WO2023039715A1 - 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用 - Google Patents

一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023039715A1
WO2023039715A1 PCT/CN2021/118213 CN2021118213W WO2023039715A1 WO 2023039715 A1 WO2023039715 A1 WO 2023039715A1 CN 2021118213 W CN2021118213 W CN 2021118213W WO 2023039715 A1 WO2023039715 A1 WO 2023039715A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
composite material
core
rare earth
preparation
Prior art date
Application number
PCT/CN2021/118213
Other languages
English (en)
French (fr)
Inventor
喻学锋
黄浩
史桐雨
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2021/118213 priority Critical patent/WO2023039715A1/zh
Publication of WO2023039715A1 publication Critical patent/WO2023039715A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention belongs to the field of perovskite material preparation, and in particular relates to a novel perovskite core-shell structure composite material with stable environment, its preparation method and application.
  • Perovskite materials have excellent photoelectric properties such as high light absorption coefficient, adjustable band gap, long carrier lifetime and long diffusion length, and have great application prospects in photovoltaic devices, light-emitting diodes, photodetectors and other fields.
  • Metal halide perovskites have been favored due to their low synthetic cost, simple synthesis, multicolor emission, high quantum yield, and excellent excitonic and carrier properties.
  • the preparation technology based on liquid-phase synthesis technology has been widely studied, but organic solvents, organic ligands, etc. need to be used, which greatly affect its carrier transport characteristics and subsequent applications.
  • problems such as poor environmental stability and thermal stability of perovskite materials also hinder their large-scale application.
  • ligand modification, ion doping and other methods to obtain better results, but the use of organic solvents and organic ligands is still unavoidable.
  • the document ACS Nano 2018, 12, 8579-8587 adopts a structure in which SiO 2 is coated with metal halide;
  • Chinese patent CN201811529365.8 discloses a composite quantum dot material , its surface contains multi-layer protective structures, such as metal oxide layer, SiO x layer, etc.;
  • Chinese patent CN105489777B discloses a microcapsule structure of SiO 2 inorganic shell material, these structures improve its stability, but the inert oxide The cladding of the shell material also makes it lose its electrical properties.
  • the Chinese patent CN109021966A adopts allyl ligand polymerization coating to obtain relatively stable perovskite nanocrystals.
  • Chinese patent CN106947463B discloses a CdS-coated perovskite nanomaterial.
  • CN112143493A also discloses a ZnS and ZnSe wrapping strategy, but these are all based on perovskite nanomaterials.
  • Symptom performance Most other methods are to load perovskite nanoparticles, such as the porous CeO 2 loaded perovskite structure disclosed in Chinese patent CN202011099181.X, discrete perovskite nanoparticles cannot effectively carry out charge transport, and there is no protection condition However, its stability cannot be guaranteed. On the whole, most of the schemes are not separated from the organic system, which will inevitably cause environmental pollution.
  • the coating structure will also greatly affect the electrical properties of perovskite materials, thereby affecting the related applications of perovskite materials.
  • the technical problem to be solved by the present invention is to develop a novel perovskite core-shell structure composite material with stable environment and its preparation method and application.
  • the structure is a core-shell structure Re 2 O 3 @CsPbX 3 , in which the inner core is a rare earth oxide and the outer shell is an all-inorganic CsPbX 3 perovskite.
  • This structure is environmentally stable and has excellent optoelectronic properties.
  • the present invention provides the following technical solutions:
  • One aspect of the present invention provides a preparation method of a perovskite core-shell structure composite material, the preparation method comprising the following steps:
  • Step 1 adding cesium halide and lead halide into the reaction vessel according to the stoichiometric ratio;
  • Step 2 adding the rare earth oxide into the reaction vessel
  • Step 3 subjecting the reaction vessel to high temperature treatment, the reaction temperature is above 500°C until the reaction is complete;
  • Step 4 after cooling to room temperature, the perovskite core-shell structure composite material can be obtained.
  • step one the cesium halide and lead halide are not dissolved, and do not contain any solvent.
  • the lead halide is PbX 2 , where X is Cl, Br or I; the cesium halide is CsX, where X is Cl, Br or I.
  • the feed ratio of cesium halide and lead halide may be 4:1 ⁇ 1:4.
  • 1.2:1-1:1.2 for example 1:1, 1:1.2, 1:1.4.
  • the feed ratio of lead halide and cesium halide is about 1:1.2.
  • the lead halide and cesium halide are placed in a manner selected from mixed placement, stacked up and down or separated at both ends. Further preferably, the two ends of the lead halide and the cesium halide are not in contact with each other.
  • the weight ratio of the composition of lead halide and cesium halide to the rare earth oxide is 1:1 ⁇ 1:8. Further preferably, the weight ratio of the composition of lead halide and cesium halide to the rare earth oxide is 1:4.
  • the raw material and the rare earth oxide are mixed and placed, and the rare earth oxide is placed on top of the raw material.
  • the rare earth oxide is selected from zero-dimensional to three-dimensional particles, such as microparticles, nanoparticles, nanowires, nanosheets, and bulk rare earth oxides.
  • the rare earth oxides are selected from Y 2 O 3 , Nd 2 O 3 , Er 2 O 3 , Yb 2 O 3 , or include ion-doped rare earth oxides, such as Bi 3+ , Eu 3+ , Tm 3+ or Tb 3+ ion-doped Y 2 O 3 , Nd 2 O 3 , Er 2 O 3 or Yb 2 O 3 .
  • the heating rate is 0.5°C/min to 20°C/min, such as 1°C/min, 2°C/min, 5°C/min, 10°C/min, 20°C /min. Further preferably, the heating rate is 5°C/min
  • the reaction temperature is 500°C to 1000°C.
  • the reaction temperature is 600°C, 700°C, 800°C, 900°C, 1000°C; more preferably, the reaction temperature is 700°C.
  • step 4 it is cooled to room temperature at a rate of 0.5°C/min to 10°C/min; for example, 2°C/min, 4°C/min, 6°C/min, 8°C °C/min.
  • Another aspect of the present invention provides a perovskite core-shell structure composite material, which is prepared by the above-mentioned preparation method.
  • Another aspect of the present invention provides a perovskite core-shell structure composite material, which has a core of rare earth oxide and a perovskite surface layer.
  • the rare earth oxides in the inner core are selected from Y 2 O 3 , Nd 2 O 3 , Er 2 O 3 , Yb 2 O 3 , or include ion-doped rare earth oxides, such as Bi 3+ , Eu 3+ , Tm 3+ or Tb 3+ ion-doped Y 2 O 3 , Nd 2 O 3 , Er 2 O 3 or Yb 2 O 3 .
  • Another aspect of the present invention provides the application of the perovskite core-shell structure composite material described in the present invention in electroluminescence, photoluminescence, and white light LED materials.
  • the perovskite is an all-inorganic perovskite CsPbX 3
  • X is one or more of halogens Cl, Br and I.
  • the invention discloses a new environment-stable perovskite core-shell structure composite material and its preparation method and application.
  • the method adopts high-temperature solid-phase reaction, including feeding, heating, and cooling processes.
  • the composite material structure is a core-shell structure, wherein The inner core is rare earth oxide and the outer shell is all-inorganic CsPbX 3 perovskite, which has a stable environment and excellent optoelectronic properties.
  • the lead halide first melts and drives the cesium halide to move under the air convection.
  • the cesium halide reacts with the surface of the rare earth (Re) oxide to generate CsReO 2 , ReOX and other products, so that the halogen and cesium are fixed on the surface of the rare earth oxide. Realize the substrate fixation effect, and then react with the lead source to form an all-inorganic CsPbX 3 perovskite shell structure, so the environmental stability of the structure is greatly improved, and it has excellent photoelectric performance.
  • the technical method and structure of the present invention are novel and unique, green and environmentally friendly, and easy to operate, without using complex and expensive equipment and additional organic reagents, and the structure has environmental stability and excellent photoelectric performance.
  • the perovskite core-shell structure composite material prepared by the invention has good application prospects in the fields of illumination display, especially white light LED and the like.
  • FIG. 1 is a scanning electron microscope picture of the composite structure prepared in Example 1.
  • FIG. 2 is a scanning electron microscope image of the composite structure prepared in Example 2.
  • FIG. 3 is an X-ray diffraction pattern of the composite structure prepared in Example 3.
  • Fig. 4 is a transmission electron microscope picture of the composite structure prepared in Example 3, which has a typical uniform core/shell structure.
  • FIG. 5 is a graph showing the photoelectric response effect of the device constructed with the composite structure prepared in Example 3.
  • Fig. 6 is a photoluminescence spectrum diagram of the composite structure prepared in Examples 1, 6, 7, and 8.
  • Fig. 7 is the monitoring data of the luminous intensity of the powder in Example 1 under normal temperature and humidity conditions, and the intensity has not decayed significantly after 10 months.
  • Embodiment 1 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.47g (4mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively and join in the alumina crucible;
  • Step 2 covering 8g of granulated Y 2 O 3 on the raw material
  • Step 3 put the alumina crucible with the raw material into the muffle furnace, heat it for 100 minutes to 700°C, and keep it warm for 5 hours;
  • Step 4 after cooling to room temperature for 100 minutes, the perovskite core-shell composite material can be obtained.
  • the yield of the composite luminescent material prepared in this example is very high, about 96.2%, the powder quality is very high, and it is stable in the normal temperature and humidity environment, and the morphology of the composite structure is basically the same as that of the granulated Y2O3 . It is a spherical shape with a diameter of about 20 ⁇ m, and its scanning electron microscope picture is shown in Figure 1.
  • Embodiment 2 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.47g (4mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the aluminum oxide crucible;
  • Step 2 covering 10g of Eu 3+ doped Y 2 O 3 nanowires on the raw material
  • Step 3 put the alumina crucible with the raw materials into the muffle furnace, heat for 75 minutes to 700°C, and keep the temperature for 5 hours;
  • Step 4 after cooling to room temperature for 300 minutes, the perovskite core-shell composite material can be obtained.
  • a green fluorescent powder with high quality and yield can also be obtained, and its scanning electron microscope picture is shown in FIG. 2 .
  • Embodiment 3 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.47g (4mmol) lead bromide and 3.40g (16mmol) cesium bromide respectively, join in the aluminum oxide crucible;
  • Step 2 covering the raw material with 16g of nanometer Y 2 O 3 as a base material
  • Step 3 put the alumina crucible with the raw material into the muffle furnace, heat it for 200 minutes to 700°C, and keep it warm for 5 hours;
  • Step 4 After cooling to room temperature for 700 minutes, the perovskite core-shell composite material can be obtained.
  • This example can also obtain the perovskite core-shell structure composite material, the powder color is slightly lighter, and the perovskite shell layer is thinner.
  • Its X-ray diffraction pattern is shown in Figure 3, and its transmission electron microscope is shown in Figure 4. Its photoelectric response performance As shown in Figure 5.
  • Embodiment 4 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.47g (4mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the aluminum oxide crucible;
  • Step 2 covering the raw material with 2g of micron-sized Y 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw materials into the muffle furnace, heat for 50 minutes to 800°C, and keep the temperature for 5 hours;
  • Step 4 after cooling to room temperature for 200 minutes, the perovskite core-shell composite material can be obtained.
  • a perovskite core-shell structure composite material can also be obtained, and the perovskite shell layer is relatively thick and stable at room temperature and humidity.
  • Embodiment 5 The preparation method of perovskite composite material
  • Step 1 take by weighing 5.96g (16mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 16g of micron Y 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw material into the muffle furnace, heat it for 75 minutes to 670°C, and keep it warm for 1 hour;
  • Step 4 after cooling to room temperature for 200 minutes, the perovskite core-shell composite material can be obtained.
  • This example can synthesize a perovskite core-shell structure composite material, the powder color is slightly lighter, more lead bromide is fed, and the yield is slightly lower.
  • Embodiment 6 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.47g (4mmol) lead bromide and 0.673g (4mmol) cesium chloride respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 8g of micron-sized Nd 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw material into the muffle furnace, heat it for 100 minutes to 700°C, and keep it warm for 5 hours;
  • Step 4 after cooling to room temperature for 300 minutes, the perovskite core-shell composite material can be obtained.
  • blue-purple Nd 2 O 3 is used as the core material, and it forms a green powder after compounding with perovskite, which emits blue light under ultraviolet excitation. About 98.7%, and stable at room temperature and humidity.
  • Embodiment 7 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.112g (4mmol) lead chloride and 0.851g (4mmol) cesium bromide respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 8g of micron-sized Yb 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw material into the muffle furnace, heat it for 100 minutes to 700°C, and keep it warm for 5 hours;
  • Step 4 after cooling to room temperature for 500 minutes, the perovskite core-shell composite material can be obtained.
  • a blue-violet phosphor can be synthesized and is stable at room temperature and humidity.
  • Embodiment 8 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.112g (4mmol) lead chloride and 0.673g (4mmol) cesium chloride respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 8g of micron Er 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw materials into the muffle furnace, heat for 100 minutes to 700°C, and keep the temperature for 3 hours;
  • Step 4 after cooling to room temperature for 300 minutes, the perovskite core-shell composite material can be obtained.
  • a purple phosphor can be synthesized and is stable at room temperature and humidity.
  • Embodiment 9 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.764g (4.8mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 8g of micron Y 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw materials into the muffle furnace, heat for 30 minutes to 500°C, and keep the temperature for 5 hours;
  • Step 4 after cooling to room temperature for 50 minutes, the perovskite core-shell composite material can be obtained.
  • This example can synthesize green fluorescent powder and is stable at room temperature and humidity.
  • Embodiment 10 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.764g (4.8mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 8g of micron Y 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw materials into the muffle furnace, heat for 2 hours to 700°C, and keep the temperature for 24 hours;
  • Step 4 after cooling to room temperature for 300 minutes, the perovskite core-shell composite material can be obtained.
  • This example can synthesize green fluorescent powder and is stable at room temperature and humidity.
  • Embodiment 11 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.764g (4.8mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the alumina crucible;
  • Step 2 covering the raw material with 8g of micron Y 2 O 3 as a substrate;
  • Step 3 put the alumina crucible with the raw material into the muffle furnace, heat it for 300 minutes to 1000°C, and keep it warm for 15 hours;
  • Step 4 after cooling to room temperature for 500 minutes, the perovskite core-shell composite material can be obtained.
  • This example can synthesize green fluorescent powder and is stable at room temperature and humidity.
  • Embodiment 12 The preparation method of perovskite composite material
  • Step 1 take by weighing 1.47g (4mmol) lead bromide and 0.851g (4mmol) cesium bromide respectively, join in the aluminum oxide crucible;
  • Step 2 covering 8g of Bi 3+ doped Y 2 O 3 nanowires on the raw material
  • Step 3 put the alumina crucible with the raw materials into the muffle furnace, heat for 100 minutes to 700°C, and keep the temperature for 3 hours;
  • Step 4 after cooling to room temperature for 180 minutes, the perovskite core-shell structure composite material can be obtained.
  • the green fluorescent powder with high quality and yield can also be obtained and is stable at normal temperature and humidity.
  • Example 1 The photoluminescence spectra of the composite structures prepared in Examples 1, 6, 7, and 8 were tested, and the spectrograms are shown in FIG. 6 .
  • the stability of Example 1 was tested. According to the monitoring data of the luminous intensity of the powder in Example 1 under normal temperature and humidity conditions, the intensity did not attenuate significantly after 10 months. The test results are shown in FIG. 7 .
  • the method of the present invention can adopt a one-step method to prepare perovskite-loaded molecular sieve composite materials, and different lead sources, different cesium sources, and different ratios can be used to prepare composite materials. And by adjusting the halogen species in the lead source, composite materials with different colors can also be obtained, and all of them have high stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用。该方法采用以下步骤:步骤一,按化学计量比称量卤化铯、卤化铅加入到反应容器中;步骤二,将稀土氧化物加入反应容器中;步骤三,将反应容器进行高温处理,反应温度为500℃以上至反应完全;步骤四,冷却至室温后即可获得钙钛矿核壳结构复合材料。所制复合材料结构为核壳结构,其中内层核心为稀土氧化物,外层壳层为全无机CsPbX3钙钛矿,可应用于发光二极管、太阳能电池、光电探测、X射线探测等领域。与其他方法和结构相比,本发明方法操作简单,无需使用溶剂和有机配体,复合材料环境稳定,在大气环境条件下即可实现。

Description

一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用 技术领域
本发明属于钙钛矿材料制备领域,特别涉及一种环境稳定的新型钙钛矿核壳结构复合材料及其制备方法与应用。
背景技术
钙钛矿材料具有高吸光系数、可调带隙、长载流子寿命以及扩散长度长等优异的光电性能,在光伏器件,发光二极管、光电探测器等领域有巨大应用前景。
金属卤化物钙钛矿因其合成成本低、合成简单、多色发光、高量子产率以及优异的激子和载流子性能而受到人们的青睐。近年来,基于液相合成技术的制备技术被广泛研究,但其中需使用有机溶剂、有机配体等,极大影响其载流子传输特性以及后续应用。同时,钙钛矿材料环境稳定性差、热稳定性差等问题也阻碍了其大规模应用。针对稳定性和热稳定性差问题,科学家们采用配体修饰、离子掺杂等方式获得较好的效果,但仍无法避免有机溶剂和有机配体的使用。为增强钙钛矿的稳定性以及拓展其应用,文献ACS Nano 2018,12,8579-8587采用了SiO 2将金属卤化物进行包覆的结构;中国专利CN201811529365.8公开了一种复合量子点材料,其表面包含多层保护结构,如金属氧化物层、SiO x层等;中国专利CN105489777B公开了一种SiO 2无机壳材的微胶囊结构,这些结构提升了其稳定性,但惰性氧化物壳材的包覆也使其失去了电学性质。此外,中国专利CN109021966A采用烯丙基的配体聚合包覆获得了较为稳定的钙钛矿纳米晶。中国专利CN106947463B公开了一种CdS包覆的钙钛矿纳米材料,CN112143493A也公开了一种ZnS、ZnSe包裹策略,但这些均是以钙钛矿纳米材料为核心,这种包覆显然影响其本征性能。而其他多数方法则是对钙钛矿纳米粒子进行负载,如中国专利CN202011099181.X公开的多孔CeO 2负载钙钛矿结构,分立的钙钛矿纳米粒子无法有效的进行电荷传输,且无保护条件下,其稳定性也无法保证。整体而言,绝大多数方案均未脱离有机体系,不可避免的造成环境污染。同时,包覆结构也会极大影响钙钛矿材料电学性质,从而影响钙钛矿材料的相关应用。
综上所述,为了进一步拓展钙钛矿材料的应用,需提升钙钛矿材料环境稳定性的同时且保留其电学性质,因此需开发出一种操作简单、大批量制备、无需使用有机试剂的制备方法以及新的钙钛矿材料复合结构。
发明内容
本发明所要解决的技术问题是开发一种环境稳定的新型钙钛矿核壳结构复合材料及其制备方法与应用,该方法采用高温固相反应,包括投料、升温、降温过程,所制复合材料结构为核壳结构Re 2O 3@CsPbX 3,其中内层核心为稀土氧化物外层壳层为全无机CsPbX 3钙钛矿,该结构环境稳定,且具有优异的光电性质。
为实现上述目的,本发明提供如下技术方案:
本发明一个方面提供了钙钛矿核壳结构复合材料的制备方法,所述制备方法包括以下步骤:
步骤一,按化学计量比称量卤化铯、卤化铅加入到反应容器中;
步骤二,将稀土氧化物加入反应容器中;
步骤三,将反应容器进行高温处理,反应温度为500℃以上至反应完全;
步骤四,冷却至室温后即可获得钙钛矿核壳结构复合材料。
在步骤一种所述的卤化铯、卤化铅不进行溶解,且不包含任何溶剂。
在本发明的技术方案中,在步骤一到步骤四中,不使用任何溶剂或溶液。
在本发明的技术方案中,所述步骤一中,卤化铅为PbX 2,其中X为Cl,Br或I;卤化铯为CsX,其中X为Cl,Br或I。
在本发明的技术方案中,所述步骤一中,卤化铯和卤化铅投料比可为4:1~1:4。优选为1.2:1-1:1.2,例如为1:1、1:1.2、1:1.4。进一步优选地,卤化铅和卤化铯投料比约为1:1.2。
在本发明的技术方案中,所述步骤一中,卤化铅和卤化铯的放置方式选自混合放置、上下堆叠或分离放置于两端。进一步优选地,卤化铅和卤化铯分置两端并不相互接触。
在本发明的技术方案中,所述步骤二中,卤化铅和卤化铯的组合物与稀土氧化物的重量比为1:1~1:8。进一步优选地,卤化铅和卤化铯的组合物与稀土氧化物的重量比为1:4。
在本发明的技术方案中,所述步骤二中,原料与稀土氧化物混合放置、将稀土氧化物置于原料上部。
在本发明的技术方案中,所述稀土氧化物选自从零维到三维的粒子,例如微米颗粒、纳米颗粒、纳米线、纳米片、块材的稀土氧化物。
在本发明的技术方案中,所述稀土氧化物选自Y 2O 3、Nd 2O 3、Er 2O 3、Yb 2O 3,或者包括离子掺杂稀土氧化物,例如Bi 3+、Eu 3+、Tm 3+或Tb 3+离子掺杂的Y 2O 3、Nd 2O 3、Er 2O 3或Yb 2O 3
在本发明的技术方案中,所述步骤三中,升温速率为0.5℃/min~20℃/min,例如 1℃/min、2℃/min、5℃/min、10℃/min、20℃/min。进一步优选地,升温速率为5℃/min
在本发明的技术方案中,所述步骤三中,反应温度为500℃~1000℃。如,反应温度为600℃、700℃、800℃、900℃、1000℃;进一步优选地,反应温度为700℃。
在本发明的技术方案中,所述步骤四中,以0.5℃/min~10℃/min降温的速度使其冷却至室温;例如2℃/min、4℃/min、6℃/min、8℃/min。
本发明另一个方面提供了钙钛矿核壳结构复合材料,其通过上述的制备方法制得。
本发明另一个方面提供了钙钛矿核壳结构复合材料,其具有稀土氧化物的内核和钙钛矿表层。
在本发明的技术方案中,所述内核中稀土氧化物选自Y 2O 3、Nd 2O 3、Er 2O 3、Yb 2O 3,或者包括离子掺杂稀土氧化物,例如Bi 3+、Eu 3+、Tm 3+或Tb 3+离子掺杂的Y 2O 3、Nd 2O 3、Er 2O 3或Yb 2O 3
本发明再一个方面提供了本发明所述的钙钛矿核壳结构复合材料在电致发光、光致发光、白光LED材料中的应用。
在本发明的技术方案中,所述钙钛矿为全无机钙钛矿CsPbX 3,X为卤素Cl、Br、I中的一种或几种。
本发明一种环境稳定的新型钙钛矿核壳结构复合材料及其制备方法与应用,该方法采用高温固相反应,包括投料、升温、降温过程,所制复合材料结构为核壳结构,其中内层核心为稀土氧化物外层壳层为全无机CsPbX 3钙钛矿,该结构环境稳定,且具有优异的光电性质。在升温过程中卤化铅率先熔融并在空气对流下带动卤化铯进行运动,卤化铯与稀土(Re)氧化物表面反应,生成CsReO 2,ReOX等产物,使卤素与铯固定在稀土氧化物表面,实现基底固定效应,继而与铅源反应生成全无机CsPbX 3钙钛矿壳层结构,因此该结构环境稳定性极大提升,同时具有优异的光电性能。
有益效果:
与现有技术相比,本发明的技术方法和结构新颖独特、绿色环保、操作简单,无需使用复杂昂贵的设备和额外的有机试剂,同时该结构具有环境稳定性以及优异的光电性能。本发明制备的钙钛矿核壳结构复合材料在照明显示尤其是白光LED等领域具有很好的应用前景。
附图说明
图1为实施例1中所制备复合结构的扫描电子显微镜图片。
图2为实施例2中所制备复合结构的扫描电子显微镜图片。
图3是实施例3中所制备复合结构的X射线衍射图。
图4是实施例3中所制备复合结构的透射电子显微镜图片,具有典型的均匀核/壳层结构。
图5是实施例3中所制备复合结构构建器件的光电响应效果图。
图6是实施例1、6、7、8中所制备复合结构的光致发光光谱图。
图7是实施例1中粉体在常温常湿条件下发光强度监测数据,其强度经过10个月后仍无明显衰减。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.47g(4mmol)溴化铅和0.851g(4mmol)溴化铯加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的造粒Y 2O 3
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热100min升温至700℃,保温5h;
步骤四,100min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实施例制备的复合发光材料的产量很高,约为96.2%,粉末质量很高,且在常温常湿环境下稳定,复合结构的形貌与造粒Y 2O 3的形貌基本一致,为直径20μm左右的球形,其扫描电子显微镜图片如图1所示。
实施例2 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.47g(4mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖10g的Eu 3+掺杂的Y 2O 3纳米线;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热75min升温至700℃,保温5h;
步骤四,300min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例也可得到质量和产量均较高的绿色荧光粉,其扫描电子显微镜图如图2所示。
实施例3 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.47g(4mmol)溴化铅和3.40g(16mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖16g的纳米Y 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热200min升温至700℃,保温5h;
步骤四,700min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例也可获得钙钛矿核壳结构复合材料,粉末颜色稍浅,钙钛矿壳层较薄,其X射线衍射图谱如图3所示,透射电镜如图4所示,其光电响应性能如图5所示。
实施例4 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.47g(4mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖2g的微米级Y 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热50min升温至800℃,保温5h;
步骤四,200min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例也可获得钙钛矿核壳结构复合材料,钙钛矿壳层较厚且常温常湿稳定。
实施例5 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取5.96g(16mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖16g的微米级Y 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热75min升温至670℃,保温1h;
步骤四,200min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例可合成钙钛矿核壳结构复合材料,粉体颜色稍浅,溴化铅投料较多,产率稍低。
实施例6 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.47g(4mmol)溴化铅和0.673g(4mmol)氯化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的微米级Nd 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热100min升温至700℃,保温5h;
步骤四,300min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例中使用蓝紫色的Nd 2O 3作为核材,与钙钛矿复合后形成绿色粉末,在紫外激发下发蓝光,所制备的复合结构的质量与投料相比质量仅损失0.13g,产量约为98.7%,且常温常湿稳定。
实施例7 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.112g(4mmol)氯化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的微米级Yb 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热100min升温至700℃,保温5h;
步骤四,500min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例可合成蓝紫色的荧光粉且常温常湿稳定。
实施例8 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.112g(4mmol)氯化铅和0.673g(4mmol)氯化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的微米级Er 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热100min升温至700℃,保温3h;
步骤四,300min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例可合成紫色的荧光粉且常温常湿稳定。
实施例9 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.764g(4.8mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的微米级Y 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热30min升温至500℃,保温5h;
步骤四,50min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例可合成绿色的荧光粉且常温常湿稳定。
实施例10 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.764g(4.8mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的微米级Y 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热2h升温至700℃,保温24h;
步骤四,300min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例可合成绿色的荧光粉且常温常湿稳定。
实施例11 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.764g(4.8mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化铝坩埚中;
步骤二,在原料上覆盖8g的微米级Y 2O 3作为基材;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热300min升温至1000℃,保温15h;
步骤四,500min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例可合成绿色的荧光粉且常温常湿稳定。
实施例12 钙钛矿复合材料的制备方法
包含以下步骤:
步骤一,分别称取1.47g(4mmol)溴化铅和0.851g(4mmol)溴化铯,加入到氧化 铝坩埚中;
步骤二,在原料上覆盖8g的Bi 3+掺杂的Y 2O 3纳米线;
步骤三,将装有原料的氧化铝坩埚放入马弗炉中,加热100min升温至700℃,保温3h;
步骤四,180min冷却至室温后即可获得钙钛矿核壳结构复合材料。
本实例也可得到质量和产量均较高的绿色荧光粉且常温常湿稳定。
实施例13 检测实施例
检测实施例1、6、7、8中所制备复合结构光致发光光谱,光谱谱图见图6。对实施例1的稳定性进行检测,实施例1中粉体在常温常湿条件下发光强度监测数据,其强度经过10个月后仍无明显衰减,试验结果见图7。
通过以上实施例可知,通过本发明的方法可以采用一步法制备获得负载钙钛矿的分子筛复合材料,不同的铅源、不同的铯源,不同的配比均可以制备获得复合材料。且通过调节铅源中的卤素种类,还可以获得不同颜色的复合材料,且均具有高稳定性。

Claims (10)

  1. 钙钛矿核壳结构复合材料的制备方法,其特征在于,所述制备方法包括以下步骤:
    步骤一,按化学计量比称量卤化铯、卤化铅加入到反应容器中;
    步骤二,将稀土氧化物加入反应容器中;
    步骤三,将反应容器进行高温处理,反应温度为500℃以上至反应完全;
    步骤四,冷却至室温后即可获得钙钛矿核壳结构复合材料;
    优选地,在步骤一种所述的卤化铯、卤化铅不进行溶解,且不包含任何溶剂;
    优选地,在步骤一到步骤四中,不使用任何溶剂或溶液。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤一中,卤化铅为PbX 2,其中X为Cl,Br或I;卤化铯为CsX,其中X为Cl,Br或I;
    优选地,卤化铯和卤化铅投料比为4:1~1:4。
  3. 根据权利要求1所述的制备方法,其特征在于,所述稀土氧化物选自Y 2O 3、Nd 2O 3、Er 2O 3、Yb 2O 3,或者包括离子掺杂稀土氧化物;
    包括离子掺杂稀土氧化物优选为Bi 3+、Eu 3+、Tm 3+或Tb 3+离子掺杂的Y 2O 3、Nd 2O 3、Er 2O 3或Yb 2O 3
    优选地,所述稀土氧化物选自从零维到三维的粒子。
  4. 根据权利要求1所述的制备方法,其特征在于,卤化铅和卤化铯的组合物与稀土氧化物的重量比为1:1-1:8;
    优选地,卤化铅和卤化铯的组合物与稀土氧化物的重量比为1:3-1:5。
  5. 根据权利要求1所述的制备方法,其特征在于,所述步骤三中,升温速率为0.5℃/min~20℃/min,反应温度为500℃~1000℃。
  6. 根据权利要求1所述的制备方法,其特征在于,所述步骤四中,以0.5℃/min~10℃/min降温的速度使其冷却至室温。
  7. 钙钛矿核壳结构复合材料,其特征在于,其通过权利要求1-6任一项所述制备方法制备获得。
  8. 一种钙钛矿核壳结构复合材料,其特征在于,其具有稀土氧化物的内核和钙钛矿表层;
    优选地,所述内核中稀土氧化物选自Y 2O 3、Nd 2O 3、Er 2O 3、Yb 2O 3,或者包括离子掺杂稀土氧化物;
    更优选地,包括离子掺杂稀土氧化物选自Bi 3+、Eu 3+、Tm 3+或Tb 3+离子掺杂的Y 2O 3、Nd 2O 3、Er 2O 3或Yb 2O 3
  9. 根据权利要求8所述的钙钛矿核壳结构复合材料,其特征在于,所述的钙钛矿表层选自全无机钙钛矿CsPbX 3,X为卤素Cl、Br、I中的一种或几种。
  10. 根据权利要求1-6任一项所述的制备方法制备获得的钙钛矿核壳结构复合材料、权利要求7-9任一项所述的钙钛矿核壳结构复合材料在电致发光、光致发光、白光LED材料中的应用。
PCT/CN2021/118213 2021-09-14 2021-09-14 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用 WO2023039715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118213 WO2023039715A1 (zh) 2021-09-14 2021-09-14 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118213 WO2023039715A1 (zh) 2021-09-14 2021-09-14 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023039715A1 true WO2023039715A1 (zh) 2023-03-23

Family

ID=85602219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118213 WO2023039715A1 (zh) 2021-09-14 2021-09-14 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2023039715A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686725A (zh) * 2016-08-05 2018-02-13 聚和国际股份有限公司 外保护无机量子点及其制备方法
CN107805498A (zh) * 2017-11-03 2018-03-16 深圳大学 一种钙钛矿量子点及其制备方法
CN110028950A (zh) * 2019-04-02 2019-07-19 济南大学 一种高稳定性、水溶性的球形CsPbX3@SiO2量子点的制备方法
CN110564416A (zh) * 2019-09-27 2019-12-13 湖南师范大学 高稳定的钙钛矿量子点复合材料及其制备方法
CN110903824A (zh) * 2019-12-27 2020-03-24 上海交通大学 一种复合发光材料及其制备方法
WO2020085013A1 (ja) * 2018-10-26 2020-04-30 株式会社小糸製作所 発光物および発光物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686725A (zh) * 2016-08-05 2018-02-13 聚和国际股份有限公司 外保护无机量子点及其制备方法
CN107805498A (zh) * 2017-11-03 2018-03-16 深圳大学 一种钙钛矿量子点及其制备方法
WO2020085013A1 (ja) * 2018-10-26 2020-04-30 株式会社小糸製作所 発光物および発光物の製造方法
CN110028950A (zh) * 2019-04-02 2019-07-19 济南大学 一种高稳定性、水溶性的球形CsPbX3@SiO2量子点的制备方法
CN110564416A (zh) * 2019-09-27 2019-12-13 湖南师范大学 高稳定的钙钛矿量子点复合材料及其制备方法
CN110903824A (zh) * 2019-12-27 2020-03-24 上海交通大学 一种复合发光材料及其制备方法

Similar Documents

Publication Publication Date Title
Han et al. Low‐dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications
Xuan et al. Ultrastable and highly efficient green-emitting perovskite quantum dot composites for Mini-LED displays or backlights
Zheng et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability
CN110943178B (zh) 一种自组装多维量子阱CsPbX3钙钛矿纳米晶电致发光二极管
JP5586006B2 (ja) M−c−n−o系蛍光体
Duan et al. High quantum-yield CdSexS1− x/ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering
CN108410467B (zh) 量子点、其制备方法及其应用
He et al. Ultrastable PVB films-protected CsPbBr3/Cs4PbBr6 perovskites with high color purity for nearing Rec. 2020 standard
Xie et al. Stability enhancement of Cs3Cu2I5 powder with high blue emission realized by Na+ doping strategy
US7422801B2 (en) Electroluminescent fluorescent substance
Zhu et al. Stable Dy-doped CsPbBr3 quantum dot glass with enhanced optical performance
Wu et al. Ultra-stable phosphor of h-BN white graphene-loaded all-inorganic perovskite nanocrystals for white LEDs
WO2021184984A1 (zh) 核壳量子点、量子点发光二极管、量子点组合物、显示器件
Yue et al. White LED based on CsPbBr3 nanocrystal phosphors via a facile two-step solution synthesis route
WO2020029780A1 (zh) 绿色量子点、其制备方法及其应用
Song et al. Enhancing the stability and water resistance of CsPbBr 3 perovskite nanocrystals by using tetrafluoride and zinc oxide as protective capsules
Wang et al. Aggregation‐Induced Emission Luminogens Sensitized Quasi‐2D Hybrid Perovskites with Unique Photoluminescence and High Stability for Fabricating White Light‐Emitting Diodes
WO2019233201A1 (zh) 黄红波段量子点、其合成方法及其应用
Feng et al. Nucleophilic Reaction‐Enabled Chloride Modification on CsPbI3 Quantum Dots for Pure Red Light‐Emitting Diodes with Efficiency Exceeding 26%
WO2023039715A1 (zh) 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用
TWI440695B (zh) Preparation of Manganese Activated Zinc - Aluminum Spinel Green Fluorescent Nanometer Powder by Sol - Gel Technique and Its
WO2023039716A1 (zh) 一种钙钛矿与分子筛的复合材料及其制备方法和应用
WO2023197435A1 (zh) 一种钠和铜共掺杂铯铅溴钙钛矿量子点的制备方法及其产品和应用
Xiong et al. Effect of hydrophobic silica aerogels in-situ on encapsulation the stability of CsPbBr3 quantum dots for white light-emitting diodes
CN115806822B (zh) 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE