WO2023040078A1 - 一种物料自动搬运控制系统 - Google Patents

一种物料自动搬运控制系统 Download PDF

Info

Publication number
WO2023040078A1
WO2023040078A1 PCT/CN2021/136275 CN2021136275W WO2023040078A1 WO 2023040078 A1 WO2023040078 A1 WO 2023040078A1 CN 2021136275 W CN2021136275 W CN 2021136275W WO 2023040078 A1 WO2023040078 A1 WO 2023040078A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
grab
handling
control system
running
Prior art date
Application number
PCT/CN2021/136275
Other languages
English (en)
French (fr)
Inventor
方线伟
李�杰
张猛
张平
张程
Original Assignee
法兰泰克重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法兰泰克重工股份有限公司 filed Critical 法兰泰克重工股份有限公司
Publication of WO2023040078A1 publication Critical patent/WO2023040078A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning

Definitions

  • the invention relates to the technical field of automatic production, in particular to an automatic material handling control system.
  • the existing handling robot system lacks unified planning for the handling process and routing. During the handling process, it is easy to have unreasonable handling routes and low handling efficiency. collision;
  • the existing handling robot system lacks backup remedial measures. When a certain equipment fails and stops, it will cause the whole line to stop working and the material transmission will be chaotic.
  • the technical problem to be solved by the present invention is to overcome the problems of unreasonable routing, low handling efficiency, prone to collision accidents and lack of complementary measures in the prior art handling robot system, and to provide an automatic handling system for materials in the brewing process.
  • the handling control system makes overall planning for the handling process, improves equipment safety, realizes preventive maintenance, improves overall operating efficiency, and realizes automated, informatized, intelligent and unmanned management of production.
  • the present invention provides a material automatic handling control system for controlling the running track of the handling grab, which is characterized in that it includes a central control console, a plc master control unit as a communication master station, and a communication A positioning unit, a material detection unit, a path planning unit, a driving unit, an anti-collision unit and a redundant complementary unit respectively connected to the main control system of the slave station, the central control console is connected with the plc main control unit, and the The plc main control unit is used to receive the control command of the central control console and the request signal of the communication slave station, analyze and process the request signal, and issue corresponding control commands to the slave station respectively;
  • the positioning unit locates each working point of the transport grab according to the working position and working state of the transport grab;
  • the material detection unit constructs a three-dimensional model according to the length, width and height of different cellars, and detects the state of pushing materials in different cellars;
  • the path planning unit coordinates and plans the transport paths of different transport grabs according to the position of the transport grabs and the material pushing conditions in different cellars;
  • the drive unit drives the handling grab to complete the grabbing action according to the optimal grabbing route
  • the anti-collision unit prevents the handling grab from colliding during the operation driven by the drive unit and prevents the handling hopper from colliding with the cellar and the feeding port;
  • the redundant complementary unit adopts dual control redundant complementary to the positioning unit, material detection unit, drive unit and anti-collision unit in the system, and they back up each other.
  • the positioning unit builds a two-dimensional planar model of the working area according to the working position of the handling grab, including the position of the cellar, the position of the feeding point, and the position of the fixed transfer point.
  • the positioning unit According to the working state of the handling grab, the horizontal moving position, lifting height, and flipping position of the grab are accurately positioned through the absolute encoder and the laser rangefinder.
  • the material detection unit is set in the cellar, and includes a laser scanner and a scanning crane.
  • the laser scanner is used to perform one-dimensional linear scanning, and the laser scanner is driven to rotate to realize two-dimensional plane scanning.
  • the scanning vehicle drives the laser scanner to realize three-dimensional scanning.
  • the laser scanner performs multiple measurements on a single point, performs data processing through a Gaussian distribution statistical algorithm, and then performs imaging processing on the data.
  • the path planning unit calculates the optimal grabbing route of the grab by combining the height of the internal stockpiles of different cellars and the running distance, running acceleration, and running speed of the grab, that is, calculates the optimal grabbing route of the grab bucket
  • the shortest time from the initial position to the completion of grabbing transportation, setting the priority of calculating the internal stocking heights of the different cellars and the running distance, running acceleration, and running speed of the grab is different, wherein the internal stocking height is The first priority, the grab running distance is the second priority, the grab running acceleration is the third priority, and the grab running speed is the fourth priority.
  • Assign weight coefficients to different priorities, and the sum of the weight coefficients is 1.
  • the drive unit includes a horizontal sliding crane and a longitudinal sliding crane that drive the horizontal movement of the conveying grab, a lifting assembly that drives the conveying grab to move up and down, and a turning mechanism that drives the conveying grab to grab materials.
  • Assemblies, the lateral sliding vehicle, the longitudinal sliding vehicle, the lifting assembly and the overturning assembly are all precisely controlled by the PID to slide the speed and position.
  • the anti-collision unit includes a sensor assembly for detecting the position of the handling grab, including a height sensor and a horizontal position sensor, and a safety interlock mechanism for the telescopic feeding port and the crane.
  • the redundant complementary unit includes:
