WO2023040093A1 - 一种精确表征多层电路板热机械材料参数的方法 - Google Patents

一种精确表征多层电路板热机械材料参数的方法 Download PDF

Info

Publication number
WO2023040093A1
WO2023040093A1 PCT/CN2021/138055 CN2021138055W WO2023040093A1 WO 2023040093 A1 WO2023040093 A1 WO 2023040093A1 CN 2021138055 W CN2021138055 W CN 2021138055W WO 2023040093 A1 WO2023040093 A1 WO 2023040093A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
thermomechanical
parameters
multilayer circuit
displacement distribution
Prior art date
Application number
PCT/CN2021/138055
Other languages
English (en)
French (fr)
Inventor
钟诚
鲁济豹
李呈龙
彭韬
李刚
朱朋莉
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023040093A1 publication Critical patent/WO2023040093A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level

Definitions

  • PCB printed circuit board
  • PWB printed wire board
  • the printed circuit board contains metal conductors as the lines connecting electronic components, and dielectric materials are placed between the metal conductors to achieve insulation and avoid signal crosstalk.
  • the printed circuit board as a whole needs to have sufficient strength and rigidity to avoid large mechanical deformation.
  • core layer is mainly composed of glass fiber and resin. , Filling composition.
  • printed circuit boards with organic materials as the main body have become the mainstream of the industry.
  • thermal physical parameters of the printed circuit board such as modulus, thermal expansion coefficient, Poisson's ratio, etc., are one of the main factors affecting the overall deformation of the package and the reliability of the solder joints.
  • thermomechanical analyzer Dynamic thermomechanical analyzer
  • TMA Thermal Mechanical Analyzer
  • the material parameters of the microscopic local area of the printed circuit board can also be obtained through microscopic characterization techniques such as nanoindentation and atomic force microscopy.
  • the printed circuit board is actually composed of a multi-layer structure, as shown in Figure 1(a), which mainly includes a copper wire layer and a dielectric layer.
  • the thermal physical parameters of the two (such as modulus, thermal expansion coefficient) there is a big difference, the thermal physical parameters of the printed circuit board as a whole can be regarded as a superimposed combination of the two.
  • the copper wire layer has a certain circuit pattern, as shown in Figure 1(b), that is, only a part of the copper wire layer is composed of copper, which can be characterized by the residual copper ratio.
  • the residual copper ratio represents the ratio of the area occupied by copper wires to the total area of each layer. In fact, the remaining copper ratio of each layer will be different, which is determined by the requirements of electrical interconnection and heat dissipation.
  • the purpose of the present invention is to provide a low-cost and high-precision macroscopic characterization method to obtain detailed thermal physical property parameters of a printed circuit board with a multilayer structure.
  • thermomechanical physical parameters of fine materials in each layer are usually not easy to characterize.
  • the present invention combines two-dimensional digital speckle correlation experiment and finite element simulation analysis, compares the real side displacement results and simulated displacement distribution of the chip package cross-section, and based on the fine structure of the multilayer circuit board, reversely obtains the fine material thermomechanical parameters of each layer. physical parameters.
  • the invention provides a low-cost and high-precision characterization method for fine thermomechanical material parameters of each layer of a multilayer printed circuit board.
  • the object of the present invention is to design and provide a method for accurately characterizing the parameters of the thermomechanical material of a multilayer circuit board.
  • the present invention combines two-dimensional digital speckle correlation experiments and finite element simulation analysis, and compares the measured displacement results and simulated displacement distribution of the chip package cross-section, and obtains its detailed thermomechanical physical property parameters based on the fine structure of the multilayer circuit board.
  • step (2) Obtain the structure and actual size of the sample according to step (2), and construct the model in the simulation model software;
  • the method for accurately characterizing the thermophysical parameters of a multilayer circuit board thermomechanical material is characterized in that the simple binary or ternary structure in the step (1) is a multilayer circuit board, a hard material and an adhesive Material composition.
  • thermomechanical material of the multilayer circuit board The method for accurately characterizing the thermophysical parameters of the thermomechanical material of the multilayer circuit board is characterized in that the hard material includes Si sheet and Cu sheet.
  • the method for accurately characterizing the thermo-physical parameters of a thermomechanical material of a multilayer circuit board is characterized in that the method characterized in the step (3) includes a two-dimensional digital correlation analysis method, preferably a two-dimensional digital speckle method.
  • thermomechanical parameters of a multilayer circuit board thermomechanical material is characterized in that the heating temperature in the step (3) is -40-260°C.
  • thermophysical parameters of the thermomechanical material of the multilayer circuit board is characterized in that the simulation model software in the step (4) includes Abaqus.
  • the method for accurately characterizing the thermophysical parameters of the thermomechanical material of the multilayer circuit board is characterized in that the model in the step (4) is a package structure grid model including the fine structure of the multilayer circuit board.
  • thermomechanical material of the multilayer circuit board The method for accurately characterizing the thermophysical parameters of the thermomechanical material of the multilayer circuit board is characterized in that the specific operation of inversion in the step (5) is: the displacement distribution B is compared with the displacement distribution A, if the two If they are inconsistent, adjust the thermomechanical parameters of the input thermomechanical material, and then repeat steps (5)-(6); if the two are consistent, it means that the input thermomechanical parameters are correct, and the thermomechanical material of the multilayer circuit board can be obtained Thermophysical parameters.
  • thermophysical parameters of the thermomechanical material of the multilayer circuit board The application of the method in obtaining the thermophysical parameters of the thermomechanical material of the multilayer circuit board.
  • thermomechanical physical parameters of the printed circuit board are obtained by inversion.
  • the accuracy of the results is high, and the accuracy of the data has been verified during the data acquisition process.
  • Figure 1 is a schematic diagram of the structure, in which (a) is a schematic diagram of the multilayer structure of the printed circuit board, and (b) is a schematic diagram of the structure of the copper wire layer;
  • Figure 2 is a schematic diagram of the printed circuit board and chip assembly structure, in which (a) schematic diagram of the cutting position of the package section, (b) a schematic diagram of the binary and ternary structure, (c) the image of the package section under an optical microscope, (d) A finite element simulation model including the multilayer structure of the printed circuit board;
  • Figure 3 is a comparison diagram of experimental simulation results, in which (a) digital speckle experiment-horizontal deformation diagram, (b) finite element simulation-horizontal deformation diagram, (c) digital speckle experiment-vertical deformation diagram, (d ) Finite element simulation - vertical deformation diagram;
  • Fig. 4 is a flow chart of the method of the present invention.
  • Section sample preparation Higher-quality sections are made by cutting, grinding, polishing, etc., as shown in Figure 2(c), and black and white spots are sprayed on the sections.
  • the simulation model is constructed in Abaqus or related software, in which the printed circuit board builds a multi-layer fine structure according to the actual size, as shown in Figure 2(d).
  • FIG. 4 is a flow chart of the method of the present invention. After certain debugging, the displacement distribution results of simulation and experiment are consistent, and the fine material thermophysical parameters of the multilayer printed circuit board can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

一种精确表征多层电路板热机械材料参数的方法,属于热机械材料参数技术领域。该方法包括:(1)制备简易二元或三元结构多层电路板;(2)制得高质量截面,在截面上喷涂黑白相间的斑点,得到样品;(3)对样品加热,通过表征获得截面的位移分布A;(4)根据样品的结构和实际尺寸,在仿真模型软件中构建模型;(5)输入热机械材料的热物性参数,设置相同的加热的温度,进行有限元仿真计算,获得截面的位移分布B;(6)将位移分布B与位移分布A相比较,反推获得多层电路板热机械材料热物性参数。采用实验与仿真位移对比的方法,反推获得印制电路板的详细热机械物性参数,结果准确性高,数据获取过程已经对数据的准确性进行了验证。

Description

一种精确表征多层电路板热机械材料参数的方法 技术领域
本发明属于材料参数表征技术领域,具体涉及一种精确表征多层电路板热机械材料参数的方法。
背景技术
随着国民经济增长的需求以及信息技术的飞速发展,电子产品不断向小型化、轻量化、高性能、多功能、低成本等方向发展,而几乎所有的电子产品都需要印制电路板的支持。印制电路板的常用英文缩写为PCB (Printed circuit board)或PWB (Printed wire board),是芯片与电子元器件的支撑体。印制电路板内包含金属导体作为连接电子元器件的线路,并且在金属导体间安置介电材料,实现绝缘以及避免信号串扰的需要。此外,印制电路板整体需要具有足够的强度与刚度以避免大幅机械变形,目前主要通过在印制电路板中部设置较厚的“核心层”予以解决,“核心层”主要由玻纤与树脂、填料组成。当前,以有机材料为主体的印制电路板已成为业界主流。
在封装结构中,由于印制电路板与硅芯片、金属盖、环氧塑封料、焊接材料、底部填充胶等组元之间的材料特性不同,比如热膨胀系数、杨氏模量等物性参数存在较大差异。这导致封装整体在升温回流或温度循环等过程中产生变形,并且在各连接界面及焊点等部位产生应力。一旦变形或应力超过了材料及界面所能承受的阈值,很可能会导致封装结构发生失效,并引发难以估计的后果。因此,在封装设计环节即需要提前评估封装结构的热机械可靠性。其中,印制电路板的热物性参数,如模量、热膨胀系数、泊松比等,是影响封装整体变形及焊点可靠性的主要因素之一。
目前国内外对于印制电路板的材料表征及可靠性已做了比较多的研究,比如采用动态热机械分析仪(Dynamic thermomechanical analyzer, DMA)表征多层印制电路板的宏观整体模量;采用热机械分析仪(Thermal Mechanical Analyzer, TMA)表征印制电路板的宏观整体热膨胀系数等,并且通过多种可靠性试验(如温度循环,多次回流,高温高湿等)或有限元仿真方法,来分析含有印制电路板结构的封装结构的具体失效现象及原因。此外,还可通过纳米压痕、原子力显微镜等微观表征技术,获得印制电路板微观局部区域的材料参数。基于导电、导热、机械支撑及环境保护等多方面需求,印制电路板实际上由多层结构构成,如图1(a),主要包括铜导线层与介质层,二者的热物性参数(如模量、热膨胀系数)存在较大差异,印制电路板整体的热物性参数可看作二者的叠加组合。进一步,铜导线层具有一定的线路图案,如图1(b),即在铜导线层只有一部分是由铜组成,可以用残铜率来表征。残铜率即代表铜线占据的面积占各层总体面积的比值。实际上每层的残铜率会各不相同,这由电互连及散热等需求所决定。
现有技术如动态热机械分析仪、热机械分析仪,可以表征印制电路板的整体模量及热膨胀系数,但无法考虑印制电路板实际的多层精细结构及各层的材料物性参数,这可能会在后续的有限元仿真计算中导致一定的偏差。而如纳米压痕、原子力显微镜等微观表征技术,可以获得微观局部区域的材料参数。然而,一方面这类微观表征技术成本高昂,另一方面,由于微观区域材料参数往往散布较大,易受测试条件及样品质量等影响,亦可能导致与实际宏观物性参数存在偏差。
本发明目的在于提供一种低成本高精度的宏观表征方法,以获得多层结构的印制电路板的详细热物性参数。
印制电路板具有多层结构,各层的精细材料热机械物性参数通常不易表征。本发明结合二维数字散斑相关实验与有限元仿真分析,通过对比芯片封装截面的实侧位移结果与仿真位移分布,并且基于多层电路板精细结构,反推获得各层的精细材料热机械物性参数。本发明提供了一种低成本高精度的面向多层印制电路板各层精细热机械材料参数的表征方法。
技术问题
针对上述现有技术中存在的问题,本发明的目的在于设计提供一种精确表征多层电路板热机械材料参数的方法。本发明结合二维数字散斑相关实验与有限元仿真分析,通过对比芯片封装截面的实测位移结果与仿真位移分布,基于多层电路板精细结构,反推获得它的详细热机械物性参数。
技术解决方案
为了实现上述目的,本发明采用以下技术方案:
一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于包括以下步骤:
(1)制备简易二元或三元结构多层电路板;
(2)制得高质量截面,在截面上喷涂黑白相间的斑点,得到样品;
(3)对步骤(2)得到的样品加热,通过表征获得截面的位移分布A;
(4)根据步骤(2)得到样品的结构和实际尺寸,在仿真模型软件中构建模型;
(5)在仿真模型软件中输入热机械材料的热物性参数,设置与步骤(3)相同的加热的温度,进行有限元仿真计算,获得截面的位移分布B;
(6)将步骤(5)得到的位移分布B与步骤(3)得到的位移分布A相比较,反推获得多层电路板热机械材料热物性参数。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(1)中简易二元或三元结构为多层电路板与硬质材料及粘接胶材料构成。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述硬质材料包括Si片、Cu片。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(2)中制得高质量截面的方法包括切割、研磨或抛光中的一种或多种。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(3)中表征的方法包括二维数字相关分析法,优选为二维数字散斑方法。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(3)中加热的温度为-40-260℃。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(4)中仿真模型软件包括Abaqus。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(4)中模型为包含多层电路板精细结构的封装结构网格模型。
所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(5)中反推的具体操作为:位移分布B与位移分布A相比较,若二者不一致,则调整输入的热机械材料的热物性参数,再重复步骤(5)-(6);若二者一致,则说明输入的热物性参数正确,即可获得多层电路板的热机械材料热物性参数。
所述的方法在获得多层电路板热机械材料热物性参数中的应用。
有益效果
本发明具有以下有益效果:
(1)采用实验与仿真位移对比的方法,反推获得印制电路板的详细热机械物性参数,结果准确性高,数据获取过程已经对数据的准确性进行了验证。
(2)关注宏观程度影响,可以排除微观因素干扰。
(3)相比微观力学表征方案,采用数字图像实验与仿真模拟分析的成本相对较低。
附图说明
图1为结构示意图,其中(a)印制电路板的多层结构示意,(b)铜导线层结构示意图;
图2为印制电路板与芯片组装结构示意图,其中,(a)封装截面切割位置示意图,(b)二元与三元结构示意图,(c)封装截面在光学显微镜下的图像,(d)包含印制电路板多层结构的有限元仿真模型;
图3为实验仿真结果比较图,其中(a)数字散斑实验-水平方向变形图,(b)有限元仿真-水平方向变形图,(c)数字散斑实验-垂直方向变形图,(d)有限元仿真-垂直方向变形图;
图4为本发明方法流程图。
本发明的最佳实施方式
以下将通过附图和实施例对本发明作进一步说明。
实施例1:
本发明以印制电路板与芯片组装的样品为例,采用如下技术方案表征多层印制电路板的精细材料热物性参数:
(1)实验制样。将研究的印制电路板与芯片组装,如图2(a),或制备成简易二元或三元结构,如图2(b)。
(2)截面制样。通过切割、研磨、抛光等制得较高质量截面, 如图2(c),并在截面上喷涂黑白相间的斑点。
(3)实验表征。对样品加热,通过二维数字相关分析法分析截面的位移分布,如图3(a)与3(c)。
(4)仿真建模。根据实际的实验样品结构,在Abaqus或相关软件进行仿真模型构建,其中印制电路板按照实际尺寸构建多层精细结构,如图2(d)。
(5)仿真迭代计算。在Abaqus软件中输入印制电路板的精细材料热物性参数,设置与实验相同的加热条件,进行有限元仿真计算,获得截面的位移分布,如图3(b)与3(d)。将仿真得到的截面位移分布与实际截面位移分布相比较,若二者不一致,则适当调整印制电路板的输入参数再提交计算;若二者一致,则说明输入的热物性材料参数正确,即可获得多层印制电路板的精细材料热物性参数。
本发明经验证可行,如图4所示,为本发明方法流程图,经过一定的调试,仿真与实验的位移分布结果一致,可以得到多层印制电路板的精细材料热物性参数。

Claims (10)

  1. 一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于包括以下步骤:
    (1)制备简易二元或三元结构;
    (2)制得高质量截面,在截面上喷涂黑白相间的斑点,得到样品;
    (3)对步骤(2)得到的样品加热,通过表征获得截面的位移分布A;
    (4)根据步骤(2)得到样品的结构和实际尺寸,在仿真模型软件中构建模型;
    (5)在仿真模型软件中输入热机械材料的热物性参数,设置与步骤(3)相同的加热的温度,进行有限元仿真计算,获得截面的位移分布B;
    (6)将步骤(5)得到的位移分布B与步骤(3)得到的位移分布A相比较,反推获得多层电路板热机械材料热物性参数。
  2. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(1)中简易二元或三元结构为多层电路板与硬质材料及粘接胶材料构成。
  3. 如权利要求2所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述硬质材料包括Si片、Cu片。
  4. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(2)中制得高质量截面的方法包括切割、研磨或抛光中的一种或多种。
  5. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(3)中表征的方法包括二维数字相关分析法,优选为二维数字散斑方法。
  6. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(3)中加热的温度为-40-260℃。
  7. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(4)中仿真模型软件包括Abaqus。
  8. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(4)中模型为包含多层电路板精细结构的封装结构网格模型。
  9. 如权利要求1所述的一种精确表征多层电路板热机械材料热物性参数的方法,其特征在于所述步骤(5)中反推的具体操作为:位移分布B与位移分布A相比较,若二者不一致,则调整输入的热机械材料的热物性参数,再重复步骤(5)-(6);若二者一致,则说明输入的热物性参数正确,即可获得多层电路板的热机械材料热物性参数。
  10. 如权利要求1所述的方法在获得多层电路板热机械材料热物性参数中的应用。
PCT/CN2021/138055 2021-09-16 2021-12-14 一种精确表征多层电路板热机械材料参数的方法 WO2023040093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111086367.6A CN113836765A (zh) 2021-09-16 2021-09-16 一种精确表征多层电路板热机械材料参数的方法
CN202111086367.6 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023040093A1 true WO2023040093A1 (zh) 2023-03-23

Family

ID=78959541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138055 WO2023040093A1 (zh) 2021-09-16 2021-12-14 一种精确表征多层电路板热机械材料参数的方法

Country Status (2)

Country Link
CN (1) CN113836765A (zh)
WO (1) WO2023040093A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127441A (ja) * 1999-10-25 2001-05-11 Toppan Printing Co Ltd 多層プリント配線板用絶縁性樹脂組成物及び多層プリント配線板
CN103149233A (zh) * 2013-01-28 2013-06-12 中国科学院工程热物理研究所 测试材料热物性参数的装置及方法
CN110673015A (zh) * 2019-09-28 2020-01-10 西南电子技术研究所(中国电子科技集团公司第十研究所) 模拟芯片发热功率及表面温度的测试方法
CN112016227A (zh) * 2020-08-14 2020-12-01 北京轩宇空间科技有限公司 一种SiP微系统的可靠性分析方法
CN112613188A (zh) * 2020-12-31 2021-04-06 西安紫光国芯半导体有限公司 基于等效包含法的半导体器件热结构仿真分析方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0305146D0 (en) * 2003-03-06 2003-04-09 Coated Conductors Consultancy Superconducting coil testing
CN101545849B (zh) * 2009-05-08 2011-01-26 中国科学院化学研究所 一种用无损检测与有限元模拟结合定量分析材料界面性能的方法
CN113139309B (zh) * 2021-03-19 2022-12-13 中国电子科技集团公司第二十九研究所 封装单元bga板级互连交变温度载荷下数值仿真方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127441A (ja) * 1999-10-25 2001-05-11 Toppan Printing Co Ltd 多層プリント配線板用絶縁性樹脂組成物及び多層プリント配線板
CN103149233A (zh) * 2013-01-28 2013-06-12 中国科学院工程热物理研究所 测试材料热物性参数的装置及方法
CN110673015A (zh) * 2019-09-28 2020-01-10 西南电子技术研究所(中国电子科技集团公司第十研究所) 模拟芯片发热功率及表面温度的测试方法
CN112016227A (zh) * 2020-08-14 2020-12-01 北京轩宇空间科技有限公司 一种SiP微系统的可靠性分析方法
CN112613188A (zh) * 2020-12-31 2021-04-06 西安紫光国芯半导体有限公司 基于等效包含法的半导体器件热结构仿真分析方法和装置

Also Published As

Publication number Publication date
CN113836765A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
Mertol Application of the Taguchi method on the robust design of molded 225 plastic ball grid array packages
Wang et al. Substrate trace modeling for package warpage simulation
Huang et al. Analysis of warpage and stress behavior in a fine pitch multi-chip interconnection with ultrafine-line organic substrate (2.1 D)
Pan et al. An analysis of solder joint formation and self-alignment of chip capacitors
Jhou et al. Thermal stresses and deformations of Cu pillar flip chip BGA package: Analyses and measurements
Hu et al. Micromechanical analysis of copper trace in printed circuit boards
WO2023040093A1 (zh) 一种精确表征多层电路板热机械材料参数的方法
Zhong Assembly and reliability of flip chip on boards using ACAs or eutectic solder with underfill
Maia Filho et al. Optimization of PCB build-up layer configuration for electronic assemblies with active embedded components in the board
Verma et al. On the design parameters of flip-chip PBGA package assembly for optimum solder ball reliability
US11166401B2 (en) Dye and pry process for surface mount technology dual in-line memory module
Petriccione et al. Warpage studies of HDI test vehicles during various thermal profilings
Szőke et al. Component model calibration using transient thermal test methods and multiple measurement setups
Huang et al. Warpage and curvature determination of PCB with DIMM socket during reflow process by strain gage measurement
Albrecht et al. Impact of warpage effects on quality and reliability of solder joints
Xu et al. Research of underfill delamination in flip chip by the J-integral method
Ding et al. Parametric study of warpage in printed wiring board assemblies
Refai-Ahmed et al. Electronic PCB and PKG thermal stress analysis
Kościelski et al. Materials and soldering challenges in lead-free package-on-package (PoP) technology
Li et al. Improving board assembly yield through PBGA warpage reduction
Chang et al. A novel metal scheme and bump array design configuration to enhance advanced Si packages CPI reliability performance by using finite element modeling technique
Wang et al. Study on warpage of the AlSiC substrate in reflow soldering process of the IGBT module
Shih et al. Experimental and Numerical Investigation of Delamination Between Epoxy Molding Compound (EMC) and Metal in Encapsulated Microelectronic Packages
Haodong et al. Thermal fatigue life of ceramic based BGA solder joints after reflux warping
Nguyen et al. A Simulation Study On SSD PCB Warpage During Reflow: From Understanding To Improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE