WO2023039876A1 - 舵控操纵装置及方法 - Google Patents

舵控操纵装置及方法 Download PDF

Info

Publication number
WO2023039876A1
WO2023039876A1 PCT/CN2021/119304 CN2021119304W WO2023039876A1 WO 2023039876 A1 WO2023039876 A1 WO 2023039876A1 CN 2021119304 W CN2021119304 W CN 2021119304W WO 2023039876 A1 WO2023039876 A1 WO 2023039876A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder
underwater vehicle
wing
axis
control device
Prior art date
Application number
PCT/CN2021/119304
Other languages
English (en)
French (fr)
Inventor
左启阳
谢锋然
何凯
Original Assignee
深圳先进技术研究院
中国科学院深圳理工大学(筹)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院, 中国科学院深圳理工大学(筹) filed Critical 深圳先进技术研究院
Priority to PCT/CN2021/119304 priority Critical patent/WO2023039876A1/zh
Publication of WO2023039876A1 publication Critical patent/WO2023039876A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth

Definitions

  • the present application relates to the technical field of underwater robots, in particular to a rudder control device and method.
  • autonomous underwater robots Autonomous Underwater Robots
  • AUV autonomous Underwater Robots
  • AUVs perform missions, their main types of operations are large-scale cruising and local fine observation, including three working modes: medium and high-speed cruising, low-speed pose adjustment, and underwater hovering. stop) motion state.
  • medium and high-speed cruising low-speed pose adjustment
  • underwater hovering. stop motion state.
  • AUVs are likely to be faced with working in a state of frequent change of different speeds. Therefore, it is necessary to develop the so-called “full speed ”
  • the demand for work skills is increasing day by day.
  • AUV The prerequisite for AUV to be able to complete its mission is to have good performance, and maneuverability is the basic performance of AUV and the core foundation of AUV's overall technology, which involves many disciplines. Having excellent maneuverability can not only assist AUV to cope with the complex and changeable hydrological environment, but also a prerequisite for AUV to complete various complex underwater tasks.
  • the maneuverability of AUV refers to the performance of AUV to change or maintain its speed, position and attitude by means of its control devices (ie, propellers, rudders, wings, etc.), mainly including the balance state of AUV during steady-state navigation, and the ability to maintain the navigation state. performance (represented in "motion stability") and the ability to change sailing conditions (represented in "maneuverability").
  • the mainstream AUV control methods in the world mainly include multi-propeller combined control, single-propeller vector control, rudder-propeller combined control and their combinations.
  • the joint control of rudder and propeller mainly refers to the single longitudinal thruster at the stern and the rudder arranged on the boat to realize the control of AUV. Since there is only one longitudinal propeller, the AUV at this time is an under-actuated system, and because it only relies on the rudder to achieve steering control, the speed is too low to cause the rudder to fail. Therefore, at present, this method is mainly suitable for large-scale, Cruising AUV with medium to high speed (not less than 1 knot per hour (kn)).
  • One of the objectives of the embodiments of the present application is to provide a rudder control device and method, aiming at solving the existing technical problem of poor maneuverability of rudder-propeller joint control.
  • a rudder control device includes:
  • a propeller installed on the tail of the underwater vehicle, for providing longitudinal propulsion to the underwater vehicle;
  • the first rudder wing is installed on the top of the underwater vehicle and is located in the middle longitudinal section of the underwater vehicle.
  • the first rudder wing can rotate around the first twisting rudder axis, and the first rudder wing can rotate around the first twisting rudder axis.
  • a twisted rudder shaft extends in a direction from an end of the first rudder wing close to the underwater vehicle to an end of the first rudder wing away from the underwater vehicle;
  • the second rudder wing is installed on the side of the underwater vehicle.
  • the second rudder wing can rotate around the second twisted rudder axis and can swing up and down around the first flapping rudder axis.
  • the second rudder wing The twisted rudder shaft extends in a direction from an end of the second rudder wing close to the underwater vehicle to an end of the second rudder wing away from the underwater vehicle;
  • the third rudder wing is installed on the side of the underwater vehicle, the third rudder wing and the second rudder wing are respectively located on both sides of the first rudder wing, and the third rudder wing can be rotated around
  • the third twisted rudder shaft rotates and can swing up and down around the second flapping wing rudder shaft.
  • the rudder blade extends in a direction away from one end of the underwater vehicle.
  • the installation positions of the first rudder wing, the second rudder wing and the third rudder wing are located in the same cross section of the underwater vehicle.
  • the installation positions of the third rudder wing and the second rudder wing are distributed symmetrically with respect to the mid-longitudinal section of the underwater vehicle.
  • the first rudder blade, the second rudder blade and the third rudder blade are all located at the middle or tail of the underwater vehicle.
  • the first twisting rudder axis is perpendicular to the longitudinal direction of the underwater vehicle.
  • the first flapping rudder axis and the second twisting rudder axis are located on the same plane and are perpendicular to each other.
  • the second flapping rudder axis and the third twisting rudder axis are located on the same plane and are perpendicular to each other.
  • the rudder control device further includes a first steering gear, the first steering gear is installed on the underwater vehicle, and the first steering gear is used to drive the first rudder blade Rotate about the first twist rudder axis.
  • the rudder control device further includes a second steering gear, the second steering gear is installed on the underwater vehicle, and the second steering gear is used to drive the second rudder blade Rotate about the second twist rudder axis.
  • the steering control device further includes a third steering gear, the third steering gear is installed on the underwater vehicle, and the third steering gear is used to drive the second steering blade Swing up and down around the first flapping rudder axis.
  • the rudder control device further includes a fourth steering gear, the fourth steering gear is installed on the underwater vehicle, and the fourth steering gear is used to drive the third rudder wing Rotate about the third twist rudder axis.
  • the rudder control device further includes a fifth steering gear, the fifth steering gear is installed on the underwater vehicle, and the fifth steering gear is used to drive the third rudder wing Swing up and down around the second flapping rudder axis.
  • the rudder control device also includes a heading sensor and a rudder control system, the heading sensor and the rudder operating system are installed on the underwater vehicle, and the heading sensor Electrically connected with the rudder control operating system, the attitude sensor is used to obtain the attitude parameters of the underwater vehicle and send them to the rudder control operating system, and the rudder control operating system is used to control the first The rotation action of a rudder wing, the second rudder wing and the third rudder wing.
  • a rudder control manipulation method which is applied to the above-mentioned rudder control manipulation device, and the method includes:
  • the left and right steering of the underwater vehicle is realized by the rotation of the first rudder wing around the first twisted rudder shaft;
  • the second rudder wing swings up and down around the first flapping rudder shaft to realize the underwater vehicle turning toward the third rudder wing;
  • the third rudder wing swings up and down around the rudder axis of the second flapping wing to realize the steering of the underwater vehicle toward the side of the second rudder wing.
  • the method further includes: the second rudder blade rotates a first angle around the second twisted rudder axis, and the third rudder blade rotates a second angle around the third twisted rudder axis , the first angle is different from the second angle so that the underwater vehicle generates a heeling moment.
  • the method further includes: when the underwater vehicle tends to roll, by controlling the magnitudes of the first angle and the second angle, providing the underwater vehicle with A reverse heeling moment to restrain the underwater vehicle from rolling.
  • the method when the underwater vehicle is traveling at a medium to high speed, the method includes:
  • the second rudder wing and the third rudder wing rotate synchronously and horizontally around the second twisted rudder shaft and the third twisted rudder shaft respectively, so as to control the horizontal glide of the underwater vehicle;
  • the leading edge of the second rudder wing and the leading edge of the third rudder wing rotate synchronously and in the same direction around the second twisted rudder axis and the third twisted rudder axis respectively, so as to control the underwater the craft ascends;
  • the leading edge of the second rudder wing and the leading edge of the third rudder wing rotate synchronously and in the same direction around the second twisted rudder axis and the third twisted rudder axis respectively, so as to control the water Get off the craft and dive.
  • the beneficial effect of the rudder control device is that the propeller is used to realize the driving of the underwater vehicle at different speeds. Realize the left and right course control of the underwater vehicle, and realize the attitude adjustment of the underwater vehicle through the synchronous rotation of the second rudder wing and the third rudder wing, such as horizontal gliding, ascending or diving; When driving, the left and right course control function of the first rudder wing is about to fail. At this time, the left and right course control of the underwater vehicle is realized through the flapping action of the second rudder wing or the third rudder wing, which solves the problem of the existing rudder-propeller joint control maneuver. Poor technical problems, improve the maneuverability of underwater vehicles.
  • the beneficial effect of the rudder control method provided by the embodiment of the present application is that: when the underwater vehicle is running at a medium-to-high speed, the left and right course control of the underwater vehicle can be realized by twisting the first rudder wing around the first torsion rudder shaft; When driving at a low speed, the left and right course control function of the first rudder wing is about to fail. At this time, the left and right course control of the underwater vehicle is realized by the flapping action of the second rudder wing or the third rudder wing.
  • Fig. 1 is a structural schematic diagram of an underwater vehicle with a "ten" shaped tail rudder in the related art
  • Fig. 2 is a schematic diagram of the control surface of the underwater vehicle in Fig. 1;
  • Fig. 3 is a schematic diagram of the control surface of an underwater vehicle with an "X" shaped tail rudder
  • Fig. 4 is a schematic diagram of the control surface of an underwater vehicle with a "wood" shaped tail rudder
  • Fig. 5 is a schematic diagram of the control surface of an underwater vehicle with an inverted "Y" shaped tail rudder
  • Figure 6 is a schematic diagram of the installation of the rudder control device provided by the embodiment of the present application.
  • Fig. 7 is another perspective view of Fig. 6;
  • Figure 8 is a partially enlarged view of Figure 6;
  • Fig. 9 is a schematic diagram of the structure of the underwater vehicle turning toward the third rudder wing when it is running at medium and high speeds;
  • Fig. 10 is a structural schematic diagram of the underwater vehicle turning toward the second rudder wing side when traveling at medium and high speeds;
  • Fig. 11 is a schematic diagram of the control surface of the underwater vehicle in a horizontal gliding attitude
  • Fig. 12 is a schematic diagram of the control surface of the underwater vehicle in an ascending attitude
  • Figure 13 is a schematic diagram of the control surface of the heeling moment generated by the rudder control device
  • Fig. 14 is a structural schematic diagram of the underwater vehicle turning toward the third rudder wing side when running at a low speed;
  • Fig. 15 is a structural schematic diagram of the underwater vehicle turning to the third rudder wing side when running at a low speed.
  • the underwater vehicle 10 may be an underwater glider, AUV, ROV (Remote Operated Vehicle), torpedo, submarine, and the like.
  • the underwater vehicle 10 is sequentially divided into a head 12 , a middle part 13 and a tail 14 along its length.
  • the longitudinal direction 11 of the underwater vehicle 10 refers to the direction from the head 12 to the tail 14 .
  • the mid-longitudinal section of the underwater vehicle 10 refers to a vertical plane passing through the longitudinal direction 11 .
  • the top 15 of the underwater vehicle 10 refers to the part close to the water surface
  • the bottom of the underwater vehicle 10 refers to the part away from the water surface
  • the side 16 of the underwater vehicle 10 refers to the part between the top 15. and the side part between the bottom.
  • Medium and high speed refers to the speed of not less than 1kn; low speed refers to the speed of less than 1kn, or even zero speed, that is, hovering.
  • the world's mainstream underwater vehicle 10 manipulation methods mainly include multi-propeller combined control, single propeller vector control, rudder-propeller combined control and their combinations.
  • the research results are introduced as follows:
  • Multi-propeller combined manipulation mainly uses the direct thrust provided by propellers arranged in different directions and the differential between propellers to manipulate the underwater vehicle 10 to achieve lateral movement, submersion, bow turning, pitching, rolling and hovering. Wait to manipulate the movement.
  • the advantages of multi-propeller combined control are: since propellers are arranged in different directions of the underwater vehicle, the underwater vehicles using this control method are generally full-drive or over-drive systems, and the control efficiency is very high. It can perform large-scale high-speed cruise tasks, and can also perform small-scale local fine observation tasks.
  • the disadvantage of multi-propeller combined maneuvering is that the endurance of underwater vehicles using this propulsion method is often limited due to the low energy utilization efficiency of propellers.
  • the navigation speed is mostly 2kn ⁇ 4kn, or even higher.
  • the efficiency of the slotted propeller is extremely low, it cannot meet the maneuverability requirements, and the power consumption is high.
  • the propeller is additionally arranged outside the board, the overall resistance will be increased, and the power consumption of the propeller is high, which is not conducive to long-term underwater operation.
  • Single propeller vector control means that only one main propeller is arranged on the central axis of the tail of the underwater vehicle, and the control of the underwater vehicle is realized by controlling the speed of the propeller and the deflection angle of the propeller.
  • the specific implementation of this manipulation is to control the drive motor arranged in the main propeller and use the corresponding rotation and transmission mechanism to drive the propeller to rotate, so that the propeller can generate thrust in multiple directions to meet the manipulation control of the underwater vehicle. need.
  • single thruster vector control The advantages of single thruster vector control are: 1) Compared with rudder-propeller joint control, single thruster vector control can achieve high maneuverability at extremely low speed; 2) Compared with multi-propeller combined control, single thruster vector control The control has relative advantages in terms of space layout and size requirements, and the battery life will be longer in comparison.
  • the rudder-propeller joint control mainly refers to the control of the underwater vehicle 10 by a single longitudinal propeller at the stern in cooperation with the rudder wings arranged on the boat. Since there is only one longitudinal propeller, the underwater vehicle 10 at this time belongs to an underactuated system. And because only rely on the rudder wing to realize the steering control, if the speed is too low, the rudder wing will fail. Therefore, at present, this method is mainly suitable for cruising underwater vehicles 10 with a wide range and medium to high speed (not less than 1kn).
  • the rudder wing of the underwater vehicle 10 According to the combination form of the rudder wing of the underwater vehicle 10, it can be divided into forms such as “ten”, “X”, “H”, “big” and “Y". The maneuverability brought by different combination forms to the underwater vehicle 10 is very different.
  • the "ten" shaped rudder wing is composed of a pair of horizontal rudder wings 21 and vertical rudder wings 22.
  • the control method using the "ten"-shaped rudder wing is as follows: the horizontal rudder wing 21 controls the upward and downward movements, and the vertical rudder wing 22 controls the left and right navigation directions, but neither the horizontal rudder nor the vertical rudder wing 22 can control the rolling motion. .
  • This combination of rudder and wing has a simple structure, and the wake field is uniform and smooth, which is beneficial to reduce the resistance of the appendage, improve the control efficiency, and improve the propulsion performance.
  • Many AUVs that rely on the combined control of the rudder and propeller, and even most modern submarines use this arrangement. Way.
  • the "X"-shaped rudder wing is essentially a deformation of the "ten"-shaped rudder wing, which means that the four empennages are arranged in an "X" shape orthogonally, and the center line of the rudder shaft is symmetrical to the longitudinal direction of the boat Control surfaces at 45°. Adopting this arrangement is conducive to improving the safety of the AUV tail in offshore shallow water, because the "X"-shaped rudder wing can meet the premise of not exceeding the width and not exceeding the baseline, and has a larger spread than the "ten"-shaped tail fin. ratio, thus improving maneuverability and efficiency.
  • the "X"-shaped rudder wing can effectively reduce the heel angle when turning, greatly reduce the serious consequences caused by the rudder sticking of the rudder wing, and improve the safety and underwater sinking resistance of AUVs or submarines. It can be seen that the maneuverability of the "X" shaped rudder is relatively good, especially suitable for AUVs or small submarines that operate in shallow water with many coastal islands.
  • each rudder of the "X"-shaped rudder wing has the function of buoyancy and steering, so four sets of steering systems are required, which is very inconvenient to operate, and the corresponding mechanical equipment is also relatively complicated and expensive.
  • the force and moment generated by its rudder wing have a very complicated influence on the motion attitude of AUV or submarine.
  • the so-called "Y" shaped rudder wing is also derived from the form of the "X" shaped rudder wing.
  • the so-called "Y" shaped rudder wing is also derived from the form of the "X" shaped rudder wing.
  • only one rudder wing plays the role of steering, while the other two rudder wings can take into account the role of steering and diving.
  • This arrangement can greatly reduce the resistance of the appendage, but this arrangement will affect the performance of the propeller and the tail. Fluid noise can have an adverse effect.
  • a rudder control device including a propeller 100, a first rudder wing 200, a second rudder wing 300 and a third rudder wing 400.
  • the propeller 100 is installed on the tail 14 of the underwater vehicle 10 to provide the underwater vehicle 10 with longitudinal 11 propulsion.
  • the first rudder wing 200 is installed on the top 15 of the underwater vehicle 10, and is located in the middle longitudinal section of the underwater vehicle 10, the first rudder wing 200 can rotate around the first twisting rudder shaft 210 , the first twisted rudder shaft 210 extends in a direction from the end of the first rudder wing 200 close to the underwater vehicle 10 to the end of the first rudder wing 200 away from the underwater vehicle 10 .
  • the first twisted rudder axis 210 may be perpendicular to the longitudinal direction 11 of the underwater vehicle 10, or may not be perpendicular to the underwater vehicle 10. 11 in portrait orientation.
  • the second rudder wing 300 is installed on the side 16 of the underwater vehicle 10.
  • the second rudder wing 300 can rotate around the second twist rudder shaft 310, and can swing up and down around the first flapping rudder shaft 320.
  • the second twist The rudder shaft 310 extends along a direction from an end of the second rudder wing 300 close to the underwater vehicle 10 to an end of the second rudder wing 300 away from the underwater vehicle 10 .
  • the function of the first flapping rudder shaft 320 is to enable the second rudder blade 300 to swing up and down around it.
  • the first flapping wing rudder shaft 320 can be selected as a first horizontal line that passes through the installation position of the second rudder wing 300 and is tangent to the outer surface of the underwater vehicle 10, or the included angle with the first horizontal line is within 10° (including 10°) any axis.
  • the third rudder wing 400 is installed on the side 16 of the underwater vehicle 10, the third rudder wing 400 and the second rudder wing 300 are respectively located on both sides of the first rudder wing 200, and the third rudder wing 400 can rotate around the third rudder wing.
  • the shaft 410 rotates and can swing up and down around the second flapping rudder shaft 420, and the third twisting rudder shaft 410 sails from the end of the third rudder wing 400 close to the underwater vehicle 10 to the third rudder wing 400 away from the water. Extend in the direction of one end of the device 10.
  • the function of the second flapping rudder shaft 420 is to enable the third rudder blade 400 to swing up and down around it.
  • the second flapping rudder shaft 420 can be selected as a second horizontal line that passes through the installation position of the third rudder blade 400 and is tangent to the outer surface of the underwater vehicle 10, or the included angle with the second horizontal line is within 10° (including 10°) any axis.
  • the propeller 100 is used to realize the traveling of the underwater vehicle 10 at different speeds. Depending on the power provided by the propeller 100, the underwater vehicle 10 can be driven at a medium or high speed, or run at a low speed, or even hover. At this time, the propeller 100 does not work and the propulsion force is zero.
  • the propeller 100 is a propeller propeller.
  • the first rudder wing 200 , the second rudder wing 300 and the third rudder wing 400 are combined to form an inverted "T" shape.
  • the left and right course control of the underwater vehicle 10 is realized by twisting the first rudder wing 200 around the first twisting rudder shaft 210 .
  • the first rudder wing 200 rotates clockwise around the first twisted rudder axis 210, and the leading edge of the first rudder wing 200 turns towards the third rudder wing 400, so that the underwater vehicle 10 moves towards the third rudder wing 400.
  • the first rudder wing 200 rotates clockwise around the first twisted rudder axis 210, and the leading edge of the first rudder wing 200 turns towards the third rudder wing 400, so that the underwater vehicle 10 moves towards the third rudder wing 400.
  • the first rudder wing 200 rotates clockwise around the first twisted rudder axis 210, and the leading edge of the first rudder wing 200 turns towards the third rudder wing 400, so that the underwater vehicle 10 moves towards the third rudder wing 400. Turn to one side.
  • the clockwise rotation angle range of the first rudder blade 200 around the first twist rudder axis 210 is (0, 80°].
  • the first rudder wing 200 rotates counterclockwise around the first twisted rudder axis 210, and the leading edge of the first rudder wing 200 turns towards the second rudder wing 300, so that the underwater vehicle 10 moves towards the second rudder wing 300.
  • the first rudder wing 200 rotates counterclockwise around the first twisted rudder axis 210, and the leading edge of the first rudder wing 200 turns towards the second rudder wing 300, so that the underwater vehicle 10 moves towards the second rudder wing 300.
  • the first rudder wing 200 rotates counterclockwise around the first twisted rudder axis 210, and the leading edge of the first rudder wing 200 turns towards the second rudder wing 300, so that the underwater vehicle 10 moves towards the second rudder wing 300. Turn to one side.
  • the angle range of the counterclockwise rotation of the first rudder blade 200 around the first twist rudder axis 210 is (0, 80°].
  • the second rudder wing 300 and the third rudder wing 400 will generate a certain lift force under the action of fluid. Relying on the lift force, the underwater vehicle 10 in the fluid can perform various movements such as horizontal gliding, floating up and diving etc. during its continuous advancement. At this time, if the state of the rudder blade is adjusted, the lift around the rudder blade will be changed, thereby forcing the underwater vehicle 10 to transition from one motion state to another motion state.
  • the second rudder wing 300 and the third rudder wing 400 are synchronously kept horizontal, and the underwater vehicle 10 maintains a horizontal gliding motion.
  • said " synchronous keeping level " means that the second rudder wing 300 and the 3rd rudder wing 400 are basically located in the horizontal plane, including that the second rudder wing 300 and the third rudder wing 400 are strictly located in the horizontal plane, also including the second rudder wing 300 And the rudder angle difference between the third rudder wing 400 and the horizontal plane is controlled within 5°.
  • the second rudder wing 300 and the third rudder wing 400 are rotated synchronously in the same direction, so that the leading edge of the second rudder wing 300 and the third rudder wing 400
  • the leading edges of the underwater vehicle 10 are all turned upwards, and the underwater vehicle 10 is in a rising attitude.
  • the "synchronous same direction" mentioned here means that the turning time of the leading edge of the second rudder blade 300 and the leading edge of the third rudder blade 400 are basically synchronous, and the time error is allowed within 20s.
  • the leading edge of the second rudder blade 300 and the The inclination direction of the leading edge of the third rudder wing 400 is basically the same, and the inclination angle is allowed within 5°.
  • the second rudder blade 300 rotates ⁇ ° clockwise around the second twisted rudder axis 310
  • the third rudder blade 400 rotates counterclockwise ⁇ ° around the third twisted rudder axis 410.
  • the second rudder blade Both the leading edge of the 300 and the leading edge of the third rudder blade 400 are inclined upward, that is, they are twisted in the same direction.
  • the second rudder wing 300 and the third rudder wing 400 are synchronously twisted in the same direction, so that the leading edge of the second rudder wing 300 and the third rudder wing 400 are evenly aligned. Turning downward, the underwater vehicle 10 is in a dive posture.
  • the lift of the rudder wing depends on the velocity of the water flow, sufficient lift can only be generated when the velocity of the water flowing over the surface of the rudder wing is high, and when the water velocity is small, the lift on the rudder wing The lift force is relatively small, and the lift force will even disappear at zero incoming flow speed.
  • the left and right heading control functions of the first rudder wing 200 are about to fail, and the first rudder wing 200 cannot generate enough lift force to realize the steering of the underwater vehicle 10 .
  • Fig. 14 and Fig. 15 when the underwater vehicle 10 is running at a low speed, due to the failure of the steering function of the first rudder blade 200, the flapping action of the second rudder blade 300 or the third rudder blade 400 is used to realize The left and right course control of the underwater vehicle 10 solves the technical problem of poor maneuverability of the existing rudder-propeller joint control, and improves the maneuverability of the underwater vehicle 10 .
  • the second rudder wing 300 swings up and down around the first flapping rudder axis 320 , so that the underwater vehicle 10 turns toward the third rudder wing 400 .
  • the third rudder wing 400 swings up and down around the second flapping wing rudder axis 420 , so that the underwater vehicle 10 turns toward the second rudder wing 300 .
  • the installation positions of the first rudder wing 200 , the second rudder wing 300 and the third rudder wing 400 are located on the same cross section of the underwater vehicle 10 , avoiding the first rudder wing 200 , between the second rudder wing 300 and the third rudder wing 400 there is an interval on the longitudinal direction 11 of the underwater vehicle 10, thereby avoiding any two of the first rudder wing 200, the second rudder wing 300 and the third rudder wing 400 These generate a pitching moment on the underwater vehicle 10, which is conducive to the smooth sailing of the underwater vehicle 10.
  • the installation position of the rudder wing refers to the installation position of the rudder wing on the underwater vehicle 10 .
  • the installation positions of the third rudder wing 400 and the second rudder wing 300 are distributed symmetrically with respect to the mid-longitudinal section of the underwater vehicle 10, the force on the underwater vehicle 10 is uniform, and the wake field is uniform and smooth. It is beneficial to reduce the difficulty of manipulation and control of the underwater vehicle 10 and improve manipulation efficiency.
  • the first rudder wing 200 , the second rudder wing 300 and the third rudder wing 400 are all located at the middle part 13 or the tail part 14 of the underwater vehicle 10 .
  • the center of gravity of the underwater vehicle 10 is located at the middle part 13, and when the first rudder wing 200, the second rudder wing 300 and the third rudder wing 400 are all located at the middle part 13 of the underwater vehicle 10, it is beneficial to improve underwater navigation.
  • the first rudder wing 200, the second rudder wing 300 and the third rudder wing 400 are all located at the tail 14 of the underwater vehicle 10, they are close to the propeller 100 to avoid the first rudder wing 200, the second rudder wing 300 and the third rudder wing.
  • the first twisted rudder axis 210 is perpendicular to the longitudinal direction 11 of the underwater vehicle 10 .
  • the first rudder wing 200 only has the function of steering when traveling at medium and high speeds, but does not have the function of controlling the rise, lower chamber and heel, and does not affect the control of other rudder wings, which simplifies the difficulty of rudder control and is beneficial to Improve maneuverability.
  • the first flapping rudder axis 320 and the second twisting rudder axis 310 are located on the same plane and are perpendicular to each other. In this way, the rudder wing lift generated by the second rudder wing 300 around the first flapping rudder axis 320 and the second twisting rudder axis 310 are independent of each other and do not interfere with each other, which simplifies the difficulty of rudder control and is conducive to improving maneuverability.
  • the second flapping rudder axis 420 and the third twisting rudder axis 410 are located on the same plane and are perpendicular to each other. In this way, the rudder wing lift generated by the third rudder wing 400 around the second flapping rudder axis 420 and the third twisting rudder axis 410 are independent of each other and do not interfere with each other, which simplifies the difficulty of rudder control and is conducive to improving maneuverability.
  • the rudder control device also includes a first steering gear, the first steering gear is installed on the underwater vehicle 10, and the first steering gear is used to drive the first rudder wing 200 around the first twisting rudder axis 210 rotate.
  • the rudder control device further includes a second steering gear, the second steering gear is installed on the underwater vehicle 10, and the second steering gear is used to drive the second rudder wing 300 around the second twisting rudder shaft 310 rotate.
  • the rudder control device also includes a third steering gear, the third steering gear is installed on the underwater vehicle 10, and the third steering gear is used to drive the second rudder wing 300 around the first flapping rudder axis. 320 swing up and down.
  • the second rudder blade 300 uses different steering gears around the first flapping rudder shaft 320 and the second twisting rudder shaft 310 respectively, and is driven and controlled independently of each other, which simplifies the difficulty of driving and controlling.
  • the rudder control device also includes a fourth steering gear, the fourth steering gear is installed on the underwater vehicle 10, and the fourth steering gear is used to drive the third rudder wing 400 around the third twisting rudder axis 410 rotate.
  • the rudder control device also includes a fifth steering gear, the fifth steering gear is installed on the underwater vehicle 10, and the fifth steering gear is used to drive the third rudder blade 400 around the second flapping rudder axis.
  • the 420 swings up and down.
  • the first steering gear, the second steering gear, the third steering gear, the fourth steering gear and the fifth steering gear are independent of each other and can be controlled by an external gear movement mechanism, an internal meshing gear movement mechanism, and a rack and pinion movement mechanism. , belt transmission or hydraulic pressure to drive the corresponding rudder wing to rotate around the corresponding rudder shaft.
  • the first steering gear, the second steering gear, the third steering gear, the fourth steering gear and the fifth steering gear are any one of electric steering gear, hydraulic steering gear or pneumatic steering gear.
  • the rudder control control device also includes a heading attitude sensor and a rudder control control system, the heading attitude sensor and the rudder control operating system are installed on the underwater vehicle 10, and the heading attitude sensor is electrically connected to the rudder control operating system , the attitude sensor is used to obtain the attitude parameters of the underwater vehicle 10 and send it to the rudder control operating system, and the rudder control operating system is used to control the rotation of the first rudder wing 200, the second rudder wing 300 and the third rudder wing 400 .
  • the attitude sensor is an inertial measurement device, which can measure the attitude parameters (ie roll and pitch), angular velocity, acceleration information and heading angle of the underwater vehicle 10 .
  • attitude parameters ie roll and pitch
  • angular velocity ie roll and pitch
  • acceleration information ie heading angle
  • High-performance attitude sensors generally integrate MEMS accelerometers, gyroscopes, and magnetometers, and use algorithms to ensure measurement accuracy.
  • sealed designs and strict processes ensure that they can still accurately measure underwater vehicles in harsh environments. 10 motion parameters such as angular velocity, acceleration and attitude.
  • the attitude sensor is used to measure the attitude parameters (mainly roll and pitch parameters) of the underwater vehicle 10 during the underwater operation, and feed back the collected attitude parameter information to the rudder control system in real time.
  • the receiver of the steering system then, the controller module of the rudder control steering system performs instant calculation on the received information data and sends instructions to the first rudder wing 200, the second rudder wing 300 and the third rudder wing 400 in real time, Or send instructions to the driver of the corresponding steering gear; at this time, each steering gear drives the corresponding rudder blades to respond to perform corresponding actions (twisting or flapping wings) under the control of the commands to achieve various operations on the underwater vehicle 10. item manipulation.
  • the generated heeling moment is used to suppress the rolling motion of the underwater vehicle 10 to ensure the stability of the underwater vehicle 10 during underwater cruising operations at medium and high speeds.
  • a heeling moment is specially created to control the underwater vehicle 10 to perform complex actions such as rolling.
  • the underwater vehicle 10 tends to roll clockwise around its longitudinal direction 11 due to the influence of the flow field.
  • the third rudder wing 400 rotates counterclockwise by an angle A around the third twisted rudder axis 410, and the second rudder wing 300 remains stationary and remains horizontal, so there is a rudder angle difference between the third rudder wing 400 and the second rudder wing 300 , viewed from the tail 14 of the underwater vehicle 10, the underwater vehicle 10 produces a heeling moment that rotates counterclockwise around the longitudinal direction 11, which offsets the rolling tendency of the underwater vehicle 10 and achieves the purpose of anti-rolling.
  • the staff sends different rotation commands to control the second steering gear and the fourth steering gear to the rudder control and control system through wireless communication equipment, and artificially adjust the rudders of the second rudder wing 300 and the third rudder wing 400
  • the angle difference is used to create the required heeling moment, so as to control the underwater vehicle 10 to perform roll performance or attitude adjustment, and improve the flexibility of the underwater vehicle 10 .
  • the attitude sensor perceives the rolling tendency of the underwater vehicle 10, and allows the second rudder wing 300 and the third rudder wing 400 to automatically adjust the rudder angle difference of their respective rudder wings through a feedback mechanism , autonomously adjust the heeling moment to suppress the rolling motion of the underwater vehicle 10, so as to reduce the heeling angle of the underwater vehicle 10 and keep it stable when navigating underwater.
  • the main operation types of the underwater vehicle 10 when performing tasks are large-scale cruising and local fine observation, including three working states of medium-high speed cruising, low-speed pose adjustment and underwater hovering.
  • the main operation types of the underwater vehicle 10 when performing tasks are large-scale cruising and local fine observation, including three working states of medium-high speed cruising, low-speed pose adjustment and underwater hovering.
  • the underwater vehicle 10 when searching for targets, the underwater vehicle 10 is required to be able to flexibly change its heading in the underwater three-dimensional space. (maneuverability); when the target is found, it can accurately maintain the heading (stability); especially when the target is captured, the position and attitude of the underwater vehicle 10 can be freely adjusted under the condition that the speed is almost zero (manipulative).
  • the rudder control device is capable of handling the so-called “full speed” operations at high, medium, low or even zero speeds at the same time, in order to complete multiple different types of tasks in one launch.
  • the first rudder wing 200 is used to turn, and the second rudder wing 300 and the third rudder wing 400 are twisted to achieve horizontal gliding, rising or diving.
  • the flapping wings of two rudder wings 300 and the third rudder wing 400 realize steering.
  • the underwater vehicle 10 when the underwater vehicle 10 is running at a low speed, there is no need to add additional auxiliary propellers 100 such as slots or outboards on the underwater vehicle 10, and only the second rudder wings 300 and the third rudder wings 400 are used.
  • the flapping action of the underwater vehicle 10 can achieve low-speed attitude adjustment, so the weight and volume of the underwater vehicle 10 can be reduced to a certain extent, thereby reducing the resistance of the underwater vehicle 10 and improving energy utilization. , good battery life.
  • the device of the present application can cooperate with the built-in attitude sensor of the underwater vehicle 10 to make the second rudder wing 300 and the third rudder wing
  • the anti-rolling or anti-pitching moment is generated between the wings 400 to resist the interference of the disturbance of the ocean environment, and the active anti-rolling control is implemented on the underwater vehicle 10, so as to ensure the smooth operation of the underwater vehicle 10 and good maneuverability.
  • the attitude sensor can implement active anti-rolling control on the underwater vehicle 10 at any speed, thereby solving the problem of the stability of the underwater vehicle 10 at full speed, and has good maneuverability.
  • the present application also provides a rudder control method, which includes:
  • the above method realizes that the underwater vehicle 10 can freely adjust the heading at both medium and high speeds and low speeds, that is, it is suitable for full speed and has good maneuverability.
  • the method further includes: please refer to FIG. 13 , the second rudder wing 300 rotates around the second twisted rudder axis 310 by a first angle, the third rudder wing 400 rotates around the third twisted rudder axis 410 by a second angle, The first angle is different from the second angle to cause the underwater vehicle 10 to generate a heeling moment.
  • the above method generates a rudder angle difference by controlling the second rudder wing 300 and the third rudder wing 400 to automatically create a heeling moment to achieve the purpose of anti-rolling or roll motion.
  • the underwater vehicle 10 tends to roll clockwise around its longitudinal direction 11 due to the influence of the flow field.
  • the third rudder wing 400 rotates counterclockwise around the third twisted rudder shaft 410 by an angle A
  • the second rudder wing 300 remains stationary and remains horizontal, that is, the first angle is zero
  • the second angle is A
  • the third rudder wing 400 There is a rudder angle difference between the second rudder blade 300, and when viewed from the tail 14 of the underwater vehicle 10, the underwater vehicle 10 produces a heeling moment that rotates counterclockwise around the longitudinal direction 11, which offsets the heeling moment of the underwater vehicle 10 Rolling tendency to achieve the purpose of anti-rolling.
  • the above method further includes: when the underwater vehicle 10 has a tendency to roll, by controlling the magnitudes of the first angle and the second angle, providing the underwater vehicle 10 with a reverse heeling moment to restrain the underwater vehicle 10 from rolling.
  • the lower vehicle 10 does the rolling action.
  • the attitude sensor perceives the rolling tendency of the underwater vehicle 10, and controls the rudder angle difference between the first angle and the second angle through a feedback mechanism, and autonomously regulates the heeling moment to suppress the rolling tendency of the underwater vehicle 10. Rolling motion to reduce the heel angle of the underwater vehicle 10 to keep it stable when navigating underwater
  • the method when the underwater vehicle 10 is traveling at a medium to high speed, the method includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种舵控操纵装置及方法,装置包括推进器(100)、第一舵翼(200)、第二舵翼(300)和第三舵翼(400),第一舵翼(200)可绕第一扭转舵轴(210)做旋转动作,第二舵翼(300)可绕第一扑翼舵轴(320)上下摆动,第三舵翼(400)可绕第二扑翼舵轴(420)上下摆动。其中,水下航行器(10)在中高航速行驶时,通过第一舵翼(200)绕第一扭转舵轴(210)扭转实现左右航向控制,在低航速行驶时,通过第二舵翼(300)或第三舵翼(400)扑翼动作,实现左右航向控制。

Description

舵控操纵装置及方法 技术领域
本申请涉及水下机器人技术领域,具体涉及一种舵控操纵装置及方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
作为海洋高端智能装备的重要成员,自主水下机器人(Autonomous Underwater Vehicle,简称AUV)应用越来越广泛,无论是在民用还是在军用上都扮演着极为重要的角色。AUV执行任务时,其主要作业类型是大范围巡航和局部精细观察,包括中高速巡航、低速位姿调整和水下悬停三种工作模式,因此涉及高、中、低甚至零航速(即悬停)的运动状态。随着作业任务的日益多元化和复杂化,AUV很可能会面临在频繁地变换不同航速的运动状态下开展工作,因此,开发能同时胜任高、中、低甚至零航速的所谓的“全航速”作业技术的需求与日俱增。
AUV能够完成使命任务的前提是具备良好的性能,而操纵性是AUV的基本性能,也是AUV总体技术的核心基础,其涉及诸多学科领域。具备出色的操纵性能不仅能协助AUV自如应对复杂多变的水文环境,更是AUV完成各项复杂水下任务的前提。AUV的操纵性是指AUV借助其操纵装置(即推进器、舵、翼等)来改变或保持其运动速度、位置和姿态的性能,主要包括AUV稳态航行时的平衡状态、保持航行状态的性能(体现为“运动稳定性”)和改变航行状态的性能(体现为“机动性”)。虽然经过多年探索和技术积累,现今AUV的操纵性能有了很大的提高,但面对复杂的海洋环境,现有的技术水平仍面临不少挑战。目前,世界上主流的AUV操纵方式主要有多推进器组合操纵、单推进器矢量操纵、舵桨联合操纵以及它们的组合。
其中,舵桨联合操纵主要是指艉部单个纵向推进器配合艇上布置的舵翼来实现AUV的操纵控制。由于仅有一个纵向推进器,此时的AUV属于欠驱动系统,而又由于仅依靠舵翼来实现操纵控制,航速过低会导致舵翼失效,因此,目前这种方式主要适用于大范围、中高航速(不小于1海里每小时(kn))的巡航AUV。
技术问题
本申请实施例的目的之一在于:提供一种舵控操纵装置及方法,旨在解决现有的舵桨联合操纵机动性差的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,一种舵控操纵装置,包括:
推进器,安装于水下航行器的尾部,用于向所述水下航行器提供纵向推进力;
第一舵翼,安装于所述水下航行器的顶部,且位于所述水下航行器的中纵剖面内,所述第一舵翼可绕第一扭转舵轴做旋转动作,所述第一扭转舵轴沿从所述第一舵翼靠近所述水下航行器的一端向所述第一舵翼远离所述水下航行器的一端的方向延伸;
第二舵翼,安装于所述水下航行器的侧部,所述第二舵翼可绕第二扭转舵轴做旋转动作、且可绕第一扑翼舵轴上下摆动,所述第二扭转舵轴沿从所述第二舵翼靠近所述水下航行器的一端向所述第二舵翼远离所述水下航行器的一端的方向延伸;
第三舵翼,安装于所述水下航行器的侧部,所述第三舵翼和所述第二舵翼分别位于所述第一舵翼的两侧,所述第三舵翼可绕第三扭转舵轴做旋转动作、且可绕第二扑翼舵轴上下摆动,所述第三扭转舵轴沿从所述第三舵翼靠近所述水下航行器的一端向所述第三舵翼远离所述水下航行器的一端的方向延伸。
在其中一个实施例中,所述第一舵翼、所述第二舵翼和所述第三舵翼的安装位置位于所述水下航行器的同一横截面。
在其中一个实施例中,所述第三舵翼和所述第二舵翼的安装位置关于所述水下航行器的中纵剖面对称分布。
在其中一个实施例中,所述第一舵翼、所述第二舵翼和所述第三舵翼均位于所述水下航行器的中部或尾部。
在其中一个实施例中,所述第一扭转舵轴垂直于所述水下航行器的纵向。
在其中一个实施例中,所述第一扑翼舵轴和所述第二扭转舵轴位于同一平面且相互垂直。
在其中一个实施例中,所述第二扑翼舵轴和所述第三扭转舵轴位于同一平面且相互垂直。
在其中一个实施例中,所述舵控操纵装置还包括第一舵机,所述第一舵机安装于所述水下航行器,所述第一舵机用于驱动所述第一舵翼绕所述第一扭转舵轴旋转。
在其中一个实施例中,所述舵控操纵装置还包括第二舵机,所述第二舵机安装于所述水下航行器,所述第二舵机用于驱动所述第二舵翼绕所述第二扭转舵轴旋转。
在其中一个实施例中,所述舵控操纵装置还包括第三舵机,所述第三舵机安装于所述水下航行器,所述第三舵机用于驱动所述第二舵翼绕所述第一扑翼舵轴上下摆动。
在其中一个实施例中,所述舵控操纵装置还包括第四舵机,所述第四舵机安装于所述水下航行器,所述第四舵机用于驱动所述第三舵翼绕所述第三扭转舵轴旋转。
在其中一个实施例中,所述舵控操纵装置还包括第五舵机,所述第五舵机安装于所述水下航行器,所述第五舵机用于驱动所述第三舵翼绕所述第二扑翼舵轴上下摆动。
在其中一个实施例中,所述舵控操纵装置还包括航姿传感器和舵控操纵系统,所述航姿传感器和所述舵控操作系统安装于所述水下航行器,所述航姿传感器与所述舵控操作系统电性连接,所述航姿传感器用于获取所述水下航行器的姿态参数并发送至所述舵控操作系统,所述舵控操作系统用于控制所述第一舵翼、所述第二舵翼和所述第三舵翼的旋转动作。
第二方面,提供一种舵控操纵方法,应用于上述的舵控操纵装置,所述方法包括:
当水下航行器处于中高航速行驶时,通过第一舵翼绕第一扭转舵轴旋转而实现所述水下航行器左右转向;
当所述水下航行器处于低航速行驶时,通过第二舵翼绕第一扑翼舵轴上下摆动而实现所述水下航行器朝第三舵翼一侧转向;
当所述水下航行器处于低航速行驶时,通过所述第三舵翼绕第二扑翼舵轴上下摆动而实现所述水下航行器朝所述第二舵翼一侧转向。
在其中一个实施例中,所述方法还包括:所述第二舵翼绕所述第二扭转舵轴旋转第一角度,所述第三舵翼绕所述第三扭转舵轴旋转第二角度,所述第一角度与所述第二角度不同,以使所述水下航行器产生横倾力矩。
在其中一个实施例中,所述方法还包括:当所述水下航行器出现横滚倾向时,通过控制所述第一角度和所述第二角度的大小,向所述水下航行器提供反向的横倾力矩,以抑制所述水下航行器做横滚动作。
在其中一个实施例中,当水下航行器处于中高航速行驶时,所述方法包括:
所述第二舵翼和所述第三舵翼分别绕所述第二扭转舵轴、所述第三扭转舵轴同步同向旋转至水平,以控制所述水下航行器水平滑翔;
所述第二舵翼的前缘和所述第三舵翼的前缘分别绕所述第二扭转舵轴、所述第三扭转舵轴同步同向旋转至倾斜向上,以控制所述水下航行器上升;
所述第二舵翼的前缘和所述第三舵翼的前缘分别绕所述第二扭转舵轴、所述第三扭转舵轴同步同向旋转至倾斜向下,以控制所述水下航行器下潜。
有益效果
本申请实施例提供的舵控操纵装置的有益效果在于:采用推进器实现水下航行器不同航速的行驶,水下航行器在中高航速行驶时,通过第一舵翼绕第一扭转舵轴扭转实现水下航行器左右航向控制,通过第二舵翼和第三舵翼同步同向扭转,实现操纵水下航行器姿态调整,如水平滑翔、上升或下潜运动;水下航行器在低航速行驶时,第一舵翼的左右航向控制功能面临失效,此时通过第二舵翼或第三舵翼扑翼动作,实现水下航行器左右航向控制,解决了现有的舵桨联合操纵机动性差的技术问题,提高水下航行器的机动性。
本申请实施例提供的舵控操纵方法的有益效果在于:水下航行器在中高航速行驶时,通过第一舵翼绕第一扭转舵轴扭转实现水下航行器左右航向控制;水下航行器在低航速行驶时,第一舵翼的左右航向控制功能面临失效,此时通过第二舵翼或第三舵翼扑翼动作,实现水下航行器左右航向控制。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为相关技术中的具有“十”形尾舵的水下航行器的结构示意图;
图2为图1中的水下航行器的操纵面示意图;
图3为具有“X”形尾舵的水下航行器的操纵面示意图;
图4为具有“木”形尾舵的水下航行器的操纵面示意图;
图5为具有倒“Y”形尾舵的水下航行器的操纵面示意图;
图6为本申请实施例提供的舵控操纵装置的安装示意图;
图7为图6的又一视角图;
图8为图6的局部放大图;
图9为水下航行器在中高航速行驶时朝第三舵翼一侧转向的结构示意图;
图10为水下航行器在中高航速行驶时朝第二舵翼一侧转向的结构示意图;
图11为水下航行器处于水平滑翔姿态的操纵面示意图;
图12为水下航行器处于上升姿态的操纵面示意图;
图13为舵控操纵装置产生横倾力矩的操纵面示意图;
图14为水下航行器在低航速行驶时朝第三舵翼一侧转向的结构示意图;
图15为水下航行器在低航速行驶时朝第三舵翼一侧转向的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
本实施例中,水下航行器10可选为水下滑翔机、AUV、ROV(遥控无人潜水器,Remote Operated Vehicle)、鱼雷和潜艇等。
请参考图6,水下航行器10沿其长度方向依次划分为头部12、中部13和尾部14。水下航行器10的纵向11是指从头部12至尾部14的方向。水下航行器10的中纵剖面是指过纵向11的竖直平面。在正常使用状态下,水下航行器10的顶部15是指靠近水面的部分,水下航行器10的底部是指远离水面的部分,水下航行器10的侧部16是指介于顶部15和底部之间的侧方部分。
中高航速是指航速不小于1kn;低航速是指航速小于1kn,甚至可以为零航速,即悬停。
根据发明人的研究,世界上主流的水下航行器10的操纵方式主要有多推进器组合操纵、单推进器矢量操纵、舵桨联合操纵以及它们的组合。现介绍研究成果如下:
第一,多推进器组合操纵
多推进器组合操纵主要是利用不同方向布置的推进器提供的直接推力和推进器之间的差动来操纵水下航行器10实现横移、潜浮、转艏、俯仰、横滚及悬停等操纵运动。多推进器组合操纵的实现方式主要有两种:一种是纵向推进器配合横向及垂向槽道的推进器;另一种是纵向推进器配合舷外布置的多方向推进器。
多推进器组合操纵的优点为:由于在水下航行器不同方向均布置有推进器,采用这种操纵方式的水下航行器一般多为全驱动或过驱动系统,操纵效率非常高,不仅可执行大范围高速巡航任务,也可执行小范围局部精细观测任务。
多推进器组合操纵的缺点为:由于推进器能源利用效率不高,使用这种推进方式的水下航行器的续航力往往受限。特别地,对于那些仅搭载大范围探测设备(如侧扫声呐、多波束测控声呐、合成孔径声呐等)执行区域搜索任务的水下航行器,航行速度多为2kn~4kn,甚至更高。在这种高航速下,槽道螺旋桨推进器效率极低,无法满足操纵性需求,并且功耗很高。另外,若采用舷外额外布置的推进器则会增加整体阻力,且推进器功耗较高,不利于长期水下作业。
需要说明的是,续航力是AUV的一个非常重要的指标,长续航力有助于增大AUV对海底的搜索面积,提高有效工作时间,因此追求高操纵效率不能以牺牲续航力为代价。众所周知,AUV排水量一般都很小,导致能源储备十分有限。AUV的航行时间和工作范围受到本身能源供给的制约,如何在有限能源下获得最长的运行时间和航行距离成为了非常突出的问题。虽然多推进器组合操纵方式可为AUV带来高的操纵效率,但由于要布置多个推进器,分散了能源供给,加大了能源的消耗量,因此会导致AUV的续航力大打折扣。
第二,单推进器矢量操纵
单推进器矢量操纵是指在水下航行器的尾部中轴线只布置一个主推进器,通过控制推进器转速和推进器偏转角实现水下航行器的操纵。该操纵的具体实现方式是通过控制在主推进器内布置的驱动电机并利用相应的转动、传动机构驱动螺旋桨转动,进而使推进器可产生多个方向的推力,满足水下航行器的操纵控制需求。
单推进器矢量操纵的优点为:1),相比舵桨联合操纵,单推进器矢量操纵可以在极低速度下实现高操纵性;2),相比多推进器组合操纵,单推进器矢量操纵在空间布置及尺寸要求上有相对的优势,续航力相比之下也会较长。
单推进器矢量操纵的缺点是:1),操纵控制的难度较大;2),抵抗海洋环境扰动(风、浪、流等)的影响弱,因此在近水面或浅海区域的作业受限较大;3),难以对水下航行器的横滚运动施加有效控制,因而抗干扰能力弱。
第三,舵桨联合操纵
舵桨联合操纵主要是指艉部单个纵向推进器配合艇上布置的舵翼来实现水下航行器10的操纵控制。由于仅有一个纵向推进器,此时的水下航行器10属于欠驱动系统。又由于仅依靠舵翼来实现操纵控制,航速过低会导致舵翼失效,因此,目前这种方式主要适用于大范围、中高航速(不小于1kn)的巡航水下航行器10。
根据水下航行器10的舵翼组合形式,可以分为“十”、“X”、“H”、“大”和“Y”形等形式。不同的组合形式给水下航行器10带来的操纵性有很大的不同。
1),请参考图1和图2,“十”字形舵翼,顾名思义,就是由一对水平舵翼21和垂直舵翼22组成而成。利用“十”字形舵翼的操控方式为:水平舵翼21控制上浮和下潜运动,垂直舵翼22控制左右航行方向,但无论是水平舵还是垂直舵翼22均对横滚运动不能加以控制。这种舵翼组合形式结构简单,伴流场均匀平顺,有利于减小了附体阻力,提高操纵效率,改善推进性能,许多依靠舵桨联合操纵的AUV,甚至大多现代潜艇均采用这种布置方式。
2),请参考图3,“X”字形舵翼,实质是“十”形舵翼的变形,是指四个尾翼呈“X”字型正交布置,舵轴中心线相对艇的纵向对称成45°的操纵面。采用这种布置有利于提高在近海浅水中AUV尾部的安全性,因为“X”形舵翼能满足不超宽和不超出基线的前提下,相对于“十”字形尾鳍有更大的展弦比,故此提高了操纵能力和效率。此外,“X”形舵翼能有效减小回转时的横倾角,大大减少舵翼因卡舵而造成的严重后果,提高了AUV或潜艇的安全性和水下抗沉性。可见“X”形舵翼的机动性相对较好,尤其适用于在沿海多岛屿的浅水中活动的AUV或者小型潜艇。
需要说明的是,虽然“X”形舵翼有着比“十”形舵翼所欠缺的优点,但该舵型也存在一些不足。譬如,“X”形舵翼的每个舵都有着浮力与转向的功能,因此需要四套操舵系统,操纵十分不便,相应的机械设备也较为复杂,造价较高。此外,其舵翼所产生的力和力矩对AUV或潜艇的运动姿态影响十分复杂。
还需要进一步指出,上述两种基本的舵翼布置形式(即“十”和“X”形),均难以对横滚运动实施控制。然而,众所周知,横滚运动会严重影响AUV扫描精度,所以巡航工作时的平稳性对AUV来说相当重要。对于载人的潜艇来说,横滚运动对艇内的人员所产生的危害更大,因此对抑制横滚的需求更甚。
3)一些现代潜艇为了加大横摇阻尼,或出于减小高速转向时的横倾,在原有的“十”形舵翼的水平舵翼21上加装一定大小和形状的挡板,形成所谓的“H”形舵翼;又或者在“十”形舵翼下方左右舷45°位置,增加了两块带端板的稳定翼,请参考图4,派生出所谓的“大”形舵翼,以加大水下航行体的横向稳定性,减小高速转向时的横倾角和横摇。
当然,除上述的几种尾舵形式外,请参考图5,在“X”形舵翼的形式上还派生出所谓的“Y”形舵翼。该形式只有一个舵翼起到转向的作用,而其它两个舵翼能兼顾转向和下潜的作用,这样的布置能大大减少附体的阻力,但是这样的布置方式会对螺旋桨性能、尾部兴波及流体噪声产生不利的影响。
为克服以上不同舵翼组合形式的缺点,请参考图6和图7,本申请提供一种舵控操纵装置,包括推进器100、第一舵翼200、第二舵翼300和第三舵翼400。
其中,推进器100安装于水下航行器10的尾部14,用于向水下航行器10提供纵向11推进力。
请参考图8,第一舵翼200安装于水下航行器10的顶部15,且位于水下航行器10的中纵剖面内,第一舵翼200可绕第一扭转舵轴210做旋转动作,第一扭转舵轴210沿从第一舵翼200靠近水下航行器10的一端向第一舵翼200远离水下航行器10的一端的方向延伸。
其中,根据第一舵翼200的形状不同以及在中纵剖面内的倾斜角度不同,第一扭转舵轴210可能垂直于水下航行器10的纵向11,也可能不垂直于水下航行器10的纵向11。
第二舵翼300安装于水下航行器10的侧部16,第二舵翼300可绕第二扭转舵轴310做旋转动作、且可绕第一扑翼舵轴320上下摆动,第二扭转舵轴310沿从第二舵翼300靠近水下航行器10的一端向第二舵翼300远离水下航行器10的一端的方向延伸。
其中,第一扑翼舵轴320的作用是使第二舵翼300绕其能够实现上下摆动。第一扑翼舵轴320可选为经过第二舵翼300的安装位置且与水下航行器10的外表面相切的第一水平线,也可以是与该第一水平线的夹角在10°以内(含10°)的任一轴线。
第三舵翼400安装于水下航行器10的侧部16,第三舵翼400和第二舵翼300分别位于第一舵翼200的两侧,第三舵翼400可绕第三扭转舵轴410做旋转动作、且可绕第二扑翼舵轴420上下摆动,第三扭转舵轴410沿从第三舵翼400靠近水下航行器10的一端向第三舵翼400远离水下航行器10的一端的方向延伸。
其中,第二扑翼舵轴420的作用是使第三舵翼400绕其能够实现上下摆动。第二扑翼舵轴420可选为经过第三舵翼400的安装位置且与水下航行器10的外表面相切的第二水平线,也可以是与该第二水平线的夹角在10°以内(含10°)的任一轴线。
本申请提供的舵控操纵装置中,推进器100用于实现水下航行器10不同航速行驶。根据推进器100提供的动力大小不同,可以使水下航行器10处于中高航速行驶,或者,低航速行驶,甚至悬停,此时推进器100不工作,推进力为零。
具体地,推进器100为螺旋桨推进器。
本实施例中,第一舵翼200、第二舵翼300和第三舵翼400组合形成呈倒“T”字形。水下航行器10在中高航速行驶时,通过第一舵翼200绕第一扭转舵轴210扭转实现水下航行器10左右航向控制。
请参考图9,第一舵翼200绕第一扭转舵轴210顺时针旋转,第一舵翼200的前缘朝向第三舵翼400方向转动,从而水下航行器10朝向第三舵翼400一侧转向。
可选地,第一舵翼200绕第一扭转舵轴210顺时针旋转的角度范围为(0,80°]。
请参考图10,第一舵翼200绕第一扭转舵轴210逆时针旋转,第一舵翼200的前缘朝向第二舵翼300方向转动,从而水下航行器10朝向第二舵翼300一侧转向。
可选地,第一舵翼200绕第一扭转舵轴210逆时针旋转的角度范围为(0,80°]。
本实施例中,水下航行器10在中高航速行驶时,第二舵翼300和第三舵翼400在流体作用下会产生一定的升力。依靠该升力,身处流体中的水下航行器10在不断的前进过程中就能进行各种运动,如水平滑翔、上浮和下潜等。此时,若调整舵翼所处的状态,则会改变舵翼周边的升力,从而迫使水下航行器10从一种运动状态过渡至另一种运动状态。
比如,请参考图8和图11,水下航行器10在中高航速行驶时,第二舵翼300和第三舵翼400同步保持水平,水下航行器10保持水平滑翔运动。这里所说的“同步保持水平”是指第二舵翼300和第三舵翼400的基本位于水平面,包括第二舵翼300和第三舵翼400严格位于水平面,也包括第二舵翼300和第三舵翼400与水平面的舵角差控制在5°以内。
比如,请参考图12,水下航行器10在中高航速行驶时,第二舵翼300和第三舵翼400同步同向扭转,以使第二舵翼300的前缘和第三舵翼400的前缘均朝上转动,水下航行器10处于上升姿态。这里所说的“同步同向”是指第二舵翼300的前缘和第三舵翼400的前缘的转动时间基本同步、时间误差允许在20s内,第二舵翼300的前缘和第三舵翼400的前缘的倾斜方向基本相同、倾斜角度允许在5°内。比如,图12所示,第二舵翼300绕第二扭转舵轴310顺时针旋转θ°,第三舵翼400绕第三扭转舵轴410逆时针旋转θ°,此时,第二舵翼300的前缘和第三舵翼400的前缘均倾斜向上,即同向扭转。
同理,水下航行器10在中高航速行驶时,第二舵翼300和第三舵翼400同步同向扭转,以使第二舵翼300的前缘和第三舵翼400的前缘均朝下转动,水下航行器10处于下潜姿态。
需要说明的是,由于舵翼升力的产生依赖于水流流过的速度,只有当流过舵翼表面的水流速度较高时,才能产生足够的升力,而当水流速度较小时,舵翼上的升力相应较小,在零来流速度时升力甚至会消失,此时第一舵翼200的左右航向控制功能面临失效,第一舵翼200无法产生足够的升力实现水下航行器10转向。
请参考图14和图15,当水下航行器10在低航速行驶时,由于第一舵翼200的转向功能失效,此时通过第二舵翼300或第三舵翼400扑翼动作,实现水下航行器10左右航向控制,解决了现有的舵桨联合操纵机动性差的技术问题,提高水下航行器10的机动性。
比如,请参考图14,第二舵翼300绕第一扑翼舵轴320上下摆动,从而水下航行器10朝第三舵翼400一侧转向。
再比如,请参考图15,第三舵翼400绕第二扑翼舵轴420上下摆动,从而水下航行器10朝第二舵翼300一侧转向。
在一种可能的示例中,请参考图11,第一舵翼200、第二舵翼300和第三舵翼400的安装位置位于水下航行器10的同一横截面,避免第一舵翼200、第二舵翼300和第三舵翼400之间在水下航行器10的纵向11上存在间隔,从而避免第一舵翼200、第二舵翼300和第三舵翼400中的任意二者之间对水下航行器10产生纵倾力矩,有利于水下航行器10平稳航行。
需要说明的是,舵翼的安装位置是指舵翼在水下航行器10上的安装位置。
具体地,请参考图11,第三舵翼400和第二舵翼300的安装位置关于水下航行器10的中纵剖面对称分布,水下航行器10受力均匀,伴流场均匀平顺,有利于降低水下航行器10的操纵控制难度,提高操纵效率。
在一种可能的示例中,请参考图6和图7,第一舵翼200、第二舵翼300和第三舵翼400均位于水下航行器10的中部13或尾部14。
一般地,水下航行器10的重心位于其中部13,第一舵翼200、第二舵翼300和第三舵翼400均位于水下航行器10的中部13时,有利于提高水下航行器10的稳定性。第一舵翼200、第二舵翼300和第三舵翼400均位于水下航行器10的尾部14时,靠近推进器100,避免第一舵翼200、第二舵翼300及第三舵翼400和推进器100之间在纵向11存在较大的间隔,不仅避免对水下航行器10产生纵倾力矩,而且该操纵装置均位于尾部14,集中对水下航行器10进行操纵控制,提高操纵效率。
在一种可能的示例中,请参考图9和图11,第一扭转舵轴210垂直于水下航行器10的纵向11。如此,第一舵翼200只在中高航速行驶时具有转向的功能,而不具有控制上升、下腔及横倾的功能,不影响其他舵翼的操纵控制,简化了舵控操纵难度,有利于提高操纵性。
在一种可能的示例中,请参考图9和图11,第一扑翼舵轴320和第二扭转舵轴310位于同一平面且相互垂直。如此,第二舵翼300绕第一扑翼舵轴320和绕第二扭转舵轴310产生的舵翼升力相互独立,互不干扰,简化了舵控操纵难度,有利于提高操纵性。
在一种可能的示例中,请参考图9和图11,第二扑翼舵轴420和第三扭转舵轴410位于同一平面且相互垂直。如此,第三舵翼400绕第二扑翼舵轴420和绕第三扭转舵轴410产生的舵翼升力相互独立,互不干扰,简化了舵控操纵难度,有利于提高操纵性。
在一种可能的示例中,舵控操纵装置还包括第一舵机,第一舵机安装于水下航行器10,第一舵机用于驱动第一舵翼200绕第一扭转舵轴210旋转。
在一种可能的示例中,舵控操纵装置还包括第二舵机,第二舵机安装于水下航行器10,第二舵机用于驱动第二舵翼300绕第二扭转舵轴310旋转。
在一种可能的示例中,舵控操纵装置还包括第三舵机,第三舵机安装于水下航行器10,第三舵机用于驱动第二舵翼300绕第一扑翼舵轴320上下摆动。如此,第二舵翼300绕第一扑翼舵轴320和第二扭转舵轴310分别使用不同的舵机、相互独立地进行驱动控制,简化了驱动控制难度。
在一种可能的示例中,舵控操纵装置还包括第四舵机,第四舵机安装于水下航行器10,第四舵机用于驱动第三舵翼400绕第三扭转舵轴410旋转。
在一种可能的示例中,舵控操纵装置还包括第五舵机,第五舵机安装于水下航行器10,第五舵机用于驱动第三舵翼400绕第二扑翼舵轴420上下摆动。
具体地,第一舵机、第二舵机、第三舵机、第四舵机和第五舵机相互独立地、可通过外啮合齿轮运动机构、内啮合齿轮运动机、齿轮齿条运动机构、带传动或者液压等方式来驱动对应的舵翼绕对应的舵轴旋转。
可选地,第一舵机、第二舵机、第三舵机、第四舵机和第五舵机为电动舵机、液压舵机或气压舵机中的任一种。
在一种可能的示例中,舵控操纵装置还包括航姿传感器和舵控操纵系统,航姿传感器和舵控操作系统安装于水下航行器10,航姿传感器与舵控操作系统电性连接,航姿传感器用于获取水下航行器10的姿态参数并发送至舵控操作系统,舵控操作系统用于控制第一舵翼200、第二舵翼300和第三舵翼400的旋转动作。
其中,航姿传感器是一款惯性测量设备,它可以测量水下航行器10的姿态参数(即横滚和俯仰)、角速度、加速度信息和航向角。高性能的航姿传感器一般都集成了MEMS加速度计、陀螺仪和磁力计,并通过算法保证测量精度,同时经密封设计以及严格工艺保证其在恶劣的环境下仍能精密地测量水下航行器10的角速度、加速度和姿态等运动参数。
本实施例中,航姿传感器用于测量水下航行器10在水下作业过程中的姿态参数(主要是横滚和俯仰参数),并把所采集到的姿态参数信息实时地反馈给舵控操纵系统的接收器;然后,舵控操纵系统的控制器模块对接收到的信息数据进行即时解算并实时地发送指令给第一舵翼200、第二舵翼300和第三舵翼400,或者发送指令给对应的舵机的驱动器;此时,各个舵机在指令的控制下,驱动对应的舵翼去响应执行相应的动作(扭转或扑翼)来实现对水下航行器10进行各项操纵。
本实施例中,不管水下航行器10是在中高航速巡航还是在低航速巡航,当第二舵翼300和第三舵翼400不同步地分别绕第二扭转舵轴310和第三扭转舵轴410旋转时,由于第二舵翼300和第三舵翼400的舵角不同而产生出不同的升力,因此会在水下航行器10的左右两侧产生一个横倾力矩,利用该横倾力矩则可对水下航行器10的横滚运动施加控制。比如,出于减摇为目的,利用所产生横倾力矩以抑制水下航行器10作横滚运动,确保水下航行器10在中高航速下进行水下巡航作业时保持稳定。再比如,出于提高水下航行器10灵活性为目的,专门创造横倾力矩,以控制水下航行器10做翻滚等复杂的动作。
具体地,参见图13,水下航行器10受流场影响,出现绕其纵向11顺时针横滚的倾向。此时,第三舵翼400绕第三扭转舵轴410逆时针旋转角度A,第二舵翼300不动、保持水平,从而第三舵翼400和第二舵翼300之间存在舵角差,从水下航行器10的尾部14看,水下航行器10产生一个绕纵向11逆时针旋转的横倾力矩,抵消水下航行器10的横滚倾向,达到减摇的目的。
进一步地,根据实际需求,工作人员通过无线通讯设备向舵控操纵系统发送控制第二舵机和第四舵机的不同旋转指令,人为地调节第二舵翼300和第三舵翼400的舵角差来创造出所需的横倾力矩,以控制水下航行器10做翻滚表演或姿态调整,提高水下航行器10的灵活性。
进一步地,根据自动控制原理,航姿传感器感知水下航行器10的横滚倾向,并通过反馈机制让第二舵翼300和第三舵翼400自动地调节它们各自的舵翼的舵角差,自主地调控横倾力矩以抑制水下航行器10的横滚运动,以减小水下航行器10的横倾角使其在水下航行时保持平稳。
需要说明的是,水下航行器10由于工作环境的特殊性,对其机动性和安全性提出了较高的要求,因此水下航行器10的操纵性至关重要。对于水下航行器10来说,只有具备良好的操纵性,才能既稳定又迅速地控制水下航行器10的航向、航速,才有利于其成功规避各种障碍物以准确地执行各种机动任务。
需要说明的是,水下航行器10无论在何种航速状态下作业,其作业过程必须尽可能地保持平衡,以避免水下航行器10自身的不稳定性对其所搭载的工作设备带来过多干扰。比如,利用水下航行器10搭载摄像头、声呐等设备进行水下成像拍摄或勘探作业时,水下航行器10自身的不稳定运动会对所搭载的摄像头或声呐带来干扰,造成成像效果不佳。
水下航行器10执行任务时的主要作业类型是大范围巡航和局部精细观察,包括中高航速巡航、低速位姿调整和水下悬停三种工作状态。随着海洋勘探和开发需求的日趋加大,身兼多重任务的水下航行器10下水作业在不久的将来会成为常态,而作业任务多元化将可能会迫使水下航行器10在不同的航速下频繁地切换工作模式,从而致使水下航行器10的操纵性面临极大的考验。
事实上,在不同的航速下的作业会对水下航行器10的操纵性提出不同的要求,比如说,在搜索目标时,要求水下航行器10能灵活地在水下三维空间中改变航向(机动性);当发现目标时,能准确地保持航向(稳定性);特别是当捕捉到目标时,在航速几乎为零的情况下,能自如地调整水下航行器10的位置和姿态(操纵性)。
因此,面对海洋勘探和开发需求的日趋加大,同时为了推动水下航行器10更高效地执行各项纷繁复杂的水下作业任务,本申请提供一种能完全满足水下航行器10全航速的作业需求且既经济又高效的舵控操纵装置,具有以下技术效果:
第一,该舵控操纵装置能同时胜任高、中、低甚至零航速的所谓的“全航速”作业的操纵技术,以务求一次性下水就能完成多项不同类型的作业任务。
具体地,当在中高航速行驶时,通过第一舵翼200实现转向,通过第二舵翼300和第三舵翼400扭转实现水平滑翔、上升或下潜,当在低航速行驶时,通过第二舵翼300和第三舵翼400的扑翼实现转向。
第二,当水下航行器10在低航速行驶作业时,无需在水下航行器10上额外增加槽道或舷外等辅助推进器100,仅利用第二舵翼300和第三舵翼400的扑翼动作即可让水下航行器10实现低速位姿调整,因此在一定程度上减轻水下航行器10的重量和体积,从而减小水下航行器10的阻力并提高能源的利用率,续航力好。
第三,当水下航行器10需要进行悬停(零航速)水下作业时,本申请装置可以与水下航行器10内置的航姿传感器相互配合,使第二舵翼300和第三舵翼400之间产生反横滚或反纵摇力矩来抵抗海洋环境扰动的干扰,对水下航行器10实施主动的减摇控制,从而确保水下航行器10平稳作业,操纵性好。
第四,航姿传感器可以在任何航速下均对水下航行器10实施主动式的减摇控制,从而解决水下航行器10全航速作业稳定性的问题,机动性好。
基于上述任意一种舵控操纵装置,本申请还提供了一种舵控操纵方法,方法包括:
S100:请参考图9和图10,当水下航行器10处于中高航速行驶时,通过第一舵翼200绕第一扭转舵轴210旋转而实现水下航行器10左右转向。
S200:请参考图14,当水下航行器10处于低航速行驶时,通过第二舵翼300绕第一扑翼舵轴320上下摆动而实现水下航行器10朝第三舵翼400一侧转向。
S300:请参考图15,当水下航行器10处于低航速行驶时,通过第三舵翼400绕第二扑翼舵轴420上下摆动而实现水下航行器10朝第二舵翼300一侧转向。
上述方法实现水下航行器10在中高航速和低航速均能自如地调整航向,即适用于全航速情况,操纵性好。
在其中一个实施例中,方法还包括:请参考图13,第二舵翼300绕第二扭转舵轴310旋转第一角度,第三舵翼400绕第三扭转舵轴410旋转第二角度,第一角度与第二角度不同,以使水下航行器10产生横倾力矩。
其中,上述方法通过控制第二舵翼300和第三舵翼400产生舵角差,自动地创造横倾力矩,达到减摇的目的或者做横滚运动。
具体地,参见图13,水下航行器10受流场影响,出现绕其纵向11顺时针横滚的倾向。此时,第三舵翼400绕第三扭转舵轴410逆时针旋转角度A,第二舵翼300不动、保持水平,即第一角度为零,第二角度为A,第三舵翼400和第二舵翼300之间存在舵角差,从水下航行器10的尾部14看,水下航行器10产生一个绕纵向11逆时针旋转的横倾力矩,抵消水下航行器10的横滚倾向,达到减摇的目的。
具体地,上述方法还包括:当水下航行器10出现横滚倾向时,通过控制第一角度和第二角度的大小,向水下航行器10提供反向的横倾力矩,以抑制水下航行器10做横滚动作。
比如,航姿传感器感知水下航行器10的横滚倾向,并通过反馈机制控制第一角度和第二角度之间的舵角差,自主地调控横倾力矩以抑制水下航行器10的横滚运动,以减小水下航行器10的横倾角使其在水下航行时保持平稳
在其中一个实施例中,当水下航行器10处于中高航速行驶时,方法包括:
S410:请参考图10,第二舵翼300和第三舵翼400分别绕第二扭转舵轴310、第三扭转舵轴410同步同向旋转至水平,以控制水下航行器10水平滑翔。
S420:请参考图12,第二舵翼300和第三舵翼400分别绕第二扭转舵轴310、第三扭转舵轴410同步同向旋转至倾斜向上,以控制水下航行器10上升。
S430:第二舵翼300和第三舵翼400分别绕第二扭转舵轴310、第三扭转舵轴410同步同向旋转至倾斜向下,以控制水下航行器10下潜。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (17)

  1. 一种舵控操纵装置,其特征在于,包括:
    推进器,安装于水下航行器的尾部,用于向所述水下航行器提供纵向推进力;
    第一舵翼,安装于所述水下航行器的顶部,且位于所述水下航行器的中纵剖面内,所述第一舵翼可绕第一扭转舵轴做旋转动作,所述第一扭转舵轴沿从所述第一舵翼靠近所述水下航行器的一端向所述第一舵翼远离所述水下航行器的一端的方向延伸;
    第二舵翼,安装于所述水下航行器的侧部,所述第二舵翼可绕第二扭转舵轴做旋转动作、且可绕第一扑翼舵轴上下摆动,所述第二扭转舵轴沿从所述第二舵翼靠近所述水下航行器的一端向所述第二舵翼远离所述水下航行器的一端的方向延伸;
    第三舵翼,安装于所述水下航行器的侧部,所述第三舵翼和所述第二舵翼分别位于所述第一舵翼的两侧,所述第三舵翼可绕第三扭转舵轴做旋转动作、且可绕第二扑翼舵轴上下摆动,所述第三扭转舵轴沿从所述第三舵翼靠近所述水下航行器的一端向所述第三舵翼远离所述水下航行器的一端的方向延伸。
  2. 根据权利要求1所述的舵控操纵装置,其特征在于:所述第一舵翼、所述第二舵翼和所述第三舵翼的安装位置位于所述水下航行器的同一横截面。
  3. 根据权利要求2所述的舵控操纵装置,其特征在于:所述第三舵翼和所述第二舵翼的安装位置关于所述水下航行器的中纵剖面对称分布。
  4. 根据权利要求2所述的舵控操纵装置,其特征在于:所述第一舵翼、所述第二舵翼和所述第三舵翼均位于所述水下航行器的中部或尾部。
  5. 根据权利要求1所述的舵控操纵装置,其特征在于:所述第一扭转舵轴垂直于所述水下航行器的纵向。
  6. 根据权利要求1所述的舵控操纵装置,其特征在于:所述第一扑翼舵轴和所述第二扭转舵轴位于同一平面且相互垂直。
  7. 根据权利要求1所述的舵控操纵装置,其特征在于:所述第二扑翼舵轴和所述第三扭转舵轴位于同一平面且相互垂直。
  8. 根据权利要求1所述的舵控操纵装置,其特征在于:所述舵控操纵装置包括第一舵机,所述第一舵机安装于所述水下航行器,所述第一舵机用于驱动所述第一舵翼绕所述第一扭转舵轴旋转。
  9. 根据权利要求1所述的舵控操纵装置,其特征在于:所述舵控操纵装置包括第二舵机,所述第二舵机安装于所述水下航行器,所述第二舵机用于驱动所述第二舵翼绕所述第二扭转舵轴旋转。
  10. 根据权利要求1所述的舵控操纵装置,其特征在于:所述舵控操纵装置包括第三舵机,所述第三舵机安装于所述水下航行器,所述第三舵机用于驱动所述第二舵翼绕所述第一扑翼舵轴上下摆动。
  11. 根据权利要求1所述的舵控操纵装置,其特征在于:所述舵控操纵装置包括第四舵机,所述第四舵机安装于所述水下航行器,所述第四舵机用于驱动所述第三舵翼绕所述第三扭转舵轴旋转。
  12. 根据权利要求1所述的舵控操纵装置,其特征在于:所述舵控操纵装置包括第五舵机,所述第五舵机安装于所述水下航行器,所述第五舵机用于驱动所述第三舵翼绕所述第二扑翼舵轴上下摆动。
  13. 根据权利要求1所述的舵控操纵装置,其特征在于:所述舵控操纵装置包括航姿传感器和舵控操纵系统,所述航姿传感器和所述舵控操作系统安装于所述水下航行器,所述航姿传感器与所述舵控操作系统电性连接,所述航姿传感器用于获取所述水下航行器的姿态参数并发送至所述舵控操作系统,所述舵控操作系统用于控制所述第一舵翼、所述第二舵翼和所述第三舵翼的旋转动作。
  14. 一种舵控操纵方法,应用于权利要求1所述的舵控操纵装置,其特征在于,所述方法包括:
    当水下航行器处于中高航速行驶时,通过第一舵翼绕第一扭转舵轴旋转而实现所述水下航行器左右转向;
    当所述水下航行器处于低航速行驶时,通过第二舵翼绕第一扑翼舵轴上下摆动而实现所述水下航行器朝第三舵翼一侧转向;
    当所述水下航行器处于低航速行驶时,通过所述第三舵翼绕第二扑翼舵轴上下摆动而实现所述水下航行器朝所述第二舵翼一侧转向。
  15. 根据权利要求14所述的舵控操纵方法,其特征在于,所述方法还包括:所述第二舵翼绕所述第二扭转舵轴旋转第一角度,所述第三舵翼绕所述第三扭转舵轴旋转第二角度,所述第一角度与所述第二角度不同,以使所述水下航行器产生横倾力矩。
  16. 根据权利要求15所述的舵控操纵方法,其特征在于,所述方法还包括:当所述水下航行器出现横滚倾向时,通过控制所述第一角度和所述第二角度的大小,向所述水下航行器提供反向的横倾力矩,以抑制所述水下航行器做横滚动作。
  17. 根据权利要求14至16任意一项中所述的舵控操纵方法,其特征在于,当水下航行器处于中高航速行驶时,所述方法包括:
    所述第二舵翼和所述第三舵翼分别绕所述第二扭转舵轴、所述第三扭转舵轴同步同向旋转至水平,以控制所述水下航行器水平滑翔;
    所述第二舵翼的前缘和所述第三舵翼的前缘分别绕所述第二扭转舵轴、所述第三扭转舵轴同步同向旋转至倾斜向上,以控制所述水下航行器上升;
    所述第二舵翼的前缘和所述第三舵翼的前缘分别绕所述第二扭转舵轴、所述第三扭转舵轴同步同向旋转至倾斜向下,以控制所述水下航行器下潜。
PCT/CN2021/119304 2021-09-18 2021-09-18 舵控操纵装置及方法 WO2023039876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119304 WO2023039876A1 (zh) 2021-09-18 2021-09-18 舵控操纵装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119304 WO2023039876A1 (zh) 2021-09-18 2021-09-18 舵控操纵装置及方法

Publications (1)

Publication Number Publication Date
WO2023039876A1 true WO2023039876A1 (zh) 2023-03-23

Family

ID=85602356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119304 WO2023039876A1 (zh) 2021-09-18 2021-09-18 舵控操纵装置及方法

Country Status (1)

Country Link
WO (1) WO2023039876A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466064A (zh) * 2013-09-26 2013-12-25 中国舰船研究设计中心 一种拍翼水下和水面推进器、航行器及推进方法
EP2676876A2 (de) * 2012-06-21 2013-12-25 ThyssenKrupp Marine Systems GmbH Unterseeboot
CN109760808A (zh) * 2019-03-12 2019-05-17 中国科学院沈阳自动化研究所 长航程自主水下航行器低功耗转向装置
CN112591059A (zh) * 2020-12-01 2021-04-02 中国科学院深圳先进技术研究院 水下航行器控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2676876A2 (de) * 2012-06-21 2013-12-25 ThyssenKrupp Marine Systems GmbH Unterseeboot
CN103466064A (zh) * 2013-09-26 2013-12-25 中国舰船研究设计中心 一种拍翼水下和水面推进器、航行器及推进方法
CN109760808A (zh) * 2019-03-12 2019-05-17 中国科学院沈阳自动化研究所 长航程自主水下航行器低功耗转向装置
CN112591059A (zh) * 2020-12-01 2021-04-02 中国科学院深圳先进技术研究院 水下航行器控制方法及装置

Similar Documents

Publication Publication Date Title
CN2892668Y (zh) 舵翼式微小型水下机器人
CN112591059B (zh) 水下航行器控制方法
CN109292061A (zh) 一种仿生摆动与螺旋桨混合推进的双体水下航行器
CN107284631A (zh) 基于流体升力的具有垂直推进装置的潜水器
CN1709766A (zh) 浮力和推进器双驱动方式远程自治水下机器人
CN103640675A (zh) 水面三体两栖无人艇
CN101643113A (zh) 水下航行器
CN101628620A (zh) 水下飞机
CN203864969U (zh) 一种水下滑翔器的方向调节装置
CN115535195B (zh) 一种基于仿生摆动与螺旋桨混合驱动的水下机器人及其工作方法
Aage et al. Hydrodynamic manoeuvrability data of a flatfish type AUV
CN210592376U (zh) 一种拖曳自航两用多自由度操纵水下航行器
Sun et al. Design and field test of a foldable wing unmanned aerial–underwater vehicle
CN103818534A (zh) 一种水下滑翔器的方向调节装置及其控制方法
CN209433202U (zh) 无人艇转速差动减摇增稳系统
CN212556696U (zh) 一种高速高海况可下潜的多体无人航行器
CN209327875U (zh) 无人艇滚转-航向协调增稳控制系统
CN210083503U (zh) 一种拖曳体式前缘旋转圆柱型翼带缆遥控水下潜器
RU2680678C1 (ru) Система управления движением подводного планера
CN108973559A (zh) 一种水空两栖五体无人艇
CN114030579B (zh) 一种无人船稳定控制方法及推进装置
WO2023039876A1 (zh) 舵控操纵装置及方法
CN108146600B (zh) 一种长鳍扭波推进仿生水下航行器及其运动方式
CN109358495A (zh) 无人艇桨距-转速差动减摇增稳系统及方法
CN111332424B (zh) 一种升阻联用模式的水面机器人全航速减摇增稳方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957154

Country of ref document: EP

Kind code of ref document: A1