  • the redundant complementation of the positioning unit including setting the laser rangefinder to measure the distance synchronously on both sides of the moving direction of the handling grab, realizes double protection of speed and position, and redundant protection;
  • a fixed laser scanner is set in the cellar, and a moving laser scanner is set on the handling grab to realize the complementarity of the fixed laser scanner and the moving laser scanner;
  • Redundant complementary anti-collision units set PID to precisely control the position of the handling grab, and set sensing components as anti-collision redundant protection.
  • the communication master station and each communication slave station adopt wired communication and/or wireless communication to transmit signals.
  • the equipment monitoring and early warning unit includes an indicator for indicating the current status of the control system, and an indicator for indicating that the control system is abnormal An alarm that sends out an alarm signal.
  • a status display unit is further included, and the status display unit displays the running route, the preset route, the traveling direction, the traveling speed and the working status of the transporting grab.
  • An automatic material handling control system is used to control the running track of the handling grab, including a central control console, a plc main control unit as a communication master station, and a communication slave station connected to the main control system respectively
  • the request signal of the communication slave station is analyzed and processed according to the request signal, and corresponding control instructions are issued to the slave station respectively;
  • the positioning unit is used to realize real-time monitoring of the position of the handling grab, and the material detection unit is used to monitor the material situation in the cellar in real time.
  • the path planning unit is used to plan the handling grabs at different positions to grab Calculate the grabbing path that takes the shortest time for materials in cellars located at different locations; use the drive unit to drive the handling grab to complete horizontal displacement, vertical lifting, flipping and grabbing; use the anti-collision unit to control the handling grab Anti-collision protection during operation and when docking with the feeding port; redundant complementary units are used for the positioning unit, material detection unit, drive unit, and anti-collision unit in the system. When a component in any one of the systems fails, the system can still function normally;
  • the material automatic handling control system of this embodiment solves the problems of unreasonable routing, low handling efficiency, prone to collision accidents, and lack of complementary measures in the prior art handling robot system, and provides an automatic material handling system for the winemaking process.
  • the handling control system makes overall planning for the handling process, improves equipment safety, realizes preventive maintenance, improves overall operating efficiency, and realizes automated, informatized, intelligent and unmanned management of production.
  • Fig. 1 is a structural frame diagram of the automatic material handling control system of the present invention.
  • a kind of automatic material handling control system of the present invention is used to control the running track of the handling grab bucket, and is characterized in that it includes a central control console, a plc master control unit as a communication master station, and a communication slave
  • the main control unit is used to receive the control command from the central control console and the request signal from the communication slave station, analyze and process the request signal, and issue corresponding control commands to the slave station respectively;
  • the positioning unit locates each working point of the transport grab according to the working position and working state of the transport grab, so as to realize real-time monitoring of the position of the transport grab;
  • the material detection unit constructs a three-dimensional model according to the length, width and height of different cellar pools, detects the state of pushing materials in different cellar pools, and realizes real-time monitoring of the material conditions in the cellar pools;
  • the path planning unit plans the transporting paths of different transport grabs according to the positions of the transport grabs and the pushing conditions in different cellars, and plans the transport grabs at different positions to grab the material in the cellars at different positions. Material, calculate the grabbing path that takes the shortest time;
  • the drive unit drives the handling grab to complete the grabbing action according to the optimal grabbing route, and realizes the horizontal displacement, vertical lifting, flipping and grabbing by driving the handling grab;
  • the anti-collision unit prevents the handling grab from colliding during operation driven by the driving unit and prevents collisions between the handling hopper, the cellar and the feeding port, and prevents the handling grab from colliding with the feeding port during operation and when it is docked with the feeding port. bump protection;
  • the redundant complementary unit adopts dual control redundant complementary to the positioning unit, material detection unit, drive unit and anti-collision unit in the system, and they back up each other to ensure that when any component in any system fails, the system can still normal operation;
  • the material automatic handling control system of this embodiment solves the problems of unreasonable routing, low handling efficiency, prone to collision accidents, and lack of complementary measures in the prior art handling robot system, and provides an automatic material handling system for the winemaking process.
  • the handling control system makes overall planning for the handling process, improves equipment safety, realizes preventive maintenance, improves overall operating efficiency, and realizes automated, informatized, intelligent and unmanned management of production.
  • the positioning unit builds a two-dimensional planar model of the working area according to the working position of the handling grab, including the position of the cellar, the position of the feeding point, and the position of the fixed delivery point.
  • the grab first moves from the initial position to the The grabbing action is completed above the cellar, and then passes through a fixed transfer point, and finally moves to the feeding point to complete the unloading action.
  • the stroke distance of the grab from the initial position to the completion of the unloading action can be calculated;
  • the positioning unit accurately positions the horizontal movement position, lifting height, and flip position of the grab through an absolute encoder and a laser range finder.
  • the material detection unit is set in the cellar, including a laser scanner and a scanning vehicle.
  • the laser scanner is used to perform one-dimensional linear scanning, and the laser scanner is driven to rotate to realize two-dimensional plane scanning.
  • the scanning vehicle drives the laser The scanner realizes three-dimensional scanning, and the laser scanner performs multiple measurements on a single point position, performs data processing through a Gaussian distribution statistical algorithm, and then performs imaging processing on the data;
  • the single-point measurement of the vertical dimension (Z axis) of the cellar height adopts the single-line laser time-of-flight principle of the laser scanner to measure the height;
  • the multi-point height measurement of the cellar width direction (Y axis) uses the 180-degree laser scanner.
  • the function of rotating scanning is realized;
  • the multi-point height measurement in the length direction of the cellar (X axis) uses the scanning vehicle to drive the laser scanner to scan, and the scanning vehicle position is measured by the vehicle positioning system;
  • the specific scanning and transmission process is as follows: the laser scanner is driven by the scanning vehicle, and the scanning is continued during the scanning movement process, and the scanned data is transmitted to the lower PLC through TCP/IP communication; the data is transmitted in the lower PLC. Processing, convert the obtained distance data into X, Y, Z three-dimensional coordinates and return these three data and the cellar number in real time to enter the upper PLC; there are some deviations in the data scanned by the laser, in order to improve the accuracy, through the normal distribution (Gaussian distribution) processing, that is, scan the same point more than 5 times, remove the maximum and minimum values, and then average the other values; perform data comparison in the upper PLC to find out what the driving needs to capture in this pit The position and give the driving operation, grabbing and other signals; and send the position of the absolute value encoder where the driving is located to the lower computer for position confirmation; the lower PLC updates the height information of the built model in real time.
  • Gaussian distribution normal distribution
  • the path planning unit calculates the optimal grabbing route of the grabbing bucket in combination with the height of the internal stockpiling of different cellars and the running distance, running acceleration, and running speed of the grabbing bucket, that is, calculates the optimal grabbing route of the grabbing bucket from the initial position to The shortest time to complete the grabbing transportation, set the priority of calculating the internal stocking height of the different cellars and the running distance, running acceleration, and running speed of the grab bucket to be different, wherein the internal stocking height is the first priority , The grab running distance is the second priority, the grab running acceleration is the third priority, and the grab running speed is the fourth priority, assigning weight coefficients to different priorities, and the sum of the weight coefficients is 1;
  • the grasping position control method of the grab bucket in this embodiment is the optimal grabbing route obtained through two calculations. First, determine the cellar that needs to be grabbed by the grab bucket from the macroscopic point of view, and then determine the location in the cellar from the microscopic point of view. The grab position of the grab bucket in the pool.
  • the drive unit includes a horizontal sliding crane and a longitudinal sliding crane that drive the conveying grab to move horizontally, a lifting assembly that drives the conveying grab to move up and down, and an overturning assembly that drives the conveying grab to grab materials.
  • the speed and position of the lateral sliding vehicle, longitudinal sliding vehicle, lifting component and flipping component are precisely controlled by PID.
  • the anti-collision unit includes a sensor assembly for detecting the position of the handling grab, including a height sensor and a horizontal position sensor, and a safety interlock mechanism for the telescopic feeding port and the crane.
  • a sensor assembly for detecting the position of the handling grab, including a height sensor and a horizontal position sensor, and a safety interlock mechanism for the telescopic feeding port and the crane.
  • the redundant complementary unit includes:
  • the redundant complementation of the positioning unit including setting the laser rangefinder to measure the distance synchronously on both sides of the moving direction of the handling grab, realizes double protection of speed and position, and redundant protection;
  • a fixed laser scanner is set in the cellar, and a moving laser scanner is set on the handling grab to realize the complementarity of the fixed laser scanner and the moving laser scanner;
  • Redundant complementary anti-collision units set PID to precisely control the position of the handling grab, and set sensing components as anti-collision redundant protection.
  • the communication master station and each communication slave station use wired communication and/or wireless communication to transmit signals.
  • the transmission mode of wired communication and wireless communication can be set separately, or can be simultaneously Set up complementary transmission methods for wired communication and wireless communication.
  • an equipment monitoring and early warning unit and a status display unit are also included:
  • the equipment monitoring and early warning unit includes an indicator for indicating the current status of the control system, and an alarm for indicating that the control system is running abnormally;
  • the state display unit displays the running route, the preset route, the traveling direction, the traveling speed and the working state of the transporting grab.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种物料自动搬运控制系统,用于控制搬运抓斗的运行轨迹,包括中控操作台、作为通讯主站的plc主控单元、作为通讯从站的与主控系统分别连接的定位单元、物料检测单元、路径规划单元、驱动单元、防撞单元和冗余互补单元,中控操作台与plc主控单元连接,plc主控单元用于接收中控操作台的控制指令和通讯从站的请求信号,并按请求信号分析处理,分别对从站发出相应的控制指令。物料自动搬运控制系统对搬运过程进行整体规划,提高设备安全性、实现预防性维护、提升综合运行效率,实现对生产的自动化、信息化、智能化和无人化的管理。

Description

一种物料自动搬运控制系统 技术领域
本发明涉及自动化生产技术领域,尤其是指一种物料自动搬运控制系统。
背景技术
酒文化在中国历史文化中占据重要的意义,酿酒的工艺在不断进步,根据不同的酿酒工艺,可以酿造不同口味的酒,中国酒文化历史悠久,然后酿酒工艺还很多都是由人工参与,人工参与酿酒程度不同,酿出来的酒口味就会千差万别,还有现阶段人工成本不断提高,为了提高酿酒的效率和产量,以及要保持酿出的酒口味保持一致,需要酿酒工艺进行自动化控制。
随着现阶段自动化技术不断发展进步,在酿酒工艺中酒糟的翻转和转运过程中也加入自动搬运机器人控制技术,但是现有的自动搬运机器人存在一定的缺陷:
一方面,现有的搬运机器人系统对搬运过程、搬运路线缺少统一的规划,在搬运过程中,容易出现搬运路线不合理、搬运效率低的情况,更严重的情况下在搬运的过程中容易发生碰撞;
另一方面,现有的搬运机器人系统缺少备用补救措施,当某一台设备发生故障而停歇时,会引起全线停工,物料传输发生混乱的问题。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中搬运机器人系统存在的路线不合理、搬运效率低、易发生碰撞事故、缺少互补措施的问题,提供一种针对酿酒工艺中的物料自动搬运控制系统,对搬运过程进行整体规划,提高设备安全性、实现预防性维护、提升综合运行效率,实现对生产的 自动化、信息化、智能化和无人化的管理。
为解决上述技术问题,本发明提供了一种物料自动搬运控制系统,用于控制搬运抓斗的运行轨迹,其特征在于,包括中控操作台、作为通讯主站的plc主控单元、作为通讯从站的与所述主控系统分别连接的定位单元、物料检测单元、路径规划单元、驱动单元、防撞单元和冗余互补单元,所述中控操作台与plc主控单元连接,所述plc主控单元用于接收所述中控操作台的控制指令和所述通讯从站的请求信号,并按所述请求信号分析处理,分别对所述从站发出相应的控制指令;
所述定位单元根据搬运抓斗的工作位置及工作状态,对搬运抓斗的每个工作点进行定位;
所述物料检测单元根据不同窖池的长度、宽度及高度构建三维立体模型,对不同窖池内推料的状态进行检测;
所述路径规划单元根据搬运抓斗的位置和不同窖池中的推料情况,统筹规划不同搬运抓斗的搬运路径;
所述驱动单元根据最佳抓取路线带动搬运抓斗完成抓取动作;
所述防撞单元防止搬运抓斗在驱动单元带动的运行过程中发生碰撞以及防止搬运料斗与窖池和投料口之间发生碰撞;
所述冗余互补单元对系统中的定位单元、物料检测单元、驱动单元、防撞单元都采用双控制冗余互补,相互备份。
在本发明的一个实施例中,所述定位单元根据搬运抓斗的工作位置构建工作区域的二维平面模型,包括窖池的位置、投料点的位置、固定传送点的位置,所述定位单元根据搬运抓斗的工作状态对搬运抓斗的水平移动位置、升降高度、抓斗翻转位置通过绝对值编码器及激光测距仪进行精确定位。
在本发明的一个实施例中,所述物料检测单元设置在窖池中,包括激光扫描仪和扫描行车,采用激光扫描仪进行一维线性扫描、带动激光扫描仪旋转实现二维平面扫描、通过扫描行车带动激光扫描仪实现三维立体扫描,所 述激光扫描仪对单点位置进行多次测量,通过高斯分布的统计算法进行数据处理,再将数据进行成像处理。
在本发明的一个实施例中,所述路径规划单元结合不同窖池的内堆料高度和抓斗的运行距离、运行加速度、运行速度计算抓斗的最佳抓取路线,即计算搬运抓斗从初始位置到完成抓料运输的最短时间,设置所述不同窖池的内堆料高度和抓斗的运行距离、运行加速度、运行速度计算的优先级不同,其中,所述内堆料高度为第一优先级、抓斗运行距离为第二优先级、抓斗运行加速度为第三优先级、抓斗运行速度为第四优先级,为不同的优先级分配权重系数,所述权重系数的总和为1。
在本发明的一个实施例中,所述驱动单元包括带动搬运抓斗水平移动的横向滑移行车和纵向滑移行车、带动搬运抓斗上下移动的升降组件、以及带动搬运抓斗抓料的翻转组件,所述横向滑移行车、纵向滑移行车、升降组件和翻转组件均由PID精确控制滑移的速度和位置。
在本发明的一个实施例中,所述防撞单元包括用于检测搬运抓斗位置的传感组件,包括高度传感器和水平位置传感器,以及用于与伸缩投料口和起重机的安全互锁机构。
在本发明的一个实施例中,所述冗余互补单元包括:
定位单元的冗余互补,包括设置激光测距仪对搬运抓斗运行方向的两侧同步测距,实现速度及位置双重保护,及冗余保护;
物料检测单元的冗余互补,在窖池设置固定的激光扫描仪,在搬运抓斗上设置随动的激光扫描仪,实现固定的激光扫描仪和随动的激光扫描仪互补;
驱动单元的冗余互补,设置条码测距实现单元的精确定位,设置绝对值编码器作为位置冗余保护;
防撞单元的冗余互补,设置PID精确控制搬运抓斗位置,设置传感组件作为防撞冗余保护。
在本发明的一个实施例中,所述通信主站与各个通信从站之间采用有线通信和或无线通信的方式进行信号的传输。
在本发明的一个实施例中,还包括设备监测与预警单元,所述设备监测与预警单元包括用于指示所述控制系统的当前状态工作的指示器、用于指示所述控制系统运行出现异常时发出报警信号的报警器。
在本发明的一个实施例中,还包括状态显示单元,所述状态显示单元显示搬运抓斗的运行路线、预设路线、行进方向、行进速度及搬运抓斗的工作状态。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的一种物料自动搬运控制系统,用于控制搬运抓斗的运行轨迹,包括中控操作台、作为通讯主站的plc主控单元、作为通讯从站的与主控系统分别连接的定位单元、物料检测单元、路径规划单元、驱动单元、防撞单元和冗余互补单元,中控操作台与plc主控单元连接,plc主控单元用于接收中控操作台的控制指令和通讯从站的请求信号,并按请求信号分析处理,分别对所述从站发出相应的控制指令;
采用定位单元实现对搬运抓斗位置的实时监测、采用物料检测单元对窖池中的物料情况实时监测,根据抓斗位置和物料情况,采用路径规划单元规划位于不同位置的搬运抓斗去抓取位于不同位置的窖池中的物料,计算出花费时间最短的抓取路径;采用驱动单元实现带动搬运抓斗完成水平位移、竖直升降、翻转抓取等动作;采用防撞单元控制搬运抓斗在运行过程中和与投料口对接时的防撞保护;采用冗余互补单元对系统中的定位单元、物料检测单元、驱动单元、防撞单元都采用双控制冗余互补,相互备份,保证在其中任意一个系统中的组件出现故障时,系统仍然能正常运转;
本实施例的物料自动搬运控制系统,解决了现有技术中搬运机器人系统存在的路线不合理、搬运效率低、易发生碰撞事故、缺少互补措施的问题,提供一种针对酿酒工艺中的物料自动搬运控制系统,对搬运过程进行整体规划,提高设备安全性、实现预防性维护、提升综合运行效率,实现对生产的 自动化、信息化、智能化和无人化的管理。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明的物料自动搬运控制系统的结构框架图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的一种物料自动搬运控制系统,用于控制搬运抓斗的运行轨迹,其特征在于,包括中控操作台、作为通讯主站的plc主控单元、作为通讯从站的与所述主控系统分别连接的定位单元、物料检测单元、路径规划单元、驱动单元、防撞单元和冗余互补单元,所述中控操作台与plc主控单元连接,所述plc主控单元用于接收所述中控操作台的控制指令和所述通讯从站的请求信号,并按所述请求信号分析处理,分别对所述从站发出相应的控制指令;
所述定位单元根据搬运抓斗的工作位置及工作状态,对搬运抓斗的每个工作点进行定位,实现对搬运抓斗位置的实时监测;
所述物料检测单元根据不同窖池的长度、宽度及高度构建三维立体模型,对不同窖池内推料的状态进行检测,实现对窖池中的物料情况实时监测;
所述路径规划单元根据搬运抓斗的位置和不同窖池中的推料情况,统筹规划不同搬运抓斗的搬运路径,规划位于不同位置的搬运抓斗去抓取位于不同位置的窖池中的物料,计算出花费时间最短的抓取路径;
所述驱动单元根据最佳抓取路线带动搬运抓斗完成抓取动作,实现带动搬运抓斗完成水平位移、竖直升降、翻转抓取等动作;
所述防撞单元防止搬运抓斗在驱动单元带动的运行过程中发生碰撞以 及防止搬运料斗与窖池和投料口之间发生碰撞,对搬运抓斗在运行过程中和与投料口对接时进行防撞保护;
所述冗余互补单元对系统中的定位单元、物料检测单元、驱动单元、防撞单元都采用双控制冗余互补,相互备份,保证在其中任意一个系统中的组件出现故障时,系统仍然能正常运转;
本实施例的物料自动搬运控制系统,解决了现有技术中搬运机器人系统存在的路线不合理、搬运效率低、易发生碰撞事故、缺少互补措施的问题,提供一种针对酿酒工艺中的物料自动搬运控制系统,对搬运过程进行整体规划,提高设备安全性、实现预防性维护、提升综合运行效率,实现对生产的自动化、信息化、智能化和无人化的管理。
本实施例中,所述定位单元根据搬运抓斗的工作位置构建工作区域的二维平面模型,包括窖池的位置、投料点的位置、固定传送点的位置,抓斗从初始位置首先移动到窖池上方完成抓料动作,然后经过固定的传送点,最后移动到投料点完成下料动作,建立二维平面模型后,能够计算出抓斗从初始位置到完成下料动作的行程距离;所述定位单元根据搬运抓斗的工作状态对搬运抓斗的水平移动位置、升降高度、抓斗翻转位置通过绝对值编码器及激光测距仪进行精确定位。
本实施例中,所述物料检测单元设置在窖池中,包括激光扫描仪和扫描行车,采用激光扫描仪进行一维线性扫描、带动激光扫描仪旋转实现二维平面扫描、通过扫描行车带动激光扫描仪实现三维立体扫描,所述激光扫描仪对单点位置进行多次测量,通过高斯分布的统计算法进行数据处理,再将数据进行成像处理;
具体地,窖池高度的垂直维度(Z轴)的单点测量采用激光扫描仪的单线激光时间飞行原理测量高度;窖池宽度方向(Y轴)的多点高度测量采用激光扫描仪的180度旋转扫描功能实现;窖池长度方向(X轴)的多点高度测量采用扫描行车移动带动激光扫描仪进行扫描,扫描行车位置由行车定位系统测量;
具体地扫描及传输过程为:由扫描行车带动激光扫描仪,在扫描行车运动过程中持续扫描,将扫描所得到的数据通过TCP/IP通讯的方式传输到下位PLC当中;在下位PLC当中进行数据处理,将所得到的距离数据转换成X,Y,Z三维坐标并实时返回这三个数据以及所在窖池编号进入上位PLC;激光扫描出的数据存在一些偏差,为提高精度,通过正态分布(高斯分布)处理,既对同一点进行5次以上的扫描,去掉最大和最小值,再将其它值求平均;在上位PLC中进行数据比对找出行车要在此窖池中抓取的位置并且给与行车运行、抓取以及其他信号;并且将行车所在的绝对值编码器位置发送给下位机来进行位置确认;下位PLC实时更新所建模型的高度信息。
本实施例中,所述路径规划单元结合不同窖池的内堆料高度和抓斗的运行距离、运行加速度、运行速度计算抓斗的最佳抓取路线,即计算搬运抓斗从初始位置到完成抓料运输的最短时间,设置所述不同窖池的内堆料高度和抓斗的运行距离、运行加速度、运行速度计算的优先级不同,其中,所述内堆料高度为第一优先级、抓斗运行距离为第二优先级、抓斗运行加速度为第三优先级、抓斗运行速度为第四优先级,为不同的优先级分配权重系数,所述权重系数的总和为1;
在实际的物料搬运的过程中,还存在一种情况,即在同一个窖池内的不同位置的堆料高度不同,因此针对同一窖池内的抓取位置也需要进行计算,才能进一步的提高搬运效率;本实施例中,在同一个窖池内,针对不同位置的堆料高度构建窖池内的三维立体模型,对同一窖池内的推料状态进行检测。结合同一窖池内不同位置的推料高度和抓斗的运行距离、运行加速度、运行速度计算抓斗的最佳抓取路线,完成一次抓取动作;
因此,本实施例的抓斗抓取位置控制方法是经过两次计算得到的最优抓取路线,首先,从宏观上先确定需要抓斗抓取的窖池,然后再从微观上确定在窖池内抓斗的抓取位置。
本实施例中,所述驱动单元包括带动搬运抓斗水平移动的横向滑移行车和纵向滑移行车、带动搬运抓斗上下移动的升降组件、以及带动搬运抓斗抓 料的翻转组件,所述横向滑移行车、纵向滑移行车、升降组件和翻转组件均由PID精确控制滑移的速度和位置。
本实施例中,所述防撞单元包括用于检测搬运抓斗位置的传感组件,包括高度传感器和水平位置传感器,以及用于与伸缩投料口和起重机的安全互锁机构,通过传感组件实时检测搬运抓斗的位置,一方面能够防止搬运抓斗之间的碰撞,另一方面也能够防止抓斗与窖池之间发生碰撞;在投料时,设置伸缩投料口和起重机安全互锁。
本实施例中,所述冗余互补单元包括:
定位单元的冗余互补,包括设置激光测距仪对搬运抓斗运行方向的两侧同步测距,实现速度及位置双重保护,及冗余保护;
物料检测单元的冗余互补,在窖池设置固定的激光扫描仪,在搬运抓斗上设置随动的激光扫描仪,实现固定的激光扫描仪和随动的激光扫描仪互补;
驱动单元的冗余互补,设置条码测距实现单元的精确定位,设置绝对值编码器作为位置冗余保护;
防撞单元的冗余互补,设置PID精确控制搬运抓斗位置,设置传感组件作为防撞冗余保护。
本实施例中,所述通信主站与各个通信从站之间采用有线通信和或无线通信的方式进行信号的传输,根据实际情况,可以单独设置有线通信和无线通信的传输方式,也可以同时设置有线通信和无线通信互补的传输方式。
本实施例中,还包括设备监测与预警单元和状态显示单元:
所述设备监测与预警单元包括用于指示所述控制系统的当前状态工作的指示器、用于指示所述控制系统运行出现异常时发出报警信号的报警器;
所述状态显示单元显示搬运抓斗的运行路线、预设路线、行进方向、行进速度及搬运抓斗的工作状态。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的 限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种物料自动搬运控制系统,用于控制搬运抓斗的运行轨迹,其特征在于,包括中控操作台、作为通讯主站的plc主控单元、作为通讯从站的与所述主控系统分别连接的定位单元、物料检测单元、路径规划单元、驱动单元、防撞单元和冗余互补单元,所述中控操作台与plc主控单元连接,所述plc主控单元用于接收所述中控操作台的控制指令和所述通讯从站的请求信号,并按所述请求信号分析处理,分别对所述从站发出相应的控制指令;
    所述定位单元根据搬运抓斗的工作位置及工作状态,对搬运抓斗的每个工作点进行定位;
    所述物料检测单元根据不同窖池的长度、宽度及高度构建三维立体模型,对不同窖池内推料的状态进行检测;
    所述路径规划单元根据搬运抓斗的位置和不同窖池中的推料情况,统筹规划不同搬运抓斗的搬运路径;
    所述驱动单元根据最佳抓取路线带动搬运抓斗完成抓取动作;
    所述防撞单元防止搬运抓斗在驱动单元带动的运行过程中发生碰撞以及防止搬运料斗与窖池和投料口之间发生碰撞;
    所述冗余互补单元对系统中的定位单元、物料检测单元、驱动单元、防撞单元都采用双控制冗余互补,相互备份。
  2. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述定位单元根据搬运抓斗的工作位置构建工作区域的二维平面模型,包括窖池的位置、投料点的位置、固定传送点的位置,所述定位单元根据搬运抓斗的工作状态对搬运抓斗的水平移动位置、升降高度、抓斗翻转位置通过绝对值编码器及激光测距仪进行精确定位。
  3. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述 物料检测单元设置在窖池中,包括激光扫描仪和扫描行车,采用激光扫描仪进行一维线性扫描、带动激光扫描仪旋转实现二维平面扫描、通过扫描行车带动激光扫描仪实现三维立体扫描,所述激光扫描仪对单点位置进行多次测量,通过高斯分布的统计算法进行数据处理,再将数据进行成像处理。
  4. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述路径规划单元结合不同窖池的内堆料高度和抓斗的运行距离、运行加速度、运行速度计算抓斗的最佳抓取路线,即计算搬运抓斗从初始位置到完成抓料运输的最短时间,设置所述不同窖池的内堆料高度和抓斗的运行距离、运行加速度、运行速度计算的优先级不同,其中,所述内堆料高度为第一优先级、抓斗运行距离为第二优先级、抓斗运行加速度为第三优先级、抓斗运行速度为第四优先级,为不同的优先级分配权重系数,所述权重系数的总和为1。
  5. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述驱动单元包括带动搬运抓斗水平移动的横向滑移行车和纵向滑移行车、带动搬运抓斗上下移动的升降组件、以及带动搬运抓斗抓料的翻转组件,所述横向滑移行车、纵向滑移行车、升降组件和翻转组件均由PID精确控制滑移的速度和位置。
  6. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述防撞单元包括用于检测搬运抓斗位置的传感组件,包括高度传感器和水平位置传感器,以及用于与伸缩投料口和起重机的安全互锁机构。
  7. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述冗余互补单元包括:
    定位单元的冗余互补,包括设置激光测距仪对搬运抓斗运行方向的两侧同步测距,实现速度及位置双重保护,及冗余保护;
    物料检测单元的冗余互补,在窖池设置固定的激光扫描仪,在搬运抓斗上设置随动的激光扫描仪,实现固定的激光扫描仪和随动的激光扫描仪互补;
    驱动单元的冗余互补,设置条码测距实现单元的精确定位,设置绝对值编码器作为位置冗余保护;
    防撞单元的冗余互补,设置PID精确控制搬运抓斗位置,设置传感组件作为防撞冗余保护。
  8. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:所述通信主站与各个通信从站之间采用有线通信和或无线通信的方式进行信号的传输。
  9. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:还包括设备监测与预警单元,所述设备监测与预警单元包括用于指示所述控制系统的当前状态工作的指示器、用于指示所述控制系统运行出现异常时发出报警信号的报警器。
  10. 根据权利要求1所述的物料自动搬运控制系统,其特征在于:还包括状态显示单元,所述状态显示单元显示搬运抓斗的运行路线、预设路线、行进方向、行进速度及搬运抓斗的工作状态。
PCT/CN2021/136275 2021-09-18 2021-12-08 一种物料自动搬运控制系统 WO2023040078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111101880.8 2021-09-18
CN202111101880.8A CN113759853B (zh) 2021-09-18 2021-09-18 一种物料自动搬运控制系统

Publications (1)

Publication Number Publication Date
WO2023040078A1 true WO2023040078A1 (zh) 2023-03-23

Family

ID=78796507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136275 WO2023040078A1 (zh) 2021-09-18 2021-12-08 一种物料自动搬运控制系统

Country Status (3)

Country Link
CN (1) CN113759853B (zh)
LU (1) LU501949B1 (zh)
WO (1) WO2023040078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117485929A (zh) * 2023-12-29 2024-02-02 中国电力工程顾问集团西南电力设计院有限公司 一种基于智能控制的无人化堆取料控制系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759853B (zh) * 2021-09-18 2023-07-18 法兰泰克重工股份有限公司 一种物料自动搬运控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510524A (zh) * 2019-09-05 2019-11-29 北京坚构创新科技有限公司 一种物料抓斗智能控制系统
CN110862014A (zh) * 2019-10-14 2020-03-06 武汉港迪智能技术有限公司 一种库区物料自动作业系统及方法
CN112722873A (zh) * 2020-12-23 2021-04-30 国家能源集团煤焦化有限责任公司 堆取料机自动控制系统
CN213678924U (zh) * 2020-11-19 2021-07-13 武汉瑞丽森智能设备有限公司 一种堆取料机无人值守系统
WO2021176056A1 (en) * 2020-03-05 2021-09-10 Verstegen-Grijpers B.V. Grab monitoring device
CN113759853A (zh) * 2021-09-18 2021-12-07 法兰泰克重工股份有限公司 一种物料自动搬运控制系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1132967A (en) * 1964-12-08 1968-11-06 Davy And United Instr Ltd Control systems for preventing swinging of suspended loads
JP3254152B2 (ja) * 1996-12-10 2002-02-04 三菱重工業株式会社 クレーンの荷役経路設定方法及びその装置
US6414979B2 (en) * 2000-06-09 2002-07-02 Cymer, Inc. Gas discharge laser with blade-dielectric electrode
US6845287B2 (en) * 2002-11-20 2005-01-18 Asml Holding N.V. Method, system, and computer program product for improved trajectory planning and execution
DE102008011539B3 (de) * 2008-02-28 2009-06-18 Noell Mobile Systems Gmbh Vollautomatischer Portalhubstapler mit lokaler Funkortung und Laserlenkung
US8909467B2 (en) * 2010-06-07 2014-12-09 Industry-Academic Cooperation Foundation, Yonsei University Tower crane navigation system
JP2014201409A (ja) * 2013-04-05 2014-10-27 コニカミノルタ株式会社 画像形成装置
CN105205629B (zh) * 2014-06-30 2019-05-28 宝山钢铁股份有限公司 钢厂产成品仓储配送自动化控制方法
CN104118802B (zh) * 2014-07-21 2016-01-06 武汉理工大学 一种全自动垃圾搬运起重机取料投料作业自动控制方法
US10414047B2 (en) * 2015-09-28 2019-09-17 Siemens Product Lifecycle Management Software Inc. Method and a data processing system for simulating and handling of anti-collision management for an area of a production plant
US10126747B1 (en) * 2015-09-29 2018-11-13 Amazon Technologies, Inc. Coordination of mobile drive units
US9914624B2 (en) * 2016-06-22 2018-03-13 The Boeing Company Systems and methods for object guidance and collision avoidance
US10346797B2 (en) * 2016-09-26 2019-07-09 Cybernet Systems, Inc. Path and load localization and operations supporting automated warehousing using robotic forklifts or other material handling vehicles
CN107145149A (zh) * 2017-06-16 2017-09-08 广东科达洁能股份有限公司 一种桥式行车装置及其避让行走方法
JP7025896B2 (ja) * 2017-11-13 2022-02-25 株式会社日立産機システム クレーンシステム、および、クレーンの制御方法
US10831213B2 (en) * 2018-03-30 2020-11-10 Deere & Company Targeted loading assistance system
CN108584467A (zh) * 2018-05-25 2018-09-28 金陵科技学院 一种无人值守的矿区装载货系统
CN109319518A (zh) * 2018-09-01 2019-02-12 广西沃尔多机器人有限公司 堆料机和取料机全自动堆取料协同控制系统
CN110286673A (zh) * 2019-05-23 2019-09-27 北京京东尚科信息技术有限公司 仓储任务处理方法、装置、仓储系统以及存储介质
CN110155883B (zh) * 2019-06-26 2020-10-27 上海应用技术大学 桥式起重机路径规划系统
ES2943499T3 (es) * 2019-10-30 2023-06-13 Schneider Electric Ind Sas Procedimiento para generar una trayectoria para un aparato de elevación
CN111847252A (zh) * 2020-07-15 2020-10-30 湖州师范学院 一种基于物料成像的智能抓斗起重机控制系统及其控制方法
CN112158728A (zh) * 2020-08-24 2021-01-01 广东华欣环保科技有限公司 一种炼钢og泥可视化无人行车的上料系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510524A (zh) * 2019-09-05 2019-11-29 北京坚构创新科技有限公司 一种物料抓斗智能控制系统
CN110862014A (zh) * 2019-10-14 2020-03-06 武汉港迪智能技术有限公司 一种库区物料自动作业系统及方法
WO2021176056A1 (en) * 2020-03-05 2021-09-10 Verstegen-Grijpers B.V. Grab monitoring device
CN213678924U (zh) * 2020-11-19 2021-07-13 武汉瑞丽森智能设备有限公司 一种堆取料机无人值守系统
CN112722873A (zh) * 2020-12-23 2021-04-30 国家能源集团煤焦化有限责任公司 堆取料机自动控制系统
CN113759853A (zh) * 2021-09-18 2021-12-07 法兰泰克重工股份有限公司 一种物料自动搬运控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117485929A (zh) * 2023-12-29 2024-02-02 中国电力工程顾问集团西南电力设计院有限公司 一种基于智能控制的无人化堆取料控制系统及方法
CN117485929B (zh) * 2023-12-29 2024-03-19 中国电力工程顾问集团西南电力设计院有限公司 一种基于智能控制的无人化堆取料控制系统及方法

Also Published As

Publication number Publication date
CN113759853A (zh) 2021-12-07
CN113759853B (zh) 2023-07-18
LU501949B1 (en) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023040078A1 (zh) 一种物料自动搬运控制系统
CN109081026B (zh) 基于激光测距雷达定位引导的机器人拆垛系统及方法
CN107145149A (zh) 一种桥式行车装置及其避让行走方法
WO2020177288A1 (zh) 自动化集装箱码头堆场陆侧自动化运行系统及其控制方法
AT504557B1 (de) Verfahren zum navigieren eines transportmittels für waren
CN103523675A (zh) 轨道吊自动化堆场操作控制系统及自动装卸方法
CN102402224A (zh) 无人搬送车以及行驶控制方法
CN109500136A (zh) 上卷小车钢卷高度自动对中的控制系统及方法
CN103342240A (zh) 袋装物料装车系统和方法
CN111891775A (zh) 智能装车料斗及转运物料的方法
CN107522114B (zh) 自动化正面吊
CN203740901U (zh) 轨道吊自动化堆场操作控制系统
CN206751220U (zh) 一种自动集装箱堆垛机控制系统
CN207293963U (zh) 自动化装卸作业的自动着箱和防吊起系统
CN109335531B (zh) 一种穿梭车取料放料方法
CN115593839B (zh) 一种物料搬运机器人及其控制方法
LU501953B1 (en) High-accuracy method for controlling grabbing position of grab with radar feedback
CN108146960A (zh) 一种物品自动存取装置
CN103964171A (zh) 一种输送装置
WO2023040154A1 (zh) 一种抓斗清理窖池的控制方法
CN112264982B (zh) 一种板坯自动测长划线装置及划线方法
CA3186403A1 (en) System and method for detection of anomalies in the tracks on a three-dimensional storage system
CN108639777A (zh) 一种条形料场自动取料系统
AT17769U1 (de) Verfahren zum rechnergestützten Verarbeiten einer Zustandsänderung eines Warenträgers in einem Lager- und Kommissioniersystem sowie Lager- und Kommissioniersystem
CN108033279A (zh) 一种自动堆取料系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE