WO2023038281A1 - Powder material synthesizing apparatus and method using serial multi-stage plasma - Google Patents

Powder material synthesizing apparatus and method using serial multi-stage plasma Download PDF

Info

Publication number
WO2023038281A1
WO2023038281A1 PCT/KR2022/010666 KR2022010666W WO2023038281A1 WO 2023038281 A1 WO2023038281 A1 WO 2023038281A1 KR 2022010666 W KR2022010666 W KR 2022010666W WO 2023038281 A1 WO2023038281 A1 WO 2023038281A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
powder
reaction space
plasma reaction
synthesizer
Prior art date
Application number
PCT/KR2022/010666
Other languages
French (fr)
Korean (ko)
Inventor
신동수
Original Assignee
(주)에스플러스컴텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스플러스컴텍 filed Critical (주)에스플러스컴텍
Publication of WO2023038281A1 publication Critical patent/WO2023038281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a powder material synthesis technology, and more particularly, to an apparatus and method suitable for synthesizing a powder material for a negative electrode material of a secondary battery.
  • Silicon alloys with lithium to form a Li 12 Si 5 phase and the theoretical capacity reaches 4008 mAh/g.
  • This has a high capacity of more than 10 times that of graphite, and is attracting attention as a new material that can overcome the limitations of existing lithium secondary batteries mainly using graphite as an anode material.
  • the silicon electrode degrades due to a volume change of more than 300% during charging and discharging, and most of the capacity is lost within 10 cycles. This is because electrical contact is lost as expansion and contraction are continuously repeated during the charging and discharging process, and thus electrode resistance rapidly increases.
  • a method of using an active/inactive compound or a composite material in which an inactive material capable of buffering a volume change without reacting with lithium is added is being studied.
  • Korean Patent Registration No. 10-2012599 discloses a wet treatment of the exothermic reaction between STC (SiCl 4 ) and ethylene glycol, automating a series of processes such as sintering and transfer, effectively using nano-powder for secondary battery anode materials.
  • An apparatus and method for producing SiOx powder is described.
  • An object of the present invention is to provide a powder material synthesis apparatus and method using plasma.
  • a further object of the present invention is to provide an apparatus and method for synthesizing a powder material for a negative electrode material of a secondary battery using plasma.
  • a first plasma generating module for forming a first plasma reaction space, and a second plasma reaction space located downstream of the first plasma reaction space
  • a plasma powder synthesizer including a second plasma generating module to form a third plasma generating module and a third plasma generating module to form a third plasma reaction space located downstream of the second plasma reaction space
  • a plurality of heterogeneous basic materials are synthesized by plasma to generate a first powder compound in powder form, and in the second plasma reaction space, the first powder compound and the first additional material are synthesized by plasma to produce a second powder compound in powder form.
  • a powder material synthesizing apparatus is provided in which a powder compound is generated, and a third powder compound in a powder form is generated by synthesizing the second powder compound and a second additional material by plasma in the third plasma reaction space.
  • a first plasma synthesis step in which a plurality of heterogeneous base materials are synthesized in a first plasma reaction space to generate a first powder compound in powder form; a second plasma synthesis step of synthesizing the first powder compound and the first additional material in a second plasma reaction space to generate a second powder compound in powder form; and a third plasma synthesis step of synthesizing the second powder compound and the second additional material in a third plasma reaction space to generate a third powder compound in powder form.
  • a plurality of heterogeneous basic materials are synthesized by plasma in the first plasma reaction space to generate a first powder compound in powder form, and in the second plasma reaction space, the first powder compound and the first additional material are synthesized by plasma.
  • silicon (Si) and silicon dioxide (SiO 2 ) are synthesized in the first plasma reaction space to generate silicon oxide represented by SiO X (0 ⁇ X ⁇ 2) as a first powder compound, and a second plasma reaction space
  • SiO X (0 ⁇ X ⁇ 2) is synthesized with carbon nanotubes or carbon nanofibers, which are carbon materials, to produce a second powder compound, and in the third plasma reaction space, the second powder compound and the carbon material are synthesized.
  • a powder material suitable for an anode material of a secondary battery can be efficiently synthesized.
  • FIG. 1 is a block diagram showing a schematic configuration of a powder material synthesizing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of a plasma powder synthesizer of the powder material synthesizing apparatus shown in FIG. 1 .
  • FIG. 3 is a flowchart schematically illustrating a powder material synthesis method according to an embodiment of the present invention.
  • a powder material synthesis apparatus 100 includes a plasma powder synthesizer 110 synthesizing a powder material using a plasma reaction and plasma generation in the plasma powder synthesizer 110.
  • the powder material synthesizing apparatus 100 is described as synthesizing a powder material for a negative electrode material of a secondary battery, but the present invention is not limited thereto.
  • the plasma powder synthesizer 110 synthesizes a powder material using a plasma reaction.
  • 2 shows a schematic configuration of the plasma powder synthesizer 110. Referring to FIG. 2, the plasma powder synthesizer 110 generates a first plasma that generates a plasma for generating a first powder mixture H by synthesizing a first base material D and a second base material E.
  • the module 120 and the first plasma generating module 120 generate a plasma for synthesizing the first powder compound (H) and the first additional material (K) to generate a second powder compound (M)
  • a plasma for synthesizing the second plasma generating module 130, the second powder composition (M) generated in the second plasma generating module 130, and the second additional material (G)
  • the third plasma generating module 140 for generating plasma, the first intermediate passage part 150 positioned between the first plasma generating module 120 and the second plasma generating module 130, and the second plasma generating module
  • the second intermediate passage part 160 located between the module 130 and the third plasma generating module 140, the base material introduction part 171 located upstream of the first plasma generating module 120,
  • a synthetic powder discharge unit 176 located on the downstream side of the third plasma generating module 140 is included.
  • the plasma powder synthesizer 110 sequentially includes a base material introduction part 171, a first plasma generating module 120, a first intermediate passage part 150, and a second plasma generating module 130 along the vertical downward direction. ), the second intermediate passage 160, the third plasma generating module 140, and the synthetic powder discharge unit 176 are sequentially connected in series. Accordingly, the powder naturally falls and moves downward in the plasma powder synthesizer 110 by gravity.
  • Base material introduction part 171, first plasma generating module 120, first intermediate passage part 150, second plasma generating module 130, second intermediate passage part 160, third plasma generating module 140 ), and each of the composite powder discharge units 176 may be detachably coupled with other adjacent components.
  • the first plasma generation module 120 generates plasma for generating a first powder compound H by synthesizing the first base material D and the second base material E.
  • the first base material (D) is silicon (Si) in powder form
  • the second base material (E) is silicon dioxide (SiO 2 ) in powder form
  • the first powder compound (H) is SiO X It is a silicon oxide in powder form expressed as (0 ⁇ X ⁇ 2).
  • the first plasma generating module 120 forms a first plasma reaction space A by plasma.
  • silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E) are synthesized by plasma reaction to form a first powder compound (H).
  • the first plasma generating module 120 forms a first plasma reaction space A by using a discharge generated between the first electrode 121 and the second electrode 122 .
  • the first plasma generating module 120 receives DC or AC power from the first power source 180 and discharges between the two electrodes 121 and 122 .
  • the first plasma generation module 120 may have a configuration disclosed in Registered Utility Model No. 20-0425109.
  • the base material introduction part 171 and the first intermediate passage part 150 are positioned above and below the first plasma generating module 120 in the vertical direction (direction of gravity), respectively.
  • a first reaction space inlet 123 is formed at an upper end of the first plasma reaction space A, and a first reaction space outlet 124 is formed at a lower end of the first plasma reaction space A.
  • the first plasma reaction space A communicates with the inner space of the base material introduction part 171 .
  • silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E) are discharged together with the discharge gas into the first plasma reaction space (A). flowed into In the first plasma reaction space (A), the powder moves while falling down from the first reaction space inlet 123 toward the first reaction space outlet 124 by gravity.
  • the first plasma reaction space A communicates with the inner space of the first intermediate passage 150 through the first reaction space outlet 124 .
  • Silicon oxide (SiO X ) which is the first powder compound (H) generated in the first plasma reaction space (A), is discharged from the first plasma reaction space (A) through the first reaction space discharge port 124, so that the first intermediate It flows into the inner space of the passage part 150.
  • the second plasma generating module 130 synthesizes silicon oxide (SiO X ), which is the first powder compound H generated in the first plasma generating module 120, and the first additional material K to form a second powder compound ( M) to generate plasma for generating.
  • the first additional material (K) is a carbon material and is described as being a carbon nanotube (CNT). It may be all inclusive.
  • the second plasma generating module 130 forms a second plasma reaction space B by plasma. In the second plasma reaction space (B), silicon oxide (SiO X ), which is the first powder compound (H) in powder form, and carbon nanotube (CNT), which is the first additional material (K), are synthesized by plasma reaction to form powder. A second powder composite (M) of is produced.
  • the second powder composite (M) has a structure in which a plurality of carbon nanotubes (CNTs) are bonded over the entire surface of silicon oxide (SiO X ).
  • the second plasma generating module 130 forms a second plasma reaction space B using inductively coupled plasma by a radio frequency power source.
  • the second plasma generating module 130 generates inductively coupled plasma by receiving high frequency power from the second power source 183 .
  • the second plasma generating module 130 may have a structure disclosed in Korean Patent Registration No. 10-2155631.
  • the first intermediate passage part 150 and the second intermediate passage part 160 are positioned above and below the second plasma generating module 130 in the vertical direction (direction of gravity), respectively.
  • a second reaction space inlet 133 is formed at an upper end of the second plasma reaction space B, and a second reaction space outlet 134 is formed at a lower end of the second plasma reaction space B.
  • the second plasma reaction space B communicates with the inner space of the first intermediate passage 150 .
  • silicon oxide (SiO X ) which is the first powder compound (H) in powder form
  • carbon nanotube (CNT) which is the first additional material (K)
  • the second plasma reaction space B communicates with the inner space of the second intermediate passage 160 through the second reaction space outlet 134 .
  • the second powder compound (M) generated in the second plasma reaction space (B) is discharged from the second reaction space (B) through the second reaction space outlet 134 to enter the second intermediate passage (160). enters the space
  • the third plasma generating module 140 is a plasma for generating a third powder composite F by synthesizing the second powder composite M generated in the second plasma generating module 130 and the second additional material G. causes
  • the second additional material (G) is a carbon material, which will be described as graphene.
  • the third plasma generating module 140 forms a third plasma reaction space (C) by plasma.
  • a second powder compound (M) in powder form and graphene as a second additional material (G) are synthesized by a plasma reaction to produce a third powder compound (F) in powder form.
  • the third powder composition (F) has a structure in which graphene is coated on the surface of the second powder composition (M).
  • the third plasma generation module 140 generates plasma using microwaves to form a third plasma reaction space (C).
  • the third plasma generating module 140 generates plasma by receiving microwaves from the microwave generator 188 .
  • the third plasma generation module 140 may have a configuration disclosed in Korean Patent Registration No. 10-1913721.
  • a third reaction space inlet 143 is formed at an upper end of the third plasma reaction space C, and a third reaction space outlet 144 is formed at a lower end of the third plasma reaction space C. Through the third reaction space inlet 143 , the third plasma reaction space C communicates with the inner space of the second intermediate passage 160 .
  • the second powder compound M and graphene as a second additional material are introduced into the third plasma reaction space C together with the discharge gas.
  • the powder moves while falling down from the third reaction space inlet 143 toward the third reaction space outlet 144 by gravity.
  • the third plasma reaction space C communicates with the inner space of the synthetic powder outlet 176 .
  • the third powder compound F generated in the third plasma reaction space C through the third reaction space outlet 144 is discharged from the plasma reaction space C as a final synthesized material to form a composite powder discharge unit 176. enters the inner space.
  • the first intermediate passage 150 is located between the first plasma generating module 120 and the second plasma generating module 130 .
  • the first intermediate passage portion 150 provides a first intermediate passage 151 therein.
  • the first plasma reaction space A is located above the first intermediate passage 151 in the vertical direction and the second plasma reaction space B is located below the first intermediate passage 151 in the vertical direction.
  • the first intermediate passage 151 communicates with the first plasma reaction space A through the first reaction space outlet 124 and communicates with the second plasma reaction space B through the second reaction space inlet 133. do.
  • a first additional material supply port 155 communicating with the first intermediate passage 151 is formed in the first intermediate passage 150 .
  • Carbon nanotubes (CNTs) as the first additional material K are supplied to the first intermediate passage 151 through the first additional material supply port 155 .
  • silicon oxide (SiO X ), which is the first powder compound (H), and carbon nanotube (CNT), which is the first additional material (K), are evenly mixed, and pass through the second reaction space inlet (133).
  • the second plasma is introduced into the reaction space (B). It is preferable that the bottom 157 of the first intermediate passage 151 narrows downward toward the second reaction space inlet 133 so that the powder can easily fall.
  • the second intermediate passage 160 is located between the second plasma generating module 130 and the third plasma generating module 140 .
  • the second intermediate passage portion 160 provides a second intermediate passage 161 therein.
  • the second plasma reaction space B is located above the second intermediate passage 161 in the vertical direction and the third plasma reaction space C is located below the second intermediate passage 161 in the vertical direction.
  • the second intermediate passage 161 communicates with the second plasma reaction space B through the second reaction space outlet 134 and communicates with the third plasma reaction space C through the third reaction space inlet 143. do.
  • a second additional material supply port 165 communicating with the second intermediate passage 161 is formed in the second intermediate passage 160 .
  • Graphene which is the second additional material G, is supplied to the second intermediate passage 161 through the second additional material supply port 165 .
  • the second powder compound (M) and the second additional material (G), graphene are evenly mixed and introduced into the third plasma reaction space (C) through the third reaction space inlet 143. do. It is preferable that the bottom 167 of the second intermediate passage 161 narrows downward toward the third reaction space inlet 143 so that the powder can fall easily.
  • the base material introduction unit 171 is located above the first plasma generating module 120 .
  • the base material introduction part 171 provides a base material introduction space 172 therein.
  • the first plasma reaction space (A) is located below the base material introduction space 172 in the vertical direction.
  • the base material introduction space 172 communicates with the first plasma reaction space A through the first reaction space inlet 123 .
  • a base material supply port 173 communicating with the base material introduction space 176 is formed in the base material introduction part 171 .
  • silicon dioxide (SiO 2 ) in the form of powder as the first base material (D) and silicon dioxide (SiO 2 ) in the form of powder as the second base material (E) is introduced into the base material introduction space (172).
  • Discharge gas may also be supplied to the base material introduction space 172 through the base material supply port 173 .
  • powdered silicon (Si) as the first base material (D) and powdered silicon dioxide (SiO 2 ) as the second base material (E) are evenly mixed, and the first reaction space inlet ( 123) into the first plasma reaction space (A). It is preferable that the bottom 174 of the base material introduction space 172 narrows downward toward the first reaction space inlet 123 so that the powder can fall easily.
  • the synthetic powder discharge unit 176 is located below the third plasma generating module 140 .
  • the synthetic powder discharge unit 176 provides a synthetic powder discharge space 177 therein.
  • a third plasma reaction space (C) is located above the synthetic powder discharge space 177 in a vertical direction.
  • the synthetic powder discharge space 177 communicates with the third plasma reaction space C through the third reaction space discharge port 144 .
  • a compound powder outlet 178 communicating with the compound powder discharge space 177 is formed in the compound powder discharge unit 176 .
  • the third powder compound F is discharged to the outside of the plasma powder synthesizer 110 through the synthesized powder outlet 178 .
  • the synthetic powder discharge port 178 is formed at the bottom 179 of the compound powder discharge space 177 .
  • the bottom 179 of the synthetic powder discharge space 177 is preferably narrower downward toward the synthetic powder discharge port 178 so that the third powder compound F can be easily dropped.
  • the first, second, and third plasma reaction spaces A, B, and C, the first and second intermediate passages 150 and 160, the base material introduction unit 171 and the synthesized powder discharge unit 176 communicate with each other. and has a tubular structure integrally formed.
  • the first power source 180 supplies DC or AC power to the two electrodes 121 and 122 of the first plasma generating module 120 of the plasma powder synthesizer 110 to form the first plasma reaction space A. .
  • the second power supply 183 supplies high frequency power to the second plasma generating module 130 of the plasma powder synthesizer 110 to form the second plasma reaction space B by inductively coupled plasma.
  • the microwave generator 188 generates microwaves so that the third plasma generation module 140 can form the third plasma reaction space C using microwaves.
  • the microwave generated by the microwave generator 188 is transmitted to the third plasma generating module 140 through a waveguide.
  • the discharge gas supplier 190 supplies discharge gas required for plasma discharge to the plasma powder synthesizer 110 .
  • the discharge gas supplied through the discharge gas supplier 190 will be described as flowing into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 .
  • the first base material supplier 192 supplies silicon (Si) in powder form as the first base material D to the plasma powder synthesizer 110 .
  • the first base material D supplied through the first base material supplier 192 is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 .
  • the first base material supplier 192 supplies silicon (Si) as the first base material (D), but it may vary depending on the target synthetic powder material, which is also within the scope of the present invention. it belongs
  • the second base material supplier 194 supplies silicon dioxide (SiO 2 ) in powder form, which is the second base material, to the plasma powder synthesizer 110 .
  • the second base material supplied through the second base material supplier 194 is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 .
  • the second base material supplier 194 is described as supplying silicon dioxide (SiO 2 ) as the second base material (E), but it may vary depending on the target synthetic powder material, which is also of the present invention. that falls within the scope
  • the first additional material supplier 196 supplies powdered carbon nanotubes (CNT) as the first additional material K to the plasma powder synthesizer 110 .
  • the first additional material K supplied through the first additional material supplier 196 is introduced into the first intermediate passage 151 through the first additional material supply port 155 of the plasma powder synthesizer 110 .
  • the first additional material supplier 196 supplies carbon nanotubes (CNT) as the first additional material K, but it may vary depending on the target composite powder material, which is also of the present invention. that falls within the scope
  • the second additional material supplier 198 supplies graphene in powder form, which is the second additional material G, to the plasma powder synthesizer 110 .
  • Graphene which is the second additional material G supplied through the second additional material supplier 198, flows into the second intermediate passage 161 through the second additional material supply port 165 of the plasma powder synthesizer 110. do.
  • the second additional material supplier 198 is described as supplying graphene as the second additional material G, but it may vary depending on the target synthetic powder material, and this also falls within the scope of the present invention. .
  • FIG. 3 is a flowchart schematically illustrating a powder material synthesis method according to an embodiment of the present invention.
  • a powder material synthesizing method according to an embodiment of the present invention uses the powder material synthesizing apparatus 100 described with reference to FIGS. 1 and 2, and referring to FIG. 3 together with FIGS. 1 and 2, a plurality of powder forms.
  • the base material input step (S10) in which the heterogeneous base materials (D, E) of is input into the plasma powder synthesizer 110, and the heterogeneous base materials (D, E) are synthesized by plasma reaction in the plasma powder synthesizer 110
  • the base material input step (S10) a plurality of heterogeneous base materials (D, E) in powder form are input into the plasma powder synthesizer 110.
  • the plurality of heterogeneous base materials (D, E) are silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E), which is the third base material (D).
  • the powder compound (F) is a powder material for a negative electrode material of a secondary battery
  • the present invention is not limited thereto, and according to the structure of the third powder compound (F), a plurality of heterogeneous basic materials introduced in the basic material input step (S10) The type of materials may vary.
  • the first base material (D) is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 by the first base material supplier 192.
  • the second base material E is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 by the second base material supplier 194.
  • the first base material (D) and the second base material (E) introduced into the base material introduction space 172 through the base material inputting step (S10) fall naturally by gravity and flow into the first plasma reaction space (A). do. While the basic material inputting step (S10) is performed, the discharge gas may also flow into the basic material introducing space 172.
  • the heterogeneous base materials D and E are synthesized by plasma reaction in the plasma powder synthesizer 110 to generate a first powder compound H in powder form.
  • silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E) are subjected to a plasma reaction in the first plasma reaction space (A). It is synthesized and performed by The first powder compound (H) generated in the first plasma synthesis step (S20) naturally falls by gravity from the first plasma reaction space (A) and flows into the first intermediate passage (151).
  • the first additional material K in the form of powder is input into the plasma powder synthesizer 110.
  • the first additional material (K) is carbon nanotube (CNT) or carbon nanofiber (CNF), which is the case where the third powder compound (F) is a powder material for a negative electrode material of a secondary battery.
  • the present invention is not limited thereto, and the type of the first additional material (K) introduced in the first additional material input step (S30) may vary according to the structure of the third powder composite (F).
  • the first additional material (K) is supplied by the first additional material supplier 196 through the first additional material supply port 155 of the plasma powder synthesizer 110 through the first intermediate passage It is performed by flowing into (151).
  • the first additional material (K) introduced into the first intermediate passage (151) through the first additional material inputting step (S30) naturally falls by gravity together with the first powder compound (H) to form a second plasma reaction space (B). ) is introduced into
  • the first powder compound (H) and the first additional material (K) are synthesized by plasma reaction in the plasma powder synthesizer 110 to produce a second powder compound (M) in powder form. do.
  • the first powder composite (H) and the first additional material (K), such as carbon nanotubes (CNTs) or carbon nanofibers (CNFs) are combined into a plasma in the second plasma reaction space (B). It is synthesized and carried out by reaction.
  • the second powder compound M generated in the second plasma synthesis step (S40) naturally falls from the second plasma reaction space (B) by gravity and flows into the second intermediate passage 161.
  • the second additional material (G) in the form of powder is input into the plasma powder synthesizer 110.
  • the second additional material (G) is graphene, which is the case where the third powder compound (F) is a powder material for a negative electrode material of a secondary battery, and the present invention is not limited thereto, and the third powder compound (F)
  • the type of the second additional material (G) introduced in the second additional material inputting step (S50) may vary according to the structure of the composite (F).
  • the second additional material (G) is supplied by the second additional material supplier 198 through the second additional material supply port 165 of the plasma powder synthesizer 110 through the second intermediate passage It is carried out by flowing into (161).
  • the second additional material (G) introduced into the second intermediate passage 161 through the second additional material inputting step (S50) naturally falls by gravity together with the second powder compound (M) to the third plasma reaction space (C ) is introduced into
  • the second powder compound (M) and the second additional material (G) are synthesized by plasma reaction in the plasma powder synthesizer 110, and the third powder compound (F) in powder form is synthesized. do.
  • the third plasma synthesis step (S60) is performed by synthesizing the second powder compound (M) and graphene as the second additional material (G) by plasma reaction in the third plasma reaction space (C).
  • the third powder compound F generated in the third plasma synthesis step S60 naturally falls from the third plasma reaction space C by gravity and flows into the synthesized powder discharge space 177 .
  • the first base material (D), the second base material (E), the first additional material (K), and the second additional material (G) introduced into the plasma powder synthesizer 110 are described as being in powder form.
  • the present invention is not limited thereto, and liquid or gas phase is also possible, which also falls within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a powder material synthesizing apparatus comprising: a first plasma generating module for forming a first plasma reaction space; a second plasma generating module for forming a second plasma reaction space located downstream of the first plasma reaction space; and a plasma powder synthesizer having a third plasma generating module for forming a third plasma reaction space located downstream of the second plasma reaction space. In the first plasma reaction space, a plurality of heterogeneous basic materials are synthesized by plasma to produce a first powder synthetic product in powder form. In the second plasma reaction space, the first powder synthetic product and a first additional material are synthesized by plasma to produce a second powder synthetic product in powder form. In the third plasma reaction space, the second powder synthetic product and a second additional material are synthesized by plasma to produce a third powder synthetic product in powder form.

Description

직렬 다단 플라즈마를 이용한 분말 소재 합성 장치 및 방법Apparatus and method for synthesizing powder material using serial multi-stage plasma
본 발명은 분말 소재 합성 기술에 관한 것으로서, 더욱 상세하게는 이차전지의 음극재용 분말 소재를 합성하기에 적합한 장치 및 방법에 관한 것이다.The present invention relates to a powder material synthesis technology, and more particularly, to an apparatus and method suitable for synthesizing a powder material for a negative electrode material of a secondary battery.
실리콘은 리튬과 합금반응하여 Li12Si5 상까지 형성되며 이론 용량은 4008mAh/g에 이른다. 이는 흑연(graphite)의 10배 이상의 고용량으로서, 흑연을 주로 음극재로 하는 현존하는 리튬이차전지의 한계를 극복할 수 있는 신소재로 주목받고 있다. 그러나, 실리콘은 충방전 과정에서 300%가 넘는 부피 변화로 인해 전극이 퇴화되어, 10 사이클 이내에서 대부분의 용량을 잃게 된다. 이는 충방전 과정에서 팽창과 수축이 지속적으로 반복되면서 전기적인 접촉을 잃게 되고, 그에 따라 전극 저항이 급격하게 증가하기 때문이다. 이러한 문제를 해결하기 위하여, 리튬과 반응하지 않으면서 부피변화를 완충해 줄 수 있는 비활성 물질을 첨가한 활성/비활성 화합물 또는 복합재를 사용하는 방안이 연구되고 있다.Silicon alloys with lithium to form a Li 12 Si 5 phase, and the theoretical capacity reaches 4008 mAh/g. This has a high capacity of more than 10 times that of graphite, and is attracting attention as a new material that can overcome the limitations of existing lithium secondary batteries mainly using graphite as an anode material. However, the silicon electrode degrades due to a volume change of more than 300% during charging and discharging, and most of the capacity is lost within 10 cycles. This is because electrical contact is lost as expansion and contraction are continuously repeated during the charging and discharging process, and thus electrode resistance rapidly increases. In order to solve this problem, a method of using an active/inactive compound or a composite material in which an inactive material capable of buffering a volume change without reacting with lithium is added is being studied.
본 발명의 배경이 되는 기술로서 대한민국 등록특허 제10-2012599호에는 STC(SiCl4)와 에틸렌글리콜의 발열 반응을 습식 처리하고 소성, 이송 등 일련의 과정을 자동화하여 효과적으로 나노 분말로서의 이차전지 음극재용 SiOX 분말을 제조하는 장치 및 방법이 기재되어 있다.As a background technology of the present invention, Korean Patent Registration No. 10-2012599 discloses a wet treatment of the exothermic reaction between STC (SiCl 4 ) and ethylene glycol, automating a series of processes such as sintering and transfer, effectively using nano-powder for secondary battery anode materials. An apparatus and method for producing SiOx powder is described.
본 발명의 목적은 플라즈마를 이용한 분말 소재 합성 장치 및 방법을 제공한는 것이다.An object of the present invention is to provide a powder material synthesis apparatus and method using plasma.
본 발명의 추가적인 목적은 플라즈마를 이용한 이차전지의 음극재용 분말 소재 합성 장치 및 방법을 제공하는 것이다.A further object of the present invention is to provide an apparatus and method for synthesizing a powder material for a negative electrode material of a secondary battery using plasma.
상술한 본 발명의 목적을 달성하기 위하여 본 발명의 일 측면에 따르면, 제1 플라즈마 반응 공간을 형성하는 제1 플라즈마 발생 모듈과, 상기 제1 플라즈마 반응 공간의 후류에 위치하는 제2 플라즈마 반응 공간을 형성하는 제2 플라즈마 발생 모듈과, 상기 제2 플라즈마 반응 공간의 후류에 위치하는 제3 플라즈마 반응 공간을 형성하는 제3 플라즈마 발생 모듈을 구비하는 플라즈마 분말 합성기를 포함하며, 상기 제1 플라즈마 반응 공간에서 복수의 이종 기본 소재들이 플라즈마에 의해 합성되어서 분말 형태의 제1 분말 합성물이 생성되며, 상기 제2 플라즈마 반응 공간에서 상기 제1 분말 합성물과 제1 추가 소재가 플라즈마에 의해 합성되어서 분말 형태의 제2 분말 합성물이 생성되며, 상기 제3 플라즈마 반응 공간에서 상기 제2 분말 합성물과 제2 추가 소재가 플라즈마에 의해 합성되어서 분말 형태의 제3 분말 합성물이 생성되는, 분말 소재 합성 장치가 제공된다.According to one aspect of the present invention in order to achieve the above object of the present invention, a first plasma generating module for forming a first plasma reaction space, and a second plasma reaction space located downstream of the first plasma reaction space A plasma powder synthesizer including a second plasma generating module to form a third plasma generating module and a third plasma generating module to form a third plasma reaction space located downstream of the second plasma reaction space, A plurality of heterogeneous basic materials are synthesized by plasma to generate a first powder compound in powder form, and in the second plasma reaction space, the first powder compound and the first additional material are synthesized by plasma to produce a second powder compound in powder form. A powder material synthesizing apparatus is provided in which a powder compound is generated, and a third powder compound in a powder form is generated by synthesizing the second powder compound and a second additional material by plasma in the third plasma reaction space.
상술한 본 발명의 목적을 달성하기 위하여 본 발명의 다른 측면에 따르면, 복수의 이종 기본 소재들이 제1 플라즈마 반응 공간에서 합성되어서 분말 형태의 제1 분말 합성물이 생성되는 제1 플라즈마 합성 단계; 상기 제1 분말 합성물과 제1 추가 소재가 제2 플라즈마 반응 공간에서 합성되어서 분말 형태의 제2 분말 합성물이 생성되는 제2 플라즈마 합성 단계; 및 상기 제2 분말 합성물과 제2 추가 소재가 제3 플라즈마 반응 공간에서 합성되어서 분말 형태의 제3 분말 합성물이 생성되는 제3 플라즈마 합성 단계를 포함하는, 분말 소재 합성 방법이 제공된다.According to another aspect of the present invention in order to achieve the above object of the present invention, a first plasma synthesis step in which a plurality of heterogeneous base materials are synthesized in a first plasma reaction space to generate a first powder compound in powder form; a second plasma synthesis step of synthesizing the first powder compound and the first additional material in a second plasma reaction space to generate a second powder compound in powder form; and a third plasma synthesis step of synthesizing the second powder compound and the second additional material in a third plasma reaction space to generate a third powder compound in powder form.
본 발명에 의하면 앞서서 기재한 본 발명의 목적을 모두 달성할 수 있다. 구체적으로, 제1 플라즈마 반응 공간에서 복수의 이종 기본 소재들이 플라즈마에 의해 합성되어서 분말 형태의 제1 분말 합성물이 생성되고, 제2 플라즈마 반응 공간에서 제1 분말 합성물과 제1 추가 소재가 플라즈마에 의해 합성되어서 분말 형태의 제2 분말 합성물이 생성되며, 제3 플라즈마 반응 공간에서 제2 분말 합성물과 제2 추가 소재가 합성되어서 분말 형태의 제3 분말 합성물이 생성되므로, 효율적으로 분말 소재의 합성이 이루어질 수 있다. 특히, 제1 플라즈마 반응 공간에서 규소(Si)와 이산화규소(SiO2)가 합성되어서 SiOX(0<X<2)로 표현되는 실리콘산화물이 제1 분말 합성물로서 생성되고, 제2 플라즈마 반응 공간에서 제1 분말 합성물인 SiOX(0<X<2)가 탄소재인 탄소나노튜브 또는 탄소나노섬유와 합성되어서 제2 분말 합성물이 생성되며, 제3 플라즈마 반응 공간에서 제2 분말 합성물과 탄소재인 그래핀이 합성되어서 최종적으로 이차전지의 음극재로 적합한 분말 소재가 효율적으로 합성될 수 있다.According to the present invention, all of the objects of the present invention described above can be achieved. Specifically, a plurality of heterogeneous basic materials are synthesized by plasma in the first plasma reaction space to generate a first powder compound in powder form, and in the second plasma reaction space, the first powder compound and the first additional material are synthesized by plasma. Synthesized to produce a second powder compound in powder form, and synthesizing the second powder compound and the second additional material in the third plasma reaction space to create a third powder compound in powder form, so that the powder material can be efficiently synthesized. can In particular, silicon (Si) and silicon dioxide (SiO 2 ) are synthesized in the first plasma reaction space to generate silicon oxide represented by SiO X (0<X<2) as a first powder compound, and a second plasma reaction space In the first powder compound, SiO X (0<X<2) is synthesized with carbon nanotubes or carbon nanofibers, which are carbon materials, to produce a second powder compound, and in the third plasma reaction space, the second powder compound and the carbon material are synthesized. After the pin is synthesized, finally, a powder material suitable for an anode material of a secondary battery can be efficiently synthesized.
도 1은 본 발명의 일 실시예에 따른 분말 소재 합성 장치의 개략적인 구성을 도시한 블록도이다.1 is a block diagram showing a schematic configuration of a powder material synthesizing apparatus according to an embodiment of the present invention.
도 2는 도 1에 도시된 분말 소재 합성 장치의 플라즈마 분말 합성기의 개략적인 구성을 도시한 도면이다.FIG. 2 is a diagram showing a schematic configuration of a plasma powder synthesizer of the powder material synthesizing apparatus shown in FIG. 1 .
도 3은 본 발명의 일 실시예에 따른 분말 소재 합성 방법을 개략적으로 설명하는 순서도이다.3 is a flowchart schematically illustrating a powder material synthesis method according to an embodiment of the present invention.
이하, 도면을 참조하여 본 발명에 따른 실시예의 구성 및 작용을 상세하게 설명한다.Hereinafter, the configuration and operation of an embodiment according to the present invention will be described in detail with reference to the drawings.
도 1에는 본 발명의 일 실시예에 따른 분말 소재 합성 장치의 개략적인 구성이 블록도로서 도시되어 있다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 분말 소재 합성 장치(100)는 플라즈마 반응을 이용하여 분말 소재를 합성시키는 플라즈마 분말 합성기(110)와, 플라즈마 분말 합성기(110)에 플라즈마 발생을 위한 제1 전력을 공급하는 제1 전원(180)과, 플라즈마 분말 합성기(110)에 플라즈마 발생을 위한 제2 전력을 공급하는 제2 전원(183)과, 에 플라즈마 발생을 위해 마이크로웨이브(microwave)를 발생시켜서 플라즈마 분말 합성기(110)로 공급하는 마이크로웨이브 발생기(188)와, 플라즈마 분말 합성기(110)에 방전 기체를 공급하는 방전기체 공급기(190)와, 플라즈마 분말 합성기(110)에 합성 대상인 제1 기본 소재를 공급하는 제1 기본 소재 공급기(192)와, 플라즈마 분말 합성기(110)에 합성 대상인 제2 기본 소재를 공급하는 제2 기본 소재 공급기(194)와, 플라즈마 분말 합성기(110)에 합성 대상인 제1 추가 소재를 공급하는 제1 추가 소재 공급기(196)와, 플라즈마 분말 합성기(110)에 합성 대상인 제2 추가 소재를 공급하는 제2 추가 소재 공급기(198)를 포함한다. 본 실시예에서 분말 소재 합성 장치(100)는 이차전지의 음극재용 분말 소재를 합성하는 것으로 설명하는데, 본 발명은 이에 제한되지 않는다.1 shows a schematic configuration of a powder material synthesizing apparatus according to an embodiment of the present invention as a block diagram. Referring to FIG. 1, a powder material synthesis apparatus 100 according to an embodiment of the present invention includes a plasma powder synthesizer 110 synthesizing a powder material using a plasma reaction and plasma generation in the plasma powder synthesizer 110. A first power source 180 for supplying first power for plasma generation, a second power source 183 for supplying second power for plasma generation to the plasma powder synthesizer 110, and a microwave for plasma generation in A microwave generator 188 for generating and supplying a gas to the plasma powder synthesizer 110, a discharge gas supplier 190 for supplying discharge gas to the plasma powder synthesizer 110, and a first synthesized object to the plasma powder synthesizer 110. A first base material supplier 192 for supplying 1 base material, a second base material supplier 194 for supplying a second base material to be synthesized to the plasma powder synthesizer 110, and synthesizing to the plasma powder synthesizer 110 It includes a first additional material supplier 196 supplying a first additional material to be synthesized and a second additional material supplier 198 supplying a second additional material to be synthesized to the plasma powder synthesizer 110 . In this embodiment, the powder material synthesizing apparatus 100 is described as synthesizing a powder material for a negative electrode material of a secondary battery, but the present invention is not limited thereto.
플라즈마 분말 합성기(110)는 플라즈마 반응을 이용하여 분말 소재를 합성한다. 도 2에는 플라즈마 분말 합성기(110)의 개략적인 구성이 도시되어 있다. 도 2를 참조하면, 플라즈마 분말 합성기(110)는 제1 기본 소재(D)와 제2 기본 소재(E)를 합성시켜서 제1 분말 혼합물(H)을 생성하기 위한 플라즈마를 발생시키는 제1 플라즈마 발생 모듈(120)과, 제1 플라즈마 발생 모듈(120)에서 생성된 제1 분말 합성물(H)과 제1 추가 소재(K)를 합성시켜서 제2 분말 합성물(M)을 생성하기 위한 플라즈마를 발생시키는 제2 플라즈마 발생 모듈(130)과, 제2 플라즈마 발생 모듈(130)에서 생성된 제2 분말 합성물(M)과 제2 추가 소재(G)를 합성시켜서 제3 분말 합성물(F)을 생성하기 위한 플라즈마를 발생시키는 제3 플라즈마 발생 모듈(140)과, 제1 플라즈마 발생 모듈(120)과 제2 플라즈마 발생 모듈(130)의 사이에 위치하는 제1 중간 통로부(150)와, 제2 플라즈마 발생 모듈(130)과 제3 플라즈마 발생 모듈(140)의 사이에 위치하는 제2 중간 통로부(160)과, 제1 플라즈마 발생 모듈(120)의 상류 측에 위치하는 기본 소재 도입부(171)와, 제3 플라즈마 발생 모듈(140)의 하류 측에 위치하는 합성 분말 배출부(176)를 포함한다. 본 실시예에서 플라즈마 분말 합성기(110)는, 연직 하방을 따라서 차례대로 기본 소재 도입부(171), 제1 플라즈마 발생 모듈(120), 제1 중간 통로부(150), 제2 플라즈마 발생 모듈(130), 제2 중간 통로부(160), 제3 플라즈마 발생 모듈(140), 합성 분말 배출부(176)가 차례대로 직렬 형태로 연결되어서 배치되도록 구성된다. 그에 따라, 플라즈마 분말 합성기(110) 내에서 분말이 중력에 의해 아래로 자연적으로 낙하하여 이동한다. 기본 소재 도입부(171), 제1 플라즈마 발생 모듈(120), 제1 중간 통로부(150), 제2 플라즈마 발생 모듈(130), 제2 중간 통로부(160), 제3 플라즈마 발생 모듈(140), 합성 분말 배출부(176) 각각은 이웃한 다른 구성들과 분리 가능하게 결합될 수 있다.The plasma powder synthesizer 110 synthesizes a powder material using a plasma reaction. 2 shows a schematic configuration of the plasma powder synthesizer 110. Referring to FIG. 2, the plasma powder synthesizer 110 generates a first plasma that generates a plasma for generating a first powder mixture H by synthesizing a first base material D and a second base material E. The module 120 and the first plasma generating module 120 generate a plasma for synthesizing the first powder compound (H) and the first additional material (K) to generate a second powder compound (M) For generating a third powder composition (F) by synthesizing the second plasma generating module 130, the second powder composition (M) generated in the second plasma generating module 130, and the second additional material (G) The third plasma generating module 140 for generating plasma, the first intermediate passage part 150 positioned between the first plasma generating module 120 and the second plasma generating module 130, and the second plasma generating module The second intermediate passage part 160 located between the module 130 and the third plasma generating module 140, the base material introduction part 171 located upstream of the first plasma generating module 120, A synthetic powder discharge unit 176 located on the downstream side of the third plasma generating module 140 is included. In this embodiment, the plasma powder synthesizer 110 sequentially includes a base material introduction part 171, a first plasma generating module 120, a first intermediate passage part 150, and a second plasma generating module 130 along the vertical downward direction. ), the second intermediate passage 160, the third plasma generating module 140, and the synthetic powder discharge unit 176 are sequentially connected in series. Accordingly, the powder naturally falls and moves downward in the plasma powder synthesizer 110 by gravity. Base material introduction part 171, first plasma generating module 120, first intermediate passage part 150, second plasma generating module 130, second intermediate passage part 160, third plasma generating module 140 ), and each of the composite powder discharge units 176 may be detachably coupled with other adjacent components.
제1 플라즈마 발생 모듈(120)은 제1 기본 소재(D)와 제2 기본 소재(E)를 합성시켜서 제1 분말 합성물(H)을 생성하기 위한 플라즈마를 발생시킨다. 본 실시예에서 제1 기본 소재(D)는 분말 형태의 규소(Si)이고, 제2 기본 소재(E)는 분말 형태의 이산화규소(SiO2)이며, 제1 분말 합성물(H)은 SiOX(0<X<2)로 표현되는 분말 형태의 실리콘산화물이다. 제1 플라즈마 발생 모듈(120)은 플라즈마에 의한 제1 플라즈마 반응 공간(A)을 형성한다. 제1 플라즈마 반응 공간(A)에서 제1 기본 소재(D)인 규소(Si)와 제2 기본 소재(E)인 이산화규소(SiO2)가 플라즈마 반응에 의해 합성되어서 제1 분말 합성물(H)인 실리콘산화물(SiOX)이 생성된다. 제1 플라즈마 발생 모듈(120)은 제1 전극(121)과 제2 전극(122) 사이에 발생하는 방전을 이용하여 제1 플라즈마 반응 공간(A)을 형성한다. 제1 플라즈마 발생 모듈(120)은 제1 전원(180)으로부터 직류 또는 교류 전력을 공급받아서 두 전극(121, 122)들 사이를 방전시킨다. 제1 플라즈마 발생 모듈(120)은 등록실용신안 제20-0425109호에 개시된 구성의 것일 수 있다. 제1 플라즈마 발생 모듈(120)의 연직방향(중력방향) 위와 아래에는 기본 소재 도입부(171)와 제1 중간 통로부(150)가 각각 위치한다. 제1 플라즈마 반응 공간(A)의 상단에는 제1 반응 공간 유입구(123)가 형성되고 제1 플라즈마 반응 공간(A)의 하단에는 제1 반응 공간 배출구(124)가 형성된다. 제1 반응 공간 유입구(123)를 통해 제1 플라즈마 반응 공간(A)은 기본 소재 도입부(171)의 내부 공간과 연통된다. 제1 반응 공간 유입구(123)를 통해서 제1 기본 소재(D)인 규소(Si)와 제2 기본 소재(E)인 이산화규소(SiO2)가 방전 기체와 함께 제1 플라즈마 반응 공간(A)으로 유입된다. 제1 플라즈마 반응 공간(A)에서 분말은 제1 반응 공간 유입구(123)로부터 제1 반응 공간 배출구(124) 쪽으로 중력에 의해 아래로 낙하하면서 이동한다. 제1 반응 공간 배출구(124)을 통해 제1 플라즈마 반응 공간(A)은 제1 중간 통로부(150)의 내부 공간과 연통된다. 제1 반응 공간 배출구(124)을 통해서 제1 플라즈마 반응 공간(A)에서 생성된 제1 분말 합성물(H)인 실리콘산화물(SiOX)이 제1 플라즈마 반응 공간(A)으로부터 배출되어서 제1 중간 통로부(150)의 내부 공간으로 유입된다.The first plasma generation module 120 generates plasma for generating a first powder compound H by synthesizing the first base material D and the second base material E. In this embodiment, the first base material (D) is silicon (Si) in powder form, the second base material (E) is silicon dioxide (SiO 2 ) in powder form, and the first powder compound (H) is SiO X It is a silicon oxide in powder form expressed as (0<X<2). The first plasma generating module 120 forms a first plasma reaction space A by plasma. In the first plasma reaction space (A), silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E) are synthesized by plasma reaction to form a first powder compound (H). Phosphorus silicon oxide (SiO X ) is produced. The first plasma generating module 120 forms a first plasma reaction space A by using a discharge generated between the first electrode 121 and the second electrode 122 . The first plasma generating module 120 receives DC or AC power from the first power source 180 and discharges between the two electrodes 121 and 122 . The first plasma generation module 120 may have a configuration disclosed in Registered Utility Model No. 20-0425109. The base material introduction part 171 and the first intermediate passage part 150 are positioned above and below the first plasma generating module 120 in the vertical direction (direction of gravity), respectively. A first reaction space inlet 123 is formed at an upper end of the first plasma reaction space A, and a first reaction space outlet 124 is formed at a lower end of the first plasma reaction space A. Through the first reaction space inlet 123 , the first plasma reaction space A communicates with the inner space of the base material introduction part 171 . Through the first reaction space inlet 123, silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E) are discharged together with the discharge gas into the first plasma reaction space (A). flowed into In the first plasma reaction space (A), the powder moves while falling down from the first reaction space inlet 123 toward the first reaction space outlet 124 by gravity. The first plasma reaction space A communicates with the inner space of the first intermediate passage 150 through the first reaction space outlet 124 . Silicon oxide (SiO X ), which is the first powder compound (H) generated in the first plasma reaction space (A), is discharged from the first plasma reaction space (A) through the first reaction space discharge port 124, so that the first intermediate It flows into the inner space of the passage part 150.
제2 플라즈마 발생 모듈(130)은 제1 플라즈마 발생 모듈(120)에서 생성된 제1 분말 합성물(H)인 실리콘산화물(SiOX)과 제1 추가 소재(K)를 합성시켜서 제2 분말 합성물(M)을 생성하기 위한 플라즈마를 발생시킨다. 본 실시예에서 제1 추가 소재(K)는 탄소재로서, 탄소나노튜브(CNT)인 것으로 설명하는데, 이와는 달리 탄소나노섬유(CNF) 또는 탄소나노튜브(CNT)와 탄소나노섬유(CNF)를 모두 포함하는 것일 수 있다. 제2 플라즈마 발생 모듈(130)은 플라즈마에 의한 제2 플라즈마 반응 공간(B)을 형성한다. 제2 플라즈마 반응 공간(B)에서 분말 형태의 제1 분말 합성물(H)인 실리콘산화물(SiOX)과 제1 추가 소재(K)인 탄소나노튜브(CNT)가 플라즈마 반응에 의해 합성되어서 분말 형태의 제2 분말 합성물(M)이 생성된다. 제2 분말 합성물(M)은 실리콘산화물(SiOX)의 표면 전체에 걸쳐서 복수의 탄소나노튜브(CNT)들이 결합된 구조이다. 제2 플라즈마 발생 모듈(130)은 고주파(radio frequency) 전원에 의한 유도결합 플라즈마(Inductively Coupled Plasma)를 이용하여 제2 플라즈마 반응 공간(B)을 형성한다. 제2 플라즈마 발생 모듈(130)은 제2 전원(183)으로부터 고주파 전력을 공급받아서 유도결합 플라즈마를 발생시킨다. 제2 플라즈마 발생 모듈(130)은 등록특허 제10-2155631호에 개시된 구성의 것일 수 있다. 제2 플라즈마 발생 모듈(130)의 연직방향(중력방향) 위와 아래에는 제1 중간 통로부(150)와 제2 중간 통로부(160)가 각각 위치한다. 제2 플라즈마 반응 공간(B)의 상단에는 제2 반응 공간 유입구(133)가 형성되고 제2 플라즈마 반응 공간(B)의 하단에는 제2 반응 공간 배출구(134)가 형성된다. 제2 반응 공간 유입구(133)를 통해 제2 플라즈마 반응 공간(B)은 제1 중간 통로부(150)의 내부 공간과 연통된다. 제2 반응 공간 유입구(133)를 통해서 분말 형태의 제1 분말 합성물(H)인 실리콘산화물(SiOX)과 제1 추가 소재(K)인 탄소나노튜브(CNT)가 방전 기체와 함께 제2 플라즈마 반응 공간(B)으로 유입된다. 제2 플라즈마 반응 공간(B)에서 분말은 제2 반응 공간 유입구(133)로부터 제2 반응 공간 배출구(134) 쪽으로 중력에 의해 아래로 낙하하면서 이동한다. 제2 반응 공간 배출구(134)을 통해 제2 플라즈마 반응 공간(B)은 제2 중간 통로부(160)의 내부 공간과 연통된다. 제2 반응 공간 배출구(134)을 통해서 제2 플라즈마 반응 공간(B)에서 생성된 제2 분말 합성물(M)이 제2 플라즈마 반응 공간(B)으로부터 배출되어서 제2 중간 통로부(160)의 내부 공간으로 유입된다.The second plasma generating module 130 synthesizes silicon oxide (SiO X ), which is the first powder compound H generated in the first plasma generating module 120, and the first additional material K to form a second powder compound ( M) to generate plasma for generating. In this embodiment, the first additional material (K) is a carbon material and is described as being a carbon nanotube (CNT). It may be all inclusive. The second plasma generating module 130 forms a second plasma reaction space B by plasma. In the second plasma reaction space (B), silicon oxide (SiO X ), which is the first powder compound (H) in powder form, and carbon nanotube (CNT), which is the first additional material (K), are synthesized by plasma reaction to form powder. A second powder composite (M) of is produced. The second powder composite (M) has a structure in which a plurality of carbon nanotubes (CNTs) are bonded over the entire surface of silicon oxide (SiO X ). The second plasma generating module 130 forms a second plasma reaction space B using inductively coupled plasma by a radio frequency power source. The second plasma generating module 130 generates inductively coupled plasma by receiving high frequency power from the second power source 183 . The second plasma generating module 130 may have a structure disclosed in Korean Patent Registration No. 10-2155631. The first intermediate passage part 150 and the second intermediate passage part 160 are positioned above and below the second plasma generating module 130 in the vertical direction (direction of gravity), respectively. A second reaction space inlet 133 is formed at an upper end of the second plasma reaction space B, and a second reaction space outlet 134 is formed at a lower end of the second plasma reaction space B. Through the second reaction space inlet 133 , the second plasma reaction space B communicates with the inner space of the first intermediate passage 150 . Through the second reaction space inlet 133, silicon oxide (SiO X ), which is the first powder compound (H) in powder form, and carbon nanotube (CNT), which is the first additional material (K), are discharged together with the second plasma. It is introduced into the reaction space (B). In the second plasma reaction space (B), the powder moves while falling downward from the second reaction space inlet 133 toward the second reaction space outlet 134 by gravity. The second plasma reaction space B communicates with the inner space of the second intermediate passage 160 through the second reaction space outlet 134 . The second powder compound (M) generated in the second plasma reaction space (B) is discharged from the second reaction space (B) through the second reaction space outlet 134 to enter the second intermediate passage (160). enters the space
제3 플라즈마 발생 모듈(140)은 제2 플라즈마 발생 모듈(130)에서 생성된 제2 분말 합성물(M)과 제2 추가 소재(G)를 합성시켜서 제3 분말 합성물(F)를 생성하기 위한 플라즈마를 발생시킨다. 본 실시예에서 제2 추가 소재(G)는 탄소재로서, 그래핀(Graphene)인 것으로 설명한다. 제3 플라즈마 발생 모듈(140)은 플라즈마에 의한 제3 플라즈마 반응 공간(C)을 형성한다. 제3 플라즈마 반응 공간(C)에서 분말 형태의 제2 분말 합성물(M)과 제2 추가 소재(G)인 그래핀이 플라즈마 반응에 의해 합성되어서 분말 형태의 제3 분말 합성물(F)이 생성된다. 제3 분말 합성물(F)은 제2 분말 합성물(M)의 표면에 그래핀이 코팅된 구조이다. 제3 플라즈마 발생 모듈(140)은 마이크로웨이브(microwave)를 이용하여 플라즈마를 발생시켜서 제3 플라즈마 반응 공간(C)을 형성한다. 제3 플라즈마 발생 모듈(140)은 마이크로웨이브 발생기(188)로부터 마이크로웨이브를 공급받아서 플라즈마를 발생시킨다. 제3 플라즈마 발생 모듈(140)은 등록특허 제10-1913721호에 개시된 구성의 것일 수 있다. 제3 플라즈마 발생 모듈(140)의 연직방향(중력방향) 위와 아래에는 제2 중간 통로부(160)와 합성 분말 배출부(176)가 각각 위치한다. 제3 플라즈마 반응 공간(C)의 상단에는 제3 반응 공간 유입구(143)가 형성되고 제3 플라즈마 반응 공간(C)의 하단에는 제3 반응 공간 배출구(144)가 형성된다. 제3 반응 공간 유입구(143)를 통해 제3 플라즈마 반응 공간(C)은 제2 중간 통로부(160)의 내부 공간과 연통된다. 제3 반응 공간 유입구(143)를 통해서 제2 분말 합성물(M)과 제2 추가 소재인 그래핀이 방전 기체와 함께 제3 플라즈마 반응 공간(C)으로 유입된다. 제3 플라즈마 반응 공간(C)에서 분말은 제3 반응 공간 유입구(143)로부터 제3 반응 공간 배출구(144) 쪽으로 중력에 의해 아래로 낙하하면서 이동한다. 제3 반응 공간 배출구(144)을 통해 제3 플라즈마 반응 공간(C)은 합성 분말 배출부(176)의 내부 공간과 연통된다. 제3 반응 공간 배출구(144)을 통해서 제3 플라즈마 반응 공간(C)에서 생성된 제3 분말 합성물(F)이 최종 합성 소재로서 플라즈마 반응 공간(C)으로부터 배출되어서 합성 분말 배출부(176)의 내부 공간으로 유입된다.The third plasma generating module 140 is a plasma for generating a third powder composite F by synthesizing the second powder composite M generated in the second plasma generating module 130 and the second additional material G. causes In this embodiment, the second additional material (G) is a carbon material, which will be described as graphene. The third plasma generating module 140 forms a third plasma reaction space (C) by plasma. In the third plasma reaction space (C), a second powder compound (M) in powder form and graphene as a second additional material (G) are synthesized by a plasma reaction to produce a third powder compound (F) in powder form. . The third powder composition (F) has a structure in which graphene is coated on the surface of the second powder composition (M). The third plasma generation module 140 generates plasma using microwaves to form a third plasma reaction space (C). The third plasma generating module 140 generates plasma by receiving microwaves from the microwave generator 188 . The third plasma generation module 140 may have a configuration disclosed in Korean Patent Registration No. 10-1913721. Above and below the third plasma generating module 140 in the vertical direction (direction of gravity), the second intermediate passage part 160 and the synthetic powder discharge part 176 are respectively positioned. A third reaction space inlet 143 is formed at an upper end of the third plasma reaction space C, and a third reaction space outlet 144 is formed at a lower end of the third plasma reaction space C. Through the third reaction space inlet 143 , the third plasma reaction space C communicates with the inner space of the second intermediate passage 160 . Through the third reaction space inlet 143, the second powder compound M and graphene as a second additional material are introduced into the third plasma reaction space C together with the discharge gas. In the third plasma reaction space (C), the powder moves while falling down from the third reaction space inlet 143 toward the third reaction space outlet 144 by gravity. Through the third reaction space outlet 144 , the third plasma reaction space C communicates with the inner space of the synthetic powder outlet 176 . The third powder compound F generated in the third plasma reaction space C through the third reaction space outlet 144 is discharged from the plasma reaction space C as a final synthesized material to form a composite powder discharge unit 176. enters the inner space.
제1 중간 통로부(150)는 제1 플라즈마 발생 모듈(120)과 제2 플라즈마 발생 모듈(130)의 사이에 위치한다. 제1 중간 통로부(150)는 내부에 제1 중간 통로(151)를 제공한다. 제1 중간 통로(151)의 연직방향 위에 제1 플라즈마 반응 공간(A)이 위치하고 제1 중간 통로(151)의 연직방향 아래에 제2 플라즈마 반응 공간(B)이 위치한다. 제1 중간 통로(151)는 제1 반응 공간 배출구(124)를 통해 제1 플라즈마 반응 공간(A)과 연통되고, 제2 반응 공간 유입구(133)을 통해 제2 플라즈마 반응 공간(B)과 연통된다. 제1 중간 통로부(150)에는 제1 중간 통로(151)와 연통되는 제1 추가 소재 공급구(155)가 형성된다. 제1 추가 소재 공급구(155)를 통해 제1 중간 통로(151)로 제1 추가 소재(K)인 탄소나노튜브(CNT)가 공급된다. 제1 중간 통로(151)에서 제1 분말 합성물(H)인 실리콘산화물(SiOX)과 제1 추가 소재(K)인 탄소나노튜브(CNT)가 고르게 섞이고 제2 반응 공간 유입구(133)를 통해 제2 플라즈마 반응 공간(B)으로 유입된다. 제1 중간 통로(151)의 바닥(157)은 분말의 낙하가 용이하도록 도시된 바와 같이 제2 반응 공간 유입구(133) 쪽을 향해 아래로 갈수록 좁아지는 것이 바람직하다.The first intermediate passage 150 is located between the first plasma generating module 120 and the second plasma generating module 130 . The first intermediate passage portion 150 provides a first intermediate passage 151 therein. The first plasma reaction space A is located above the first intermediate passage 151 in the vertical direction and the second plasma reaction space B is located below the first intermediate passage 151 in the vertical direction. The first intermediate passage 151 communicates with the first plasma reaction space A through the first reaction space outlet 124 and communicates with the second plasma reaction space B through the second reaction space inlet 133. do. A first additional material supply port 155 communicating with the first intermediate passage 151 is formed in the first intermediate passage 150 . Carbon nanotubes (CNTs) as the first additional material K are supplied to the first intermediate passage 151 through the first additional material supply port 155 . In the first intermediate passage 151, silicon oxide (SiO X ), which is the first powder compound (H), and carbon nanotube (CNT), which is the first additional material (K), are evenly mixed, and pass through the second reaction space inlet (133). The second plasma is introduced into the reaction space (B). It is preferable that the bottom 157 of the first intermediate passage 151 narrows downward toward the second reaction space inlet 133 so that the powder can easily fall.
제2 중간 통로부(160)는 제2 플라즈마 발생 모듈(130)과 제3 플라즈마 발생 모듈(140)의 사이에 위치한다. 제2 중간 통로부(160)는 내부에 제2 중간 통로(161)를 제공한다. 제2 중간 통로(161)의 연직방향 위에 제2 플라즈마 반응 공간(B)이 위치하고 제2 중간 통로(161)의 연직방향 아래에 제3 플라즈마 반응 공간(C)이 위치한다. 제2 중간 통로(161)는 제2 반응 공간 배출구(134)를 통해 제2 플라즈마 반응 공간(B)과 연통되고, 제3 반응 공간 유입구(143)을 통해 제3 플라즈마 반응 공간(C)과 연통된다. 제2 중간 통로부(160)에는 제2 중간 통로(161)와 연통되는 제2 추가 소재 공급구(165)가 형성된다. 제2 추가 소재 공급구(165)를 통해 제2 중간 통로(161)로 제2 추가 소재(G)인 그래핀이 공급된다. 제2 중간 통로(161)에서 제2 분말 합성물(M)과 제2 추가 소재(G)인 그래핀이가 고르게 섞이고 제3 반응 공간 유입구(143)를 통해 제3 플라즈마 반응 공간(C)으로 유입된다. 제2 중간 통로(161)의 바닥(167)은 분말의 낙하가 용이하도록 도시된 바와 같이 제3 반응 공간 유입구(143) 쪽을 향해 아래로 갈수록 좁아지는 것이 바람직하다.The second intermediate passage 160 is located between the second plasma generating module 130 and the third plasma generating module 140 . The second intermediate passage portion 160 provides a second intermediate passage 161 therein. The second plasma reaction space B is located above the second intermediate passage 161 in the vertical direction and the third plasma reaction space C is located below the second intermediate passage 161 in the vertical direction. The second intermediate passage 161 communicates with the second plasma reaction space B through the second reaction space outlet 134 and communicates with the third plasma reaction space C through the third reaction space inlet 143. do. A second additional material supply port 165 communicating with the second intermediate passage 161 is formed in the second intermediate passage 160 . Graphene, which is the second additional material G, is supplied to the second intermediate passage 161 through the second additional material supply port 165 . In the second intermediate passage 161, the second powder compound (M) and the second additional material (G), graphene, are evenly mixed and introduced into the third plasma reaction space (C) through the third reaction space inlet 143. do. It is preferable that the bottom 167 of the second intermediate passage 161 narrows downward toward the third reaction space inlet 143 so that the powder can fall easily.
기본 소재 도입부(171)는 제1 플라즈마 발생 모듈(120)의 위에 위치한다. 기본 소재 도입부(171)는 내부에 기본 소재 도입 공간(172)을 제공한다. 기본 소재 도입 공간(172)의 연직방향 아래에 제1 플라즈마 반응 공간(A)이 위치한다. 기본 소재 도입 공간(172)은 제1 반응 공간 유입구(123)를 통해 제1 플라즈마 반응 공간(A)과 연통된다. 기본 소재 도입부(171)에는 기본 소재 도입 공간(176)과 연통되는 기본 소재 공급구(173)가 형성된다. 기본 소재 공급구(173)를 통해 제1 기본 소재(D)인 분말 형태의 규소(Si)와 제2 기본 소재(E)인 분말 형태의 이산화규소(SiO2)가 기본 소재 도입 공간(172)으로 공급된다. 기본 소재 공급구(173)를 통해 방전 기체도 함께 기본 소재 도입 공간(172)으로 공급될 수도 있다. 기본 소재 도입 공간(172)에서 제1 기본 소재(D)인 분말 형태의 규소(Si)와 제2 기본 소재(E)인 분말 형태의 이산화규소(SiO2)가 고르게 섞이고 제1 반응 공간 유입구(123)를 통해 제1 플라즈마 반응 공간(A)으로 유입된다. 기본 소재 도입 공간(172)의 바닥(174)은 분말의 낙하가 용이하도록 도시된 바와 같이 제1 반응 공간 유입구(123) 쪽을 향해 아래로 갈수록 좁아지는 것이 바람직하다.The base material introduction unit 171 is located above the first plasma generating module 120 . The base material introduction part 171 provides a base material introduction space 172 therein. The first plasma reaction space (A) is located below the base material introduction space 172 in the vertical direction. The base material introduction space 172 communicates with the first plasma reaction space A through the first reaction space inlet 123 . A base material supply port 173 communicating with the base material introduction space 176 is formed in the base material introduction part 171 . Through the base material supply port 173, silicon dioxide (SiO 2 ) in the form of powder as the first base material (D) and silicon dioxide (SiO 2 ) in the form of powder as the second base material (E) is introduced into the base material introduction space (172). supplied with Discharge gas may also be supplied to the base material introduction space 172 through the base material supply port 173 . In the base material introduction space 172, powdered silicon (Si) as the first base material (D) and powdered silicon dioxide (SiO 2 ) as the second base material (E) are evenly mixed, and the first reaction space inlet ( 123) into the first plasma reaction space (A). It is preferable that the bottom 174 of the base material introduction space 172 narrows downward toward the first reaction space inlet 123 so that the powder can fall easily.
합성 분말 배출부(176)는 제3 플라즈마 발생 모듈(140)의 아래에 위치한다. 합성 분말 배출부(176)는 내부에 합성 분말 배출 공간(177)을 제공한다. 합성 분말 배출 공간(177)의 연직방향 위에 제3 플라즈마 반응 공간(C)이 위치한다. 합성 분말 배출 공간(177)은 제3 반응 공간 배출구(144)를 통해 제3 플라즈마 반응 공간(C)과 연통된다. 합성 분말 배출부(176)에는 합성 분말 배출 공간(177)과 연통되는 합성 분말 배출구(178)가 형성된다. 합성 분말 배출구(178)를 통해 제3 분말 합성물(F)이 플라즈마 분말 합성기(110)의 외부로 배출된다. 합성 분말 배출구(178)는 합성 분말 배출 공간(177)의 바닥(179)에 형성된다. 합성 분말 배출 공간(177)의 바닥(179)은 제3 분말 합성물(F)의 낙하가 용이하도록 도시된 바와 같이 합성 분말 배출구(178) 쪽을 향해 아래로 갈수록 좁아지는 것이 바람직하다.The synthetic powder discharge unit 176 is located below the third plasma generating module 140 . The synthetic powder discharge unit 176 provides a synthetic powder discharge space 177 therein. A third plasma reaction space (C) is located above the synthetic powder discharge space 177 in a vertical direction. The synthetic powder discharge space 177 communicates with the third plasma reaction space C through the third reaction space discharge port 144 . A compound powder outlet 178 communicating with the compound powder discharge space 177 is formed in the compound powder discharge unit 176 . The third powder compound F is discharged to the outside of the plasma powder synthesizer 110 through the synthesized powder outlet 178 . The synthetic powder discharge port 178 is formed at the bottom 179 of the compound powder discharge space 177 . The bottom 179 of the synthetic powder discharge space 177 is preferably narrower downward toward the synthetic powder discharge port 178 so that the third powder compound F can be easily dropped.
제1, 제2, 제3 플라즈마 반응 공간(A, B, C), 제1, 제2 중간 통로부(150, 160), 기본 소재 도입부(171) 및 합성 분말 배출부(176)는 서로 연통되어 일체로 형성되는 관 구조를 갖는다.The first, second, and third plasma reaction spaces A, B, and C, the first and second intermediate passages 150 and 160, the base material introduction unit 171 and the synthesized powder discharge unit 176 communicate with each other. and has a tubular structure integrally formed.
제1 전원(180)은 플라즈마 분말 합성기(110)의 제1 플라즈마 발생 모듈(120)의 두 전극(121, 122)으로 제1 플라즈마 반응 공간(A)의 형성을 위해 직류 또는 교류 전력을 공급한다.The first power source 180 supplies DC or AC power to the two electrodes 121 and 122 of the first plasma generating module 120 of the plasma powder synthesizer 110 to form the first plasma reaction space A. .
제2 전원(183)은 플라즈마 분말 합성기(110)의 제2 플라즈마 발생 모듈(130)로 유도결합 플라즈마에 의한 제2 플라즈마 반응 공간(B)의 형성을 위해 고주파 전력을 공급한다.The second power supply 183 supplies high frequency power to the second plasma generating module 130 of the plasma powder synthesizer 110 to form the second plasma reaction space B by inductively coupled plasma.
마이크로웨이브(microwave) 발생기(188)는 제3 플라즈마 발생 모듈(140)이 마이크로웨이브를 이용하여 제3 플라즈마 반응 공간(C)을 형성할 수 있도록, 마이크로웨이브를 발생시킨다. 마이크로웨이브 발생기(188)에서 발생된 마이크로웨이브는 도파관을 통해 제3 플라즈마 발생 모듈(140)로 전송된다.The microwave generator 188 generates microwaves so that the third plasma generation module 140 can form the third plasma reaction space C using microwaves. The microwave generated by the microwave generator 188 is transmitted to the third plasma generating module 140 through a waveguide.
방전기체 공급기(190)는 플라즈마 분말 합성기(110)에 플라즈마 방전에 필요한 방전 기체를 공급한다. 본 실시예에서 방전기체 공급기(190)를 통해 공급되는 방전기체는 플라즈마 분말 합성기(110)의 기본 소재 공급구(173)를 통해 기본 소재 도입 공간(172)으로 유입되는 것으로 설명한다.The discharge gas supplier 190 supplies discharge gas required for plasma discharge to the plasma powder synthesizer 110 . In this embodiment, the discharge gas supplied through the discharge gas supplier 190 will be described as flowing into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 .
제1 기본 소재 공급기(192)는 플라즈마 분말 합성기(110)에 제1 기본 소재(D)인 분말 형태의 규소(Si)를 공급한다. 제1 기본 소재 공급기(192)를 통해 공급되는 제1 기본 소재(D)는 플라즈마 분말 합성기(110)의 기본 소재 공급구(173)를 통해 기본 소재 도입 공간(172)으로 유입된다. 본 실시예에서는 제1 기본 소재 공급기(192)가 제1 기본 소재(D)로서 규소(Si)를 공급하는 것으로 설명하지만, 목표로 하는 합성 분말 소재에 따라서 달라질 수 있으며 이 또한 본 발명의 범위에 속하는 것이다.The first base material supplier 192 supplies silicon (Si) in powder form as the first base material D to the plasma powder synthesizer 110 . The first base material D supplied through the first base material supplier 192 is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 . In this embodiment, it is described that the first base material supplier 192 supplies silicon (Si) as the first base material (D), but it may vary depending on the target synthetic powder material, which is also within the scope of the present invention. it belongs
제2 기본 소재 공급기(194)는 플라즈마 분말 합성기(110)에 제2 기본 소재인 분말 형태의 이산화규소(SiO2)를 공급한다. 제2 기본 소재 공급기(194)를 통해 공급되는 제2 기본 소재는 플라즈마 분말 합성기(110)의 기본 소재 공급구(173)를 통해 기본 소재 도입 공간(172)으로 유입된다. 본 실시예에서는 제2 기본 소재 공급기(194)가 제2 기본 소재(E)로서 이산화규소(SiO2)를 공급하는 것으로 설명하지만, 목표로 하는 합성 분말 소재에 따라서 달라질 수 있으며 이 또한 본 발명의 범위에 속하는 것이다.The second base material supplier 194 supplies silicon dioxide (SiO 2 ) in powder form, which is the second base material, to the plasma powder synthesizer 110 . The second base material supplied through the second base material supplier 194 is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 . In this embodiment, the second base material supplier 194 is described as supplying silicon dioxide (SiO 2 ) as the second base material (E), but it may vary depending on the target synthetic powder material, which is also of the present invention. that falls within the scope
제1 추가 소재 공급기(196)는 플라즈마 분말 합성기(110)에 제1 추가 소재(K)인 분말 형태의 탄소나노튜브(CNT)를 공급한다. 제1 추가 소재 공급기(196)를 통해 공급되는 제1 추가 소재(K)는 플라즈마 분말 합성기(110)의 제1 추가 소재 공급구(155)를 통해 제1 중간 통로(151)로 유입된다. 본 실시예에서는 제1 추가 소재 공급기(196)가 제1 추가 소재(K)로서 탄소나노튜브(CNT)를 공급하는 것으로 설명하지만, 목표로 하는 합성 분말 소재에 따라서 달라질 수 있으며 이 또한 본 발명의 범위에 속하는 것이다.The first additional material supplier 196 supplies powdered carbon nanotubes (CNT) as the first additional material K to the plasma powder synthesizer 110 . The first additional material K supplied through the first additional material supplier 196 is introduced into the first intermediate passage 151 through the first additional material supply port 155 of the plasma powder synthesizer 110 . In this embodiment, it is described that the first additional material supplier 196 supplies carbon nanotubes (CNT) as the first additional material K, but it may vary depending on the target composite powder material, which is also of the present invention. that falls within the scope
제2 추가 소재 공급기(198)는 플라즈마 분말 합성기(110)에 제2 추가 소재(G)인 분말 형태의 그래핀을 공급한다. 제2 추가 소재 공급기(198)를 통해 공급되는 제2 추가 소재(G)인 그래핀은 플라즈마 분말 합성기(110)의 제2 추가 소재 공급구(165)를 통해 제2 중간 통로(161)로 유입된다. 본 실시예에서는 제2 추가 소재 공급기(198)가 제2 추가 소재(G)로서 그래핀을 공급하는 것으로 설명하지만, 목표로 하는 합성 분말 소재에 따라서 달라질 수 있으며 이 또한 본 발명의 범위에 속하는 것이다.The second additional material supplier 198 supplies graphene in powder form, which is the second additional material G, to the plasma powder synthesizer 110 . Graphene, which is the second additional material G supplied through the second additional material supplier 198, flows into the second intermediate passage 161 through the second additional material supply port 165 of the plasma powder synthesizer 110. do. In this embodiment, the second additional material supplier 198 is described as supplying graphene as the second additional material G, but it may vary depending on the target synthetic powder material, and this also falls within the scope of the present invention. .
도 3에는 본 발명의 일 실시예에 따른 분말 소재 합성 방법을 개략적으로 설명하는 순서도가 도시되어 있다. 본 발명의 일 실시예에 따른 분말 소재 합성 방법은 도 1 및 도 2를 참조하여 설명된 분말 소재 합성 장치(100)를 이용하는 것으로서 도 1 및 도 2와 함께 도 3을 참조하면, 분말 형태의 복수의 이종 기본 소재(D, E)들이 플라즈마 분말 합성기(110)로 투입되는 기본 소재 투입 단계(S10)와, 이종 기본 소재(D, E)들이 플라즈마 분말 합성기(110)에서 플라즈마 반응에 의해 합성되어서 분말 형태의 제1 분말 합성물(H)이 생성되는 제1 플라즈마 합성 단계(S20)와, 플라즈마 분말 합성기(110)로 분말 형태의 제1 추가 소재(K)가 투입되는 제1 추가 소재 투입 단계(S30)와, 제1 분말 합성물(H)과 제1 추가 소재(K)가 플라즈마 분말 합성기(110)에서 플라즈마 반응에 의해 합성되어서 분말 형태의 제2 분말 합성물(M)이 생성되는 제2 플라즈마 합성 단계(S40)와, 플라즈마 분말 합성기(110)로 분말 형태의 제2 추가 소재(G)가 투입되는 제2 추가 소재 투입 단계(S50)와, 제2 분말 합성물(M)과 제2 추가 소재(G)가 플라즈마 분말 합성기(110)에서 플라즈마 반응에 의해 합성되어서 분말 형태의 제3 분말 합성물(F)이 합성되는 제3 플라즈마 합성 단계(S60)를 포함한다.3 is a flowchart schematically illustrating a powder material synthesis method according to an embodiment of the present invention. A powder material synthesizing method according to an embodiment of the present invention uses the powder material synthesizing apparatus 100 described with reference to FIGS. 1 and 2, and referring to FIG. 3 together with FIGS. 1 and 2, a plurality of powder forms. The base material input step (S10) in which the heterogeneous base materials (D, E) of is input into the plasma powder synthesizer 110, and the heterogeneous base materials (D, E) are synthesized by plasma reaction in the plasma powder synthesizer 110 A first plasma synthesis step (S20) in which a first powder compound (H) in powder form is generated, and a first additional material input step (S20) in which a first additional material (K) in a powder form is introduced into the plasma powder synthesizer 110 ( S30), the first powder compound (H) and the first additional material (K) are synthesized by a plasma reaction in the plasma powder synthesizer 110 to produce a second powder compound (M) in powder form. A step (S40), a second additional material input step (S50) in which a second additional material (G) in the form of powder is introduced into the plasma powder synthesizer 110, and a second powder compound (M) and a second additional material ( G) is synthesized by a plasma reaction in the plasma powder synthesizer 110 to synthesize a third powder compound F in powder form (S60).
기본 소재 투입 단계(S10)에서는 분말 형태의 복수의 이종 기본 소재(D, E)들이 플라즈마 분말 합성기(110)로 투입된다. 본 실시예에서는 복수의 이종 기본 소재(D, E)들이 제1 기본 소재(D)인 규소(Si)와 제2 기본 소재(E)인 이산화규소(SiO2)인 것으로 설명하는데, 이는 제3 분말 합성물(F)이 이차전지의 음극재용 분말 소재인 경우의 것으로서, 본 발명은 이에 제한되지 않으며 제3 분말 합성물(F)의 구조에 따라 기본 소재 투입 단계(S10)에서 투입되는 복수의 이종 기본 소재들의 종류는 달라질 수 있다. 기본 소재 투입 단계(S10)는 제1 기본 소재(D)가 제1 기본 소재 공급기(192)에 의해 플라즈마 분말 합성기(110)의 기본 소재 공급구(173)를 통해 기본 소재 도입 공간(172)으로 유입되고, 제2 기본 소재(E)가 제2 기본 소재 공급기(194)에 의해 플라즈마 분말 합성기(110)의 기본 소재 공급구(173)를 통해 기본 소재 도입 공간(172)으로 유입됨으로써 수행된다. 기본 소재 투입 단계(S10)를 통해 기본 소재 도입 공간(172)으로 투입된 제1 기본 소재(D)와 제2 기본 소재(E)는 중력에 의해 자연 낙하하여 제1 플라즈마 반응 공간(A)으로 유입된다. 기본 소재 투입 단계(S10)가 수행되면서 방전 기체도 함께 기본 소재 도입 공간(172)으로 유입될 수 있다.In the base material input step (S10), a plurality of heterogeneous base materials (D, E) in powder form are input into the plasma powder synthesizer 110. In this embodiment, it is described that the plurality of heterogeneous base materials (D, E) are silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E), which is the third base material (D). As for the case where the powder compound (F) is a powder material for a negative electrode material of a secondary battery, the present invention is not limited thereto, and according to the structure of the third powder compound (F), a plurality of heterogeneous basic materials introduced in the basic material input step (S10) The type of materials may vary. In the base material input step (S10), the first base material (D) is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 by the first base material supplier 192. and the second base material E is introduced into the base material introduction space 172 through the base material supply port 173 of the plasma powder synthesizer 110 by the second base material supplier 194. The first base material (D) and the second base material (E) introduced into the base material introduction space 172 through the base material inputting step (S10) fall naturally by gravity and flow into the first plasma reaction space (A). do. While the basic material inputting step (S10) is performed, the discharge gas may also flow into the basic material introducing space 172.
제1 플라즈마 합성 단계(S20)에서는 이종 기본 소재(D, E)들이 플라즈마 분말 합성기(110)에서 플라즈마 반응에 의해 합성되어서 분말 형태의 제1 분말 합성물(H)이 생성된다. 제1 플라즈마 합성 단계(S20)는 제1 기본 소재(D)인 규소(Si)와 제2 기본 소재(E)인 이산화규소(SiO2)가 제1 플라즈마 반응 공간(A)에서의 플라즈마 반응에 의해 합성되어서 수행된다. 제1 플라즈마 합성 단계(S20)에서 생성된 제1 분말 합성물(H)은 제1 플라즈마 반응 공간(A)으로부터 중력에 의해 자연 낙하하여 제1 중간 통로(151)로 유입된다.In the first plasma synthesis step (S20), the heterogeneous base materials D and E are synthesized by plasma reaction in the plasma powder synthesizer 110 to generate a first powder compound H in powder form. In the first plasma synthesis step (S20), silicon (Si) as the first base material (D) and silicon dioxide (SiO 2 ) as the second base material (E) are subjected to a plasma reaction in the first plasma reaction space (A). It is synthesized and performed by The first powder compound (H) generated in the first plasma synthesis step (S20) naturally falls by gravity from the first plasma reaction space (A) and flows into the first intermediate passage (151).
제1 추가 소재 투입 단계(S30)에서는 플라즈마 분말 합성기(110)로 분말 형태의 제1 추가 소재(K)가 투입된다. 본 실시예에서는 제1 추가 소재(K)가 탄소나노튜브(CNT) 또는 탄소나노섬유(CNF)인 것으로 설명하는데, 이는 제3 분말 합성물(F)이 이차전지의 음극재용 분말 소재인 경우의 것으로서, 본 발명은 이에 제한되지 않으며 제3 분말 합성물(F)의 구조에 따라 제1 추가 소재 투입 단계(S30)에 투입되는 제1 추가 소재(K)의 종류는 달라질 수 있다. 제1 추가 소재 투입 단계(S30)는 제1 추가 소재(K)가 제1 추가 소재 공급기(196)에 의해 플라즈마 분말 합성기(110)의 제1 추가 소재 공급구(155)를 통해 제1 중간 통로(151)으로 유입됨으로써 수행된다. 제1 추가 소재 투입 단계(S30)를 통해 제1 중간 통로(151)으로 투입된 제1 추가 소재(K)는 제1 분말 합성물(H)과 함께 중력에 의해 자연 낙하하여 제2 플라즈마 반응 공간(B)으로 유입된다.In the first additional material input step (S30), the first additional material K in the form of powder is input into the plasma powder synthesizer 110. In this embodiment, it is described that the first additional material (K) is carbon nanotube (CNT) or carbon nanofiber (CNF), which is the case where the third powder compound (F) is a powder material for a negative electrode material of a secondary battery. , The present invention is not limited thereto, and the type of the first additional material (K) introduced in the first additional material input step (S30) may vary according to the structure of the third powder composite (F). In the first additional material input step (S30), the first additional material (K) is supplied by the first additional material supplier 196 through the first additional material supply port 155 of the plasma powder synthesizer 110 through the first intermediate passage It is performed by flowing into (151). The first additional material (K) introduced into the first intermediate passage (151) through the first additional material inputting step (S30) naturally falls by gravity together with the first powder compound (H) to form a second plasma reaction space (B). ) is introduced into
제2 플라즈마 합성 단계(S40)에서는 제1 분말 합성물(H)과 제1 추가 소재(K)가 플라즈마 분말 합성기(110)에서 플라즈마 반응에 의해 합성되어서 분말 형태의 제2 분말 합성물(M)이 생성된다. 제2 플라즈마 합성 단계(S40)는 제1 분말 합성물(H)과 제1 추가 소재(K)인 탄소나노튜브(CNT) 또는 탄소나노섬유(CNF)가 제2 플라즈마 반응 공간(B)에서의 플라즈마 반응에 의해 합성되어서 수행된다. 제2 플라즈마 합성 단계(S40)에서 생성된 제2 분말 합성물(M)은 제2 플라즈마 반응 공간(B)으로부터 중력에 의해 자연 낙하하여 제2 중간 통로(161)로 유입된다.In the second plasma synthesis step (S40), the first powder compound (H) and the first additional material (K) are synthesized by plasma reaction in the plasma powder synthesizer 110 to produce a second powder compound (M) in powder form. do. In the second plasma synthesis step (S40), the first powder composite (H) and the first additional material (K), such as carbon nanotubes (CNTs) or carbon nanofibers (CNFs), are combined into a plasma in the second plasma reaction space (B). It is synthesized and carried out by reaction. The second powder compound M generated in the second plasma synthesis step (S40) naturally falls from the second plasma reaction space (B) by gravity and flows into the second intermediate passage 161.
제2 추가 소재 투입 단계(S50)에서는 플라즈마 분말 합성기(110)로 분말 형태의 제2 추가 소재(G)가 투입된다. 본 실시예에서는 제2 추가 소재(G)가 그래핀인 것으로 설명하는데, 이는 제3 분말 합성물(F)이 이차전지의 음극재용 분말 소재인 경우의 것으로서, 본 발명은 이에 제한되지 않으며 제3 분말 합성물(F)의 구조에 따라 제2 추가 소재 투입 단계(S50)에 투입되는 제2 추가 소재(G)의 종류는 달라질 수 있다. 제2 추가 소재 투입 단계(S50)는 제2 추가 소재(G)가 제2 추가 소재 공급기(198)에 의해 플라즈마 분말 합성기(110)의 제2 추가 소재 공급구(165)를 통해 제2 중간 통로(161)으로 유입됨으로써 수행된다. 제2 추가 소재 투입 단계(S50)를 통해 제2 중간 통로(161)으로 투입된 제2 추가 소재(G)는 제2 분말 합성물(M)과 함께 중력에 의해 자연 낙하하여 제3 플라즈마 반응 공간(C)으로 유입된다.In the step of inputting the second additional material (S50), the second additional material (G) in the form of powder is input into the plasma powder synthesizer 110. In this embodiment, it is described that the second additional material (G) is graphene, which is the case where the third powder compound (F) is a powder material for a negative electrode material of a secondary battery, and the present invention is not limited thereto, and the third powder compound (F) The type of the second additional material (G) introduced in the second additional material inputting step (S50) may vary according to the structure of the composite (F). In the second additional material input step (S50), the second additional material (G) is supplied by the second additional material supplier 198 through the second additional material supply port 165 of the plasma powder synthesizer 110 through the second intermediate passage It is carried out by flowing into (161). The second additional material (G) introduced into the second intermediate passage 161 through the second additional material inputting step (S50) naturally falls by gravity together with the second powder compound (M) to the third plasma reaction space (C ) is introduced into
제3 플라즈마 합성 단계(S60)에서는 제2 분말 합성물(M)과 제2 추가 소재(G)가 플라즈마 분말 합성기(110)에서 플라즈마 반응에 의해 합성되어서 분말 형태의 제3 분말 합성물(F)이 합성된다. 제3 플라즈마 합성 단계(S60)는 제2 분말 합성물(M)과 제2 추가 소재(G)인 그래핀이 제3 플라즈마 반응 공간(C)에서의 플라즈마 반응에 의해 합성되어서 수행된다. 제3 플라즈마 합성 단계(S60)에서 생성된 제3 분말 합성물(F)은 제3 플라즈마 반응 공간(C)으로부터 중력에 의해 자연 낙하하여 합성 분말 배출 공간(177)으로 유입된다.In the third plasma synthesis step (S60), the second powder compound (M) and the second additional material (G) are synthesized by plasma reaction in the plasma powder synthesizer 110, and the third powder compound (F) in powder form is synthesized. do. The third plasma synthesis step (S60) is performed by synthesizing the second powder compound (M) and graphene as the second additional material (G) by plasma reaction in the third plasma reaction space (C). The third powder compound F generated in the third plasma synthesis step S60 naturally falls from the third plasma reaction space C by gravity and flows into the synthesized powder discharge space 177 .
상기 실시예에서 플라즈마 분말 합성기(110)로 투입되는 제1 기본 소재(D), 제2 기본 소재(E), 제1 추가 소재(K) 및 제2 추가 소재(G)가 분말 형태인 것으로 설명하였으나, 본 발명은 이에 제한되지 않으며, 액상 또는 기체상도 가능하고 이 또한 본 발명의 범위에 속하는 것이다.In the above embodiment, the first base material (D), the second base material (E), the first additional material (K), and the second additional material (G) introduced into the plasma powder synthesizer 110 are described as being in powder form. However, the present invention is not limited thereto, and liquid or gas phase is also possible, which also falls within the scope of the present invention.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.Although the present invention has been described through the above examples, the present invention is not limited thereto. The above embodiments may be modified or changed without departing from the spirit and scope of the present invention, and those skilled in the art will recognize that such modifications and changes also belong to the present invention.

Claims (22)

  1. 제1 플라즈마 반응 공간을 형성하는 제1 플라즈마 발생 모듈과, 상기 제1 플라즈마 반응 공간의 후류에 위치하는 제2 플라즈마 반응 공간을 형성하는 제2 플라즈마 발생 모듈과, 상기 제2 플라즈마 반응 공간의 후류에 위치하는 제3 플라즈마 반응 공간을 형성하는 제3 플라즈마 발생 모듈을 구비하는 플라즈마 분말 합성기를 포함하며,A first plasma generating module forming a first plasma reaction space, a second plasma generating module forming a second plasma reaction space located downstream of the first plasma reaction space, and a downstream of the second plasma reaction space. A plasma powder synthesizer having a third plasma generating module forming a third plasma reaction space located therein;
    상기 제1 플라즈마 반응 공간에서 복수의 이종 기본 소재들이 플라즈마에 의해 합성되어서 분말 형태의 제1 분말 합성물이 생성되며,In the first plasma reaction space, a plurality of heterogeneous basic materials are synthesized by plasma to produce a first powder compound in powder form,
    상기 제2 플라즈마 반응 공간에서 상기 제1 분말 합성물과 제1 추가 소재가 플라즈마에 의해 합성되어서 분말 형태의 제2 분말 합성물이 생성되며,In the second plasma reaction space, the first powder compound and the first additional material are synthesized by plasma to produce a second powder compound in powder form;
    상기 제3 플라즈마 반응 공간에서 상기 제2 분말 합성물과 제2 추가 소재가 플라즈마에 의해 합성되어서 분말 형태의 제3 분말 합성물이 생성되는,In the third plasma reaction space, the second powder compound and the second additional material are synthesized by plasma to produce a third powder compound in powder form.
    분말 소재 합성 장치.Powder material synthesizer.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 제1 분말 합성물은 상기 제1 플라즈마 반응 공간으로부터 낙하하여 배출되며,The first powder compound is discharged by falling from the first plasma reaction space,
    상기 제2 플라즈마 반응 공간은 상기 제1 플라즈마 반응 공간보다 아래에 위치하여 상기 제1 분말 합성물이 상기 제2 플라즈마 반응 공간으로 낙하하여 공급되며,The second plasma reaction space is located below the first plasma reaction space so that the first powder compound is dropped and supplied into the second plasma reaction space,
    상기 제2 분말 합성물은 상기 제2 플라즈마 반응 공간으로부터 낙하하여 배출되며,The second powder compound is discharged by falling from the second plasma reaction space,
    상기 제3 플라즈마 반응 공간은 상기 제2 플라즈마 반응 공간보다 아래에 위치하여 상기 제2 분말 합성물이 상기 제3 플라즈마 반응 공간으로 낙하하여 공급되며,The third plasma reaction space is located below the second plasma reaction space so that the second powder compound is dropped and supplied into the third plasma reaction space,
    상기 제3 분말 합성물은 상기 제3 플라즈마 반응 공간으로부터 낙하하여 배출되는,The third powder compound is discharged by falling from the third plasma reaction space,
    분말 소재 합성 장치.Powder material synthesizer.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 플라즈마 분말 합성기는,The plasma powder synthesizer,
    상기 제1 플라즈마 발생 모듈과 상기 제2 플라즈마 발생 모듈의 사이에 위치하고 상기 제1 플라즈마 반응 공간과 상기 제2 플라즈마 반응 공간을 연통시키는 제1 중간 통로부와,A first intermediate passage portion located between the first plasma generating module and the second plasma generating module and communicating the first plasma reaction space and the second plasma reaction space;
    상기 제2 플라즈마 발생 모듈과 상기 제3 플라즈마 발생 모듈의 사이에 위치하고 상기 제2 플라즈마 반응 공간과 상기 제3 플라즈마 반응 공간을 연통시키는 제2 중간 통로부를 더 구비하는,Further comprising a second intermediate passage located between the second plasma generating module and the third plasma generating module and communicating the second plasma reaction space and the third plasma reaction space.
    분말 소재 합성 장치.Powder material synthesizer.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 제1 중간 통로부로 상기 제1 추가 소재가 공급되며,The first additional material is supplied to the first intermediate passage,
    상기 제2 중간 통로부로 상기 제2 추가 소재가 공급되는,The second additional material is supplied to the second intermediate passage,
    분말 소재 합성 장치.Powder material synthesizer.
  5. 청구항 3에 있어서,The method of claim 3,
    상기 제1, 제2, 제3 플라즈마 반응 공간과 상기 제1, 제2 중간 통로부는 서로 연통되어 일체로 형성되는 관 구조를 갖는,The first, second, and third plasma reaction spaces and the first and second intermediate passages communicate with each other and have a tubular structure integrally formed.
    분말 소재 합성 장치.Powder material synthesizer.
  6. 청구항 2에 있어서,The method of claim 2,
    상기 제1, 제2, 제3 플라즈마 반응 공간이 수직 방향으로 배열되는,The first, second, and third plasma reaction spaces are arranged in a vertical direction,
    분말 수재 합성 장치.powder granule synthesis device.
  7. 청구항 1에 있어서,The method of claim 1,
    상기 제1 플라즈마 발생 모듈은 직류 전원 또는 교류 전원에 의해 제1 전극과 제2 전극 사이에 발생하는 방전을 이용하여 상기 제1 플라즈마 반응 공간을 형성하는,The first plasma generating module forms the first plasma reaction space by using a discharge generated between a first electrode and a second electrode by DC power or AC power,
    분말 소재 합성 장치.Powder material synthesizer.
  8. 청구항 1에 있어서,The method of claim 1,
    상기 제2 플라즈마 발생 모듈은 무선주파수 전원에 의한 유도결합 플라즈마를 이용하여 상기 제2 플라즈마 반응 공간을 형성하는,The second plasma generating module forms the second plasma reaction space using inductively coupled plasma by a radio frequency power source,
    분말 소재 합성 장치.Powder material synthesizer.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 제3 플라즈마 발생 모듈은 마이크로웨이브를 이용하여 상기 제3 플라즈마 반응 공간을 형성하는,The third plasma generating module forms the third plasma reaction space using microwaves,
    분말 소재 합성 장치.Powder material synthesizer.
  10. 청구항 1에 있어서,The method of claim 1,
    상기 복수의 이종 기본 소재들은 규소(Si)와 이산화규소(SiO2)를 포함하며,The plurality of heterogeneous basic materials include silicon (Si) and silicon dioxide (SiO 2 ),
    상기 제1 분말 합성물은 SiOX(0<X<2)로 표현되는 실리콘산화물이며,The first powder composite is a silicon oxide represented by SiO X (0<X<2),
    상기 제1 추가 소재와 상기 제2 추가 소재는 탄소재인,The first additional material and the second additional material are carbon materials,
    분말 소재 합성 장치.Powder material synthesizer.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 제1 추가 소재는 탄소나노튜브(CNT) 또는 탄소나노섬유(CNF)인,The first additional material is carbon nanotube (CNT) or carbon nanofiber (CNF),
    분말 소재 합성 장치.Powder material synthesizer.
  12. 청구항 10에 있어서,The method of claim 10,
    상기 제2 추가 소재는 그래핀인,The second additional material is graphene,
    분말 소재 합성 장치.Powder material synthesizer.
  13. 직렬로 배치되는 복수개의 플라즈마 발생 모듈을 구비하는 플라즈마 분말 합성기를 포함하며,It includes a plasma powder synthesizer having a plurality of plasma generating modules arranged in series,
    상기 복수개의 플라즈마 발생 모듈들 각각은 이종의 물질들이 플라즈마 반응에 의해 합성되어서 분말 합성물이 생성되는 플라즈마 반응 공간을 형성하며,Each of the plurality of plasma generating modules forms a plasma reaction space in which different materials are synthesized by plasma reaction to generate a powder compound,
    상기 복수개의 플라즈마 발생 모듈들 중 하나의 플라즈마 발생 모듈에서 생성된 분말 합성물은 하류 측에 이웃하여 위치하는 다른 플라즈마 발생 모듈로 유입되는,The powder composition generated in one plasma generating module among the plurality of plasma generating modules flows into another plasma generating module located next to the downstream side,
    분말 소재 합성 장치.Powder material synthesizer.
  14. 청구항 12에 있어서,The method of claim 12,
    상기 복수개의 플라즈마 발생 모듈들은 분말의 합성 순서에 따라 높이방향을 따라서 위로부터 아래로 차례대로 배치되어서 상기 플라즈마 분말 합성기 내에서 분말이 중력에 의해 낙하하여 이동하는,The plurality of plasma generating modules are sequentially arranged from top to bottom along the height direction according to the order of powder synthesis, so that the powder falls and moves by gravity in the plasma powder synthesizer.
    분말 소재 합성 장치.Powder material synthesizer.
  15. 청구항 13에 있어서,The method of claim 13,
    상기 복수개의 플라즈마 발생 모듈들 중 이웃한 두 플라즈마 발생 모듈들 사이의 공간으로 상기 분말 합성물과 합성되는 합성 대상 소재가 공급되는,Among the plurality of plasma generating modules, a material to be synthesized to be synthesized with the powder compound is supplied to a space between two adjacent plasma generating modules.
    분말 소재 합성 장치.Powder material synthesizer.
  16. 복수의 이종 기본 소재들이 제1 플라즈마 반응 공간에서 합성되어서 분말 형태의 제1 분말 합성물이 생성되는 제1 플라즈마 합성 단계;A first plasma synthesis step in which a plurality of heterogeneous basic materials are synthesized in a first plasma reaction space to generate a first powder compound in a powder form;
    상기 제1 분말 합성물과 제1 추가 소재가 제2 플라즈마 반응 공간에서 합성되어서 분말 형태의 제2 분말 합성물이 생성되는 제2 플라즈마 합성 단계; 및a second plasma synthesis step of synthesizing the first powder compound and the first additional material in a second plasma reaction space to generate a second powder compound in powder form; and
    상기 제2 분말 합성물과 제2 추가 소재가 제3 플라즈마 반응 공간에서 합성되어서 분말 형태의 제3 분말 합성물이 생성되는 제3 플라즈마 합성 단계를 포함하는,A third plasma synthesis step in which the second powder compound and the second additional material are synthesized in a third plasma reaction space to produce a third powder compound in powder form,
    분말 소재 합성 방법.Powder material synthesis method.
  17. 청구항 16에 있어서,The method of claim 16
    상기 복수의 이종 기본 소재들은 규소(Si)와 이산화규소(SiO2)를 포함하며,The plurality of heterogeneous basic materials include silicon (Si) and silicon dioxide (SiO 2 ),
    상기 복수의 이종 기본 소재들을 상기 제1 플라즈마 반응 공간의 상류 측 공간으로 공급하는 기본 소재 투입 단계를 더 포함하는,Further comprising a base material input step of supplying the plurality of heterogeneous base materials to an upstream space of the first plasma reaction space,
    분말 소재 합성 방법.Powder material synthesis method.
  18. 청구항 17에 있어서,The method of claim 17
    상기 제1 추가 소재는 탄소재이며,The first additional material is a carbon material,
    상기 제1 추가 소재를 상기 제1 플라즈마 반응 공간과 상기 제2 플라즈마 반응 공간 사이의 공간으로 공급하는 제1 추가 소재 투입 단계를 더 포함하는,Further comprising a first additional material inputting step of supplying the first additional material to a space between the first plasma reaction space and the second plasma reaction space,
    분말 소재 합성 방법.Powder material synthesis method.
  19. 청구항 18에 있어서,The method of claim 18
    상기 제1 추가 소재는 탄소나노튜브(CNT) 또는 탄소나노섬유(CNF)인,The first additional material is carbon nanotube (CNT) or carbon nanofiber (CNF),
    분말 소재 합성 방법.Powder material synthesis method.
  20. 청구항 18에 있어서,The method of claim 18
    상기 제2 추가 소재는 탄소재이며,The second additional material is a carbon material,
    상기 제2 추가 소재를 상기 제2 플라즈마 반응 공간과 상기 제3 플라즈마 반응 공간 사이의 공간으로 공급하는 제2 추가 소재 투입 단계를 더 포함하는,Further comprising a second additional material inputting step of supplying the second additional material to a space between the second plasma reaction space and the third plasma reaction space,
    분말 소재 합성 방법.Powder material synthesis method.
  21. 청구항 18에 있어서,The method of claim 18
    상기 제2 추가 소재는 그래핀(Graphene)인,The second additional material is graphene,
    분말 소재 합성 방법.Powder material synthesis method.
  22. 이종의 물질들이 서로 직렬로 이격되어 위치하는 복수개의 플라즈마 반응 공간들에서 각각 플라즈마 반응에 의해 합성되어서 분말 형태의 분말 합성물이 생성되는 복수의 플라즈마 합성 단계들을 포함하며,A plurality of plasma synthesis steps in which different materials are synthesized by plasma reaction in a plurality of plasma reaction spaces spaced apart from each other in series to produce a powder compound in a powder form,
    상기 복수의 플라즈마 합성 단계들은 순차적으로 수행되어서, 하나의 플라즈마 합성 단계에서 생성된 분말 합성물이 다음에 순차적으로 이어져서 수행되는 다른 플라즈마 합성 단계에서 이종의 물질과 합성되는,The plurality of plasma synthesis steps are performed sequentially, so that the powder compound produced in one plasma synthesis step is synthesized with a different material in another plasma synthesis step performed in succession to the next,
    분말 소재 합성 방법.Powder material synthesis method.
PCT/KR2022/010666 2021-09-09 2022-07-21 Powder material synthesizing apparatus and method using serial multi-stage plasma WO2023038281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0120103 2021-09-09
KR1020210120103A KR102359101B1 (en) 2021-09-09 2021-09-09 Apparatus and method for synthesizing powder material using series multistage plasma

Publications (1)

Publication Number Publication Date
WO2023038281A1 true WO2023038281A1 (en) 2023-03-16

Family

ID=80252176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010666 WO2023038281A1 (en) 2021-09-09 2022-07-21 Powder material synthesizing apparatus and method using serial multi-stage plasma

Country Status (2)

Country Link
KR (2) KR102359101B1 (en)
WO (1) WO2023038281A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359101B1 (en) * 2021-09-09 2022-02-08 주식회사 에스플러스컴텍 Apparatus and method for synthesizing powder material using series multistage plasma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667099B2 (en) * 2006-08-10 2015-02-12 コーニング インコーポレイテッド Particle synthesis equipment
KR101623343B1 (en) * 2014-09-23 2016-05-23 한국지질자원연구원 Manufacturing method for crumpled graphene-carbon nanoparticle composite using microwave plasma system, and crumpled graphene-carbon nanoparticle composite manufactured therefrom
JP6352917B2 (en) * 2013-07-30 2018-07-04 東京印刷機材トレーディング株式会社 SiOX powder manufacturing method and SiOX powder manufacturing apparatus
CN109676146A (en) * 2019-03-04 2019-04-26 孟召阳 Metal alloy powders preparation method
KR102359101B1 (en) * 2021-09-09 2022-02-08 주식회사 에스플러스컴텍 Apparatus and method for synthesizing powder material using series multistage plasma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012599B1 (en) 2018-10-01 2019-10-21 박춘성 Manufacturing Apparatus and Method of Nano Powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667099B2 (en) * 2006-08-10 2015-02-12 コーニング インコーポレイテッド Particle synthesis equipment
JP6352917B2 (en) * 2013-07-30 2018-07-04 東京印刷機材トレーディング株式会社 SiOX powder manufacturing method and SiOX powder manufacturing apparatus
KR101623343B1 (en) * 2014-09-23 2016-05-23 한국지질자원연구원 Manufacturing method for crumpled graphene-carbon nanoparticle composite using microwave plasma system, and crumpled graphene-carbon nanoparticle composite manufactured therefrom
CN109676146A (en) * 2019-03-04 2019-04-26 孟召阳 Metal alloy powders preparation method
KR102359101B1 (en) * 2021-09-09 2022-02-08 주식회사 에스플러스컴텍 Apparatus and method for synthesizing powder material using series multistage plasma

Also Published As

Publication number Publication date
KR20230037418A (en) 2023-03-16
KR102359101B1 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023038281A1 (en) Powder material synthesizing apparatus and method using serial multi-stage plasma
CN103787336B (en) The method producing high purity granular silicon
CN103972526B (en) Based on the electrification energy storage integrated apparatus of liquid metal anode Direct Carbon Fuel Cells
CN102671582A (en) Reactor and method for producing particle materials
CN102120579B (en) Method and device for efficiently and continuously smelting and purifying polysilicon with electron beams
KR101545384B1 (en) Fluidized bed reactor and process for manufacturing carbon nanostructures using same
CN112768668A (en) Lithium ion battery silicon-carbon negative electrode material and preparation process and equipment thereof
CN217016547U (en) Composite fluidized bed reactor
CN216321849U (en) Powder preparation device
CN209997611U (en) apparatus for producing nano material from liquid or gaseous precursor
CN217351493U (en) Continuous production system for producing magnesium metal
CN106495165A (en) A kind of device and method for preparing trichlorosilane with silicon tetrachloride
WO2002001927A1 (en) Plasma-chemical reactor
CN210193969U (en) Device for communicating airflow among titanium lumps during titanium sponge reduction distillation
CN113751718A (en) Method and apparatus for promoting metal powder fining
JPS61161138A (en) Plasma-utilizing chemical reactor
CN201914923U (en) Silica powder distributor for trichlorosilane synthesizer
CN108516536B (en) The preparation facilities and technique of carbon nanomaterial
CN207221845U (en) A kind of agitation mixer for producing tungsten powder
CN208561688U (en) Grating type high throughput plasma reactor
CN217120207U (en) Storage type fluidized bed reactor for producing organic silicon monomer
CN113634759B (en) High-frequency induction plasma device for preparing nano molybdenum powder
WO2022092435A1 (en) Apparatus for producing acetylene black having improved inflow structure for raw reaction material
CN110156022A (en) A kind of magnanimity prepares the method and device of silicon nano material
KR20120041940A (en) Metal silicon auto manufacturing unit using silica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE