WO2023038297A1 - 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션 - Google Patents

전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션 Download PDF

Info

Publication number
WO2023038297A1
WO2023038297A1 PCT/KR2022/011376 KR2022011376W WO2023038297A1 WO 2023038297 A1 WO2023038297 A1 WO 2023038297A1 KR 2022011376 W KR2022011376 W KR 2022011376W WO 2023038297 A1 WO2023038297 A1 WO 2023038297A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
converter
battery pack
replacement station
Prior art date
Application number
PCT/KR2022/011376
Other languages
English (en)
French (fr)
Inventor
이성건
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023511842A priority Critical patent/JP2023545344A/ja
Priority to EP22867566.6A priority patent/EP4213338A1/en
Priority to CN202280006392.5A priority patent/CN116368029A/zh
Publication of WO2023038297A1 publication Critical patent/WO2023038297A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a battery replacement station of a battery pack operating method when power supply is cut off. More specifically, when the power supply to the battery swapping station (BSS, Battery Swapping Station) for charging the replaceable battery is cut off due to a power outage or system error, the battery pack when the power supply is cut off to enable operation without downtime of the BSS system It relates to an operational battery replacement station.
  • BSS Battery Swapping Station
  • the battery exchange station is a place where a battery of an electric vehicle driven by electric energy is exchanged, and includes a plurality of batteries exchangeable with the battery of the electric vehicle, and the battery is charged with power supplied from a system.
  • the battery provided in the battery replacement station is a battery for an electric vehicle, and has a limitation in that a large amount of power cannot be stored.
  • new and renewable energy generation such as fuel cell power generation, wind power generation, and solar power generation has been operated in a manner of supplying the generated power included in the system to the system.
  • renewable energy generation such as wind power and photovoltaic power generation has a problem in that utilization is greatly reduced because it is difficult to continuously maintain a constant power supply to the load due to the influence of the weather.
  • fuel cell power generation due to the characteristic that power generation is possible in a state connected to a load, there is a limitation in operation in which power generation cannot be maintained when the connection is stopped due to a system or load failure.
  • Korean Patent Registration No. 1528079 discloses that power supplied from the grid is charged to a large-capacity battery, and the power charged in the large-capacity battery is supplied to the grid according to the operating state of the system, thereby operating the system using the power charged in the battery and a battery exchange station having an effect of improving power demand and a method of operating the battery exchange station.
  • no technology has been disclosed related to the operation of the battery exchange station in case of an emergency such as power failure.
  • Korean Patent Publication No. 2021-0075160 discloses a first power control device including two inputs and at least two outputs and a second power control device including at least two inputs and at least two outputs, respectively.
  • the power control device is configured to operate in an active mode or an isolated mode, wherein in the active mode, inputs and outputs of the power control device are electrically connected to each other, and in the isolated mode, inputs of the power control device and
  • a power supply control system is disclosed in which the outputs are electrically isolated from each other, and the system operates in an active mode at any time, while the other power control device operates in an isolated mode. No technology has been disclosed regarding a battery replacement station capable of stably operating when power is supplied abnormally through the.
  • Japanese Patent Registration No. 5872494 discloses a technology for a power conversion device for a vehicle having a level converter and a resistor to prevent discharge of a protective circuit for suppressing overvoltage. A technology for a battery replacement station has not been disclosed.
  • UPS that supplies uninterrupted power to the load, electric vehicle and electric vehicle battery charging, two-way power trading between suppliers and consumers that utilize surplus or surplus power, and
  • the above-mentioned limitations are solved to improve operation between grids and battery replacement stations, and battery pack operation in emergency situations when power supply that can achieve various functions and effects of intelligent power grid becomes impossible. It is necessary to present a battery replacement station of the type.
  • Patent Document 1 Korean Registered Patent Publication No. 1528079
  • Patent Document 2 Korean Patent Publication No. 2021-0075160
  • Patent Document 3 Korean Registered Patent Publication No. 1418181
  • Patent Document 4 Japanese Patent Registration No. 5872494
  • the present invention is to solve the above problems, and when power supply to a battery swapping station (BSS, Battery Swapping Station) for charging a replaceable battery such as a power outage or system error is cut off, the BSS system can be operated without downtime. It is an object of the present invention to provide a battery replacement station of a battery pack operating method when power supply is cut off.
  • BSS Battery Swapping Station
  • the battery replacement station of the battery pack operation method of the present invention includes an external power grid for supplying power; one or more chargers for charging one or more battery packs; a controller for controlling the battery pack to be charged with power supplied from the external power grid through a grid; a main power supplying power to the charger and the controller; The controller may determine an operating state of the system and provide a battery replacement station using a battery pack operating method to supply power from the battery pack to the main power when the external power grid is unable to supply power.
  • the charger may include one or more bi-directional DC/DC converters disposed in the housing to supply DC power to one or more battery packs.
  • It may also include an AC/DC converter connected to the external power grid and converting current.
  • the controller includes an MCU (Main Control Unit) formed between the AC/DC converter and the bi-directional DC/DC converter to generate a control signal; and a controller power source for driving.
  • MCU Main Control Unit
  • a first DC / DC converter formed between the AC / DC converter and the MCU may include.
  • a second DC/DC converter formed between the MCU, the bi-directional DC/DC converter, and the battery pack may be included.
  • the MCU may operate the second DC/DC converter to change a current direction of the bidirectional DC/DC converter from the battery pack to the main power.
  • the controller may include a voltage sensing unit that determines whether or not there is an abnormal voltage between the first DC/DC converter and the MCU.
  • a P-FET formed between the second DC/DC converter, the bi-directional DC/DC converter, and the battery pack, wherein the controller, when the voltage value by the voltage sensing unit is 0V, the P-FET.
  • the controller when the voltage value by the voltage sensing unit is 0V, the P-FET.
  • the second DC/DC converter operates to change the current direction of the bidirectional DC/DC converter from the battery pack to the main power.
  • the receiving unit for receiving the identification information of the battery replacement station of the battery pack operation method; and a processor for determining whether to connect communication with the battery replacement station of the battery pack operation mode based on identification information and authentication information received from the battery replacement station of the battery pack operation mode.
  • the electric driving device is not limited to the type of the device that secures the driving force using the battery pack.
  • it may be an electric vehicle, an electric motorcycle, or an electric cart.
  • the battery replacement station of the battery pack operating method has an effect of stably maintaining the operation of the battery pack even in an emergency when power supply is cut off.
  • power is exchanged between a system for supplying power using a battery in which power is stored, a means of transportation receiving power, and a station, thereby enabling two-way power supply between linked devices or systems.
  • FIG. 1 is a conceptual diagram illustrating the operation of a battery replacement station of a passenger device driven by a battery pack.
  • FIG. 2 is a diagram schematically illustrating the operation of a battery replacement station of a battery pack operating method according to an embodiment of the present invention when external power is normally supplied to the battery replacement station and when power is cut off.
  • FIG. 3 is a diagram illustrating a battery replacement station of a battery pack operating method reflecting power operation when external power is disconnected according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram illustrating the operation of a battery replacement station of a passenger device driven by a battery pack.
  • a battery replacement system for an electric vehicle includes a server, a battery replacement station, and an electric vehicle.
  • the server may be an integrated control center. It is obvious that the electric vehicle is not limited to any electric driving device that travels with an electric motor using a charging current of an electric battery.
  • the server transmits information on a battery replacement station where the electric vehicle can exchange a battery to the electric vehicle.
  • the electric vehicle replaces the battery at a battery replacement station that matches information on the battery replacement station received from the server.
  • the server defines a specific battery exchange station as a target battery exchange station as a station where the battery of the electric vehicle is to be exchanged.
  • the server may determine a station selected by a user of the electric vehicle as a target battery exchange station. Alternatively, the server may determine a station closest to the electric vehicle as a target battery exchange station.
  • the external power source may have a power system line connected to the battery replacement station by wire.
  • a power source supplying power to the power grid may be an existing conventional power generation source, and may preferably be a renewable energy power source.
  • a wireless communication method may be used for communication between a server and an electric vehicle.
  • the server and the electric vehicle may be communicatively connected using a long-distance wireless communication method using a mobile communication network such as 5G or LTE.
  • Communication between the server and the battery exchange station may use a wireless communication method such as long-distance wireless communication or a wired communication method.
  • Communication between the battery replacement station and the electric vehicle may be communicatively connected using a wireless communication method.
  • the battery exchange station allows the plurality of batteries to be charged with power supplied from a plurality of batteries and a system, including a large-capacity battery dedicated to power storage and a replacement battery compatible with the battery of the means of transportation, and Accordingly, a controller (MCU) for controlling charging and discharging of the plurality of batteries is included so that the electric power charged in the plurality of batteries is supplied to the system.
  • MCU controller
  • the plurality of batteries may be secondary batteries capable of charging and discharging.
  • the large-capacity battery may be any one of a Redox Flow Battery, a NaS Battery, and a Compressed Air Energy Storage (CAES) system
  • the replacement battery may be any one of a Lithium-ion Battery, a Metal-Air Battery, and a Na-Based Battery. there is.
  • the battery of the means of transportation When the battery of the means of transportation is exchanged with the replacement battery, power supplied from the system may be charged.
  • the battery of the means of transportation may be charged by receiving power charged in the plurality of batteries.
  • the battery of the means of transportation is charged by receiving power from the system, and the electric power charged in the battery of the means of transportation may be supplied to the plurality of batteries and the system.
  • the power conversion device may further include a power conversion device that converts power charged in the plurality of batteries and power discharged from the plurality of batteries.
  • the power conversion device may include a converter that converts AC power to DC power, an inverter that converts DC power to AC power, a switch, and a transformer that transforms the magnitude of a voltage.
  • FIG. 2 is a diagram schematically illustrating the operation of a battery replacement station of a battery pack operating method according to an embodiment of the present invention when external power is normally supplied to the battery replacement station and when power is cut off.
  • FIG. 2 is a diagram in which power is normally supplied to the battery replacement station from an external power grid, and (b) is a diagram in which power is not supplied from the external power grid.
  • the MCU may supply power to the battery replacement station from one or more battery packs as shown in the dotted line.
  • the battery replacement station of the battery pack operation method includes an external power grid that supplies power; one or more chargers for charging one or more battery packs; a controller for controlling the battery pack to be charged with power supplied from the external power grid through a grid; a main power supplying power to the charger and the controller; The controller may determine an operating state of the system and provide a battery replacement station using a battery pack operating method to supply power from the battery pack to the main power when the external power grid is unable to supply power.
  • the charger may include one or more bi-directional DC/DC converters disposed in the housing to supply DC power to one or more battery packs.
  • It may also include an AC/DC converter connected to the external power grid and converting current.
  • the controller includes an MCU (Main Control Unit) formed between the AC/DC converter and the bi-directional DC/DC converter to generate a control signal; and a controller power source for driving.
  • MCU Main Control Unit
  • the replacement battery included in the station is included in the means of transportation to replace the battery of the means of transportation, and the battery of the means of transportation is used in the station. It can be included in to replace the replacement battery.
  • the battery of the means of transportation may be exchanged with the exchange battery through an automatic battery exchange device provided in the station, or may be exchanged with the exchange battery in a manual replacement method.
  • the power supplied from the system can be charged.
  • a first DC / DC converter formed between the AC / DC converter and the MCU may include.
  • a second DC/DC converter formed between the MCU, the bi-directional DC/DC converter, and the battery pack may be included.
  • the MCU may operate the second DC/DC converter to change a current direction of the bidirectional DC/DC converter from the battery pack to the main power.
  • the controller may include a voltage sensing unit that determines whether or not there is an abnormal voltage between the first DC/DC converter and the MCU.
  • the battery of the means of transportation and the replacement battery are exchanged and the battery of the means of transportation is included in the station, the battery of the means of transportation replaces the battery for replacement, and the power supplied from the system can be charged.
  • the battery of the means of transportation which is included in the station by being exchanged with the replacement battery and replaces the replacement battery, can be controlled by the control unit like the replacement battery.
  • the battery of the means of transportation included in the station and replacing the replacement battery can also be discharged so that the charged power is supplied to the system, and the batteries of other means of transportation can be discharged. may be exchanged.
  • the battery of the means of transportation may also be charged by receiving power charged in the plurality of batteries. That is, the battery of the means of transportation is not exchanged with the replacement battery, but can be charged by receiving the electric power charged in the plurality of batteries.
  • the power charged in the replacement battery is preferentially supplied, but when it is difficult to charge the battery of the means of transportation with the power charged in the replacement battery, the large-capacity battery is charged. power can be supplied.
  • Power supply to the battery of the means of transportation may be performed by the control unit controlling charging and discharging of the plurality of batteries.
  • a P-FET formed between the second DC/DC converter, the bi-directional DC/DC converter, and the battery pack, wherein the controller, when the voltage value by the voltage sensing unit is 0V, the P-FET.
  • the controller when the voltage value by the voltage sensing unit is 0V, the P-FET.
  • the second DC/DC converter operates to change the current direction of the bidirectional DC/DC converter from the battery pack to the main power.
  • the receiving unit for receiving the identification information of the battery replacement station of the battery pack operation method; and a processor for determining whether to connect communication with the battery replacement station of the battery pack operation mode based on identification information and authentication information received from the battery replacement station of the battery pack operation mode.
  • the MCU controls the power charged in the plurality of batteries to be supplied to the system, and the load of the system Control to supply operating power to the battery replacement station from one or more batteries when power is below the predetermined standard, that is, in a situation in which charging of multiple batteries through the system is impossible or in an abnormal condition in which operation of the battery replacement station itself is impossible can do.
  • the MCU determines that the time period during which the load power of the battery replacement station is maximally consumed is a time period during which power charged to the plurality of batteries is required at the maximum. It is defined as a peak time, and a period in which load power is consumed is divided into time zones, so that a time zone in which maximum load power is consumed may be specified and set.
  • FIG. 3 is a diagram illustrating a battery replacement station of a battery pack operating method reflecting power operation when external power is disconnected according to an embodiment of the present invention.
  • the battery replacement station and the electric vehicle can be connected through short-range communication using Wi-Fi.
  • Wi-Fi wireless Fidelity
  • the Wi-Fi built in the battery replacement station and the Wi-FI built in the electric vehicle may form a network in the form of a bridge.
  • a communication connection may be automatically established when the electric vehicle is located near the battery station.
  • the battery replacement station may provide a Wi-Fi network using a fixed local IP.
  • the battery replacement station can open all ports to allow access to any electric vehicle.
  • a DMZ may be set in the battery exchange station.
  • the electric vehicle when it arrives near the battery replacement station while driving, it may establish a short-range communication connection with the battery replacement station through Wi-Fi using a preset local fixed IP.
  • all battery replacement stations may be configured to connect to external devices via Wi-Fi with the same local static IP address.
  • the electric vehicle may check whether a battery replacement station that has established a communication connection matches a battery replacement station to which a communication connection is to be established, and if matched, may maintain a communication connection with the connected battery replacement station.
  • the electric vehicle may perform a communication connection with a desired battery replacement station through the connected battery replacement station if the battery replacement station to which communication is established does not coincide with the battery replacement station to which communication is to be established.
  • the battery replacement station may query the server for the IP address of each battery replacement station, and may establish a communication connection between the battery replacement station and the electric vehicle according to the query result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

본 발명은 정전, 시스템 오류 등 교환식 배터리의 충전을 위한 배터리 교체 스테이션(BSS, Battery Swapping Station)에 전력 공급이 차단될 경우, BSS 시스템의 다운 없이 운영이 가능하게 하는 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션에 관한 발명이다.

Description

전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션
본 출원은 2021년 09월 09일자 한국 특허 출원 제2021- 0120592호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원 발명은 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션에 관한 것이다. 보다 상세하게는, 정전, 시스템 오류 등 교환식 배터리의 충전을 위한 배터리 교체 스테이션(BSS, Battery Swapping Station)에 전력 공급이 차단될 경우, BSS 시스템의 다운 없이 운영이 가능하게 하는 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션에 관한 것이다.
차량의 내연 엔진을 전기 모터로 교체하려는 움직임에 따라 전기 모터의 자원인 전기를 차량에 공급하는 방법에 관하여 많은 연구가 있다. 그 중 대표적으로 차량에 전기 배터리를 두고, 그에 충전된 전기를 전기 모터가 이용하는 방안이 제시되었다.
한편, 배터리의 충전에 소요되는 시간이 기존의 내연 엔진을 이용하는 차량에 주유를 진행하는 시간보다 많이 걸리면서, 차량의 배터리를 충전하는 것이 아니라 차량의 배터리를 교체하여 차량에 전기 에너지를 공급하는 방안이 제시되고 있다.
종래에는 계통의 화석연료 발전원 및 신재생에너지 발전원에서 발전된 전력이 부하 및 배터리 교체 스테이션에 공급되었다. 전력의 공급은 계통에서 부하 및 수용가로 보내지는, 단방향 송전으로 공급되었다.
배터리 교체 스테이션은 전기에너지로 구동되는 전기자동차의 배터리가 교환되는 곳으로서, 전기자동차의 배터리와 교환 가능한 배터리를 복수로 구비하고, 계통으로부터 공급된 전력으로 배터리의 충전이 이루어졌다.
배터리 교체 스테이션에 구비된 배터리는 전기자동차용 배터리로서, 대용량의 전력이 저장될 수 없는 한계가 있었다. 한편, 연료 전지 발전, 풍력 발전 및 태양광 발전 등과 같은 신재생에너지 발전은, 계통에 포함되어 발전된 전력을 계통에 공급하는 방식으로 운용되어왔다. 허나 풍력 및 태양광 발전과 같은 신재생에너지 발전은 날씨의 영향을 크게 받아 부하로의 전력 공급이 일정하게 지속적으로 유지되기 어려우므로, 활용성이 크게 떨어진다는 문제가 있었다. 특히, 연료 전지 발전의 경우 부하와 연계된 상태에서 발전이 가능하다는 특성으로 인해, 계통 또는 부하에 이상이 생겨 연계가 중단된 경우 발전이 유지되지 못하게 되는 운용의 한계가 있었다.
이러한 한계들은 계통 및 배터리 교체 스테이션의 운영의 한계로 이어지게 된다. 따라서, 지능형전력망을 통한 외부 전력원을 통한 계통 연계를 통한 배터리 교체 스테이션의 전력 공급이 이루어졌기 때문에, 외부 계통과의 단전 등의 비상시, 배터리 교체 스테이션을 안정적인 운영에 한계가 있다.
또한, 배터리 교체 스테이션에 구비된 배터리는 대용량의 전력이 충전될 수 없는 한계 때문에, 계통으로의 전력 공급이 필요해진 경우, 배터리의 여유 전력 만으로는 적절한 전력 공급 대응이 어려운 한계가 있다.
한국등록특허공보 제1528079호에서는 계통으로부터 공급받은 전력을 대용량 배터리에 충전하고, 계통의 운영 상태에 따라 대용량 배터리에 충전된 전력을 계통에 공급되도록 함으로써, 배터리에 충전된 전력을 활용하여 계통의 운영 및 전력수요가 개선되는 효과가 있는 배터리 교환 스테이션 및 배터리 교환 스테이션의 운영 방법이 개시되어 있다. 그러나, 계통과 단전 등의 비상시 배터리 교환 스테이션의 운영과 관련된 기술을 개시된 바 없다.
한국공개특허공보 제2021-0075160호에서는 2개의 입력부들 및 적어도 2개의 출력부들을 포함하는 제1 전력 제어 장치 및 적어도 2개의 입력부들 및 적어도 2개의 출력부들을 포함하는 제2 전력 제어 장치 각각의 전력 제어 장치는 활성 모드 또는 절연 모드에서 동작하도록 구성됨을 포함하며, 여기서, 활성 모드에서, 전력 제어 장치의 입력부들 및 출력부들은 서로 전기적으로 연결되고, 절연 모드에서, 전력 제어 장치의 입력부들 및 출력부들은 서로 전기적으로 절연되고, 시스템은, 언제나, 하나의 전력 제어 장치만이 활성 모드에서 동작하는 한편 다른 전력 제어 장치는 절연 모드에서 동작하는 전력 공급 제어 시스템이 개시되어 있으나, 본원 발명의 단전을 통한 비정상적 전력공급시 안정적으로 운용가능한 배터리 교체 스테이션에 관한 기술은 개시된 바 없다.
한국등록특허공보 제1418181호에서는 모드전환버튼의 온(on) 시, 사용자가 직접 배터리팩을 충전 또는 방전을 제어함과 아울러 모드전환버튼의 오프(off) 시, 에너지 저장 시스템에 구비된 마이컴에서 정전 발생 유무 및 배터리팩의 상태를 판단하여 배터리팩을 충전 또는 방전을 제어하는 에너지 저장 시스템이 개시되어 있으나, 배터리 교체 스테이션에 대한 기술은 개시된 바 없다.
일본등록특허공보 제5872494호에서는 레벨 컨버를, 과전압 억제용 보호회로의 방전을 방지하기 위한 저항을 갖는 차량용 전력 변환장치에 대한 기술이 개시되어 있으나. 배터리 교체 스테이션에 대한 기술은 개시된 바 없다.
따라서, 기존의 전력망이 지능형전력망(Smart Grid)으로 대체되면서 부하에 무정전으로 전원을 공급하는 UPS, 전기자동차 및 전기자동차의 배터리 충전, 여유 전력 또는 잉여 전력을 활용하는 공급자와 소비자간의 양방향 전력 거래 및 신재생에너지 발전이 강조되고 있는 시점에, 상술한 한계들을 해결하여 계통 및 배터리 교체 스테이션 간의 운영을 개선하고, 지능형전력망의 다양한 기능 및 효과를 이룰 수 있는 전력 공급이 불가능해지는 비상 상황시 배터리팩 운용방식의 배터리 교체 스테이션이 제시되어야 할 필요가 있다.
(선행기술문헌)
(특허문헌 1)한국등록특허공보 제1528079호
(특허문헌 2)한국공개특허공보 제2021-0075160호
(특허문헌 3)한국등록특허공보 제1418181호
(특허문헌 4)일본등록특허공보 제5872494호
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 정전, 시스템 오류 등 교환식 배터리의 충전을 위한 배터리 교체 스테이션(BSS, Battery Swapping Station)에 전력 공급이 차단될 경우, BSS 시스템의 다운 없이 운영이 가능하게 하는 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션을 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본 발명의 배터리팩 운용방식의 배터리 교체 스테이션은 전력을 공급하는 외부전력그리드; 하나 이상의 배터리팩을 충전하는 하나 이상의 충전기; 상기 외부전력그리드로부터 공급된 전력이 계통을 통해 상기 배터리팩을 충전되도록 제어하는 제어기; 상기 충전기 및 상기 제어기에 전원을 공급하는 메인전원; 상기 제어기는 계통의 운영 상태를 판단하여, 상기 외부전력그리드가 전력 공급이 불가능할 경우, 상기 배터리팩의 전력을 상기 메인전원으로 공급하는 배터리팩 운용방식의 배터리 교체 스테이션을 제공할 수 있다.
또한, 상기 충전기는 상기 하우징 내에 배치되어 하나 이상의 배터리팩에 직류전원을 공급하는 하나 이상의 양방향DC/DC컨버터;를 포함할 수 있다.
또한, 상기 외부전력그리드에 연결되며 전류를 변환하는 AC/DC 컨버터;를 포함할 수 있다.
또한, 상기 제어기는 AC/DC컨버터와 상기 양방향DC/DC컨버터 사이에 형성되어 제어신호를 생성하는 MCU(Main Control Unit); 및 구동을 위한 제어기전원;을 포함할 수 있다.
또한, 상기 AC/DC컨버터와 상기 MCU사이에 형성되는 제1DC/DC컨버터;를 포함할 수 있다.
또한, 상기 MCU와 상기 양방향DC/DC컨버터 및 상기 배터리팩 사이에 형성되는 제2DC/DC컨버터;를 포함할 수 있다.
또한, 상기 외부전력그리드가 차단되면 상기 MCU는 상기 제2DC/DC컨버터를 작동하여 상기 양방향DC/DC컨버터의 전류방향을 상기 배터리팩에서 상기 메인파워로 변경하는 포함할 수 있다.
또한, 상기 제어기는 상기 제1DC/DC컨버터와 상기 MCU 사이의 전압 이상유무를 판단하는 전압센싱유닛;를 포함할 수 있다.
또한, 상기 제2DC/DC컨버터와 상기 양방향DC/DC컨버터 및 상기 배터리팩 사이에 형성되는 P-FET;을 포함하고, 상기 제어기는 상기 전압센싱유닛에 의한 전압값이 0V일 때, 상기 P-FET를 ON하여, 상기 제2DC/DC컨버터가 동작하여 상기 양방향DC/DC컨버터의 전류방향을 상기 배터리팩에서 상기 메인파워로 변경할 수 있다.
또한, 상기 배터리팩 운용방식의 배터리 교체 스테이션의 식별 정보를 수신하는 수신부; 상기 배터리팩 운용방식의 배터리 교체 스테이션으로부터 수신한 식별정보와 인증 정보에 기초하여 상기 배터리팩 운용방식의 배터리 교체 스테이션과의 통신 연결 여부를 결정하는 프로세서;를 포함하는 전기 구동 디바이스를 제공할 수 있다.
상기 전기 구동 디바이스는 배터리팩을 이용한 구동력을 확보하는 디바이스는 그 제품의 형태에 제한되지 않는 것을 자명하다. 바람직하게는 전기차, 전기오토바이, 전기카트 일 수 있다.
이상에서 설명한 바와 같이, 배터리팩 운용방식의 배터리 교체 스테이션은 전력 공급이 차단되는 비상시에도 배터리팩 운용을 안정적으로 유지할 수 있는 효과가 있다.
또한, 전기 차량과 배터리 교체 스테이션의 안정적인 통신 및 교체 상황을 유지할 수 있어 전기 차량과 배터리 교체 스테이션간 통신이 유지될 수 있는 효과가 있다.
또한, 배터리에 전력을 충전하고 이를 배터리 교체 스테이션에 재공급함으로써, 배터리에 충전된 전력을 활용할 수 있게 되는 효과가 있다.
또한, 계통의 운영 변경 시 배터리에 충전된 전력이 배터리 교체 스테이션에 공급되도록 함으로써, 계통의 운영 및 전력수요가 개선되는 효과가 있다.
또한, 전력이 저장되는 배터리를 활용하여 전력을 공급하는 계통, 전력을 충전받는 이동 수단 및 스테이션 간에 전력 교환이 이루어짐으로써, 연계된 기기 또는 시스템 간에 양방향 전력 공급이 가능해지는 효과가 있다.
도 1은 배터리팩을 구동되는 승용 디바이스의 배터리교체 스테이션 운용 개념도이다.
도 2는 본 발명의 일 실시예에 따른 배터리팩 운용방식의 배터리 교체 스테이션에 외부 전력이 정상적으로 공급될 때와 단전될 때의 배터리 교체 스테이션의 운용을 개략적으로 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 외부전력 단선시 전력운용을 반영한 배터리팩 운용방식의 배터리교체 스테이션을 도시한 도면이다.
이하 첨부된 도면을 참조하여 본원 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다.
다만, 본 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다.
명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 수단을 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다.
또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하 본 발명을 보다 자세히 설명한다.
도 1은 배터리팩을 구동되는 승용 디바이스의 배터리교체 스테이션 운용 개념도이다.
일 실시 예에 따른 전기 차량의 배터리 교체 시스템은 서버, 배터리 교체 스테이션 및 전기 차량을 포함한다. 서버는 통합관제 센터일 수 있다. 전기 차량은 전기 배터리의 충전 전류를 사용하여 전기모터로 주행하는 전기 구동 디바이스면 어느 것이든 제한되지 않음은 자명하다.
일 실시 예에 따른 배터리 교체 시스템에서, 서버는 전기 차량이 배터리를 교환할 수 있는 배터리 교체 스테이션의 정보를 전기 차량에 전송한다. 전기 차량은 서버로부터 수신한 배터리 교체 스테이션의 정보에 일치하는 배터리 교체 스테이션에서 배터리의 교체를 수행한다. 이하, 서버가 전기 차량이 배터리를 교환할 스테이션으로 특정한 배터리 교환 스테이션을 목적 배터리 교환 스테이션으로 정의한다. 서버는 전기 차량의 사용자가 선택한 스테이션을 목적 배터리 교환 스테이션으로 결정할 수 있다. 또는 서버는 전기 차량에서 가장 가까운 스테이션을 목적 배터리 교환 스테이션으로 결정할 수도 있다.
상기 외부 전력원은 상기 배터리 교체 스테이션과 유선으로 접속된 전원 계통라인을 가질 수 있다. 상기 전력 그리드에 전력을 공급하는 전원은 기존의 전통적인 발전원일 수 있고 바람직하게는 신재생 에너지 발전원일 수 있다.
도 1을 참조하여 배터리 교체 시스템에서 각 개체들의 통신 방법은 서버와 전기 차량간의 통신은 무선 통신 방법을 사용할 수 있다. 서버와 전기 차량은 5G 또는 LTE와 같은 이동 통신망을 이용한 원거리 무선 통신 방법을 이용하여 통신 연결될 수 있다.
서버와 배터리 교체 스테이션간의 통신은 원거리 무선 통신과 같은 무선 통신 방법을 사용하거나, 유선 통신 방법을 사용할 수 있다.
배터리 교체 스테이션과 전기 차량간의 통신은 무선 통신 방법을 이용하여 통신 연결될 수 있다.
배터리 교환 스테이션은, 전력 저장 전용인 대용량 배터리 및 상기 이동 수단의 배터리와 호환 가능한 교환용 배터리를 포함한 복수의 배터리 및 계통으로부터 공급된 전력이 상기 복수의 배터리에 충전되도록 하되, 상기 계통의 운영 상태에 따라, 상기 복수의 배터리에 충전된 전력이 상기 계통에 공급되도록, 상기 복수의 배터리의 충방전을 제어하는 제어부(MCU)를 포함한다.
일 실시 예에서, 상기 복수의 배터리는, 충방전이 가능한 2차 전지일 수 있다. 상기 대용량 배터리는, Redox Flow Battery, NaS Battery 및 CAES(Compressed Air Energy Storage) 시스템 중 어느 하나이고, 상기 교환용 배터리는, Lithium-ion Battery, Metal-Air Battery 및 Na-Based Battery 중 어느 하나일 수 있다.
상기 이동 수단의 배터리는, 상기 교환용 배터리와 교환된 경우, 상기 계통으로부터 공급된 전력이 충전될 수 있다. 상기 이동 수단의 배터리는, 상기 복수의 배터리에 충전된 전력을 공급받아 충전 가능할 수 있다. 일 실시예에서, 상기 이동 수단의 배터리는, 상기 계통으로부터 전력을 공급받아 충전되고, 상기 이동 수단의 배터리에 충전된 전력을 상기 복수의 배터리 및 상기 계통에 공급 가능할 수 있다.
상기 복수의 배터리에 충전되는 전력 및 상기 복수의 배터리에서 방전되는 전력을 변환하는 전력 변환 장치를 더 포함할 수 있다. 일 실시 예에서, 상기 전력 변환 장치는, AC전력을 DC전력으로 변환하는 컨버터, DC전력을 AC전력으로 변환하는인버터, 스위치 및 전압의 크기를 변압하는 변압기를 포함할 수 있다.
도 2는 본 발명의 일 실시예에 따른 배터리팩 운용방식의 배터리 교체 스테이션에 외부 전력이 정상적으로 공급될 때와 단전될 때의 배터리 교체 스테이션의 운용을 개략적으로 나타낸 도면이다.
도 2의 (a)는 외부 전원 그리드로부터 정상적으로 배터리 교체 스테이션에 전력이 공급되는 도면이고, (b)는 외부 전원 그리드로부터 전력이 공급되지 않는 상황이다.
(b )의 외부 전원이 단락되어 배터리 교체 스테이션의 계통내에 전력이 없으면 상기 점선과 같이 MCU가 하나 이상의 배터리팩으로부터 상기 배터리 교체 스테이션에 전력을 공급할 수 있다.
배터리팩 운용방식의 배터리 교체 스테이션은 전력을 공급하는 외부전력그리드; 하나 이상의 배터리팩을 충전하는 하나 이상의 충전기; 상기 외부전력그리드로부터 공급된 전력이 계통을 통해 상기 배터리팩을 충전되도록 제어하는 제어기; 상기 충전기 및 상기 제어기에 전원을 공급하는 메인전원; 상기 제어기는 계통의 운영 상태를 판단하여, 상기 외부전력그리드가 전력 공급이 불가능할 경우, 상기 배터리팩의 전력을 상기 메인전원으로 공급하는 배터리팩 운용방식의 배터리 교체 스테이션을 제공할 수 있다.
또한, 상기 충전기는 상기 하우징 내에 배치되어 하나 이상의 배터리팩에 직류전원을 공급하는 하나 이상의 양방향DC/DC컨버터;를 포함할 수 있다.
또한, 상기 외부전력그리드에 연결되며 전류를 변환하는 AC/DC 컨버터;를 포함할 수 있다.
또한, 상기 제어기는 AC/DC컨버터와 상기 양방향DC/DC컨버터 사이에 형성되어 제어신호를 생성하는 MCU(Main Control Unit); 및 구동을 위한 제어기전원;을 포함할 수 있다.
상기 이동 수단의 배터리 및 상기 교환용 배터리가 교환되면, 상기 스테이션에 포함되어 있던 상기 교환용 배터리가 상기 이동 수단에 포함되게 되어 상기 이동 수단의 배터리를 대체하게 되고, 상기 이동 수단의 배터리는 상기 스테이션에 포함되게 되어 상기 교환용 배터리를 대체하게 될 수 있다.
상기 이동 수단의 배터리는, 상기 스테이션에 구비된 자동 배터리 교환 장치를 통해 상기 교환용 배터리와 교환되거나, 또는 수동으로 교체하는 방식으로 상기 교환용 배터리와 교환될 수 있다.
상기 이동 수단의 배터리는, 상기 교환용 배터리와 교환된 경우, 상기 계통으로부터 공급된 전력이 충전될 수 있다.다.
또한, 상기 AC/DC컨버터와 상기 MCU사이에 형성되는 제1DC/DC컨버터;를 포함할 수 있다.
또한, 상기 MCU와 상기 양방향DC/DC컨버터 및 상기 배터리팩 사이에 형성되는 제2DC/DC컨버터;를 포함할 수 있다.
또한, 상기 외부전력그리드가 차단되면 상기 MCU는 상기 제2DC/DC컨버터를 작동하여 상기 양방향DC/DC컨버터의 전류방향을 상기 배터리팩에서 상기 메인파워로 변경하는 포함할 수 있다.
또한, 상기 제어기는 상기 제1DC/DC컨버터와 상기 MCU 사이의 전압 이상유무를 판단하는 전압센싱유닛;를 포함할 수 있다.
즉, 상기 이동 수단의 배터리 및 상기 교환용 배터리가 교환되어, 상기 이동 수단의 배터리가 상기 스테이션에 포함되게 되면, 상기 이동 수단의 배터리가 상기 교환용 배터리를 대체하게 되어, 상기 계통으로부터 공급된 전력이 충전될 수 있다.
상기 교환용 배터리와 교환됨으로써 상기 스테이션에 포함되게 되어, 상기 교환용 배터리를 대체하게 된 상기 이동 수단의 배터리는, 상기 교환용 배터리와 마찬가지로 상기 제어부에 의해 제어될 수 있다.
상기 교환용 배터리와 교환됨으로써 상기 스테이션에 포함되게 되어, 상기 교환용 배터리를 대체하게 된 상기 이동 수단의 배터리는 또한, 상기 계통으로 충전된 전력이 공급되도록 방전될 수 있고, 다른 이동 수단의 배터리와 교환될 수도 있다.
상기 이동 수단의 배터리는 또한, 상기 복수의 배터리에 충전된 전력을 공급받아 충전 가능할 수 있다. 즉, 상기 이동 수단의 배터리가 상기 교환용 배터리와 교환되지 않고, 상기 복수의 배터리에 충전된 전력을 공급받아 충전이 될 수 있다.
상기 이동 수단의 배터리로의 전력 공급은, 상기 교환용 배터리에 충전된 전력을 우선적으로 공급하되, 상기 교환용 배터리에 충전된 전력으로 상기 이동 수단의 배터리를 충전시키기 어려운 경우에는 상기 대용량 배터리에 충전된 전력이 공급될 수 있다.
상기 이동 수단의 배터리로의 전력 공급은, 상기 제어부가 상기 복수의 배터리의 충방전을 제어함으로써 이루어질 수 있다
또한, 상기 제2DC/DC컨버터와 상기 양방향DC/DC컨버터 및 상기 배터리팩 사이에 형성되는 P-FET;을 포함하고, 상기 제어기는 상기 전압센싱유닛에 의한 전압값이 0V일 때, 상기 P-FET를 ON하여, 상기 제2DC/DC컨버터가 동작하여 상기 양방향DC/DC컨버터의 전류방향을 상기 배터리팩에서 상기 메인파워로 변경할 수 있다.
또한, 상기 배터리팩 운용방식의 배터리 교체 스테이션의 식별 정보를 수신하는 수신부; 상기 배터리팩 운용방식의 배터리 교체 스테이션으로부터 수신한 식별정보와 인증 정보에 기초하여 상기 배터리팩 운용방식의 배터리 교체 스테이션과의 통신 연결 여부를 결정하는 프로세서;를 포함하는 전기 구동 디바이스를 제공할 수 있다.
상기 MCU는, 상기 배터리 교체 스테이션의 계통의 운영 상태를 판단한 결과, 상기 계통의 부하전력이 기 설정된 기준 이상인 경우, 상기 복수의 배터리에 충전된 전력이 상기 계통에 공급되도록 제어하고, 상기 계통의 부하전력이 상기 기 설정된 기준 이하인 경우, 즉, 계통을 통하여 복수의 배터리 충전이 불가능 상황 또는 상기 배터리 교체 스테이션 자체의 운영이 불가능한 이상상태시, 하나 이상의 배터리에서 상기 배터리 교체 스테이션의 운영 전력을 공급하도록 제어할 수 있다.
일 실시예에서, 상기 MCU는, 상기 배터리 교체 스테이션의 운영 상태를 판단한 결과, 상기 배터리 교체 스테이션의 부하전력이 최대로 소비되는 시간대는 상기 복수의 배터리에 충전되는 전력이 최대로 필요한 시간대로 이때를 피크타임으로 정의하고 부하전력이 소비되는 주기를 시간대별로 구분하여, 최대 부하전력이 소비된 시간대를 특정하여 설정될 수 있다.
도 3은 본 발명의 일 실시예에 따른 외부전력 단선시 전력운용을 반영한 배터리팩 운용방식의 배터리교체 스테이션을 도시한 도면이다.
배터리 교체 스테이션과 전기 차량은 Wi-Fi를 이용한 근거리 통신으로 연결될 수 있다. 전기 차량이 배터리 교체 스테이션(200)에 도착할 경우 배터리 교체 스테이션에 내장된 Wi-Fi와 전기 차량에 내장된 Wi-FI가 브릿지 형태로 네트워크를 형성할 수 있다.
배터리 교체 스테이션과 전기 차량은 근거리 통신으로 연결됨에 따라 전기 차량이 배터리 스테이션의 인근에 위치하는 경우 자동으로 통신 연결이 성립될 수 있다. 이를 위하여, 배터리 교체 스테이션은 고정 로컬 IP를 이용한 Wi-Fi망을 제공할 수 있다. 배터리 교체 스테이션은 어떠한 전기 차량과도 접속이 가능하도록 모든 포트를 개방할 수 있다. 이를 위하여 배터리 교체 스테이션에는 DMZ가 설정될 수 있다.
이에 따라, 전기 차량은 주행 중 배터리 교체 스테이션 인근에 도달한 경우, 미리 설정된 로컬 고정IP를 이용하여 배터리 교체 스테이션과 Wi-Fi를 통한 근거리 통신 연결을 이룰 수 있다. 예를들어, 모든 배터리 교체 스테이션은 동일한 로컬 고정 IP로 외부 기기와 Wi-Fi 연결되도록 설정되어 있을 수 있다.
전기 차량은 통신연결을 이룬 배터리 교체 스테이션이 통신연결을 이루고자 목적하는 배터리 교체 스테이션과 일치하는 지를 확인하고, 일치한다면 연결된 배터리 교체 스테이션과 통신 연결을 지속할 수 있다.
한편, 전기 차량은 통신연결을 이룬 배터리 교체 스테이션이 통신연결을 이루고자 하는 배터리 교체 스테이션과 일치하지 않는다면, 연결된 배터리 교체 스테이션을 통해 목적하는 배터리 교체 스테이션과 통신 연결을 수행할 수 있다. 배터리 교체 스테이션은 서버에 각각의 배터리 교체 스테이션에 대한 IP주소를 질의할 수 있고, 질의한 결과에 따라 목적하는 배터리 교체 스테이션과 전기 차량간의 통신 연결을 설정할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니며, 본 발명의 범주 및 기술 사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
(부호의 설명)
100: 하우징
200: 충전기
210: 제어기
300: 메인전원
400: 외주전력그리드
500: AC/DC컨버터
600: 양방향컨버터
700: MCU
710: MCU전원
720: 전압센싱유닛
800: 제1DC/DC컨버터
900: 제2 DC/DC컨버터
910: P-FET

Claims (10)

  1. 전력을 공급하는 외부전력그리드;
    하나 이상의 배터리팩을 충전하는 하나 이상의 충전기;
    상기 외부전력그리드로부터 공급된 전력이 계통을 통해 상기 배터리팩을 충전되도록 제어하는 제어기;
    상기 충전기 및 상기 제어기에 전원을 공급하는 메인전원;
    상기 제어기는 계통의 운영 상태를 판단하여,
    상기 외부전력그리드가 전력 공급이 불가능할 경우, 상기 배터리팩의 전력을 상기 메인전원으로 공급하는 배터리팩 운용방식의 배터리 교체 스테이션.
  2. 제1항에 있어서,
    상기 충전기는 상기 하우징 내에 배치되어 하나 이상의 배터리팩에 직류전원을 공급하는 하나 이상의 양방향DC/DC컨버터;를 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  3. 제2항에 있어서,
    상기 외부전력그리드에 연결되며 전류를 변환하는 AC/DC 컨버터;를 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  4. 제3항에 있어서,
    상기 제어기는 AC/DC컨버터와 상기 양방향DC/DC컨버터 사이에 형성되어 제어신호를 생성하는 MCU; 및 구동을 위한 제어기전원;을 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  5. 제4항에 있어서,
    상기 AC/DC컨버터와 상기 MCU사이에 형성되는 제1DC/DC컨버터;를 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  6. 제5항에 있어서,
    상기 MCU와 상기 양방향DC/DC컨버터 및 상기 배터리팩 사이에 형성되는 제2DC/DC컨버터;를 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  7. 제6항에 있어서,
    상기 외부전력그리드가 차단되면 상기 MCU는 상기 제2DC/DC컨버터를 작동하여 상기 양방향DC/DC컨버터의 전류방향을 상기 배터리팩에서 상기 메인파워로 변경하는 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  8. 제7항에 있어서,
    상기 제어기는 상기 제1DC/DC컨버터와 상기 MCU 사이의 전압 이상유무를 판단하는 전압센싱유닛;를 포함하는 배터리팩 운용방식의 배터리 교체 스테이션.
  9. 제8항에 있어서,
    상기 제2DC/DC컨버터와 상기 양방향DC/DC컨버터 및 상기 배터리팩 사이에 형성되는 P-FET;을 포함하고,
    상기 제어기는 상기 전압센싱유닛에 의한 전압값이 0V일 때, 상기 P-FET를 ON하여,
    상기 제2DC/DC컨버터가 동작하여 상기 양방향DC/DC컨버터의 전류방향을 상기 배터리팩에서 상기 메인파워로 변경하는 배터리팩 운용방식의 배터리 교체 스테이션.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 배터리팩 운용방식의 배터리 교체 스테이션의 식별 정보를 수신하는 수신부;
    상기 배터리팩 운용방식의 배터리 교체 스테이션으로부터 수신한 식별정보와 인증 정보에 기초하여 상기 배터리팩 운용방식의 배터리 교체 스테이션과의 통신 연결 여부를 결정하는 프로세서;를 포함하는 전기 구동 디바이스.
PCT/KR2022/011376 2021-09-09 2022-08-02 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션 WO2023038297A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511842A JP2023545344A (ja) 2021-09-09 2022-08-02 電力供給遮断の際のバッテリーパック運用方式のバッテリー交替ステーション
EP22867566.6A EP4213338A1 (en) 2021-09-09 2022-08-02 Battery swapping station using battery pack operation during power supply cutoff
CN202280006392.5A CN116368029A (zh) 2021-09-09 2022-08-02 具有在电力供应中断时操作电池组的模式的电池更换站

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0120592 2021-09-09
KR1020210120592A KR20230037755A (ko) 2021-09-09 2021-09-09 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션

Publications (1)

Publication Number Publication Date
WO2023038297A1 true WO2023038297A1 (ko) 2023-03-16

Family

ID=85506631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011376 WO2023038297A1 (ko) 2021-09-09 2022-08-02 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션

Country Status (5)

Country Link
EP (1) EP4213338A1 (ko)
JP (1) JP2023545344A (ko)
KR (1) KR20230037755A (ko)
CN (1) CN116368029A (ko)
WO (1) WO2023038297A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141206A1 (en) * 2008-09-19 2010-06-10 Shai Agassi Battery Exchange Station
KR101418181B1 (ko) 2012-12-21 2014-07-09 넥스콘 테크놀러지 주식회사 에너지 저장 시스템 및 이의 제어방법
KR20150035794A (ko) * 2012-07-03 2015-04-07 퀄컴 인코포레이티드 전기 차량 주차 및 무선 충전 관련 시스템, 방법 및 장치
KR101528079B1 (ko) 2013-12-27 2015-06-10 두산중공업 주식회사 배터리 교환 스테이션 및 배터리 교환 스테이션의 운영 방법
JP5872494B2 (ja) 2013-01-24 2016-03-01 株式会社東芝 車両用電力変換装置
KR20190048000A (ko) * 2017-10-30 2019-05-09 삼성에스디아이 주식회사 배터리 팩 및 그의 과충전 제어 방법
KR20200053734A (ko) * 2018-11-08 2020-05-19 양희범 배터리 교환 방식의 전기차의 운용 시스템
KR20210075160A (ko) 2018-12-10 2021-06-22 비오니어 스웨덴 에이비 전력 공급 제어 시스템 및 방법
KR20210120592A (ko) 2020-03-27 2021-10-07 주식회사 안무공장 안무 컨텐츠 기반의 부가서비스 제공 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141206A1 (en) * 2008-09-19 2010-06-10 Shai Agassi Battery Exchange Station
KR20150035794A (ko) * 2012-07-03 2015-04-07 퀄컴 인코포레이티드 전기 차량 주차 및 무선 충전 관련 시스템, 방법 및 장치
KR101418181B1 (ko) 2012-12-21 2014-07-09 넥스콘 테크놀러지 주식회사 에너지 저장 시스템 및 이의 제어방법
JP5872494B2 (ja) 2013-01-24 2016-03-01 株式会社東芝 車両用電力変換装置
KR101528079B1 (ko) 2013-12-27 2015-06-10 두산중공업 주식회사 배터리 교환 스테이션 및 배터리 교환 스테이션의 운영 방법
KR20190048000A (ko) * 2017-10-30 2019-05-09 삼성에스디아이 주식회사 배터리 팩 및 그의 과충전 제어 방법
KR20200053734A (ko) * 2018-11-08 2020-05-19 양희범 배터리 교환 방식의 전기차의 운용 시스템
KR20210075160A (ko) 2018-12-10 2021-06-22 비오니어 스웨덴 에이비 전력 공급 제어 시스템 및 방법
KR20210120592A (ko) 2020-03-27 2021-10-07 주식회사 안무공장 안무 컨텐츠 기반의 부가서비스 제공 방법

Also Published As

Publication number Publication date
JP2023545344A (ja) 2023-10-30
EP4213338A1 (en) 2023-07-19
CN116368029A (zh) 2023-06-30
KR20230037755A (ko) 2023-03-17

Similar Documents

Publication Publication Date Title
JP7073669B2 (ja) 蓄電システム
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
KR102247391B1 (ko) 배터리 시스템
WO2012091402A2 (ko) 배터리 시스템 관리 장치 및 방법
WO2018139742A1 (ko) 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량
WO2011152639A2 (ko) 배터리 팩 그리고 배터리 팩의 충전 방법
WO2012033254A1 (en) Energy storage system and controlling method of the same
US20130141828A1 (en) Power source apparatus formed by combining a plurality of modules
WO2018016735A1 (ko) 배터리 시스템
WO2018026096A1 (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
KR102595174B1 (ko) 배터리 시스템
WO2019031686A1 (ko) 에너지 저장 시스템
CN111987791A (zh) 电池模组控制装置和方法、电源设备和系统
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2018230831A1 (ko) 에너지 저장 시스템
WO2012023707A2 (ko) 배터리 팩 그리고 배터리 팩의 액티브 셀 밸런싱 방법
CN109103984A (zh) 飞轮储能与在线式工频双变换ups集成系统、控制方法
CN103607012A (zh) 一种逆变电源专用直流输入电源
WO2019132493A1 (ko) 전력 모듈이 구비된 충전 장치
WO2023038297A1 (ko) 전력공급 차단시 배터리팩 운용방식의 배터리 교체 스테이션
CN114884168B (zh) 基于磷酸铁锂蓄电池的变电站直流系统
WO2022197040A1 (ko) 전기자동차의 충전 장치 및 방법
WO2018088688A1 (ko) 에너지 저장 장치
WO2022102900A1 (ko) 복수개의 배터리팩이 장착된 파워스테이션의 충전 및 방전 제어방법
WO2023048388A1 (ko) 비상발전기능을 갖는 배터리 교체 스테이션

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023511842

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18024135

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022867566

Country of ref document: EP

Effective date: 20230413

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE