WO2023040187A1 - 零碳绿色海水淡化系统、淡化海水方法及应用 - Google Patents

零碳绿色海水淡化系统、淡化海水方法及应用 Download PDF

Info

Publication number
WO2023040187A1
WO2023040187A1 PCT/CN2022/076892 CN2022076892W WO2023040187A1 WO 2023040187 A1 WO2023040187 A1 WO 2023040187A1 CN 2022076892 W CN2022076892 W CN 2022076892W WO 2023040187 A1 WO2023040187 A1 WO 2023040187A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
low
seawater desalination
heat exchanger
heat
Prior art date
Application number
PCT/CN2022/076892
Other languages
English (en)
French (fr)
Inventor
吴加林
Original Assignee
成都佳灵绿色能源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111110901.2A external-priority patent/CN114249368A/zh
Application filed by 成都佳灵绿色能源有限责任公司 filed Critical 成都佳灵绿色能源有限责任公司
Publication of WO2023040187A1 publication Critical patent/WO2023040187A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the invention relates to the technical field of chemical industry, in particular to a zero-carbon green seawater desalination system, a seawater desalination method and its application.
  • distillation for liquid separation is the oldest and widely used.
  • human beings have a stronger application demand for distillation due to the large amount of evaporation, especially the shortage of fresh water resources, which will seriously hinder the whole world.
  • the people of the world are moving towards a better life.
  • the distillation method has been developed for several generations, especially the efficiency of the mvr seawater desalination device has been greatly improved, and large-scale production can also be carried out.
  • the high cost caused by the high level of energy consumption is still a problem.
  • the mvr seawater desalination device cannot be applied to seawater desalination on a large scale to meet the growing needs of human beings.
  • Energy and water are the most basic resource requirements for human development. After solving the energy problem, only by solving the water problem can we have the basis for solving other problems.
  • a zero-carbon green seawater desalination system including an mvr seawater desalination device, a condensation-evaporator, a temperature-variable device, and a Rankine cycle steam turbine power generation machine system;
  • the mvr seawater desalination device is used to inhale seawater and discharge concentrated brine and fresh water after the temperature rises;
  • the condensation-evaporator is used to collect the heat energy of the concentrated brine and fresh water discharged from the mvr seawater desalination device, and reduce the temperature of the concentrated brine and fresh water.
  • the heat energy of the discharged concentrated brine, fresh water and exhaust gas heat energy generated by the Rankine cycle turbo-generator system, and the low-temperature steam is generated and sent to the temperature-changing device;
  • the temperature changing device is used to convert the low-temperature steam generated by the condensation-evaporator into high-temperature steam
  • the Rankine cycle turbogenerator system is used to partially convert the thermal energy of the high-temperature and high-pressure steam generated by the temperature changing device into electrical energy, supply it to the mvr seawater desalination device, and transport the excess electric energy to the outside, and the Rankine cycle steam turbine generates electricity
  • the exhaust gas generated by the engine system is condensed by the condenser-evaporator to form a low-temperature liquid, and the low-temperature liquid is pressurized to exchange heat with the high-temperature steam of the temperature-changing device to form high-temperature and high-pressure steam.
  • the Rankine cycle turbogenerator system includes a liquid booster pump, a steam turbine, and a generator, the low-pressure end of the liquid booster pump communicates with the condenser-evaporator, and the high-pressure end of the liquid booster pump It communicates with the low-temperature inlet end of the temperature-variable device, and the low-temperature outlet end of the temperature-variable device communicates with the steam turbine, and the steam turbine communicates with the generator.
  • the temperature changing device includes a heat exchanger mechanism and a blower
  • the heat exchange mechanism has a low-pressure circuit and a high-pressure circuit
  • the inlet end of the blower communicates with the low-pressure circuit of the heat exchange mechanism
  • the outlet of the blower The end communicates with the high pressure circuit of the heat exchange mechanism.
  • the heat exchange mechanism includes a first heat exchanger, a heat recovery heat exchanger, and a second heat exchanger, and the heat recovery heat exchanger, the second heat exchanger, and a blower are connected in series in sequence, and the first The heat exchanger is connected in parallel with the second heat exchanger.
  • the temperature changing device further includes a temperature regulating valve, which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. flow distribution, thereby controlling the temperature range of the high-temperature steam output by the first heat exchanger.
  • a temperature regulating valve which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. flow distribution, thereby controlling the temperature range of the high-temperature steam output by the first heat exchanger.
  • the heat exchange mechanism further includes a third heat exchanger, and the third heat exchanger is used to increase the temperature difference between the high pressure circuit and the low pressure circuit at the high temperature end of the second heat exchanger.
  • blower and/or the first heat exchanger and/or the second heat exchanger and/or the third heat exchanger are provided with an insulation layer.
  • a method for desalinating seawater using the above-mentioned zero-carbon green seawater desalination system comprising:
  • the heat energy of the concentrated brine and fresh water discharged from the Mvr seawater desalination device is collected through the condensing-evaporator, and the temperature of the concentrated brine and fresh water is lowered.
  • the system working fluid absorbs the heat energy, generates low-temperature steam and sends it to the temperature-changing device;
  • the low-temperature steam generated by the condensation-evaporator is converted into high-temperature steam through a temperature-changing device;
  • the heat energy of the high-temperature steam generated by the variable temperature device is partially converted into electric energy through the Rankine cycle turbo-generator system, which is supplied to the MVR seawater desalination device, and the excess electric energy is sent out;
  • the exhaust gas generated by the Rankine cycle turbogenerator system is condensed by the condenser-evaporator, and the heat is transferred to form a low-temperature liquid.
  • the system working fluid in the condensation-evaporator condensation absorbs the heat to generate low-temperature steam and sends it to the temperature-changing device;
  • the low-temperature liquid After the above-mentioned low-temperature liquid is pressurized, it exchanges heat with the high-temperature steam of the temperature-changing device to form high-temperature and high-pressure steam, which drives the Rankine cycle turbogenerator system to perform a continuous cycle of thermal energy and electrical energy conversion.
  • the step of converting the thermal energy of the high-temperature steam generated by the temperature variable device into electrical energy through the Rankine cycle turbogenerator system includes:
  • the low-temperature liquid in the condensing-evaporator is pumped by the liquid booster pump, and the low-temperature liquid is converted into a low-temperature high-pressure liquid;
  • the high-temperature and high-pressure steam is sent to the Rankine cycle turbogenerator system to drive the Rankine cycle turbogenerator system to generate electricity.
  • part of the heat energy of the low-temperature liquid can also be directly input between the high-pressure end of the liquid booster pump and the low-temperature inlet end of the temperature-changing device, thereby reducing the capacity of the temperature-changing device and lowering the system temperature. cost.
  • the application of the above-mentioned zero-carbon green seawater desalination system in the separation of zero-carbon materials is provided.
  • the zero-carbon green seawater desalination system and the seawater desalination method described in the present invention can also be used for the separation of zero-carbon materials in various industries.
  • the invention provides all the required power for seawater desalination and can also provide external electric energy.
  • the zero-carbon green seawater desalination system uses the waste heat in the mvr as the energy source. Even if water is taken from under the ice, a temperature difference can also be generated. The operating cost is negative. Every ton of seawater evaporated can generate more than 20 kilowatt-hours of electricity. Selling electricity is more profitable than selling water, and there is no pollution or emission. It has become a zero-carbon green seawater desalination system of course.
  • the zero-carbon green seawater desalination system Facing the endless sea, rivers and lakes including brackish water, the zero-carbon green seawater desalination system enables human beings to have unlimited clean water and clean energy. Since the system equipment can be large or small, it can be used for many objects such as seaside, ships, Islands, deserts, etc., enable human beings to obtain complete freedom in terms of water resources.
  • the zero-carbon green seawater desalination system can become a typical natural vacuum salt production system. If the concentrated brine is input into the subsequent process, the subsequent chemical production process of four acids and three alkalis can be carried out. Of course, further The use of mvr seawater desalination device and cold power generation equipment can greatly reduce the production cost.
  • the zero-carbon green seawater desalination system can also easily solve all the problems that require liquid separation through distillation processes in various industries, including chemical, food, pharmaceutical, sewage treatment and so on.
  • Fig. 1 is the schematic diagram of an embodiment of the zero-carbon green seawater desalination system of the present invention
  • Icons 1-condensation-evaporator, 2-temperature changing device, 3-first heat exchanger, 4-regeneration heat exchanger, 5-high pressure circuit, 6-low pressure circuit, 7-second heat exchanger, 7A-
  • connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • Fig. 1 is a schematic diagram of an embodiment of the zero-carbon green seawater desalination system of the present invention.
  • the zero-carbon green seawater desalination system includes an mvr seawater desalination device 14, a condensation-evaporator 1, a temperature changing device 2, Rankine cycle turbogenerator system, in which:
  • the Mvr seawater desalination device is used to inhale seawater and discharge concentrated brine and fresh water after the temperature rises;
  • the condensation-evaporator is used to collect the heat energy of the concentrated brine and fresh water discharged from the mvr seawater desalination device, and reduce the temperature of the concentrated brine and fresh water.
  • the heat energy of the discharged concentrated brine, fresh water and exhaust gas heat energy generated by the Rankine cycle turbo-generator system, and the low-temperature steam is generated and sent to the temperature-changing device;
  • the temperature changing device is used to convert the low-temperature steam generated by the condensation-evaporator into high-temperature steam
  • the Rankine cycle turbogenerator system is used to partially convert the thermal energy of the high-temperature and high-pressure steam generated by the temperature changing device into electrical energy, supply it to the mvr seawater desalination device, and transport the excess electric energy to the outside, and the Rankine cycle steam turbine generates electricity
  • the exhaust gas generated by the engine system is condensed by the condenser-evaporator to form a low-temperature liquid, and the low-temperature liquid is pressurized to exchange heat with the high-temperature steam of the temperature-changing device to form high-temperature and high-pressure steam.
  • the Rankine cycle turbogenerator system includes a liquid booster pump 10, a steam turbine 11 and a generator 12, the low-pressure end of the liquid booster pump communicates with the condenser-evaporator, and the liquid booster
  • the high-pressure end of the pressure pump communicates with the low-temperature inlet of the temperature-variable device, and the low-temperature outlet of the temperature-variable device communicates with the steam turbine, and the steam turbine communicates with the generator.
  • the temperature changing device includes a heat exchanger mechanism and a blower 8, the heat exchange mechanism has a low pressure circuit 6 and a high pressure circuit 5, the inlet end of the blower communicates with the low pressure circuit of the heat exchange mechanism, The outlet end of the blower communicates with the high pressure circuit of the heat exchange mechanism.
  • the low-temperature steam enters the low-pressure circuit of the heat exchange mechanism, and returns to the high-pressure circuit of the heat exchange mechanism after being pressurized and heated by the blower.
  • the heat exchange mechanism includes a first heat exchanger 3, a heat recovery heat exchanger 4 and a second heat exchanger 7, and the heat recovery heat exchanger, the second heat exchanger and a blower are connected in series sequentially, and the The first heat exchanger is connected in parallel with the second heat exchanger.
  • the temperature changing device further includes a temperature regulating valve 9, which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. The flow distribution among them, so as to control the temperature range of the high-temperature steam output by the first heat exchanger.
  • a temperature regulating valve 9 which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. The flow distribution among them, so as to control the temperature range of the high-temperature steam output by the first heat exchanger.
  • the heat exchange mechanism further includes a third heat exchanger 7A, and the third heat exchanger is used to increase the temperature difference between the high pressure circuit and the low pressure circuit at the high temperature end of the second heat exchanger.
  • the blower and/or the first heat exchanger and/or the second heat exchanger and/or the third heat exchanger are provided with an insulation layer.
  • the present invention also provides a method for desalinating seawater using the above-mentioned zero-carbon green seawater desalination system, including:
  • the heat energy of the concentrated brine and fresh water discharged from the mvr seawater desalination device is collected through the condensing-evaporator, and the temperature of the concentrated brine and fresh water is lowered.
  • the system working fluid absorbs the heat energy, generates low-temperature steam and sends it to the temperature-changing device;
  • the low-temperature steam generated by the condensation-evaporator is converted into high-temperature steam through a temperature-changing device;
  • the heat energy of the high-temperature steam generated by the variable temperature device is partially converted into electric energy through the Rankine cycle turbo-generator system, which is supplied to the MVR seawater desalination device, and the excess electric energy is sent out;
  • the exhaust gas generated by the Rankine cycle turbogenerator system is condensed by the condenser-evaporator, and the heat is transferred to form a low-temperature liquid.
  • the system working fluid in the condensation-evaporator condensation absorbs the heat to generate low-temperature steam and sends it to the temperature-changing device;
  • the low-temperature liquid After the above-mentioned low-temperature liquid is pressurized, it exchanges heat with the high-temperature steam of the temperature-changing device to form high-temperature and high-pressure steam, which drives the Rankine cycle turbogenerator system to perform a continuous cycle of thermal energy and electrical energy conversion.
  • the step of converting the thermal energy of the high-temperature steam generated by the temperature variable device into electrical energy through the Rankine cycle turbogenerator system includes:
  • the low-temperature liquid in the condensing-evaporator is pumped by the liquid booster pump, and the low-temperature liquid is converted into a low-temperature high-pressure liquid;
  • the high-temperature and high-pressure steam is sent to the Rankine cycle turbogenerator system to drive the Rankine cycle turbogenerator system to generate electricity.
  • the present invention also provides an application of the above method in the separation of zero-carbon materials using an MVR seawater desalination device.
  • the method for desalinating seawater in a zero-carbon green seawater desalination system is applicable to any system that uses an MVR system to separate zero-carbon materials.
  • the zero-carbon green seawater desalination system includes mechanical vapor recompression distillation liquid separation equipment referred to as mvr, that is, mvr seawater desalination device, condensing evaporator, variable temperature device, rankine cycle turbogenerator system, external start power supply, where:
  • the mvr seawater desalination device inhales seawater through the seawater inlet port 15, discharges fresh water through the fresh water discharge port 19, and discharges the concentrated brine through the concentrated salt water discharge port 16. Due to the work of the internal compressor of the mvr, seawater desalination is realized, but at the same time, the discharged fresh water and The temperature of the concentrated brine will also increase accordingly.
  • the fresh water and concentrated brine enter the condensing-evaporator 1 and use the cooling function of the temperature-changing device to absorb the heat in the fresh water and concentrated brine, so that after entering the condensing-evaporator 1
  • the fresh water and concentrated brine cool down to close to 0 degrees, form a temperature difference with the inlet liquid temperature, and send the energy generated by this temperature difference into the condensation-evaporator 1, and exchange heat with the liquid in the condensation-evaporator 1, after the liquid receives the energy Evaporate into low-temperature steam;
  • the variable temperature device can change the low-temperature steam into high-temperature steam, and provide it to the steam turbine, and convert the external energy into electric energy through the generator;
  • the power generated by the generator except for driving the mechanical steam compressor and correspondingly driving the water pumps required for the flow of seawater and fresh water, can be sold as commercial power. For every ton of water evaporated, it can provide no less than 20 Kilowatt hours of electrical energy.
  • the methods for desalinating seawater of the zero-carbon green seawater desalination system include:
  • the steam turbine 11 is a steam turbine, and the isentropic efficiency is required to be above 0.88.
  • the power generation frequency is 50 Hz
  • the synchronous speed of the steam turbine is 3000 rpm
  • the power selection can be from 100 kW to 200 MW.
  • it can also be selected by Several smaller power units are connected in parallel, for example, four 60-megawatt turbogenerators form a 240-megawatt generating set, or more 200-megawatt units can form a larger generating set energy base.
  • the method for desalinating seawater using the zero-carbon green seawater desalination system is as follows:
  • the zero-carbon green seawater desalination system can automatically meet the high temperature of 50 degrees near the equator, and can also adapt to the low temperature of minus 30 degrees in the north. At the north and south poles, it must have the ability to take water from under the ice , 4 degrees of water is fine.
  • the salinity of the discharged concentrated brine should not be too high.
  • 1:1 is used to input two parts of brine with a concentration of 3%, and after separation by the mvr seawater desalination device, the output is fresh water without salt.
  • the other part is concentrated brine with a concentration of 6%.
  • the zero-carbon green seawater desalination system has a daily evaporation capacity of 1 million tons of seawater.
  • the average temperature is generally 24 to 26 degrees, and the average temperature here is 25 degrees, so the energy entering the cooling generator, that is, the power generation of the cooling generator is:
  • the energy consumed by the zero-carbon green seawater desalination system itself is:
  • the electrical power that the system can output externally is:
  • the zero-carbon green seawater desalination system of the present invention uses the waste heat of the mvr and the temperature drop of the liquid as the energy source, which in turn provides the energy source for the mvr.
  • the invention extracts the thermal energy in the separated water and discharged waste liquid of the mvr seawater desalination device, and transmits it to the temperature-variable device and the Rankine cycle steam turbine generator system, and converts this part of low-temperature waste heat energy into electric energy, which is supplied to the steam mechanical compression of the mvr seawater desalination device
  • the machine is used, so that the entire mvr seawater desalination device can be automatically operated without external power supply, and further becomes a zero-carbon green seawater desalination system to output the generated energy to the outside.
  • the external power supply provides starting energy when starting, and can be used as a safe energy backup at the same time, and becomes an external output energy channel when the cooling generator is working.
  • part of the heat energy of the low-temperature liquid can also be directly input between the high-pressure end of the liquid booster pump and the low-temperature inlet end of the temperature-changing device, thereby reducing the capacity of the temperature-changing device and lowering the system temperature. cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明公开零碳绿色海水淡化系统,包括mvr海水淡化装置用于吸入海水,排出温度升高后的浓盐水和淡水;冷凝-蒸发器用于采集浓盐水和淡水热能,降低其温度,系统工质吸收热能和朗肯循环汽轮发电机系统产生的乏气热能,产生低温蒸汽送至变温装置;变温装置用于将低温蒸汽转为高温蒸汽;朗肯循环汽轮发电机系统用于将高温蒸汽热能部分转为电能,供给mvr海水淡化装置使用,多余电能向外输送,乏气经冷凝-蒸发器冷凝形成低温液体,经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽。本发明还公开方法及应用。本发明以mvr中的余热热量作为能量来源没有任何污染和排放。

Description

零碳绿色海水淡化系统、淡化海水方法及应用 技术领域
本发明涉及化工技术领域,具体而言,涉及一种零碳绿色海水淡化系统、淡化海水方法及应用。
背景技术
采用蒸馏法进行液体分离是最古老的也是应用非常广泛的,随着社会发展的要求,人类对蒸馏法由于蒸发量大,有更强烈的应用需求,特别是淡水资源的短缺,将严重阻碍全世界人民迈向更加美好生活的脚步,蒸馏法经过好几代的发展,特别是mvr海水淡化装置效率已经大大提高,也能够进行较大规模的生产,但能源消耗水平高而导致的成本高,还是使mvr海水淡化装置无法大规模的应用于海水淡化而满足人类日益发展的需求。能源和水源是人类发展的最基本资源要求,能源问题解决以后,只要再把水源问题解决好,才有解决其他问题的基础。
发明内容
针对现有技术存在问题中的一个或多个,根据本发明的一个方面,提供一种零碳绿色海水淡化系统,包括mvr海水淡化装置、冷凝-蒸发器、变温装置、朗肯循环汽轮发电机系统;
所述mvr海水淡化装置用于吸入海水,排出温度升高以后的浓盐水和淡水;
所述冷凝-蒸发器用于采集mvr海水淡化装置排出的浓盐水和淡水中的热能,并降低浓盐水和淡水的温度,所述冷凝-蒸发器中配置有系统工质,吸收从mvr海水淡化装置排出的浓盐水、淡水中的热能和朗肯循环汽轮发电机系统产生的乏气热能,并产生低温蒸汽输送至变温装置;
所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转换为高温蒸汽;
所述朗肯循环汽轮发电机系统用于将变温装置产生的高温高压蒸汽的热能部分转换为电能,供给mvr海水淡化装置使用,并将多余电能向外输送,所述朗肯循环汽轮发电机系统产生的乏气经冷凝-蒸发器冷凝后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽。
可选地,所述朗肯循环汽轮发电机系统包括液体加压泵、汽轮机和发电机,所述液体加压泵的低压端与冷凝-蒸发器连通,所述液体加压泵的高压端与变温装置的低温进口端连通,所述变温装置的低温出口端与汽轮机连通,所述汽轮机和发电机连通。
可选地,所述变温装置包括热交换器机构和鼓风机,所述热交换机构具有低压回路和高压回路,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。
可选地,所述热交换机构包括第一热交换器、回热换热器和第二热交换器,所述回热换热器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
可选地,所述变温装置还包括温度调节阀,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围。
可选地,所述热交换机构还包括第三热交换器,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差。
可选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
根据本发明的另一个方面,提供一种利用上述零碳绿色海水淡化系统淡化海水的方法,包括:
通过mvr海水淡化装置吸入海水,排出温度升高以后的浓盐水和淡水;
通过冷凝-蒸发器采集Mvr海水淡化装置排出的浓盐水和淡水中的热能,并降低浓盐水和淡水的温度,系统工质吸收所述热能,产生低温蒸汽输送至变温装置;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转换为高温蒸汽;
通过朗肯循环汽轮发电机系统将变温装置产生的高温蒸汽的热能部分转换为电能,供给mvr海水淡化装置使用,并将多余电能向外输送;
朗肯循环汽轮发电机系统产生的乏气经冷凝-蒸发器冷凝,热量转移后形成低温液体,冷凝-蒸发器冷凝中的系统工质吸收所述热量产生低温蒸汽送至变温装置;
上述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
可选地,所述通过朗肯循环汽轮发电机系统将变温装置产生的高温蒸汽的热能部分转换为电能的步骤包括:
通过液体加压泵抽吸冷凝-蒸发器中的低温液体,将低温液体转换为低温高压液体;
通过变温装置将低温高压液体转换为高温高压蒸汽;
将高温高压蒸汽送至朗肯循环汽轮发电机系统,驱动朗肯循环汽轮发电机系统发电。
可选地,当冷凝-蒸发器相对环境温度温差很大时,部分低温液体热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低系统成本。
根据本发明的第三方面,提供上述零碳绿色海水淡化系统在零碳物料分离中的应用。
根据本发明的第四方面,提供上述淡化海水的方法在零碳物料分离中的应用。
本发明所述零碳绿色海水淡化系统及淡化海水的方法也可用于各行各业的零碳物料分离。
本发明为海水淡化提供全部的所需动力并可向外提供电能,零碳绿色海水淡化系统以mvr中的余热热量作为能量来源,哪怕是从冰下取水,也能产生温差,因此海水淡化的运行成本为负,每蒸发出一吨海水可以发出20个千瓦时以上的电能,卖电比卖水的收益更高,并且没有任何污染和排放,成为当然的零碳绿色海水淡化系统。
面对无穷无尽的大海和江河湖水包括苦咸水,零碳绿色海水淡化系统使人类从此有了无限的清洁水源、清洁能源,由于系统设备可大可小,可用于很多对象如海边,船舶,海岛,沙漠等,使人类在水资源方面获得彻底的自由。
如果提高排放盐水的浓度,零碳绿色海水淡化系统就可成为自然的典型的真空制盐系统,如果将浓盐水输入后道工艺,就可开展四酸三碱的后道化工生产工艺,当然进一步利用mvr海水淡化装置及冷力发电设备可使生产成本大幅降低。
零碳绿色海水淡化系统当然也可以轻松解决各行各业所有需要通过蒸馏工艺进行液体分离的难题,包括行业有化工,食品,药品,污水处理等等。
附图说明
图1是本发明所述零碳绿色海水淡化系统一个实施例的示意图;
图标:1-冷凝-蒸发器,2-变温装置,3-第一热交换器,4-回热热交换器,5-高压回路,6-低压回路,7-第二热交换器,7A-第三热交换器,8-鼓风机,9-温度调节阀,10-液体加压泵,11-汽轮机,12-发电机,13-外部电源,14-mvr海水淡化装置,15-海水进口端,16-浓盐水排出端,17-淡水排出端。
具体实施方式
术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
图1是本发明所述零碳绿色海水淡化系统一个实施例的示意图,如图1所示,所述零碳绿色海水淡化系统包括mvr海水淡化装置14、冷凝-蒸发器1、变温装置2、朗肯循环汽轮发电机系统,其中:
所述Mvr海水淡化装置用于吸入海水,排出温度升高以后的浓盐水和淡水;
所述冷凝-蒸发器用于采集mvr海水淡化装置排出的浓盐水和淡水中的热能,并降低浓盐水和淡水的温度,所述冷凝-蒸发器中配置有系统工质,吸收从mvr海水淡化装置排出的浓盐水、淡水中的热能和朗肯循环汽轮发电机系统产生的乏气热能,并产生低温蒸汽输送至变温装置;
所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转换为高温蒸汽;
所述朗肯循环汽轮发电机系统用于将变温装置产生的高温高压蒸汽的热能部分转换为电能,供给mvr海水淡化装置使用,并将多余电能向外输送,所述朗肯循环汽轮发电机系统产生的乏气经冷凝-蒸发器冷凝后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽。
在一个实施例中,所述朗肯循环汽轮发电机系统包括液体加压泵10、汽轮机11和发电机12,所述液体加压泵的低压端与冷凝-蒸发器连通,所述液体加压泵的高压端与变温装置的低温进口端连通,所述变温装置的低温出口端与汽轮机连通,所述汽轮机和发电机连通。
在一个实施例中,所述变温装置包括热交换器机构和鼓风机8,所述热交换机构具有低压回路6和高压回路5,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。在鼓风机的抽压作用下,低温蒸汽进入热交换机构的低压回路,通过鼓风机加压升温后返回到热交换机构的高压回路,热交换机构的高压回路和低压回路出现温差,高压回路对低压回路进行加热,实现低压回路增焓,高压回路降焓。
优选地,所述热交换机构包括第一热交换器3、回热换热器4和第二热 交换器7,所述回热换热器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
优选地,所述变温装置还包括温度调节阀9,温度调节阀9被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围。
优选地,所述热交换机构还包括第三热交换器7A,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差。
优选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
除了变温装置外,其他与环境温度相差较大的其他构件也具有保温层。
本发明还提供利用上述零碳绿色海水淡化系统淡化海水的方法,包括:
通过mvr海水淡化装置吸入海水,排出温度升高以后的浓盐水和淡水;
通过冷凝-蒸发器采集mvr海水淡化装置排出的浓盐水和淡水中的热能,并降低浓盐水和淡水的温度,系统工质吸收所述热能,产生低温蒸汽输送至变温装置;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转换为高温蒸汽;
通过朗肯循环汽轮发电机系统将变温装置产生的高温蒸汽的热能部分转换为电能,供给mvr海水淡化装置使用,并将多余电能向外输送;
朗肯循环汽轮发电机系统产生的乏气经冷凝-蒸发器冷凝,热量转移后形成低温液体,冷凝-蒸发器冷凝中的系统工质吸收所述热量产生低温蒸汽送至变温装置;
上述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温 高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
可选地,所述通过朗肯循环汽轮发电机系统将变温装置产生的高温蒸汽的热能部分转换为电能的步骤包括:
通过液体加压泵抽吸冷凝-蒸发器中的低温液体,将低温液体转换为低温高压液体;
通过变温装置将低温高压液体转换为高温高压蒸汽;
将高温高压蒸汽送至朗肯循环汽轮发电机系统,驱动朗肯循环汽轮发电机系统发电。
本发明还提供一种上述方法在利用mvr海水淡化装置进行零碳物料分离的应用,上述零碳绿色海水淡化系统淡化海水的方法适用于任何进行利用mvr系统进行零碳物料分离的系统。
在一个实施例中,零碳绿色海水淡化系统包括简称为mvr的机械蒸汽再压缩蒸馏法液体分离设备即mvr海水淡化装置、冷凝蒸发器、变温装置、朗肯循环汽轮发电机系统、外部启动电源,其中:
mvr海水淡化装置通过海水进口端15吸入海水,通过淡水排出端19排出淡水,通过浓盐水排出端16排出浓盐水,由于mvr内部压缩机的作功,实现了海水淡化,但同时排出的淡水和浓盐水的温度也因此功会升高,温度升高以后的淡水和浓盐水进入冷凝-蒸发器1利用变温装置的制冷功能,吸收淡水和浓盐水中的热量,使进入冷凝-蒸发器1后的淡水和浓盐水降温到接近0度,与进液温度形成温差,并将此温差产生的能量送入冷凝-蒸发器1,与冷凝-蒸发器1内的液体进行热交换,液体接收能量以后蒸发成为低温蒸汽;
变温装置能将低温蒸汽变成高温蒸汽,并提供给汽轮机,通过发电机 将外部能量转变为电能的装置;
发电机所发电能,除用于驱动机械蒸汽压缩机和相应驱动海水,淡水流动所需配置的水泵以外的电能可作为商业电源销售,每蒸发一吨水,可以向系统外提供不低于20千瓦时的电能。
上述零碳绿色海水淡化系统淡化海水的方法包括:
S1:首先利用外部电源13按正常程序启动mvr海水淡化装置,当mvr海水淡化装置淡水产水量得到目标值时,启动由外部电源13供电的变温装置鼓风机8,使温度升高以后的淡水和浓盐水进入冷凝-蒸发器1,将温度降到接近0度,然后再通过浓盐水排出端16和淡水输出端17排出;
S2:冷凝-蒸发器1中的低温工质液体,受到淡水和浓盐水的加热,使液体蒸发变成低温蒸汽,变温装置进一步将低温蒸汽变成高温蒸汽并提供给汽轮发电机11的高温高压回路;
S3:在汽轮机11中,高温高压介质进行等熵膨胀带着汽轮机11旋转使发电机同时发出电能,开始向系统内部需要用电的装置提供能量,并同时向外输出电能;
S4:循环S1-S3,并根据进水温度和负荷变化,调节冷力发电机的发电量,直到系统稳定运行;
在一个实施例中,汽轮机11采用蒸汽轮机,等熵效率要求达到0.88以上,当发电频率为50赫兹时汽轮机同步转速为3000rpm,功率选择可以从100千瓦到200兆瓦,为了冗余也可以由几台较小功率的并联组成,比如由4台60兆瓦的汽轮发电机组成240兆瓦发电机组,也可肉多台200兆瓦的机组,组成更大的发电机组能源基地。
在一个实施例中,运用该零碳绿色海水淡化系统淡化海水的方法如下:
运用绿色冷媒r32或水做介质,零碳绿色海水淡化系统能自动满足赤道附近50度的高温,同时也能适应北方零下30度的低温,在南北极时,必须具备有从冰下取水的能力,4度的水也行。
为了减少浓盐水对环境的影响,排放的浓盐水咸度不宜太高,一般取1:1,输入两份浓度为3%的盐水,经mvr海水淡化装置分离以后输出一份为淡水没有盐,另外一份为浓度为6%的浓盐水。
如果待淡化的盐水水温为15度,排出的淡水和浓盐水温度都是0度,零碳绿色海水淡化系统每天蒸发海水的能力为100万吨,按照1:2的比例,每天接入系统的海水量为200万吨,每秒钟进入零碳绿色海水淡化系统的海水流量为2000000*1000÷24÷3600=23148kg;根据目前最先进的mvr海水淡化系统,淡化一吨海水的电能消耗不会超过20千瓦小时,所消耗的热能除由于保温不太好流失掉的以外,其他电能都转变为排出的淡水和浓盐水水温的升高,如果进入淡化的盐水水温为15度,则排出的淡水和浓盐水,平均温度一般在24~26度,此处取平均值25度,于是进入冷力发电机的能量也就是冷力发电机的发电量为:
N=M*C*△T=23148*4.18*25*=242万KW;
零碳绿色海水淡化系统自身需要消耗的能量为:
N=M*C*△T=23148*4.18*10*=97万KW;
系统可对外输出的电力功率为:
242-97=145万KW;
以每年350天计,全年可发电能为145*24*350=122亿度;
以每年350天计,全年可产淡水100*350=3.5亿吨。
本发明零碳绿色海水淡化系统以mvr的余热和液体的温度降作为能量 来源,反过来又为mvr提供了能量来源。
本发明提取mvr海水淡化装置分离水和排出废料液中的热能,传送给由变温装置和朗肯循环汽轮发电机系统,将这部分低温余热能转变成电能,供应mvr海水淡化装置的蒸汽机械压缩机使用,从而不需要外部提供电能就可以实现整个mvr海水淡化装置自动运转,进一步成为零碳绿色海水淡化系统向外部输出所发电能。外部电源在启动时提供启动能量,同时可作为安全能源备份,在冷力发电机工作时成为向外输出能量通道。可选地,当冷凝-蒸发器相对环境温度温差很大时,部分低温液体热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低系统成本。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种零碳绿色海水淡化系统,其特征在于:包括mvr海水淡化装置、冷凝-蒸发器、变温装置、朗肯循环汽轮发电机系统;
    所述mvr海水淡化装置用于吸入海水,排出温度升高以后的浓盐水和淡水;
    所述冷凝-蒸发器用于采集mvr海水淡化装置排出的浓盐水和淡水中的热能,并降低浓盐水和淡水的温度,所述冷凝-蒸发器中配置有系统工质,吸收从mvr海水淡化装置排出的浓盐水、淡水中的热能和朗肯循环汽轮发电机系统产生的乏气热能,并产生低温蒸汽输送至变温装置;
    所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转换为高温蒸汽;
    所述朗肯循环汽轮发电机系统用于将变温装置产生的高温高压蒸汽的热能部分转换为电能,供给mvr海水淡化装置使用,并将多余电能向外输送,所述朗肯循环汽轮发电机系统产生的乏气经冷凝-蒸发器冷凝后形成低温液体,所述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽。
  2. 根据权利要求1所述的零碳绿色海水淡化系统,其特征在于:所述朗肯循环汽轮发电机系统包括液体加压泵、汽轮机和发电机,所述液体加压泵的低压端与冷凝-蒸发器连通,所述液体加压泵的高压端与变温装置的低温进口端连通,所述变温装置的低温出口端与汽轮机连通,所述汽轮机和发电机连通。
  3. 根据权利要求1所述的零碳绿色海水淡化系统,其特征在于:所述变温装置包括热交换器机构和鼓风机,所述热交换机构具有低压回路和高压回路,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。
  4. 根据权利要求3所述的零碳绿色海水淡化系统,其特征在于:所述 热交换机构包括第一热交换器、回热换热器和第二热交换器,所述回热换热器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
  5. 根据权利要求4所述的零碳绿色海水淡化系统,其特征在于:所述变温装置还包括温度调节阀,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围。
  6. 根据权利要求4所述的零碳绿色海水淡化系统,其特征在于:所述热交换机构还包括第三热交换器,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差。
  7. 根据权利要求2-5所述的零碳绿色海水淡化系统,其特征在于:所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
  8. 一种利用权利要求1所述的零碳绿色海水淡化系统淡化海水的方法,其特征在于:包括:
    通过mvr海水淡化装置吸入海水,排出温度升高以后的浓盐水和淡水;
    通过冷凝-蒸发器采集Mvr海水淡化装置排出的浓盐水和淡水中的热能,并降低浓盐水和淡水的温度,系统工质吸收所述热能,产生低温蒸汽输送至变温装置;
    通过变温装置将冷凝-蒸发器产生的低温蒸汽转换为高温蒸汽;
    通过朗肯循环汽轮发电机系统将变温装置产生的高温蒸汽的热能部分转换为电能,供给mvr海水淡化装置使用,并将多余电能向外输送;
    朗肯循环汽轮发电机系统产生的乏气经冷凝-蒸发器冷凝,热量转移后形成低温液体,冷凝-蒸发器冷凝中的系统工质吸收所述热量产生低温蒸汽 送至变温装置;
    上述低温液体经加压后与变温装置的高温蒸汽进行热交换后形成高温高压蒸汽,驱动朗肯循环汽轮发电机系统进行热能电能转换的连续循环。
  9. 根据权利要求8所述的方法,其特征在于:所述通过朗肯循环汽轮发电机系统将变温装置产生的高温蒸汽的热能部分转换为电能的步骤包括:
    通过液体加压泵抽吸冷凝-蒸发器中的低温液体,将低温液体转换为低温高压液体;
    通过变温装置将低温高压液体转换为高温高压蒸汽;
    将高温高压蒸汽送至朗肯循环汽轮发电机系统,驱动朗肯循环汽轮发电机系统发电;
    可选地,当冷凝-蒸发器相对环境温度温差很大时,部分低温液体热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低系统成本。
  10. 一种权利要求1-7中任一所述的零碳绿色海水淡化系统或8或9所述的方法在零碳物料分离中的应用。
PCT/CN2022/076892 2021-09-18 2022-02-18 零碳绿色海水淡化系统、淡化海水方法及应用 WO2023040187A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122295641 2021-09-18
CN202111110901.2 2021-09-18
CN202111110901.2A CN114249368A (zh) 2021-09-18 2021-09-18 零碳绿色海水淡化系统、淡化海水方法及应用
CN202122295641.2 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040187A1 true WO2023040187A1 (zh) 2023-03-23

Family

ID=85602093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076892 WO2023040187A1 (zh) 2021-09-18 2022-02-18 零碳绿色海水淡化系统、淡化海水方法及应用

Country Status (1)

Country Link
WO (1) WO2023040187A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800590A (zh) * 2005-11-30 2006-07-12 孟英志 发电方法及其发电装置
US20160083266A1 (en) * 2013-06-05 2016-03-24 Ohkawara Kakohki Co., Ltd. Seawater desalination device and seawater desalination method
CN107098422A (zh) * 2017-04-27 2017-08-29 江苏科技大学 一种船舶余热淡化系统及淡化方法
CN207943899U (zh) * 2018-02-11 2018-10-09 哈尔滨理工大学 一种mvr海水淡化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800590A (zh) * 2005-11-30 2006-07-12 孟英志 发电方法及其发电装置
US20160083266A1 (en) * 2013-06-05 2016-03-24 Ohkawara Kakohki Co., Ltd. Seawater desalination device and seawater desalination method
CN107098422A (zh) * 2017-04-27 2017-08-29 江苏科技大学 一种船舶余热淡化系统及淡化方法
CN207943899U (zh) * 2018-02-11 2018-10-09 哈尔滨理工大学 一种mvr海水淡化系统

Similar Documents

Publication Publication Date Title
JP3681434B2 (ja) コージェネレーション装置およびコンバインドサイクル発電装置
CN101696643B (zh) 热电联产低温热能回收装置及其回收方法
US8250847B2 (en) Combined Brayton-Rankine cycle
US4093868A (en) Method and system utilizing steam turbine and heat pump
Mohammadi et al. Energy and exergy comparison of a cascade air conditioning system using different cooling strategies
CN210345951U (zh) 气悬浮热泵机组
CN201560812U (zh) 热电联产低温热能回收装置
CN104153946B (zh) 一种综合利用风能和海水热能的冷热电水多联产系统
CN114249368A (zh) 零碳绿色海水淡化系统、淡化海水方法及应用
KR20140085001A (ko) 선박의 폐열을 이용한 에너지 절감시스템
JP2003232226A (ja) ガスタービン発電設備
JPS61149507A (ja) 熱回収装置
WO2023040187A1 (zh) 零碳绿色海水淡化系统、淡化海水方法及应用
RU2723264C1 (ru) Установка для выработки тепловой и механической энергии и способ ее регулирования
WO2014047676A1 (en) Cooling of exhaust gas of a power generation system
CN101397983B (zh) 工质相变焓差海水温差动力机
CN101025146A (zh) 利用常温下水中的热能的发电系统装置
Lazzarin Heat pumps in industry—I. Equipment
CN109681325A (zh) 零碳排放的天然气-超临界co2联合循环发电工艺
KR20150111079A (ko) Orc 발전시스템
US20110278859A1 (en) Cooling heat generating equipment
KR20140086203A (ko) 선박의 폐열을 이용한 에너지 절감시스템
KR20140085003A (ko) 선박의 폐열을 이용한 에너지 절감시스템
KR20180056148A (ko) 복합화력발전시스템
KR101403174B1 (ko) 열에너지를 전환하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE