WO2023037997A1 - Chemical reaction device and chemical reaction method - Google Patents

Chemical reaction device and chemical reaction method Download PDF

Info

Publication number
WO2023037997A1
WO2023037997A1 PCT/JP2022/033231 JP2022033231W WO2023037997A1 WO 2023037997 A1 WO2023037997 A1 WO 2023037997A1 JP 2022033231 W JP2022033231 W JP 2022033231W WO 2023037997 A1 WO2023037997 A1 WO 2023037997A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
temperature
product
raw material
flow direction
Prior art date
Application number
PCT/JP2022/033231
Other languages
French (fr)
Japanese (ja)
Inventor
健一朗 浦山
将輝 西岡
貴史 福田
Original Assignee
日本無線株式会社
日清紡ホールディングス株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本無線株式会社, 日清紡ホールディングス株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本無線株式会社
Publication of WO2023037997A1 publication Critical patent/WO2023037997A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a chemical reaction apparatus and a chemical reaction method for heating a catalyst layer to cause a chemical reaction.
  • a chemical reaction apparatus in which a chemical reaction is performed by circulating a gas in a reaction vessel in a state where a catalyst layer arranged in the reaction vessel is heated by irradiating microwaves (for example, see Patent Document 1.).
  • the object to be heated has temperature characteristics of dielectric properties and the dielectric loss factor increases as the temperature rises, when the temperature distribution occurs even if the object to be heated is a single substance, Microwaves are concentrated in high-temperature areas (hot spots are formed), and as the heating progresses, temperature variation increases, leading to thermal runaway (for example, see Non-Patent Document 1). .
  • a possible solution to such a problem is, for example, a technique in which a plurality of microwave radiation sources/oscillators are provided and the heating point of the object to be heated is moved by spatial synthesis of electromagnetic waves (for example, non-patent literature 2).
  • Non-Patent Document 2 a plurality of oscillators must be provided and the phase of each oscillator must be controlled, which not only increases the manufacturing cost of the device but also complicates the control. There's a problem.
  • This kind of temperature variation problem can also occur when you want to heat with a heater (electric heater) and have a chemical reaction within a certain temperature range.
  • a tubular reaction vessel containing a catalyst is horizontally arranged, and the outer peripheral side of the reaction vessel is heated by a heater.
  • a raw material (to-be-heated material) at room temperature is introduced from the left end port of the reaction vessel, and a reaction product generated by heating and chemical reaction in the reaction vessel is discharged from the right end port of the reaction vessel.
  • the temperature distribution is as shown in FIG.
  • an object of the present invention is to provide a chemical reaction apparatus and a chemical reaction method that can eliminate temperature variations in reaction vessels with a simple configuration.
  • the invention of claim 1 provides a chemical reaction apparatus in which a raw material is charged into a reaction vessel while a catalyst contained in the reaction vessel is heated, and a product is discharged from the reaction vessel.
  • a first flow direction in which the raw material is introduced from one end side of the reaction vessel and the product is discharged from the other end side of the reaction vessel, and the raw material is introduced from the other end side of the reaction vessel. It is characterized by comprising switching means for switching between a second flow direction in which the product is introduced and discharged from the one end side of the reaction vessel.
  • the invention according to claim 2 is the chemical reaction apparatus according to claim 1, wherein the heat from the product is transferred to at least one of the one end side and the other end side of the reaction vessel by passing the product.
  • a heat storage unit is provided for storing heat and applying heat to the raw material as the raw material passes through the heat storage unit.
  • the invention of claim 3 is characterized in that, in the chemical reaction apparatus of claim 2, the heat stored from the product and the heat given to the raw material are cold heat.
  • the invention according to claim 4 is a chemical reaction method in which raw materials are introduced into the reaction vessel while a catalyst contained in the reaction vessel is heated, and a product is discharged from the reaction vessel, wherein the raw material is subjected to the reaction.
  • the invention of claim 5 is the chemical reaction method of claim 4, wherein a heat storage unit is provided at least one of the one end side and the other end side of the reaction vessel, and the product passes through the heat storage unit. heat from the product is stored in the heat storage unit, and the heat of the heat storage unit is applied to the raw material by passing the raw material through the heat storage unit.
  • the raw material is charged from one end side of the reaction vessel and the product is discharged from the other end side, or the raw material is charged from the other end side of the reaction vessel and the product is discharged. Since it is discharged from one end side, it is possible to eliminate the temperature variation of the reaction vessel. That is, when low-temperature/room-temperature raw materials are introduced from one end of the reaction vessel and high-temperature products are discharged from the other end, one end of the reaction vessel becomes low-temperature and the other end becomes high-temperature.
  • the catalyst in the reaction vessel is evenly used, and as a result, it is possible to extend the deterioration life of the catalyst. Moreover, since it is only necessary to switch between the first flow direction and the second flow direction, it is possible to eliminate temperature variations in the reaction vessel with a simple configuration.
  • the heat storage unit provided at least one of the one end side and the other end side of the reaction vessel stores heat from the product and gives heat to the raw material.
  • the unnecessary heat of the product after the reaction is recovered in the heat storage unit, it is possible to prevent and suppress the generation of unnecessary substances due to overheating, and the recovered heat can be reused to heat the raw materials. Therefore, power consumption required for heating can be reduced.
  • FIG. 1 is a conceptual diagram showing an initial state of a chemical reactor according to Embodiment 1 of the present invention
  • FIG. FIG. 2 is a conceptual diagram showing a first flow state of the chemical reactor of FIG. 1
  • FIG. 2 is a conceptual diagram showing a second flow state of the chemical reactor of FIG. 1
  • FIG. 2 is a conceptual diagram showing an experimental device for verifying the principle of the chemical reaction device of FIG. 1
  • FIG. 5 is a diagram showing experimental results by the experimental apparatus of FIG. 4; 1.
  • It is the apparatus conceptual diagram (a) for verifying the effect of the flow direction switching by the chemical reaction apparatus of FIG. 1, and the figure (b) which shows the simulation result.
  • FIG. 2 is a diagram showing a temperature rise simulation result when the flow direction is switched by the chemical reactor of FIG.
  • FIG. 2 is a diagram showing an example of a processing flow for maximizing a power saving rate in the chemical reaction apparatus of FIG. 1;
  • FIG. 5 is a diagram showing an example of a processing flow in a chemical reactor according to Embodiment 2 of the present invention;
  • FIG. 2 is a conceptual diagram showing an experimental apparatus for verifying a chemical reactor according to Embodiment 2 of the present invention;
  • FIG. 11 is a diagram showing a temperature distribution when only fixed cycle switching is performed in the experimental apparatus of FIG. 10;
  • FIG. 11 is a diagram showing a temperature distribution when only the temperature maximum value switching is performed in the experimental apparatus of FIG. 10;
  • FIG. 11 is a diagram showing a temperature distribution when temperature maximum value switching and fixed cycle switching are used together in the experimental apparatus of FIG. 10 ;
  • FIG. 3 is a conceptual diagram showing a chemical reactor according to Embodiment 3 of the present invention
  • FIG. 15 is a conceptual diagram showing an experimental device for verifying the principle of the chemical reaction device of FIG. 14
  • FIG. 16 is a diagram showing a temperature distribution result obtained by the experimental apparatus of FIG. 15
  • FIG. 17 is a diagram showing the standard deviation of FIG. 16
  • FIG. 16 is a diagram showing the heat recovery effect of the experimental device of FIG. 15
  • FIG. 4 is a conceptual diagram showing a chemical reactor according to Embodiment 4 of the present invention
  • FIG. 2 is a conceptual diagram showing a modification of the chemical reaction device of FIG. 1; It is a conceptual diagram showing a conventional chemical reactor.
  • FIG. 22 is a diagram showing a temperature distribution by the chemical reactor of FIG. 21;
  • FIG. 1 is a conceptual diagram showing an initial state of a chemical reactor 1 according to this embodiment.
  • This chemical reaction apparatus 1 is an apparatus in which raw materials are charged into a reaction vessel 2 while a catalyst 3 contained in the reaction vessel 2 is heated, and a reaction product is discharged from the reaction vessel 2.
  • the flow of the raw materials is conventional This point will be mainly described because it is different from the apparatus of Also, in this embodiment, a case where the catalyst 3 is heated by microwave MW will be described.
  • the reaction vessel 2 is a substantially cylindrical body with both ends closed and contains the catalyst 3, and is arranged so that the axis extends laterally in a microwave heating vessel 4 equipped with a microwave MW radiation source/oscillator.
  • the catalyst 3 is a microwave heating catalyst, and is composed of a material with high absorption of microwave MW, for example, a mixture of alumina beads and silicon carbide (SiC), which is a material with high absorption of microwave MW. ing. Both ends of the reaction container 2 protrude from the microwave heating container 4 and are exposed to the outside, and heat storage materials (heat storage units) 31 and 32 are accommodated therein.
  • the heat storage materials 31 and 32 are members that store heat from the product when the product passes through and impart heat to the raw material when the raw material passes therethrough. It is configured. Furthermore, partitions 33 and 34 made of glass wool or the like are arranged between the heat storage materials 31 and 32 and the catalyst 3 .
  • a first inlet 21 and a first outlet 23 leading to the first heat storage material 31 are provided on one end side of the reaction vessel 2, and a second heat storage material 32 is provided on the other end side.
  • a communicating second inlet 22 and a second outlet 24 are provided.
  • the raw material is introduced from the first inlet 21 (one end side of the reaction vessel 2) and the product is discharged from the second outlet 24 (the other end side of the reaction vessel 2).
  • a switching means is provided for switching between the two flow directions.
  • a first input pipe 41 and a second input pipe 43 are branched from the input port 40, and a first input valve VIN1 is arranged on the input end portion 42 side of the first input pipe 41, and a second input pipe VIN1 is provided.
  • a second injection valve VIN2 is arranged on the injection end portion 44 side of the injection pipe 43 of .
  • a first discharge pipe 51 and a second discharge pipe 53 are branched from the discharge port 50, and a first discharge valve VOUT1 is disposed on the discharge end portion 52 side of the first discharge pipe 51, and a second discharge valve VOUT1 is provided.
  • a second discharge valve VOUT2 is disposed on the discharge end portion 54 side of the discharge pipe 53. As shown in FIG.
  • the input end portion 42 of the first input pipe 41 is connected and communicated with the first input port 21, the input end portion 44 of the second input pipe 43 is connected to the second input port 22, and the first The discharge end 52 of the discharge pipe 51 is connected to the first discharge port 23 , and the discharge end 54 of the second discharge pipe 53 is connected to the second discharge port 24 .
  • the first input valve VIN1 and the second discharge valve VOUT2 are opened, the second input valve VIN2 and the first discharge valve VOUT1 are closed, and the raw material is supplied from the input port 40. to form the first flow direction. That is, the raw material passes through the catalyst 3 from one end of the reaction vessel 2 via the first input valve VIN1 and the first heat storage material 31, and is discharged via the second heat storage material 32 and the second discharge valve VOUT2. It is discharged from port 50 .
  • the second input valve VIN2 and the first discharge valve VOUT1 are opened, the first input valve VIN1 and the second discharge valve VOUT2 are closed, and the material is input from the input port 40.
  • a second flow direction is then formed. That is, the raw material passes through the catalyst 3 from the other end side of the reaction vessel 2 via the second input valve VIN2 and the second heat storage material 32, and passes through the first heat storage material 31 and the first discharge valve VOUT1. It is discharged from the discharge port 50 .
  • the opening and closing of the input valves VIN1, 2 and the discharge valves VOUT1, 2 are controlled by a control unit (not shown).
  • the first flow direction and the second flow direction are switched at an appropriate timing, which will be described later, so that the temperature of the reaction vessel 2, that is, the catalyst 3 is substantially uniform over the entire length within a desired temperature range. Control. Further, switching between the first flow direction and the second flow direction is repeated a plurality of times as necessary.
  • the chemical reaction apparatus 1 having such a configuration, raw materials are charged from one end side of the reaction vessel 2 and products are discharged from the other end side, or raw materials are charged from the other end side of the reaction vessel 2 and produced Since the material is discharged from one end side, it is possible to eliminate the temperature variation of the reaction vessel 2, that is, the catalyst 3. That is, as shown in FIGS. 1 and 2, when low-temperature/room-temperature raw materials are introduced from one end of the reaction vessel 2 and high-temperature products are discharged from the other end, one end of the reaction vessel 2 becomes low-temperature and the other end side becomes hot. After that, as shown in FIG.
  • the catalyst 3 in the reaction vessel 2 is evenly used, and as a result, the deterioration life of the catalyst 3 can be extended. Moreover, since it is only necessary to switch between the first flow direction and the second flow direction, it is possible to eliminate temperature variations in the reaction vessel 2 with a simple configuration.
  • heat storage materials 31 and 32 provided at both ends of the reaction vessel 2 store heat from the product and provide heat to the raw material. That is, since unnecessary heat of the product after the reaction is recovered by the heat storage materials 31 and 32, it is possible to prevent and suppress the generation of unnecessary substances due to overheating, and the recovered heat is used to heat the raw material. It is possible to reduce power consumption required for heating.
  • FIG. 6B shows the transient calculation result of the temperature distribution in 3
  • the maximum temperature position of the reaction vessel 2 moved from the steady temperature distribution L1 in the unidirectional flow to the temperature distribution L4 after 75 seconds.
  • the formation of localized hot spots was prevented and suppressed.
  • FIG. 6(b) it is clear that temperature variations in the temperature distributions L2, L3, and L4 after reversing the flow direction are reduced as compared with the temperature distribution L1 of the unidirectional flow.
  • FIG. 7 shows the calculation result of the average temperature of the catalyst 3 when the flow direction is switched multiple times from the "unidirectional flow" state when the length of the heat storage materials 31 and 32 is 1 m.
  • a temperature rise of about 250 K was observed by switching three times, and the power saving rate ((1-(temperature rise from room temperature in unidirectional flow) / (temperature rise from room temperature in flow channel switching)) x 100%). was calculated to have an average of about 30% and a maximum of 37.5%. Further, from this figure, it can be considered that the power saving rate can be maximized by switching the flow direction at the timing CP when the differential value of the temperature rise curve becomes zero (no temperature rise).
  • FIG. 8 shows the processing flow of this temperature maximum value switching.
  • the timing is not limited to this method, the first flow direction is switched to the maximum temperature value, the second flow direction is switched at the same timing as the first flow direction, or vice versa, fixed time switching, reaction vessel 2 pressure fluctuations, changes in heater heating power, changes in resonance frequency in the case of microwave heating, and optimum times calculated by machine learning can be used.
  • the first round trip after starting flow switching is the second flow direction (REVERSE direction) state as the first extremum search process P1 as in FIG. 8 above.
  • the elapsed time ta until the heater temperature Ti reaches the temperature maximum value (extreme value) is searched.
  • the elapsed time tb until the heater temperature Tj reaches the temperature maximum value in the first flow direction (FORWARD direction) is searched.
  • the switching time is gradually shortened for each reciprocation of the flow path switching.
  • the desired time eg, set to 5-30 seconds
  • the condition for exiting this loop may be that the temperature difference between the heat storage material temperature symmetry points, which will be described later, approaches within a predetermined range.
  • the elapsed time tc until the heater temperature Tk reaches the temperature maximum value is searched, and the flow path is reversed.
  • the switching loop of maintaining the flow for the previously searched time tc is repeated until the operation is stopped.
  • FIG. 14 is a conceptual diagram showing a chemical reactor 10 according to this embodiment.
  • the heater (electric heater) 6 is used to heat the reaction vessel 2, that is, the catalyst 3, and the heating means differs from that in the first embodiment. The description is omitted by adding
  • the heater 6 is arranged so as to cover the portion (central portion) of the reaction vessel 2 containing the catalyst 3 . Also with such a configuration, the same effects as those of the first embodiment can be obtained. In other words, it is possible to reduce temperature variations over the entire length of the reaction vessel 2, extend the deterioration life of the catalyst 3, and prevent or suppress the generation of unnecessary substances due to overheating. At the same time, it is possible to reduce power consumption required for heating.
  • the curve L11 indicates the temperature change on the inlet side of the heater 6 (the left side in FIG. 15, the input side in the first flow direction), and the curve L12 indicates the temperature change on the central portion of the heater 6.
  • a curve L13 shows the temperature change on the outlet side of the heater 6 (the right side in FIG. 15, the inlet side in the second flow direction). From these figures, it was confirmed that by switching the flow direction, the temperature of the heater 6 rises over the entire length, and the standard deviation, that is, the temperature variation, is compressed to about 1/3 at maximum.
  • the average temperature of the heater 6 rises by 100 K when the air flows in one direction (FORWARD direction).
  • the temperature rose another 57K.
  • FIG. 19 is a conceptual diagram showing a chemical reactor 11 according to this embodiment. This embodiment differs from the first embodiment in that a liquid substance 70 is contained as a reactant in the reaction vessel 2 instead of the catalyst 3. The description is omitted by attaching the same reference numerals.
  • honeycomb-structured heat storage materials (heat storage units) 71 and 72 are accommodated at both ends of the reaction vessel 2 as necessary so as not to block the flow (pipe blockage).
  • pretreatment for bioethanol production from woody biomass is performed to decompose lignin, and liquid substances (woody biomass, water, organic A mixture of solvents) is heated at 200° C. to decompose lignin.
  • the reaction vessel 2 is arranged so as to extend horizontally, but it may be arranged so as to extend vertically.
  • the heat storage materials 31 and 32 are accommodated on both end sides of the reaction vessel 2, depending on the desired temperature range in which the reaction vessel 2 is to be uniformly heated, one end side or the other end side of the reaction vessel 2 may be used. can be accommodated only in
  • a three-way valve 35 as shown in FIG. 20 may be connected to the end of the reaction vessel 2 whose both ends are open to control the flow of raw materials and products.
  • the heat stored by the heat storage materials 31, 32, 71, 72 from the product and the heat given to the raw material may be cold heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Disclosed is a chemical reaction device 1 capable of eliminating variation in the temperature of a reaction container with a simple configuration, wherein raw material is put into a reaction container 2 in the state where a catalyst 3 housed in the reaction container 2 is heated, and a product is discharged from the reaction container 2. The chemical reaction device comprises a switching means for switching between a first flow direction in which the raw material is put in from one end side of the reaction container 2 and the product is discharged from the other end side of the reaction container 2 and a second flow direction in which the raw material is put in from the other end side of the reaction container 2 and the product is discharged from the one end side of the reaction container 2.

Description

化学反応装置および化学反応方法Chemical reactor and chemical reaction method
 この発明は、触媒層を加熱して化学反応を行わせる化学反応装置および化学反応方法に関する。 The present invention relates to a chemical reaction apparatus and a chemical reaction method for heating a catalyst layer to cause a chemical reaction.
 従来から、例えば、反応容器内に配置された触媒層にマイクロ波を照射して加熱した状態で、反応容器内にガスを流通させることで化学反応を行わせる化学反応装置が知られている(例えば、特許文献1参照。)。また、被加熱物には誘電特性の温度特性を有し、温度上昇に伴って誘電損率が増加する物質の場合、被加熱物が単一物質であっても温度分布が生じた際に、高温部にマイクロ波が集中し(ホットスポットが形成され)、加熱が進むに従い温度バラツキが大きくなり、強いては熱暴走に至る、という問題が知られている(例えば、非特許文献1参照。)。 Conventionally, for example, a chemical reaction apparatus is known in which a chemical reaction is performed by circulating a gas in a reaction vessel in a state where a catalyst layer arranged in the reaction vessel is heated by irradiating microwaves ( For example, see Patent Document 1.). In addition, when the object to be heated has temperature characteristics of dielectric properties and the dielectric loss factor increases as the temperature rises, when the temperature distribution occurs even if the object to be heated is a single substance, Microwaves are concentrated in high-temperature areas (hot spots are formed), and as the heating progresses, temperature variation increases, leading to thermal runaway (for example, see Non-Patent Document 1). .
 このような問題に対して、例えば、マイクロ波の放射源・発振器を複数設け、電磁波の空間合成によって被加熱物の加熱箇所を移動させる、という技術が解決策として考えられる(例えば、非特許文献2参照。)。 A possible solution to such a problem is, for example, a technique in which a plurality of microwave radiation sources/oscillators are provided and the heating point of the object to be heated is moved by spatial synthesis of electromagnetic waves (for example, non-patent literature 2).
特開2006-188397号公報JP 2006-188397 A
 しかしながら、非特許文献2に記載の技術では、複数の発振器を備え、しかも、それぞれの発振器の位相を制御しなければならず、装置の製作費が嵩むばかりでなく、制御が複雑化する、という問題がある。 However, in the technique described in Non-Patent Document 2, a plurality of oscillators must be provided and the phase of each oscillator must be controlled, which not only increases the manufacturing cost of the device but also complicates the control. There's a problem.
 このような温度バラツキの問題は、ヒーター(電熱器)で加熱してある温度範囲で化学反応させたい場合でも、同様に生じ得る。例えば、図21に示すように、触媒が収容された管状の反応容器を水平に配置し、反応容器の外周側をヒーターで加熱する。そして、室温の原料(被加熱物)を反応容器の左端口から投入し、反応容器内で加熱され化学反応して生成された反応生成物を、反応容器の右端口から排出する。この場合、例えば、反応容器の長さが70mmの場合、図22に示すような温度分布となり、反応容器の左端部と中央部と右端部とで大きな温度バラツキが生じてしまう。 This kind of temperature variation problem can also occur when you want to heat with a heater (electric heater) and have a chemical reaction within a certain temperature range. For example, as shown in FIG. 21, a tubular reaction vessel containing a catalyst is horizontally arranged, and the outer peripheral side of the reaction vessel is heated by a heater. A raw material (to-be-heated material) at room temperature is introduced from the left end port of the reaction vessel, and a reaction product generated by heating and chemical reaction in the reaction vessel is discharged from the right end port of the reaction vessel. In this case, for example, when the length of the reaction vessel is 70 mm, the temperature distribution is as shown in FIG.
 このような温度バラツキに対して、転換率の向上を図って化学反応温度を上昇(ヒーター電力を増加)させても、反応容器の長さ方向の温度ムラがあるため、転換率は頭打ち(サチュレート)してしまう。また、化学反応温度を上げ過ぎると、反応容器の高温な上段部によって過反応が生じ、不要物の生成が増加してしまう。 Even if the chemical reaction temperature is raised (heater power is increased) to improve the conversion rate, the conversion rate peaks out (saturates) due to the temperature unevenness along the length of the reaction vessel. )Resulting in. On the other hand, if the chemical reaction temperature is too high, overreaction will occur in the high-temperature upper part of the reaction vessel, resulting in increased production of unwanted substances.
 そこでこの発明は、簡易な構成で反応容器の温度バラツキを解消可能な化学反応装置および化学反応方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a chemical reaction apparatus and a chemical reaction method that can eliminate temperature variations in reaction vessels with a simple configuration.
 前記の課題を解決するために、請求項1の発明は、反応容器に収容された触媒を加熱した状態で前記反応容器内に原料を投入し、生成物を前記反応容器から排出する化学反応装置であって、前記原料を前記反応容器の一端側から投入して前記生成物を前記反応容器の他端側から排出する第1の流れ方向と、前記原料を前記反応容器の前記他端側から投入して前記生成物を前記反応容器の前記一端側から排出する第2の流れ方向とを切り替る切替手段を備える、ことを特徴とする。 In order to solve the above-mentioned problems, the invention of claim 1 provides a chemical reaction apparatus in which a raw material is charged into a reaction vessel while a catalyst contained in the reaction vessel is heated, and a product is discharged from the reaction vessel. A first flow direction in which the raw material is introduced from one end side of the reaction vessel and the product is discharged from the other end side of the reaction vessel, and the raw material is introduced from the other end side of the reaction vessel. It is characterized by comprising switching means for switching between a second flow direction in which the product is introduced and discharged from the one end side of the reaction vessel.
 請求項2の発明は、請求項1に記載の化学反応装置において、前記反応容器の前記一端側および前記他端側の少なくとも一方に、前記生成物が通過することで前記生成物からの熱を蓄え、前記原料が通過することで前記原料に熱を与える蓄熱部が設けられている、ことを特徴とする。 The invention according to claim 2 is the chemical reaction apparatus according to claim 1, wherein the heat from the product is transferred to at least one of the one end side and the other end side of the reaction vessel by passing the product. A heat storage unit is provided for storing heat and applying heat to the raw material as the raw material passes through the heat storage unit.
 請求項3の発明は、請求項2に記載の化学反応装置において、前記生成物から蓄える熱および前記原料に与える熱が冷熱である、ことを特徴とする。 The invention of claim 3 is characterized in that, in the chemical reaction apparatus of claim 2, the heat stored from the product and the heat given to the raw material are cold heat.
 請求項4の発明は、反応容器に収容された触媒を加熱した状態で前記反応容器内に原料を投入し、生成物を前記反応容器から排出する化学反応方法であって、前記原料を前記反応容器の一端側から投入して前記生成物を前記反応容器の他端側から排出する第1の流れ方向と、前記原料を前記反応容器の前記他端側から投入して前記生成物を前記反応容器の前記一端側から排出する第2の流れ方向とを切り替る、ことを特徴とする。 The invention according to claim 4 is a chemical reaction method in which raw materials are introduced into the reaction vessel while a catalyst contained in the reaction vessel is heated, and a product is discharged from the reaction vessel, wherein the raw material is subjected to the reaction. A first flow direction in which the product is discharged from the other end of the reaction vessel by charging the product from one end of the reaction vessel, and a flow direction in which the raw material is charged from the other end of the reaction vessel and the product is discharged from the reaction. It is characterized by switching between a second flow direction of discharging from the one end side of the container.
 請求項5の発明は、請求項4に記載の化学反応方法において、前記反応容器の前記一端側および前記他端側の少なくとも一方に蓄熱部を設け、前記生成物が前記蓄熱部を通過することで前記生成物からの熱を前記蓄熱部に蓄え、前記原料が前記蓄熱部を通過することで前記蓄熱部の熱を前記原料に与える、ことを特徴とする。 The invention of claim 5 is the chemical reaction method of claim 4, wherein a heat storage unit is provided at least one of the one end side and the other end side of the reaction vessel, and the product passes through the heat storage unit. heat from the product is stored in the heat storage unit, and the heat of the heat storage unit is applied to the raw material by passing the raw material through the heat storage unit.
 請求項1および請求項4の発明によれば、原料が反応容器の一端側から投入されて生成物が他端側から排出されたり、原料が反応容器の他端側から投入されて生成物が一端側から排出されたりするため、反応容器の温度バラツキを解消することが可能となる。すなわち、低温・室温の原料を反応容器の一端側から投入して高温の生成物を他端側から排出すると、反応容器の一端側が低温となり他端側が高温となる。その後、低温の原料を反応容器の他端側から投入して高温の生成物を一端側から排出することで、反応容器の一端側が昇温し他端側が降温する。このようにして、反応容器の温度バラツキが解消され、この結果、マイクロ波で加熱する場合の課題であるホットスポットの形成や熱暴走を防止、抑制することが可能となる。 According to the inventions of claims 1 and 4, the raw material is charged from one end side of the reaction vessel and the product is discharged from the other end side, or the raw material is charged from the other end side of the reaction vessel and the product is discharged. Since it is discharged from one end side, it is possible to eliminate the temperature variation of the reaction vessel. That is, when low-temperature/room-temperature raw materials are introduced from one end of the reaction vessel and high-temperature products are discharged from the other end, one end of the reaction vessel becomes low-temperature and the other end becomes high-temperature. After that, by charging the low-temperature raw material from the other end of the reaction vessel and discharging the high-temperature product from the one end, the temperature of the one end of the reaction vessel rises and the temperature of the other end decreases. In this way, temperature variations in the reaction vessel are eliminated, and as a result, it becomes possible to prevent or suppress the formation of hot spots and thermal runaway, which are problems in the case of heating with microwaves.
 また、反応容器の温度バラツキが軽減されるため、反応容器内の触媒が均等に利用され、その結果、触媒の劣化寿命を延ばすことが可能となる。しかも、第1の流れ方向と第2の流れ方向とを切り替るだけでよいため、簡易な構成で反応容器の温度バラツキを解消することが可能となる。 In addition, since the temperature variation in the reaction vessel is reduced, the catalyst in the reaction vessel is evenly used, and as a result, it is possible to extend the deterioration life of the catalyst. Moreover, since it is only necessary to switch between the first flow direction and the second flow direction, it is possible to eliminate temperature variations in the reaction vessel with a simple configuration.
 請求項2および請求項5の発明によれば、反応容器の一端側および他端側の少なくとも一方に設けられた蓄熱部によって、生成物からの熱が蓄えられるとともに原料に熱が与えられる。つまり、反応後の生成物が有する不要な熱が蓄熱部で回収されるため、過熱による不要物の生成を防止、抑制することが可能になるとともに、回収された熱が原料の加熱に再利用されるため、加熱に要する消費電力を軽減することが可能となる。 According to the inventions of claims 2 and 5, the heat storage unit provided at least one of the one end side and the other end side of the reaction vessel stores heat from the product and gives heat to the raw material. In other words, since the unnecessary heat of the product after the reaction is recovered in the heat storage unit, it is possible to prevent and suppress the generation of unnecessary substances due to overheating, and the recovered heat can be reused to heat the raw materials. Therefore, power consumption required for heating can be reduced.
この発明の実施の形態1に係る化学反応装置の初期状態を示す概念図である。1 is a conceptual diagram showing an initial state of a chemical reactor according to Embodiment 1 of the present invention; FIG. 図1の化学反応装置の第1の流れ状態を示す概念図である。FIG. 2 is a conceptual diagram showing a first flow state of the chemical reactor of FIG. 1; 図1の化学反応装置の第2の流れ状態を示す概念図である。FIG. 2 is a conceptual diagram showing a second flow state of the chemical reactor of FIG. 1; 図1の化学反応装置の原理検証を行うための実験装置を示す概念図である。FIG. 2 is a conceptual diagram showing an experimental device for verifying the principle of the chemical reaction device of FIG. 1; 図4の実験装置による実験結果を示す図である。FIG. 5 is a diagram showing experimental results by the experimental apparatus of FIG. 4; 図1の化学反応装置による流れ方向切り替えの効果を検証するための装置概念図(a)と、そのシミュレーション結果を示す図(b)である。1. It is the apparatus conceptual diagram (a) for verifying the effect of the flow direction switching by the chemical reaction apparatus of FIG. 1, and the figure (b) which shows the simulation result. 図1の化学反応装置による流れ方向切り替え時の温度上昇シミュレーション結果を示す図である。FIG. 2 is a diagram showing a temperature rise simulation result when the flow direction is switched by the chemical reactor of FIG. 1; 図1の化学反応装置において、省電力化率を最大にするための処理フロー例を示す図である。FIG. 2 is a diagram showing an example of a processing flow for maximizing a power saving rate in the chemical reaction apparatus of FIG. 1; この発明の実施の形態2に係る化学反応装置における処理フロー例を示す図である。FIG. 5 is a diagram showing an example of a processing flow in a chemical reactor according to Embodiment 2 of the present invention; この発明の実施の形態2に係る化学反応装置の検証を行うための実験装置を示す概念図である。FIG. 2 is a conceptual diagram showing an experimental apparatus for verifying a chemical reactor according to Embodiment 2 of the present invention; 図10の実験装置において固定周期切替のみを行った場合の温度分布を示す図である。FIG. 11 is a diagram showing a temperature distribution when only fixed cycle switching is performed in the experimental apparatus of FIG. 10; 図10の実験装置において温度最大値切替のみを行った場合の温度分布を示す図である。FIG. 11 is a diagram showing a temperature distribution when only the temperature maximum value switching is performed in the experimental apparatus of FIG. 10; 図10の実験装置において温度最大値切替と固定周期切替を併用した場合の温度分布を示す図である。FIG. 11 is a diagram showing a temperature distribution when temperature maximum value switching and fixed cycle switching are used together in the experimental apparatus of FIG. 10 ; この発明の実施の形態3に係る化学反応装置を示す概念図である。FIG. 3 is a conceptual diagram showing a chemical reactor according to Embodiment 3 of the present invention; 図14の化学反応装置の原理検証を行うための実験装置を示す概念図である。FIG. 15 is a conceptual diagram showing an experimental device for verifying the principle of the chemical reaction device of FIG. 14; 図15の実験装置による温度分布結果を示す図である。FIG. 16 is a diagram showing a temperature distribution result obtained by the experimental apparatus of FIG. 15; 図16の標準偏差を示す図である。FIG. 17 is a diagram showing the standard deviation of FIG. 16; 図15の実験装置による熱回収効果を示す図である。FIG. 16 is a diagram showing the heat recovery effect of the experimental device of FIG. 15; この発明の実施の形態4に係る化学反応装置を示す概念図である。FIG. 4 is a conceptual diagram showing a chemical reactor according to Embodiment 4 of the present invention; 図1の化学反応装置の変形例を示す概念図である。FIG. 2 is a conceptual diagram showing a modification of the chemical reaction device of FIG. 1; 従来の化学反応装置を示す概念図である。It is a conceptual diagram showing a conventional chemical reactor. 図21の化学反応装置による温度分布を示す図である。FIG. 22 is a diagram showing a temperature distribution by the chemical reactor of FIG. 21;
 以下、この発明を図示の実施の形態に基づいて説明する。 The present invention will be described below based on the illustrated embodiments.
 (実施の形態1)
 図1は、この実施の形態に係る化学反応装置1の初期状態を示す概念図である。この化学反応装置1は、反応容器2に収容された触媒3を加熱した状態で反応容器2内に原料を投入し、反応生成物を反応容器2から排出する装置であり、原料の流れが従来の装置とは異なるため、この点について主として説明する。また、この実施の形態では、マイクロ波MWによって触媒3を加熱する場合について説明する。
(Embodiment 1)
FIG. 1 is a conceptual diagram showing an initial state of a chemical reactor 1 according to this embodiment. This chemical reaction apparatus 1 is an apparatus in which raw materials are charged into a reaction vessel 2 while a catalyst 3 contained in the reaction vessel 2 is heated, and a reaction product is discharged from the reaction vessel 2. The flow of the raw materials is conventional This point will be mainly described because it is different from the apparatus of Also, in this embodiment, a case where the catalyst 3 is heated by microwave MW will be described.
 反応容器2は、両端が塞がれた略円筒体で触媒3が収容され、マイクロ波MWの放射源・発振器を備えたマイクロ波加熱容器4内に、軸心が横に延びるように配設されている。ここで、触媒3は、マイクロ波加熱触媒で、マイクロ波MWの吸収が高い材料、例えば、アルミナ製のビーズとマイクロ波MWの吸収が高い材料である炭化シリコン(SiC)を混合して構成されている。また、反応容器2の両端側は、マイクロ波加熱容器4から突出して外に露出し、蓄熱材(蓄熱部)31、32が収容されている。この蓄熱材31、32は、生成物が通過することで生成物からの熱を蓄え、原料が通過することで原料に熱を与える部材であり、熱容量が大きい材料、例えば、多孔質なアルミナで構成されている。さらに、蓄熱材31、32と触媒3との境には、グラスウールなどで構成された仕切り33、34が配設されている。 The reaction vessel 2 is a substantially cylindrical body with both ends closed and contains the catalyst 3, and is arranged so that the axis extends laterally in a microwave heating vessel 4 equipped with a microwave MW radiation source/oscillator. It is Here, the catalyst 3 is a microwave heating catalyst, and is composed of a material with high absorption of microwave MW, for example, a mixture of alumina beads and silicon carbide (SiC), which is a material with high absorption of microwave MW. ing. Both ends of the reaction container 2 protrude from the microwave heating container 4 and are exposed to the outside, and heat storage materials (heat storage units) 31 and 32 are accommodated therein. The heat storage materials 31 and 32 are members that store heat from the product when the product passes through and impart heat to the raw material when the raw material passes therethrough. It is configured. Furthermore, partitions 33 and 34 made of glass wool or the like are arranged between the heat storage materials 31 and 32 and the catalyst 3 .
 また、反応容器2の一端側には、第1の蓄熱材31に通じる第1の投入口21と第1の排出口23とが設けられ、他端側には、第2の蓄熱材32に通じる第2の投入口22と第2の排出口24とが設けられている。このような反応容器2に対して、原料を第1の投入口21(反応容器2の一端側)から投入して生成物を第2の排出口24(反応容器2の他端側)から排出する第1の流れ方向と、原料を第2の投入口22(反応容器2の他端側)から投入して生成物を第1の排出口23(反応容器2の一端側)から排出する第2の流れ方向とを切り替る切替手段が設けられている。 A first inlet 21 and a first outlet 23 leading to the first heat storage material 31 are provided on one end side of the reaction vessel 2, and a second heat storage material 32 is provided on the other end side. A communicating second inlet 22 and a second outlet 24 are provided. Into such a reaction vessel 2, the raw material is introduced from the first inlet 21 (one end side of the reaction vessel 2) and the product is discharged from the second outlet 24 (the other end side of the reaction vessel 2). and a first flow direction in which the raw material is introduced from the second inlet 22 (the other end side of the reaction vessel 2) and the product is discharged from the first outlet 23 (one end side of the reaction vessel 2). A switching means is provided for switching between the two flow directions.
 すなわち、投入ポート40から第1の投入管41と第2の投入管43とが分岐され、第1の投入管41の投入端部42側に第1の投入弁VIN1が配設され、第2の投入管43の投入端部44側に第2の投入弁VIN2が配設されている。また、排出ポート50から第1の排出管51と第2の排出管53とが分岐され、第1の排出管51の排出端部52側に第1の排出弁VOUT1が配設され、第2の排出管53の排出端部54側に第2の排出弁VOUT2が配設されている。また、第1の投入管41の投入端部42が第1の投入口21に接続・連通され、第2の投入管43の投入端部44が第2の投入口22に接続され、第1の排出管51の排出端部52が第1の排出口23に接続され、第2の排出管53の排出端部54が第2の排出口24に接続されている。 That is, a first input pipe 41 and a second input pipe 43 are branched from the input port 40, and a first input valve VIN1 is arranged on the input end portion 42 side of the first input pipe 41, and a second input pipe VIN1 is provided. A second injection valve VIN2 is arranged on the injection end portion 44 side of the injection pipe 43 of . A first discharge pipe 51 and a second discharge pipe 53 are branched from the discharge port 50, and a first discharge valve VOUT1 is disposed on the discharge end portion 52 side of the first discharge pipe 51, and a second discharge valve VOUT1 is provided. A second discharge valve VOUT2 is disposed on the discharge end portion 54 side of the discharge pipe 53. As shown in FIG. Also, the input end portion 42 of the first input pipe 41 is connected and communicated with the first input port 21, the input end portion 44 of the second input pipe 43 is connected to the second input port 22, and the first The discharge end 52 of the discharge pipe 51 is connected to the first discharge port 23 , and the discharge end 54 of the second discharge pipe 53 is connected to the second discharge port 24 .
 そして、図1、図2に示すように、第1の投入弁VIN1と第2の排出弁VOUT2を開けて、第2の投入弁VIN2と第1の排出弁VOUT1を閉じ、投入ポート40から原料を投入すると、第1の流れ方向が形成される。すなわち、原料が第1の投入弁VIN1および第1の蓄熱材31を介して反応容器2の一端側から触媒3を通過し、第2の蓄熱材32および第2の排出弁VOUT2を介して排出ポート50から排出される。同様に、図3に示すように、第2の投入弁VIN2と第1の排出弁VOUT1を開けて、第1の投入弁VIN1と第2の排出弁VOUT2を閉じ、投入ポート40から原料を投入すると、第2の流れ方向が形成される。すなわち、原料が第2の投入弁VIN2および第2の蓄熱材32を介して反応容器2の他端側から触媒3を通過し、第1の蓄熱材31および第1の排出弁VOUT1を介して排出ポート50から排出される。 Then, as shown in FIGS. 1 and 2, the first input valve VIN1 and the second discharge valve VOUT2 are opened, the second input valve VIN2 and the first discharge valve VOUT1 are closed, and the raw material is supplied from the input port 40. to form the first flow direction. That is, the raw material passes through the catalyst 3 from one end of the reaction vessel 2 via the first input valve VIN1 and the first heat storage material 31, and is discharged via the second heat storage material 32 and the second discharge valve VOUT2. It is discharged from port 50 . Similarly, as shown in FIG. 3, the second input valve VIN2 and the first discharge valve VOUT1 are opened, the first input valve VIN1 and the second discharge valve VOUT2 are closed, and the material is input from the input port 40. A second flow direction is then formed. That is, the raw material passes through the catalyst 3 from the other end side of the reaction vessel 2 via the second input valve VIN2 and the second heat storage material 32, and passes through the first heat storage material 31 and the first discharge valve VOUT1. It is discharged from the discharge port 50 .
 このような投入弁VIN1、2および排出弁VOUT1、2の開閉は、図示しない制御部によって制御されるようになっている。この際、第1の流れ方向と第2の流れ方向とが後述する適正なタイミングで切り替ることで、反応容器2つまり触媒3の温度が全長にわたって所望の温度範囲で略均一になるように開閉制御する。また、必要に応じて、第1の流れ方向と第2の流れ方向との切り替えを複数回繰り返し行う。 The opening and closing of the input valves VIN1, 2 and the discharge valves VOUT1, 2 are controlled by a control unit (not shown). At this time, the first flow direction and the second flow direction are switched at an appropriate timing, which will be described later, so that the temperature of the reaction vessel 2, that is, the catalyst 3 is substantially uniform over the entire length within a desired temperature range. Control. Further, switching between the first flow direction and the second flow direction is repeated a plurality of times as necessary.
 このような構成の化学反応装置1によれば、原料が反応容器2の一端側から投入されて生成物が他端側から排出されたり、原料が反応容器2の他端側から投入されて生成物が一端側から排出されたりするため、反応容器2つまり触媒3の温度バラツキを解消することが可能となる。すなわち、図1、図2に示すように、低温・室温の原料を反応容器2の一端側から投入して高温の生成物を他端側から排出すると、反応容器2の一端側が低温となり他端側が高温となる。その後、図3に示すように、低温の原料を反応容器2の他端側から投入して高温の生成物を一端側から排出することで、反応容器2の一端側が昇温し他端側が降温する。このようにして、反応容器2の温度バラツキが解消され、この結果、マイクロ波MWで加熱する場合の課題であるホットスポットの形成や熱暴走を防止、抑制することが可能となる。 According to the chemical reaction apparatus 1 having such a configuration, raw materials are charged from one end side of the reaction vessel 2 and products are discharged from the other end side, or raw materials are charged from the other end side of the reaction vessel 2 and produced Since the material is discharged from one end side, it is possible to eliminate the temperature variation of the reaction vessel 2, that is, the catalyst 3. That is, as shown in FIGS. 1 and 2, when low-temperature/room-temperature raw materials are introduced from one end of the reaction vessel 2 and high-temperature products are discharged from the other end, one end of the reaction vessel 2 becomes low-temperature and the other end side becomes hot. After that, as shown in FIG. 3, by charging the low temperature raw material from the other end side of the reaction vessel 2 and discharging the high temperature product from the one end side, the temperature of the one end side of the reaction vessel 2 is increased and the temperature of the other end side is decreased. do. In this way, the temperature variation of the reaction vessel 2 is eliminated, and as a result, it is possible to prevent and suppress the formation of hot spots and thermal runaway, which are problems in the case of heating with microwave MW.
 また、反応容器2の温度バラツキが軽減されるため、反応容器2内の触媒3が均等に利用され、その結果、触媒3の劣化寿命を延ばすことが可能となる。しかも、第1の流れ方向と第2の流れ方向とを切り替るだけでよいため、簡易な構成で反応容器2の温度バラツキを解消することが可能となる。 In addition, since the temperature variation in the reaction vessel 2 is reduced, the catalyst 3 in the reaction vessel 2 is evenly used, and as a result, the deterioration life of the catalyst 3 can be extended. Moreover, since it is only necessary to switch between the first flow direction and the second flow direction, it is possible to eliminate temperature variations in the reaction vessel 2 with a simple configuration.
 さらに、反応容器2の両端側に設けられた蓄熱材31、32によって、生成物からの熱が蓄えられるとともに原料に熱が与えられる。つまり、反応後の生成物が有する不要な熱が蓄熱材31、32で回収されるため、過熱による不要物の生成を防止、抑制することが可能になるとともに、回収された熱が原料の加熱に再利用されるため、加熱に要する消費電力を軽減することが可能となる。 Furthermore, heat storage materials 31 and 32 provided at both ends of the reaction vessel 2 store heat from the product and provide heat to the raw material. That is, since unnecessary heat of the product after the reaction is recovered by the heat storage materials 31 and 32, it is possible to prevent and suppress the generation of unnecessary substances due to overheating, and the recovered heat is used to heat the raw material. It is possible to reduce power consumption required for heating.
 次に、化学反応装置1の原理検証について説明する。まず、化学反応装置1と同等の構成である図4の実験装置(蓄熱材は一方のみ)でマイクロ波電力を一定にして加熱し、単一方向(FORWARD方向)に空気を流した場合、図5の「単方向流」で示すように、マイクロ波加熱部つまり触媒3の温度は325K上昇する。これに対して、60秒周期で空気の流れ方向をREVERSE方向に切り替えた場合、図5の「流路切替」で示すように、触媒3の温度がさらに50K上昇した。つまり、流れ方向の切り替えおよび蓄熱材による熱回収効果が確認された。 Next, the principle verification of the chemical reaction device 1 will be explained. First, in the experimental apparatus shown in FIG. 4 (with only one heat storage material), which has the same configuration as the chemical reaction apparatus 1, the microwave power is kept constant and the air is flowed in a single direction (FORWARD direction). 5, "unidirectional flow", the temperature of the microwave heating element, ie, the catalyst 3, increases by 325K. On the other hand, when the air flow direction was switched to the REVERSE direction at intervals of 60 seconds, the temperature of the catalyst 3 further increased by 50 K, as indicated by "channel switching" in FIG. In other words, the effect of switching the flow direction and heat recovery by the heat storage material was confirmed.
 また、化学反応装置1と同等の構成である図6(a)の実験装置のシミュレーションモデルにおいて、単方向流で定常状態に達してから流れ方向を反転したのちの25秒ごとの反応部(触媒3)の温度分布の過渡計算結果を図6(b)に示す。この図に示すように、単方向流での定常温度分布L1から75秒経過後の温度分布L4にわたって、反応容器2の温度最高位置が移動することが確認された。つまり、局在するホットスポットの形成が防止、抑制されていることが確認された。また、図6(b)から単方向流の温度分布L1と比較し、流れ方向反転後の温度分布L2、L3、L4は、温度バラツキが軽減されていることが明らかである。 In addition, in the simulation model of the experimental apparatus of FIG. 6A, which has the same configuration as the chemical reaction apparatus 1, the reaction part (catalyst FIG. 6B shows the transient calculation result of the temperature distribution in 3). As shown in this figure, it was confirmed that the maximum temperature position of the reaction vessel 2 moved from the steady temperature distribution L1 in the unidirectional flow to the temperature distribution L4 after 75 seconds. In other words, it was confirmed that the formation of localized hot spots was prevented and suppressed. Also, from FIG. 6(b), it is clear that temperature variations in the temperature distributions L2, L3, and L4 after reversing the flow direction are reduced as compared with the temperature distribution L1 of the unidirectional flow.
 さらに、蓄熱材31、32の長さが1mの場合において、「単方向流」の状態から流れ方向を複数回切り替えた場合の触媒3の平均温度計算結果を図7に示す。3回の切り替えによって約250Kの温度上昇が認められ、省電力化率((1-(単方向流における室温からの上昇温度)/(流路切替における室温からの上昇温度))×100%)の平均が約30%、最大が37.5%であると算出された。また、この図から、温度上昇カーブの微分値がゼロになる(温度上昇がなくなる)タイミングCPで流れ方向を切り替えると、省電力化率を最大化することが可能になると考えられる。この温度最大値切替の処理フローを図8に示す。ただし、タイミングは本方式に限定せず、第一の流れ方向は温度最大値切替とし第二の流れ方向は第一の流れ方向と同タイミングによる切替もしくはその逆の制御、固定時間切替、反応容器2の圧力変動、ヒーター加熱電力の変化、マイクロ波加熱の場合の共振周波数の変化および機械学習により算出された最適時間を用いることができる。 Further, FIG. 7 shows the calculation result of the average temperature of the catalyst 3 when the flow direction is switched multiple times from the "unidirectional flow" state when the length of the heat storage materials 31 and 32 is 1 m. A temperature rise of about 250 K was observed by switching three times, and the power saving rate ((1-(temperature rise from room temperature in unidirectional flow) / (temperature rise from room temperature in flow channel switching)) x 100%). was calculated to have an average of about 30% and a maximum of 37.5%. Further, from this figure, it can be considered that the power saving rate can be maximized by switching the flow direction at the timing CP when the differential value of the temperature rise curve becomes zero (no temperature rise). FIG. 8 shows the processing flow of this temperature maximum value switching. However, the timing is not limited to this method, the first flow direction is switched to the maximum temperature value, the second flow direction is switched at the same timing as the first flow direction, or vice versa, fixed time switching, reaction vessel 2 pressure fluctuations, changes in heater heating power, changes in resonance frequency in the case of microwave heating, and optimum times calculated by machine learning can be used.
 (実施の形態2)
 この実施の形態では、上記の温度最大値切替と切替周期が固定された固定周期切替とを併用する場合を例示する。ここで、この実施の形態では、後述する実施の形態3と同様に、加熱手段がヒーターである場合を例にして説明する。
(Embodiment 2)
This embodiment exemplifies a case in which both the maximum temperature value switching and the fixed cycle switching with a fixed switching cycle are used. Here, in this embodiment, the case where the heating means is a heater will be described as an example, as in the case of the third embodiment which will be described later.
 すなわち、図9に示すように、流路切替を開始して最初の1往復は、上記の図8と同様に、第1の極値探索プロセスP1として、第2の流れ方向(REVERSE方向)状態でヒーター温度Tiが温度最大値(極値)に至るまでの経過時間taを探索する。続いて、同様に、第2の極値探索プロセスP2として、第1の流れ方向(FORWARD方向)状態でヒーター温度Tjが温度最大値に至るまでの経過時間tbを探索する。 That is, as shown in FIG. 9, the first round trip after starting flow switching is the second flow direction (REVERSE direction) state as the first extremum search process P1 as in FIG. 8 above. , the elapsed time ta until the heater temperature Ti reaches the temperature maximum value (extreme value) is searched. Subsequently, similarly, as the second extremum search process P2, the elapsed time tb until the heater temperature Tj reaches the temperature maximum value in the first flow direction (FORWARD direction) is searched.
 次に、流路切替を開始して2往復目からは、設定最小値到達プロセスP3として、極値探索プロセスP1、P2で探索した時間ta、tbにscaling(例えば、0.7~0.9)を乗じて、流路切替の往復ごとに徐々に切替時間を短縮する、というループを切替時間が設定最小値(tminであり、反応容器の断面積、長さおよび投入する原料の流量に依存する時間、例えば、5~30秒に設定)に達するまで繰り返す。ここで、後述する蓄熱材温度対称点の温度差分が所定の範囲内に接近することを、このループを脱する条件にしてもよい。 Next, from the second round trip after the start of flow path switching, scaling (for example, 0.7 to 0.9 ), and the switching time is gradually shortened for each reciprocation of the flow path switching. Repeat until the desired time (eg, set to 5-30 seconds) is reached. Here, the condition for exiting this loop may be that the temperature difference between the heat storage material temperature symmetry points, which will be described later, approaches within a predetermined range.
 続いて、設定最小値到達プロセスP3後の最終プロセスP4では、第2の流れ方向(REVERSE方向)状態において、ヒーター温度Tkが温度最大値に至るまでの経過時間tcを探索し、流路が反転した第1の流れ方向(FORWARD方向)状態においては、先に探索した時間tcだけ流れを維持する、という切替ループを運転停止まで繰り返す。 Subsequently, in the final process P4 after the set minimum value reaching process P3, in the second flow direction (REVERSE direction), the elapsed time tc until the heater temperature Tk reaches the temperature maximum value is searched, and the flow path is reversed. In the first flow direction (FORWARD direction) state, the switching loop of maintaining the flow for the previously searched time tc is repeated until the operation is stopped.
 このように、温度最大値切替と固定周期切替とを併用することで、流路切替後に定常状態に達するまでの時間が短い、両蓄熱材の温度が左右対象になる(同等な温度分布になる)、省電力化率が高くなる、という利点を得ることが可能となる。例えば、図10に示す実験装置において固定周期切替のみ(周期15秒)を行う場合、図11に示すように、流路切替によって定常状態に達すると、両蓄熱材の温度が左右対象になる。一方、図10に示す実験装置において温度最大値切替のみを行う場合、図12に示すように、第1の流れ方向の維持時間と第2の流れ方向の維持時間とが異なってしまい、両蓄熱材の温度が左右対象にならない。 In this way, by using both the maximum temperature value switching and the fixed period switching, the time to reach a steady state after switching the flow path is short, and the temperatures of both heat storage materials become bilaterally symmetrical (equal temperature distribution ), it is possible to obtain the advantage that the power saving rate is high. For example, in the experimental apparatus shown in FIG. 10, when only fixed cycle switching (period of 15 seconds) is performed, the temperatures of both heat storage materials become bilaterally symmetrical when a steady state is reached by channel switching, as shown in FIG. On the other hand, when only the maximum temperature value is switched in the experimental apparatus shown in FIG. 10, the maintenance time in the first flow direction and the maintenance time in the second flow direction are different, Material temperature is not symmetrical.
 これに対して、図10に示す実験装置において温度最大値切替と固定周期切替とを併用する場合、図13に示すように、流路切替によって定常状態に達すると、両蓄熱材の温度が左右対象になるとともに、定常状態に達するまでの時間が短いことが確認できる。ここで、上記の極値探索プロセスP1、P2が図13中のP1、P2に該当し、設定最小値到達プロセスP3が図13中のP3に該当し、最終プロセスP4が図13中のP4に該当する。 On the other hand, in the experimental apparatus shown in FIG. 10, when the temperature maximum value switching and the fixed period switching are used together, when the steady state is reached by the flow path switching, the temperature of both heat storage materials changes left and right as shown in FIG. It can be confirmed that the time required to reach a steady state is short while being targeted. Here, the extreme value search processes P1 and P2 correspond to P1 and P2 in FIG. 13, the set minimum value reaching process P3 corresponds to P3 in FIG. 13, and the final process P4 corresponds to P4 in FIG. Applicable.
 (実施の形態3)
 図14は、この実施の形態に係る化学反応装置10を示す概念図である。この実施の形態では、ヒーター(電熱器)6によって反応容器2つまり触媒3を加熱する点で、加熱手段が実施の形態1と構成が異なり、実施の形態1と同等の構成については、同一符号を付することでその説明を省略する。
(Embodiment 3)
FIG. 14 is a conceptual diagram showing a chemical reactor 10 according to this embodiment. In this embodiment, the heater (electric heater) 6 is used to heat the reaction vessel 2, that is, the catalyst 3, and the heating means differs from that in the first embodiment. The description is omitted by adding
 すなわち、この実施の形態では、触媒3が収容された反応容器2の部分(中央部)を覆うようにヒーター6が配設されている。そして、このような構成によっても、実施の形態1と同等の効果が得られる。すなわり、反応容器2の全長にわたる温度バラツキを軽減することが可能となり、触媒3の劣化寿命を延ばすことが可能となり、さらに、過熱による不要物の生成を防止、抑制することが可能になるとともに、加熱に要する消費電力を軽減することが可能となる。 That is, in this embodiment, the heater 6 is arranged so as to cover the portion (central portion) of the reaction vessel 2 containing the catalyst 3 . Also with such a configuration, the same effects as those of the first embodiment can be obtained. In other words, it is possible to reduce temperature variations over the entire length of the reaction vessel 2, extend the deterioration life of the catalyst 3, and prevent or suppress the generation of unnecessary substances due to overheating. At the same time, it is possible to reduce power consumption required for heating.
 次に、化学反応装置10と同等の構成である図15の実験装置(蓄熱材は一方のみ)でヒーター電力を一定にして加熱し、流れ方向を切り替えた場合のヒーター6の各部の温度変化を図16に示し、その標準偏差SDを図17に示す。ここで、図16中、曲線L11は、ヒーター6の入口側(図15中の左側、第1の流れ方向の投入側)の温度変化を示し、曲線L12は、ヒーター6の中央部の温度変化を示し、曲線L13は、ヒーター6の出口側(図15中の右側、第2の流れ方向の投入側)の温度変化を示す。これらの図から、流れ方向を切り替えることでヒーター6の温度が全長にわたって上昇するとともに、温度の標準偏差つまりバラツキが最大で1/3程度に圧縮されることが確認された。 Next, the temperature change of each part of the heater 6 when the heater power is constant and the flow direction is switched in the experimental apparatus of FIG. 16 and its standard deviation SD is shown in FIG. Here, in FIG. 16, the curve L11 indicates the temperature change on the inlet side of the heater 6 (the left side in FIG. 15, the input side in the first flow direction), and the curve L12 indicates the temperature change on the central portion of the heater 6. , and a curve L13 shows the temperature change on the outlet side of the heater 6 (the right side in FIG. 15, the inlet side in the second flow direction). From these figures, it was confirmed that by switching the flow direction, the temperature of the heater 6 rises over the entire length, and the standard deviation, that is, the temperature variation, is compressed to about 1/3 at maximum.
 また、単一方向(FORWARD方向)に空気を流した場合、図18に示すように、ヒーター6の平均温度が100K上昇するのに対して、空気の流れ方向を切り替えた場合、ヒーター6の平均温度がさらに57K上昇した。つまり、流れ方向の切り替えおよび蓄熱材による熱回収効果が確認された。この場合、省電力化率は約36.3(=1-100/157)%が期待できる。 18, the average temperature of the heater 6 rises by 100 K when the air flows in one direction (FORWARD direction). The temperature rose another 57K. In other words, the effect of switching the flow direction and heat recovery by the heat storage material was confirmed. In this case, a power saving rate of about 36.3 (=1-100/157)% can be expected.
 (実施の形態4)
 図19は、この実施の形態に係る化学反応装置11を示す概念図である。この実施の形態では、触媒3に代って液体物70が反応物として反応容器2に収容されている点で、実施の形態1と構成が異なり、実施の形態1と同等の構成については、同一符号を付することでその説明を省略する。
(Embodiment 4)
FIG. 19 is a conceptual diagram showing a chemical reactor 11 according to this embodiment. This embodiment differs from the first embodiment in that a liquid substance 70 is contained as a reactant in the reaction vessel 2 instead of the catalyst 3. The description is omitted by attaching the same reference numerals.
 この実施の形態では、流れの閉塞(配管閉塞)が生じないように、必要に応じてハニカム構造の蓄熱材(蓄熱部)71、72が反応容器2の両端側に収容されている。ここで、投入ポート40から連続的に投入される液体と固体の混合物の例としては、木質バイオマスからのバイオエタノール生産用のリグニン分解前処理を行って、液体状物質(木質バイオマス、水、有機溶媒の混合物)を200℃で加熱してリグニンを分解する処理などが挙げられる。 In this embodiment, honeycomb-structured heat storage materials (heat storage units) 71 and 72 are accommodated at both ends of the reaction vessel 2 as necessary so as not to block the flow (pipe blockage). Here, as an example of the mixture of liquid and solid continuously fed from the feeding port 40, pretreatment for bioethanol production from woody biomass is performed to decompose lignin, and liquid substances (woody biomass, water, organic A mixture of solvents) is heated at 200° C. to decompose lignin.
 以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、反応容器2が横に延びるように配設されているが、上下に延びるように配設されていてもよい。また、反応容器2の両端側に蓄熱材31、32が収容されているが、反応容器2を均一に加熱したい所望の温度範囲などに応じて、反応容器2の一端側または他端側の一方のみに収容してもよい。 Although the embodiments of the present invention have been described above, the specific configuration is not limited to the above-described embodiments. Included in the invention. For example, in the above embodiment, the reaction vessel 2 is arranged so as to extend horizontally, but it may be arranged so as to extend vertically. In addition, although the heat storage materials 31 and 32 are accommodated on both end sides of the reaction vessel 2, depending on the desired temperature range in which the reaction vessel 2 is to be uniformly heated, one end side or the other end side of the reaction vessel 2 may be used. can be accommodated only in
 また、例えば、実施の形態1において、両端を開放した反応容器2の端部に、図20に示すような三方向弁35を接続し、原料および生成物の流れを制御するようにしてもよい。また、蓄熱材31、32、71、72が生成物から蓄える熱および原料に与える熱が冷熱であってもよい。 Further, for example, in Embodiment 1, a three-way valve 35 as shown in FIG. 20 may be connected to the end of the reaction vessel 2 whose both ends are open to control the flow of raw materials and products. . Also, the heat stored by the heat storage materials 31, 32, 71, 72 from the product and the heat given to the raw material may be cold heat.
 1、10、11 化学反応装置
 2    反応容器
 21、22 投入口
 23、24 排出口
 3    触媒
 31、32 蓄熱材(蓄熱部)
 4    マイクロ波加熱容器
 40   投入ポート
 41、43 投入管
 42、44 投入端部
 50   排出ポート
 51、53 排出管
 52、54 排出端部
 6    ヒーター(加熱手段)
 70   液体物
 71、72 蓄熱材(蓄熱部)
 VIN1、2 投入弁(切替手段)
 VOUT1、2 排出弁(切替手段)
 MW   マイクロ波(加熱手段)
Reference Signs List 1, 10, 11 chemical reactor 2 reaction vessel 21, 22 inlet 23, 24 outlet 3 catalyst 31, 32 heat storage material (heat storage unit)
4 Microwave heating container 40 Input port 41, 43 Input pipe 42, 44 Input end 50 Ejection port 51, 53 Ejection pipe 52, 54 Ejection end 6 Heater (heating means)
70 liquid 71, 72 heat storage material (heat storage unit)
VIN1, 2 Input valve (switching means)
VOUT1, 2 discharge valve (switching means)
MW microwave (heating means)

Claims (5)

  1.  反応容器に収容された触媒を加熱した状態で前記反応容器内に原料を投入し、生成物を前記反応容器から排出する化学反応装置であって、
     前記原料を前記反応容器の一端側から投入して前記生成物を前記反応容器の他端側から排出する第1の流れ方向と、前記原料を前記反応容器の前記他端側から投入して前記生成物を前記反応容器の前記一端側から排出する第2の流れ方向とを切り替る切替手段を備える、
    ことを特徴とする化学反応装置。
    A chemical reaction apparatus in which a raw material is put into the reaction vessel while the catalyst contained in the reaction vessel is heated, and a product is discharged from the reaction vessel,
    A first flow direction in which the raw material is charged from one end of the reaction vessel and the product is discharged from the other end of the reaction vessel, and a first flow direction in which the raw material is charged from the other end of the reaction vessel and Switching means for switching between a second flow direction in which the product is discharged from the one end side of the reaction vessel,
    A chemical reactor characterized by:
  2.  前記反応容器の前記一端側および前記他端側の少なくとも一方に、前記生成物が通過することで前記生成物からの熱を蓄え、前記原料が通過することで前記原料に熱を与える蓄熱部が設けられている、
    ことを特徴とする請求項1に記載の化学反応装置。
    At least one of the one end side and the other end side of the reaction vessel is provided with a heat storage unit that stores heat from the product when the product passes therethrough and imparts heat to the raw material when the raw material passes therethrough. provided,
    The chemical reaction apparatus according to claim 1, characterized by:
  3.  前記生成物から蓄える熱および前記原料に与える熱が冷熱である、
    ことを特徴とする請求項2に記載の化学反応装置。
    The heat stored from the product and the heat imparted to the feedstock is cold.
    3. The chemical reactor according to claim 2, characterized by:
  4.  反応容器に収容された触媒を加熱した状態で前記反応容器内に原料を投入し、生成物を前記反応容器から排出する化学反応方法であって、
     前記原料を前記反応容器の一端側から投入して前記生成物を前記反応容器の他端側から排出する第1の流れ方向と、前記原料を前記反応容器の前記他端側から投入して前記生成物を前記反応容器の前記一端側から排出する第2の流れ方向とを切り替る、
    ことを特徴とする化学反応方法。
    A chemical reaction method in which raw materials are introduced into the reaction vessel while the catalyst contained in the reaction vessel is heated, and the product is discharged from the reaction vessel,
    A first flow direction in which the raw material is charged from one end of the reaction vessel and the product is discharged from the other end of the reaction vessel, and a first flow direction in which the raw material is charged from the other end of the reaction vessel and switching between a second flow direction that discharges product from the one end of the reaction vessel;
    A chemical reaction method characterized by:
  5.  前記反応容器の前記一端側および前記他端側の少なくとも一方に蓄熱部を設け、前記生成物が前記蓄熱部を通過することで前記生成物からの熱を前記蓄熱部に蓄え、前記原料が前記蓄熱部を通過することで前記蓄熱部の熱を前記原料に与える、
    ことを特徴とする請求項4に記載の化学反応方法。
    A heat storage unit is provided on at least one of the one end side and the other end side of the reaction vessel, and heat from the product is stored in the heat storage unit as the product passes through the heat storage unit, and the raw material is supplied to the heat storage unit. applying the heat of the heat storage unit to the raw material by passing through the heat storage unit;
    5. The chemical reaction method according to claim 4, characterized in that:
PCT/JP2022/033231 2021-09-10 2022-09-05 Chemical reaction device and chemical reaction method WO2023037997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-148072 2021-09-10
JP2021148072A JP2023040881A (en) 2021-09-10 2021-09-10 Chemical reaction device and chemical reaction method

Publications (1)

Publication Number Publication Date
WO2023037997A1 true WO2023037997A1 (en) 2023-03-16

Family

ID=85507606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033231 WO2023037997A1 (en) 2021-09-10 2022-09-05 Chemical reaction device and chemical reaction method

Country Status (2)

Country Link
JP (1) JP2023040881A (en)
WO (1) WO2023037997A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998763A (en) * 1973-01-29 1974-09-18
JPS49115449U (en) * 1973-01-29 1974-10-02
JPS49116435U (en) * 1973-01-31 1974-10-04
JPS49130132U (en) * 1973-03-09 1974-11-08
JPH04326941A (en) * 1991-04-26 1992-11-16 Matsushita Electric Ind Co Ltd Catalytic cleaning apparatus and cleaning method
JPH0549859A (en) * 1991-08-20 1993-03-02 Matsushita Electric Ind Co Ltd Catalyst purifying device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998763A (en) * 1973-01-29 1974-09-18
JPS49115449U (en) * 1973-01-29 1974-10-02
JPS49116435U (en) * 1973-01-31 1974-10-04
JPS49130132U (en) * 1973-03-09 1974-11-08
JPH04326941A (en) * 1991-04-26 1992-11-16 Matsushita Electric Ind Co Ltd Catalytic cleaning apparatus and cleaning method
JPH0549859A (en) * 1991-08-20 1993-03-02 Matsushita Electric Ind Co Ltd Catalyst purifying device

Also Published As

Publication number Publication date
JP2023040881A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP5300014B2 (en) Method and apparatus for continuous microwave irradiation to fluid
JP6239031B2 (en) Gas conversion system
CN100425106C (en) Plasma-assisted decrystallization
JP6209398B2 (en) Hydrogen production apparatus and hydrogen production method
Muley et al. Microwave-assisted heterogeneous catalysis
JP4399582B2 (en) Gas heating device
WO2023037997A1 (en) Chemical reaction device and chemical reaction method
RU2729274C2 (en) Dehydration of ethylbenzene to produce styrene
CN102260774A (en) Water cooling system controlled by multiple parameters
JP2011104526A (en) Microwave reactor
Sharifvaghefi et al. Microwave vs conventional heating in hydrogen production via catalytic dry reforming of methane
Nozaki et al. Plasma enhanced C1-chemistry: towards greener methane conversion
Wang et al. Temperature evolution, atomistic hot‐spot effects and thermal runaway during microwave heating of polyacrylonitrile: A ReaxFF molecular dynamics simulation
Li et al. Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study
WO2010088878A3 (en) Apparatus in the form of a thermolysis reactor and method for operating the same in a system for the thermal decomposition of waste products and waste materials
JP2009001468A5 (en)
Yamada et al. Numerical analyses of a microwave plasma chemical vapor deposition reactor for thick diamond syntheses
US20230302421A1 (en) Direct electrical heating of catalytic reactive system
Zhou et al. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor
Ojha et al. Numerical Optimal Configuration of Microwave Electric Field in Surfaguide Plasma Source for CO 2 Conversion
WO2008100174A1 (en) Plasma energy converter and an electromagnetic reactor used for producing said converter
JP2005108449A (en) Microwave heating device
Sugimoto et al. 3P4-10 Improvement of energy conversion efficiency of thermoacoustic system by heating stack inside
US20220048003A1 (en) Process For Recovering Heat At High Temperatures In Plasma Reforming Systems
KR100457451B1 (en) preventive treatment apparatus of vapour source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE