WO2023040188A1 - 零碳冷力发电机及其发电方法 - Google Patents

零碳冷力发电机及其发电方法 Download PDF

Info

Publication number
WO2023040188A1
WO2023040188A1 PCT/CN2022/076893 CN2022076893W WO2023040188A1 WO 2023040188 A1 WO2023040188 A1 WO 2023040188A1 CN 2022076893 W CN2022076893 W CN 2022076893W WO 2023040188 A1 WO2023040188 A1 WO 2023040188A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
low
energy
evaporator
steam
Prior art date
Application number
PCT/CN2022/076893
Other languages
English (en)
French (fr)
Inventor
吴加林
Original Assignee
成都佳灵绿色能源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111113192.3A external-priority patent/CN114251141A/zh
Priority claimed from CN202122278125.9U external-priority patent/CN215890117U/zh
Application filed by 成都佳灵绿色能源有限责任公司 filed Critical 成都佳灵绿色能源有限责任公司
Publication of WO2023040188A1 publication Critical patent/WO2023040188A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Definitions

  • the invention relates to the field of energy technology, in particular to a zero-carbon cold power generator and a power generation method thereof.
  • the Rankine cycle generator In the Rankine cycle generator, it is based on the Rankine cycle, which consists of four main devices: liquid booster pump, boiler, steam turbine and condenser.
  • liquid booster pump When working, the liquid working medium is compressed and boosted in the pump; then it enters the boiler to be heated and vaporized until it becomes superheated steam, then enters the steam turbine to expand and do work, and the low-pressure steam after work enters the condenser to be cooled and condensed into water. Return to the liquid booster pump to complete a cycle.
  • thermodynamic energy is energy quantum, which is referred to as quantum for short.
  • Any object with a thermodynamic temperature above 0K has thermodynamic energy, and its essence is the energy generated by quantum motion.
  • the thermodynamic energy of any unit of matter and its thermodynamic temperature It is directly proportional to the specific heat, and is also equal to the energy value in Planck's energy formula;
  • E is the energy
  • T is the thermodynamic temperature
  • C is the specific heat of the substance
  • N is the number of quanta
  • H is Planck's constant
  • V is the frequency of the quantum.
  • thermodynamic energy in air or water can be used as a high-temperature heat source, and the low-temperature energy in the exhaust gas discharged from the steam turbine can be reused, a continuous cycle can be realized, the goal of utilizing environmental energy can be achieved, and the fundamental problem of our human development can be completely solved.
  • a zero-carbon cooling power generator including an energy harvesting system, a condensation-evaporator, a temperature changing device, and a Rankine cycle turbogenerator system
  • the energy harvesting system is used to collect heat energy in the environment, and supply the liquid working medium in the condensing-evaporator, the liquid working medium absorbs the heat energy and transforms into low-temperature steam, and the temperature changing device is used to convert the condensing-evaporator
  • the generated low-temperature steam is converted into high-temperature heat energy, and the high-temperature heat energy is transferred to the Rankine cycle turbogenerator system, and at the same time, the gaseous working medium is converted into a liquid working medium and returned to the condensing-evaporator;
  • the Rankine cycle turbogenerator The system is used to convert the high-temperature heat energy generated by the temperature-changing device into electrical energy, and at the same time transmit the generated exhaust gas
  • the Rankine cycle turbogenerator system includes a liquid booster pump, a steam turbine, and a generator, the low-pressure end of the liquid booster pump communicates with the condenser-evaporator, and the high-pressure end of the liquid booster pump It communicates with the low-temperature inlet port of the temperature-variable device, the low-temperature outlet port of the temperature-variable device communicates with the steam turbine, the low-pressure output port of the steam turbine communicates with the condenser-evaporator, and the steam turbine communicates with the generator.
  • the temperature changing device includes a heat exchanger mechanism and a blower
  • the heat exchange mechanism has a low-pressure circuit and a high-pressure circuit
  • the inlet end of the blower communicates with the low-pressure circuit of the heat exchange mechanism
  • the outlet of the blower The end communicates with the high pressure circuit of the heat exchange mechanism.
  • the heat exchange mechanism includes a first heat exchanger, a heat recovery heat exchanger and a second heat exchanger, the heat recovery heat exchanger, the second heat exchanger and a blower are connected in series in sequence, and the first The heat exchanger is connected in parallel with the second heat exchanger.
  • the temperature changing device further includes a temperature regulating valve, which is arranged on the high-pressure circuit at the outlet of the blower, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger.
  • the flow distribution of the first heat exchanger is used to control the temperature range of the high-temperature steam output by the first heat exchanger.
  • the heat exchange mechanism further includes a third heat exchanger, and the third heat exchanger is used to increase the temperature difference between the high pressure circuit and the low pressure circuit at the high temperature end of the second heat exchanger.
  • blower and/or the first heat exchanger and/or the second heat exchanger and/or the third heat exchanger are provided with an insulation layer.
  • the temperature variable device and the Rankine cycle turbogenerator system use the same or different working fluids.
  • the same working fluid can be selected, and when it is greater than 260 degrees, different working fluids can also be preferred.
  • the temperature variable device uses carbon dioxide
  • the Rankine cycle turbogenerator system uses water vapor.
  • the working medium includes one or more of water, refrigerant r32, nitrogen, carbon dioxide and Freon.
  • a method for generating electricity using the above-mentioned zero-carbon cold power generator comprising:
  • the liquid working medium in the condensation-evaporator absorbs the heat energy and converts it into low-temperature steam, which is supplied to the temperature changing device;
  • the low-temperature steam generated by the condensing-evaporator is converted into high-temperature heat energy through a temperature-variable device, and the high-temperature heat energy is transferred to the Rankine cycle turbogenerator system, and at the same time, the gaseous working medium is converted into a liquid working medium and returned to the condensing-evaporator;
  • the high-temperature heat energy generated by the temperature-variable device is converted into electrical energy through the Rankine cycle turbo-generator system, and at the same time, the generated exhaust gas is sent to the condenser-evaporator for energy transfer to form a low-temperature liquid, which is pressurized and temperature-variable
  • the high-temperature steam in the device is subjected to heat exchange to form high-temperature and high-pressure steam, which drives the Rankine cycle turbogenerator system to perform a continuous cycle of thermal energy and electrical energy conversion.
  • part of the ambient heat energy can also be directly input between the high-pressure end of the liquid booster pump and the low-temperature inlet end of the temperature-variable device, thereby reducing the capacity of the temperature-variable device and reducing the system cost .
  • the step of transferring high-temperature heat energy to the Rankine cycle turbogenerator system includes:
  • the low-temperature liquid in the condensing-evaporator is pumped by the liquid booster pump, and the low-temperature liquid is converted into a low-temperature high-pressure liquid;
  • the low-temperature exhaust gas generated by the turbo-generator is sent to the condenser-evaporator.
  • the invention provides a zero-carbon cooling power generator, which fundamentally and permanently solves the energy problem of human beings, and simultaneously solves carbon emissions and air pollution, which is of great significance to the development of today's society.
  • the zero-carbon cooling generator continuously absorbs the heat in the environment when it is working, and naturally produces a cooling effect.
  • the temperature-changing device only needs to spend less energy to increase the temperature of the low-temperature gas, so that cold and hot water can be easily realized. , electricity, heating, industrial steam five cogeneration.
  • the entire zero-carbon cooling power generator has no raw materials in and out and no pollutants, air and water are everywhere, everywhere, and it is small in size, light in weight, and low in cost, and can meet the energy of most fixed or mobile loads on the spot It provides a sufficient basic guarantee for the realization of comprehensive electrification of the entire human society.
  • Fig. 1 is the schematic diagram of an embodiment of the zero-carbon cooling power generator of the present invention
  • Icons 1-condensation-evaporator, 2-temperature changing device, 3-first heat exchanger, 4-regeneration heat exchanger, 5-high pressure circuit, 6-low pressure circuit, 7-second heat exchanger, 7A- The third heat exchanger, 8-blower, 9-temperature regulating valve, 10-liquid booster pump, 11-steam turbine, 12-generator, 13-energy collection system.
  • connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • Fig. 1 is a schematic diagram of an embodiment of the zero-carbon cooling power generator of the present invention.
  • the zero-carbon cooling power generator includes an energy harvesting system 13, a condensation-evaporator 1, a temperature changing device 2 and a Rankine cycle Turbogenerator system, the energy harvesting system is used to collect heat energy in the environment, and supply the liquid working medium in the condensation-evaporator, the liquid working medium absorbs the heat energy and converts into low-temperature steam, and the temperature changing device is used for Convert the low-temperature steam generated by the condensing-evaporator into high-temperature heat energy, and transfer the high-temperature heat energy to the Rankine cycle turbogenerator system, and at the same time convert the gaseous working medium into a liquid working medium and return it to the condensing-evaporator; the Rankine The cycle turbine generator system is used to convert the high-temperature heat energy generated by the temperature-changing device into electrical energy, and at the same time transmit the generated exhaust gas to the condensation-e
  • the above-mentioned ambient thermal energy includes air, water or all other available low-temperature ambient thermal energy.
  • the Rankine cycle turbogenerator system includes a liquid booster pump 10, a steam turbine 11 and a generator 12, the low-pressure end of the liquid booster pump communicates with the condenser-evaporator, and the liquid booster
  • the high-pressure end of the pressure pump communicates with the low-temperature inlet of the temperature-variable device, the low-temperature outlet of the temperature-variable device communicates with the steam turbine, the low-pressure output of the steam turbine communicates with the condenser-evaporator, and the steam turbine communicates with the generator.
  • the temperature changing device includes a heat exchanger mechanism and a blower 8, the heat exchange mechanism has a low pressure circuit 6 and a high pressure circuit 5, the inlet end of the blower communicates with the low pressure circuit of the heat exchange mechanism, The outlet end of the blower communicates with the high pressure circuit of the heat exchange mechanism.
  • the low-temperature steam enters the low-pressure circuit of the heat exchange mechanism, and returns to the high-pressure circuit of the heat exchange mechanism after being pressurized and heated by the blower.
  • the heat exchange mechanism includes a first heat exchanger 3, a heat recovery heat exchanger 4 and a second heat exchanger 7, and the heat recovery heat exchanger, the second heat exchanger and a blower are connected in series in sequence, so The first heat exchanger is connected in parallel with the second heat exchanger.
  • the temperature changing device further includes a temperature regulating valve 9, which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. The flow distribution among them, so as to control the temperature range of the high-temperature steam output by the first heat exchanger 3 .
  • a temperature regulating valve 9 which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. The flow distribution among them, so as to control the temperature range of the high-temperature steam output by the first heat exchanger 3 .
  • the heat exchange mechanism further includes a third heat exchanger 7A, and the third heat exchanger is used to increase the temperature difference between the high pressure circuit and the low pressure circuit at the high temperature end of the second heat exchanger.
  • blower and/or the first heat exchanger and/or the second heat exchanger and/or the third heat exchanger are provided with an insulation layer.
  • the temperature changing device includes an evaporator, a heat recovery heat exchanger, a second heat exchanger, a cooler and a blower
  • the steam turbine generator Lang is composed of a liquid pressurized pump, a heater, a steam turbine, a generator and a condenser.
  • Ken cycle system the evaporator of the temperature variable device is combined with the condenser of the steam turbine generator Rankine cycle system to form a condensation-evaporator, and the cooler of the temperature variable device is connected with the heater of the steam turbine generator Rankine cycle system to form the first Heat exchanger, air or water enters the evaporator, exchanges heat with the liquid working medium, the air or water cools down, the liquid working medium evaporates, and turns the environmental energy into low-temperature steam; the exhaust gas of the steam turbine enters the evaporator, and the liquid working medium The exhaust gas is condensed into a liquid state, and the energy in the exhaust gas is transformed into a low-temperature steam.
  • the evaporator of the variable temperature device is connected to the exhaust gas end of the Rankine cycle, and the latent heat in the exhaust gas of the steam turbine is transferred to the liquid state of the evaporator.
  • the exhaust gas is condensed and turned into a liquid; and the liquid working medium in the evaporator becomes a low temperature under the action of the latent heat of the exhaust gas, which constitutes a condensation-evaporator, and also creates a low-temperature cold source; it has a high and low pressure circuit
  • the regenerative heat exchanger, the second heat exchanger and the blower are connected in series.
  • the low-temperature steam enters from the low-pressure circuit, and returns to the high-pressure circuit after being pressurized and heated by the blower.
  • the high-low pressure in the second heat exchanger There is a temperature difference in the circuit, so the high-pressure circuit heats the low-pressure circuit, so that the enthalpy of the low-pressure circuit increases at equal pressure, and the enthalpy of the high-pressure circuit decreases at equal pressure.
  • the high-temperature steam is continuously cooled, and finally becomes liquid and returns to the evaporator.
  • the device greatly increases the temperature of the gas in the inlet circuit of the blower.
  • the blower itself only needs a small potential energy compression to greatly increase the temperature of the inlet steam according to the needs, thus realizing the function of self-feedback thermal compression steam temperature rise; after the temperature is increased
  • the high-temperature steam is sent to the first heat exchanger connected to the Rankine cycle heater for heat exchange. After the high-temperature steam in the cooler is cooled, it returns to the low-temperature end of the second heat exchanger and continues to be condensed into a liquid.
  • the Rankine cycle heater obtains energy, and the high-pressure liquid becomes high-temperature and high-pressure steam, which provides energy for the operation of the steam turbine;
  • the condensation-evaporator creates a low-temperature cold source, so that the condensation temperature of the exhaust gas of the steam turbine is kept constant Affected by the ambient temperature, the water vapor system can drop to close to zero, thereby improving the power generation efficiency of the turbogenerator set, and the nitrogen system can drop to minus 196°C, creating conditions for the operation of the cryogenic steam turbine;
  • the cooler of the variable temperature device Transferring the high-temperature steam after the ambient heat temperature is raised to the heater of the Rankine cycle provides a high-temperature heat source for the Rankine cycle, so that the Rankine cycle does not need any fossil energy, and realizes the goal of converting ambient heat into electrical energy.
  • the variable temperature device can upgrade low-temperature energy to high-temperature energy with an energy efficiency ratio of 1:30-50. Since the power consumed by the temperature changing device to raise the exhaust energy of the system and the ambient heat source from low temperature to high temperature is only about 5% of the latent heat power of the working fluid, the energy consumed by the temperature changing device is mainly used for driving the blower, and the blower can be driven by a separate motor. It can also be driven by a small-scale cold force Rankine cycle steam turbine. The energy consumed by the blower will be converted into the heat of the temperature-changing device and returned to the high-temperature and high-pressure circuit of the steam turbine, so the blower does not consume energy in essence.
  • the energy harvesting system absorbs energy from the external environment to complete the energy harvesting.
  • the cooler is connected with a high-temperature and high-pressure heater to form a cooling system.
  • the heater that is, the first heat exchanger, transfers the high-temperature steam energy to the rankine cycle system of the steam turbine, perfectly realizing the conversion of environmental energy into electrical energy.
  • the zero-carbon cold power generator of the present invention utilizes the advantages of the temperature variable device to simultaneously produce five functions of cooling, hot water, heating, industrial steam and power generation.
  • the heat source used can be a heat source with any temperature above absolute zero. From the perspective of economy, applicability and convenience, the fluid temperature of the heat source is actually preferably not lower than -200°C.
  • variable temperature device completes the condenser function in the ordinary Rankine cycle without a low-temperature cold source, thereby realizing the ambient heat source generator.
  • the low-temperature gas generated by the evaporator using the temperature-variable device is far lower than the ambient temperature, (that is, the refrigeration function) uses this temperature difference to continuously receive the ambient energy from the ambient heat source as the energy source of the steam turbine, so it is called zero-carbon cooling of ambient energy. power generator.
  • the same working fluid can be selected for the temperature variable device and the Rankine cycle turbogenerator system when the working temperature is below 260°C, and different working fluids can also be preferred when the working temperature is above 260°C.
  • the temperature variable device adopts Carbon dioxide
  • Rankine cycle turbo generator system uses water vapor. If they are the same, they are called simple substances, and if they are different, they are called double substances. They can be selected according to the temperature of the heat source.
  • steam turbine and temperature-changing device can use the same or Different working fluids
  • steam turbine cycle working fluid can choose water, refrigerant r32, carbon dioxide, nitrogen, various freon and other refrigerants
  • temperature variable device working fluid can choose carbon dioxide and other refrigerants, preferably carbon dioxide, refrigerant r23, r32, nitrogen.
  • the use of different working fluids can optimize and reduce the cost, because the Rankine cycle and the variable temperature device have different requirements for materials.
  • the second heat exchanger 7 is an isenthalpic heat exchanger
  • the third heat exchanger 7A is a temperature difference amplification heat exchanger
  • the present invention also provides a method for generating electricity by a zero-carbon cold power generator, including:
  • the liquid working medium in the condensation-evaporator absorbs the heat energy and converts it into low-temperature steam, which is supplied to the temperature changing device;
  • the low-temperature steam generated by the condensing-evaporator is converted into high-temperature heat energy through a temperature-variable device, and the high-temperature heat energy is transferred to the Rankine cycle turbogenerator system, and at the same time, the gaseous working medium is converted into a liquid working medium and returned to the condensing-evaporator;
  • the high-temperature heat energy generated by the temperature-variable device is converted into electrical energy through the Rankine cycle turbo-generator system, and at the same time, the generated exhaust gas is sent to the condenser-evaporator for energy transfer to form a low-temperature liquid, which is pressurized and temperature-variable
  • the high-temperature steam in the device is subjected to heat exchange to form high-temperature and high-pressure steam, which drives the Rankine cycle turbogenerator system to perform a continuous cycle of thermal energy and electrical energy conversion.
  • the step of transferring high-temperature heat energy to the Rankine cycle turbogenerator system includes:
  • the low-temperature liquid in the condensing-evaporator is pumped by the liquid booster pump, and the low-temperature liquid is converted into a low-temperature high-pressure liquid;
  • the low-temperature exhaust gas generated by the turbo-generator is sent to the condenser-evaporator.
  • the zero-carbon cooling power generator is a 10MW condensing turbogenerator
  • the inlet steam pressure of the steam turbine is 3.35 MPa
  • the intake air temperature is 435°C
  • the exhaust steam temperature is 35°C
  • the exhaust pressure is 0.005 MPa
  • Lang The Ken circulation loop uses water as the working medium
  • the temperature-changing device circuit uses carbon dioxide as the working medium
  • the river water at 15°C flows into the condensing-evaporator, exchanges heat with the carbon dioxide liquid in the condensing-evaporator, and is discharged after the temperature drops to 0°C
  • After the carbon dioxide liquid obtains the energy of the river water, it converts the -5°C liquid working medium into -5°C low-temperature steam, and realizes energy collection
  • the high-pressure circuit heats the low-pressure circuit to realize the low-pressure circuit, etc.
  • the enthalpy is increased by pressure, the enthalpy is reduced by equal pressure in the high-pressure circuit, the high-temperature steam is continuously cooled, and finally becomes a liquid and returns to the condensation-evaporator, and the cycle is repeated.
  • the second heat exchanger greatly increases the temperature of the low-pressure circuit gas of the blower 8, and the blower 8 itself only needs a small potential energy to compress, and can greatly increase the temperature of the imported steam according to the needs; the high-temperature steam after the temperature is increased is sent from the high-pressure circuit of the blower 8 to the first heat exchanger 3 for utilization and cooling.
  • the low-temperature steam generated in the evaporator 1 together with the river water energy is sent to the temperature changing device to raise the temperature, and then sent to the first heat exchanger 3 to provide energy for the steam turbine 11, which is realized, and only a single heat source can be used for energy conversion;
  • the Rankine cycle uses water as the working medium.
  • the liquid booster pump 10 pressurizes the working medium from 0.1 MPa to 3.5 MPa, and the temperature changing device 2 heats the working medium to 450°C.
  • the energy consumption of the liquid booster pump 10 and the blower 8 the generating capacity of the unit is taken as 11300KW;
  • the temperature variable device In order to achieve the goal of power generation of 10,000 kilowatts, the temperature variable device needs to raise a total of 57,855 kilowatts of external low-temperature heat energy and exhaust gas energy of the steam turbine from -5°C low-temperature steam to 450°C high-temperature steam.
  • the ambient heat source is used as the high-temperature heat source
  • the low temperature generated by the condensing-evaporator 1 is far lower than the ambient temperature
  • the temperature difference generated by the low-temperature gas is used to continuously receive the energy in the ambient heat source and act as a Rankine cycle turbogenerator.
  • it reduces the ambient temperature and realizes the cooling function, so it is called a zero-carbon cooling generator.
  • the output power of a single machine can range from a few watts to several thousand megawatts, and any steam turbine, turbomachine, expander using the system formed by the present invention belongs to the protection scope of the present invention.
  • Embodiment 2 Transformation of 1000 MW ultra-supercritical generating set
  • the enthalpy value of water vapor per unit of 27Mpa/600 degrees is 3475kj/kg under the physical property table
  • variable temperature device needs to increase the carbon dioxide vapor at -5°C to 650°C.
  • part of the ambient heat energy can also be directly input between the high-pressure end of the liquid booster pump and the low-temperature inlet end of the temperature-variable device, thereby reducing the capacity of the temperature-variable device and reducing the system cost .

Abstract

本发明提供零碳冷力发电机,包括能量采集系统、冷凝-蒸发器、变温装置和朗肯循环汽轮发电机系统,能量采集系统采集环境热能,供给冷凝-蒸发器液态工质,液态工质吸收热能后转为低温蒸汽;变温装置将低温蒸汽转为高温热能,传递给朗肯循环汽轮发电机系统,同时将汽态工质转为液态工质返回冷凝-蒸发器;朗肯循环汽轮发电机系统将变温装置产生的高温热能转为电能,同时将产生的乏气送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。本发明还提供发电方法。本发明可实现冷,热水、电、暖气、工业蒸汽五联产。

Description

零碳冷力发电机及其发电方法 技术领域
本发明涉及能源技术领域,具体而言,涉及一种零碳冷力发电机及其发电方法。
背景技术
现在所有发电机都是以燃烧化石燃料产生高温来作为高温热源,同时以环境温度作为低温冷源来将低温乏气冷凝成液体,以保证工质的循环使用,同时将大部分在现行技术条件下没有办法利用的乏气能量排放到环境中,从而获取动力,目前广泛应用的朗肯循环就是这种技术的典型代表,其特征是液体-加压-加温-膨胀作功-乏气-冷凝-液体再次循环,其结果是噢所有发电机燃料的利用效率都只有30%多,并且产生大量碳排放和空气污染,而普遍存在于环境中的清洁的空气和水中的无限热能,却没办法加以利用。
在朗肯循环发电机中,其基于的是朗肯循环,由液体加压泵、锅炉、汽轮机和冷凝器四个主要装置组成。工作时,液态工质在泵中被压缩升压;然后进入锅炉被加热汽化,直至成为过热蒸汽后,进入汽轮机膨胀作功,作功后的低压蒸汽进入冷凝器被冷却凝结成水。再回到液体加压泵中,完成一个循环。
1900年普朗克提出了能量的本质是能量子,简称为量子,任何热力学温度绝对0k以上的物体都具有热力学能量,其本质都是量子运动产生的能量. 任何单位物质的热力学能量与其热力学温度和比热成正比,同时也等于普朗克能量公式中的能量值;
E=TC=NHV
其中,E为能量,T为热力学温度,C为物质的比热,N-量子的数量,H为普朗克常数,V为量子的频率。
由此理论可以看出,我们所处的环境温度都在绝对温度273K附近左右,而我们地球具有无比丰富的物质,特别有随时可得的水和空气以及环境热源,我们是生活在能量的海洋之中,不应该存在任何能源问题,但现实是我们把环境能源称为低品位能源,是无用的能源,把远高于环境温度的能源称之为高品位能源,才是有用的能源,要产生高品位的能源,产生蒸汽,推动汽轮机做功,实现朗肯循环,目前主要由燃烧化石燃料来完成,由于燃烧化石燃料产生的碳排放和空气污染,人类陷入了气候变化的巨大危机,成为全世界最紧迫的问题。
如果能利用空气或水中的热力学能源作为高温热源,同时将汽轮机排出的乏气中的低温能量再次利用,就可实现连续循环,达到利用环境能源的目标,彻底解决我们人类发展的根本问题。
发明内容
针对现有技术存在问题中的一个或多个,根据本发明的一个方面,提供一种零碳冷力发电机,包括能量采集系统、冷凝-蒸发器、变温装置和朗肯循环汽轮发电机系统,所述能量采集系统用于采集环境中的热能,并供给冷凝-蒸发器中的液态工质,液态工质吸收所述热能后转变为低温蒸汽,所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转变为高温热能,并将高温热能传递给朗肯循环汽轮发电机系统,同时将汽态工质转化为液态工质返 回冷凝-蒸发器;所述朗肯循环汽轮发电机系统用于将变温装置产生的高温热能转换为电能,同时将产生的乏气传送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
可选地,所述朗肯循环汽轮发电机系统包括液体加压泵、汽轮机和发电机,所述液体加压泵的低压端与冷凝-蒸发器连通,所述液体加压泵的高压端与变温装置的低温进口端连通,所述变温装置的低温出口端与汽轮机连通,所述汽轮机的低压输出端与冷凝-蒸发器连通,所述汽轮机和发电机连通。
可选地,所述变温装置包括热交换器机构和鼓风机,所述热交换机构具有低压回路和高压回路,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。
可选地,所述热交换机构包括第一热交换器、回热热交换器和第二热交换器,所述回热热交换器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
可选地,所述变温装置还包括温度调节阀,温度调节阀被配置于鼓风机出口的高压回路上,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,控制第一热交换器输出的高温蒸汽温度范围。
可选地,所述热交换机构还包括第三热交换器,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差。
可选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
可选地,所述变温装置和朗肯循环汽轮发电机系统采用相同或不同的工质。
可选地,所述变温装置和朗肯循环汽轮发电机系统工作温度在260度以下时可选相同的工质,大于260度以上时也可优选不同的工质,例如,变温装置采用二氧化碳,朗肯循环汽轮发电机系统采用水蒸气。
可选地,所述工质包括水、制冷剂r32、氮、二氧化碳和氟利昂中的一种或多种。
根据本发明的另一个方面,提供一种利用上述零碳冷力发电机发电的方法,包括:
通过能量采集系统采集空气、水或其他一切可用的低温环境热能,并供给冷凝-蒸发器;
通过冷凝-蒸发器中的液态工质吸收所述热能后转变为低温蒸汽,并供给变温装置;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温热能,并将高温热能传递给朗肯循环汽轮发电机系统,同时将汽态工质转化为液态工质返回冷凝-蒸发器;
通过朗肯循环汽轮发电机系统将变温装置产生的高温热能转换为电能,同时将产生的乏气传送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
可选地,当冷凝-蒸发器相对环境温度温差很大时,部分环境热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低系统成本。
可选地,所述将高温热能传递给朗肯循环汽轮发电机系统的步骤包括:
通过液体加压泵抽吸冷凝-蒸发器中的低温液体,将低温液体转换为低温高压液体;
通过变温装置将低温高压液体转换为高温高压蒸汽;
将高温高压蒸汽送至朗肯循环汽轮发电机系统;
汽轮发电机产生的低温乏气送至冷凝-蒸发器。
本发明实施例的技术方案至少具有如下优点和有益效果:
本发明提供零碳冷力发电机,从根本上永恒的解决了人类的能源问题,碳排放和空气污染也同时随之解决,对当今社会的发展具有重大意义。
零碳冷力发电机在工作时不断吸收环境中的热量,自然就产生了制冷作用,变温装置只需要花较少的能量就可将低温气体的温度提高,从而可轻松的实现冷,热水、电、暖气、工业蒸汽五联产。
整个零碳冷力发电机,没有原材料的进出和污染物的产生,空气和水无处不在,无所不在,并且体积小、重量轻、成本低,可以就地满足绝大多数固定或移动负荷的能源需求,为整个人类社会实现全面电气化提供了充分的基础保证。
附图说明
图1是本发明所述零碳冷力发电机一个实施例的示意图;
图标:1-冷凝-蒸发器,2-变温装置,3-第一热交换器,4-回热热交换器,5-高压回路,6-低压回路,7-第二热交换器,7A-第三热交换器,8-鼓风 机,9-温度调节阀10-液体加压泵,11-汽轮机,12-发电机,13-能量采集系统。
具体实施方式
术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
图1是本发明所述零碳冷力发电机一个实施例的示意图,如图1所示,零碳冷力发电机,包括能量采集系统13、冷凝-蒸发器1、变温装置2和朗肯循环汽轮发电机系统,所述能量采集系统用于采集环境中的热能,并供给冷凝-蒸发器中的液态工质,液态工质吸收所述热能后转变为低温蒸汽,所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转变为高温热能,并将高温热能传递给朗肯循环汽轮发电机系统,同时将汽态工质转化为液态工质返回冷凝-蒸发器;所述朗肯循环汽轮发电机系统用于将变温装置产生的高温热能转换为电能,同时将产生的乏气传送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
上述环境热能包括空气、水或其他一切可用的低温环境热能。
在一个实施例中,所述朗肯循环汽轮发电机系统包括液体加压泵10、汽轮机11和发电机12,所述液体加压泵的低压端与冷凝-蒸发器连通,所述液体加压泵的高压端与变温装置的低温进口端连通,所述变温装置的低温出口端与汽轮机连通,所述汽轮机的低压输出端与冷凝-蒸发器连通,所述汽轮机和发电机连通。
在一个实施例中,所述变温装置包括热交换器机构和鼓风机8,所述热交换机构具有低压回路6和高压回路5,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。在鼓风机的抽压作用下,低温蒸汽进入热交换机构的低压回路,通过鼓风机加压升温后返回到热交换机构的高压回路,热交换机构的高压回路和低压回路出现温差,高压回路对低压回路进行加热,实现低压回路增焓,高压回路降焓。
可选地,所述热交换机构包括第一热交换器3、回热热交换器4和第二热交换器7,所述回热热交换器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
可选地,所述变温装置还包括温度调节阀9,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器3输出的高温蒸汽温度范围。
可选地,所述热交换机构还包括第三热交换器7A,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差。
可选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
除了变温装置外,其他与环境温度相差较大的其他构件也具有保温层。
在一个实施例中,变温装置包括蒸发器、回热热交换器、第二热交换器、冷却器和鼓风机,由液体加压泵、加热器、汽轮机、发电机和冷凝器组成汽轮机发电机朗肯循环系统,变温装置的蒸发器与汽轮机发电机朗肯循环系统的冷凝器相结合,构成冷凝-蒸发器,变温装置的冷却器与汽轮机发电机朗肯循环系统的加热器相连,构成第一热交换器,空气或水进入蒸发器,与液态工质进行热交换,空气或水降温变冷,液态工质蒸发,将环境能源变成了低温蒸汽;汽轮机乏气进入蒸发器,与液态工质进行热交换,乏气冷凝成液态,乏气中的能量转变成了低温蒸汽,所以变温装置的蒸发器与朗肯循环的乏气端相连,汽轮机乏气中的潜热转移到蒸发器的液态工质中去了,乏气得到冷凝变成液体;而蒸发器液态工质在乏气潜热的作用下变成低温就构成了冷凝-蒸发器,同时也制造了低温冷源;具有高低压回路的回热热交换器、第二热交换器和鼓风机串联组成,在鼓风机的抽压作用下,低温蒸汽由低压回路进入,经鼓风机加压升温以后返回到高压回路,第二热交换器中高低压回路出现了温差,于是高压回路对低压回路进行加热,实现低压回路等压增焓,高压回路等压降焓,高温蒸汽不断冷却,最后变为液体返回到蒸发器中,反复循环,让热交换器大幅度提高了鼓风机进口回路气体的温度,鼓风机本身只需要很小的势能压缩,就能根据需要大幅度的提高进口蒸汽的温度,从而实现了自反馈热压缩蒸汽升温功能;温度得到提高以后的高温蒸汽,送到与朗肯循环加热器相连的第一热交换器进行热交换,冷却器中的高温蒸汽冷却降温以后,再返回到第二热交换器的低温端,继续被冷凝成为液体,返回到蒸发器中;朗肯循环加热器获得了能量,高压液体变成高温高压蒸汽,为汽轮机的运转提供了能量;冷凝-蒸发器制造了低温冷源,使汽轮机乏气的冷凝温度不受环境温度影响,对水蒸汽系统可以降到接近零度, 从而提高汽轮发电机组的发电效率,对氮气系统可以降到零下196℃,为深冷汽轮机的运行创造了条件;变温装置的冷却器将环境热能温度提高以后的高温蒸汽转移给朗肯循环的加热器,为朗肯循环提供了高温热源,使朗肯循环不需要任何化石能源,就实现了将环境热能转变为电能的目标。变温装置能够以1:30-50的能效比,将低温能源提升为高温能源。由于变温装置将系统乏气能量和环境热源从低温提升到高温消耗的功率只有工质潜热功率的5%左右,变温装置消耗的能量主要是用于鼓风机的拖动,鼓风机可以采用单独的电动机拖动,也可采用小型冷力朗肯循环汽轮机拖动,鼓风机工作时消耗的能量,都将转化为变温装置的热量,返回到汽轮机的高温高压回路中,所以鼓风机本质上是不消耗能量的。
上述实施例中,能量采集系统吸收外部环境能源,完成能量的采集,回热热交换器和第二热交换器将低温蒸汽提升成高温蒸汽以后,冷却器与高温高压的加热器相连,构成冷却-加热器,即第一热交换器,将高温蒸汽能量传递给汽轮机朗肯循环系统,完美实现将环境能源转变为电能。
本发明零碳冷力发电机利用变温装置的优点可同时生产制冷、热水、供暖、工业蒸汽和发电五种功能联产。
所用的热源可以是绝对零度以上的任何温度的热源,从经济适用方便的角度来讲,热源的流体温度实际上最好不要低于-200℃。
变温装置在没有低温冷源的情况下,完成了普通朗肯循环中的冷凝器功能,从而实现了环境热源发电机。利用变温装置蒸发器产生的低温气体远远低于环境温度,(即制冷功能)利用此温度差,不断接收环境热源中的环境能量,作为汽轮机的能量来源,所以称为环境能源的零碳冷力发电机。
在一个实施例中,所述变温装置和朗肯循环汽轮发电机系统工作温度 在260℃以下时可选相同的工质,大于260℃以上时也可优选不同的工质,例如,变温装置采用二氧化碳,朗肯循环汽轮发电机系统采用水蒸气。如果相同称为单工质,如果不同称为双工质,可根据热源温度来选定,如果是常温环境热源如水、空气、地热源、工业废水等情况下,汽轮机和变温装置可以采用相同或不同的工质,汽轮机循环工质可以选用水、制冷剂r32、二氧化碳、氮、各种氟利昂和其他各种制冷剂,变温装置工质可以选用二氧化碳和其他制冷剂,优选二氧化碳、制冷剂r23、r32、氮气。采用不同工质可以优化降低成本,由于朗肯循环和变温装置对材料的要求不一样。
在上述各实施例中,优选地,第二热交换器7为等焓热交换器,第三热交换器7A为温差放大热交换器。
本发明还提供零碳冷力发电机发电的方法,包括:
通过能量采集系统采集空气、水或其他一切可用的低温环境热能,并供给冷凝-蒸发器;
通过冷凝-蒸发器中的液态工质吸收所述热能后转变为低温蒸汽,并供给变温装置;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温热能,并将高温热能传递给朗肯循环汽轮发电机系统,同时将汽态工质转化为液态工质返回冷凝-蒸发器;
通过朗肯循环汽轮发电机系统将变温装置产生的高温热能转换为电能,同时将产生的乏气传送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
可选地,所述将高温热能传递给朗肯循环汽轮发电机系统的步骤包括:
通过液体加压泵抽吸冷凝-蒸发器中的低温液体,将低温液体转换为低温高压液体;
通过变温装置将低温高压液体转换为高温高压蒸汽;
将高温高压蒸汽送至朗肯循环汽轮发电机系统;
汽轮发电机产生的低温乏气送至冷凝-蒸发器。
在一个实施例中,零碳冷力发电机为10MW冷凝式汽轮发电机,汽轮机的进汽压力3.35兆帕,进气温度435℃,排汽温度35℃,排气压力0.005兆帕;朗肯循环回路采用水作为工质,变温装置回路采用二氧化碳作为工质;15℃的河水流入到冷凝-蒸发器中,与冷凝-蒸发器中的二氧化碳液体进行热交换,温度降到0℃以后排出,二氧化碳液体得到河水的能量以后,将-5℃的液态工质转化为-5℃的低温蒸汽,实现了能量的采集;在变温装置的鼓风机的抽压作用下,-5℃的二氧化碳低温蒸汽由低压回路6进入,经鼓风机8加压升温以后返回到高压回路5,回热热交换器和第二热交换器中高低压回路出现了温差,于是高压回路对低压回路进行加热,实现低压回路等压增焓,高压回路等压降焓,高温蒸汽不断冷却,最后变为液体返回到冷凝-蒸发器中,反复循环,第二热交换器大幅度提高了鼓风机8的低压回路气体的温度,鼓风机8本身只需要很小的势能压缩,就能根据需要大幅度的提高进口蒸汽的温度;温度得到提高以后的高温蒸汽,从鼓风机8的高压回路送到第一热交换器3进行利用降温以后,再返回到第二热交换器的低温端,继续被冷却成为液体,返回到冷凝-蒸发器中,从而实现了自反馈热压缩蒸汽升温功能;朗肯循环中的汽轮机和发电机开始工作以后,汽轮机排出的乏气,进入到冷凝-蒸发器1中,与二氧化碳液体进行热交换,乏气得到冷凝回到液体加压泵10,得到乏气能量的二氧化碳液体蒸发成-5℃的低温蒸汽,与河水 能量在蒸发器1中产生的低温蒸汽一起送入变温装置升温以后再次送入第一热交换器3给汽轮机11提供能量,这样就实现了,只需要单一热源就能进行能量转换;
朗肯循环采用水作工质,考虑到高压回路压力损失和温度损失,液体加压泵10将工质从0.1兆帕加压到3.5兆帕,变温装置2将工质加温到450℃,考虑到液体加压泵10和鼓风机8的能耗,机组发电容量取为11300KW;
3.35兆帕,435度温度时,水蒸汽的焓值为3306kj/kg;0.005兆帕,35度温度时,水蒸汽的焓值为2565kj/kg,汽轮机工作时产生的理论焓差为3306-2565=741kj/kg,等熵效率取0.88,汽轮机单位工质做功能力为741*0.88=652kj/kg,11300千瓦机组,每秒钟所需工质流量为11300/652=17.5kg,液体加压泵10所需功率P=35*10*17.5/0.75*102=80kw,变温装置所需要提升的功率为3306*17.5=57855kw,系统效率为11300/57855=0.1953。
为了实现发电量1万千瓦的目标,变温装置需要将外部低温热能和汽轮机乏气能量共57855千瓦从-5℃的低温蒸汽提升到450℃的高温蒸汽,变温装置回路采用二氧化碳作工质,二氧化碳液体在3兆帕,-5℃时的蒸发潜热为248kj,所以变温装置每秒钟工质流量为57855/248=233kg,将3兆帕445℃的二氧化碳气体等熵压缩到450℃,3.1兆帕所需功率为(5kj/kg),233*5=1166kw;变温装置在没有低温冷源的情况下,完成了普通朗肯循环中的冷凝器功能,从而实现了单一热源发电机。由于利用环境热源作为高温热源,冷凝-蒸发器1产生的低温温度远远低于环境温度,利用此低温气体,产生的温度差,不断接收环境热源中的能量,作为朗肯循环汽轮发电机的能量来源,同时使环境温度降低,实现了制冷功能,所以称为零碳 冷力发电机。
这里只有单一的热源输入,也只有单一的能量输出,所以称为单一热源环境发电机,其系统效率是100%,虽然朗肯循环的系统效率还不到20%,乏气中残留的热能和变温装置所消耗的能量全部通过变温装置又返回到汽轮机的高温高压端与外部输入的热能一起循环,做不可避免的无用功,在汽轮机11和发电机12中又还原为电能输出了。
单机输出功率可以从最小几瓦到几千兆瓦,任何汽轮机、透平机、膨胀机利用本发明组成的系统都属于本发明的保护范围。
实施例2. 1000兆瓦超超临界发电机组改造
在2021年初,全中国已经投放的1000兆瓦超超临界发电机组,已经有128台,本实施例拟对这种机组进行改造,技术参数如下:
进气压力/温度;27Mpa/600/600一次中间再热;
额定主蒸汽流量:2733.4t/h(额定工况);
排气压力,温度为:5Kpa/25;
27Mpa/600度单位水蒸汽的焓值查物性表下同为3475kj/kg,主蒸汽每秒钟流量2733.4*1000/3600=759kg,主蒸汽单位时间焓值=759*3475=2637525kj/s,系统效率为1000M/2637.525M=0.379。
考虑到温差,变温装置需要把-5℃的二氧化碳蒸汽提升到650℃,二氧化碳气体同实施例1蒸发潜热为248kj/kg,所以单位时间内的质量流量为2637525/248=10635kg/s,鼓风机8所需功率N=10635*5=53175KW,单独选一台60兆瓦的冷力发动机,作为鼓风机8的驱动动力。可选地,当冷凝-蒸发器相对环境温度温差很大时,部分环境热能也可以直接输入液体加压泵 的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低系统成本。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种零碳冷力发电机,其特征在于:包括能量采集系统、冷凝-蒸发器、变温装置和朗肯循环汽轮发电机系统,所述能量采集系统用于采集环境中的热能,并供给冷凝-蒸发器中的液态工质,液态工质吸收所述热能后转变为低温蒸汽,所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转变为高温热能,并将高温热能传递给朗肯循环汽轮发电机系统,同时将汽态工质转化为液态工质返回冷凝-蒸发器;所述朗肯循环汽轮发电机系统用于将变温装置产生的高温热能转换为电能,同时将产生的乏气传送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
  2. 根据权利要求1所述的零碳冷力发电机,其特征在于:所述朗肯循环汽轮发电机系统包括液体加压泵、汽轮机和发电机,所述液体加压泵的低压端与冷凝-蒸发器连通,所述液体加压泵的高压端与变温装置的低温进口端连通,所述变温装置的低温出口端与汽轮机连通,所述汽轮机的低压输出端与冷凝-蒸发器连通,所述汽轮机和发电机连通。
  3. 根据权利要求1或2所述的零碳冷力发电机,其特征在于:所述变温装置包括热交换器机构和鼓风机,所述热交换机构具有低压回路和高压回路,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。
  4. 根据权利要求3所述的零碳冷力发电机,其特征在于:所述热交换机构包括第一热交换器、回热热交换器和第二热交换器,所述回热热交换器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
  5. 根据权利要求4所述的零碳冷力发电机,其特征在于:所述变温装置还包括温度调节阀,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围。
  6. 根据权利要求4所述的零碳冷力发电机,其特征在于:所述热交换机构还包括第三热交换器,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差;
    优选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
  7. 根据权利要求1所述的零碳冷力发电机,其特征在于:所述变温装置和朗肯循环汽轮发电机系统工作温度在260℃以下时可采用相同的工质,大于260℃以上时也可采用不同的工质。
  8. 根据权利要求7所述的零碳冷力发电机,其特征在于:所述工质包括水、制冷剂r32、r23、氮、二氧化碳和氟利昂中的一种或多种。
  9. 一种利用权利要求1所述的零碳冷力发电机发电的方法,其特征在于:包括:
    通过能量采集系统采集空气、水或其他一切可用的低温环境热能,并供给冷凝-蒸发器;
    通过冷凝-蒸发器中的液态工质吸收所述热能后转变为低温蒸汽,并供给变温装置;
    通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温热能,并将高温热能传递给朗肯循环汽轮发电机系统,同时将汽态工质转化为液态工质返回冷凝-蒸发器;
    通过朗肯循环汽轮发电机系统将变温装置产生的高温热能转换为电 能,同时将产生的乏气传送到冷凝-蒸发器进行能量转移后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
  10. 根据权利要求9所述的方法,其特征在于:所述将高温热能传递给朗肯循环汽轮发电机系统的步骤包括:
    通过液体加压泵抽吸冷凝-蒸发器中的低温液体,将低温液体转换为低温高压液体;
    通过变温装置将低温高压液体转换为高温高压蒸汽;
    将高温高压蒸汽送至朗肯循环汽轮发电机系统;
    汽轮发电机产生的低温乏气送至冷凝-蒸发器;
    可选地,当冷凝-蒸发器相对环境温度温差很大时,部分环境热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低系统成本。
PCT/CN2022/076893 2021-09-18 2022-02-18 零碳冷力发电机及其发电方法 WO2023040188A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111113192.3 2021-09-18
CN202122278125.9 2021-09-18
CN202111113192.3A CN114251141A (zh) 2021-09-18 2021-09-18 零碳冷力发电机及其发电方法
CN202122278125.9U CN215890117U (zh) 2021-09-18 2021-09-18 零碳冷力发电机

Publications (1)

Publication Number Publication Date
WO2023040188A1 true WO2023040188A1 (zh) 2023-03-23

Family

ID=85602096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076893 WO2023040188A1 (zh) 2021-09-18 2022-02-18 零碳冷力发电机及其发电方法

Country Status (1)

Country Link
WO (1) WO2023040188A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685152A (en) * 1995-04-19 1997-11-11 Sterling; Jeffrey S. Apparatus and method for converting thermal energy to mechanical energy
CN103339451A (zh) * 2011-10-27 2013-10-02 王智鸣 用热源作动力的无压缩机的制冷系统
CN104454049A (zh) * 2014-12-08 2015-03-25 忻元敏 一种新型能量转换系统
CN111980766A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种超低温余热发电系统和超低温余热发电设备
CN114251146A (zh) * 2021-09-18 2022-03-29 成都佳灵绿色能源有限责任公司 零碳数据中心冷电系统及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685152A (en) * 1995-04-19 1997-11-11 Sterling; Jeffrey S. Apparatus and method for converting thermal energy to mechanical energy
CN103339451A (zh) * 2011-10-27 2013-10-02 王智鸣 用热源作动力的无压缩机的制冷系统
CN104454049A (zh) * 2014-12-08 2015-03-25 忻元敏 一种新型能量转换系统
CN111980766A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种超低温余热发电系统和超低温余热发电设备
CN114251146A (zh) * 2021-09-18 2022-03-29 成都佳灵绿色能源有限责任公司 零碳数据中心冷电系统及应用

Similar Documents

Publication Publication Date Title
CN110374838B (zh) 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
Liu et al. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)–Thermodynamic modelling studies
CN110887278B (zh) 用于低品位热源的能量自给型二氧化碳冷热电联产系统
CA2867120C (en) System and method for recovery of waste heat from dual heat sources
Paanu et al. Waste heat recovery: bottoming cycle alternatives
CN109026243A (zh) 能量转换系统
Meng et al. Performance evaluation of a solar transcritical carbon dioxide Rankine cycle integrated with compressed air energy storage
CN102518491A (zh) 一种利用二氧化碳及作为循环工质的热力循环系统
CN101761389A (zh) 一种工质相变燃气轮机循环的热力发电方法及装置
CN112983585B (zh) 一种热泵太阳能汽轮发电机组热电联产循环系统
CN103683659A (zh) 一种利用液化天然气燃烧的双作用热声发电系统
CN215890117U (zh) 零碳冷力发电机
CN202501677U (zh) 有机朗肯循环驱动的蒸气压缩制冷装置
CN102865112B (zh) 背热循环发电及多级背热循环发电及多联产系统
CN201943904U (zh) 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN114251141A (zh) 零碳冷力发电机及其发电方法
KR20150105162A (ko) Orc 발전시스템
WO2023040188A1 (zh) 零碳冷力发电机及其发电方法
CN101025146A (zh) 利用常温下水中的热能的发电系统装置
CN103615293B (zh) 二氧化碳热泵与有机工质联合发电系统
CN112880230B (zh) 一种发电制冷联合系统
CN114934843A (zh) 一种多能源高效互补集成的双压orc联合循环发电系统
CN210832157U (zh) 一种回收烟气余热燃煤机组供热系统
CN209875312U (zh) 适用于低温环境的热力发电系统
CN202900338U (zh) 背热循环发电及多级背热循环发电及多联产系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868568

Country of ref document: EP

Kind code of ref document: A1