WO2023040361A1 - 一种基于改进类提升方案的图像加密方法 - Google Patents

一种基于改进类提升方案的图像加密方法 Download PDF

Info

Publication number
WO2023040361A1
WO2023040361A1 PCT/CN2022/097038 CN2022097038W WO2023040361A1 WO 2023040361 A1 WO2023040361 A1 WO 2023040361A1 CN 2022097038 W CN2022097038 W CN 2022097038W WO 2023040361 A1 WO2023040361 A1 WO 2023040361A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
image
pln
perceptron
method based
Prior art date
Application number
PCT/CN2022/097038
Other languages
English (en)
French (fr)
Inventor
张强
王鹏飞
王宾
李海啸
陈蓉蓉
魏小鹏
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/877,994 priority Critical patent/US11757616B2/en
Publication of WO2023040361A1 publication Critical patent/WO2023040361A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0643Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • H04N1/32149Methods relating to embedding, encoding, decoding, detection or retrieval operations
    • H04N1/32267Methods relating to embedding, encoding, decoding, detection or retrieval operations combined with processing of the image
    • H04N1/32272Encryption or ciphering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the invention relates to the technical field of image encryption, in particular to an image encryption method based on an improved class lifting scheme.
  • the present invention proposes an image encryption method based on the improved class promotion scheme, which combines the class perceptron network with the class promotion scheme to achieve better encryption effect.
  • the invention provides a kind of image encryption method based on the improved class promotion scheme, comprising:
  • Initial weights, where the weights of the class perceptron network PLN-1 are:
  • Weights of the perceptron-like network PLN-2 They are:
  • preprocess the shuffled chaotic sequence to obtain the sequence required for encryption specifically: after shuffling the obtained sequence b 1 , b 2 , b 3 , b 4 with the shuffling algorithm, take b 1 respectively ,b 2 ,b 3 ,b 4
  • the first number in the array is a group as the first four numbers in the sequence ⁇ a i ⁇
  • the improved class promotion scheme includes a forward transformation module, an inversion module, and an inverse transformation module, and operations in the three modules are based on GF(2 8 ) domain operations.
  • sequence ⁇ p j ⁇ is updated by the perceptron network PLN-1, combined with the subsequence ⁇ o j ⁇ , the obtained sequence ⁇ d j ⁇ is:
  • sequence ⁇ d j ⁇ is updated by the perceptron network PLN-2, combined with the sequence ⁇ p j ⁇ , the obtained sequence ⁇ s j ⁇ is:
  • the invention discloses the following technical effects:
  • this scheme has faster encryption and decryption speed, and has higher information entropy and better encryption effect when only one round of encryption is required;
  • the present invention makes the original linear function into a complex structure combining linear and nonlinear functions by using the class perceptron network as the prediction and update function of the class promotion scheme.
  • the parameters of the perceptron-like network are related to the plaintext, and have a self-updating function, which can make each operation different, which increases the randomness and unpredictability of image encryption, and is of great significance to the security of image encryption;
  • the parameters required by the chaotic sequence and the perceptron-like network are related to the plaintext image, and the parameters generated by different images can be different, which greatly improves the randomness and security of encryption.
  • Fig. 1 is a network structure diagram of a class perceptron
  • Figure 2 is a schematic diagram of the improvement scheme
  • Fig. 3 is the encryption and decryption comparison diagram applying the method of the present invention.
  • Fig. 4 is the example histogram of application method of the present invention.
  • Figure 5 is a comparison diagram of the pixel correlation between the original image of Lena and the encrypted image.
  • the present invention first uses the HAS512 function to generate the HASH value of the plaintext image, generates the parameters required by the hyper-chaotic system and the weight required by the class-aware network through the HASH value, and then uses the shuffling algorithm to shuffle the generated chaotic sequence, and finally the obtained
  • the random sequence and the plaintext image of are brought into the improved class lifting scheme to obtain the final ciphertext image.
  • the decryption process only needs to bring the ciphertext image and key into the improved class promotion scheme, and the plaintext image can be recovered without loss.
  • the chaotic system used in the present invention is a hyperchaotic system.
  • the concrete steps of the Knuth-Durstenfeld shuffling algorithm used in the present invention are:
  • Step 1 Store the array of length n in the array arr[].
  • Step 2 Generate a random number [1,n], use the generated random number as an array subscript, and output it as x.
  • Step 3 Exchange the output x with the last element in the arr[] array.
  • Step 4 Generate a random number [1,n-1], use the generated random number as the subscript of the array, and output it as x'.
  • Step 5 Exchange the output x' with the penultimate element in the arr[] array.
  • Step 1 The input signal x 1 , x 2 undergoes linear transformation to obtain the hidden layer x' 1 , x' 2 :
  • Step 2 The weight from the hidden layer to the output layer is replaced by the function f(x), and the output of the output layer is as follows.
  • Step 3 Calculate and obtain the output signal y through the S-box.
  • Step 4 The weight function is automatically updated.
  • ⁇ 11 ⁇ 11 +mod(x 1 ,2)
  • ⁇ 12 ⁇ 12 +mod(x 2 ,2)
  • ⁇ 21 ⁇ 21 +mod(x' 1 ,2)
  • ⁇ 22 ⁇ 22 +mod(x' 2 ,2)
  • the initial weights of its perceptron-like network are generated by HASH values.
  • the embodiments of the present invention are implemented based on the technical solutions of the present invention.
  • the present invention provides detailed implementation and specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
  • a lena256 ⁇ 256 image is used, and the HASH value is generated by the HASH function.
  • Step 1 Bring the obtained original parameters into the hyper-chaotic system, generate 4 sequences a 1 , a 2 , a 3 , a 4 of length M ⁇ N+300, and discard the first 300 elements of each sequence.
  • the remaining sequences are processed as follows.
  • Step 2 Use the four sequences a 1 , a 2 , a 3 , a 4 to generate random arrays aa 1 , aa 2 , aa 3 , aa 4 for the shuffling algorithm, and set b 1 , b 2 , b 3 , b 4 Shuffle through shuffling algorithm.
  • the algorithm for generating aa 1 , aa 2 , aa 3 , and aa 4 is as follows.
  • aa 4 (i) mod(abs(floor(a 4 (i) ⁇ 10 10 )), NUM ⁇ i+1)+1.
  • Step 4 Bring the obtained sequence ⁇ a i ⁇ and the plaintext image into the improved class promotion scheme to generate the final ciphertext image.
  • the invention proposes an image encryption method based on the improved class-uplifting scheme. According to adding the class-perceptron network into the improved class-uplifting scheme, the unpredictability of the scheme is greatly enhanced, and better encryption results can be obtained.
  • the present invention is based on Intel (R) Core (TM) i5-9400CPU@2.90GHz2.90GHz, 64-bit operating system, emulates on the computer based on the processor of x64, the programming language used is MATLAB2019b, applies above-mentioned encryption method to After image processing, it is shown by Fig. 3-5 that the present invention has better encryption effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioethics (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Facsimile Transmission Control (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明公开一种基于改进类提升方案的图像加密方法,包括:根据明文图像信息获取超混沌系统的参数;通过所述明文图像信息生成类感知器网络所需要的权重;将所述参数带入到超混沌系统中获得混沌序列,使用洗牌算法对所述混沌序列进行混洗;对混洗后的混沌序列预处理,得到加密所需的序列;将所述明文图像与所述序列一起带入改进的类提升方案中,得到密文图像,其中所述改进的类提升方案是基于所述类感知器网络实现的。本方法解决了原类提升网络中更新和预测函数过于简单容易预测等问题,增大了图像加密的安全性,从而得到具有更高信息熵的密文图像。

Description

一种基于改进类提升方案的图像加密方法
本申请要求于2021年09月18日提交中国专利局、申请号为202111111709.5、发明名称为“一种基于改进类提升方案的图像加密方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及图像加密技术领域,特别是涉及一种基于改进类提升方案的图像加密方法。
背景技术
随着互联网和多媒体技术的快速发展,人们在网络上获取信息越来越方便。由于图像会携带私人和敏感的信息,所以图像信息安全受到了更多的关注。而图像加密技术是保证图像信息安全的最有效手段之一。Zhang Yong提出了基于类提升方案的统一图像加密系统,该系统使用类提升变换来扩散图像信息,从而实现图像加密。虽然该系统具有较快的加解密速度和良好的加密效果,但是该系统存在更新和预测函数过于简单的缺点,解密者很容易找出其中的线性关系,从而对该其实现破解。因此,研究更加复杂的更新和预测函数,提升图像加密的安全性与可靠性是一项有积极意义的工作。
发明内容
针对现有技术类提升方案中更新和预测函数过于简单的问题,本发明提出了一种基于改进类提升方案的图像加密方法,其将类感知器网络与类提升方案相结合,从而达到更好的加密效果。
为实现上述目的,本发明提供了一种基于改进类提升方案的图像加密方法,包括:
根据明文图像信息获取超混沌系统的参数;
通过所述明文图像信息生成类感知器网络所需要的权重;
将所述参数带入到超混沌系统中获得混沌序列,使用洗牌算法对所述混沌序列进行混洗;
对混洗后的混沌序列预处理,得到加密所需的序列;
将所述明文图像与所述序列一起带入改进的类提升方案中,得到密文图像,其中所述改进的类提升方案是基于所述类感知器网络实现的。
进一步的,根据明文图像信息获取超混沌系统的参数,具体为:利用SHA512函数生成明文图像的hash值K,将hash值K转化成二进制数后按4位一组生成128组十进制数组H=h 1,h 2,h 3,...,h 128,随后通过所述十进制数组H获得超混沌的初始值,具体为:
Figure PCTCN2022097038-appb-000001
Figure PCTCN2022097038-appb-000002
Figure PCTCN2022097038-appb-000003
Figure PCTCN2022097038-appb-000004
进一步的,通过所述明文图像信息生成类感知器网络所需要的权重,具体为:通过十进制数组H=h 1,h 2,h 3,...,h 128生成两个类感知器网络的初始权重,其中类感知器网络PLN-1的权重分别为:
Figure PCTCN2022097038-appb-000005
Figure PCTCN2022097038-appb-000006
Figure PCTCN2022097038-appb-000007
Figure PCTCN2022097038-appb-000008
类感知器网络PLN-2的权重
Figure PCTCN2022097038-appb-000009
分别为:
Figure PCTCN2022097038-appb-000010
Figure PCTCN2022097038-appb-000011
Figure PCTCN2022097038-appb-000012
Figure PCTCN2022097038-appb-000013
进一步的,将所述参数带入到超混沌系统中获得混沌序列,使用洗牌算法对所述混沌序列进行混洗,具体为:
将所述参数带入超混沌系统中,生成4个长度为M×N+300的序列a 1,a 2,a 3,a 4,将每个序列前300个元素抛弃,对剩余数列进行以下处理,得到范围在正常明文像素值的序列(i=1,2,3,...,n);
b 1(i)=mod(abs(floor(a 1(i)×10 10)),256)
b 2(i)=mod(abs(floor(a 2(i)×10 10)),256)
b 3(i)=mod(abs(floor(a 3(i)×10 10)),256)
b 4(i)=mod(abs(floor(a 4(i)×10 10)),256)
生成用于Knuth-Durstenfeld洗牌算法的随机值数组(i=1,2,3,...,n),NUM为总的序列长度;
aa 1(i)=mod(abs(floor(a 1(i)×10 10)),NUM-i+1)+1
aa 2(i)=mod(abs(floor(a 2(i)×10 10)),NUM-i+1)+1
aa 3(i)=mod(abs(floor(a 3(i)×10 10)),NUM-i+1)+1
aa 4(i)=mod(abs(floor(a 4(i)×10 10)),NUM-i+1)+1
用生成的随机值数组对产生的序列使用洗牌算法进行混洗。
进一步的,对混洗后的混沌序列预处理,得到加密所需的序列,具体为:将所得序列b 1,b 2,b 3,b 4用洗牌算法进行混洗后,分别取b 1,b 2,b 3,b 4数组中第一个数为一组作为序列{a i}中前四个数,之后取b 1,b 2,b 3,b 4数组中第二个数为一组插入序列{a i}中,重复上述步骤直到序列{a i}中有M×N/2个数为止,生成所需的序列{a i},i=1,2,3,...,M×N/2直接用于图像加密,其中M为明文图像的行数,N为明文图像的列数。
进一步的,所述改进的类提升方案包括正变换模块、反转模块、逆变换模块,三个模块中运算都是基于GF(2 8)域的运算。
进一步的,在正变换模块中,首先将明文图像转换为一维序列{x i},i=1,2,3,...,M×N,然后将序列{x i}按奇偶索引分为两个子序列{e j},{o j},e j=x 2j-1,o j=x 2j,j=1,2,3,...,L,其中
由子序列{e j}和序列{a i}获得序列{p j}为:
p j=e j+a i,j=1,2,3,...,L
将序列{p j}经过类感知器网络PLN-1更新后,与子序列{o j}结合,获得序列{d j}为:
d j=d j-1+o j+PLN-1(p j,p j+1),j=1,2,3,...,L
其中d 0=0,p L+1=0;
将序列{d j}经过类感知器网络PLN-2更新后,与序列{p j}结合,获得序列{s j}为:
s j=p j+p j-1+PLN-2(d j-1,d j),j=1,2,3,...,L
其中d 0=0,p 0=0;
将获得的序列{s j},{d j}合并成新的序列{r i},i=1,2,3,...,M×N,r 2j-1=s j,r 2j=d j,j=1,2,3,...,L。
进一步的,在正变换模块中,在翻转模块中,将所述序列{r i},i=1,2,3,...,M×N,左右翻转得到一个新的序列{r' i},i=1,2,3,...,M×N。
进一步的,在正变换模块中,在逆变换模块中,将所述序列{r' i}按奇偶索引分为两个不同序列{s' j}和{d' j},s' j=r' 2j-1,d' j=r' 2j,j=1,2,3,...L;
将序列{d' j}经过类感知器网络PLN-2更新后,与序列{s' j}结合,得到{S' j}序列为:
S' j=s' j-S' j-1-PLN-2(d' j-1,d' j),j=1,2,3,...L
d' 0=0,S' 0=0;
将{S' j}经过类感知器网络PLN-1更新后,与序列{d' j}结合,得到序列{o' j}为:
o' j=d' j-d' j-1-PLN-1(S' j,S' j+1),j=1,2,3,...L
d' 0=0,S' L+1=0;
由序列{S' j}和序列{a i}得到序列{e' j}为:
e' j=S' j-a i,j=1,2,3,…L
将{e' j}和{o' j}结合为新的序列{y i},i=1,2,...,M×N,y 2j-1=e' j,y 2j=o' j,j=1,2,3,...,L。
最后,将所得序列转换为大小为M×N的矩阵,即获得加密图像。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
1、与传统的置换扩散结构相比较,本方案具有更快的加密解密速度,在只需要加密一轮的情况下,具有更高的信息熵和更好的加密效果;
2、与原来类提升方案不同的是,本发明通过将类感知器网络作为类 提升方案的预测和更新函数,使原来的线性函数变为线性与非线性函数相结合的复杂结构。并且类感知器网络的参数与明文相关,同时具有自更新功能,可以做到每次运算各不相同,增大了图像加密的随机性和不可预测性,对图像加密的安全具有重要意义;
3、混沌序列与类感知器网络所需要的参数与明文图像相关,可以做到不同图像生成的参数也不同,更大的提高了加密的随机性和安全性。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为类感知器网络结构图;
图2为改进类提升方案原理图;
图3为应用本发明方法的加解密对比图;
图4为应用本发明方法的实例直方分析图;
图5为Lena原图与加密图像像素相关性比较图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明首先利用HAS512函数生成明文图像的HASH值,通过HASH值生成超混沌系统所需的参数和类感知网络所需要的权重,其次将生成的混沌序列用洗牌算法混洗,最后将所获得的随机序列和明文图像带入到改进的类提升方案中获得最终的密文图像。解密过程只需将密文图像和密钥带入到改进的类提升方案中,即可无损的恢复出明文图像。
本发明用到的混沌系统为超混沌系统。
Figure PCTCN2022097038-appb-000014
式中
Figure PCTCN2022097038-appb-000015
i=1,2,3,4是关于时间t的导数,m、n、p、q、r分别为混沌系统的参数,当m=35、n=3、p=12、q=7、r=0.58时,称该系统为超混沌的。
本发明用到的Knuth-Durstenfeld洗牌算法具体步骤为:
步骤一:将长度为n的数组存贮在数组arr[]中。
步骤二:生成随机数[1,n],将生成的随机数作为数组下标,输出为x。
步骤三:将输出的x与arr[]数组中最尾元素互换。
步骤四:生成一个随机数[1,n-1],将生成的随机数作为数组下标,输出为x'。
步骤五:将输出的x'与arr[]数组中倒数第二个元素互换。
重复以上步骤,直到n个数都被处理。
如图1-2所示,本发明用到的类感知器网络,其加密过程以及权重更新的具体步骤如下:
步骤一:输入信号x 1,x 2经过线性变换得到隐藏层的x' 1,x' 2
x' 1=x 1×ω 11+x 2×ω 21
x' 2=x 1×ω 12+x 2×ω 22
步骤二:隐藏层到输出层的权重由函数f(x)代替,且输出层的输出结果如下所示。
y' 1=f(x' 1)
y' 2=f(x' 2)
其中f(x)=mod(x,16)。
步骤三:通过S盒,计算得到输出信号y。
y=S-box(y' 1,y' 2)。
步骤四:权重函数进行自动更新。
ω 11=ω 11+mod(x 1,2)
ω 12=ω 12+mod(x 2,2)
ω 21=ω 21+mod(x' 1,2)
ω 22=ω 22+mod(x' 2,2)
其类感知器网络的初始权重由HASH值生成。
实施例1
本发明的实施例是基于本发明技术方案进行实施的,本发明给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述实施例。实例中使用lena256×256图像,经过HASH函数生成HASH值后,经过处理得到超混沌系统的原始参数为x 1=0.37,x 2=0.5313,x 3=0.1875,x 4=0.2500,类感知器网络的参数分别为,在PLN-1中,W 11=7,W 12=7,W 21=7,W 22=6,在PLN-2中步w 11=2,w 12=7,w 21=5,w 22=2。
步骤1:将所得原始参数带入到超混沌系统中,生成4个长度为M×N+300的序列a 1,a 2,a 3,a 4,将每个序列前300个元素抛弃,对剩余数列进行以下处理。
b 1(i)=mod(abs(floor(a 1(i)×10 10)),256)
b 2(i)=mod(abs(floor(a 2(i)×10 10)),256)
b 3(i)=mod(abs(floor(a 3(i)×10 10)),256)
b 4(i)=mod(abs(floor(a 4(i)×10 10)),256)。
步骤2:使用a 1,a 2,a 3,a 4四个序列生成用于洗牌算法的随机数组aa 1,aa 2,aa 3,aa 4,并将b 1,b 2,b 3,b 4通过洗牌算法进行混洗。其中生成aa 1,aa 2,aa 3,aa 4算法如下所示。
aa 1(i)=mod(abs(floor(a 1(i)×10 10)),NUM-i+1)+1
aa 2(i)=mod(abs(floor(a 2(i)×10 10)),NUM-i+1)+1
aa 3(i)=mod(abs(floor(a 3(i)×10 10)),NUM-i+1)+1
aa 4(i)=mod(abs(floor(a 4(i)×10 10)),NUM-i+1)+1。
步骤3:将步骤2中用洗牌算法混洗后的序列b 1,b 2,b 3,b 4进行预处理,分别取b 1,b 2,b 3,b 4数组中第一个数为一组作为{a i}中前四个数,之后取 b 1,b 2,b 3,b 4数组中第二个数为一组插入{a i}中,重复上述步骤直到{a i}中有M×N/2个数为止,生成所的序列{a i},i=1,2,3,...,M×N/2直接用于图像加密。
步骤四:将所得序列{a i}和明文图像一起带入到改进的类提升方案中,生成最终的密文图像。
本发明提出基于改进类提升方案的图像加密方法,根据将类感知器网络加入到改进类提升方案中,使该方案的不可预测性大大增强,能够获得较好的加密结果。本发明是在基于Intel(R)Core(TM)i5-9400CPU@2.90GHz2.90GHz,64位操作系统,基于x64的处理器的电脑上进行仿真,使用的编程语言为MATLAB2019b,应用上述加密方法对图像处理后,通过图3-5表明本发明具有较好的加密效果。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种基于改进类提升方案的图像加密方法,其特征在于,包括:
    根据明文图像信息获取超混沌系统的参数;
    通过所述明文图像信息生成类感知器网络所需要的权重;
    将所述参数带入到超混沌系统中获得混沌序列,使用洗牌算法对所述混沌序列进行混洗;
    对混洗后的混沌序列预处理,得到加密所需的序列;
    将所述明文图像与所述序列一起带入改进的类提升方案中,得到密文图像,其中所述改进的类提升方案是基于所述类感知器网络实现的。
  2. 根据权利要求1所述的基于改进类提升方案的图像加密方法,其特征在于,根据明文图像信息获取超混沌系统的参数,具体为:利用SHA512函数生成明文图像的hash值K,将hash值K转化成二进制数后按4位一组生成128组十进制数组H=h 1,h 2,h 3,...,h 128,随后通过所述十进制数组H获得超混沌的初始值,具体为:
    Figure PCTCN2022097038-appb-100001
    Figure PCTCN2022097038-appb-100002
    Figure PCTCN2022097038-appb-100003
    Figure PCTCN2022097038-appb-100004
  3. 根据权利要求1所述的基于改进类提升方案的图像加密方法,其特征在于,通过所述明文图像信息生成类感知器网络所需要的权重,具体为:通过十进制数组H=h 1,h 2,h 3,...,h 128生成两个类感知器网络的初始权重,其中类感知器网络PLN-1的权重分别为:
    Figure PCTCN2022097038-appb-100005
    Figure PCTCN2022097038-appb-100006
    Figure PCTCN2022097038-appb-100007
    Figure PCTCN2022097038-appb-100008
    类感知器网络PLN-2的权重
    Figure PCTCN2022097038-appb-100009
    分别为:
    Figure PCTCN2022097038-appb-100010
    Figure PCTCN2022097038-appb-100011
    Figure PCTCN2022097038-appb-100012
    Figure PCTCN2022097038-appb-100013
  4. 根据权利要求1所述的基于改进类提升方案的图像加密方法,其特征在于,将所述参数带入到超混沌系统中获得混沌序列,使用洗牌算法对所述混沌序列进行混洗,具体为:
    将所述参数带入超混沌系统中,生成4个长度为M×N+300的序列a 1,a 2,a 3,a 4,将每个序列前300个元素抛弃,对剩余数列进行以下处理,得到范围在正常明文像素值的序列(i=1,2,3,...,n);
    b 1(i)=mod(abs(floor(a 1(i)×10 10)),256)
    b 2(i)=mod(abs(floor(a 2(i)×10 10)),256)
    b 3(i)=mod(abs(floor(a 3(i)×10 10)),256)
    b 4(i)=mod(abs(floor(a 4(i)×10 10)),256)
    生成用于Knuth-Durstenfeld洗牌算法的随机值数组(i=1,2,3,...,n),NUM为总的序列长度;
    aa 1(i)=mod(abs(floor(a 1(i)×10 10)),NUM-i+1)+1
    aa 2(i)=mod(abs(floor(a 2(i)×10 10)),NUM-i+1)+1
    aa 3(i)=mod(abs(floor(a 3(i)×10 10)),NUM-i+1)+1
    aa 4(i)=mod(abs(floor(a 4(i)×10 10)),NUM-i+1)+1
    用生成的随机值数组对产生的序列使用洗牌算法进行混洗。
  5. 根据权利要求1所述的基于改进类提升方案的图像加密方法,其特征在于,对混洗后的混沌序列预处理,得到加密所需的序列,具体为:将所得序列b 1,b 2,b 3,b 4用洗牌算法进行混洗后,分别取b 1,b 2,b 3,b 4数组中第一个数为一组作为序列{a i}中前四个数,之后取b 1,b 2,b 3,b 4数组中第二个数为一组插入序列{a i}中,重复上述步骤直到序列{a i}中有M×N/2个数为止,生成所需的序列{a i},i=1,2,3,...,M×N/2直接用于图像加密,其中M为明文图像的行数,N为明文图像的列数。
  6. 根据权利要求1所述的基于改进类提升方案的图像加密方法,其特征在于,所述改进的类提升方案包括正变换模块、反转模块、逆变换模块,三个模块中运算都是基于GF(2 8)域的运算。
  7. 根据权利要求6所述的基于改进类提升方案的图像加密方法,其特征在于,在正变换模块中,首先将明文图像转换为一维序列{x i},i=1,2,3,...,M×N,然后将序列{x i}按奇偶索引分为两个子序列{e j},{o j},e j=x 2j-1,o j=x 2j,j=1,2,3,...,L,其中
    由子序列{e j}和序列{a i}获得序列{p j}为:
    p j=e j+a i,j=1,2,3,...,L
    将序列{p j}经过类感知器网络PLN-1更新后,与子序列{o j}结合,获得序列{d j}为:
    d j=d j-1+o j+PLN-1(p j,p j+1),j=1,2,3,...,L
    其中d 0=0,p L+1=0;
    将序列{d j}经过类感知器网络PLN-2更新后,与序列{p j}结合,获得序列{s j}为:
    s j=p j+p j-1+PLN-2(d j-1,d j),j=1,2,3,...,L
    其中d 0=0,p 0=0;
    将获得的序列{s j},{d j}合并成新的序列{r i},i=1,2,3,...,M×N,r 2j-1=s j,r 2j=d j,j=1,2,3,...,L。
  8. 根据权利要求7所述的基于改进类提升方案的图像加密方法,其特征在于,在正变换模块中,在翻转模块中,将所述序列{r i},i=1,2,3,...,M×N,左右翻转得到一个新的序列{r' i},i=1,2,3,...,M×N。
  9. 根据权利要求8所述的基于改进类提升方案的图像加密方法,其特征在于,在正变换模块中,在逆变换模块中,将所述序列{r' i}按奇偶索引分为两个不同序列{s' j}和{d' j},s' j=r' 2j-1,d' j=r' 2j,j=1,2,3,...L;
    将序列{d' j}经过类感知器网络PLN-2更新后,与序列{s' j}结合,得到{S' j}序列为:
    S' j=s' j-S' j-1-PLN-2(d' j-1,d' j),j=1,2,3,...L
    d' 0=0,S' 0=0;
    将{S' j}经过类感知器网络PLN-1更新后,与序列{d' j}结合,得到序列{o' j}为:
    o' j=d' j-d' j-1-PLN-1(S' j,S' j+1),j=1,2,3,...L
    d' 0=0,S' L+1=0;
    由序列{S' j}和序列{a i}得到序列{e' j}为:
    e' j=S' j-a i,j=1,2,3,…L
    将{e' j}和{o' j}结合为新的序列{y i},i=1,2,...,M×N,y 2j-1=e' j,y 2j=o' j,j=1,2,3,...,L。
    最后,将所得序列转换为大小为M×N的矩阵,即获得加密图像。
PCT/CN2022/097038 2021-09-18 2022-06-06 一种基于改进类提升方案的图像加密方法 WO2023040361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/877,994 US11757616B2 (en) 2021-09-18 2022-07-31 Image encryption method based on improved class boosting scheme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111111709.5 2021-09-18
CN202111111709.5A CN113872747B (zh) 2021-09-18 2021-09-18 一种基于改进类提升方案的图像加密方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/877,994 Continuation US11757616B2 (en) 2021-09-18 2022-07-31 Image encryption method based on improved class boosting scheme

Publications (1)

Publication Number Publication Date
WO2023040361A1 true WO2023040361A1 (zh) 2023-03-23

Family

ID=78993304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097038 WO2023040361A1 (zh) 2021-09-18 2022-06-06 一种基于改进类提升方案的图像加密方法

Country Status (2)

Country Link
CN (1) CN113872747B (zh)
WO (1) WO2023040361A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366373A (zh) * 2023-06-01 2023-06-30 深圳市柏英特电子科技有限公司 用于机顶盒数据的智能管理方法、设备和存储介质
CN117394984A (zh) * 2023-11-28 2024-01-12 安雾信息技术(重庆)有限公司 一种敏感信息安全保护方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872747B (zh) * 2021-09-18 2023-06-30 大连大学 一种基于改进类提升方案的图像加密方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751403A (zh) * 2015-04-23 2015-07-01 北京航空航天大学 一种基于多混沌系统的明文相关图像加密方法
US20200099508A1 (en) * 2016-12-21 2020-03-26 University Of Hawaii Hybrid encryption for cyber security of control systems
CN113077373A (zh) * 2021-03-23 2021-07-06 哈尔滨工业大学(威海) 一种基于混沌映射与双向操作Feistel结构的图像加密方法
CN113225449A (zh) * 2021-05-27 2021-08-06 郑州轻工业大学 一种基于混沌序列和dna编码的图像加密方法
CN113872747A (zh) * 2021-09-18 2021-12-31 大连大学 一种基于改进类提升方案的图像加密方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105681622B (zh) * 2015-12-31 2018-06-26 复旦大学 一种基于细胞神经网络超混沌和dna序列的彩色图像加密方法
CN110519037B (zh) * 2019-07-23 2023-04-07 江苏理工学院 超混沌伪随机序列的图像加密方法
US20200287704A1 (en) * 2020-05-22 2020-09-10 Qiang Zhang Color Image Encryption Method Based on DNA Strand Displacement Analog Circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751403A (zh) * 2015-04-23 2015-07-01 北京航空航天大学 一种基于多混沌系统的明文相关图像加密方法
US20200099508A1 (en) * 2016-12-21 2020-03-26 University Of Hawaii Hybrid encryption for cyber security of control systems
CN113077373A (zh) * 2021-03-23 2021-07-06 哈尔滨工业大学(威海) 一种基于混沌映射与双向操作Feistel结构的图像加密方法
CN113225449A (zh) * 2021-05-27 2021-08-06 郑州轻工业大学 一种基于混沌序列和dna编码的图像加密方法
CN113872747A (zh) * 2021-09-18 2021-12-31 大连大学 一种基于改进类提升方案的图像加密方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG YONG: "A new unified image encryption algorithm based on a lifting transformation and chaos", INFORMATION SCIENCES, ELSEVIER, AMSTERDAM, NL, vol. 547, 14 August 2020 (2020-08-14), AMSTERDAM, NL, pages 307 - 327, XP086343056, ISSN: 0020-0255, DOI: 10.1016/j.ins.2020.07.058 *
ZHANG YONG: "The fast image encryption algorithm based on lifting scheme and chaos", INFORMATION SCIENCES, ELSEVIER, AMSTERDAM, NL, vol. 520, 10 February 2020 (2020-02-10), AMSTERDAM, NL, pages 177 - 194, XP086077101, ISSN: 0020-0255, DOI: 10.1016/j.ins.2020.02.012 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366373A (zh) * 2023-06-01 2023-06-30 深圳市柏英特电子科技有限公司 用于机顶盒数据的智能管理方法、设备和存储介质
CN116366373B (zh) * 2023-06-01 2023-08-22 深圳市柏英特电子科技有限公司 用于机顶盒数据的智能管理方法和存储介质
CN117394984A (zh) * 2023-11-28 2024-01-12 安雾信息技术(重庆)有限公司 一种敏感信息安全保护方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113872747B (zh) 2023-06-30
CN113872747A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023040361A1 (zh) 一种基于改进类提升方案的图像加密方法
Chen et al. Cryptanalysis and improvement of medical image encryption using high-speed scrambling and pixel adaptive diffusion
Yang et al. Dynamical analysis and image encryption application of a novel memristive hyperchaotic system
Nkandeu et al. An image encryption algorithm based on substitution technique and chaos mixing
CN106803784B (zh) 安全多媒体云存储中基于格的多用户模糊可搜索加密方法
CN111654368B (zh) 一种基于深度学习生成对抗网络的密钥生成方法
Mozaffari Parallel image encryption with bitplane decomposition and genetic algorithm
Alotaibi et al. Secure mobile computing authentication utilizing hash, cryptography and steganography combination
CN111008863B (zh) 一种基于区块链的抽奖方法及系统
Li et al. Color image encryption based on joint permutation and diffusion
Wang et al. Chaos-based image encryption strategy based on random number embedding and DNA-level self-adaptive permutation and diffusion
US20230092700A1 (en) Image encryption method based on improved class boosting scheme
WO2007001829A2 (en) Strengthening secure hash functions
Kengnou Telem et al. A simple and robust gray image encryption scheme using chaotic logistic map and artificial neural network
CN111756518B (zh) 一种基于忆阻超混沌系统的彩色图像加密方法
Devi et al. Entropy influenced RNA diffused quantum chaos to conserve medical data privacy
Chen et al. Cryptanalysis of a chaotic image cipher based on plaintext-related permutation and lookup table
Song et al. Batch image encryption using cross image permutation and diffusion
Xu et al. A flexible image cipher based on orthogonal arrays
Dong et al. Enabling privacy preserving record linkage systems using asymmetric key cryptography
Ahmad et al. A pixel-based encryption method for privacy-preserving deep learning models
WO2023093278A1 (zh) 数字签名门限方法和装置
Lakshmi et al. Image encryption algorithms using machine learning and deep learning techniques—A Survey
US7181009B1 (en) Generating message digests according to multiple hashing procedures
CN115001654A (zh) 一种基于混沌的线程池与gpu组合优化批量图像加密方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22868738

Country of ref document: EP

Kind code of ref document: A1