WO2023037930A1 - Negative thermal expansion material, method for producing same, and paste - Google Patents

Negative thermal expansion material, method for producing same, and paste Download PDF

Info

Publication number
WO2023037930A1
WO2023037930A1 PCT/JP2022/032588 JP2022032588W WO2023037930A1 WO 2023037930 A1 WO2023037930 A1 WO 2023037930A1 JP 2022032588 W JP2022032588 W JP 2022032588W WO 2023037930 A1 WO2023037930 A1 WO 2023037930A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal expansion
negative thermal
hydrogen peroxide
expansion material
particles
Prior art date
Application number
PCT/JP2022/032588
Other languages
French (fr)
Japanese (ja)
Inventor
純也 深沢
透 畠
基文 犬飼
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022116580A external-priority patent/JP2023038904A/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2023037930A1 publication Critical patent/WO2023037930A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium

Definitions

  • the present invention relates to a negative thermal expansion material that has the property of shrinking with temperature rise, a method for producing the same, and a paste containing the negative thermal expansion material.
  • negative thermal expansion material a material exhibiting negative thermal expansion in which the volume decreases when heated. It is known that materials exhibiting negative thermal expansion can be used with other materials to reduce the change in thermal expansion of the material with changes in temperature.
  • Examples of materials exhibiting negative thermal expansion include ⁇ -eucryptite, zirconium tungstate (ZrW 2 O 8 ), zirconium tungstate phosphate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1- x (CN) 2 , manganese nitride, bismuth-nickel-iron oxide and the like are known.
  • the linear expansion coefficient of zirconium phosphate tungstate is -3.4 to -3.0 ppm/K in the temperature range of 0 to 400 ° C., and the negative thermal expansion is large, and the material exhibiting positive thermal expansion (hereinafter " By using it together with a positive thermal expansion material, it is possible to produce a low thermal expansion material (see, for example, Patent Documents 1 and 2).
  • Patent Documents 3 and 4 previously proposed zirconium tungsdate phosphate useful as a negative thermal expansion material.
  • a paste containing a negative thermal expansion material, a binder resin, and a flux material such as a low-melting-point glass is used, for example, for OELDs, FEDs, PDPs, FPDs such as LCDs, lighting devices using light-emitting elements such as OEL elements (OLEDs), and dye enhancement.
  • OELDs OELDs
  • FEDs FEDs
  • PDPs PDPs
  • FPDs such as LCDs
  • lighting devices using light-emitting elements such as OEL elements (OLEDs)
  • dye enhancement for OELDs, FEDs, PDPs, FPDs such as LCDs, lighting devices using light-emitting elements such as OEL elements (OLEDs), and dye enhancement.
  • Glass panels that make up electronic devices such as solar cells such as sensitive solar cells, packages for electronic components such as MEMS (Micro Electro Mechanical Systems) and optical devices, bulbs for lighting, glass members such as multi-layer glass, etc. It has been proposed to use it as a sealing
  • Propylene carbonate and the like are often used as a solvent for sealing materials and sealing material pastes (see, for example, Patent Documents 5 to 7).
  • JP-A-2005-35840 JP-A-2015-10006 Japanese Unexamined Patent Application Publication No. 2020-2000 Japanese Patent No. 6105140 JP-A-2019-94250, paragraph 0050 JP-A-2021-35895, paragraph 0054 JP 2018-90434, paragraph 0067
  • the viscosity of the paste tends to be low when propylene carbonate is used as the solvent, and a paste with a suitable viscosity is obtained.
  • the binder resin, solvent, or positive thermal expansion material mixed with the negative thermal expansion material has various properties, and phosphoric acid having various surface characteristics suitable for the properties.
  • zirconium phosphate tungstate particles are brought into contact with hydrogen peroxide and phosphorus oxoacid to stably peroxidize the particle surface.
  • surface-modified zirconium tungstate phosphate particles in which hydrogen is present are present;
  • surface-modified zirconium tungstate phosphate particles with low affinity for propylene carbonate in propylene carbonate a paste with high viscosity can be obtained. , completed the present invention.
  • the first invention provided by the present invention is a surface-modified phosphoric acid comprising at least zirconium tungstate phosphate particles and hydrogen peroxide present on the surface of the zirconium tungstate phosphate particles.
  • a negative thermal expansion material characterized by containing zirconium tungstate particles.
  • the second invention to be provided by the present invention is a contacting step of contacting zirconium tungstate phosphate particles with hydrogen peroxide and phosphorus oxoacid to obtain surface-modified zirconium tungstate phosphate particles.
  • a method for producing a negative thermal expansion material characterized by comprising:
  • a third invention provided by the present invention is a paste characterized by including the negative thermal expansion material of the first invention.
  • the negative thermal expansion material of the present invention is a surface-modified zirconium tungstate phosphate particle comprising at least zirconium tungstate phosphate particles and hydrogen peroxide present on the surface of the zirconium tungstate phosphate particles.
  • a negative thermal expansion material comprising: That is, the negative thermal expansion material of the present invention includes surface-modified zirconium tungstate phosphate particles, and the surface-modified zirconium tungstate phosphate particles are composed of at least zirconium tungstate phosphate particles, hydrogen peroxide, consists of
  • the zirconium tungstate phosphate particles according to the negative thermal expansion material of the present invention are particles whose particle surfaces are modified by the presence of hydrogen peroxide and phosphorus oxoacid on the particle surfaces. That is, the zirconium tungstate phosphate particles of the negative thermal expansion material of the present invention are raw material particles (hereinafter also referred to as raw material ZWP particles) that are brought into contact with hydrogen peroxide and phosphorus oxoacid.
  • the zirconium tungstate phosphate particles (raw material ZWP particles) of the negative thermal expansion material of the present invention are granular zirconium tungstate phosphate.
  • Zirconium tungstate phosphate is represented by the following general formula (1).
  • Zrx ( WO4 ) y ( PO4 ) z (1) (Wherein, x is 1.7 ⁇ x ⁇ 2.3, preferably 1.8 ⁇ x ⁇ 2.2, y is 0.85 ⁇ y ⁇ 1.15, preferably 0.90 ⁇ y ⁇ 1.10, and z is 1.7 ⁇ z ⁇ 2.3, preferably 1.8 ⁇ z ⁇ 2.2.)
  • the raw material ZWP particles contain elements other than P, W, Zr and O, which are elements contained in the zirconium phosphate tungstate represented by the general formula (1) ( Hereinafter, this is also referred to as "subcomponent element”.) is preferably contained.
  • subcomponent elements include alkali metal elements such as Li, Na and K, alkaline earth metal elements such as Mg, Ca, Sr and Ba, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Transition metal elements such as Y, Nb, Mo, Ag, Hf and Ta; rare earth elements such as La, Ce, Nd, Sm, Eu, Tb, Dy, Ho and Yb; Al, Zn, Ga, Cd, In and Sn , other metal elements other than transition metals such as Pb and Bi, metalloid elements such as B, Si, Ge, Sb and Te, non-metal elements such as S, halogen elements such as F, Cl, Br and I, etc. mentioned.
  • alkali metal elements such as Li, Na and K
  • alkaline earth metal elements such as Mg, Ca, Sr and Ba, Ti, V, Cr, Mn, Fe, Co, Ni, Cu
  • Transition metal elements such as Y, Nb, Mo, Ag, Hf and Ta
  • rare earth elements such as La
  • the raw material ZWP particles may contain at least one subcomponent element of Mg, Al and V.
  • the thermal expansion coefficient is It is more preferable that the raw material ZWP particles contain Mg and/or Al as subcomponent elements in terms of facilitating suppression.
  • the content of the subcomponent element in the raw material ZWP particles is preferably It is 0.1 to 3.0% by mass, more preferably 0.2 to 2.0% by mass.
  • the content of the subcomponent elements is calculated based on the total mass of the subcomponent elements.
  • the content of subcomponent elements is measured by a powder press method, a molten glass bead method, or the like, using a measuring device such as a fluorescent X-ray analyzer.
  • the negative thermal expansion property and the dispersibility and filling characteristics in the positive thermal expansion material can be further improved.
  • the content of Al element in the raw material ZWP particles is preferably 100 to 6000 ppm by mass, more preferably 1000 to 5000 ppm by mass.
  • the content of the Mg element in the raw material ZWP particles is preferably higher than that of the raw material ZWP particles in terms of having a practical linear expansion coefficient and being able to further improve dispersibility and filling characteristics. is 0.10 to 3.0% by mass, more preferably 0.22 to 2.0% by mass.
  • Raw material ZWP particles are obtained by reacting a zirconium source, a tungsten source, a phosphorus source and, if necessary, a subcomponent element source.
  • the method for producing the raw material ZWP particles is not particularly limited.
  • a method of mixing a reaction accelerator such as zirconium oxoate of phosphorus, tungsten oxide and MgO in a wet ball mill and then firing the resulting mixture for example, see JP-A-2005-35840
  • a zirconium source such as zirconium chloride, a tungsten source such as ammonium tungstate, and a phosphorus source such as ammonium oxoate of phosphorus are wet-mixed, and then the resulting mixture is A method of firing (see, for example, JP-A-2015-10006),
  • the BET specific surface area of the raw material ZWP particles is preferably 0.1 to 50 m 2 /g, more preferably 0.1 to 50 m 2 /g, in terms of ease of handling when using the negative thermal expansion material of the present invention as a filler for a positive thermal expansion material. is 0.1 to 20 m 2 /g, and the average particle size of the raw material ZWP particles is preferably 0.02 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m.
  • the average particle diameter of the raw material ZWP particles is obtained by observing any 100 raw material ZWP particles using a scanning electron microscope, measuring the maximum length of each particle, and calculating the arithmetic average value of the raw material ZWP particles. It is obtained as the average particle diameter of the particles. At this time, the maximum length means the longest length among line segments crossing the two-dimensional projection image of the particle.
  • the particle shape of the raw material ZWP particles is not particularly limited. Hereinafter, this is also referred to as “crushed”.), or a combination thereof, but the particle shape of the raw material ZWP particles has good fluidity and is easy to uniformly mix and disperse in the positive thermal expansion material.
  • a spherical shape is preferable in that it becomes
  • the negative thermal expansion material of the present invention contains surface-modified zirconium phosphate tungstate particles.
  • hydrogen peroxide is present on the surface of the zirconium tungstate phosphate particles (particles of raw material ZWP particles).
  • the amount of hydrogen peroxide present is 0.01 to 1.5 parts by mass, preferably 0.03 to 1.0 parts by mass, with respect to 100.0 parts by mass of raw material ZWP.
  • the amount of hydrogen peroxide present in the negative thermal expansion material of the present invention is within the above range, the surface of the raw material ZWP particles is efficiently coated with hydrogen peroxide.
  • the hydrogen peroxide present on the surface was left at room temperature (25 ° C.) in a closed container for 20 days or more, and then filtered in the water elution test described later. Hydrogen peroxide contained in the filtrate can be stably present on the particle surface by detecting hydrogen peroxide test paper (manufactured by Merck, product name Quantofix Peroxide 25). It is preferable from the viewpoint that the thermal expansion material has excellent storage stability.
  • the surface-modified zirconium tungstate phosphate particles are zirconium tungstate phosphate particles (particles of raw material ZWP particles). It is preferable that the oxoacid of phosphorus is present together with hydrogen peroxide on the surface of .
  • Phosphorus oxoacids include phosphoric acid (H 3 PO 4 ), phosphonic acid (H 3 PO 3 ), phosphinic acid (H 3 PO 2 ), pyrophosphoric acid (H 4 P 2 O 7 ), polyphosphoric acid, and the like. be done.
  • phosphoric acid is preferable as the phosphorus oxoacid because it is easy to handle and available at low cost.
  • the amount of phosphorus oxoacid present is 0.005 to 2.0 parts by mass, preferably 0.02 to 1.8 parts by mass, relative to 100.0 parts by mass of raw material ZWP. .
  • the abundance of the phosphorus oxoacid in the negative thermal expansion material of the present invention is within the above range, the surface of the raw material ZWP particles is efficiently coated with the phosphorus oxoacid.
  • the phosphorus oxoacid is 10.0 to 200.0 parts by mass with respect to 100.0 parts by mass of hydrogen peroxide, It is preferably 20.0 to 180.0 parts by mass. Since the abundance ratio of hydrogen peroxide and phosphorus oxo acid is within the above range, a paste having a more preferable viscosity can be obtained when propylene carbonate is used as a solvent for a paste containing a negative thermal expansion material. preferable.
  • Examples of the surface-modified zirconium tungstate phosphate particles according to the negative thermal expansion material of the present invention include contact products of zirconium tungstate phosphate particles (raw material ZWP particles) with hydrogen peroxide and phosphorus oxoacid. .
  • the method of bringing the raw material ZWP particles into contact with hydrogen peroxide and phosphorus oxoacid is not particularly limited.
  • a solution containing hydrogen peroxide and a solution containing phosphorus oxoacid are mixed.
  • a method of contacting the raw material ZWP particles with a solution containing hydrogen peroxide and phosphorus oxoacid and the like.
  • the negative thermal expansion material of the present invention preferably has an Rsp value of 0.15 or less, particularly preferably 0.05 to 0.15, which is obtained from the following formula (1) using propylene carbonate as a dispersion medium.
  • Rsp value obtained from the following formula (1) is within the above range, it becomes easy to adjust the viscosity of the paste in which the negative thermal expansion material is dispersed in propylene carbonate to an appropriate viscosity.
  • the value of Rsp is known to be an index representing the affinity and wettability to the solvent that is the dispersion medium (for example, JP 2019-67590, WO2018/116890, WO2020/091000 pamphlet etc.).
  • a large Rsp value indicates that the solvent has a high affinity for the dispersion medium and excellent wettability.
  • the raw material ZWP particles have a value of Rsp greater than 0.15, which is obtained from the above formula (1) using propylene carbonate as a dispersion medium.
  • the negative thermal expansion material of the present invention has a smaller Rsp than the raw material ZWP particles, it is considered that even if propylene carbonate is used as a solvent, a paste having an appropriate viscosity can be obtained.
  • the dispersion viscosity when the negative thermal expansion material of the present invention is mixed and dispersed in propylene carbonate is preferably 20 to 100 MPa ⁇ s, particularly preferably 20 to 80 MPa ⁇ s.
  • the paste containing the negative thermal expansion material has an appropriate viscosity.
  • the propylene carbonate dispersion viscosity test is performed by the following method.
  • 20.0 g of the negative thermal expansion material of the present invention is added to 6.0 g of propylene carbonate, and mixed for 10 minutes at a rotation speed of 2000 rpm using a mixer (for example, Awatori Mixer ARV-310 manufactured by Thinky Co., Ltd.).
  • the negative thermal expansion material of the present invention is dispersed in carbonate, and the viscosity of the resulting mixed dispersion is measured with a viscometer (for example, tuning fork viscometer SV-10 manufactured by A&D).
  • the hydrogen peroxide elution concentration of the negative thermal expansion material of the present invention is preferably 0.5 to 10 mass ppm.
  • the paste containing the negative thermal expansion material has an appropriate viscosity.
  • a water elution test is performed by the following method. First, 4.0 g of the negative thermal expansion material of the present invention is added to 10.0 mL of pure water, stirred and mixed at room temperature (25° C.) for 1 minute, and then allowed to stand at room temperature (25° C.).
  • the supernatant was filtered through a membrane filter with a diameter of 0.5 ⁇ m, and the obtained filtrate was analyzed with a hydrogen peroxide test paper (manufactured by Merck, product name: Quantofix Peroxide 25). Measure the hydrogen concentration.
  • the hydrogen peroxide concentration of the filtrate was evaluated by comparing it with a color sample in which the hydrogen peroxide concentration was changed at intervals of 0.5 mass ppm, 2 mass ppm, 5 mass ppm, 10 mass ppm and 25 mass ppm. done.
  • tungstic acid On the surface of the surface-modified zirconium tungstate phosphate particles, in addition to hydrogen peroxide and phosphorus oxoacid, tungstic acid, phosphotungstic acid, etc. may be adsorbed for the purpose of enhancing the modification effect. good.
  • the negative thermal expansion material of the present invention is mainly composed of zirconium phosphate tungstate particles, it has negative thermal expansion properties.
  • hydrogen peroxide and phosphorus oxoacid are chemically adsorbed on the surface of the zirconium tungstate phosphate particles, so the particle surface state of the zirconium tungstate phosphate particles is modified, and the affinity between the solvent, especially propylene carbonate, and the particle surface of the zirconium phosphate tungstate particles is lowered.
  • the negative thermal expansion material of the present invention is mixed and dispersed in a solvent, particularly propylene carbonate, the resulting paste has a high viscosity.
  • the interaction of hydrogen peroxide, the oxoacid of phosphorus, and the zirconium tungstate phosphate on the surface of the zirconium tungstate phosphate particles causes hydrogen peroxide to form on the surface of the zirconium tungstate phosphate particles.
  • the modified state of the particle surface of the zirconium tungstate phosphate particles by the hydrogen peroxide and the oxoacid of phosphorus is maintained.
  • the method for producing a negative thermal expansion material of the present invention comprises a contacting step of contacting zirconium tungstate phosphate particles with hydrogen peroxide and phosphorus oxoacid to obtain surface-modified zirconium tungstate phosphate particles. It is a method for producing a negative thermal expansion material characterized by the following.
  • the contacting step in the method for producing a negative thermal expansion material of the present invention is a step of bringing zirconium phosphate tungstate particles (raw material ZWP particles) into contact with hydrogen peroxide and phosphorus oxoacid.
  • the zirconium tungstate phosphate particles (raw material ZWP particles) and phosphorus oxoacid in the contact step are the same as the zirconium tungstate phosphate particles (raw material ZWP particles) and phosphorus oxoacid in the negative thermal expansion material of the present invention. be.
  • the method of contacting the zirconium tungstate phosphate particles with hydrogen peroxide and phosphorus oxoacid is not particularly limited.
  • (a) hydrogen peroxide and an aqueous solution of phosphorus oxoacid and (b) a method of contacting the raw material ZWP particles with a solution containing hydrogen peroxide and phosphorus oxoacid are preferable because the process can be simplified.
  • the raw material ZWP particles are first brought into contact with a solution containing hydrogen peroxide, and then the contact product of the raw material ZWP particles and hydrogen peroxide is recovered, and then the recovered raw material
  • a method of contacting a contact product of ZWP particles and hydrogen peroxide solution with a solution containing phosphorus oxoacid (a2) first contacting the raw material ZWP particles with a solution containing phosphorus oxoacid, and then contacting the raw material ZWP (a3)
  • the hydrogen peroxide and phosphorus oxoacid used in the contacting step are not particularly limited as long as they are industrially available. Hydrogen peroxide and phosphorus oxoacids may also be used as aqueous solutions.
  • the solution containing hydrogen peroxide and phosphorus oxoacid according to the method (b) is an aqueous solution in which hydrogen peroxide and phosphorus oxoacid are dissolved in a water solvent.
  • the water solvent may be water alone or a mixed solvent of water and a hydrophilic solvent.
  • the content of hydrogen peroxide in the solution containing hydrogen peroxide and phosphorus oxoacid according to the method (b) is preferably 10.0 to 50.0% by mass, particularly preferably 20.0 to 40.0. % by mass.
  • the content of hydrogen peroxide in the solution containing hydrogen peroxide and the oxoacid of phosphorus is within the above range, it is preferable in terms of good workability and efficient contact treatment.
  • the content of the phosphorus oxoacid in the solution containing hydrogen peroxide and the phosphorus oxoacid according to the method (b) is preferably 1.0 to 40.0% by mass, particularly preferably 5.0 to 30.0% by mass. It is 0% by mass.
  • the content of the phosphorus oxoacid in the solution containing hydrogen peroxide and the phosphorus oxoacid is within the above range, it is preferable in terms of good workability and efficient contact treatment.
  • the content ratio of hydrogen peroxide and phosphorus oxoacid in the solution containing hydrogen peroxide and phosphorus oxoacid according to the method (b) is as follows: It is preferably 70.0 to 130.0 parts by mass, particularly preferably 80.0 to 120.0 parts by mass.
  • the content ratio of hydrogen peroxide and phosphorus oxoacid in the solution containing hydrogen peroxide and phosphorus oxoacid is within the above range, it is preferable in terms of good workability and efficient contact treatment. .
  • the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide and phosphorus oxoacid. and a method of mixing.
  • the amount ratio of the raw ZWP particles and hydrogen peroxide is Hydrogen peroxide is preferably 0.01 to 1.5 parts by mass, particularly preferably 0.03 to 1.0 parts by mass.
  • the amount ratio of the raw material ZWP particles and hydrogen peroxide is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with hydrogen peroxide.
  • the amount of hydrogen peroxide does not refer to the amount of the hydrogen peroxide solution, but to the amount of hydrogen peroxide itself.
  • the amount ratio of the raw material ZWP particles and the phosphorus oxoacid is set to 100.0 parts by mass of the raw material ZWP particles.
  • the phosphorus oxoacid is preferably 0.005 to 2.0 parts by weight, particularly preferably 0.02 to 1.8 parts by weight.
  • the amount of the phosphorus oxoacid does not refer to the amount of the phosphorus oxoacid solution, but to the amount of the phosphorus oxoacid itself.
  • a solution containing hydrogen peroxide and phosphorus oxoacid is added to 100.0 parts by weight of raw material ZWP particles, preferably 0.01 to 2.5 parts by weight, particularly preferably 0.01 part by weight.
  • the contact treatment can be performed efficiently with good workability, and the material after the contact treatment can be used as it is as a negative thermal expansion material without the need for a particular drying treatment. It is preferable that
  • the solution containing hydrogen peroxide according to method (a) is an aqueous solution in which hydrogen peroxide is dissolved in an aqueous solvent
  • the solution containing phosphorus oxoacid is an aqueous solution in which phosphorus oxoacid is dissolved in an aqueous solvent.
  • the water solvent may be water alone or a mixed solvent of water and a hydrophilic solvent.
  • the content of hydrogen peroxide in the solution containing hydrogen peroxide according to method (a) is preferably 10.0 to 50.0% by mass, particularly preferably 20.0 to 40.0% by mass.
  • the content of hydrogen peroxide in the solution containing hydrogen peroxide is within the above range, it is preferable in terms of good workability and efficient contact treatment.
  • the content of the phosphorus oxoacid in the solution containing the phosphorus oxoacid according to the method (a) is preferably 1.0 to 40.0% by mass, particularly preferably 5.0 to 30.0% by mass. be.
  • the content of the phosphorus oxoacid in the solution containing the phosphorus oxoacid is within the above range, it is preferable in terms of good workability and efficient contact treatment.
  • the ratio of the hydrogen peroxide in the solution containing hydrogen peroxide and the phosphorus oxoacid in the solution containing phosphorus oxoacid according to the method (a) is, per 100.0 parts by mass of the phosphorus oxoacid, Hydrogen is preferably 70.0 to 130.0 parts by weight, particularly preferably 80.0 to 120.0 parts by weight.
  • the contact treatment can be performed efficiently with good workability. point is preferable.
  • the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide or a solution containing phosphorus oxoacid. and a method of mixing a solution containing an acid.
  • the amount ratio of the raw material ZWP particles and hydrogen peroxide when the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide is 100.0 parts by mass of raw material ZWP particles. , preferably 0.01 to 1.5 parts by mass, particularly preferably 0.03 to 1.0 parts by mass.
  • the amount ratio of the raw material ZWP particles and hydrogen peroxide is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with hydrogen peroxide.
  • the amount of hydrogen peroxide does not refer to the amount of the hydrogen peroxide solution, but to the amount of hydrogen peroxide itself.
  • the amount ratio of the raw material ZWP particles and the phosphorus oxoacid when the raw material ZWP particles are brought into contact with the solution containing the phosphorus oxoacid is The oxoacid is preferably 0.005 to 2.0 parts by weight, particularly preferably 0.02 to 1.8 parts by weight.
  • the amount ratio of the raw material ZWP particles and the phosphorus oxoacid is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with the phosphorus oxoacid.
  • the amount of the phosphorus oxoacid does not refer to the amount of the phosphorus oxoacid solution, but to the amount of the phosphorus oxoacid itself.
  • a solution containing hydrogen peroxide and a solution containing phosphorus oxoacid are added to 100.0 parts by weight of the raw material ZWP particles, and the total of them is preferably 0.05 to 5.0 mass. Parts, particularly preferably 0.1 to 4.5 parts by mass, are mixed, so that the contact treatment can be performed efficiently with good workability. It is preferable in that it can be used as it is as a negative thermal expansion material.
  • the contact product of zirconium tungsdate phosphate particles with hydrogen peroxide and phosphorus oxoacid may be powder, slurry or paste depending on the amount of solution added. It can be in the form of a liquid or a solid. Therefore, as the mixing treatment for contacting the zirconium tungsdate phosphate particles with hydrogen peroxide and the oxoacid of phosphorus, a conventional wet or dry mixing treatment is appropriately selected depending on the properties of the resulting mixture. You should go.
  • the device used for wet mixing is not particularly limited as long as a uniform mixture (contact product) can be obtained.
  • Equipment such as mills, sand grind mills, attritors and intensive agitators may be mentioned.
  • the wet mixing process is not limited to the mixing process by mechanical means exemplified above.
  • the dry mixing method it is preferable to use mechanical means because a uniform mixture can be obtained.
  • the device used for dry mixing is not particularly limited as long as a homogeneous mixture can be obtained. Blenders, V-type mixers, conical blenders, jet mills, cosmomizers, paint shakers, bead mills, ball mills and the like can be mentioned. At the laboratory level, a home-use mixer or manual work is sufficient.
  • the temperature at which the zirconium tungstate phosphate particles are brought into contact with hydrogen peroxide and phosphorus oxoacid is not particularly limited, but is often 10 to 50°C. It is preferably 20 to 40°C.
  • the temperature at which the solution containing phosphorus oxoacid or the solution containing hydrogen peroxide is brought into contact with the raw material ZWP particles is shown.
  • the time at which the zirconium phosphate tungstate particles are contacted with hydrogen peroxide and the oxoacid of phosphorus is not critical in the process, often 10 minutes. Above, preferably in 15 to 60 minutes, a satisfactory negative thermal expansion material can be obtained.
  • the time is shown when the raw material ZWP particles are brought into contact with the solution containing phosphorus oxoacid or the solution containing hydrogen peroxide.
  • the solution containing hydrogen peroxide and/or phosphorus oxoacid contains the necessary Depending on the requirements, tungstic acid, phosphotungstic acid, or the like may be contained for the purpose of enhancing the effect of modification.
  • the zirconium tungstate phosphate particles are brought into contact with the oxoacid of hydrogen peroxide and phosphorus, whereby the zirconium tungstate phosphate particles are brought into contact with the oxoacid of hydrogen peroxide and phosphorus.
  • Surface-modified zirconium tungsdate phosphate particles are obtained.
  • a suitable range of the amount of the solution containing hydrogen peroxide and phosphorus oxoacid added, or the amount of the solution containing hydrogen peroxide and the solution containing phosphorus oxoacid added In the preferred range, the amount of the solution containing hydrogen peroxide and the oxoacid of phosphorus added to the raw material ZWP particles is small, or the amount of the solution containing the solution containing hydrogen peroxide and the solution containing the oxoacid of phosphorus is small. Therefore, the properties of the contact material obtained by bringing the raw material ZWP particles into contact with the method (a) or (b) basically maintains the powder state without drying.
  • drying may be performed as necessary. Further, in the method for producing a negative thermal expansion material of the present invention, pulverization, crushing, classification, etc. may be further performed as necessary. Further, when the drying treatment is performed, the entire contact product of the zirconium tungstate phosphate particles, the hydrogen peroxide and the oxoacid of phosphorus may be dried as it is.
  • the surface of the ZWP particles is difficult to modify because the hydrogen peroxide on the surface of the particles decomposes over time after the contact.
  • the hydrogen peroxide and the phosphorus oxoacid are present in a stable state on the ZWP particle surface, and the ZWP particles Since the surface of ZWP particles is modified by chemical adsorption on the surface, it is considered that a paste having an appropriate viscosity can be obtained even when propylene carbonate is used as a solvent.
  • the negative thermal expansion material of the present invention can be used in the form of powder or paste.
  • the negative thermal expansion material of the present invention can be suitably used in a paste state containing a solvent and, if necessary, a binder resin. That is, the paste of the present invention is characterized by containing the negative thermal expansion material of the present invention.
  • the solvent used for the paste one commonly used in the technical field is used.
  • N,N'-dimethylformamide ethylene glycol, dimethyl sulfoxide, dimethyl carbonate, propylene carbonate, butyrolactone, caprolactone, N-methyl-2-pyrrolidone, butyl carbitol acetate, propylene glycol dicetate, ⁇ -terpineol, ⁇ -terpineol, ⁇ -butyl lactone, tetralin, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monobutyl,
  • the paste of the present invention can contain a binder resin as needed.
  • the binder resin one commonly used in the technical field is used.
  • the binder resin include celluloses such as nitrocellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, and propyl cellulose; polyalkylene carbonates such as polyethylene carbonate and polypropylene carbonate; methyl (meth)acrylate; Ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylic acid resins such as 2-hydroxyethyl (meth) acrylate, polyethylene glycol derivatives, polymethyl styrene, etc. These may be used singly or in combination of two or more.
  • the content of the negative thermal expansion material in the paste of the present invention is not particularly limited, but in many cases it is 1 to 99% by volume, preferably 10 to 90% by volume.
  • a paste containing the negative thermal expansion material of the present invention and further containing a flux material is suitably used, for example, as a sealing material paste or a sealing material paste.
  • a low-melting-point glass can be mentioned, and a general one in the technical field is used.
  • the content of the flack material in the paste of the present invention is not particularly limited, it is often 10 to 90% by volume, preferably 15 to 90% by volume.
  • the flux material when used as a sealing material paste, when a sealing material containing a flux material and a negative thermal expansion material is used, the flux material is 60 to 90% by volume, and the negative thermal expansion material of the present invention is 10 to 40% by volume. It is preferable to prepare the paste so that the content of the flux material and the negative thermal expansion material is 0.1 to 40% by mass of the binder resin and 5 to 40% by mass of the solvent.
  • the sealing material paste when used as a sealing material paste for multi-layer glass, can be used by incorporating glass beads known in the relevant field.
  • the paste of the present invention can further contain additives such as antifoaming agents, dispersants, coloring pigments, and thixotropy-imparting agents known in the art, if necessary.
  • the negative thermal expansion material of the present invention uses the negative thermal expansion material as it is as a powder and incorporates it into the positive thermal expansion material to form a composite material. It can also be used as an expansion or low thermal expansion material.
  • Examples of the positive thermal expansion material containing the negative thermal expansion material of the present invention include various organic compounds and inorganic compounds.
  • organic compound examples include rubber, polyolefin, polycycloolefin, polystyrene, ABS, polyacrylate, polyphenylene sulfide, phenol resin, polyamide resin, polyimide resin, epoxy resin, silicone resin, polycarbonate resin, polyethylene resin, polypropylene resin. , polyethylene terephthalate resin (PET resin) and polyvinyl chloride resin.
  • Examples of the inorganic compound include metals, alloys, silicon dioxide, graphite, sapphire, various glasses, concrete materials, and various ceramic materials.
  • the positive thermal expansion material is preferably at least one selected from metals, alloys, glasses, ceramics, rubbers and resins.
  • the addition amount of the negative thermal expansion material of the present invention can adopt a general addition amount in the technical field.
  • Example 1 100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Then, 0.40 g of the solution containing hydrogen peroxide and phosphorus oxoacid prepared above was added thereto and mixed manually for 10 minutes at room temperature (25° C.) to obtain a contact product, 25° C.) and left for 20 days in an airtight container, and this was used as a negative thermal expansion material sample.
  • Example 2 100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Then, 0.60 g of the solution containing hydrogen peroxide and phosphorus oxoacid prepared above was added thereto and mixed manually for 10 minutes at room temperature (25° C.) to obtain a contact product, 25° C.) and left for 20 days in an airtight container, and this was used as a negative thermal expansion material sample.
  • Example 3 100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Then, 0.80 g of the solution containing hydrogen peroxide and phosphorus oxoacid prepared above was added thereto and mixed manually for 10 minutes at room temperature (25° C.) to obtain a contact product, 25° C.) and left for 20 days in an airtight container, and this was used as a negative thermal expansion material sample.
  • thermomechanical measuring device TMA4000SE manufactured by NETZSCH JAPAN.
  • the measurement conditions were a nitrogen atmosphere, a load of 10 g, and a temperature range of 50°C to 250°C.
  • Rav is the reciprocal of the NMR relaxation time when pulse NMR measurement is performed with 1.0 g of the negative thermal expansion material sample dispersed in 20.0 ml of propylene carbonate, and Rb is the propylene carbonate. It is the reciprocal of the NMR relaxation time when pulse NMR measurement is performed with a blank state in which the negative thermal expansion material is not dispersed in 20.0 ml.

Abstract

The purpose of the present invention is to provide a negative thermal expansion material comprising zirconium phosphotungstate, from which a paste having a suitable viscosity can be produced when propylene carbonate is used as a solvent. The present invention is a negative thermal expansion material characterized by comprising at least surface-modified zirconium phosphotungstate particles which comprise zirconium phosphotungstate particles and hydrogen peroxide present on the surfaces of the zirconium phosphotungstate particles.

Description

負熱膨張材、その製造方法及びペーストNEGATIVE THERMAL EXPANSION MATERIAL, MANUFACTURING METHOD AND PASTE THEREOF
 本発明は、温度上昇に対して収縮する性質を有する負熱膨張材、その製造方法及び該負熱膨張材を含むペーストに関するものである。 The present invention relates to a negative thermal expansion material that has the property of shrinking with temperature rise, a method for producing the same, and a paste containing the negative thermal expansion material.
 多くの物質は温度が上昇すると、熱膨張によって長さや体積が増大する。これに対して、温めると逆に体積が小さくなる負の熱膨張を示す材料(以下「負熱膨張材」ということもある。)も知られている。負の熱膨張を示す材料は、他の材料とともに用いて、温度変化による材料の熱膨張の変化を抑制することができることが知られている。 Many substances increase in length and volume due to thermal expansion when the temperature rises. On the other hand, there is also known a material exhibiting negative thermal expansion in which the volume decreases when heated (hereinafter sometimes referred to as "negative thermal expansion material"). It is known that materials exhibiting negative thermal expansion can be used with other materials to reduce the change in thermal expansion of the material with changes in temperature.
  負の熱膨張を示す材料としては、例えば、β-ユークリプタイト、タングステン酸ジルコニウム(ZrW)、リン酸タングステン酸ジルコニウム(ZrWO(PO)、ZnCd1-x(CN)、マンガン窒化物、ビスマス・ニッケル・鉄酸化物等が知られている。 Examples of materials exhibiting negative thermal expansion include β-eucryptite, zirconium tungstate (ZrW 2 O 8 ), zirconium tungstate phosphate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1- x (CN) 2 , manganese nitride, bismuth-nickel-iron oxide and the like are known.
  リン酸タングステン酸ジルコニウムの線膨張係数は、0~400℃の温度範囲で、-3.4~-3.0ppm/Kであり負熱膨張性が大きく、正の熱膨張を示す材料(以下「正熱膨張材」ということもある。)と併用することで、低熱膨張の材料を製造することができる(例えば、特許文献1~2参照)。 The linear expansion coefficient of zirconium phosphate tungstate is -3.4 to -3.0 ppm/K in the temperature range of 0 to 400 ° C., and the negative thermal expansion is large, and the material exhibiting positive thermal expansion (hereinafter " By using it together with a positive thermal expansion material, it is possible to produce a low thermal expansion material (see, for example, Patent Documents 1 and 2).
  本発明者らも、先に負熱膨張材として有用なリン酸タングスデン酸ジルコニウムを提案した(特許文献3~4)。 The present inventors also previously proposed zirconium tungsdate phosphate useful as a negative thermal expansion material (Patent Documents 3 and 4).
 負熱膨張材、更にバインダー樹脂及び低融点ガラス等のフラックス材を含むペーストは、例えばOELD、FED、PDP、LCD等のFPD、OEL素子(OLED)等の発光素子を使用した照明装置、色素増感型太陽電池のような太陽電池等の電子デバイスを構成するガラスパネル、MEMS(Micro  Electro  Mecanical  System)や光デバイス等の電子部品のパッケージ、照明用バルブ、複層ガラスのようなガラス部材等の封着材料や封止材料として用いることが提案されている。 A paste containing a negative thermal expansion material, a binder resin, and a flux material such as a low-melting-point glass is used, for example, for OELDs, FEDs, PDPs, FPDs such as LCDs, lighting devices using light-emitting elements such as OEL elements (OLEDs), and dye enhancement. Glass panels that make up electronic devices such as solar cells such as sensitive solar cells, packages for electronic components such as MEMS (Micro Electro Mechanical Systems) and optical devices, bulbs for lighting, glass members such as multi-layer glass, etc. It has been proposed to use it as a sealing material or sealing material.
 封着材料や封止材料のペーストの溶媒としては、多くの場合プロピレンカーボネート等が用いられている(例えば、特許文献5~7等参照。)。 Propylene carbonate and the like are often used as a solvent for sealing materials and sealing material pastes (see, for example, Patent Documents 5 to 7).
特開2005-35840号公報JP-A-2005-35840 特開2015-10006号公報JP-A-2015-10006 特開2020-2000号公報Japanese Unexamined Patent Application Publication No. 2020-2000 特許第6105140号公報Japanese Patent No. 6105140 特開2019-94250号公報、0050段落JP-A-2019-94250, paragraph 0050 特開2021-35895号公報、0054段落JP-A-2021-35895, paragraph 0054 特開2018-90434号公報、0067段落JP 2018-90434, paragraph 0067
 しかしながら、リン酸タングステン酸ジルコニウムを負熱膨張材として用いた封着材料の調製において、溶媒としてプロピレンカーボネートを用いたときにペーストの粘度が低くなり易く、ペーストとして好適な粘度をもったものが得られ難いという問題があり、また、負熱膨張材と混合するバインダー樹脂、溶剤、或いは正熱膨張材料の物質は、その性状が様々であり、その性状に合った種々の表面特性を有するリン酸タングステン酸ジルコニウムを含む負熱膨張材の開発も要望されている。 However, in the preparation of a sealing material using zirconium phosphate tungstate as a negative thermal expansion material, the viscosity of the paste tends to be low when propylene carbonate is used as the solvent, and a paste with a suitable viscosity is obtained. Also, the binder resin, solvent, or positive thermal expansion material mixed with the negative thermal expansion material has various properties, and phosphoric acid having various surface characteristics suitable for the properties. There is also a demand for development of a negative thermal expansion material containing zirconium tungstate.
 従って、本発明の目的は、溶媒としてプロピレンカーボネートを用いた場合において、適度な粘度を有するペーストが得られるリン酸タングステン酸ジルコニウムを含む負熱膨張材を提供することにある。 Accordingly, it is an object of the present invention to provide a negative thermal expansion material containing zirconium phosphate tungstate that provides a paste having an appropriate viscosity when propylene carbonate is used as a solvent.
 本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、(1)リン酸タングステン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸を接触させることにより、粒子表面に安定的に過酸化水素が存在している表面改質リン酸タングステン酸ジルコニウム粒子が得られること、(2)粒子表面に過酸化水素を存在させることにより、表面改質リン酸タングステン酸ジルコニウム粒子の粒子表面とプロピレンカーボネートとの親和性が低くなること、(3)プロピレンカーボネートとの親和性が低い表面改質リン酸タングステン酸ジルコニウム粒子を、プロピレンカーボネートに分散させることにより、粘度が高いペーストが得られること等を見出し、本発明を完成するに到った。 As a result of intensive research in view of the above-mentioned circumstances, the present inventors have found that (1) zirconium phosphate tungstate particles are brought into contact with hydrogen peroxide and phosphorus oxoacid to stably peroxidize the particle surface. surface-modified zirconium tungstate phosphate particles in which hydrogen is present; (3) By dispersing surface-modified zirconium tungstate phosphate particles with low affinity for propylene carbonate in propylene carbonate, a paste with high viscosity can be obtained. , completed the present invention.
 即ち、本発明が提供する第一の発明は、少なくとも、リン酸タングステン酸ジルコニウム粒子と、該リン酸タングステン酸ジルコニウム粒子の粒子表面に存在している過酸化水素と、からなる表面改質リン酸タングステン酸ジルコニウム粒子を含むことを特徴とする負熱膨張材である。 That is, the first invention provided by the present invention is a surface-modified phosphoric acid comprising at least zirconium tungstate phosphate particles and hydrogen peroxide present on the surface of the zirconium tungstate phosphate particles. A negative thermal expansion material characterized by containing zirconium tungstate particles.
 また、本発明が提供しようとする第二の発明は、リン酸タングステン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸を接触させて、表面改質リン酸タングスデン酸ジルコニウム粒子を得る接触工程を有することを特徴とする負熱膨張材の製造方法である。 The second invention to be provided by the present invention is a contacting step of contacting zirconium tungstate phosphate particles with hydrogen peroxide and phosphorus oxoacid to obtain surface-modified zirconium tungstate phosphate particles. A method for producing a negative thermal expansion material, characterized by comprising:
 また、本発明が提供する第三の発明は、前記第一の発明の負熱膨張材を含むことを特徴とするペーストである。 A third invention provided by the present invention is a paste characterized by including the negative thermal expansion material of the first invention.
 本発明によれば、溶媒としてプロピレンカーボネートを用いた場合において、適度な粘度を有するペーストが得られるリン酸タングステン酸ジルコニウムを含む負熱膨張材を提供することができる。 According to the present invention, it is possible to provide a negative thermal expansion material containing zirconium tungstate phosphate, which gives a paste having an appropriate viscosity when propylene carbonate is used as a solvent.
 以下、本発明をその好ましい実施形態に基づいて説明する。
 本発明の負熱膨張材は、少なくとも、リン酸タングステン酸ジルコニウム粒子と、該リン酸タングステン酸ジルコニウム粒子の粒子表面に存在している過酸化水素と、からなる表面改質リン酸タングステン酸ジルコニウム粒子を含むことを特徴とする負熱膨張材である。つまり、本発明の負熱膨張材は、表面改質リン酸タングステン酸ジルコニウム粒子を含み、該表面改質リン酸タングステン酸ジルコニウム粒子は、少なくとも、リン酸タングステン酸ジルコニウム粒子と、過酸化水素と、からなる。
The present invention will be described below based on its preferred embodiments.
The negative thermal expansion material of the present invention is a surface-modified zirconium tungstate phosphate particle comprising at least zirconium tungstate phosphate particles and hydrogen peroxide present on the surface of the zirconium tungstate phosphate particles. A negative thermal expansion material comprising: That is, the negative thermal expansion material of the present invention includes surface-modified zirconium tungstate phosphate particles, and the surface-modified zirconium tungstate phosphate particles are composed of at least zirconium tungstate phosphate particles, hydrogen peroxide, consists of
 本発明の負熱膨張材に係るリン酸タングステン酸ジルコニウム粒子は、粒子表面に過酸化水素及びリンのオキソ酸を存在させることにより、粒子表面が改質される粒子である。
つまり、本発明の負熱膨張材に係るリン酸タングステン酸ジルコニウム粒子は、過酸化水素及びリンのオキソ酸と接触される原料粒子(以下、原料ZWP粒子とも記載する。)である。
The zirconium tungstate phosphate particles according to the negative thermal expansion material of the present invention are particles whose particle surfaces are modified by the presence of hydrogen peroxide and phosphorus oxoacid on the particle surfaces.
That is, the zirconium tungstate phosphate particles of the negative thermal expansion material of the present invention are raw material particles (hereinafter also referred to as raw material ZWP particles) that are brought into contact with hydrogen peroxide and phosphorus oxoacid.
 本発明の負熱膨張材に係るリン酸タングステン酸ジルコニウム粒子(原料ZWP粒子)は、粒状のリン酸タングステン酸ジルコニウムである。リン酸タングステン酸ジルコニウムは、下記一般式(1)で表されるものである。
   Zr(WO(PO   (1)
(式中、xは、1.7≦x≦2.3、好ましくは1.8≦x≦2.2であり、yは、0.85≦y≦1.15、好ましくは0.90≦y≦1.10であり、zは、1.7≦z≦2.3、好ましくは1.8≦z≦2.2である。)
The zirconium tungstate phosphate particles (raw material ZWP particles) of the negative thermal expansion material of the present invention are granular zirconium tungstate phosphate. Zirconium tungstate phosphate is represented by the following general formula (1).
Zrx ( WO4 ) y ( PO4 ) z (1)
(Wherein, x is 1.7 ≤ x ≤ 2.3, preferably 1.8 ≤ x ≤ 2.2, y is 0.85 ≤ y ≤ 1.15, preferably 0.90 ≤ y≦1.10, and z is 1.7≦z≦2.3, preferably 1.8≦z≦2.2.)
 分散性や充填特性を向上させるために、原料ZWP粒子には、一般式(1)で表されるリン酸タングステン酸ジルコニウムに含有されている元素であるP、W、Zr及びO以外の元素(以下、これを「副成分元素」ともいう。)が含有されていることが好ましい。 In order to improve the dispersibility and filling characteristics, the raw material ZWP particles contain elements other than P, W, Zr and O, which are elements contained in the zirconium phosphate tungstate represented by the general formula (1) ( Hereinafter, this is also referred to as "subcomponent element".) is preferably contained.
 副成分元素としては、例えば、Li、Na、K等のアルカリ金属元素、Mg、Ca、Sr、Ba等のアルカリ土類金属元素、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Nb、Mo、Ag、Hf、Ta等の遷移金属元素、La、Ce、Nd、Sm、Eu、Tb、Dy、Ho、Yb等の希土類元素、Al、Zn、Ga、Cd、In、Sn、Pb、Bi等の遷移金属以外の他の金属元素、B、Si、Ge、Sb、Te等の半金属元素、S等の非金属元素、F、Cl、Br、I等のハロゲン元素等が挙げられる。これらの元素は、原料ZWP粒子中に1種又は2種以上含まれていてもよい。そして、分散性や充填特性を一層向上させることができる点で、原料ZWP粒子は、Mg、Al及びVの少なくとも1種の副成分元素を含むことが好ましく、これに加えて、熱膨張係数が抑制し易くなる点で、原料ZWP粒子は、副成分元素としてMg及び/又はAlを含有することが更に好ましい。 Examples of subcomponent elements include alkali metal elements such as Li, Na and K, alkaline earth metal elements such as Mg, Ca, Sr and Ba, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Transition metal elements such as Y, Nb, Mo, Ag, Hf and Ta; rare earth elements such as La, Ce, Nd, Sm, Eu, Tb, Dy, Ho and Yb; Al, Zn, Ga, Cd, In and Sn , other metal elements other than transition metals such as Pb and Bi, metalloid elements such as B, Si, Ge, Sb and Te, non-metal elements such as S, halogen elements such as F, Cl, Br and I, etc. mentioned. One or more of these elements may be contained in the raw material ZWP particles. In order to further improve the dispersibility and filling characteristics, the raw material ZWP particles preferably contain at least one subcomponent element of Mg, Al and V. In addition, the thermal expansion coefficient is It is more preferable that the raw material ZWP particles contain Mg and/or Al as subcomponent elements in terms of facilitating suppression.
 優れた負熱膨張性を有し、且つ、分散性及び充填特性に優れたものとすることができる点で、原料ZWP粒子における副成分元素の含有量は、原料ZWP粒子に対して、好ましくは0.1~3.0質量%であり、更に好ましくは0.2~2.0質量%である。副成分元素が2種類以上含まれる場合は、副成分元素の含有量は、副成分元素の合計質量に基づいて算出される。副成分元素の含有量は、例えば、蛍光X線分析装置等の測定装置を用いて、粉末プレス法、溶融ガラスビード法等の方法で測定される。 The content of the subcomponent element in the raw material ZWP particles is preferably It is 0.1 to 3.0% by mass, more preferably 0.2 to 2.0% by mass. When two or more subcomponent elements are included, the content of the subcomponent elements is calculated based on the total mass of the subcomponent elements. The content of subcomponent elements is measured by a powder press method, a molten glass bead method, or the like, using a measuring device such as a fluorescent X-ray analyzer.
 原料ZWP粒子が副成分元素としてMg及びAlの双方を含む場合、負熱膨張性、並びに正熱膨張材への分散性及び充填特性を一層優れたものにすることができる点で、原料ZWP粒子中のAl元素の含有量は、原料ZWP粒子に対して、好ましくは100~6000質量ppm、更に好ましくは1000~5000質量ppmである。また、実用的な線膨張係数を有し、更に分散性及び充填特性を優れたものにすることができる点で、原料ZWP粒子中のMg元素の含有量は、原料ZWP粒子に対して、好ましくは0.10~3.0質量%、更に好ましくは0.22~2.0質量%である。 When the raw material ZWP particles contain both Mg and Al as subcomponent elements, the negative thermal expansion property and the dispersibility and filling characteristics in the positive thermal expansion material can be further improved. The content of Al element in the raw material ZWP particles is preferably 100 to 6000 ppm by mass, more preferably 1000 to 5000 ppm by mass. In addition, the content of the Mg element in the raw material ZWP particles is preferably higher than that of the raw material ZWP particles in terms of having a practical linear expansion coefficient and being able to further improve dispersibility and filling characteristics. is 0.10 to 3.0% by mass, more preferably 0.22 to 2.0% by mass.
 原料ZWP粒子は、ジルコニウム源、タングステン源、リン源及び必要に応じて副成分元素源を反応させることにより得られる。原料ZWP粒子の製造方法は、特に制限されず、例えば、(i)リンのオキソ酸ジルコニウム、酸化タングステン及びMgO等の反応促進剤を湿式ボールミルで混合し、次いで、得られる混合物を焼成する方法(例えば、特開2005-35840号公報参照)、(ii)塩化ジルコニウム等のジルコニウム源、タングステン酸アンモニウム等のタングステン源及びリンのオキソ酸アンモニウム等のリン源を湿式混合し、次いで、得られる混合物を焼成する方法(例えば、特開2015-10006号公報参照)、(iii)酸化ジルコニウム、酸化タングステン及びリンのオキソ酸二水素アンモニウムを含む混合物を焼成する方法(例えば、Materials Research Bulletin、44(2009)、p.2045-2049参照)、(iv)タングステン化合物、リンとジルコニウムとを含む無定形の化合物及び必要により添加される副成分元素源との混合物を反応前駆体として、該反応前駆体を焼成する方法(例えば、国際公開第2017/061402号パンフレット参照)等が挙げられる。 Raw material ZWP particles are obtained by reacting a zirconium source, a tungsten source, a phosphorus source and, if necessary, a subcomponent element source. The method for producing the raw material ZWP particles is not particularly limited. For example, (i) a method of mixing a reaction accelerator such as zirconium oxoate of phosphorus, tungsten oxide and MgO in a wet ball mill and then firing the resulting mixture ( For example, see JP-A-2005-35840), (ii) a zirconium source such as zirconium chloride, a tungsten source such as ammonium tungstate, and a phosphorus source such as ammonium oxoate of phosphorus are wet-mixed, and then the resulting mixture is A method of firing (see, for example, JP-A-2015-10006), (iii) a method of firing a mixture containing zirconium oxide, tungsten oxide, and ammonium dihydrogen oxoate of phosphorus (for example, Materials Research Bulletin, 44 (2009) , p.2045-2049), (iv) calcining a mixture of a tungsten compound, an amorphous compound containing phosphorus and zirconium, and optionally added auxiliary component element sources as a reaction precursor. (See, for example, International Publication No. 2017/061402 pamphlet).
 また、本発明の負熱膨張材を正熱膨張材に対するフィラーとして用いる際の取扱いが容易になる点で、原料ZWP粒子のBET比表面積は、好ましくは0.1~50m/g、更に好ましくは0.1~20m/gであり、また、原料ZWP粒子の平均粒子径は、好ましくは0.02~50μm、更に好ましくは0.5~30μmである。なお、原料ZWP粒子の平均粒子径は、任意の100個の原料ZWP粒子を、走査型電子顕微鏡を用いて観察し、各粒子の最大長さを測定し、それらの算術平均値を、原料ZWP粒子の平均粒子径として求められる。このとき、最大長さとは、粒子の二次元投影像を横断する線分のうち最も大きい長さをいう。 In addition, the BET specific surface area of the raw material ZWP particles is preferably 0.1 to 50 m 2 /g, more preferably 0.1 to 50 m 2 /g, in terms of ease of handling when using the negative thermal expansion material of the present invention as a filler for a positive thermal expansion material. is 0.1 to 20 m 2 /g, and the average particle size of the raw material ZWP particles is preferably 0.02 to 50 μm, more preferably 0.5 to 30 μm. In addition, the average particle diameter of the raw material ZWP particles is obtained by observing any 100 raw material ZWP particles using a scanning electron microscope, measuring the maximum length of each particle, and calculating the arithmetic average value of the raw material ZWP particles. It is obtained as the average particle diameter of the particles. At this time, the maximum length means the longest length among line segments crossing the two-dimensional projection image of the particle.
 原料ZWP粒子の粒子形状は、特に制限されるものではなく、例えば、球状、粒状、板状、鱗片状、ウィスカー状、棒状、フィラメント状、1若しくは2以上の稜線を有する不規則な砕石状(以下、これを「破砕状」ともいう。)、又はこれらの組み合わせであってもよいが、原料ZWP粒子の粒子形状は、流動性が良く、正熱膨張材に均一に混合分散させることが容易になる点で、球状が好ましい。 The particle shape of the raw material ZWP particles is not particularly limited. Hereinafter, this is also referred to as “crushed”.), or a combination thereof, but the particle shape of the raw material ZWP particles has good fluidity and is easy to uniformly mix and disperse in the positive thermal expansion material. A spherical shape is preferable in that it becomes
 本発明の負熱膨張材は、表面改質リン酸タングステン酸ジルコニウム粒子を含む。表面改質リン酸タングステン酸ジルコニウム粒子では、リン酸タングステン酸ジルコニウム粒子(原料ZWP粒子の粒子)の表面に、過酸化水素が存在している。 The negative thermal expansion material of the present invention contains surface-modified zirconium phosphate tungstate particles. In the surface-modified zirconium tungstate phosphate particles, hydrogen peroxide is present on the surface of the zirconium tungstate phosphate particles (particles of raw material ZWP particles).
 本発明の負熱膨張材において、過酸化水素の存在量は、原料ZWP100.0質量部に対し、0.01~1.5質量部、好ましくは0.03~1.0質量部である。本発明の負熱膨張材における過酸化水素の存在量が、上記範囲にあることにより、原料ZWP粒子の表面が効率良く過酸化水素により被覆される。 In the negative thermal expansion material of the present invention, the amount of hydrogen peroxide present is 0.01 to 1.5 parts by mass, preferably 0.03 to 1.0 parts by mass, with respect to 100.0 parts by mass of raw material ZWP. When the amount of hydrogen peroxide present in the negative thermal expansion material of the present invention is within the above range, the surface of the raw material ZWP particles is efficiently coated with hydrogen peroxide.
 本発明の表面改質リン酸タングステン酸ジルコニウム粒子において、表面に存在する過酸化水素は、室温(25℃)、密閉容器内で、20日以上放置した後に、後述する水溶出試験において、ろ過後にろ液に含まれる過酸化水素が、過酸化水素試験紙(メルク社製、品名Quantofix Peroxid25)で検出されることが、過酸化水素を粒子表面に安定に存在させることができ、また、該負熱膨張材が保存安定性に優れたものとなる観点から好ましい。 In the surface-modified zirconium tungstate phosphate particles of the present invention, the hydrogen peroxide present on the surface was left at room temperature (25 ° C.) in a closed container for 20 days or more, and then filtered in the water elution test described later. Hydrogen peroxide contained in the filtrate can be stably present on the particle surface by detecting hydrogen peroxide test paper (manufactured by Merck, product name Quantofix Peroxide 25). It is preferable from the viewpoint that the thermal expansion material has excellent storage stability.
 また、本発明の負熱膨張材において、保存安定性に優れた負熱膨張材とする観点から、表面改質リン酸タングステン酸ジルコニウム粒子では、リン酸タングステン酸ジルコニウム粒子(原料ZWP粒子の粒子)の表面に、リンのオキソ酸が、過酸化水素と共に存在しているものが好ましい。 In the negative thermal expansion material of the present invention, from the viewpoint of making the negative thermal expansion material excellent in storage stability, the surface-modified zirconium tungstate phosphate particles are zirconium tungstate phosphate particles (particles of raw material ZWP particles). It is preferable that the oxoacid of phosphorus is present together with hydrogen peroxide on the surface of .
 リンのオキソ酸は、リン原子に水酸基(-OH)とオキシ基(=O)とが結合した構造を有する化合物を指す。リンのオキソ酸としては、リン酸(HPO)、ホスホン酸(HPO)、ホスフィン酸(HPO)、ピロリン酸(H)、ポリリン酸等が挙げられる。これらのうち、リンのオキソ酸としては、リン酸が、取り扱い易く且つ安価に入手できる点で好ましい。 A phosphorus oxoacid refers to a compound having a structure in which a hydroxyl group (--OH) and an oxy group (=O) are bonded to a phosphorus atom. Phosphorus oxoacids include phosphoric acid (H 3 PO 4 ), phosphonic acid (H 3 PO 3 ), phosphinic acid (H 3 PO 2 ), pyrophosphoric acid (H 4 P 2 O 7 ), polyphosphoric acid, and the like. be done. Among these, phosphoric acid is preferable as the phosphorus oxoacid because it is easy to handle and available at low cost.
 本発明の負熱膨張材において、リンのオキソ酸の存在量は、原料ZWP100.0質量部に対し、0.005~2.0質量部、好ましくは0.02~1.8質量部である。本発明の負熱膨張材におけるリンのオキソ酸の存在量が、上記範囲にあることにより、原料ZWP粒子の表面が効率良くリンのオキソ酸により被覆される。 In the negative thermal expansion material of the present invention, the amount of phosphorus oxoacid present is 0.005 to 2.0 parts by mass, preferably 0.02 to 1.8 parts by mass, relative to 100.0 parts by mass of raw material ZWP. . When the abundance of the phosphorus oxoacid in the negative thermal expansion material of the present invention is within the above range, the surface of the raw material ZWP particles is efficiently coated with the phosphorus oxoacid.
 本発明の負熱膨張材における過酸化水素とリンのオキソ酸の存在割合であるが、過酸化水素100.0質量部に対し、リンのオキソ酸が、10.0~200.0質量部、好ましくは20.0~180.0質量部である。過酸化水素とリンのオキソ酸の存在割合が、上記範囲にあることにより、負熱膨張材を含有するペーストの溶媒としてプロピレンカーボネートを用いた場合に、より好ましい粘度を有するペーストが得られる点で好ましい。 Regarding the abundance ratio of hydrogen peroxide and phosphorus oxoacid in the negative thermal expansion material of the present invention, the phosphorus oxoacid is 10.0 to 200.0 parts by mass with respect to 100.0 parts by mass of hydrogen peroxide, It is preferably 20.0 to 180.0 parts by mass. Since the abundance ratio of hydrogen peroxide and phosphorus oxo acid is within the above range, a paste having a more preferable viscosity can be obtained when propylene carbonate is used as a solvent for a paste containing a negative thermal expansion material. preferable.
 本発明の負熱膨張材に係る表面改質リン酸タングステン酸ジルコニウム粒子としては、リン酸タングステン酸ジルコニウム粒子(原料ZWP粒子)と、過酸化水素及びリンのオキソ酸と、の接触物が挙げられる。 Examples of the surface-modified zirconium tungstate phosphate particles according to the negative thermal expansion material of the present invention include contact products of zirconium tungstate phosphate particles (raw material ZWP particles) with hydrogen peroxide and phosphorus oxoacid. .
 原料ZWP粒子と、過酸化水素及びリンのオキソ酸と、を接触させる方法としては、特に制限されず、例えば、(a)過酸化水素を含む溶液と、リンのオキソ酸を含む溶液と、を別々に調製し、それぞれを、原料ZWP粒子と、接触させる方法、(b)原料ZWP粒子に、過酸化水素及びリンのオキソ酸を含む溶液を接触させる方法等が挙げられる。 The method of bringing the raw material ZWP particles into contact with hydrogen peroxide and phosphorus oxoacid is not particularly limited. For example, (a) a solution containing hydrogen peroxide and a solution containing phosphorus oxoacid are mixed. (b) a method of contacting the raw material ZWP particles with a solution containing hydrogen peroxide and phosphorus oxoacid; and the like.
 本発明の負熱膨張材は、プロピレンカーボネートを分散媒として、下記計算式(1)から求められるRspの値が、好ましくは0.15以下、特に好ましくは0.05~0.15である。下記計算式(1)から求められるRspの値が、上記範囲にあることにより、負熱膨張材がプロピレンカーボネートに分散されているペーストの粘度を適切な粘度にし易くなる。 The negative thermal expansion material of the present invention preferably has an Rsp value of 0.15 or less, particularly preferably 0.05 to 0.15, which is obtained from the following formula (1) using propylene carbonate as a dispersion medium. When the value of Rsp obtained from the following formula (1) is within the above range, it becomes easy to adjust the viscosity of the paste in which the negative thermal expansion material is dispersed in propylene carbonate to an appropriate viscosity.
 計算式(1):
   Rsp=(Rav/Rb)-1   (1)
 式(1)中、Ravは、プロピレンカーボネートに負熱膨張材を分散させた状態でパルスNMR測定したときのNMR緩和時間の逆数である。Rbは、プロピレンカーボネートに負熱膨張材を分散させていない状態でパルスNMR測定したときのNMR緩和時間の逆数である。
Calculation formula (1):
Rsp = (Rav/Rb) - 1 (1)
In formula (1), Rav is the reciprocal of the NMR relaxation time when pulse NMR measurement is performed with the negative thermal expansion material dispersed in propylene carbonate. Rb is the reciprocal of the NMR relaxation time when the pulse NMR measurement is performed without dispersing the negative thermal expansion material in the propylene carbonate.
 Rspの値は、分散媒となる溶媒への親和性や濡れ性を表す指標となることが知られている(例えば、特開2019-67590号公報、WO2018/116890号パンフレット、WO2020/091000号パンフレット等参照)。このRspの値が大きいということは分散媒となる溶媒に対して親和性が高く濡れ性に優れることを示す。 The value of Rsp is known to be an index representing the affinity and wettability to the solvent that is the dispersion medium (for example, JP 2019-67590, WO2018/116890, WO2020/091000 pamphlet etc.). A large Rsp value indicates that the solvent has a high affinity for the dispersion medium and excellent wettability.
 原料ZWP粒子は、プロピレンカーボネートを分散媒として、上記計算式(1)から求められるRspの値が0.15より大きくなる。それに対して、本発明の負熱膨張材は、このRspが、原料ZWP粒子より小さいので、プロピレンカーボネートを溶媒として用いても、適度な粘度を有するペーストを得ることができるものと考えられる。 The raw material ZWP particles have a value of Rsp greater than 0.15, which is obtained from the above formula (1) using propylene carbonate as a dispersion medium. On the other hand, since the negative thermal expansion material of the present invention has a smaller Rsp than the raw material ZWP particles, it is considered that even if propylene carbonate is used as a solvent, a paste having an appropriate viscosity can be obtained.
 プロピレンカーボネート分散粘度試験において、本発明の負熱膨張材をプロピレンカーボネートに混合分散させたときの分散粘度は、好ましくは20~100MPa・s、特に好ましくは20~80MPa・sである。プロピレンカーボネート分散試験における分散粘度が、上記範囲にあることにより、負熱膨張材を含有するペーストが適度な粘度となる。なお、本発明において、プロピレンカーボネート分散粘度試験は、以下の方法にて行われる。本発明の負熱膨張材20.0gをプロピレンカーボネート6.0gに添加し、ミキサー(例えば、シンキー社製、あわとり練太郎ARV-310)を用いて、回転速度2000rpmで10分間混合し、プロピレンカーボネートに本発明の負熱膨張材を分散させ、得られる混合分散物の粘度を、粘度計(例えば、エー・アンド・デイ社製、音叉式粘度計SV-10)で測定する。 In the propylene carbonate dispersion viscosity test, the dispersion viscosity when the negative thermal expansion material of the present invention is mixed and dispersed in propylene carbonate is preferably 20 to 100 MPa·s, particularly preferably 20 to 80 MPa·s. When the dispersion viscosity in the propylene carbonate dispersion test is within the above range, the paste containing the negative thermal expansion material has an appropriate viscosity. In addition, in the present invention, the propylene carbonate dispersion viscosity test is performed by the following method. 20.0 g of the negative thermal expansion material of the present invention is added to 6.0 g of propylene carbonate, and mixed for 10 minutes at a rotation speed of 2000 rpm using a mixer (for example, Awatori Mixer ARV-310 manufactured by Thinky Co., Ltd.). The negative thermal expansion material of the present invention is dispersed in carbonate, and the viscosity of the resulting mixed dispersion is measured with a viscometer (for example, tuning fork viscometer SV-10 manufactured by A&D).
 水溶出試験において、本発明の負熱膨張材の過酸化水素溶出濃度は、好ましくは0.5~10質量ppmである。水溶出試験における過酸化水素溶出濃度が、上記範囲にあることにより、負熱膨張材を含有するペーストが適度な粘度となる。なお、本発明において、水溶出試験は、以下の方法にて行われる。先ず、本発明の負熱膨張材4.0gを純水10.0mLに添加し、室温(25℃)で1分間撹拌混合した後、室温(25℃)で静置する。次いで、20時間後に、上澄み液を口径0.5μmのメンブランフィルターでろ過し、得られるろ液を、過酸化水素試験紙(メルク社製、品名:Quantofix Peroxid25)で分析し、ろ液の過酸化水素濃度を測定する。ろ液の過酸化水素濃度の評価は、過酸化水素濃度を0.5質量ppm、2質量ppm、5質量ppm、10質量ppm及び25質量ppmの濃度間隔で変化させた色見本との対比により行われる。 In the water elution test, the hydrogen peroxide elution concentration of the negative thermal expansion material of the present invention is preferably 0.5 to 10 mass ppm. When the hydrogen peroxide elution concentration in the water elution test is within the above range, the paste containing the negative thermal expansion material has an appropriate viscosity. In addition, in this invention, a water elution test is performed by the following method. First, 4.0 g of the negative thermal expansion material of the present invention is added to 10.0 mL of pure water, stirred and mixed at room temperature (25° C.) for 1 minute, and then allowed to stand at room temperature (25° C.). After 20 hours, the supernatant was filtered through a membrane filter with a diameter of 0.5 μm, and the obtained filtrate was analyzed with a hydrogen peroxide test paper (manufactured by Merck, product name: Quantofix Peroxide 25). Measure the hydrogen concentration. The hydrogen peroxide concentration of the filtrate was evaluated by comparing it with a color sample in which the hydrogen peroxide concentration was changed at intervals of 0.5 mass ppm, 2 mass ppm, 5 mass ppm, 10 mass ppm and 25 mass ppm. done.
 表面改質リン酸タングステン酸ジルコニウム粒子の粒子表面には、過酸化水素及びリンのオキソ酸以外に、改質の効果を高めることを目的として、タングステン酸、リンタングステン酸等が吸着していてもよい。 On the surface of the surface-modified zirconium tungstate phosphate particles, in addition to hydrogen peroxide and phosphorus oxoacid, tungstic acid, phosphotungstic acid, etc. may be adsorbed for the purpose of enhancing the modification effect. good.
 本発明の負熱膨張材は、主としてリン酸タングステン酸ジルコニウム粒子により構成されているので、負熱膨張性を有する。そして、本発明の負熱膨張材は、リン酸タングステン酸ジルコニウム粒子の表面に、過酸化水素及びリンのオキソ酸が化学吸着して存在しているので、リン酸タングステン酸ジルコニウム粒子の粒子表面状態が改質され、溶媒、特にプロピレンカーボネートと、リン酸タングステン酸ジルコニウム粒子の粒子表面の親和性が低くなる。そのことにより、本発明の負熱膨張材を、溶媒、特にプロピレンカーボネートに混合及び分散させたとき、得られるペーストの粘度が高くなる。更に、本発明の負
熱膨張材では、過酸化水素、リンのオキソ酸及びリン酸タングステン酸ジルコニウム粒子表面のリン酸タングステン酸ジルコニウムの相互作用により、過酸化水素がリン酸タングステン酸ジルコニウム粒子の表面に安定的に存在することができる。そのため、本発明の負熱膨張材では、過酸化水素及びリンのオキソ酸によるリン酸タングステン酸ジルコニウム粒子の粒子表面の改質状態が保持される。
Since the negative thermal expansion material of the present invention is mainly composed of zirconium phosphate tungstate particles, it has negative thermal expansion properties. In the negative thermal expansion material of the present invention, hydrogen peroxide and phosphorus oxoacid are chemically adsorbed on the surface of the zirconium tungstate phosphate particles, so the particle surface state of the zirconium tungstate phosphate particles is modified, and the affinity between the solvent, especially propylene carbonate, and the particle surface of the zirconium phosphate tungstate particles is lowered. As a result, when the negative thermal expansion material of the present invention is mixed and dispersed in a solvent, particularly propylene carbonate, the resulting paste has a high viscosity. Furthermore, in the negative thermal expansion material of the present invention, the interaction of hydrogen peroxide, the oxoacid of phosphorus, and the zirconium tungstate phosphate on the surface of the zirconium tungstate phosphate particles causes hydrogen peroxide to form on the surface of the zirconium tungstate phosphate particles. can exist stably in Therefore, in the negative thermal expansion material of the present invention, the modified state of the particle surface of the zirconium tungstate phosphate particles by the hydrogen peroxide and the oxoacid of phosphorus is maintained.
 次いで、 本発明の負熱膨張材の製造方法について説明する。
 本発明の負熱膨張材の製造方法は、リン酸タングステン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸を接触させて、表面改質リン酸タングスデン酸ジルコニウム粒子を得る接触工程を有することを特徴とする負熱膨張材の製造方法である。
Next, a method for manufacturing the negative thermal expansion material of the present invention will be described.
The method for producing a negative thermal expansion material of the present invention comprises a contacting step of contacting zirconium tungstate phosphate particles with hydrogen peroxide and phosphorus oxoacid to obtain surface-modified zirconium tungstate phosphate particles. It is a method for producing a negative thermal expansion material characterized by the following.
 本発明の負熱膨張材の製造方法に係る接触工程は、リン酸タングステン酸ジルコニウム粒子(原料ZWP粒子)に、過酸化水素及びリンのオキソ酸を接触させる工程である。接触工程に係るリン酸タングステン酸ジルコニウム粒子(原料ZWP粒子)及びリンのオキソ酸は、本発明の負熱膨張材に係るリン酸タングステン酸ジルコニウム粒子(原料ZWP粒子)及びリンのオキソ酸と同様である。 The contacting step in the method for producing a negative thermal expansion material of the present invention is a step of bringing zirconium phosphate tungstate particles (raw material ZWP particles) into contact with hydrogen peroxide and phosphorus oxoacid. The zirconium tungstate phosphate particles (raw material ZWP particles) and phosphorus oxoacid in the contact step are the same as the zirconium tungstate phosphate particles (raw material ZWP particles) and phosphorus oxoacid in the negative thermal expansion material of the present invention. be.
 接触工程において、リン酸タングステン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸を接触させる方法としては、特に制限されず、例えば、(a)過酸化水素水と、リンのオキソ酸の水溶液と、を別々に調製し、それぞれを原料ZWP粒子と接触させる方法、(b)原料ZWP粒子に、過酸化水素及びリンのオキソ酸を含む溶液を接触させる方法等が挙げられる。これらのうち、(b)の方法が、工程が簡素化できるため好ましい。 In the contacting step, the method of contacting the zirconium tungstate phosphate particles with hydrogen peroxide and phosphorus oxoacid is not particularly limited. For example, (a) hydrogen peroxide and an aqueous solution of phosphorus oxoacid and (b) a method of contacting the raw material ZWP particles with a solution containing hydrogen peroxide and phosphorus oxoacid. Among these, the method (b) is preferable because the process can be simplified.
 (a)の方法としては、(a1)原料ZWP粒子に、先に過酸化水素を含む溶液を接触させた後、原料ZWP粒子と過酸化水素との接触物を回収し、次いで、回収した原料ZWP粒子と過酸化水素水との接触物に、リンのオキソ酸を含む溶液を接触させる方法、(a2)原料ZWP粒子に、先にリンのオキソ酸を含む溶液を接触させた後、原料ZWP粒子とリンのオキソ酸との接触物を回収し、次いで、回収した原料ZWP粒子とリンのオキソ酸との接触物に、過酸化水素を含む溶液を接触させる方法、(a3)原料ZWP粒子に、先に過酸化水素を含む溶液を接触させた後、次いで、接触物を回収することなく、原料ZWP粒子と過酸化水素水との接触物に、リンのオキソ酸を含む溶液を接触させる方法、(a4)原料ZWP粒子に、先にリンのオキソ酸を含む溶液を接触させた後、次いで、接触物を回収することなく、原料ZWP粒子とリンのオキソ酸との接触物に、過酸化水素を含む溶液を接触させる方法が挙げられる。 As the method of (a), (a1) the raw material ZWP particles are first brought into contact with a solution containing hydrogen peroxide, and then the contact product of the raw material ZWP particles and hydrogen peroxide is recovered, and then the recovered raw material A method of contacting a contact product of ZWP particles and hydrogen peroxide solution with a solution containing phosphorus oxoacid, (a2) first contacting the raw material ZWP particles with a solution containing phosphorus oxoacid, and then contacting the raw material ZWP (a3) A method of collecting a contact product of the particles and the phosphorus oxoacid, and then bringing a solution containing hydrogen peroxide into contact with the collected raw ZWP particles and the phosphorus oxoacid contact product, (a3) to the raw ZWP particles; A method of first contacting a solution containing hydrogen peroxide and then contacting the contact product of the raw material ZWP particles and the hydrogen peroxide solution with a solution containing phosphorus oxo acid without recovering the contact product. , (a4) After first contacting the raw material ZWP particles with a solution containing phosphorus oxoacid, the contact material of the raw material ZWP particles and the phosphorus oxoacid is then subjected to peroxide without recovering the contact material. A method of contacting a solution containing hydrogen can be mentioned.
 接触工程に用いる過酸化水素及びリンのオキソ酸は、工業的に入手できるものであれば、特に制限されない。また、過酸化水素及びリンのオキソ酸は、水溶液として用いられてもよい。 The hydrogen peroxide and phosphorus oxoacid used in the contacting step are not particularly limited as long as they are industrially available. Hydrogen peroxide and phosphorus oxoacids may also be used as aqueous solutions.
 (b)の方法に係る過酸化水素及びリンのオキソ酸を含む溶液は、過酸化水素及びリンのオキソ酸を水溶媒に溶解した水溶液である。なお、水溶媒は、水単独でも、水と親水性溶媒との混合溶媒であってよい。 The solution containing hydrogen peroxide and phosphorus oxoacid according to the method (b) is an aqueous solution in which hydrogen peroxide and phosphorus oxoacid are dissolved in a water solvent. The water solvent may be water alone or a mixed solvent of water and a hydrophilic solvent.
 (b)の方法に係る過酸化水素及びリンのオキソ酸を含む溶液中の過酸化水素の含有量は、好ましくは10.0~50.0質量%、特に好ましくは20.0~40.0質量%である。過酸化水素及びリンのオキソ酸を含む溶液中の過酸化水素の含有量が、上記範囲にあることにより、作業性が良く効率的に接触処理を行うことができる点で好ましい。 The content of hydrogen peroxide in the solution containing hydrogen peroxide and phosphorus oxoacid according to the method (b) is preferably 10.0 to 50.0% by mass, particularly preferably 20.0 to 40.0. % by mass. When the content of hydrogen peroxide in the solution containing hydrogen peroxide and the oxoacid of phosphorus is within the above range, it is preferable in terms of good workability and efficient contact treatment.
 (b)の方法に係る過酸化水素及びリンのオキソ酸を含む溶液中のリンのオキソ酸の含有量は、好ましくは1.0~40.0質量%、特に好ましくは5.0~30.0質量%である。過酸化水素及びリンのオキソ酸を含む溶液中のリンのオキソ酸の含有量が、上記範囲にあることにより、作業性が良く効率的に接触処理を行うことができる点で好ましい。 The content of the phosphorus oxoacid in the solution containing hydrogen peroxide and the phosphorus oxoacid according to the method (b) is preferably 1.0 to 40.0% by mass, particularly preferably 5.0 to 30.0% by mass. It is 0% by mass. When the content of the phosphorus oxoacid in the solution containing hydrogen peroxide and the phosphorus oxoacid is within the above range, it is preferable in terms of good workability and efficient contact treatment.
 (b)の方法に係る過酸化水素及びリンのオキソ酸を含む溶液中の過酸化水素とリンのオキソ酸の含有割合は、リンのオキソ酸100.0質量部に対して過酸化水素が、好ましくは70.0~130.0質量部、特に好ましくは80.0~120.0質量部である。過酸化水素及びリンのオキソ酸を含む溶液中の過酸化水素とリンのオキソ酸の含有割合が、上記範囲にあることにより、作業性が良く効率的に接触処理を行うことができる点で好ましい。 The content ratio of hydrogen peroxide and phosphorus oxoacid in the solution containing hydrogen peroxide and phosphorus oxoacid according to the method (b) is as follows: It is preferably 70.0 to 130.0 parts by mass, particularly preferably 80.0 to 120.0 parts by mass. When the content ratio of hydrogen peroxide and phosphorus oxoacid in the solution containing hydrogen peroxide and phosphorus oxoacid is within the above range, it is preferable in terms of good workability and efficient contact treatment. .
 (b)の方法において、原料ZWP粒子に、過酸化水素及びリンのオキソ酸を含む溶液を接触させる方法としては、例えば、原料ZWP粒子と、過酸化水素及びリンのオキソ酸とを含む溶液と、を混合する方法が挙げられる。 In the method (b), the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide and phosphorus oxoacid. and a method of mixing.
 (b)の方法において、原料ZWP粒子に、過酸化水素及びリンのオキソ酸を含む溶液を接触させるときの原料ZWP粒子と過酸化水素の量比は、原料ZWP粒子100.0質量部に対して過酸化水素が、好ましくは0.01~1.5質量部、特に好ましくは0.03~1.0質量部である。原料ZWP粒子と過酸化水素の量比が、上記範囲にあることにより、原料ZWP粒子の表面が効率良く過酸化水素により被覆される。なお、上記原料ZWP粒子と過酸化水素の量比において、過酸化水素の量は、過酸化水素溶液の量を指すのではなく、過酸化水素自体の量を指す。 In the method (b), when the raw ZWP particles are brought into contact with a solution containing hydrogen peroxide and phosphorus oxoacid, the amount ratio of the raw ZWP particles and hydrogen peroxide is Hydrogen peroxide is preferably 0.01 to 1.5 parts by mass, particularly preferably 0.03 to 1.0 parts by mass. When the amount ratio of the raw material ZWP particles and hydrogen peroxide is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with hydrogen peroxide. In addition, in the amount ratio of the raw material ZWP particles and hydrogen peroxide, the amount of hydrogen peroxide does not refer to the amount of the hydrogen peroxide solution, but to the amount of hydrogen peroxide itself.
 (b)の方法において、原料ZWP粒子に、過酸化水素及びリンのオキソ酸を含む溶液を接触させるときの原料ZWP粒子とリンのオキソ酸の量比は、原料ZWP粒子100.0質量部に対してリンのオキソ酸が、好ましくは0.005~2.0質量部、特に好ましくは0.02~1.8質量部である。原料ZWP粒子とリンのオキソ酸の量比が、上記範囲にあることにより、原料ZWP粒子の表面が効率良くリンのオキソ酸により被覆される。なお、上記原料ZWP粒子と過酸化水素の量比において、リンのオキソ酸の量は、リンのオキソ酸の溶液の量を指すのではなく、リンのオキソ酸自体の量を指す。 In the method (b), when the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide and phosphorus oxoacid, the amount ratio of the raw material ZWP particles and the phosphorus oxoacid is set to 100.0 parts by mass of the raw material ZWP particles. On the other hand, the phosphorus oxoacid is preferably 0.005 to 2.0 parts by weight, particularly preferably 0.02 to 1.8 parts by weight. When the amount ratio of the raw material ZWP particles and the phosphorus oxoacid is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with the phosphorus oxoacid. In the quantitative ratio of the raw material ZWP particles to the hydrogen peroxide, the amount of the phosphorus oxoacid does not refer to the amount of the phosphorus oxoacid solution, but to the amount of the phosphorus oxoacid itself.
 (b)の方法において、原料ZWP粒子100.0重量部に対して、過酸化水素及びリンのオキソ酸を含む溶液を、好ましくは0.01~2.5質量部、特に好ましくは0.01~2.0質量部混合することが、作業性が良く効率的に接触処理を行うことができ、また、特に乾燥処理を行う必要がなく接触処理後のものをそのまま負熱膨張材として用いることができる点で好ましい。 In the method (b), a solution containing hydrogen peroxide and phosphorus oxoacid is added to 100.0 parts by weight of raw material ZWP particles, preferably 0.01 to 2.5 parts by weight, particularly preferably 0.01 part by weight. By mixing up to 2.0 parts by mass, the contact treatment can be performed efficiently with good workability, and the material after the contact treatment can be used as it is as a negative thermal expansion material without the need for a particular drying treatment. It is preferable that
 (a)の方法に係る過酸化水素を含む溶液は、過酸化水素が水溶媒に溶解した水溶液であり、また、リンのオキソ酸を含む溶液は、リンのオキソ酸を水溶媒に溶解した水溶液である。なお、水溶媒は、水単独でも、水と親水性溶媒との混合溶媒であってよい。 The solution containing hydrogen peroxide according to method (a) is an aqueous solution in which hydrogen peroxide is dissolved in an aqueous solvent, and the solution containing phosphorus oxoacid is an aqueous solution in which phosphorus oxoacid is dissolved in an aqueous solvent. is. The water solvent may be water alone or a mixed solvent of water and a hydrophilic solvent.
 (a)の方法に係る過酸化水素を含む溶液中の過酸化水素の含有量は、好ましくは10.0~50.0質量%、特に好ましくは20.0~40.0質量%である。過酸化水素を含む溶液中の過酸化水素の含有量が、上記範囲にあることにより、作業性が良く効率的に接触処理を行うことができる点で好ましい。 The content of hydrogen peroxide in the solution containing hydrogen peroxide according to method (a) is preferably 10.0 to 50.0% by mass, particularly preferably 20.0 to 40.0% by mass. When the content of hydrogen peroxide in the solution containing hydrogen peroxide is within the above range, it is preferable in terms of good workability and efficient contact treatment.
 (a)の方法に係るリンのオキソ酸を含む溶液中のリンのオキソ酸の含有量は、好ましくは1.0~40.0質量%、特に好ましくは5.0~30.0質量%である。リンのオキソ酸を含む溶液中のリンのオキソ酸の含有量が、上記範囲にあることにより、作業性が良く効率的に接触処理を行うことができる点で好ましい。 The content of the phosphorus oxoacid in the solution containing the phosphorus oxoacid according to the method (a) is preferably 1.0 to 40.0% by mass, particularly preferably 5.0 to 30.0% by mass. be. When the content of the phosphorus oxoacid in the solution containing the phosphorus oxoacid is within the above range, it is preferable in terms of good workability and efficient contact treatment.
 (a)の方法に係る過酸化水素を含む溶液中の過酸化水素とリンのオキソ酸を含む溶液中のリンのオキソ酸の割合は、リンのオキソ酸100.0質量部に対して過酸化水素が、好ましくは70.0~130.0質量部、特に好ましくは80.0~120.0質量部である。過酸化水素を含む溶液中の過酸化水素とリンのオキソ酸を含む溶液中のリンのオキソ酸の割合が、上記範囲にあることにより、作業性が良く効率的に接触処理を行うことができる点で好ましい。 The ratio of the hydrogen peroxide in the solution containing hydrogen peroxide and the phosphorus oxoacid in the solution containing phosphorus oxoacid according to the method (a) is, per 100.0 parts by mass of the phosphorus oxoacid, Hydrogen is preferably 70.0 to 130.0 parts by weight, particularly preferably 80.0 to 120.0 parts by weight. When the ratio of the hydrogen peroxide in the solution containing hydrogen peroxide and the oxoacid of phosphorus in the solution containing the oxoacid of phosphorus is within the above range, the contact treatment can be performed efficiently with good workability. point is preferable.
 (a)の方法において、原料ZWP粒子に、過酸化水素を含む溶液又はリンのオキソ酸を含む溶液を接触させる方法としては、例えば、原料ZWP粒子と、過酸化水素を含む溶液又はリンのオキソ酸とを含む溶液と、を混合する方法が挙げられる。 In the method (a), the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide or a solution containing phosphorus oxoacid. and a method of mixing a solution containing an acid.
 (a)の方法において、原料ZWP粒子に、過酸化水素を含む溶液を接触させるときの原料ZWP粒子と過酸化水素の量比は、原料ZWP粒子100.0質量部に対して過酸化水素が、好ましくは0.01~1.5質量部、特に好ましくは0.03~1.0質量部である。原料ZWP粒子と過酸化水素の量比が、上記範囲にあることにより、原料ZWP粒子の表面が効率良く過酸化水素により被覆される。なお、上記原料ZWP粒子と過酸化水素の量比において、過酸化水素の量は、過酸化水素溶液の量を指すのではなく、過酸化水素自体の量を指す。 In the method (a), the amount ratio of the raw material ZWP particles and hydrogen peroxide when the raw material ZWP particles are brought into contact with a solution containing hydrogen peroxide is 100.0 parts by mass of raw material ZWP particles. , preferably 0.01 to 1.5 parts by mass, particularly preferably 0.03 to 1.0 parts by mass. When the amount ratio of the raw material ZWP particles and hydrogen peroxide is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with hydrogen peroxide. In addition, in the amount ratio of the raw material ZWP particles and hydrogen peroxide, the amount of hydrogen peroxide does not refer to the amount of the hydrogen peroxide solution, but to the amount of hydrogen peroxide itself.
 (a)の方法において、原料ZWP粒子に、リンのオキソ酸を含む溶液を接触させるときの原料ZWP粒子とリンのオキソ酸の量比は、原料ZWP粒子100.0質量部に対してリンのオキソ酸が、好ましくは0.005~2.0質量部、特に好ましくは0.02~1.8質量部である。原料ZWP粒子とリンのオキソ酸の量比が、上記範囲にあることにより、原料ZWP粒子の表面が効率良くリンのオキソ酸により被覆される。なお、上記原料ZWP粒子と過酸化水素の量比において、リンのオキソ酸の量は、リンのオキソ酸の溶液の量を指すのではなく、リンのオキソ酸自体の量を指す。 In the method (a), the amount ratio of the raw material ZWP particles and the phosphorus oxoacid when the raw material ZWP particles are brought into contact with the solution containing the phosphorus oxoacid is The oxoacid is preferably 0.005 to 2.0 parts by weight, particularly preferably 0.02 to 1.8 parts by weight. When the amount ratio of the raw material ZWP particles and the phosphorus oxoacid is within the above range, the surfaces of the raw material ZWP particles are efficiently coated with the phosphorus oxoacid. In the quantitative ratio of the raw material ZWP particles to the hydrogen peroxide, the amount of the phosphorus oxoacid does not refer to the amount of the phosphorus oxoacid solution, but to the amount of the phosphorus oxoacid itself.
 (a)の方法において、原料ZWP粒子100.0重量部に対して、過酸化水素を含む溶液及びリンのオキソ酸を含む溶液を、それらの合計で、好ましくは0.05~5.0質量部、特に好ましくは0.1~4.5質量部混合することが、作業性が良く効率的に接触処理を行うことができ、また、特に乾燥処理を行う必要がなく接触処理後のものをそのまま負熱膨張材として用いることができる点で好ましい。 In the method (a), a solution containing hydrogen peroxide and a solution containing phosphorus oxoacid are added to 100.0 parts by weight of the raw material ZWP particles, and the total of them is preferably 0.05 to 5.0 mass. Parts, particularly preferably 0.1 to 4.5 parts by mass, are mixed, so that the contact treatment can be performed efficiently with good workability. It is preferable in that it can be used as it is as a negative thermal expansion material.
 (a)及び(b)の方法において、リン酸タングスデン酸ジルコニウム粒子と、過酸化水素及びリンのオキソ酸との接触物は、添加する溶液量により、粉末状のもの、スラリー状のもの、ペースト状のもの、固体状のものになる。このため、リン酸タングスデン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸を接触させるための混合処理は、得られる混合物の性状に応じて、常法の湿式又は乾式の混合処理を適宜選択して行えばよい。 In the methods (a) and (b), the contact product of zirconium tungsdate phosphate particles with hydrogen peroxide and phosphorus oxoacid may be powder, slurry or paste depending on the amount of solution added. It can be in the form of a liquid or a solid. Therefore, as the mixing treatment for contacting the zirconium tungsdate phosphate particles with hydrogen peroxide and the oxoacid of phosphorus, a conventional wet or dry mixing treatment is appropriately selected depending on the properties of the resulting mixture. You should go.
 湿式混合に用いられる装置としては、均一な混合物(接触物)が得られるものであれば特に制限はないが、例えば、スターラー、撹拌羽による攪拌機、3本ロール、ボールミル、ディスパーミル、ホモジナイザー、振動ミル、サンドグラインドミル、アトライター及び強力撹拌機等の装置が挙げられる。湿式混合処理は、上記で例示した機械的手段による混合処理に限定されるものではない。 The device used for wet mixing is not particularly limited as long as a uniform mixture (contact product) can be obtained. Equipment such as mills, sand grind mills, attritors and intensive agitators may be mentioned. The wet mixing process is not limited to the mixing process by mechanical means exemplified above.
 乾式で混合処理を行う方法としては、機械的手段にて行うことが均一な混合物が得られる点で好ましい。乾式混合に用いられる装置としては、均一な混合物が得られるものであれば特に制限はないが、例えば、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、アイリッヒミキサー、ヘンシェルミキサー、ナウターミキサー、リボンブレンダー、V型混合機、コニカルブレンダー、ジェットミル、コスモマイザー、ペイントシェイカー、ビーズミル、ボールミル等が挙げられる。なお、実験室レベルでは、家庭用ミキサーや手作業でも十分である。 As for the dry mixing method, it is preferable to use mechanical means because a uniform mixture can be obtained. The device used for dry mixing is not particularly limited as long as a homogeneous mixture can be obtained. Blenders, V-type mixers, conical blenders, jet mills, cosmomizers, paint shakers, bead mills, ball mills and the like can be mentioned. At the laboratory level, a home-use mixer or manual work is sufficient.
 (a)及び(b)の方法において、リン酸タングステン酸ジルコニウム粒子を、過酸化水素及びリンのオキソ酸に接触させるときの温度は、特に制限はないが、多くの場合は10~50℃、好ましくは20~40℃である。なお、(a)の方法の場合は、リンのオキソ酸を含む溶液又は過酸化水素を含む溶液を、それぞれ原料ZWP粒子に接触させる時の温度を示す。 In the methods (a) and (b), the temperature at which the zirconium tungstate phosphate particles are brought into contact with hydrogen peroxide and phosphorus oxoacid is not particularly limited, but is often 10 to 50°C. It is preferably 20 to 40°C. In the case of method (a), the temperature at which the solution containing phosphorus oxoacid or the solution containing hydrogen peroxide is brought into contact with the raw material ZWP particles is shown.
 (a)及び(b)の方法において、リン酸タングステン酸ジルコニウム粒子を、過酸化水素及びリンのオキソ酸に接触させるときの時間は、本製造方法において臨界的でなく、多くの場合、10分以上、好ましくは15~60分で、満足の行く負熱膨張材を得ることができる。なお、(a)の方法の場合は、リンのオキソ酸を含む溶液又は過酸化水素を含む溶液で、それぞれ原料ZWP粒子に接触させる時の時間を示す。 In methods (a) and (b), the time at which the zirconium phosphate tungstate particles are contacted with hydrogen peroxide and the oxoacid of phosphorus is not critical in the process, often 10 minutes. Above, preferably in 15 to 60 minutes, a satisfactory negative thermal expansion material can be obtained. In the case of the method (a), the time is shown when the raw material ZWP particles are brought into contact with the solution containing phosphorus oxoacid or the solution containing hydrogen peroxide.
 (a)及び(b)の方法において、リン酸タングステン酸ジルコニウム粒子を、過酸化水素及びリンのオキソ酸に接触させるときに、過酸化水素及び/又はリンのオキソ酸を含む溶液には、必要に応じて、改質の効果を高める目的で、タングステン酸、リンタングステン酸等を含有させてもよい。 In the methods (a) and (b), when the zirconium tungstate phosphate particles are brought into contact with hydrogen peroxide and phosphorus oxoacid, the solution containing hydrogen peroxide and/or phosphorus oxoacid contains the necessary Depending on the requirements, tungstic acid, phosphotungstic acid, or the like may be contained for the purpose of enhancing the effect of modification.
 このようにして、接触工程では、リン酸タングステン酸ジルコニウム粒子を、過酸化水素及びリンのオキソ酸に接触させることにより、リン酸タングステン酸ジルコニウム粒子と、過酸化水素及びリンのオキソ酸との接触物である表面改質リン酸タングスデン酸ジルコニウム粒子を得る。 Thus, in the contacting step, the zirconium tungstate phosphate particles are brought into contact with the oxoacid of hydrogen peroxide and phosphorus, whereby the zirconium tungstate phosphate particles are brought into contact with the oxoacid of hydrogen peroxide and phosphorus. Surface-modified zirconium tungsdate phosphate particles are obtained.
 本発明の負熱膨張材の製造方法において、過酸化水素及びリンのオキソ酸を含む溶液の添加量の好適な範囲、あるいは、過酸化水素を含む溶液及びリンのオキソ酸を含む溶液の添加量の好適な範囲では、原料ZWP粒子に対し、過酸化水素及びリンのオキソ酸を含む溶液の添加量が少ない、あるいは、過酸化水素を含む溶液及びリンのオキソ酸を含む溶液の添加量が少ないので、原料ZWP粒子と、(a)又は(b)の方法で接触させて得られる接触物の性状は、基本的に乾燥を行わないでも粉体の状態を保持している。 In the method for producing a negative thermal expansion material of the present invention, a suitable range of the amount of the solution containing hydrogen peroxide and phosphorus oxoacid added, or the amount of the solution containing hydrogen peroxide and the solution containing phosphorus oxoacid added In the preferred range, the amount of the solution containing hydrogen peroxide and the oxoacid of phosphorus added to the raw material ZWP particles is small, or the amount of the solution containing the solution containing hydrogen peroxide and the solution containing the oxoacid of phosphorus is small. Therefore, the properties of the contact material obtained by bringing the raw material ZWP particles into contact with the method (a) or (b) basically maintains the powder state without drying.
 そのため、本発明の負熱膨張材の製造方法では、接触工程を行った後、必要に応じて、乾燥処理を行えばよい。また、本発明の負熱膨張材の製造方法では、更に必要に応じ、粉砕、解砕、分級等を行ってもよい。また、乾燥処理を行う場合は、リン酸タングステン酸ジルコニウム粒子と、過酸化水素及びリンのオキソ酸との接触物を、そのまま全量乾燥処理してもよい。 Therefore, in the method for producing a negative thermal expansion material of the present invention, after performing the contacting step, drying may be performed as necessary. Further, in the method for producing a negative thermal expansion material of the present invention, pulverization, crushing, classification, etc. may be further performed as necessary. Further, when the drying treatment is performed, the entire contact product of the zirconium tungstate phosphate particles, the hydrogen peroxide and the oxoacid of phosphorus may be dried as it is.
 そして、本発明の負熱膨張材の製造方法では、接触工程を行うことにより、あるいは、接触工程を行った後、必要に応じて、乾燥処理、粉砕、解砕、分級等を行うことにより、負熱膨張材を得る。 Then, in the method for producing a negative thermal expansion material of the present invention, by performing the contacting step, or after performing the contacting step, drying treatment, pulverization, crushing, classification, etc. are performed as necessary, A negative thermal expansion material is obtained.
 原料ZWP粒子に過酸化水素のみを接触させた場合には、接触後、粒子表面の過酸化水素が時間とともに分解するため、ZWPの粒子表面は改質され難い。それに対して、原料ZWP粒子に、過酸化水素に加えてリンのオキソ酸も接触させることにより、ZWPの粒子表面で、過酸化水素及びリンのオキソ酸が安定な状態で存在し、ZWPの粒子表面に化学吸着することでZWPの粒子表面が改質されるため、溶媒としてプロピレンカーボネートを用いた場合にも、適度の粘度を有するペーストが得られるものと考えられる。 When the raw material ZWP particles are brought into contact with only hydrogen peroxide, the surface of the ZWP particles is difficult to modify because the hydrogen peroxide on the surface of the particles decomposes over time after the contact. On the other hand, by bringing the raw material ZWP particles into contact with the phosphorus oxoacid in addition to the hydrogen peroxide, the hydrogen peroxide and the phosphorus oxoacid are present in a stable state on the ZWP particle surface, and the ZWP particles Since the surface of ZWP particles is modified by chemical adsorption on the surface, it is considered that a paste having an appropriate viscosity can be obtained even when propylene carbonate is used as a solvent.
 本発明の負熱膨張材を、粉体又はペーストして用いることができる。ペーストとして用いる場合には、本発明の負熱膨張材を、溶媒及び必要によりバインダー樹脂を含有させたペーストの状態で好適に用いることができる。つまり、本発明のペーストは、本発明の負熱膨張材を含有することを特徴とする。 The negative thermal expansion material of the present invention can be used in the form of powder or paste. When used as a paste, the negative thermal expansion material of the present invention can be suitably used in a paste state containing a solvent and, if necessary, a binder resin. That is, the paste of the present invention is characterized by containing the negative thermal expansion material of the present invention.
 ペーストに用いられる溶剤としては、当該技術分野で一般的なものが用いられる。例えば、N,N’-ジメチルホルムアミド、エチレングルコール、ジメチルスルホキシド、炭酸ジメチル、プロピレンカーボネート、ブチロラクトン、カプロラクトン、N-メチル-2-ピロリドン、ブチルカルビトールアセテート、ポロピレングリコールジセテート、α-テルピネール、α-ターピネオール、γ-ブチルラクトン、テトラリン、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられ、これらは1種単独であっても又は2種以上の併用であってもよい。また、本発明の負熱膨張材を、プロピレンカーボネートを溶剤として用いても、適度な粘度を有するペーストを得ることができるので、本発明のペーストにおいては、溶媒としてプロピレンカーボネートが好適に用いられる。 As the solvent used for the paste, one commonly used in the technical field is used. For example, N,N'-dimethylformamide, ethylene glycol, dimethyl sulfoxide, dimethyl carbonate, propylene carbonate, butyrolactone, caprolactone, N-methyl-2-pyrrolidone, butyl carbitol acetate, propylene glycol dicetate, α-terpineol, α-terpineol, γ-butyl lactone, tetralin, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monobutyl ether, etc., may be mentioned, and these may be used singly or in combination of two or more. Also, even if the negative thermal expansion material of the present invention uses propylene carbonate as a solvent, a paste having an appropriate viscosity can be obtained. Therefore, in the paste of the present invention, propylene carbonate is preferably used as a solvent.
 また、本発明のペーストには、必要に応じて、バインダー樹脂を含有させることができる。バインダー樹脂としては、当該技術分野で一般的なものが用いられる。バインダー樹脂としては、具体的には、ニトロセルロース、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース等のセルロース類、ポリエチレンカーボネート、ポリプロピレンカーボネート等のポリアルキレンカーボネート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-ヒドロオキシエチル(メタ)アクリレート等の(メタ)アクリル酸樹脂類、ポリエチレングルコール誘導体、ポリメチルスチレン等が挙げられ、これらは1種単独であっても又は2種以上の併用であってもよい。 In addition, the paste of the present invention can contain a binder resin as needed. As the binder resin, one commonly used in the technical field is used. Specific examples of the binder resin include celluloses such as nitrocellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, and propyl cellulose; polyalkylene carbonates such as polyethylene carbonate and polypropylene carbonate; methyl (meth)acrylate; Ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylic acid resins such as 2-hydroxyethyl (meth) acrylate, polyethylene glycol derivatives, polymethyl styrene, etc. These may be used singly or in combination of two or more.
 本発明のペースト中の負熱膨張材の含有量は、特に制限されるものではないが、多くの場合1~99体積%であり、好ましくは10~90体積%である。 The content of the negative thermal expansion material in the paste of the present invention is not particularly limited, but in many cases it is 1 to 99% by volume, preferably 10 to 90% by volume.
 本発明の負熱膨張材を含み、更にフラックス材を含むペーストは、例えば、封着材料用ペーストや封止材料用ペーストとして好適に用いられる。 A paste containing the negative thermal expansion material of the present invention and further containing a flux material is suitably used, for example, as a sealing material paste or a sealing material paste.
 本発明のペーストに含有させるフラックス材としては、低融点ガラスが挙げられ、当該技術分野で一般的なものが用いられる。例えば、PbO-B系、PbO-SiO-B系、Bi-B系、Bi-SiO-B系、SiO-B-Al系、SiO-B-BaO系、SiO-B-CaO系、ZnO-B-Al系、ZnO-SiO-B系、P系、SnO-P系、V-P系、V-Mo系、及びV-P-TeO等が挙がられる。 As the flux material to be contained in the paste of the present invention, a low-melting-point glass can be mentioned, and a general one in the technical field is used. For example, PbO—B 2 O 3 system, PbO—SiO 2 —B 2 O 3 system, Bi 2 O 3 —B 2 O 3 system, Bi 2 O 3 —SiO 2 —B 2 O 3 system, SiO 2 —B 2O3 - Al2O3 system , SiO2 - B2O3 - BaO system , SiO2 - B2O3 -CaO system, ZnO- B2O3 - Al2O3 system, ZnO- SiO2- B 2 O 3 system, P 2 O 5 system, SnO—P 2 O 5 system, V 2 O 5 -P 2 O 5 system, V 2 O 5 -Mo 2 O 3 system, and V 2 O 5 -P 2 O 5 —TeO 2 and the like are mentioned.
 本発明のペースト中のフラック材の含有量は、特に制限されるものではないが多くの場合10~90体積%であり、好ましくは15~90体積%である。 Although the content of the flack material in the paste of the present invention is not particularly limited, it is often 10 to 90% by volume, preferably 15 to 90% by volume.
 封着材料用ペーストとして用いる場合は、フラックス材と負熱膨張材を含む封着材料とした際に、フラックス材が60~90体積%となり、本発明の負熱膨張材が10~40体積%となるフラックス材と負熱膨張材の配合量で、バインダー樹脂0.1~40質量%、溶剤5~40質量%となるようにペーストを調製することが好ましい。 When used as a sealing material paste, when a sealing material containing a flux material and a negative thermal expansion material is used, the flux material is 60 to 90% by volume, and the negative thermal expansion material of the present invention is 10 to 40% by volume. It is preferable to prepare the paste so that the content of the flux material and the negative thermal expansion material is 0.1 to 40% by mass of the binder resin and 5 to 40% by mass of the solvent.
 また、複層ガラスの封止材料用ペーストとして用いる際は、前記封着材料用ペーストに当該分野で公知のガラスビーズを含有させて用いることができる。 Further, when used as a sealing material paste for multi-layer glass, the sealing material paste can be used by incorporating glass beads known in the relevant field.
 本発明のペーストは、必要に応じて、更に当該分野で公知の消泡剤、分散剤、着色顔料、チキソトロピー付与剤等の添加剤を含有することができる。 The paste of the present invention can further contain additives such as antifoaming agents, dispersants, coloring pigments, and thixotropy-imparting agents known in the art, if necessary.
 また、本発明の負熱膨張材は、負熱膨張材をそのまま粉体として用いて、正熱膨張材に含有させて複合材料とし、負熱膨張材の配合比により、負熱膨張、零熱膨張又は低熱膨張の材料として用いることもできる。 In addition, the negative thermal expansion material of the present invention uses the negative thermal expansion material as it is as a powder and incorporates it into the positive thermal expansion material to form a composite material. It can also be used as an expansion or low thermal expansion material.
  本発明の負熱膨張材を含有させる正熱膨張材としては、各種有機化合物又は無機化合物が挙げられる。 Examples of the positive thermal expansion material containing the negative thermal expansion material of the present invention include various organic compounds and inorganic compounds.
  前記有機化合物としては、例えば、ゴム、ポリオレフィン、ポリシクロオレフィン、ポリスチレン、ABS、ポリアクリレート、ポリフェニレンスルファイド、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂(PET樹脂)及びポリ塩化ビニル樹脂などを挙げることができる。 Examples of the organic compound include rubber, polyolefin, polycycloolefin, polystyrene, ABS, polyacrylate, polyphenylene sulfide, phenol resin, polyamide resin, polyimide resin, epoxy resin, silicone resin, polycarbonate resin, polyethylene resin, polypropylene resin. , polyethylene terephthalate resin (PET resin) and polyvinyl chloride resin.
  前記無機化合物としては、例えば、金属、合金、二酸化ケイ素、グラファイト、サファイア、各種のガラス、コンクリート材料、各種のセラミックス材料などを挙げることができる。 Examples of the inorganic compound include metals, alloys, silicon dioxide, graphite, sapphire, various glasses, concrete materials, and various ceramic materials.
  これらのうち、正熱膨張材は、金属、合金、ガラス、セラミックス、ゴム及び樹脂から選ばれる少なくとも1種であることが好ましい。本発明に係る複合材料において、本発明の負熱膨張材の添加量は、当該技術分野において、一般的な添加量を採用することができる。 Among these, the positive thermal expansion material is preferably at least one selected from metals, alloys, glasses, ceramics, rubbers and resins. In the composite material according to the present invention, the addition amount of the negative thermal expansion material of the present invention can adopt a general addition amount in the technical field.
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるわけではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these.
(原料ZWP粒子の調製)
 市販の三酸化タングステン(WO;平均粒子径1.2μm)15質量部をビーカーに入れ、更に純水84質量部を添加した。
 室温(25℃)で120分間撹拌して、三酸化タングステンを含む15質量%スラリーを調製した。スラリー中の固形分の平均粒子径は1.2μmであった。
 次いで、このスラリーに水酸化ジルコニウムと、85質量%リン酸水溶液と水酸化マグネシウムとを、スラリー中のZr:W:P:Mgのモル比が2.00:1.00:2.00:0.10となるように室温(25℃)で添加した後、80℃に昇温して4時間撹拌下に反応を行った。
 反応終了後、分散剤としてポリカルボン酸アンモニウム塩を1質量部、仕込み、スラリーを撹拌しながら、直径0.5mmのジルコニアビーズを仕込んだメディア撹拌型ビーズミルに供給し、15分間混合して湿式粉砕を行った。湿式粉砕後のスラリー中の固形分の平均粒子径は0.3μmであった。
 次いで、220℃に設定したスプレードライヤーに、2.4L/hの供給速度でスラリーを供給し、反応前駆体を得た。得られた反応前駆体について、X線回折を行った結果、三酸化タングステンの回折ピークのみが観察された。また、FT-IRで分析を行ったところ、950~1150cm-1に赤外線吸収ピークを持ち、この間の赤外線吸収ピークの極大値は1042cm-1に現れた。
 次いで、得られた反応前駆体を1050℃で2時間にわたり大気中で焼成反応を行い、白色の焼成品を得た。
 得られた焼成品をX線回折分析したところ、焼成品は単相のZr(WO)(POであった。これを原料ZWP粒子とした。
(Preparation of raw material ZWP particles)
15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle size: 1.2 μm) was placed in a beaker, and 84 parts by mass of pure water was further added.
A 15% by mass slurry containing tungsten trioxide was prepared by stirring at room temperature (25° C.) for 120 minutes. The average particle size of the solid content in the slurry was 1.2 µm.
Next, zirconium hydroxide, 85% by mass phosphoric acid aqueous solution and magnesium hydroxide were added to the slurry so that the molar ratio of Zr:W:P:Mg in the slurry was 2.00:1.00:2.00:0. After addition at room temperature (25° C.) so as to give 0.10, the temperature was raised to 80° C. and the reaction was carried out with stirring for 4 hours.
After completion of the reaction, 1 part by mass of polycarboxylic acid ammonium salt was charged as a dispersant, and while stirring the slurry, it was supplied to a media-stirring bead mill charged with zirconia beads with a diameter of 0.5 mm, mixed for 15 minutes, and wet pulverized. did The average particle size of the solid content in the slurry after wet pulverization was 0.3 μm.
Then, the slurry was supplied to a spray dryer set at 220° C. at a supply rate of 2.4 L/h to obtain a reaction precursor. As a result of X-ray diffraction of the obtained reaction precursor, only diffraction peaks of tungsten trioxide were observed. When analyzed by FT-IR, it had an infrared absorption peak at 950 to 1150 cm -1 and the maximum value of the infrared absorption peak during this period appeared at 1042 cm -1 .
Next, the obtained reaction precursor was subjected to a firing reaction in the atmosphere at 1050° C. for 2 hours to obtain a white fired product.
X-ray diffraction analysis of the fired product obtained revealed that the fired product was single-phase Zr 2 (WO 4 )(PO 4 ) 2 . These were used as raw material ZWP particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(過酸化水素及びリン酸を含む溶液の調製)
 30.0質量%過酸化水素水溶液と85.0質量%リン酸水溶液を10:2の重量比で混合し、過酸化水素及びリン酸を含む溶液を調製した。
(Preparation of solution containing hydrogen peroxide and phosphoric acid)
A 30.0% by mass hydrogen peroxide aqueous solution and an 85.0% by mass phosphoric acid aqueous solution were mixed at a weight ratio of 10:2 to prepare a solution containing hydrogen peroxide and phosphoric acid.
(実施例1)
 上記で調製した原料ZWP粒子100.0gをチャック付きポリ袋に入れた。次いで、これに上記で調製した過酸化水素及びリンのオキソ酸を含む溶液0.40gを添加し、手作業で10分間、室温(25℃)で混合処理して、接触物を得、室温(25℃)、密閉容器内で20日間放置し、これを負熱膨張材試料とした。
(Example 1)
100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Then, 0.40 g of the solution containing hydrogen peroxide and phosphorus oxoacid prepared above was added thereto and mixed manually for 10 minutes at room temperature (25° C.) to obtain a contact product, 25° C.) and left for 20 days in an airtight container, and this was used as a negative thermal expansion material sample.
(実施例2)
 上記で調製した原料ZWP粒子100.0gをチャック付きポリ袋に入れた。次いで、これに上記で調製した過酸化水素及びリンのオキソ酸を含む溶液0.60gを添加し、手作業で10分間、室温(25℃)で混合処理して、接触物を得、室温(25℃)、密閉容器内で20日間放置し、これを負熱膨張材試料とした。
(Example 2)
100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Then, 0.60 g of the solution containing hydrogen peroxide and phosphorus oxoacid prepared above was added thereto and mixed manually for 10 minutes at room temperature (25° C.) to obtain a contact product, 25° C.) and left for 20 days in an airtight container, and this was used as a negative thermal expansion material sample.
(実施例3)
 上記で調製した原料ZWP粒子100.0gをチャック付きポリ袋に入れた。次いで、これに上記で調製した過酸化水素及びリンのオキソ酸を含む溶液0.80gを添加し、手作業で10分間、室温(25℃)で混合処理して、接触物を得、室温(25℃)、密閉容器内で20日間放置し、これを負熱膨張材試料とした。
(Example 3)
100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Then, 0.80 g of the solution containing hydrogen peroxide and phosphorus oxoacid prepared above was added thereto and mixed manually for 10 minutes at room temperature (25° C.) to obtain a contact product, 25° C.) and left for 20 days in an airtight container, and this was used as a negative thermal expansion material sample.
(比較例1)
 上記で調製した原料ZWP粒子をそのまま用い、これを負熱膨張材試料とした。
(Comparative example 1)
The raw material ZWP particles prepared above were used as they were, and were used as negative thermal expansion material samples.
(比較例2)
 上記で調製した原料ZWP粒子100.0gをチャック付きポリ袋に入れた。次いで、これにイオン交換水0.33gを添加し、手作業で10分間、室温(25℃)で混合処理して混合物を得、これを負熱膨張材試料とした。
(Comparative example 2)
100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Next, 0.33 g of ion-exchanged water was added to this, and mixed manually for 10 minutes at room temperature (25° C.) to obtain a mixture, which was used as a negative thermal expansion material sample.
(比較例3)
 上記で調製した原料ZWP粒子100.0gをチャック付きポリ袋に入れた。次いで、30.0質量%過酸化水素水溶液0.40gを添加し、手作業で10分間、室温(25℃)で混合処理して混合物を得、室温(25℃)、密閉容器内で20日間放置し、これを負熱膨張材試料とした。
(Comparative Example 3)
100.0 g of the raw material ZWP particles prepared above were placed in a zippered plastic bag. Next, 0.40 g of a 30.0% by mass aqueous hydrogen peroxide solution is added, mixed manually for 10 minutes at room temperature (25° C.) to obtain a mixture, and placed in a sealed container at room temperature (25° C.) for 20 days. This was used as a negative thermal expansion material sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(線熱膨張係数の測定)
<セラミック成型体の作製>
  実施例及び比較例で得られた負熱膨張材試料0.5gとバインダー(SpectroBlend  44μm  Powder)0.05gを乳鉢で5分間混合し、3mm×20mmの金型に全量充填した。次いで、ハンドプレスを用いて2tの圧力で成型して粉末成型体を作製した。得られた粉末成型体を電気炉にて1100℃で2時間、大気雰囲気中で焼成して、リン酸タングステン酸ジルコニウムのセラミック成型体を得た。
<熱膨張係数の測定>
  セラミック成型体の線熱膨張係数を熱機械測定装置(NETZSCH  JAPAN製  TMA4000SE)で測定した。測定条件は、窒素雰囲気、荷重10g、温度範囲50℃~250℃とした。
(Measurement of linear thermal expansion coefficient)
<Preparation of ceramic molding>
0.5 g of the negative thermal expansion material samples obtained in Examples and Comparative Examples and 0.05 g of a binder (SpectroBlend 44 μm Powder) were mixed in a mortar for 5 minutes, and the entire amount was filled in a 3 mm×20 mm mold. Then, using a hand press, a powder compact was produced by compacting at a pressure of 2 tons. The resulting powder compact was fired in an electric furnace at 1100° C. for 2 hours in an air atmosphere to obtain a ceramic compact of zirconium phosphate tungstate.
<Measurement of thermal expansion coefficient>
The coefficient of linear thermal expansion of the ceramic molding was measured with a thermomechanical measuring device (TMA4000SE manufactured by NETZSCH JAPAN). The measurement conditions were a nitrogen atmosphere, a load of 10 g, and a temperature range of 50°C to 250°C.
(プロピレンカーボネートを分散媒としたRspの値の測定)
 負熱膨張材試料1.0gをピロピレンカーボネート20.0mlに加えて20分間、超音波分散処理(130W)して分散液を得た。次いで、パルスNMR装置(日本ルフト社製)で、25℃における緩和時間を測定し、下記の計算式(1)からRspの値を求めた。
   Rsp=(Rav/Rb)-1   (1)
 なお、式(1)中、Ravは、プロピレンカーボネート20.0mlに負熱膨張材試料1.0gを分散させた状態でパルスNMR測定したときのNMR緩和時間の逆数であり、Rbは、プロピレンカーボネート20.0mlに負熱膨張材を分散させていない状態をブランクしてパルスNMR測定したときのNMR緩和時間の逆数である。
(Measurement of Rsp Value Using Propylene Carbonate as Dispersion Medium)
1.0 g of a negative thermal expansion material sample was added to 20.0 ml of pyropyrene carbonate, and subjected to ultrasonic dispersion treatment (130 W) for 20 minutes to obtain a dispersion liquid. Then, the relaxation time at 25° C. was measured with a pulse NMR apparatus (manufactured by Nihon Luft Co., Ltd.), and the value of Rsp was obtained from the following formula (1).
Rsp = (Rav/Rb) - 1 (1)
In formula (1), Rav is the reciprocal of the NMR relaxation time when pulse NMR measurement is performed with 1.0 g of the negative thermal expansion material sample dispersed in 20.0 ml of propylene carbonate, and Rb is the propylene carbonate. It is the reciprocal of the NMR relaxation time when pulse NMR measurement is performed with a blank state in which the negative thermal expansion material is not dispersed in 20.0 ml.
(プロピレンカーボネート分散粘度試験)
 負熱膨張材試料20.0gとプロピレンカーボネート6.0gを秤量し、ミキサー(シンキー社製、あわとり練太郎ARV-310)にて、回転速度2000rpmで10分間、混合して30Vol%の混合分散物(ペースト)を作成した。
 この混合分散物(ペースト)の粘度を、音叉式粘度計SV-10(株式会社エー・アンド・デイ社製)で測定した。
(Propylene carbonate dispersion viscosity test)
20.0 g of a negative thermal expansion material sample and 6.0 g of propylene carbonate were weighed and mixed in a mixer (Awatori Mixer ARV-310, manufactured by Thinky Corporation) at a rotation speed of 2000 rpm for 10 minutes to obtain a mixed dispersion of 30 Vol%. created a paste.
The viscosity of this mixed dispersion (paste) was measured with a tuning fork viscometer SV-10 (manufactured by A&D Co., Ltd.).
(水溶出試験)
 負熱膨張材試料4.0gを純水10.0mLに添加し、室温(25℃)で1分間撹拌混合した後、室温(25℃)で静置した。次いで、20時間後に、上澄み液を口径0.5μmのメンブランフィルターでろ過し、得られるろ液を、過酸化水素試験紙(メルク社製、品名:Quantofix Peroxid25)で、ろ液の過酸化水素濃度を分析した。ろ液の過酸化水素濃度の判定には、過酸化水素濃度を0.5質量ppm、2質量ppm、5質量ppm、10質量ppm及び25質量ppmの濃度間隔で変化させた色見本との対比により行った。
(Water elution test)
4.0 g of a negative thermal expansion material sample was added to 10.0 mL of pure water, stirred and mixed at room temperature (25° C.) for 1 minute, and then allowed to stand at room temperature (25° C.). After 20 hours, the supernatant was filtered through a 0.5 μm membrane filter, and the obtained filtrate was analyzed with hydrogen peroxide test paper (manufactured by Merck Ltd., product name: Quantofix Peroxide 25) to determine the concentration of hydrogen peroxide in the filtrate. was analyzed. To determine the hydrogen peroxide concentration of the filtrate, the hydrogen peroxide concentration was changed at intervals of 0.5 mass ppm, 2 mass ppm, 5 mass ppm, 10 mass ppm and 25 mass ppm. It was done by
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように実施例で得られた負熱膨張材は、プロピレンカーボネートに混合分散させた場合に、適度な粘性のペーストを与えることが分かる。
 
As is clear from Table 2, the negative thermal expansion materials obtained in the examples give moderately viscous pastes when mixed and dispersed in propylene carbonate.

Claims (11)

  1.  少なくとも、リン酸タングステン酸ジルコニウム粒子と、該リン酸タングステン酸ジルコニウム粒子の粒子表面に存在している過酸化水素と、からなる表面改質リン酸タングステン酸ジルコニウム粒子を含むことを特徴とする負熱膨張材。 A negative heat characterized by containing surface-modified zirconium tungstate phosphate particles comprising at least zirconium tungstate phosphate particles and hydrogen peroxide present on the surface of the zirconium tungstate phosphate particles. expansion material.
  2.  前記表面改質リン酸タングステン酸ジルコニウム粒子は、リン酸タングステン酸ジルコニウム粒子と、過酸化水素及びリンのオキソ酸と、の接触物であることを特徴とする請求項1記載の負熱膨張材。 The negative thermal expansion material according to claim 1, wherein the surface-modified zirconium tungstate phosphate particles are a contact product of zirconium tungstate phosphate particles, hydrogen peroxide and phosphorus oxoacid.
  3.  前記表面改質リン酸タングステン酸ジルコニウム粒子は、リン酸タングステン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸の溶液を混合することにより得られたものであることを特徴とする請求項1記載の負熱膨張材。 2. The surface-modified zirconium tungstate phosphate particles are obtained by mixing zirconium tungstate phosphate particles with a solution of hydrogen peroxide and phosphorus oxoacid. negative thermal expansion material.
  4.  前記リンのオキソ酸が、リン酸であることを特徴とする請求項2又は3記載の負熱膨張材。 The negative thermal expansion material according to claim 2 or 3, wherein the phosphorus oxoacid is phosphoric acid.
  5.  前記リン酸タングステン酸ジルコニウムは、副成分元素を更に含有することを特徴とする請求項1乃至4の何れか1項に記載の負熱膨張材。 The negative thermal expansion material according to any one of claims 1 to 4, characterized in that the zirconium tungstate phosphate further contains an accessory element.
  6.  前記副成分元素が、Mg、V及びAlの金属元素から選ばれる1種又は2種以上であることを特徴とする請求項5に記載の負熱膨張材。 The negative thermal expansion material according to claim 5, wherein the subcomponent element is one or more selected from metallic elements of Mg, V and Al.
  7.  プロピレンカーボネートを分散媒として下記計算式(1)から求められるRspの値が0.15以下であることを特徴とする請求項1乃至6の何れか1項に記載の負熱膨張材。
       Rsp=(Rav/Rb)-1   (1)
    (式(1)中、Ravは、プロピレンカーボネートに負熱膨張材を分散させた状態でパルスNMR測定したときのNMR緩和時間の逆数である。Rbは、プロピレンカーボネートに負熱膨張材を分散させていない状態でパルスNMR測定したときのNMR緩和時間の逆数である。)
    7. The negative thermal expansion material according to any one of claims 1 to 6, wherein the value of Rsp obtained from the following formula (1) using propylene carbonate as a dispersion medium is 0.15 or less.
    Rsp = (Rav/Rb) - 1 (1)
    (In formula (1), Rav is the reciprocal of the NMR relaxation time when the pulse NMR measurement is performed with the negative thermal expansion material dispersed in propylene carbonate. Rb is the negative thermal expansion material dispersed in propylene carbonate. It is the reciprocal of the NMR relaxation time when pulse NMR measurement is performed in the state without
  8.  リン酸タングステン酸ジルコニウム粒子に、過酸化水素及びリンのオキソ酸を接触させて、表面改質リン酸タングスデン酸ジルコニウム粒子を得る接触工程を有することを特徴とする負熱膨張材の製造方法。 A method for producing a negative thermal expansion material, comprising a contacting step of contacting zirconium tungstate phosphate particles with hydrogen peroxide and an oxoacid of phosphorus to obtain surface-modified zirconium tungstate phosphate particles.
  9.  前記リン酸タングステン酸ジルコニウム粒子と、過酸化水素及びリンのオキソ酸を含む溶液と、を混合することにより、前記接触工程を行うことを特徴とする請求項8に記載の負熱膨張材の製造方法。 9. The production of the negative thermal expansion material according to claim 8, wherein the contacting step is performed by mixing the zirconium tungstate phosphate particles with a solution containing hydrogen peroxide and phosphorus oxoacid. Method.
  10.  前記リン酸タングステン酸ジルコニウムは、副成分元素を更に含有することを特徴とする請求項8又は9記載の負熱膨張材の製造方法 The method for producing a negative thermal expansion material according to claim 8 or 9, characterized in that the zirconium phosphate tungstate further contains an accessory element.
  11.  請求項1~7のいずれか1項記載の負熱膨張材を含むことを特徴とするペースト。
     
    A paste comprising the negative thermal expansion material according to any one of claims 1 to 7.
PCT/JP2022/032588 2021-09-07 2022-08-30 Negative thermal expansion material, method for producing same, and paste WO2023037930A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-145641 2021-09-07
JP2021145641 2021-09-07
JP2022-116580 2022-07-21
JP2022116580A JP2023038904A (en) 2021-09-07 2022-07-21 Negative thermal expansion material, production method thereof and paste

Publications (1)

Publication Number Publication Date
WO2023037930A1 true WO2023037930A1 (en) 2023-03-16

Family

ID=85506683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032588 WO2023037930A1 (en) 2021-09-07 2022-08-30 Negative thermal expansion material, method for producing same, and paste

Country Status (1)

Country Link
WO (1) WO2023037930A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122218A1 (en) * 2010-03-29 2011-10-06 日本電気硝子株式会社 Sealing material and paste material using same
WO2017061403A1 (en) * 2015-10-07 2017-04-13 日本化学工業株式会社 Negative thermal expansion material and composite material including same
WO2018116890A1 (en) * 2016-12-22 2018-06-28 ニッタ・ハース株式会社 Polishing composition
JP2019067590A (en) * 2017-09-29 2019-04-25 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019087722A1 (en) * 2017-10-31 2019-05-09 日本化学工業株式会社 Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition
WO2020091000A1 (en) * 2018-11-01 2020-05-07 日産化学株式会社 Polishing composition using polishing particles that have high water affinity
WO2020179703A1 (en) * 2019-03-07 2020-09-10 日本化学工業株式会社 Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122218A1 (en) * 2010-03-29 2011-10-06 日本電気硝子株式会社 Sealing material and paste material using same
WO2017061403A1 (en) * 2015-10-07 2017-04-13 日本化学工業株式会社 Negative thermal expansion material and composite material including same
WO2018116890A1 (en) * 2016-12-22 2018-06-28 ニッタ・ハース株式会社 Polishing composition
JP2019067590A (en) * 2017-09-29 2019-04-25 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019087722A1 (en) * 2017-10-31 2019-05-09 日本化学工業株式会社 Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition
WO2020091000A1 (en) * 2018-11-01 2020-05-07 日産化学株式会社 Polishing composition using polishing particles that have high water affinity
WO2020179703A1 (en) * 2019-03-07 2020-09-10 日本化学工業株式会社 Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition

Similar Documents

Publication Publication Date Title
JP6105140B1 (en) Negative thermal expansion material and composite material containing the same
WO2017061403A1 (en) Negative thermal expansion material and composite material including same
Karimi et al. Synthesis and characterization of nanoparticles and nanocomposite of ZnO and MgO by sonochemical method and their application for zinc polycarboxylate dental cement preparation
DE112005000930T5 (en) Oxynitride powder and process for the preparation thereof
US9982191B2 (en) Suspensions of phosphates of at least one rare earth element selected from among cerium and terbium and optionally lanthanum and luminophores produced therefrom
CN104114502A (en) Granulated bodies and process for producing same
KR20070015427A (en) Calcium oxide dispersion liquid and process for production thereof
TW201922612A (en) Modified zirconium tungstate phosphate, negative thermal expansion filler, and polymeric composition
JP2020002000A (en) Negative thermal expansion material, method for producing the same and composite material
WO2017061402A1 (en) Production method for zirconium tungsten phosphate
CN113121228A (en) Black mixed oxide material and method for producing same
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7259231B2 (en) Particulate silica and method for producing the same
WO2023037930A1 (en) Negative thermal expansion material, method for producing same, and paste
JP2023038904A (en) Negative thermal expansion material, production method thereof and paste
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP2009138081A (en) Fine particle dispersion solution, method for producing it, and method for producing lnox-lnx3 complex particle
Jaiswal et al. Fabrication and luminescent studies of near-spherical phosphor embedded epoxy-resin nanocomposite beads
WO2020004072A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
KR20110002445A (en) Silicate-based oxide phosphor and method of preparating podwer of the same
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
Toy et al. A colloidal method for manganese oxide addition to alumina powder and investigation of properties
JP7427058B2 (en) Negative thermal expansion material, its manufacturing method and composite material
JP2023038905A (en) Surface-modified particles and production method thereof
JP5594747B2 (en) Method for producing fine particle dispersion solution and method for producing LnOX-LnX3 composite particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867252

Country of ref document: EP

Kind code of ref document: A1