WO2023040624A1 - 一种用于离心超重力环境的流量精确控制装置及方法 - Google Patents

一种用于离心超重力环境的流量精确控制装置及方法 Download PDF

Info

Publication number
WO2023040624A1
WO2023040624A1 PCT/CN2022/114881 CN2022114881W WO2023040624A1 WO 2023040624 A1 WO2023040624 A1 WO 2023040624A1 CN 2022114881 W CN2022114881 W CN 2022114881W WO 2023040624 A1 WO2023040624 A1 WO 2023040624A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
control
water
reciprocating
servo actuator
Prior art date
Application number
PCT/CN2022/114881
Other languages
English (en)
French (fr)
Inventor
唐耀
陈琛
黄博
凌道盛
陈云敏
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023040624A1 publication Critical patent/WO2023040624A1/zh
Priority to US18/493,790 priority Critical patent/US12109575B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2291Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • G05D7/0682Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources using a plurality of flow sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a precise flow control device and method for centrifugal supergravity environment.
  • the invention is applied to the high-gravity centrifuge simulation and test device of national major scientific and technological infrastructure. It belongs to high-end equipment and can be used to study the large-scale evolution of rock and soil such as embankments. Evolution and catastrophe provide stable test conditions and reliable engineering guidance.
  • the supergravity environment provided by the centrifuge can restore the effective stress field of the prototype on the scale model, which can achieve the purpose of scaling. Further superimposing the supergravity field and seepage field to accelerate the fluid flow process between phases can achieve both scale reduction and A time-shortening effect can be achieved.
  • This technology provides conditions for reproducing the evolution process of on-site hydraulic structures failure and exploring the mechanism of its occurrence.
  • my country is a country rich in hydraulic resources, and is currently in the stage of vigorous development and utilization.
  • the reservoir dam is an important infrastructure.
  • the experimental research on the damage mechanism of this type of hydraulic structure is very important. appears to be particularly important. In these experiments, it is often necessary to achieve a large-scale, fast, accurate, and dynamic rise and fall of the water level.
  • the object of the present invention is to provide a precise flow control device and method for centrifugal high-gravity environment to address the deficiencies of the prior art.
  • the present invention provides the following technical solutions:
  • One aspect of the present invention discloses a precise flow control device for a centrifugal supergravity environment, the device includes a control center, an oil supply module, a sensor module, an execution module and a centrifuge; the control center and the oil supply module are deployed in a normal In a gravity environment, the sensor module and the execution module are deployed in a hypergravity environment;
  • the oil supply module includes an oil source, an oil separator and an oil separator servo valve; the oil source is connected to the oil separator through an oil supply pipeline; the oil separator is installed at the proximal end of the centrifuge arm , the other end of the oil separator is connected with the servo actuator through the oil supply pipeline for supplying oil to the servo actuator; the oil separator servo valve is installed on the oil separator to control the output flow;
  • the execution module includes a base, and two sets of reciprocating pump sets fixed on the base, a support assembly and a model box; each set of reciprocating pump sets is composed of a servo actuator and a reciprocating water pump in series; the base is fixed by screws On the bottom plate of the centrifuge basket; the servo actuator is used to control the work of the reciprocating water pump; the reciprocating water pump has a matching water distribution valve block, and communicates with the model box through the water inlet pipe and the water outlet pipe; the support assembly Respectively located at one end of the reciprocating water pump and the servo actuator, fix the reciprocating water pump and the servo actuator, and provide support for the cantilever structure of the reciprocating water pump, so as to avoid the cantilever structure being bent under the force of the supergravity environment; the model box
  • the base of the centrifuge basket is fixed on the center of the bottom plate of the centrifuge basket by screws, and two sets of reciprocating pump sets are symmetrically arranged on both sides of the model box, so that the self
  • the sensor module includes a liquid level sensor, a displacement sensor and a flow sensor, which are respectively used to collect the liquid level information of the model box, the piston position information of the servo actuator and the water supply flow information of the model box;
  • the liquid level sensor is installed on the model box In the water storage tank on the upper part of the tank, the liquid level is measured and fed back;
  • the displacement sensor is installed on the piston rod of the servo actuator, and the piston position of the servo actuator is measured and fed back;
  • the flow sensor is installed at the inlet of the model box On the water pipeline, measure and feed back the water supply flow of the model box;
  • the liquid level sensor, displacement sensor and flow sensor are all used in a supergravity environment, and are all connected to a remote controller, and feed back the signal to the remote controller;
  • the control center includes a servo controller, a remote controller and a servo actuator control unit, which are used to process the data of all sensors, and realize the control of the servo actuator through the control of the oil separator, and then through the servo actuation
  • the controller controls the reciprocating water pump to realize the control of the water supply flow, so as to achieve the goal of accurately controlling the liquid level;
  • the servo controller is installed at the proximal end of the rotating arm of the centrifuge, connected with the servo valve of the oil separator, controls the servo valve of the oil separator according to the requirements of the flow rate and liquid level, and realizes the control of the oil separator through the servo valve of the oil separator. Control the servo actuator, and then control the reciprocating water pump to complete water absorption or drainage at a certain speed and stroke;
  • the remote controller is installed on the instrument compartment of the centrifuge, connected with the servo controller for controlling the servo actuator, and connected with the sensor to collect sensor information and feed it back to the servo actuator control unit;
  • the servo actuator control unit is installed on the user terminal outside the centrifuge to generate control signals, forward the control signals to the servo controller through the remote controller, and output them to the servo actuator to complete the water supply flow and liquid level. closed-loop control.
  • Another aspect of the present invention discloses a precise flow control method for a centrifugal supergravity environment.
  • the flow of a double pump set is actively complemented to weaken the flow pulsation of a reciprocating water pump.
  • the method includes the following steps:
  • Step 1 Initialization parameters and basic parameter settings: Set the control mode to speed control and closed-loop control; the response of the control signal output is: flow control accuracy 0.05L/s corresponds to servo actuator piston speed 10mm/s or 600mm/min;
  • Step 2 Equipment transfer and installation: install the sensor module and the execution module on the centrifuge, and check whether there is oil leakage in the oil supply module and the power supply status of the centrifuge power supply system;
  • Step 3 Check before starting: Check the motion state of the servo actuator, as well as the working state of the flow, liquid level and displacement sensors under normal gravity, and debug the sensor until the state is stable;
  • Step 4 No-load operation: Under the conditions of 1g, 10g, 30g, 60g, 100g, 150g centrifugal acceleration, oil source pressure 3.5MPa, 7.2MPa, 13.5MPa, 20.9MPa respectively, test the following content: sensor working state test: flow rate , the working state of the liquid level and displacement sensor under supergravity; the performance test of the servo actuator: the low-speed crawling performance parameters of the hydraulic cylinder and the low-speed closed-loop control performance parameters under different g values;
  • Step 5 Execute precise flow control of the module: name the two reciprocating pumps as the target pump and the control pump respectively, and change the sudden flow rate of the two reciprocating pumps into a ⁇ t time by precisely controlling the displacement of the servo actuator.
  • Controllable flow fluctuation ⁇ Q the flow fluctuation phase difference is 180°
  • the servo valve of the oil separator is controlled, thereby controlling the reciprocating water pump Water supply flow, where the flow rate of the target water pump is Q 1 , the flow rate of the control water pump is Q 2 , T is a cycle of water supply, ⁇ t is the time of sudden change in flow rate, Q 0 is the final stable output flow rate, and ⁇ Q is the flow rate fluctuation caused by pulsation , t represents a certain moment;
  • Step 6 Actively control the two reciprocating water pumps to produce equal and reverse flow fluctuations.
  • the phase difference of the reverse flow fluctuations is 180°, and the phase difference of the flow fluctuations in step 5 is 90°; such as formula (3), (4)
  • the flow of the target water pump and the control water pump after the same large reverse fluctuation is:
  • Step 7 Make the control water pump actively lag behind the 90° phase difference, and combine and output the water supply flow of the control water pump and the target water pump to obtain the final stable output flow Q 0 ;
  • the negative flow fluctuations generated during the conversion complement each other, and finally output a stable water supply flow to ensure the feasibility of accurate flow control;
  • Step 8 Water supply performance test of the reciprocating pump unit: water supply flow test under the control of different amplitude and frequency parameters, water supply efficiency test (including the response time of the pump valve group and its influence on the pump flow rate), and continuous operation test;
  • Step 9 Terminate the operation and disassemble the machine, and analyze and process the data.
  • the flow sensor adopts an electromagnetic flowmeter, customized, with a range of 1.3L/s and a resolution of 0.005L/s.
  • the displacement sensor adopts an LVDT type displacement sensor, custom-made, with a measuring range of ⁇ 75mm and a resolution of 0.005mm.
  • liquid level sensor adopts a float level gauge sensor with a measuring range of ⁇ 250mm.
  • water inlet pipes of the two reciprocating water pumps are connected to the water inlet of the model box through the three-way joint
  • the water outlet pipes of the two reciprocating water pumps are connected to the water outlet of the model box through the three-way joint.
  • the acceleration range of the centrifuge is 1g-150g
  • the maximum load is 4t
  • the capacity of the centrifuge is 400g ⁇ t.
  • the output quantity of the oil separator is 4, the rated working pressure is 21MPa, and the control voltage is DC24V.
  • the stroke of the servo actuator is 200mm.
  • the volume of the upper water storage tank of the model box is 0.02m 3
  • the volume of the lower water storage tank is 0.32m 3 .
  • the present invention collects the liquid level information of the model box, the piston position information of the servo actuator and the water supply flow information of the model box through the sensor, and processes the information data, and realizes the control of the servo through the control of the oil separator.
  • the control of the actuator adopts the active complementarity of the flow rate of the double pump group to weaken the flow pulsation of the reciprocating pump, realize the continuous flow of large flow under the condition of centrifugal supergravity, and achieve the purpose of dynamic and accurate control of the liquid level in a wide range, and can study rock and soil such as dams
  • the large-scale space-time evolution provides stable experimental conditions for reproducing the evolution and catastrophe of 100-meter-scale rock and soil mass, and provides engineering guidance for the evolution and catastrophe of 100-meter-scale rock and soil mass through the effect of time reduction and scaling.
  • Fig. 1 is the schematic diagram of centrifuge
  • Fig. 2 is a working principle diagram of the present invention
  • Fig. 3 is a schematic diagram of two sets of reciprocating pumps
  • Fig. 4 is a structural schematic diagram of a reciprocating pump group
  • Figure 5 is a schematic diagram of the working principle of the reciprocating pump group
  • Fig. 6 is a schematic diagram of the flow fluctuation of the active control flow of the double pump group
  • Fig. 7 is a schematic diagram of the equal large reverse flow generated by the double pump group
  • Fig. 8 is a schematic diagram of flow active complementation of double pump sets to weaken flow pulsation of reciprocating water pumps
  • Fig. 9 is a structural schematic diagram of the model box
  • the supergravity environment provided by the centrifuge can restore the effective stress field of the prototype on the scale model, which can achieve the purpose of scaling. Further superimposing the supergravity field and seepage field to accelerate the fluid flow process between phases can achieve both scale reduction and A time-shortening effect can be achieved.
  • This technique provides conditions for reproducing the evolution process of on-site reservoir dam failure and exploring its mechanism.
  • it is often necessary to achieve a large-scale, fast, accurate, and dynamic rise and fall of the water level.
  • the centrifuge is running at a high speed during the test, it is very difficult to provide a large flow of continuous water flow for the model.
  • Fig. 1 is a schematic diagram of a centrifuge
  • Fig. 2 is a working principle diagram of the present invention.
  • the present invention collects the liquid level information of the model box, the piston position information of the servo actuator 6 and the water supply flow information of the model box by sensors, and processes the information Data, through the control of the oil separator 3, the control of the servo actuator 6 is realized, and the flow of the double pump set is actively complemented to weaken the flow pulsation of the reciprocating water pump, and finally realize the precise control of the flow.
  • the control of the servo actuator 6 is realized by controlling the oil separator 3, and the water absorption and drainage are completed at a certain speed and stroke, and the water enters the model box from the water inlet 13 and the water inlet pipe 12. Driven by the pressure of the hydraulic cylinder 7, it passes through the one-way valve 11 and is discharged from the water outlet pipe 15 and the water outlet 14 to complete the accurate water supply.
  • an embodiment of the present invention provides a precise flow control device for a centrifugal high-gravity environment, which includes a control center, an oil supply module, a sensor module, an execution module and a centrifuge;
  • the control center and fuel supply module are deployed in a normal gravity environment, and the sensor module and execution module are deployed in a hypergravity environment;
  • the oil supply module includes an oil source 5, an oil separator 3 and an oil separator servo valve; the oil source 5 is connected to the oil separator 3 through an oil supply pipeline; the oil separator 3 is installed in the centrifuge rotor At the proximal end of the arm 4, the other end of the oil separator 3 is connected to the servo actuator 6 through the oil supply pipeline, and is used to supply oil to the servo actuator 6; the oil separator servo valve is installed on the oil separator 3, used to control the output flow of the oil separator 3;
  • the executive module includes a base 9, and two sets of reciprocating pump sets fixed on the base 9, a support assembly 10 and a model box; each set of reciprocating pump sets is composed of a servo actuator 6 and a reciprocating water pump in series; the The base 9 is fixed on the bottom plate of the centrifuge basket 1 by screws; the servo actuator 6 is used to control the work of the reciprocating water pump; The water pipe communicates with the model box; the support assembly 10 is respectively located at one end of the reciprocating water pump and the servo actuator 6, fixes the reciprocating water pump and the servo actuator 6, and provides support for the cantilever structure of the reciprocating water pump to avoid the cantilever structure Under the supergravity environment, it is bent under force; the base of the model box is fixed on the center of the bottom plate of the centrifuge basket 1 by screws, and two sets of reciprocating pumps are symmetrically arranged on both sides of the model box, so that the self-weight of the device is evenly distributed in the centrifuge Hanging basket 1 bottom plate; the internal structure of the
  • the sensor module includes a liquid level sensor, a displacement sensor and a flow sensor, which are respectively used to collect the liquid level information of the model box, the piston position information of the servo actuator 6, and the water supply flow information of the model box;
  • the liquid level sensor is installed in In the upper water storage tank of the model box, the liquid level is measured and fed back;
  • the displacement sensor is installed on the piston rod of the servo actuator 6, and the piston position of the servo actuator 6 is measured and fed back;
  • the flow sensor is installed on the model On the water inlet pipeline of the tank, measure and feed back the water supply flow of the model tank;
  • the liquid level sensor, displacement sensor and flow sensor are all used in a supergravity environment, and are all connected to the remote controller, and the signal is fed back to the remote controller;
  • the control center includes a servo controller, a remote controller and a servo actuator control unit, which are used to process the data of all sensors, and realize the control of the servo actuator 6 through the control of the oil separator 3, and then through the servo
  • the actuator 6 controls the reciprocating water pump to realize the control of the water supply flow, so as to achieve the goal of accurately controlling the liquid level;
  • the servo controller is installed at the near end 4 of the rotating arm of the centrifuge, and is connected with the servo valve of the oil separator.
  • the control realizes the control of the servo actuator 6, and then controls the reciprocating water pump to complete water absorption or drainage at a certain speed and stroke;
  • the remote controller is installed on the instrument compartment 2 of the centrifuge, connected with the servo controller for controlling the servo actuator 6, connected with the sensor to collect sensor information and fed back to the servo actuator control unit;
  • the servo actuator control unit is installed on the user terminal outside the centrifuge to generate control signals, and forward the control signals to the servo controller through the remote controller, and output them to the servo actuator 6 to complete the water supply flow and liquid bit closed-loop control.
  • the embodiment of the present invention also provides a precise flow control method for a centrifugal high-gravity environment, which uses dual pump sets to actively complement each other to weaken the flow pulsation of the reciprocating water pump.
  • the method includes the following steps:
  • Step 1 Initialization parameters and basic parameter settings: Set the control mode to speed control and closed-loop control; the response of the control signal output is: flow control accuracy 0.05L/s corresponds to servo actuator piston speed 10mm/s or 600mm/min;
  • Step 2 Equipment transfer and installation: install the sensor module and the execution module on the centrifuge, and check whether there is oil leakage in the oil supply module and the power supply status of the centrifuge power supply system;
  • Step 3 Check before starting: Check the motion state of the servo actuator 6, and the working state of the flow, liquid level and displacement sensors under normal gravity, and debug the sensor until the state is stable;
  • Step 4 No-load operation: Under the conditions of 1g, 10g, 30g, 60g, 100g, 150g centrifugal acceleration, oil source pressure 3.5MPa, 7.2MPa, 13.5MPa, 20.9MPa respectively, test the following content: sensor working state test: flow rate , the working state of the liquid level and displacement sensor under supergravity; the performance test of the servo actuator: the low-speed crawling performance parameters of the hydraulic cylinder and the low-speed closed-loop control performance parameters under different g values;
  • Step 5 Execute precise flow control of the module: name the two reciprocating pumps as the target pump and the control pump respectively, and change the sudden flow rate of the two reciprocating pumps into a ⁇ t time by precisely controlling the displacement of the servo actuator.
  • Controllable flow fluctuation ⁇ Q the flow fluctuation phase difference is 180°
  • the servo valve of the oil separator is controlled, thereby controlling the reciprocating water pump Water supply flow, where the flow rate of the target water pump is Q 1 , the flow rate of the control water pump is Q 2 , T is a cycle of water supply, ⁇ t is the time of sudden change in flow rate, Q 0 is the final stable output flow rate, and ⁇ Q is the flow rate fluctuation caused by pulsation , t represents a certain moment;
  • Step 6 Actively control the two reciprocating water pumps to produce equal and reverse flow fluctuations.
  • the phase difference of the reverse flow fluctuations is 180°, and the phase difference of the flow fluctuations in step 5 is 90°; such as formula (3), (4)
  • the flow of the target water pump and the control water pump after the same large reverse fluctuation is:
  • Step 7 Make the control water pump actively lag behind the 90° phase difference, and combine and output the water supply flow of the control water pump and the target water pump to obtain the final stable output flow Q 0 ;
  • the negative flow fluctuations generated during the conversion complement each other, and finally output a stable water supply flow to ensure the feasibility of accurate flow control;
  • Step 8 Water supply performance test of the reciprocating pump unit: water supply flow test under the control of different amplitude and frequency parameters, water supply efficiency test (including the response time of the pump valve group and its influence on the pump flow rate), and continuous operation test;
  • Step 9 Terminate the operation and disassemble the machine, and analyze and process the data.
  • Fig. 6 is a schematic diagram of dual-pump flow active control of flow fluctuation
  • Fig. 7 is a schematic diagram of double-pump flow generating equal large reverse flow
  • Fig. 8 is a schematic diagram of double-pump flow active complementation weakening reciprocating pump flow pulsation; the present invention adopts The active complementation of the flow rate of the double pump group weakens the flow pulsation of the reciprocating water pump, and can realize the precise control of the flow rate.
  • the flow sensor is an electromagnetic flowmeter, customized, with a range of 1.3L/s and a resolution of 0.005L/s.
  • the displacement sensor adopts LVDT type displacement sensor, which is customized, with a measuring range of ⁇ 75mm and a resolution of 0.005mm.
  • the liquid level sensor adopts the sensor for float level gauge measurement, with a measuring range of ⁇ 250mm.
  • the water inlet pipes of the two reciprocating water pumps are connected to the water inlet of the model box through the three-way joint, and the water outlet pipes of the two reciprocating water pumps are connected to the water outlet of the model box through the three-way joint.
  • the acceleration range of the centrifuge is 1g-150g, the maximum load is 4t, and the centrifuge capacity is 400g ⁇ t.
  • the output quantity of the oil separator is 4, the rated working pressure is 21MPa, and the control voltage is DC24V.
  • the stroke of the servo actuator is 200mm.
  • the volume of the upper water storage tank of the model box is 0.02m 3 , and the volume of the lower water storage tank is 0.32m 3 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Centrifugal Separators (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种用于离心超重力环境的流量精确控制装置及方法,该装置包括控制中枢、供油模块、传感器模块、执行模块和离心机;控制中枢和供油模块部署在常重力环境中,传感器模块和执行模块部署在超重力环境中;通过传感器采集模型箱的液位信息、伺服作动器(6)的活塞位置信息以及模型箱的供水流量信息,并处理信息数据,通过对分油器(3)的控制实现对伺服作动器(6)的控制,采用双泵组流量主动互补减弱往复式水泵的流量脉动,最终实现流量的精确控制,为再现百米级岩土体演变与灾变提供稳定的试验条件与工程指导。

Description

一种用于离心超重力环境的流量精确控制装置及方法 技术领域
本发明涉及一种用于离心超重力环境的流量精确控制装置及方法。本发明应用于超重力离心机模拟与试验装置国家重大科技基础设施,属于高端装备,可用于研究堤坝等岩土体大时空演变,通过缩时与缩尺效应,为再现百米级岩土体演变与灾变提供稳定的试验条件与可靠的工程指导。
背景技术
离心机提供的超重力环境能在缩尺模型上还原原型的有效应力场,可以达到缩尺的目的,进一步将超重力场与渗流场叠加,加速相间流体流动过程,则既能达到缩尺又能达到缩时的效果。这一技术为再现现场水工构筑物破坏演变过程和探究其发生的机理提供了条件。特别我国是一个水力资源丰富的国家,且现阶段正处于大力开发利用阶段,水库大坝作为主要的水工构筑物,是重要的基础设施,对这类水工建筑物的破坏机理的实验研究就显得尤为重要。在这些实验当中往往要实现水位的大范围、快速、精准、动态的抬升和回落,然而由于试验时离心机处于高速运转状态,为模型提供大流量连续水流非常困难。因而在离心超重力条件下实现液位大范围动态精准调控是关键的技术难点,直接与实验的成败相关。
发明内容
本发明的目的在于针对现有技术的不足,提供一种用于离心超重力环境的流量精确控制装置及方法。
为实现上述目的,本发明提供如下技术方案:
本发明一方面公开了一种用于离心超重力环境的流量精确控制装置,该装置包括控制中枢、供油模块、传感器模块、执行模块和离心机;所述控制中枢和供油模块部署在常重力环境中,所述传感器模块和执行模块部署在超重力环 境中;
所述供油模块包括油源、分油器和分油器伺服阀;所述油源通过供油管路与分油器相连接;所述分油器安装在离心机转臂的近端处,分油器的另一端通过供油管路与伺服作动器相连,用于向伺服作动器供油;所述分油器伺服阀安装在分油器上,用于控制分油器的输出流量;
所述执行模块包括底座,以及固定在底座上的两套往复式泵组、支撑组件和模型箱;每套往复式泵组由伺服作动器和往复式水泵串联构成;所述底座通过螺钉固定在离心机吊篮底板上;所述伺服作动器用于控制往复式水泵的工作;所述往复式水泵具有配套的配水阀块,并通过进水管和出水管与模型箱连通;所述支撑组件分别位于往复式水泵和伺服作动器的一端,固定往复式水泵和伺服作动器,并对往复式水泵悬臂结构提供支撑,以避免悬臂结构在超重力环境下受力弯曲;所述模型箱的底座通过螺钉固定在离心机吊篮底板中央,两套往复式泵组对称布置在模型箱两侧,使装置的自重均匀分布在离心机吊篮底板上;所述模型箱的内部结构为上部蓄水箱、模型区、下部蓄水箱、进水口与出水口,所述往复式水泵通过进水管与模型箱的进水口相连,通过出水管与模型箱的出水口相连;
所述传感器模块包括液位传感器、位移传感器和流量传感器,分别用于采集模型箱的液位信息、伺服作动器的活塞位置信息以及模型箱的供水流量信息;所述液位传感器安装在模型箱上部蓄水箱中,测量并反馈液位高度;所述位移传感器安装在伺服作动器的活塞杆上,测量并反馈伺服作动器的活塞位置;所述流量传感器安装在模型箱的进水管路上,测量并反馈模型箱的供水流量;所述液位传感器、位移传感器和流量传感器均在超重力环境下使用,且均与远程控制器相连,将信号反馈给远程控制器;
所述控制中枢包括伺服控制器、远程控制器和伺服作动器控制单元,用于处理所有传感器的数据,并通过对分油器的控制实现对伺服作动器的控制,进而通过伺服作动器控制往复式水泵,实现对供水流量的控制,从而达到精确控制液位的目标;
所述伺服控制器安装在离心机转臂的近端处,与分油器伺服阀相连,根据流量和液位要求控制分油器伺服阀,通过分油器伺服阀对分油器的控制实现对伺服作动器的控制,进而控制往复式水泵以一定速度和行程完成吸水或排水;
所述远程控制器安装在离心机的仪器仓上,与伺服控制器相连用于控制伺服作动器,与传感器相连收集传感器信息并反馈给伺服作动器控制单元;
所述伺服作动器控制单元安装在离心机室外的用户终端,用于产生控制信号,并将控制信号通过远程控制器转发至伺服控制器,输出给伺服作动器,完成供水流量和液位的闭环控制。
本发明另一方面公开了一种用于离心超重力环境的流量精确控制方法,采用双泵组流量主动互补减弱往复式水泵的流量脉动,该方法包括以下步骤:
步骤一、初始化参数与基础参数设置:设置控制方式为速度控制、闭环控制;控制信号输出的响应为:流量控制精度0.05L/s对应伺服作动器活塞速度10mm/s或600mm/min;
步骤二、设备转运与安装:将传感器模块和执行模块安装在离心机上,并检查供油模块是否有漏油以及离心机供电系统的供电状态;
步骤三、启动前检查:检查伺服作动器的运动状态,以及流量、液位和位移传感器常重力下的工作状态,调试传感器至状态稳定;
步骤四、空载运行:分别在1g、10g、30g、60g、100g、150g离心加速度、油源压力3.5MPa、7.2MPa、13.5MPa、20.9MPa状态下,测试以下内容:传感器工作状态测试:流量、液位和位移传感器在超重力下的工作状态;伺服作动器性能测试:不同g值下液压缸低速爬行性能参数、低速闭环控制性能参数;
步骤五、执行模块流量精确控制:将两个往复式水泵分别命名为标的水泵和控制水泵,将两个往复式水泵的流量突变,通过精确控制伺服作动器位移的方式,变为Δt时间内可控的流量波动ΔQ,流量波动相位差180°,通过在伺服作动器控制单元输入如式(1)、(2)所示控制信号,控制分油器伺服阀,从而控制往复式水泵的供水流量,其中标的水泵的流量为Q 1,控制水泵的流量为Q 2,T为供水的一个周期,Δt为流量突变的时间,Q 0为最终稳定输出的流量,ΔQ为脉动 引起的流量波动,t表示某一时刻;
Figure PCTCN2022114881-appb-000001
Figure PCTCN2022114881-appb-000002
步骤六、主动控制两个往复式水泵产生等大且反向的流量波动,反向流量波动相位差180°,并与步骤五流量波动的相位差90°;如式(3)、(4)所示,标的水泵和控制水泵产生等大反向波动后的流量为:
Figure PCTCN2022114881-appb-000003
Figure PCTCN2022114881-appb-000004
步骤七、使控制水泵主动滞后90°相位差,并将控制水泵和标的水泵的供水流量合并输出,得到最终稳定输出的流量Q 0;通过主动控制的正向流量波动,与往复式水泵运动方向变换时产生的负向流量波动互补,最终输出稳定的供水流量,保证流量精确控制的可行性;
步骤八、往复式泵组整机供水性能测试:不同幅频参数控制下供水流量测试、供水效率测试(包括水泵阀组响应时间及其对水泵流量的影响),以及连续运转测试;
步骤九、终止运转并拆机,分析处理数据。
进一步地,所述流量传感器采用电磁流量计,定制型,量程1.3L/s,分辨率0.005L/s。
进一步地,所述位移传感器采用LVDT型位移传感器,定制型,量程±75mm,分辨率0.005mm。
进一步地,所述液位传感器采用浮球液位计测量用传感器,量程±250mm。
进一步地,两个往复式水泵的进水管通过三通接头共同连通模型箱的进水口,两个往复式水泵的出水管通过三通接头共同连通模型箱的出水口。
进一步地,所述离心机的加速度范围为1g-150g,最大负载为4t,离心机容量为400g·t。
进一步地,所述分油器的输出数量为4,额定工作压力为21MPa,控制电压为DC24V。
进一步地,所述伺服作动器的行程为200mm。
进一步地,所述模型箱上部蓄水箱容积为0.02m 3,下部蓄水箱容积为0.32m 3
本发明的有益效果是:本发明通过传感器采集模型箱的液位信息、伺服作动器的活塞位置信息以及模型箱的供水流量信息,并处理信息数据,通过对分油器的控制实现对伺服作动器的控制,采用双泵组流量主动互补减弱往复式水泵的流量脉动,实现离心超重力条件下提供大流量连续水流,达到大范围动态精确控制液位的目的,可研究堤坝等岩土体大时空演变,为再现百米级岩土体演变与灾变提供稳定的试验条件,经过缩时与缩尺效应,为百米级岩土体演变与灾变提供工程指导。
附图说明
图1为离心机的示意图;
图2为本发明的工作原理图;
图3为两套往复式泵组示意图;
图4为往复式泵组结构示意图;
图5为往复式泵组工作原理图;
图6为双泵组流量主动控制流量波动原理图;
图7为双泵组生成等大反向流量原理图;
图8为双泵组流量主动互补减弱往复式水泵流量脉动原理图;
图9为模型箱结构示意图;
图中:1、离心机吊篮,2、仪器仓,3、分油器,4、离心机转臂的近端处,5、油源,6、伺服作动器,7、液压缸,8、配水阀块,9、底座,10、支撑组件,11、单向阀,12、进水管,13、进水口,14、出水口,15、出水管,16、模型箱进水口,17、上部蓄水箱,18、坝体模型,19、下部蓄水箱,20、模型箱出水口。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述, 显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
离心机提供的超重力环境能在缩尺模型上还原原型的有效应力场,可以达到缩尺的目的,进一步将超重力场与渗流场叠加,加速相间流体流动过程,则既能达到缩尺又能达到缩时的效果。这一技术为再现现场水库大坝破坏演变过程和探究其发生的机理提供了条件。不过在这些实验当中往往要实现水位的大范围、快速、精准、动态的抬升和回落,然而由于试验时离心机处于高速运转状态,为模型提供大流量连续水流非常困难。因而在离心超重力条件下实现液位大范围动态精准调控是关键的技术难点,直接与实验的成败相关。本实施例能够较好地实现流量精确控制,以下结合附图详细说明。
图1为离心机的示意图,图2为本发明的工作原理图,本发明通过传感器采集模型箱的液位信息、伺服作动器6的活塞位置信息以及模型箱的供水流量信息,并处理信息数据,通过对分油器3的控制实现对伺服作动器6的控制,采用双泵组流量主动互补减弱往复式水泵的流量脉动,最终实现流量的精确控制。
如图3-5所示,通过对分油器3的控制实现对伺服作动器6的控制,以一定速度和行程完成吸水及排水,水从进水口13和进水管12进入模型箱,在受液压缸7压力的驱动通过单向阀11,并从出水管15和出水口14排出,完成精确的水量供给。
如图1-5,图9所示,本发明实施例提供的一种用于离心超重力环境的流量精确控制装置,该装置包括控制中枢、供油模块、传感器模块、执行模块和离心机;所述控制中枢和供油模块部署在常重力环境中,所述传感器模块和执行模块部署在超重力环境中;
所述供油模块包括油源5、分油器3和分油器伺服阀;所述油源5通过供油管路与分油器3相连接;所述分油器3安装在离心机转臂的近端处4,分油器3的另一端通过供油管路与伺服作动器6相连,用于向伺服作动器6供油;所述 分油器伺服阀安装在分油器3上,用于控制分油器3的输出流量;
所述执行模块包括底座9,以及固定在底座9上的两套往复式泵组、支撑组件10和模型箱;每套往复式泵组由伺服作动器6和往复式水泵串联构成;所述底座9通过螺钉固定在离心机吊篮1底板上;所述伺服作动器6用于控制往复式水泵的工作;所述往复式水泵具有配套的配水阀块8,并通过进水管12和出水管与模型箱连通;所述支撑组件10分别位于往复式水泵和伺服作动器6的一端,固定往复式水泵和伺服作动器6,并对往复式水泵悬臂结构提供支撑,以避免悬臂结构在超重力环境下受力弯曲;所述模型箱的底座通过螺钉固定在离心机吊篮1底板中央,两套往复式泵组对称布置在模型箱两侧,使装置的自重均匀分布在离心机吊篮1底板上;所述模型箱的内部结构为上部蓄水箱17、模型区、下部蓄水箱19、模型箱进水口16与模型箱出水口20,所述往复式水泵通过进水管12与模型箱进水口16相连,通过出水管15与模型箱出水口20相连;坝体模型18的位置如图9所示。
所述传感器模块包括液位传感器、位移传感器和流量传感器,分别用于采集模型箱的液位信息、伺服作动器6的活塞位置信息以及模型箱的供水流量信息;所述液位传感器安装在模型箱上部蓄水箱中,测量并反馈液位高度;所述位移传感器安装在伺服作动器6的活塞杆上,测量并反馈伺服作动器6的活塞位置;所述流量传感器安装在模型箱的进水管路上,测量并反馈模型箱的供水流量;所述液位传感器、位移传感器和流量传感器均在超重力环境下使用,且均与远程控制器相连,将信号反馈给远程控制器;
所述控制中枢包括伺服控制器、远程控制器和伺服作动器控制单元,用于处理所有传感器的数据,并通过对分油器3的控制实现对伺服作动器6的控制,进而通过伺服作动器6控制往复式水泵,实现对供水流量的控制,从而达到精确控制液位的目标;
所述伺服控制器安装在离心机转臂的近端处4,与分油器伺服阀相连,根据流量和液位要求控制分油器伺服阀,通过分油器伺服阀对分油器3的控制实现对伺服作动器6的控制,进而控制往复式水泵以一定速度和行程完成吸水或排 水;
所述远程控制器安装在离心机的仪器仓2上,与伺服控制器相连用于控制伺服作动器6,与传感器相连收集传感器信息并反馈给伺服作动器控制单元;
所述伺服作动器控制单元安装在离心机室外的用户终端,用于产生控制信号,并将控制信号通过远程控制器转发至伺服控制器,输出给伺服作动器6,完成供水流量和液位的闭环控制。
本发明实施例还提供一种用于离心超重力环境的流量精确控制方法,采用双泵组流量主动互补减弱往复式水泵的流量脉动,该方法包括以下步骤:
步骤一、初始化参数与基础参数设置:设置控制方式为速度控制、闭环控制;控制信号输出的响应为:流量控制精度0.05L/s对应伺服作动器活塞速度10mm/s或600mm/min;
步骤二、设备转运与安装:将传感器模块和执行模块安装在离心机上,并检查供油模块是否有漏油以及离心机供电系统的供电状态;
步骤三、启动前检查:检查伺服作动器6的运动状态,以及流量、液位和位移传感器常重力下的工作状态,调试传感器至状态稳定;
步骤四、空载运行:分别在1g、10g、30g、60g、100g、150g离心加速度、油源压力3.5MPa、7.2MPa、13.5MPa、20.9MPa状态下,测试以下内容:传感器工作状态测试:流量、液位和位移传感器在超重力下的工作状态;伺服作动器性能测试:不同g值下液压缸低速爬行性能参数、低速闭环控制性能参数;
步骤五、执行模块流量精确控制:将两个往复式水泵分别命名为标的水泵和控制水泵,将两个往复式水泵的流量突变,通过精确控制伺服作动器位移的方式,变为Δt时间内可控的流量波动ΔQ,流量波动相位差180°,通过在伺服作动器控制单元输入如式(1)、(2)所示控制信号,控制分油器伺服阀,从而控制往复式水泵的供水流量,其中标的水泵的流量为Q 1,控制水泵的流量为Q 2,T为供水的一个周期,Δt为流量突变的时间,Q 0为最终稳定输出的流量,ΔQ为脉动引起的流量波动,t表示某一时刻;
Figure PCTCN2022114881-appb-000005
Figure PCTCN2022114881-appb-000006
步骤六、主动控制两个往复式水泵产生等大且反向的流量波动,反向流量波动相位差180°,并与步骤五流量波动的相位差90°;如式(3)、(4)所示,标的水泵和控制水泵产生等大反向波动后的流量为:
Figure PCTCN2022114881-appb-000007
Figure PCTCN2022114881-appb-000008
步骤七、使控制水泵主动滞后90°相位差,并将控制水泵和标的水泵的供水流量合并输出,得到最终稳定输出的流量Q 0;通过主动控制的正向流量波动,与往复式水泵运动方向变换时产生的负向流量波动互补,最终输出稳定的供水流量,保证流量精确控制的可行性;
步骤八、往复式泵组整机供水性能测试:不同幅频参数控制下供水流量测试、供水效率测试(包括水泵阀组响应时间及其对水泵流量的影响),以及连续运转测试;
步骤九、终止运转并拆机,分析处理数据。
图6为双泵组流量主动控制流量波动原理图;图7为双泵组生成等大反向流量原理图;图8为双泵组流量主动互补减弱往复式水泵流量脉动原理图;本发明采用双泵组流量主动互补减弱往复式水泵的流量脉动,能够实现流量的精确控制。
在一个实施例中,流量传感器采用电磁流量计,定制型,量程1.3L/s,分辨率0.005L/s。位移传感器采用LVDT型位移传感器,定制型,量程±75mm,分辨率0.005mm。液位传感器采用浮球液位计测量用传感器,量程±250mm。两个往复式水泵的进水管通过三通接头共同连通模型箱的进水口,两个往复式水泵的出水管通过三通接头共同连通模型箱的出水口。离心机的加速度范围为1g-150g,最大负载为4t,离心机容量为400g·t。分油器的输出数量为4,额定工作压力为21MPa,控制电压为DC24V。伺服作动器的行程为200mm。模型箱 上部蓄水箱容积为0.02m 3,下部蓄水箱容积为0.32m 3
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于离心超重力环境的流量精确控制装置,其特征在于,该装置包括控制中枢、供油模块、传感器模块、执行模块和离心机;所述控制中枢和供油模块部署在常重力环境中,所述传感器模块和执行模块部署在超重力环境中;
    所述供油模块包括油源、分油器和分油器伺服阀;所述油源通过供油管路与分油器相连接;所述分油器安装在离心机转臂的近端处,分油器的另一端通过供油管路与伺服作动器相连,用于向伺服作动器供油;所述分油器伺服阀安装在分油器上,用于控制分油器的输出流量;
    所述执行模块包括底座,以及固定在底座上的两套往复式泵组、支撑组件和模型箱;每套往复式泵组由伺服作动器和往复式水泵串联构成;所述底座通过螺钉固定在离心机吊篮底板上;所述伺服作动器用于控制往复式水泵的工作;所述往复式水泵具有配套的配水阀块,并通过进水管和出水管与模型箱连通;所述支撑组件分别位于往复式水泵和伺服作动器的一端,固定往复式水泵和伺服作动器,并对往复式水泵悬臂结构提供支撑,以避免悬臂结构在超重力环境下受力弯曲;所述模型箱的底座通过螺钉固定在离心机吊篮底板中央,两套往复式泵组对称布置在模型箱两侧,使装置的自重均匀分布在离心机吊篮底板上;所述模型箱的内部结构为上部蓄水箱、模型区、下部蓄水箱、进水口与出水口,所述往复式水泵通过进水管与模型箱的进水口相连,通过出水管与模型箱的出水口相连;
    所述传感器模块包括液位传感器、位移传感器和流量传感器,分别用于采集模型箱的液位信息、伺服作动器的活塞位置信息以及模型箱的供水流量信息;所述液位传感器安装在模型箱上部蓄水箱中,测量并反馈液位高度;所述位移传感器安装在伺服作动器的活塞杆上,测量并反馈伺服作动器的活塞位置;所述流量传感器安装在模型箱的进水管路上,测量并反馈模型箱的供水流量;所述液位传感器、位移传感器和流量传感器均在超重力环境下使用,且均与远程控制器相连,将信号反馈给远程控制器;
    所述控制中枢包括伺服控制器、远程控制器和伺服作动器控制单元,用于处理所有传感器的数据,并通过对分油器的控制实现对伺服作动器的控制,进而通过伺服作动器控制往复式水泵,实现对供水流量的控制,从而达到精确控制液位的目标;
    所述伺服控制器安装在离心机转臂的近端处,与分油器伺服阀相连,根据流量和液位要求控制分油器伺服阀,通过分油器伺服阀对分油器的控制实现对伺服作动器的控制,进而控制往复式水泵以一定速度和行程完成吸水或排水;
    所述远程控制器安装在离心机的仪器仓上,与伺服控制器相连用于控制伺服作动器,与传感器相连收集传感器信息并反馈给伺服作动器控制单元;
    所述伺服作动器控制单元安装在离心机室外的用户终端,用于产生控制信号,并将控制信号通过远程控制器转发至伺服控制器,输出给伺服作动器,完成供水流量和液位的闭环控制。
  2. 一种用于离心超重力环境的基于权利要求1所述装置进行流量精确控制的方法,其特征在于,采用双泵组流量主动互补减弱往复式水泵的流量脉动,该方法包括以下步骤:
    步骤一、初始化参数与基础参数设置:设置控制方式为速度控制、闭环控制;控制信号输出的响应为:流量控制精度0.05L/s对应伺服作动器活塞速度10mm/s或600mm/min;
    步骤二、设备转运与安装:将传感器模块和执行模块安装在离心机上,并检查供油模块是否有漏油以及离心机供电系统的供电状态;
    步骤三、启动前检查:检查伺服作动器的运动状态,以及流量、液位和位移传感器常重力下的工作状态,调试传感器至状态稳定;
    步骤四、空载运行:分别在1g、10g、30g、60g、100g、150g离心加速度、油源压力3.5MPa、7.2MPa、13.5MPa、20.9MPa状态下,测试以下内容:传感器工作状态测试:流量、液位和位移传感器在超重力下的工作状态;伺服作动器性能测试:不同g值下液压缸低速爬行性能参数、低速闭环控制性能参数;
    步骤五、执行模块流量精确控制:将两个往复式水泵分别命名为标的水泵 和控制水泵,将两个往复式水泵的流量突变,通过精确控制伺服作动器位移的方式,变为Δt时间内可控的流量波动ΔQ,流量波动相位差180°,通过在伺服作动器控制单元输入如式(1)、(2)所示控制信号,控制分油器伺服阀,从而控制往复式水泵的供水流量,其中标的水泵的流量为Q 1,控制水泵的流量为Q 2,T为供水的一个周期,Δt为流量突变的时间,Q 0为最终稳定输出的流量,ΔQ为脉动引起的流量波动,t表示某一时刻;
    Figure PCTCN2022114881-appb-100001
    Figure PCTCN2022114881-appb-100002
    步骤六、主动控制两个往复式水泵产生等大且反向的流量波动,反向流量波动相位差180°,并与步骤五流量波动的相位差90°;如式(3)、(4)所示,标的水泵和控制水泵产生等大反向波动后的流量为:
    Figure PCTCN2022114881-appb-100003
    Figure PCTCN2022114881-appb-100004
    步骤七、使控制水泵主动滞后90°相位差,并将控制水泵和标的水泵的供水流量合并输出,得到最终稳定输出的流量Q 0;通过主动控制的正向流量波动,与往复式水泵运动方向变换时产生的负向流量波动互补,最终输出稳定的供水流量,保证流量精确控制的可行性;
    步骤八、往复式泵组整机供水性能测试:不同幅频参数控制下供水流量测试、供水效率测试,以及连续运转测试;
    步骤九、终止运转并拆机,分析处理数据。
  3. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置,其特征在于,所述流量传感器采用电磁流量计,定制型,量程1.3L/s,分辨率0.005L/s。
  4. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置, 其特征在于,所述位移传感器采用LVDT型位移传感器,定制型,量程±75mm,分辨率0.005mm。
  5. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置,其特征在于,所述液位传感器采用浮球液位计测量用传感器,量程±250mm。
  6. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置,其特征在于,两个往复式水泵的进水管通过三通接头共同连通模型箱的进水口,两个往复式水泵的出水管通过三通接头共同连通模型箱的出水口。
  7. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置,其特征在于,所述离心机的加速度范围为1g-150g,最大负载为4t,离心机容量为400g·t。
  8. 根据权利要求1所述的一种用于离心机超重力环境的流量精确控制装置,其特征在于,所述分油器的输出数量为4,额定工作压力为21MPa,控制电压为DC24V。
  9. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置,其特征在于,所述伺服作动器的行程为200mm。
  10. 根据权利要求1所述的一种用于离心超重力环境的流量精确控制装置,其特征在于,所述模型箱上部蓄水箱容积为0.02m 3,下部蓄水箱容积为0.32m 3
PCT/CN2022/114881 2021-09-14 2022-08-25 一种用于离心超重力环境的流量精确控制装置及方法 WO2023040624A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/493,790 US12109575B2 (en) 2021-09-14 2023-10-24 Accurate flow control apparatus and method for centrifugal supergravity environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111073380.8A CN113909005B (zh) 2021-09-14 2021-09-14 一种用于离心超重力环境的流量精确控制装置及方法
CN202111073380.8 2021-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/493,790 Continuation US12109575B2 (en) 2021-09-14 2023-10-24 Accurate flow control apparatus and method for centrifugal supergravity environment

Publications (1)

Publication Number Publication Date
WO2023040624A1 true WO2023040624A1 (zh) 2023-03-23

Family

ID=79234871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114881 WO2023040624A1 (zh) 2021-09-14 2022-08-25 一种用于离心超重力环境的流量精确控制装置及方法

Country Status (3)

Country Link
US (1) US12109575B2 (zh)
CN (1) CN113909005B (zh)
WO (1) WO2023040624A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909005B (zh) 2021-09-14 2022-08-23 浙江大学 一种用于离心超重力环境的流量精确控制装置及方法
CN114813174B (zh) * 2022-04-26 2023-01-13 浙江大学 用于超重力环境的轨道交通列车运行荷载模拟系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265726A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd 風量測定装置及び風量測定方法
EP2366457A1 (en) * 2010-03-19 2011-09-21 Alfa Laval Corporate AB Device and method for monitoring and adjusting the radial position of an interface layer in a centrifugal separator
CN103676982A (zh) * 2013-12-23 2014-03-26 交通运输部天津水运工程科学研究所 土工离心机水流量控制装置
CN108490151A (zh) * 2018-03-05 2018-09-04 浙江大学 天然气水合物降压开采超重力模拟系统
CN109225681A (zh) * 2018-10-30 2019-01-18 中国工程物理研究院总体工程研究所 一种超重力场下的自适应承力转换方法和结构
CN111426353A (zh) * 2020-04-08 2020-07-17 中国民用航空飞行学院 一种精确流量获取装置及方法
CN113049773A (zh) * 2021-02-07 2021-06-29 浙江大学 一种用于模拟受损无压管道诱发地面塌陷的离心模型试验装置
CN113909005A (zh) * 2021-09-14 2022-01-11 浙江大学 一种用于离心超重力环境的流量精确控制装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091372B (zh) * 2013-02-07 2014-10-15 浙江大学 土工离心机机载的渗流量和出流浓度实时监测装置及方法
CN203342956U (zh) * 2013-07-09 2013-12-18 中国工程物理研究院总体工程研究所 土工离心机新型平衡自调节系统
CN110954172B (zh) * 2019-12-03 2021-06-22 温州大学 一种并联变频恒压供水系统流量检测方法
CN112067325A (zh) * 2020-07-17 2020-12-11 浙江大学 一种应用于超重力模型试验的加热制冷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265726A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd 風量測定装置及び風量測定方法
EP2366457A1 (en) * 2010-03-19 2011-09-21 Alfa Laval Corporate AB Device and method for monitoring and adjusting the radial position of an interface layer in a centrifugal separator
CN103676982A (zh) * 2013-12-23 2014-03-26 交通运输部天津水运工程科学研究所 土工离心机水流量控制装置
CN108490151A (zh) * 2018-03-05 2018-09-04 浙江大学 天然气水合物降压开采超重力模拟系统
CN109225681A (zh) * 2018-10-30 2019-01-18 中国工程物理研究院总体工程研究所 一种超重力场下的自适应承力转换方法和结构
CN111426353A (zh) * 2020-04-08 2020-07-17 中国民用航空飞行学院 一种精确流量获取装置及方法
CN113049773A (zh) * 2021-02-07 2021-06-29 浙江大学 一种用于模拟受损无压管道诱发地面塌陷的离心模型试验装置
CN113909005A (zh) * 2021-09-14 2022-01-11 浙江大学 一种用于离心超重力环境的流量精确控制装置及方法

Also Published As

Publication number Publication date
US12109575B2 (en) 2024-10-08
US20240058826A1 (en) 2024-02-22
CN113909005B (zh) 2022-08-23
CN113909005A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2023040624A1 (zh) 一种用于离心超重力环境的流量精确控制装置及方法
CN102636367B (zh) 一种模拟风力及海流载荷的多自由度动力加载装置
CN104533470B (zh) 一种站立式三环原型异形盾构管片力学加载装置
Wang et al. An energy-saving pressure-compensated hydraulic system with electrical approach
CN108343442A (zh) 泥水平衡盾构综合模拟试验台泥水平衡控制试验系统
CN105842421A (zh) 一种可模拟开挖过程的基坑模型试验装置
CN108007800A (zh) 一种循环动载土体沉降的模型试验装置及试验方法
CN108772211A (zh) 土工离心机动态平衡调节系统
CN107165771A (zh) 波力发电液压pto系统综合实验平台及其实验方法
CN106382265A (zh) 一种集成式泵控液压单元
CN203688254U (zh) 液压脉动试验装置
CN106599422A (zh) 叶片泵转子系统的振动仿真分析方法及其装置
CN103629122B (zh) 一种实现离心泵内部空化振动频率主动控制的检测台
CN107191440B (zh) 用于工程机械液压系统的控制方法
Shi et al. Design, simulation and experiment for a piezoelectric energy harvester based on fluid pressure pulsation in water hydraulic system
CN207703640U (zh) 一种可提供简谐波动边界水头的试验装置
CN106370412A (zh) 一种涡轮实验台
CN212432471U (zh) 一种用于研究在水锤激励下水管系统振动特性的实验装置
CN205581100U (zh) 一种可模拟开挖过程的基坑模型试验装置
CN102748340A (zh) 装载机工作装置液压系统能量损失的分析方法
CN206957665U (zh) 一种抽油机不停机间抽控制装置
Xin et al. Pneumatic liquid online automatic balancing system for rotating machinery
CN205712214U (zh) 可模拟基坑开挖过程中地下水位变化的基坑模型试验装置
CN209280712U (zh) 一种用于高g值下离心模型试验的循环供水装置
CN204612947U (zh) 挖掘机模拟加载测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22868998

Country of ref document: EP

Kind code of ref document: A1