案密度显示该阴影程度信息。或者,该控制单元用于通过不同的灰度、颜色、饱和度或图案密度控制显示该阴影程度信息。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该阴影信息还包括原因信息,其中,该原因信息用于指示该阴影区域产生的原因。
可选地,该显示单元用于:通过不同的灰度、颜色、饱和度或图案密度显示该原因信息。或者,该控制单元用于通过不同的灰度、颜色、饱和度或图案密度控制显示该原因信息。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又 一种可能的实现方式中,该装置还包括第二处理单元,用于根据该位置信息和该地图中地图元素的边界信息,确定该阴影区域在显示界面上的显示区域;该显示单元用于在该显示区域上显示该阴影区域,或者该控制单元用于控制在该显示区域上显示该阴影区域。其中,当该地图元素为道路时,该显示区域为该道路的一个区段;当该地图元素为车道时,该显示区域为该车道的一个区段。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:第二获取单元,用于获得关于目标对象的感知数据;第三处理单元用于根据该感知数据和该阴影信息,识别该目标对象。
可选地,该第三处理单元识别该目标对象的类别、名称、轮廓、颜色、图案或是否立体。
可选地,该第二获取单元为用于从车辆接收该感知数据的第二接收单元。
可选地,该装置还包括:第二发送单元,用于向该车辆发送目标指示信息,该目标指示信息用于指示该目标对象的属性。
可选地,该属性包括该目标对象的类别、名称、轮廓、颜色、图案或是否立体。
可选地,该第二获取单元用于获得感知设备感知得到的该感知数据;该第三处理单元用于:根据该识别的结果进行驾驶决策。
可选地,该感知设备包括摄像头、毫米波雷达、激光雷达或毫米波雷达。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:第三获取单元,用于获得车辆的行驶数据,该行驶数据用于指示该车辆的行驶位置;第四处理单元,用于根据该行驶数据和该阴影信息,确定该车辆将在小于第一阈值的时间内驶入阴影区域,或者该车辆与位于行驶方向前方的阴影区域的距离小于第二阈值。
可选地,该第三获取单元为用于从车辆接收该行驶数据的第三接收单元。
可选地,该装置还包括第三发送单元,用于向该车辆发送提醒消息,该提醒消息用于指示该车辆即将驶入阴影区域。
可选地,该装置还包括输出单元,用于提醒用户执行以下操作中的至少一项:减速、打开照明灯、打开警示灯和鸣笛。
可选地,该装置还包括控制单元,用于控制该车辆执行以下操作中的至少一项:减速、打开照明灯、打开警示灯和鸣笛。
根据第二方面或以上第二方面的任意一种可能的实现方式,在所述地图数据处理装置的又一种可能的实现方式中,所述装置还包括:第四获取单元,用于获取用户的停车需求信息,所述停车需求信息用于指示预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项;第五处理单元,用于根据该停车需求信息和该阴影信息,选择至少一个停车位。
可选地,该第四获取单元为用于从移动终端接收该停车需求信息的第四接收单元,该装置还包括第四发送单元,用于向该移动终端发送停车位推荐信息,该停车位推荐信息用于指示该至少一个停车位。该移动终端包括但不限于车辆或者便携终端(例如手机、平板电脑、笔记本电脑、导航仪或智能可穿戴设备)。
可选地,该第四获取单元用于通过用户输入获取该停车需求信息,或者通过导航信息获取该停车需求信息。进一步地,该装置还包括显示单元,用于在显示界面向该用户推荐该停车位。或者,还包括控制单元,用于控制显示界面上向该用户推荐该停车位的显示。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:
第五获取单元,用于获取用户的出行信息;
第六处理单元,用于根据该出行信息和该阴影信息为该用户规划出行路线或者上车位置。
可选地,该第五获取单元为用于从移动终端接收该出行信息的第五接收单元;
可选地,该装置还包括第五发送单元,用于向该移动终端发送出行建议信息,该出行建议信息用于指示该出行路线或者该上车位置。该移动终端包括但不限于车辆或者便携终端(例如手机、PAD、导航仪……)
可选地,该出行信息包括出行时间、出行方式(步行、骑行或驾车)、出发地和目的地中的至少一项。
可选地,该出行路线满足未被该阴影区域覆盖的路线的长度最小。
可选地,该装置还包括显示单元,用于在显示界面向所述用户推荐所述出行路线。或者,还包括控制单元,用于控制显示界面上向所述用户推荐所述出行路线的显示。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括:第六获取单元,用于获取用户的太阳能充电需求信息;第七处理单元,用于根据该太阳能充电需求信息和该阴影信息确定用于在静止状态下充电的第一位置或用于在移动状态下充电的第一路线。
可选地,该第六获取单元为用于从移动终端接收用户的太阳能充电需求信息的第六接收单元。
可选地,该装置还包括第六发送单元,用于向该移动终端发送太阳能充电指示信息,该太阳能充电指示信息用于指示该第一位置或该第一路线。该移动终端包括但不限于车辆或者便携终端(例如手机、PAD、导航仪……)
可选地,该太阳能充电需求信息包括充电位置区域、充电开始时间、充电结束时间和充电时长中的至少一项。
可选地,该装置还包括显示单元,用于在显示界面向该用户推荐该第一位置或该第一路线。或者,还包括控制单元,用于控制显示界面上向该用户推荐该第一位置或该第一路线的显示。
根据第二方面或以上第二方面的任意一种可能的实现方式,在该地图数据处理装置的又一种可能的实现方式中,该装置还包括第八处理单元,用于根据该阴影信息确定用于激光投影的位置、亮度和色调中的至少一项。
可选地,该阴影信息还包括时间信息,该时间信息用于指示该阴影区域存在的时间区段。
可选地,该第八处理单元还用于根据该阴影信息确定用于激光投影的时间。
第三方面,提供一种地图数据处理装置,该地图数据处理装置包括处理器和存储器,该存储器存储计算机指令,该处理器运行该计算机指令,以使该地图数据处理装置执行上述第一方面或第一方面的任意一种可能的实现方式描述的地图数据处理方法。
第四方面,提供一种地图数据处理装置,该地图数据处理装置包括处理器和通信接口,该处理器通过该通信接口读取计算机指令,以及运行该计算机指令,以使该地图数据处理装置执行上述第一方面或第一方面的任意一种可能的实现方式描述的地图数据处理方法。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,当该计算机指令被处理器执行时,实现上述第一方面或第一方面的任意一种可能的实现方式描述的地图数据处理方法。
第六方面,提供一种计算机程序产品,该计算机程序产品包括计算机指令,当该计算机指令被处理器执行时,实现上述第一方面或第一方面的任意一种可能的实现方式描述的地图 数据处理方法。
第七方面,提供一种电子地图产品,该电子地图产品包括阴影信息,该阴影信息用于指示阴影区域,该阴影信息包括位置信息,该位置信息用于指示该阴影区域的地理位置。
根据第七方面,在该电子地图产品的一种可能的实现方式中,该阴影信息在该地图中以事件的数据结构进行存储。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,该位置信息基于坐标或者地图元素表达。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,该阴影信息还包括该阴影区域的标识。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,该阴影信息还包括几何信息、时间信息、阴影程度信息和置信度信息中的至少一项,其中,该几何信息用于指示该阴影区域的形状或尺寸,该时间信息用于指示该阴影区域存在的时间区段,该阴影程度信息用于指示该阴影区域的阴影程度,该置信度信息用于指示该阴影区域的可信程度。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,该时间信息包括年份字段、季度字段、月份字段、日期字段、小时字段、分钟字段和时间戳中的至少一项。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,该阴影程度包括该阴影区域的光照强度平均值、该阴影区域与非阴影区域之间的光照强度差、该阴影区域与该非阴影区域之间的图像亮度差、该阴影区域与该非阴影区域之间的图像对比度和阴影级别中的至少一项。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,该置信度信息根据以下因素中的至少一项确定:
天气情况、采集设备的可信程度、采集方式的可信程度和统计数据量。
根据第七方面或以上第七方面的任意一种可能的实现方式,在该电子地图产品的又一种可能的实现方式中,将该阴影信息以瓦片为单位进行存储,每个该瓦片包括用于指示多个阴影区域的多个阴影信息。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质存储有上述第七方面或第七方面的任意一种可能的实现方式所描述的电子地图产品。
第九方面,提供一种车辆,该车辆中包括上述第二方面、第三方面、第四方面或第二至四方面的任意一种可能的实现方式所描述的地图数据处理装置。
第十方面,提供一种系统,该系统包括第一地图数据处理装置和第二地图数据处理装置。其中,该第一地图数据处理装置用于执行,当该获取阴影信息为生成阴影信息时的上述第一方面或第一方面的任意一种可能的实现方式中的地图数据处理方法;该第二地图数据处理装置用于执行,当该获取阴影信息为接收阴影信息时的上述第一方面或第一方面的任意一种可能的实现方式中的地图数据处理方法。
上述第二方面至第十方面的技术效果与上述第一方面相同,此处不再赘述。
附图说明
图1为本申请实施例提供的一种地图信息所指示内容的示意图;
图2为本申请实施例提供的一种地图中的动态图层和静态图层的示意图;
图3为本申请实施例提供的一种应用场景示意图;
图4为本申请实施例提供的阴影信息的一种表达方式的示意图;
图5A为本申请实施例提供的一种基于多边形表达的关于阴影区域的几何信息的示意图
图5B为本申请实施例提供的一种基于车道区间段表达的关于阴影区域的几何信息的示意图
图6为本申请实施例提供的一种地图数据处理方法的流程图
图7为本申请实施例提供的在地图生成侧执行的第一种地图数据处理方法的流程图
图8为本申请实施例提供的在地图生成侧执行的第二种地图数据处理方法的流程图
图9为本申请实施例提供的在地图生成侧执行的第三种地图数据处理方法的流程图
图10为本申请实施例提供的在地图生成侧执行的第四种地图数据处理方法的流程图
图11为本申请实施例提供的在地图接收侧执行的第五种地图数据处理方法的流程图
图12A为本申请实施例提供的在地图接收侧执行的第六种地图数据处理方法的流程图
图12B为本申请实施例提供的在地图接收侧执行的第七种地图数据处理方法的流程图
图13为本申请实施例提供的一种基于用户选择在地图上显示阴影信息的示意图
图14为本申请实施例提供的一种将阴影区域与其它区域区别显示的示意图
图15为本申请实施例提供的一种将不同的阴影信息在地图上区别显示的示意图
图16A为本申请实施例提供的在地图上动态显示阴影信息的第一示意图
图16B为本申请实施例提供的在地图上动态显示阴影信息的第二示意图
图16C为本申请实施例提供的在地图上动态显示阴影信息的第三示意图
图17为本申请实施例提供的一种结合地图元素的边界显示阴影信息的示意图
图18为本申请实施例提供的一种阴影信息应用于目标识别的应用场景示意图
图19为本申请实施例提供的一种阴影信息应用于目标识别云服务的交互流程图
图20为本申请实施例提供的一种阴影信息应用于辅助驾驶的应用场景示意图
图21A为本申请实施例提供的阴影信息应用于辅助驾驶云服务的第一交互流程图
图21B为本申请实施例提供的阴影信息应用于辅助驾驶云服务的第二交互流程图
图22为本申请实施例提供的一种阴影信息应用于寻找停车位应用的用户输入界面示意图
图23为本申请实施例提供的应用程序中用于推荐防晒停车位的第一界面示意图
图24为本申请实施例提供的应用程序中用于推荐防晒停车位的第二界面示意图
图25为本申请实施例提供的应用程序中用于推荐防晒停车位的第三界面示意图
图26为本申请实施例提供的应用程序中用于推荐防晒停车位的第四界面示意图
图27为本申请实施例提供的一种阴影信息应用于停车位推荐云服务的交互流程图
图28为本申请实施例提供的一种应用程序中用于推荐出行路线的显示界面示意图
图29为本申请实施例提供的一种阴影信息应用于出行路线推荐云服务的交互流程图
图30为本申请实施例提供的一种应用程序中用于推荐上车点的显示界面示意图
图31为本申请实施例提供的一种阴影信息应用于上车点推荐云服务的交互流程图
图32A为本申请实施例提供的阴影信息应用于太阳能充电的第一应用场景示意图
图32B为本申请实施例提供的阴影信息应用于太阳能充电的第二应用场景示意图
图33为本申请实施例提供的一种阴影信息应用于太阳能充电云服务的交互流程图
图34为本申请实施例提供的一种阴影信息应用于激光投影的应用场景示意图
图35为本申请实施例提供的第一种地图数据处理装置的结构框图
图36为本申请实施例提供的第二种地图数据处理装置的结构框图
图37为本申请实施例提供的第三种地图数据处理装置的结构框图
图38为本申请实施例提供的第四种地图数据处理装置的结构框图
[根据细则91更正 10.11.2022] 
具体实施方式
需要说明的是,本申请中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有任何限定作用。例如,被描述对象为“字段”,则“第一字段”和“第二字段”中“字段”之前的序数词并不限制“字段”之间的位置或顺序,“第一”和“第二”并不限制其修饰的“字段”是否在同一个消息中,也不限制“第一字段”和“第二字段”的先后顺序。再如,被描述对象为“等级”,则“第一等级”和“第二等级”中“等级”之前的序数词并不限制“等级”之间的优先级。再如,被描述对象的数量并不受前缀词的限制,可以是一个或者多个,以“第一设备”为例,其中“设备”的数量可以是一个或者多个。此外,不同前缀词修饰的对象可以相同或不同,例如,被描述对象为“设备”,则“第一设备”和“第二设备”可以是同一个设备、相同类型的设备或者不同类型的设备;再如,被描述对象为“信息”,则“第一信息”和“第二信息”可以是相同内容的信息或者不同内容的信息。。总之,本申请实施例中对用于区分描述对象的前缀词的使用不构成对所描述对象的限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。
需要说明的是,本申请实施例中采用诸如“a1、a2、……和an中的至少一项(或至少一个)”等的描述方式,包括了a1、a2、……和an中任意一个单独存在的情况,也包括了a1、a2、……和an中任意多个的任意组合情况,每种情况可以单独存在。例如,“a、b和c中的至少一项”的描述方式,包括了单独a、单独b、单独c、a和b组合、a和c组合、b和c组合,或abc三者组合的情况。
地图是地理信息的载体,承载了丰富的地理位置信息,如图1呈现的一处城市街景,其中的道路的拓扑结构、车道的划分、各种建筑物的布局和属性等信息可以作为地图数据被存储而成为地图信息的一部分。随着人们对地图需求的不断增长,地图信息变得越来越丰富,除了固定位置方面的信息,高精地图中还可以包括移动的车辆、行人等非固定位置的信息,甚至还可以包括交通灯的状态、道路施工、天气情况或交通流量等随时间变化的信息。
本发明实施例中的地图为电子地图产品或电子地图产品的呈现,举例来说,电子地图产品可以是承载地图信息的地图数据产品,如地图更新数据包;或者可以为加载地图信息的地图应用产品,如可安装于车辆或便携终端上的地图应用程序;或者还可以为呈现地图信息的地图展示产品,如电子导航仪。
地图包括多个图层(layer),图层是具有组织结构的地图数据集。图层中的数据以一定的数据结构进行组织,能够描述多种来源的信息要素。根据信息要素的时变性,信息要素可分为元素和事件两种类型:元素是比较固定、变化小或者更新周期较长的信息要素,例如道路拓扑、建筑物位置、车道线、车道方向或交通基础设施布局等;事件是具有较强时变特性的信息要素,例如,交通事故、天气变化、道路施工或交通拥堵情况等。在地图中,元素和事件可以被记录于不同的图层,例如,元素的信息由地图中的静态图层承载,事件的信息由地图中的动态图层承载,地图中可以包括一个或多个静态图层,还可以进一步包括一个或多个动态图层。为了说明静态图层和动态图层,将图1所示的多种地图信息,映射到如图2所示 的地图的多个图层中。图2呈现了一个静态图层和多个动态图层,静态图层中记录了图1中建筑物、道路、树木、交通灯和道路指示牌的地理分布,动态图层1记录了车道的实时限速情况、交通施工情况和人流车流情况,动态图层2记录了天气情况,例如晴天、下雨、下雪、刮风、温度或湿度等。需要说明的是,对于某个地图记录对象而言,其可能兼具时变性的信息要素和非时变性的信息要素,非时变性的信息要素是指比较固定、变化较小或者更新周期较长的信息要素,即该地图记录对象既与地图中的元素相关,也与地图中的事件相关,例如:针对某一个车道,该车道的地理位置为地图中的元素,该车道的交通流量为地图中的事件;针对某一个交通灯,该交通灯在路口中的位置为地图中的元素,该交通灯的亮灯变化为地图中的事件;针对某一个限速指示牌,该限速指示牌在路口中的位置为地图中的元素,在该限速指示牌所指示的限速值为变化的情况下,该限速变化为地图中的事件。
现有技术中没有将由阳光照射产生的阴影区域的信息作为地图信息进行维护的地图,本申请实施例提出一种包括用于描述阴影区域的阴影信息的地图,也即将用于描述阴影区域的阴影信息作为一种新型的地图信息在地图中进行维护。这里说的阴影区域是指接受光照的强度弱于周边区域的地面区域,例如可以为被旁边建筑物的阴影覆盖的地面区域、有顶棚覆盖的地面区域、隧道内的区域或者在茂盛的树木之下被树叶光斑覆盖的地面区域。以图1为例,这里呈现的是上午10点晴朗天气下的街景,太阳位于东面,阳光照射到路口建筑物和路边树木后,产生了阴影区域A和阴影区域B。可以将阴影信息作为一个单独的图层,如在图2所示的三个图层以外,再生成一个动态图层3记录关于阴影区域A和阴影区域B的信息;也可以阴影信息与其他地图信息一起置于一个图层中,如图2的动态图层1中包括阴影区域A和阴影区域B的信息。
本申请实施例涉及地图的生成和使用,下面通过图3举例说明本发明实施例的一种应用场景。
图3中,道路上行驶的车辆涉及采集车、众包车和普通车三种类型。车辆A为采集车,其是一种专业的地图信息采集车辆,成本较高,一般归地图生产厂商所有,配备有激光雷达、毫米波雷达、摄像头或全球导航卫星系统系统(global navigation satellite system,GNSS)等感知设备,在道路上进行采图作业,为地图生产厂商制图提供基础数据。采集车采集的数据,既可以通过无线或有线通信网络发送给地图服务器D,又可存储于存储介质上,然后人工将存储介质上的数据拷贝到地图服务器D上。地图服务器D作为地图的生产设备和/或存储设备,既可以是集中式服务器,又可以是分布式服务器。车辆B为众包车,不同于专用的采集车,众包车的使用者或所属者经过签约后可以将采集到的基础数据提供给地图生产厂商,这种地图数据采集方式是未来的趋势,优势在于可以获得更丰富、更实时和更低成本的基础数据。车辆C为普通车,其不为地图生产厂商采集数据,即作为地图的使用者,但是可以不为地图的更新或生成提供基础数据,普通车可以经过签约等形式转换为众包车。普通车和众包车都可以作为地图的使用者,辅助车辆进行定位、目标识别、驾驶决策或导航等操作。可通过出厂前的前装或者出场后的后装为车辆配备地图功能,并在使用过程中对车辆内的地图进行更新,以提供更加准确或者更加实时的参考信息。为了满足实时性的使用需求,高精地图的更新周期可以根据需要进行设置,例如以月、周、天、小时、或者分钟为更新周期的单位。
除了车辆,其他类型的移动终端也可以作为地图的使用者,例如手机、手持导航仪、笔记本电脑、平板电脑或可穿戴设备等便携终端。这些移动终端或者在出厂之前预装地图,或者在出厂后通过安装地图应用程序加载地图,并在此后接收更新的地图信息以更新本地存储的地图。本申请实施例后续将车辆以及其它类型的移动终端统一称为终端或终端设备。
此外,路侧设备也可以成为地图的生产者或使用者。路侧设备是安装于道路边的基础设施,具备计算、通信或存储等功能。路侧设备包括但不限于道路边缘计算(roadside edge computing,REC)、路侧单元(road side unit,RSU)或者将REC与RSU集成一体的设备。甚至未来,交通信号灯、交通标识牌、充电桩、垃圾箱或广告牌等路边的基础设施都可以通过安装计算单元或者通信单元而成为路侧设备。如图3中通过再路灯上加装摄像头传感器和车联网(vehicle to everything,V2X)通信模块将路灯改造为智能化的路侧设备H。路侧设备H可获取并使用由地图服务器D生成的地图;还可基于自身的感知设备获取感知数据或从车辆接收车辆感知到的感知数据,并基于这些感知数据生成地图数据,以更新自身存储的地图,或者将获取到的感知数据或者生成的地图数据发送给地图服务器D。
地图服务器可以以云端的形式为终端提供服务。此外,地图服务器与终端之间的通信链路是双向的,即地图服务器可以向终端传输信息,终端也可以向地图服务器传输信息。地图服务器和终端之间的通信可以通过无线通信和/或有线通信的方式实现。继续参考图3,以云端生成的地图向终端发布为例,终端通过基站G接入无线网络,地图服务器D向车辆A、车辆B、车辆C或行人E手持的便携终端F发布更新的地图信息,可以通过基站G进行发布(如图中实线所示),或者可以通过路侧设备H向终端转发(如图中虚线所示)。地图服务器D和基站G之间可以通过无线连接或者可以通过有线连接;路侧设备H和地图服务器D之间可以通过无线连接或者可以通过有线连接;此外,路侧设备H与地图服务器D之间可以通过基站G或其它基站通信。上述无线网络包括但不限于:2G蜂窝通信,例如全球移动通信系统(global system for mobile communication,GSM)、通用分组无线业务(general packet radio service,GPRS);3G蜂窝通信,例如宽带码分多址(wideband code division multiple access,WCDMA)、时分同步码分多址接入(time division-synchronous code division multiple access,TS-SCDMA)、码分多址接入(code division multiple access,CDMA);4G蜂窝通信,例如长期演进(long term evolution,LTE);5G蜂窝通信,或者其他演进的蜂窝通信技术。
由于路侧设备和终端设备都具备信息采集能力和计算能力,在一些实施例中,路侧设备和终端设备除了可以作为地图的接收者和使用者,也可以作为地图的生产者在本地生成地图信息,供自身使用或者发送给其他的路侧设备或者终端设备。
阴影的产生有多种原因:一方面有固定的原因,例如建筑物的位置和高度,另一方面也有不固定但有规律的原因,例如一天中太阳位置和太阳高度角的变化,再一方面还有不固定也不规律的原因,例如天气的阴晴变化。车辆或路侧设备的感知模块具备阴影检测功能,阴影信息可通过收集车辆或者路侧设备的阴影检测结果初步获得,或者基于地图中原有的建筑物的位置信息和高度信息,结合当地太阳位置和高度变化规律,经计算初步获得,还可以将这两种方式得到的结果进行融合后初步获得阴影信息。进一步地,还可以结合实时的天气变化,对所述初步获得的阴影信息进行动态调整,得到实时变化的阴影信息。例如,天气由晴天转为阴天后,阴影区域的覆盖范围可能会变大,也可能阴影区域相对非阴影区域的光照强度的差值变小导致阴影区域的阴影程度变小。
考虑到阴影信息是一种随时间变化的地图信息,本申请实施例中将阴影信息采用一种类似地图中用于描述事件的数据结构进行描述。本申请实施例不对阴影信息的内容和数据组织结构做出限定,仅仅是一种示例性的描述,不论是阴影信息所指示的多种内容,还是多种内容的数据组织结构,在本申请实施例的发明构思下,都有非常多的实现形式。
下面以瓦片地图为例结合图4,描述一种阴影信息的地图数据结构。图4中,将关于阴影区域的信息作为一种特殊的事件,即阴影事件,并以瓦片为单位对瓦片内的每个阴影事件 分别进行描述。
瓦片地图是一种金字塔模型的地图,即是一种多分辨率层次模型的地图。从瓦片金字塔的底层到顶层,分辨率逐渐变化,例如越来越低,但表示的地理范围不变。以N层瓦片地图为例,该地图缩放级别的数量为N,其中N为大于1的整数,把缩放级别最高、地图比例尺最大的地图图片作为金字塔的底层,即第0层,对该地图图片进行切片,分割成多个矩形(可以为正方形)地图瓦片,形成第1层地图图片;在第1层地图图片的基础上,将第1层的地图瓦片分割成多个矩形(可以为正方形)地图瓦片,形成第2层地图图片,以此类推,直到第N-1层,从而形成整个瓦片金字塔。每层地图瓦片的切片可以按照切片比例进行,不同层地图瓦片的切片可以采用相同的切片比例或不同的切片比例。可见,瓦片可以理解为:将一定范围内的地图图片切片若干行和列的矩形栅格图片,对切片后的矩形栅格图片称为瓦片(tile)。地图分辨率越高,意味着可以切片次数越多,则组成该地图的瓦片数量就越多,瓦片的等级也越高。以切片方式为十字切片(即2×2的切片比例)为例,则某一等级的瓦片可以切片为对应的高一级别的4个瓦片。例如,瓦片1是地图中某一等级的瓦片,对瓦片1进行十字切片可进一步生成比瓦片1的等级高一级别的4块瓦片,标识分别为1-00、1-01、1-10和1-11。可以理解,瓦片1的地理覆盖范围为瓦片1-00的地理覆盖范围、瓦片1-01的地理覆盖范围、瓦片1-10的地理覆盖范围和瓦片1-11的地理覆盖范围的并集。
图4所示瓦片标识(ID)所对应的瓦片内,有n个阴影区域,对应的在关于该瓦片的地图数据中有n个阴影事件,其中,n为大于或等于1的自然数。不同阴影事件的信息内容和/或数据组织结构可以相同,也可以不同。以其中的阴影事件1为例,其包括标识信息、位置信息、几何信息、时间信息、阴影程度信息、置信度信息和原因信息中的一项或多项内容,下面分别进行介绍:
(1)标识信息
标识信息用于指示阴影事件的标识,每个阴影事件在瓦片内具有唯一的标识。
(2)位置信息
位置信息用于指示该阴影事件所针对的阴影区域的地理位置。以下描述阴影区域的地理位置的两种表达方式:
第一种方式,基于坐标进行描述地理位置。例如,在直角坐标系下用绝对坐标或者相对坐标表示位置点,位置点可以是阴影区域中的一个点或者多个点,如中心点、边界上的点或者多边形区域的顶点。绝对坐标是基于一个固定的坐标系原点描述的固定位置坐标,目标物的绝对坐标不会随着参照物的改变而改变;相对坐标描述的是目标物相对于参照物的相对位置,相对坐标会随着参照物位置的变化而变化。
第二种方式,结合地图元素描述地理位置。例如,地图元素为某车道,阴影区域的位置为该车道的一段;地图元素为隧道,阴影区域为该隧道覆盖的区域;地图元素为路口,阴影区域为该路口汇入的多个车道中部分车道的驶入/驶出区域;地图元素为两个相交错的高架桥,阴影区域为这两个高架桥的相交区域且位于较低的一个高架桥的路面上。
上述位置信息的表达方式仅作为举例,本发明实施例对位置信息的具体表达方式不做限定。
(3)几何信息
几何信息用于指示该阴影事件所针对的阴影区域的形状或尺寸。形状包括但不限于多边形、扇形或者圆形等,尺寸包括但不限于多边形的边长、扇形的弧度或者圆形的半径等。另外,阴影区域的几何信息还可以结合地图元素进行表达,例如表示为沿道路或某车道的、具 有起止距离的区间段。
当采用位置信息可以确定阴影区域时,几何信息可以缺省,例如,位置信息给出了阴影区域的所有边界点,通过对边界点的连线,即可以确定阴影区域,此时可以不设置几何信息。例如,图5A为基于不规则的四边形表达的阴影区域的形状,其可以使阴影信息中通过四边形四个顶点的坐标来记录四边形阴影区域的形状和尺寸,这种方式记录的阴影信息比较接近于阴影区域的真实形态;对于结合地图元素描述地理位置时,几何信息也可以缺省,只要给出阴影区域在车道或车道线上的起始和结束位置即可;或者可以结合位置信息和几何信息确定阴影区域,例如通过位置信息给出阴影区域在车道或车道线上的起始或结束位置,通过几何信息给出阴影区域在车道上的长度。例如,图5B为基于车道表达的阴影区域的形状,车辆的两个边缘成为阴影区域的边缘,这是在阴影区域真实形态的基础上经过一定的数据处理得到的表达方式,这种表达方式可以简化阴影信息的需求,有利于实际应用,因为在实际应用中可能不需要精确的阴影区域的形状与尺寸。
上述几何信息的表达方式仅作为举例,本发明实施例对几何信息的具体表达方式不做限定。
(4)时间信息
时间信息用于指示属于该阴影事件的阴影信息存在的时间区段。该时间信息为可选信息,且可以不对用户呈现或者可以对用户呈现,且对于非时变性的阴影区域可以不做设置。
阴影信息具有季节性特点,如树叶遮挡下的阴影面积或者阴影程度会随着四季交替而变化;阴影信息具有时段性特点,如阴影位置、阴影面积大小或阴影形状随一天内太阳方位的变化而变化;阴影信息还具有相对稳定的时间统计特性,因为道路周围的建筑、树木等具有相对的固定性。因此,统计方式生成的道路阴影信息具备统计稳定性,同时又可能存在变化,因此在地图中将阴影信息作为动态信息具备良好的实现性。
针对每个阴影区域对应的阴影信息,可包含多个不同的时间段信息,每一个时间段信息,可包含如下字段:
a)可以包含季度字段,如数值1至4,可以通过包含多个数值来指示阴影信息为有效状态的至少一个季度;
b)可以包含月份字段,如数值1至12,可以通过包含多个数值来指示阴影信息为有效状态的至少一个月份;
c)可以包含日期字段,如数值1至31,可以通过包含多个数值来指示阴影信息为有效状态的至少一天;
d)可以包含小时字段,如数值0-24,可以通过包含多个数值来指示阴影信息为有效状态的至少一个小时,还可进一步通过浮点数的小数位表达分钟值;
e)可以包含更新时间字段,说明阴影信息的更新时间,可以是日期形式,也可以是时间戳形式,不做限定;
多种时间段信息可以组合使用,例如:某个阴影区域仅在每年的7-8月份的上午10-12点才会出现,则月份字段取值7和8的同时,小时字段取值10和11。
上述时间信息的表达方式仅作为举例,本申请实施例对时间信息的具体表达方式不做限定。
(5)阴影程度信息
阴影程度信息用于指示该阴影事件所针对的阴影区域的阴影程度。
不同的阴影区域可能有不同的阴影程度,同一个连续阴影区域内不同位置的阴影程度可 能也有差异,因此,在一些应用场景下,有对阴影区域的阴影程度进行量化表达的需求。
量化指标用于表征阴影程度,可以采取以下两种形式中的任一种:
第一种,指标数值形式,指标可以是数值也可以是范围区间,包括但不限于以下指标:
i.阴影区域的光照强度平均值;
ii.阴影区域与非阴影区域之间的光照强度差:阴影区域平均光照强度与正常非阴影区平均光照强度的差;
iii.阴影区域与非阴影区域之间的图像亮度差:常规角度采集的阴影区域的平均图像亮度与非阴影区域的平均图像亮度的差;
iv.阴影区域与非阴影区域之间的图像对比度:常规角度采集的阴影区域的图像与非阴影区域的图像的平均对比度;
第二种,分级形式,例如可以采用重度阴影区域、较重度阴影区域和轻度阴影区域这种类似的描述区分阴影程度的不同级别,或者可以采用一级阴影区域、二级阴影区域和三级阴影区域这种类似的描述区分阴影程度的不同级别。
另外,还可以混合采用以上两种形式进行表达,即指标数值与分级结合的形式,如表达某一阴影区域的阴影程度为“该阴影区域属于二级阴影区域且阴影区域的光照强度平均值为50勒克斯”。
阴影程度信息为可选信息,可根据不同应用需求确定是否使用。例如,如果将阴影信息应用于停车,可在阴影信息中缺省阴影程度信息;如果将阴影信息应用于辅助感知,则可以使用阴影程度信息。
进一步的,针对不同的应用需求,可以构建不同精细程度的阴影信息图层,体现在:不同的阴影信息图层下,阴影程度信息分级粒度不同、分级数量不同、指标粒度不同、指标数量不同或者精度不同等。
上述阴影程度信息的表达方式仅作为举例,本申请实施例对阴影程度信息的具体表达方式不做限定。
(6)置信度信息
置信度信息用于指示该阴影事件所针对的阴影区域的可信程度,即置信度。可在置信度信息中采用数值的形式(如0至1之间浮点数)如量化表达该可信程度。
阴影信息容易受自然天气等环境的影响,如,阴天场景不会形成视差较大的阴影区域。阴影图层综合所在区域的天气数据,如光照强度、温度、湿度等信息,给出阴影图层有效的置信度。同时,置信度的生成,也可以同时结合采集设备精度、统计数据量等其他对阴影信息可靠性产生影响的因素。置信度信息可以参考以下多种因素中的至少一种确定:
i.天气状态,如晴天、雨雪天或雾霾天等;
ii.天气参数,如光照强度(直接影响阴影程度)、可见度(雾霾等天气下影响阴影程度)、温度(用于辅助判断置信度)、湿度(用于辅助判断置信度)或风力程度(用于辅助判断置信度)等参数;
iii.采集设备和采集方式的可信度参数;
iv.生成阴影信息所使用统计数据量。
该置信度信息可以作为阴影信息的一种可选信息,阴影信息的应用者可以根据置信度信息,选择是否使用该阴影信息,或者设置该阴影信息在使用中的权重。
置信度信息可进一步用于指示置信度的作用范围,例如,可根据置信度的具体计算方式,将对应的置信度信息关联到不同级别的阴影信息上,包括:
i.大范围关联,可关联到单个瓦片,整个瓦片下的阴影区域的置信度相同。如,天气影响范围较大,导致单个瓦片下的阴影区域的置信度整体下降;
ii.小范围关联,可关联到具体的阴影事件。如,某个道路位置采集的样本数据较少,统计数据量小,导致该道路上的阴影区域的置信度较低。
上述置信度信息的表达方式仅作为举例,本申请实施例对置信度信息的具体表达方式不做限定。
(7)原因信息
原因信息用于指示该阴影事件所针对的阴影区域产生的原因,例如建筑物在阳光照射下的投影、树叶的光斑、有顶棚覆盖、云层覆盖、隧道或者涵洞中等原因,可通过预先定义的索引方式表达于原因信息中,例如可将上述五种原因分别索引为“01”、“02”、“03”、“04”和“05”。
需要说明的是,上述图4所示阴影信息的表达方式仅仅作为一种示例,本申请实施例对影信息的组成内容和数据结构不做限定。以上举例的阴影信息的七种内容中的每一种都不是必然包括于阴影信息中,即可以根据实际应用需求可选择性的包括于阴影信息中。不仅可以选择上述七种内容中的任一种内容在阴影信息中独立的进行表达,还可以选择其中的至少两种内容以任意组合的方式进行表达。例如,由于一天内阴影的位置和程度随着太阳位置的变化而变化,可将时间信息、位置信息和阴影程度信息进行组合,在阴影信息中指示“上午8点至上午9点,阴影位于建筑物西侧,轻度阴影”、“上午11点至下午1点,阴影位于建筑物南侧,重度阴影”和“下午4点至下午5点,阴影位于建筑物东侧,较重度阴影”等组合信息。又例如,由于多云天气相对于晴朗天气,阴影信息的可信程度较低,可将时间信息与置信度信息进行组合,在阴影信息中指示“8月1日,置信度为1”和“8月2日,置信度为0.5”等组合信息(8月1日为晴天,8月2日为多云)。再例如,由于一个阴影区域内可能不同位置处阴影程度不一样,可将位置信息与阴影程度信息进行组合,在阴影信息中指示“位置1,阴影程度1”、“位置2,阴影程度2”和“位置3,阴影程度3”等组合信息。
如图6所示,本申请实施例提供一种地图数据处理方法,包括:
步骤601,获取阴影信息。阴影信息用于指示阴影区域,阴影信息包括位置信息,所述位置信息用于指示所述阴影区域的地理位置。可选地,位置信息可通过上述基于坐标和结合地图元素两种描述方式中的任一种进行描述。可选的,阴影信息还可以包括上述标识信息、几何信息、时间信息、阴影程度信息、置信度信息和原因信息中的一种或者多种。阴影信息的数据结构包括但不限于如图4所示的方式,除了可以基于瓦片中用于描述地图中事件的数据结构进行描述以外,例如还可以将阴影区域与地图中的元素相关联,以及将阴影信息作为元素的属性信息或者附加信息记录于地图中。本申请实施例对于阴影信息的组成内容或者数据组织方式不做限定。
其中,获取阴影信息可以包括:生成阴影信息或者接收阴影信息。
当通过生成阴影信息的方式获取阴影信息时,图6所示的方法在地图生成侧执行。基于前文已经描述了云端、路侧或终端的装置都具备地图生成能力,图6所示的方法例如可以由地图服务器、路侧设备、车辆或者移动终端执行,还可以由这四种设备内部的部件、芯片、软件模块或硬件模块执行。
在生成阴影信息时,可以采用多种方式,以下几种方式作为举例,可以独立使用,也可以结合使用来生成阴影信息:
方式一:获取地图采集车、众包车辆或者路侧设备等具备感知能力的感知设备采集的路 面图像数据,由处理器对路面图像数据进行处理,识别出其中的阴影区域,并基于路面图像数据的统计值得到诸如时间信息、置信度信息或阴影程度信息等阴影信息。
方式二:获取地图数据,包括一组建筑物的位置、空间几何外形、高度、经纬度等信息,结合一年或者一天中太阳高度角在当地的变化,通过阴影估计算法计算出特定时间的阴影区域,从而得到关于该阴影区域的阴影信息。
方式三:在获得阴影信息的初步结果后(例如通过方式一和/或方式二),进一步获取天气情况,结合天气对阴影信息的初步结果进行调整。例如,阴天时降低阴影程度级别;又例如,多云时根据云朵的移动调整对应云朵覆盖下阴影区域的位置。
当通过接收阴影信息的方式获取阴影信息时,图6所示的方法在地图接收侧执行,包括从其他设备、部件、芯片、接口、硬件模块或软件模块接收上述阴影信息,所述接收包括但不限于通过有线传输、无线传输、参数调用或接口馈入等方式的信息接收操作。基于前文已经描述了云端、路侧或终端的装置可能具有使用地图信息的需求,图6所示的方法例如可以由地图服务器、路侧设备、车辆或者移动终端或执行,还可以由这四种设备内部的部件、芯片、软件模块或硬件模块执行。
步骤602,将阴影信息作为地图的数据进行存储,具体可以存储于云端、路侧或终端的存储介质上,所述存储介质包括但不限于磁性介质、光介质或者半导体介质等。将阴影信息作为地图的数据进行存储,体现于将阴影信息作为地图中一种元素相关信息或事件相关信息,与其他地图信息一起存储以构建地图数据库,或者体现于将阴影信息基于地图信息的数据格式进行存储以便于被地图应用程序调用,或者体现于基于地图的存储单元——瓦片对阴影信息进行存储,将瓦片作为阴影信息组织单元,每个瓦片包括用于指示多个阴影区域的多个阴影信息。
图6所示的地图数据处理方法,通过在地图数据中增加用于指示阴影区域的阴影信息,丰富了地图的内容,能够满足更加多样的使用需求,下面通过图7-图13展示阴影信息在地图生成侧或地图接收侧的多种被处理的方法。
图7-图10描述了在地图生成侧执行的四种地图数据处理方法的流程图,他们是为满足不同的地图生成侧应用场景的需求,在图6所示的地图数据处理方法(通过生成阴影信息获取阴影信息的实现方式)的基础上做的进一步扩展。
作为一种地图信息,阴影信息在地图生成侧生成并存储后,被发送给地图的使用侧。图7是关于地图生成侧对阴影信息进行发布的地图数据处理方法,其包括步骤701-步骤703。其中,步骤701与步骤601相同,步骤702与步骤602相同,此处不再赘述。
步骤703为,将阴影信息发送至地图使用侧。具体来说,可以将阴影信息添加到地图数据包或者地图升级包中发送给地图使用侧。所述发送包括但不限于通过有线传输、无线传输、参数被调用或接口馈送等方式发送。所述地图使用侧包括但不限于地图服务器、路侧设备、车辆、移动终端或者前面这四种设备内部的部件、芯片、软件模块或硬件模块。例如云端服务器将阴影信息打包为地图升级包,发送给路侧设备或车辆,这种情况下地图生成侧和地图接收侧位于不同的设备之中。再例如,在云端服务器内,通过存储器的输出接口将地图数据库中的阴影信息发送给用于处理阴影信息的处理器,这种情况下地图生成侧和地图接收侧位于同一个设备之内。
当地图生成侧具备显示能力时,还可进一步使地图生成侧执行阴影区域显示的操作。图8是关于地图生成侧对阴影信息进行显示的地图数据处理方法,其包括步骤801-步骤803。其中,步骤801与步骤601相同,步骤802与步骤602相同,此处不再赘述。
步骤803为,基于阴影信息显示阴影区域。所述显示包括但不限于在地图生成侧内的显示屏上显示或者对外投影显示。关于阴影区域的显示界面,将在后文中具体描述。
例如,当地图生成侧为车辆时,可在车辆的中控屏上显示绘制有阴影区域的地图,或者基于抬头数字显示仪(head up display,HUD)将阴影区域的激光影像投影到前挡风玻璃上,使投影画面叠加显示在透过前挡风玻璃看到的实物景象之上。
当地图生成侧生成并存储阴影信息后,还可直接在本地运行将阴影信息作为输入的应用程序,以满足多种场景的应用需求。图9是关于地图生成侧基于阴影信息运行应用程序的地图数据处理方法,其包括步骤901-步骤903。其中,步骤901与步骤601相同,步骤902与步骤602相同,此处不再赘述。
步骤903为,基于阴影信息运行应用程序。所述应用程序安装于地图生成侧的装置上,由于地图生成侧具有数据处理能力,因此可在地图生成侧生成并作为地图数据存储阴影信息后,在本地进一步将阴影信息作为输入,运行应用程序,以满足多种场景下对阴影信息的需求。针对多种需求对阴影信息的多种数据处理方式和多种数据处理结果可参见后面对于各应用场景的具体描述。
例如,当地图生成侧为车辆时,车辆内维护一个包括阴影信息的地图数据库,车辆上安装的应用程序可从地图数据库中读取阴影信息,然后将阴影信息输入预设算法模块进行数据处理,得到的数据处理结果可满足用户的多种需求,例如辅助驾驶、路径规划或者辅助停车等。
又例如,当地图生成侧为云服务器时,云服务器内维护一个包括阴影信息的地图数据库,云服务器上安装的应用程序可从地图数据库中读取阴影信息,然后将阴影信息输入预设算法模块进行数据处理,得到的数据处理结果可用于为用户提供多样的云服务。
地图生成侧还可基于本地生成及作为地图数据存储的阴影信息,基于信息交互向其他设备提供多种服务。例如,当地图生成侧为云端的服务器时,可响应于从终端侧设备或者路侧设备接收到的服务请求信息,以向终端侧设备或者路侧设备发送服务响应信息的形式向用户提供云服务。可以限定接受服务的设备为经过地图生成侧认证的设备,如要求接受服务的设备被鉴权或者付费。
图10是关于地图生成侧用于实现对外提供服务的地图数据处理方法,其包括步骤1001-步骤1004。其中,步骤1001与步骤601相同,步骤1002与步骤602相同,此处不再赘述。
步骤1003为接收服务请求信息;步骤1004为发送服务响应信息,所述服务响应信息根据所述服务请求信息和所述阴影信息生成。基于不同的应用场景,上述服务请求信息和服务响应信息具备不同的内容,下面通过几个不同的应用场景举例说明。
(1)当服务为目标识别服务时:
服务请求信息中包括终端侧设备或者路侧设备感知得到关于目标对象的感知信息。服务响应信息中包括目标指示信息,所述目标指示信息用于指示目标对象的属性,目标对象的属性包括但不限于目标对象的类别、名称、轮廓、颜色、图案或是否立体等。
(2)当服务为辅助驾驶服务时:
服务请求信息中包括车辆的行驶数据,行驶数据包括车内数据和/或车外数据,车内数据用于指示车辆的速度、加速度、行驶里程、剩余能量、扭矩或发动机温度等车辆状态,车外数据用于指示车辆的行驶环境,例如为车辆的位置、道路的坡度、弯道的弧度、路面的摩擦系数或者前车距离,车外数据可以为车辆上装配的摄像头、激光雷达或者毫米波雷达等感知设备感知到的感知数据。服务响应信息中包括对于用户的提醒信息,例如向用户提醒所述车 辆即将驶入阴影区域,或者包括对于车辆的决策控制信息,用于控制车辆进行转向、加速或者制动等。
(3)当服务为停车位推荐服务时:
服务请求信息用于提供用户的停车需求,例如预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项,服务响应信息包括停车位推荐信息,所述停车位推荐信息用于指示向用户推荐的至少一个停车位,进一步,当向用户推荐的停车位为多个时,停车位推荐信息还进一步指示了多个停车位的优先级排序;
(4)当服务为导航服务时:
服务请求信息中包括用户的出行信息,例如出发地、目的地、出行时间、出行策略、或出行方式(例如,步行、骑行或驾车,再如驾驶模式,自动驾驶或人工驾驶或辅助驾驶)。服务响应信息用于向用户推荐至少一条路径,该至少一条路径能够满足用户希望尽量被太阳晒(或光照时间尽可能长)或者尽量避免被太阳晒(或光照时间尽可能短)的需求。进一步的,服务响应信息中还包括至少一条路径中每条路径的日晒信息,例如,被晒/防晒路段长度、被晒/防晒时间长度、被晒/防晒路段长度占全路径长度之比或者被晒/防晒路段通行时长占总路径通行时长之比;进一步地,服务响应信息中还包括至少一条路径中每条路径的其他方面的成本信息,例如时间成本、油耗成本、人力成本或者过路费成本;或者,进一步,当向用户推荐的路径为包括上述至少一条路径的多条路径时,服务响应信息还可以基于用户输入的出行策略(如最防晒、路程最短、时间最短或者最省油)指示多个路径的优先级排序。
(5)当服务为打车服务时:
服务请求信息中包括用户的出行信息,例如出发地、目的地、出行时间或出行方式,服务响应信息除了向用户推荐出租运营车辆(人工驾驶或者无人驾驶)外,还向用户推荐尽量避免被晒的上车点或者下车点。
(6)当服务为太阳能充电服务时:
服务请求信息用于指示车辆的剩余电量、用户计划的行程或者车辆所在区域等。服务响应信息用于向用户推荐用于行驶中充电的行车路径或者用于静止中充电的停车位置。
图11、图12A和图12B描述了在地图接收侧执行的三种地图数据处理方法的流程图,他们是为满足不同的地图使用场景的需求,在图6所示的地图数据处理方法(通过接收阴影信息获取阴影信息的实现方式)的基础上做的进一步扩展。
当地图接收侧具备显示能力时,还可进一步使地图接收侧执行阴影区域显示的操作。图11是关于地图接收侧对阴影信息进行显示的地图数据处理方法,其包括步骤1101-步骤1103。其中,步骤1101与步骤601相同,步骤1102与步骤602相同,此处不再赘述。
步骤1103为,基于阴影信息显示阴影区域。所述显示包括但不限于在地图接收侧内的显示屏上显示或者对外投影显示。关于阴影区域的显示界面,将在后文中具体描述。
例如,当地图接收侧为车辆时,可在车辆的中控屏上显示绘制有阴影区域的地图,或者基于抬头数字显示仪(HUD)将阴影区域的激光影像投影到前挡风玻璃上,使投影画面叠加显示在透过前挡风玻璃看到的实物景象之上。
当地图接收侧接收并存储阴影信息后,还可在本地运行将阴影信息作为输入的应用程序,以满足多种场景的应用需求。图12A是关于地图接收侧基于阴影信息运行应用程序的地图数据处理方法,其包括步骤1201-步骤1203。其中,步骤1201与步骤601相同,步骤1202与步骤602相同,此处不再赘述。
步骤1203为,基于阴影信息运行应用程序。所述应用程序安装于地图接收侧的装置上。 当地图接收侧具有数据处理能力时,可将接收到的阴影信息作为输入,运行应用程序,以满足多种场景下对阴影信息的需求。针对多种需求对阴影信息的多种数据处理方式和多种数据处理结果可参见后面对于各应用场景的具体描述。
例如,当地图接收侧为车辆时,车辆根据从服务器获得的地图信息生成本地的地图数据库,在地图数据库中存储阴影信息。车辆上安装的应用程序可从地图数据库中读取阴影信息,然后将阴影信息输入预设算法模块进行数据处理,得到的数据处理结果可满足用户的多种需求,例如辅助驾驶、路径规划或者辅助停车等。
又例如,当地图接收侧为应用服务器时,应用服务器根据从地图服务器接收到的包括阴影信息的地图数据,维护一个包括阴影信息的地图数据库,应用服务器可从地图数据库中读取阴影信息,然后将阴影信息输入预设算法模块进行数据处理,得到的数据处理结果可用于为用户提供多样的应用服务。
地图接收侧还可基于接收到的阴影信息,基于信息交互向其他设备提供第三方的应用服务。例如,当地图接收侧为出行服务提供商部署的出行应用服务器时,出行服务提供商通过从地图生产厂商购买地图,使出行应用服务器从地图服务器(地图服务器由地图生产厂商部署,用于生产地图)接收地图数据,地图数据中包括阴影信息,然后出行应用服务器可响应于从终端侧设备或者路侧设备接收到的服务请求信息,以向终端侧设备或者路侧设备发送服务响应信息的形式向用户提供出行应用服务。
图12B是关于地图接收侧用于实现对外提供服务的地图数据处理方法,其包括步骤1201、1202、1204和1005。其中,步骤1001与步骤601相同,步骤1002与步骤602相同,此处不再赘述。
步骤1204为接收服务请求信息;步骤1205为发送服务响应信息,所述服务响应信息根据所述服务请求信息和所述阴影信息生成。基于不同的应用场景,上述服务请求信息和服务响应信息具备不同的内容,具体可参考上文中当服务分别为目标识别服务、辅助驾驶服务、停车位推荐服务、导航服务、打车服务或太阳能充电服务时的六种场景描述。
下面基于图13-图17介绍阴影信息在地图上的显示方法。本申请实施例不对用于显示的媒介或者设备进行限定,所述显示包括但不限于投影显示、或在显示屏上显示进行显示。
在地图上,可以将是否显示阴影信息作为一个可选项,根据用户输入确定是否将阴影信息与地图中的其他信息进行叠加显示。用户可在地图应用的设置界面设置是否显示阴影信息,或者更方便地,可根据用户输入生成显示阴影信息的触发指令,供用户更方便快捷地随时显示或者取消显示阴影信息。用户输入包括但不限于用户的字符输入、语音输入、手势输入或者触摸显示屏的输入。图13作为一种示例,在地图显示界面上设置阴影开关,用户可通过手指触摸屏幕上的阴影开关,实现如图13左图中的阴影开关关闭以及不显示阴影信息,或者实现如图13右图中的阴影开关打开以及在地图上以叠加的方式显示阴影信息。
在以叠加的方式显示阴影信息时,为了区分阴影区域和非阴影区域,可以使阴影区域相对应的显示区域相对于其它显示区域具有不同的灰度、颜色、饱和度或叠加图案。例如,图14的左图中,通过网格图案指示建筑物和树木在地面上投射的阴影区域;图14的右图中,通过较深的颜色指示建筑物和树木在地面上投射的阴影区域。
如前文所述,阴影信息还可以指示阴影区域产生的原因,例如建筑物在阳光照射下的投影、树叶的光斑、有顶棚覆盖、云层覆盖、隧道或者涵洞中等原因。例如,在采用图案指示阴影区域(不使用图案指示非阴影区域)的前提下,在图15的左图中,采用斜线图案指示由建筑物产生的阴影,采用网格线图案指示由树木产生的阴影。
如前文所述,阴影信息还可以指示阴影的程度,该阴影的程度包括但不限于阴影区域的光照强度平均值、阴影区域与非阴影区域之间的光照强度差、阴影区域与非阴影区域之间的图像亮度差、阴影区域与非阴影区域之间的图像对比度或阴影级别。可以通过不同的灰度、颜色、饱和度或图案密度显示具有阴影程度的阴影区域。例如,在采用灰色指示阴影区域(不使用灰色指示非阴影区域)的前提下,由于建筑物的阴影相对于树的阴影具有更高的阴影程度,因此在图15的右图中,采用较浅的灰色指示与树的阴影相对应的阴影区域,以及采用较深的灰色指示与建筑物的阴影相对应的阴影区域。
如前文所述,阴影信息还可以指示阴影区域存在的时间区段,并且随时时间的变化阴影区域也发生变化,因此阴影信息具有动态属性,从而可在地图上动态显示阴影区域随时间的变化。例如,可以以视频的形式播放一个时间区段内阴影区域的变化,并且播放的速度可以设置或者调节。又例如,可以在显示界面上设置播放进度条,供用户选择是否播放关于阴影区域的变化视频,或者直接通过拖拽进度条中进度按钮的形式,直接定位显示某个时间点的阴影区域。图16A-16C示意了如何动态显示某个包括道路、道路侧的树木和建筑物的区域中在6点至18点时间区段的阴影区域。用户通过点击播放进度条中的三角形,可以触发显示界面中播放进度条之上的动态图像的播放,随着播放的进行,播放进度条上的圆形进度按钮的位置向右移动,并且在圆形进度按钮的上面显示当前播放的图像对应的时间点。用户也可以直接拖拽该圆形进度按钮,从而可以直接查看某个时间点的阴影区域。图16A中播放的图像为上午九点的阴影区域,太阳在东南方向,从而树木的阴影位于树木的西北侧,建筑物的阴影位于建筑物的西北侧;图16B中播放的图像为正午十二点的阴影区域,太阳在正南方向,从而树木的阴影位于树木的正北侧,建筑物的阴影位于建筑物的正北侧;图16C中播放的图像为下午三点的阴影区域,太阳在西南方向,从而树木的阴影位于树木的东北侧,建筑物的阴影位于建筑物的东北侧。
基于不同的需求,可以采用不同的阴影区域边界显示策略。显示的阴影区域边界可以与实际的阴影区域边界一致或类似,如图17左图中所示,与现实中的阴影区域边界一致地或类似地,建筑物的阴影区域是多边形,对应阴影区域的边界由直线构成,以及树木的阴影区域是不规则图形,对应阴影区域的边界由不规则的曲线构成。另外,可以对阴影区域边界进行修整,以便于应用或便于数据存储。作为所述修整的一种方式,可以根据阴影区域在地图中的位置和地图中其他地图元素的边界情况,确定阴影区域在显示界面上的显示区域。例如,可以将阴影区域的至少部分边界修整为与阴影区域位置接近的一个地图元素的至少部分边界。如图17右图中所示,由于高层建筑A和高层建筑B的阴影几乎覆盖了渤海七路与黄河六路交叉路口向南的一段道路,因此在显示高层建筑A和高层建筑B投射到道路上的阴影区域时,可以显示自交叉路口向南的渤海七路的一个道路区段为阴影区域;由于树木的阴影几乎覆盖了渤海七路与黄河六路交叉路口向东的一段自西向东方向车道,因此在树木投射到道路上的阴影区域时,可以显示自交叉路口向东的黄河六路的一个车道区段为阴影区域。
下面基于图18和图19介绍使用阴影信息进行目标识别的方法。
目标识别是从摄像头采集到的图像中判断图像中存在目标对象或者提取该目标对象的特征的过程,该特征包括但不限于目标对象的类别、名称、轮廓、颜色、图案或者是否立体等属性。下面以行驶在道路上的汽车识别车道线为例进行介绍,本申请实施例对执行目标识别操作的主体及被识别的目标物不做限定。
随着车辆智能化的发展,通过配备先进的传感器和处理器,车辆具备越来愈强的感知能 力。例如,通过安装在车辆上的摄像头对车辆周围进行拍摄,然后将图像数据送入图像处理器进行运算处理,车辆可以识别道路上的其他车辆、行人、建筑物、交通标识或障碍物等,为智能驾驶提供重要支持。然而,由于环境复杂、摄像头精度不足、处理器算力有限或者用于机器学习的样本量不足等因素,在智能驾驶的过程中有时会出现目标识别错误的问题,极大威胁着行车安全。
本申请实施例提出一种使用阴影信息进行目标识别的方法,该方法可以由终端、路侧或者云端的设备执行,包括但不限于车辆、便携终端、RSU、REC、地图服务器或应用服务器;或者也可以由安装于终端、路侧或者云端的设备上的应用程序执行。
图18中,车辆在行驶过程中持续对前方的车道线进行识别,例如识别车道线的颜色或虚实线等属性。可以看到,车辆前方出现了一片阴影区域ABCD:在该阴影区域内存在两段用虚线表示的车道线EF和GH,用于表示车道的分界;还存在一段用黄色表示的车道线MN,用于表示两个不同行驶方向的道路的分界。在该阴影区域中,路面及车道线的颜色相对于非阴影区域发生了较大的变化,这种变化增大了目标识别的难度,可能导致车辆对阴影区域内车道线的属性发生误判。本申请实施例将用于指示阴影区域的阴影信息作为目标识别时的输入参考信息,例如,基于ABCD为阴影区域的地图信息参考,目标识别设备对区域ABCD对应图像部分的色调进行补偿,能够有效提供目标识别的准确性。
车辆获得目标识别结果有两种方式:
(1)当车辆内存有包括阴影信息的地图(通过车辆自身生成阴影信息或者接收阴影信息)且车辆自身具有较强数据处理能力时,车辆可利用车辆内存储的阴影信息和自身配置的处理器进行目标识别,即利用地图中指示的阴影信息所在位置这种先验信息,基于预先配置的图像处理算法,在车内装载的图像处理器内首先对车载摄像头拍摄的图片中与区域ABCD相对应的部分图像进行运算处理,例如颜色补偿或者亮度补偿,已剔除阴影对画面的影响,再基于通常的车道线识别算法对被剔除阴影的影响的图片进行运算处理,最后得到更加准确的目标识别的结果。
(2)当车辆未配置包括阴影信息的地图或者车辆不具有较强数据处理能力时,车辆可通过接收部署在云端的应用服务器提供的目标识别服务来获取目标识别结果。具体步骤参见图19。
首先,车辆向服务器发送包含感知数据的信息。其中,感知数据可以是车辆上配置的传感器感知得到的,也可以是车辆从其他设备(例如其他车辆、手机或者路侧设备)接收到的;感知数据包括但不限于摄像头拍摄的图像数据。
然后,接收到上述包含感知数据的信息后,服务器向车辆反馈目标指示信息,该目标指示信息用于指示目标对象是否存在,或者用于指示目标对象的特征,该特征包括但不限于目标对象的类别、名称、轮廓、颜色、图案或者是否立体等属性。针对于本实施例中车道线识别的场景,感知数据可以为车载摄像头拍摄的包括前方路段的车道线的图片。由于服务器内存储了包括阴影信息的地图,且服务器的数据处理能力较强,服务器可利用地图中指示的阴影信息所在位置这种先验信息,基于预先配置的图像处理算法,在内部配置的图像处理器内首先对上述图片中与区域ABCD相对应的部分图像进行运算处理,例如颜色补偿或者亮度补偿,已剔除阴影对画面的影响,再基于通常的车道线识别算法对被剔除阴影的影响的图片进行运算处理,最后得到更加准确的目标识别的结果,例如前方车道线是实线还是虚线、是白色还是黄色或者是否有指示车道并线的车道线等信息。
可选的,车辆接收到上述目标指示信息后,可以基于目标指示信息所指示的目标对象是 否存在,或者目标对象的特征,进行驾驶决策,例如是否变道或者是否减速等。
下面基于图20、图21A和图21B介绍使用阴影信息辅助驾驶的方法。
由于阴影区域光线较弱,因此当车辆驶入桥下、涵洞、隧道等阴影区域时,可能会存在安全隐患,可以进行特定的辅助驾驶操作,例如打开车灯、减小车速或者警示行人等。本申请实施例提供了一种使用阴影信息辅助驾驶的方法,能够更加智能、准确、及时地辅助阴暗环境下的驾驶行为,提高驾驶的安全性。所述驾驶包括但不限于有人类驾驶员参与的智能辅助驾驶或者无人驾驶。
本申请实施例提出一种使用阴影信息辅助驾驶的方法,该方法可以由终端、路侧或者云端的设备执行,包括但不限于车辆、便携终端、RSU、REC、地图服务器或应用服务器;或者也可以由安装于终端、路侧或者云端的设备上的应用程序执行。
下面以图20所示的车辆即将驶入高架桥下的场景为例进行介绍,包括以下两种实施方案。
第一种实施方案中,车辆通过生成阴影信息或者接收阴影信息而配置有包括阴影信息的地图,同时车辆还配置有定位系统(包括但不限于GNSS全球导航卫星系统(Global Navigation Satellite System)、惯导或轮速计)。
车辆首先通过定位系统获取自身的位置,然后结合阴影信息所指示的阴影区域的地理位置,确定自身相对于阴影区域的距离。或者也可以进一步的,结合车辆当前的车速或加速度等行驶状态信息,计算当前到驶入阴影区域的时间间隔。
根据上述被确定的距离,或者上述计算得到的时间间隔,车辆判断自身即将驶入阴影区域,具体举例来说,可以是根据上述时间间隔确定所述车辆将在小于第一阈值的时间内驶入阴影区域,或者根据上述被确定的距离确定所述车辆与位于行驶方向前方的阴影区域的距离小于第二阈值。
车辆在确定自身即将驶入阴影区域后,可执行用于在阴影区域辅助驾驶的多种操作,该多种操作可分为两类:第一类是提醒操作,包括但不限于提醒车辆内的用户减速、打开照明灯、打开警示灯或者鸣笛;第二类是控制操作,包括但不限于控制车辆减速、打开照明灯、打开警示灯或者鸣笛。
第二种实施方案中,车辆内未配置包括阴影信息的地图,可以从地图服务器或者应用服务器接收用于辅助在阴影区域中驾驶的云服务。车辆与服务器之间的交互流程可参考图21A和图21B,服务器中配置有包括阴影信息的地图。
图21A示例性说明了服务器通过云服务向车辆提醒驾驶行为的交互方式,包括:
步骤1,车辆向服务器发送行驶数据。其中,行驶数据能够指示车辆的位置,或者更进一步还可以指示车辆行驶的速度或者加速度行驶状态。
步骤2,服务器向车辆返回提醒消息。服务器可以通过从车辆接收的行驶数据确定车辆的位置,然后结合阴影信息所指示的阴影区域的地理位置,确定车辆相对于阴影区域的距离。或者也可以进一步的,结合车辆当前的车速或加速度等行驶状态信息,计算当前到驶入阴影区域的时间间隔。根据上述被确定的距离,或者上述计算得到的时间间隔,服务器判断车辆即将驶入阴影区域,具体举例来说,可以是根据上述时间间隔确定所述车辆将在小于第一阈值的时间内驶入阴影区域,或者根据上述被确定的距离确定所述车辆与位于行驶方向前方的阴影区域的距离小于第二阈值。确定车辆即将驶入阴影区域后,服务器向车辆发送提醒消息,该提醒消息的用途包括但不限于提醒车辆减速、打开照明灯、打开警示灯或者鸣笛。
图21B示例性说明了服务器通过云服务控制车辆的交互方式,包括:
步骤1,车辆向服务器发送行驶数据。其中,行驶数据能够指示车辆的位置,或者更进一步还可以指示车辆行驶的速度或者加速度行驶状态。
步骤2,服务器向车辆返回控制信息。服务器可以通过从车辆接收的行驶数据确定车辆的位置,然后结合阴影信息所指示的阴影区域的地理位置,确定车辆相对于阴影区域的距离。或者也可以进一步的,结合车辆当前的车速或加速度等行驶状态信息,计算当前到驶入阴影区域的时间间隔。根据上述被确定的距离,或者上述计算得到的时间间隔,服务器判断车辆即将驶入阴影区域,具体举例来说,可以是根据上述时间间隔确定所述车辆将在小于第一阈值的时间内驶入阴影区域,或者根据上述被确定的距离确定所述车辆与位于行驶方向前方的阴影区域的距离小于第二阈值。确定车辆即将驶入阴影区域后,服务器向车辆发送控制信息,该控制信息的用途包括但不限于控制车辆执行减速、打开照明灯、打开警示灯或者鸣笛等操作。
下面基于图22-图27介绍使用阴影信息推荐停车位的方法。
很多用户停车时,为了避免阳光对车辆暴晒,希望车辆能够停在阴影中,以提高乘坐车辆时的舒适度,以及避免发生暴晒引起的车辆部件老化或者车内有毒气体释放。将地图中的阴影信息用于为用户推荐阴影中的停车位,能够满足用户的上述使用需求。具体实现时,可以使具有向用户推荐停车位功能的应用程序或者设备使用地图中关于阴影信息的部分数据,将阴影信息作为执行停车位推荐算法时的一个输入。
本申请实施例提供一种使用阴影信息推荐停车位的方法,该方法可以由终端、路侧或者云端的设备执行,包括但不限于车辆、便携终端、RSU、REC、地图服务器或应用服务器;或者也可以由安装于终端、路侧或者云端的设备上的应用程序执行。
一种情况下,具有向用户推荐停车位功能的应用程序可以是终端设备中在出厂之前的预装程序,也可以终端设备出厂后安装于终端设备中的。该终端设备包括参不限于车辆、手机、笔记本电脑、平板电脑、导航仪或智能可穿戴设备。终端设备根据地图中的阴影信息,从多个停车位中选择处于阴影区域的停车位并推荐给用户。优选地,该包括阴影信息的地图存储于该终端设备中。
在另一种情况下,具有向用户推荐停车位功能的应用程序可以安装于服务器,例如地图服务器或应用服务器,服务器以向车辆提供云服务的形式向车辆推荐阴影中的停车位。服务器根据地图中的阴影信息,从多个停车位中选择处于阴影区域的停车位并推荐给用户。优选地,该服务器中还存有包括阴影信息的地图。
不论采用上述两种情况中的哪种情况,具有向用户推荐停车位功能的应用程序或者设备预先获得用户的停车需求信息,停车需求信息用于指示预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项。停车需求信息中的至少部分内容可通过用户输入获得,例如图22所示,在显示屏显示的地图上标记了被显示的地图区域内所有的停车场,或者所有的有空余停车位的停车场,在用户点击其中某个停车场的标记后,屏幕上弹出用于用户输入停车需求信息的对话框,其中显示了被用户选择的停车场的名称“X购物中心停车场”,还显示了字符输入框供用户输入停车开始时间和预计停车时长,另外还显示了一个选择按钮用于用户选择是否优选阴影下的停车位。停车需求信息中的至少部分内容可通过应用程序调用其他模块或接口的输出得到,例如,向用户推荐停车位功能的应用程序调用导航应用程序中的用户目的地、出发时间或预计到达时间等信息,将这些来自导航应用程序中的信息作为用户的停车需求信息以供确定向用户推荐的停车位。停车需求信息中的至少部分内容还可通过向 用户推荐停车位功能的应用程序或者设备进行计算得到,例如,向用户推荐停车位的应用程序或者设备获取一定范围内多个停车场的停车计费方式,通过计算得到多个停车场中对于用户出行而言最省钱的一个停车场,并将这一个停车场作为预计的停车区域,供进一步确定向用户推荐的该停车场内的停车位。上述用于获取停车需求信息的多种方式还可以组合使用。例如部分停车需求信息通过用户输入获得,部分停车信息通过调用其他模块获得;又例如部分停车需求信息通过用户输入获得,部分停车信息通过调用其他模块获得,以及部分停车需求信息通过向用户推荐停车位的应用程序自身计算获得。
图23-图26示例性说明了用于向用户推荐停车位的显示界面。
图23中,用无边框的浅灰色矩形图案表示已被占用的停车位;用带边框的矩形图案表示可用的停车位。带边框的矩形图案中,用深灰色填充的矩形图案表示当前处于阴影中的停车位,或者表示在用户需求的停车时间区段内部分或全部处于阴影中的停车位;用白色填充的矩形图案表示当前未处于阴影中的停车位,或者表示在用户需求的停车时间区段内部分或全部未处于阴影中的停车位。
当向用户推荐的停车位为多个时,还可基于预设的策略对被推荐的多个停车位进行优先级排序,并在显示界面上显示多个停车位的优先级顺序。例如图24中,向用户推荐了三个停车位,在用于表示这三个停车位的三个带边框深灰色填充的矩形图案上,还分别标记有“1”、“2”或“3”的阿拉伯数字,这些阿拉伯数字表示对应停车位的优先级排名。
在向用户指示阴影中的停车位的位置的同时,还可在显示界面上显示关于该停车位的阴影信息。图25中,三个带边框深灰色填充的矩形图案指示三个被推荐的阴影中停车位,每个停车位的下方还标记了一个百分数,这个百分数可以指示多种阴影信息。例如,这个百分数可用于指示当前时间该百分数上方的停车位中处于阴影覆盖下的面积占比。又例如,这个百分数可用于指示在用户停车时间区段内,该百分数上方的停车位处于阴影覆盖下的时间长度占用户停车时间的百分比。图26中,三个带边框深灰色填充的矩形图案指示三个被推荐的阴影中停车位,每个停车位的下方还标记了一个时间区段,该时间区段用于指示其上方的停车位在白天处于阴影中的时间段。通过从显示界面中查看关于停车位的阴影信息,用户可以更方便地选择停车位。
针对上述另一种情况,图27示例了服务器向车辆提供云服务的交互流程图。需要说明的是,从服务器接受停车位推荐云服务的设备不限于车辆,例如还可以为手机、笔记本电脑、导航仪、平板电脑或智能可穿戴设备等终端,其与服务器之间的交互流程与图27类似,这里不再赘述。
图27中,阴影信息应用于停车位推荐云服务的方法包括:
步骤1,车辆向服务器发送停车需求信息,该停车需求信息用于指示预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项。
步骤2,在服务器根据地图中的阴影信息,从多个停车位中选择确定满足上述停车需求信息所指示的用户停车需求的至少一个停车位,并向车辆发送停车位推荐信息以指示该至少一个停车位。
下面基于图28和图29介绍使用阴影信息推荐出行路线的方法。
很多人在夏天或者正午步行出门时,希望尽量行走在阴影中以减少被太阳暴晒;到了冬天,很多人可能希望尽量行走在有阳光照耀的道路中。不光步行,人们在驾车出行时也有选择是否行驶于阴影环境中的需求。人们可能希望行驶中的车辆不被太阳暴晒,因为对于司机 而言,强烈的阳光可能晒伤晒黑皮肤,甚至使司机看不清前方道路,对于车辆而言阳光暴晒会提升车辆内的温度,开启空调时会增加能源消耗,此外长期阳光暴晒可能会导致部件的老化,也会促使车辆内饰释放有毒气体。人们也可能希望行驶中的车辆尽量处于被阳光照耀的道路上,例如当车辆需要太阳能提供动力的时候。
本申请实施例提供一种使用阴影信息向用户推荐出行路线的方法。该方法可以由终端、路侧或者云端的设备执行,包括但不限于车辆、便携终端、RSU、REC、地图服务器或应用服务器;或者也可以由安装于终端、路侧或者云端的设备上的应用程序执行。
在用户输入起点和终点后,导航应用程序可以根据出行策略,例如路程最短、用时最短、红灯最少、最省油或最省过路费等,向用户推荐出行路线。车辆、便携终端、安装于道路侧或者云端的设备均可以使用阴影信息,通过安装的导航应用程序,结合用户的出行需求(包括但不限于起点、终点、出行时间或出行方式),为用户制定最防晒的出行路线。该最防晒的出行路线可以是被阴影区域覆盖的路段长度最长的路线,或者是被阴影区域覆盖的路段长度占路程总长度的比值最大的路线,或者是被非阴影区域覆盖的路段长度最短的路线,或者是被非阴影区域覆盖的路段长度占路程总长度的比值最小的路线,本实施例对用于确定最防晒的出行路线的具体计算方式不做限定。
图28的导航显示界面中向用户推荐多条不同策略下的出行策略,右下角的矩形框以文字形式对各条路线进行了说明:经由A-B-F-D-E的路线1是行程距离最短的路线,总路程为3.6公里;经由A-B-C-D-E的路线2是最防晒的路线,其中非阴影路程为800米;经由A-G-H-E的路线3是用时最少的路线,总时长为12分钟。
可选地,车辆、便携终端、安装于道路侧或者云端的设备可以自己生成该阴影信息,也可以通过接收地图数据来获取该阴影信息。
可选的,当阴影信息包括用于指示所述阴影区域存在的时间区段的时间信息时,导航应用程序结合该时间信息和用户出行的时间信息为用户推荐最防晒的出行路线。因此,在不同时间出行,被推荐的最防晒的出行路线很可能是不同的。
可选地,导航应用程序还可获取用户的出行方式,例如步行、骑行或驾车,根据出行方式为用户推荐出行路线。例如,某段道路的人行道为阴影区域,但是非机动车道和机动车道为非阴影区域,因此如果用户步行出行,则可以为用户推荐包括该段道路的路线,而如果用户骑行或者驾车出行,则不会为用户推荐包括该段道路的路线。
当终端基于云端提供的云服务获取出行路线时,以终端为车辆,云端为服务器为例,图29示例了交互方法,包括:
步骤1,车辆向服务器发送出行信息,出行信息包括出行时间、出行方式(步行、骑行或驾车)、出发地和目的地中的至少一项。
步骤2,在服务器中根据地图中的阴影信息和出行信息,确定出行路线,并以向车辆发送推荐路线信息的形式向用户推荐该出行路线。
需要说明的是,根据阴影信息和出行信息确定的出行路线除了上面示例的最防晒的路线以外,也可以是最晒的路线,例如可以应用于太阳能供电的出行车辆等场景。
下面基于图30和图31介绍使用阴影信息推荐上车点或者下车点的方法。
当网约车(有人驾驶或者无人驾驶)前来接乘客时,一般会预先与乘客约定上车点或者下车点。现有技术中确定上车点或下车点时,一方面为了方便用户,结合用户的意愿或者用户的位置,使用户尽量少步行,另一方面也要结合地图信息,使上车点或下车点符合政策法 规的规定,例如部分单位门口、部分居民小区门口、部分学校门口或者公交车停靠点等位置不适宜作为上车点或者下车点。但是现有技术未考虑上车点或下车点对用户在不同气候条件下的体验需求,例如阴影区域的需求,例如,如果上车点没有阴影遮蔽,则在夏日或者正午候车时用户体验会较差。因此,本申请实施例提出了一种使用阴影信息推荐上车点或者下车点的方法。
该方法可以由终端、路侧或者云端的设备执行,包括但不限于车辆、便携终端、RSU、REC、地图服务器或应用服务器;或者也可以由安装于终端、路侧或者云端的设备上的应用程序执行,包括但不限于导航应用程序或者网约车应用程序。
上述使用阴影信息推荐上车点的方法包括步骤:
获取用户的出行信息,所述出行信息包括出行时间、出行方式(步行、骑行或驾车)、出发地和目的地中的至少一项,该获取方式可以是根据用户输入获取,或者基于数据计算生成,或者通过调用程序或者模块中的信息得到,或者通过接收消息得到,在此不做具体限定;
根据地图信息确定起点附近处于阴影区域中的至少一个上车点,所述地图信息包括前文中介绍的阴影信息;
向用户推荐该至少一个上车点,所述推荐的方式包括但不限于在用户界面上显示文字和/或图形,或者发送用于指示上述至少一个上车点的信息。
以使用阴影信息推荐上车点为例,图30示例了应用程序中用于推荐上车点的显示界面。用户想从A医院打车前往B飞机场,在网约车应用程序的显示界面中,用户文字输入了起点和终点,显示界面上显示用户当前位置附近的地图,其中标记了医院北门的上车点和医院南门的上车点。由于这两个上车点都不处于阴影区域,因此应用程序为用户推荐了医院北门东侧100米位置的过街天桥下的上车点,并在地图的相应位置对该推荐的上车点就行标记。
当终端基于云端提供的云服务获取上车点时,以终端为车辆,云端为服务器为例,图31示例了交互方法,包括:
步骤1,车辆向服务器发送出行信息,出行信息包括出行时间、出行方式(步行、骑行或驾车)、出发地和目的地中的至少一项。
步骤2,在服务器中根据地图中的阴影信息和出行信息,确定位于阴影区域的上车点,并以向车辆发送推荐上车点信息的形式向用户推荐该上车点。
使用阴影信息推荐下车点的方法与推荐上车点的方法类似,此处不再赘述。
下面基于图32A、图32B和图33介绍使用阴影信息辅助太阳能充电的方法。
太阳能作为一种清洁能源,有很大的应用前景。现在已经出现了由太阳能提供能量的汽车,在车顶装配太阳能电池板,可以在车辆停车状态(如图32A所示)和行驶状态(如图32B所示)通过收集照射在车顶太阳能电池板的太阳光能量为车辆提供能量或者为车载电池充电。本申请实施例提出了一种使用阴影信息为以太阳能为能量来源的车辆推荐停车点或者行驶路线的方法,使车辆尽可能多的暴露在阳光下以满足车辆的能量需求。
该方法可以由终端、路侧或者云端的设备执行,包括但不限于车辆、便携终端、RSU、REC、地图服务器或应用服务器;或者也可以由安装于终端、路侧或者云端的设备上的应用程序执行。
该方法包括以下步骤:
首先,获取车辆的需求信息,所述需求信息指示车辆将要停车或者将要出行的意图。如果确定车辆将要停车,则进一步确定车辆将要停车的区域,所述需求信息还可以包括用于指 示该停车的区域的信息;如果确定车辆将要出行,则进一步确定所述出行的起始位置和终点位置,所述需求信息还可以包括用于指示该起始位置和终点位置的信息。进一步的,当阴影信息中包括用于指示所述阴影区域存在的时间区段的时间信息时,还可以获取车辆将要停车或者将要出行的时间,从而可以利用地图中与该时间相对应的阴影信息辅助太阳能充电。
然后,在车辆将要停车的情况下,根据包括上述阴影信息的地图确定上述停车的区域内非阴影区域的停车位置;在车辆将要出行的情况下,根据包括上述阴影信息的地图确定由上述起始位置到上述终点位置的出行路线,该出行路线可以是被非阴影区域覆盖的路段长度最长的路线,或者是被非阴影区域覆盖的路段长度占路程总长度的比值最大的路线,或者是被阴影区域覆盖的路段长度最短的路线,或者是被阴影区域覆盖的路段长度占路程总长度的比值最小的路线,本实施例对用于确定出行路线的具体计算方式不做限定。例如,在车辆将要出行的情况下,还可以考虑行驶距离,拥堵程度,高速优先,途径地点等其它因素中的一种或多种,且可以根据用户的需求,为不同因素赋予不同的权重,以确定出行路线。
最后,向所述车辆的用户推荐所述停车位置或者出行路线,或者在无人驾驶或辅助驾驶的情况下,向所述车辆发送在所述停车位置停车或者沿所述出行路线行驶的指令。向用户推荐所述停车位置或者出行路线中,所述推荐的方式包括但不限于在用户界面上显示文字和/或图形,或者发送用于指示所述停车位置或者所述出行路线的信息。
当终端基于云端提供的云服务获取用于补充太阳能的停车位置或者行车路线时,以终端为车辆,云端为服务器为例,图33示例了交互方法,包括:
步骤1,车辆向服务器发送太阳能充电需求信息,太阳能充电需求信息包括用于指示车辆将要停车或者将要出行的意图的信息。进一步的,太阳能充电需求信息还包括用于指示该停车的区域的信息或者用于指示该出行的起始位置和终点位置的信息。进一步的,太阳能充电需求信息还包括用于指示车辆将要停车或者将要出行的时间的信息。
步骤2,在服务器中根据地图中的阴影信息和上述太阳能充电需求信息,生成太阳能充电指示信息并发送给车辆,该太阳能充电指示信息用于指示上述停车位置或者上述行车路线。
步骤1中的信息可以承载在同一消息中发送给服务器,或者可以承载在不同的消息中发送给服务器,本申请实施例不做限制。
下面基于图34介绍使用阴影信息辅助向路面投影的方法。本申请实施例不对用于投影的设备进行限定,下面仅以车辆作为投影设备进行示例性说明,此外本申请实施例还适用于使用手机或者专用投影设备进行投影的场景,具体方法与下文介绍的车辆投影类似。
激光投影可以应用于交通信息提醒,车辆或者路侧设备可以将交通信息以文字和/或图案的形式投射到路面或建筑物侧面,以提醒其他交通参与者,或者作为与其他参与者进行交互的一种方式。本申请实施例提供一种使用阴影信息辅助投影的方法,根据所述阴影信息确定用于激光投影的位置、亮度和色调中的至少一项,以使激光投影更容易引起其他交通参与者的注意。进一步地,当阴影信息包括用于指示所述阴影区域存在的时间区段的时间信息时,还可以根据所述时间信息确定用于激光投影的时间。
如图34所示,车辆在由画面中由右向左的一条车道行驶,车辆通过地图中的阴影信息获知该车辆当前驶入了该车道上的一段阴影区域。通过车辆上配置的感知设备,该车辆感测到两个行人站立在前方路边,该车辆判断这两个行人可能会横穿马路,为潜在的危险因素。因此,当车辆判断这两个行人在车辆行驶方向上且行人与车辆的距离满足预设条件时,车辆向前方路段投射出警示投影图案,该警示投影图案对行人起到警示作用,例如可以为“停止(STOP)”或“注意(ATTENTION)”等。使该投影图案位于容易被两个行人注意到的路面 投影位置,以提醒这两个行人即将有车辆驶过,以及不要横穿马路。为了提高激光投影的视觉效果,车辆的投影装置获取地图中的阴影信息,基于该阴影信息指示的该路面投影位置处于阴影区域,调整该投影的亮度或色调。另外,当车辆前方行人容易注意到的路面投影位置既包括阴影区域又包括非阴影区域时,车辆的投影装置可以根据地图中的投影信息调整投射距离或角度,使车辆在行驶过程中始终将投影图案投射到路面投影位置中的阴影区域。
如图35,本申请实施例提供了一种地图数据处理装置3500,该装置可用于执行如上述图4-12B中任一项所描述的地图数据处理方法。地图数据处理装置3500包括:
获取单元3501,用于获取阴影信息,所述阴影信息用于指示阴影区域,所述阴影信息包括位置信息,所述位置信息用于指示所述阴影区域的地理位置;和
存储单元3502,用于将所述阴影信息作为所述地图的数据进行存储。
关于其中阴影信息、阴影区域、阴影信息的获取及阴影信息的存储可参考前文描述,此处不再赘述。
地图数据处理装置3500可以位于云端、路侧或终端,包括但不限于地图服务器、应用服务器、RSU、REC、车辆或便携终端等设备,或者这些设备内部的部件、芯片、软件模块或硬件模块。
地图数据处理装置3500所述获取阴影信息,可以是基于自身感知得到感知信息或者从其他装置接收到的感知信息来生成阴影信息,此时地图数据处理装置3500作为地图生成装置,可以向云端、路侧或终端的地图使用装置提供包括阴影信息的地图产品。
地图数据处理装置3500所述获取阴影信息,也可以是从其他装置接收阴影信息,此时地图数据处理装置3500作为地图存储装置或者地图使用装置,维护包括阴影信息的地图数据库。
如图36,本申请实施例提供了一种地图数据处理装置3600,该装置可用于执行如上述图4-12B中任一项所描述的地图数据处理方法。地图数据处理装置3600包括接收单元3601、处理单元3602、存储单元3603、发送单元3604、显示单元3605、输入单元3606、输出单元3607、和控制单元3608中的至少一项。
其中,存储单元3603用于将前文中描述的阴影信息作为地图的数据进行存储。
一种情况下,存储单元3603存储的阴影信息来自于处理单元3602生成的阴影信息,此时地图数据处理装置3600可以作为地图生成装置,用于向云端、路侧或终端的地图使用装置提供包括阴影信息的地图产品。
处理单元3602还可用于:通过对地图采集车或者众包车辆或路侧设备获取的感知数据进行统计,结合天气情况等其他信息,生成所述阴影信息
可选地,处理单元3602用于根据阴影信息中的位置信息和地图中地图元素的边界信息,确定阴影区域在显示界面上的显示区域。
可选地,处理单元3602用于根据感知数据和阴影信息,识别目标对象,例如识别目标对象的类别、名称、轮廓、颜色、图案或是否立体。
可选地,处理单元3602用于根据识别目标对象的结果进行驾驶决策。
可选地,处理单元3602用于根据行驶数据和阴影信息,确定车辆将在小于第一阈值的时间内驶入阴影区域,或者车辆与位于行驶方向前方的阴影区域的距离小于第二阈值。
可选地,处理单元3602用于根据停车需求信息和阴影信息,选择至少一个停车位。
可选地,处理单元3602用于通过导航信息获取用户的停车需求信息。
可选地,处理单元3602用于根据出行信息和阴影信息为用户规划出行路线、上车点或者上车点。
可选地,处理单元3602用于根据太阳能充电需求信息和阴影信息确定用于在静止状态下充电的第一位置或用于在移动状态下充电的第一路线。
可选地,处理单元3602用于根据阴影信息确定用于激光投影的位置、亮度和色调中的至少一项。
另一种情况下,存储单元3603存储的阴影信息来自于接收单元3601接收的阴影信息,此时地图数据处理装置3600可以作为地图存储装置或者地图使用装置,需要维护包括阴影信息的地图数据库。
接收单元3601用于从其他设备、部件、芯片、接口、硬件模块或软件模块接收所述阴影信息。
可选的,接收单元3601还用于接收关于目标对象的感知数据、车辆的行驶数据、用户的停车需求信息、用户的出行信息或者用户的太阳能充电需求信息。
无论上述两种情况中的哪种情况,地图数据处理装置3600都可以选择性的包括发送单元3604,用于发送所述阴影信息。
可选的,发送单元3604还用于向车辆发送目标指示信息,该目标指示信息用于指示目标对象的属性。该属性例如包括所述目标对象的类别、名称、轮廓、颜色、图案或是否立体。
可选的,发送单元3604还用于向车辆发送提醒消息,提醒消息用于指示车辆即将驶入阴影区域。
可选的,发送单元3604还用于向移动终端发送停车位推荐信息,所述停车位推荐信息用于指示至少一个停车位。所述移动终端包括但不限于车辆或者便携终端(例如手机、笔记本电脑、平板电脑、导航仪或智能可穿戴设备)。
可选的,发送单元3604还用于向移动终端发送出行建议信息,所述出行建议信息用于指示出行路线、上车点或者下车点。
可选的,发送单元3604还用于向移动终端发送太阳能充电指示信息,所述太阳能充电指示信息用于指示第一位置或第一路线。
无论上述两种情况中的哪种情况,地图数据处理装置3600都可以选择性的包括显示单元3605,用于基于所述阴影信息显示所述阴影区域。或者进一步地,显示单元3605用于基于阴影显示触发指令,将阴影信息叠加在地图的其他信息上进行显示。或者进一步地,显示单元3605用于基于阴影信息中的时间信息显示所述阴影区域随时间的变化。或者进一步地,显示单元3605用于通过不同的灰度、颜色、饱和度或图案密度显示阴影信息中的阴影程度信息。或者进一步地,显示单元3605用于通过不同的灰度、颜色、饱和度或图案密度显示阴影信息中的原因信息。或者进一步地,显示单元3605用于在处理单元确定的显示区域上显示阴影区域。或者进一步地,显示单元3605用于在显示界面向所述用户推荐所述停车位。或者进一步地,显示单元3605用于在显示界面向所述用户推荐出行路线。或者进一步地,显示单元3605用于在显示界面向所述用户推荐用于太阳能充电的第一位置或第一路线。
无论上述两种情况中的哪种情况,地图数据处理装置3600都可以选择性的包括输入单元3606,用于接收用户输入的阴影显示触发指令,或者供用户输入停车需求信息。
无论上述两种情况中的哪种情况,地图数据处理装置3600都可以选择性的包括输出单元3607,用于提醒用户执行减速、打开照明灯、打开警示灯和鸣笛中的至少一项:。
无论上述两种情况中的哪种情况,地图数据处理装置3600都可以选择性的包括控制单元 3608,用于控制车辆执行速、打开照明灯、打开警示灯和鸣笛中的至少一项。
以上图35和图36所示实施例中的各个单元的只一个或多个可以软件、硬件、固件或其结合实现。所述软件或固件包括但不限于计算机程序指令或代码,并可以被硬件处理器所执行。所述硬件包括但不限于各类集成电路,如中央处理单元(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、现场可编程门阵列(FPGA,Field Programmable Gate Array)或专用集成电路(ASIC,Application Specific Integrated Circuit)。
如图37所示,本申请实施例提供了一种地图数据处理装置3700,包括处理器3701和存储器3702。其中,存储器3702存储计算机程序指令,处理器3701从存储器中读取并运行该计算机程序指令,以使地图数据处理装置3700执行上述图4-12B任一项所述的地图数据处理方法。
如图38所示,本申请实施例提供了一种地图数据处理装置3800,包括处理器3801和通信接口3802。其中,处理器3801通过通信接口3802获取计算机程序指令,处理器3801运行该计算机程序指令,以使地图数据处理装置3800执行上述图4-12B任一项所述的地图数据处理方法。
应理解,上述处理器3701或者处理器3801可以是一个芯片。例如,处理器3701或者处理器3801可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
可以理解,本申请实施例中的存储器3702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参照。
本领域技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的全部或部分步骤;而前述的存储介质包括:ROM、RAM、磁碟 或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述系统、装置和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种地图数据处理方法,其特征在于,所述方法包括:
    获取阴影信息,所述阴影信息用于指示阴影区域,所述阴影信息包括位置信息,所述位置信息用于指示所述阴影区域的地理位置;
    将所述阴影信息作为所述地图的数据进行存储。
  2. 根据权利要求1所述的方法,其特征在于,所述获取阴影信息包括:生成所述阴影信息或接收所述阴影信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述阴影信息还包括几何信息、时间信息、阴影程度信息、置信度信息和原因信息中的至少一项,其中,所述几何信息用于指示所述阴影区域的形状或尺寸,所述时间信息用于指示所述阴影区域存在的时间区段,所述阴影程度信息用于指示所述阴影区域的阴影程度,所述置信度信息用于指示所述阴影区域的可信程度,所述原因信息用于指示所述阴影区域产生的原因。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述将所述阴影信息作为所述地图的数据进行存储,包括:
    以所述地图中对事件进行存储的数据结构对所述阴影信息进行存储。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    发送所述阴影信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    基于所述阴影信息显示所述阴影区域。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述阴影信息显示所述阴影区域,包括:
    接收用户输入的阴影显示触发指令;
    基于所述阴影显示触发指令,将所述阴影信息叠加在所述地图的其他信息上进行显示。
  8. 根据权利要求6或7所述的方法,其特征在于,与所述阴影区域相对应的显示区域相对于其它显示区域具有不同的灰度、颜色、饱和度或叠加图案。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述阴影信息还包括时间信息,其中,所述时间信息用于指示所述阴影区域存在的时间区段,所述基于所述阴影信息显示所述阴影区域,包括:
    基于所述时间信息显示所述阴影区域随时间的变化。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述阴影信息还包括阴影程度信息,其中,所述阴影程度信息用于指示所述阴影区域的阴影程度,所述基于所述阴影信息显示所述阴影区域,包括:
    通过不同的灰度、颜色、饱和度或图案密度显示所述阴影程度信息。
  11. 根据权利要求6-10任一项所述的方法,其特征在于,所述阴影信息还包括原因信息,其中,所述原因信息用于指示所述阴影区域产生的原因,所述基于所述阴影信息显示所述阴影区域,包括:
    通过不同的灰度、颜色、饱和度或图案密度显示所述原因信息。
  12. 根据权利要求6-11任一项所述的方法,其特征在于,所述基于所述阴影信息显示所述阴影区域,包括:
    根据所述位置信息和所述地图中地图元素的边界信息,确定所述阴影区域在显示界面上的显示区域;
    在所述显示区域上显示所述阴影区域。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    获得关于目标对象的感知数据;
    根据所述感知数据和所述阴影信息,识别所述目标对象。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    获得车辆的行驶数据,所述行驶数据用于指示所述车辆的行驶位置;
    根据所述行驶数据和所述阴影信息,确定所述车辆将在小于第一阈值的时间内驶入阴影区域,或者所述车辆与位于行驶方向前方的阴影区域的距离小于第二阈值;
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述方法还包括:
    获取用户的停车需求信息,所述停车需求信息用于指示预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项;
    根据所述停车需求信息和所述阴影信息,选择至少一个停车位。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    获取用户的出行信息;
    根据所述出行信息和所述阴影信息为所述用户规划出行路线或者上车位置。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述方法还包括:
    获取用户的太阳能充电需求信息;
    根据所述太阳能充电需求信息和所述阴影信息确定用于在静止状态下充电的第一位置或用于在移动状态下充电的第一路线。
  18. 根据权利要求1-17任一项所述的方法,其特征在于,所述方法还包括:
    根据所述阴影信息确定用于激光投影的位置、亮度和色调中的至少一项。
  19. 一种地图数据处理装置,其特征在于,所述装置包括:
    第一获取单元,用于获取阴影信息,所述阴影信息用于指示阴影区域,所述阴影信息包括位置信息,所述位置信息用于指示所述阴影区域的地理位置;
    存储单元,用于将所述阴影信息作为所述地图的数据进行存储。
  20. 根据权利要求19所述的装置,其特征在于,所述第一获取单元为用于生成所述阴影信息的第一处理单元,或者为用于接收所述阴影信息的第一接收单元。
  21. 根据权利要求19或20所述的装置,其特征在于,所述阴影信息还包括几何信息、时间信息、阴影程度信息、置信度信息和原因信息中的至少一项,其中,所述几何信息用于指示所述阴影区域的形状或尺寸,所述时间信息用于指示所述阴影区域存在的时间区段,所述阴影程度信息用于指示所述阴影区域的阴影程度,所述置信度信息用于指示所述阴影区域的可信程度,所述原因信息用于指示所述阴影区域产生的原因。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述存储单元用于:
    以所述地图中对事件进行存储的数据结构对所述阴影信息进行存储。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述装置还包括:
    第一发送单元,用于发送所述阴影信息。
  24. 根据权利要求19-23任一项所述的装置,其特征在于,所述装置还包括:
    显示单元,用于基于所述阴影信息显示所述阴影区域;或者
    处理单元,基于所述阴影信息控制所述阴影区域的显示。
  25. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    输入单元,用于接收用户输入的阴影显示触发指令;
    所述显示单元,基于所述阴影显示触发指令,将所述阴影信息叠加在所述地图的其他信息上进行显示。
  26. 根据权利要求24或25所述的装置,其特征在于,与所述阴影区域相对应的显示区域相对于其它显示区域具有不同的灰度、颜色、饱和度或叠加图案。
  27. 根据权利要求24-26任一项所述的装置,其特征在于,所述阴影信息还包括时间信息,其中,所述时间信息用于指示所述阴影区域存在的时间区段,所述显示单元用于:
    基于所述时间信息显示所述阴影区域随时间的变化。
  28. 根据权利要求24-27任一项所述的装置,其特征在于,所述阴影信息还包括阴影程度信息,其中,所述阴影程度信息用于指示所述阴影区域的阴影程度,所述显示单元用于:
    通过不同的灰度、颜色、饱和度或图案密度显示所述阴影程度信息。
  29. 根据权利要求24-28任一项所述的装置,其特征在于,所述阴影信息还包括原因信息,其中,所述原因信息用于指示所述阴影区域产生的原因,所述显示单元用于:
    通过不同的灰度、颜色、饱和度或图案密度显示所述原因信息。
  30. 根据权利要求24-29任一项所述的装置,其特征在于,所述装置还包括第二处理单元,用于根据所述位置信息和所述地图中地图元素的边界信息,确定所述阴影区域在显示界面上的显示区域;所述显示单元用于在所述显示区域上显示所述阴影区域。
  31. 根据权利要求19-30任一项所述的装置,其特征在于,所述装置还包括:
    第二获取单元,用于获得关于目标对象的感知数据;
    第三处理单元用于根据所述感知数据和所述阴影信息,识别所述目标对象。
  32. 根据权利要求19-31任一项所述的装置,其特征在于,所述装置还包括:
    第三获取单元,用于获得车辆的行驶数据,所述行驶数据用于指示所述车辆的行驶位置;
    第四处理单元,用于根据所述行驶数据和所述阴影信息,确定所述车辆将在小于第一阈值的时间内驶入阴影区域,或者所述车辆与位于行驶方向前方的阴影区域的距离小于第二阈值;
  33. 根据权利要求19-32任一项所述的装置,其特征在于,所述装置还包括:
    第四获取单元,用于获取用户的停车需求信息,所述停车需求信息用于指示预计的停车区域、停车开始时间、停车结束时间和停车时长中的至少一项;
    第五处理单元,用于根据所述停车需求信息和所述阴影信息,选择至少一个停车位。
  34. 根据权利要求19-33任一项所述的装置,其特征在于,所述装置还包括:
    第五获取单元,用于获取用户的出行信息;
    第六处理单元,用于根据所述出行信息和所述阴影信息为所述用户规划出行路线或者上车位置。
  35. 根据权利要求19-34任一项所述的装置,其特征在于,所述装置还包括:
    第六获取单元,用于获取用户的太阳能充电需求信息;
    第七处理单元,用于根据所述太阳能充电需求信息和所述阴影信息确定用于在静止状态下充电的第一位置或用于在移动状态下充电的第一路线。
  36. 根据权利要求19-35任一项所述的装置,其特征在于,所述装置还包括:
    第八处理单元,用于根据所述阴影信息确定用于激光投影的位置、亮度和色调中的至少一项。
  37. 一种地图数据处理装置,其特征在于,包括处理器和存储器,所述存储器存储计算机指令,所述处理器运行所述计算机指令,以使所述地图数据处理装置执行如权利要求1-18任 一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,存储有计算机指令,当所述计算机指令被处理器执行时,实现如权利要求1-18任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令被处理器执行时,实现如权利要求1-18任一项所述的方法。
  40. 一种电子地图产品,其特征在于,所述电子地图产品包括阴影信息,所述阴影信息用于指示阴影区域,所述阴影信息包括位置信息,所述位置信息用于指示所述阴影区域的地理位置。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有如权利要求40所述的电子地图产品。
  42. 一种车辆,其特征在于,所述车辆中包括如权利要求19-37任一项所述的地图数据处理装置。
PCT/CN2022/117432 2021-09-19 2022-09-07 地图数据处理方法和装置 WO2023040712A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247012872A KR20240063975A (ko) 2021-09-19 2022-09-07 지도 데이터 처리 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111127585.XA CN115934868A (zh) 2021-09-19 2021-09-19 地图数据处理方法和装置
CN202111127585.X 2021-09-19

Publications (1)

Publication Number Publication Date
WO2023040712A1 true WO2023040712A1 (zh) 2023-03-23

Family

ID=85601881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117432 WO2023040712A1 (zh) 2021-09-19 2022-09-07 地图数据处理方法和装置

Country Status (3)

Country Link
KR (1) KR20240063975A (zh)
CN (1) CN115934868A (zh)
WO (1) WO2023040712A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220374634A1 (en) * 2021-05-18 2022-11-24 Here Global B.V. Identifying canopies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117496751A (zh) * 2023-11-01 2024-02-02 镁佳(北京)科技有限公司 一种车位推荐方法、装置、计算机设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020123841A1 (en) * 2000-09-19 2002-09-05 Hiroyuki Satoh Map display apparatus and display method therefor
CN1559056A (zh) * 2001-09-26 2004-12-29 日本先锋公司 图象产生装置及其方法,以及计算机程序
CN102445213A (zh) * 2010-10-13 2012-05-09 罗伯特·博世有限公司 导航系统以及用于驱动导航系统的方法
CN110794848A (zh) * 2019-11-27 2020-02-14 北京三快在线科技有限公司 一种无人车控制方法及装置
CN111422128A (zh) * 2019-01-09 2020-07-17 丰田自动车株式会社 服务器、车载装置、车辆、存储介质以及信息提供方法
CN112927336A (zh) * 2021-03-26 2021-06-08 智道网联科技(北京)有限公司 用于道路信息显示的三维建筑物的阴影处理方法及装置
CN113364990A (zh) * 2021-04-29 2021-09-07 佛山职业技术学院 车辆摄像头适应阴影区的方法、控制器及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020123841A1 (en) * 2000-09-19 2002-09-05 Hiroyuki Satoh Map display apparatus and display method therefor
CN1559056A (zh) * 2001-09-26 2004-12-29 日本先锋公司 图象产生装置及其方法,以及计算机程序
CN102445213A (zh) * 2010-10-13 2012-05-09 罗伯特·博世有限公司 导航系统以及用于驱动导航系统的方法
CN111422128A (zh) * 2019-01-09 2020-07-17 丰田自动车株式会社 服务器、车载装置、车辆、存储介质以及信息提供方法
CN110794848A (zh) * 2019-11-27 2020-02-14 北京三快在线科技有限公司 一种无人车控制方法及装置
CN112927336A (zh) * 2021-03-26 2021-06-08 智道网联科技(北京)有限公司 用于道路信息显示的三维建筑物的阴影处理方法及装置
CN113364990A (zh) * 2021-04-29 2021-09-07 佛山职业技术学院 车辆摄像头适应阴影区的方法、控制器及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220374634A1 (en) * 2021-05-18 2022-11-24 Here Global B.V. Identifying canopies
US11854257B2 (en) * 2021-05-18 2023-12-26 Here Global B.V. Identifying canopies

Also Published As

Publication number Publication date
CN115934868A (zh) 2023-04-07
KR20240063975A (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2023040712A1 (zh) 地图数据处理方法和装置
US10990105B2 (en) Vehicle-based virtual stop and yield line detection
US11860639B2 (en) Vehicle-based road obstacle identification system
US11373524B2 (en) On-board vehicle stop cause determination system
US20200211370A1 (en) Map editing using vehicle-provided data
US11143516B2 (en) Task management system for high-definition maps
CN113748314B (zh) 交互式三维点云匹配
EP3671550A1 (en) Dynamically loaded neural network models
CN107155342A (zh) 用于3d地图的虚拟相机
US20170219374A1 (en) Navigation system and method for determining a vehicle route optimized for maximum solar energy reception
US20240071074A1 (en) Ar service platform for providing augmented reality service
JP4222106B2 (ja) ナビゲーションシステム及びナビゲーションプログラム
CN111060119B (zh) 基于街景图视觉要素评分的城市慢行出行导航方法和系统
US20200208991A1 (en) Vehicle-provided virtual stop and yield line clustering
KR20210069954A (ko) 빅데이터를 활용한 인공지능 기반 통합 교통 신호 제어 시스템 및 방법
CN109870158B (zh) 导航终端及其导航路线修正方法、及无人驾驶车辆
US20240169743A1 (en) Vehicle positioning method and device based on environment matching, vehicle and storage medium
CN116469249A (zh) HDMap与5G车路协的智慧交通云管理平台
CN115855092A (zh) 一种导航路径的规划方法、装置、设备及存储介质
WO2020139392A1 (en) Vehicle-based road obstacle identification system
WO2020139391A1 (en) Vehicle-based virtual stop and yield line detection
CN112991741B (zh) 交通流预测方法和装置
CN114722931A (zh) 车载数据处理方法、装置、数据采集设备和存储介质
GB2560487A (en) Vehicle route guidance
WO2023159529A1 (zh) 一种地图数据处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022869083

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869083

Country of ref document: EP

Effective date: 20240321

ENP Entry into the national phase

Ref document number: 20247012872

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE