WO2023037558A1 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
WO2023037558A1
WO2023037558A1 PCT/JP2021/033599 JP2021033599W WO2023037558A1 WO 2023037558 A1 WO2023037558 A1 WO 2023037558A1 JP 2021033599 W JP2021033599 W JP 2021033599W WO 2023037558 A1 WO2023037558 A1 WO 2023037558A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
temperature
engine
control
Prior art date
Application number
PCT/JP2021/033599
Other languages
French (fr)
Japanese (ja)
Inventor
透 大下
昌志 古谷
拓也 宮村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/033599 priority Critical patent/WO2023037558A1/en
Publication of WO2023037558A1 publication Critical patent/WO2023037558A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to control technology when starting an internal combustion engine.
  • Patent Document 1 describes a control method for prohibiting fuel injection in an internal combustion engine that can use alcohol fuel until the amount of heat generated by the intake heater and the intake negative pressure reach or exceed a predetermined value.
  • Patent Document 2 describes a control method for prohibiting fuel injection while closing an exhaust valve to recirculate air when the cooling water temperature is -20° C. or lower.
  • JP 2014-137019 A JP-A-10-288069
  • the present invention has been made in view of the above problems, and realizes a technology that can improve startability at low temperatures in an internal combustion engine that can use alcohol fuel with a low-cost configuration that does not require additional equipment.
  • the present invention provides a control device for an internal combustion engine that can use alcohol fuel or a mixed fuel in which alcohol fuel is mixed with hydrocarbon fuel, comprising a first control device for detecting the temperature of the internal combustion engine. temperature detecting means; second temperature detecting means for detecting the temperature of outside air introduced into the internal combustion engine; and control means for controlling the internal combustion engine in response to detection of a start command for the internal combustion engine. and the control means performs cranking a predetermined number of times while prohibiting fuel injection and ignition when at least one of the temperature of the internal combustion engine and the temperature of the outside air is lower than a predetermined temperature when starting the internal combustion engine. After performing the low temperature start control for performing the fuel injection and the ignition.
  • the present invention is a control method for an internal combustion engine capable of using an alcohol fuel or a mixed fuel obtained by mixing an alcohol fuel with a hydrocarbon fuel, wherein the internal combustion engine detects a first temperature sensor for detecting the temperature of the internal combustion engine. and a second temperature detecting means for detecting the temperature of outside air introduced into the internal combustion engine, wherein the control method controls the internal combustion engine in response to detection of a start command for the internal combustion engine. wherein, when starting the internal combustion engine, the controlling step prohibits fuel injection and ignition when at least one of the temperature of the internal combustion engine and the temperature of the outside air is equal to or lower than a predetermined temperature. After performing cranking for a predetermined number of times, the low temperature start control is executed to perform the fuel injection and the ignition.
  • FIG. 1 is a schematic cross-sectional view schematically showing the configuration of essential parts of an internal combustion engine of this embodiment.
  • FIG. 2 is a block diagram showing the configuration of the control device for the internal combustion engine of this embodiment.
  • FIG. 3 is a flowchart showing start control of the internal combustion engine according to this embodiment.
  • FIG. 4 is a flowchart showing the low temperature start control of the internal combustion engine of this embodiment.
  • FIG. 5 is a flow chart showing normal starting control of the internal combustion engine of this embodiment.
  • FIG. 6 is a timing chart showing the operation during low temperature start control in this embodiment.
  • the control device for an internal combustion engine of this embodiment is applied to a spark ignition engine as an internal combustion engine.
  • the engine is, for example, a four-cycle engine that undergoes four strokes of intake, expansion, compression and exhaust during an operating cycle (one cycle).
  • the engine can use alcohol fuel such as ethanol, but it can also use a mixed fuel in which a predetermined percentage (eg, 85%) of alcohol is mixed with gasoline.
  • control device for an engine mounted on a saddle type vehicle such as a motorcycle
  • the present invention is not limited to this, and can be used for three-wheeled vehicles, four-wheeled vehicles (regular automobiles, light automobiles, trucks, etc.).
  • the present invention can also be applied to control devices for engines mounted on moving bodies other than vehicles, such as vehicles and ships (including outboard motors), and working machines such as shovels and bulldozers.
  • FIG. 1 is a cross-sectional view schematically showing the main configuration of an engine 1 that is applied to the internal combustion engine control device of this embodiment.
  • the engine 1 is a multi-cylinder engine
  • FIG. 1 shows only a single cylinder.
  • an engine 1 includes a plurality of cylinders 3 formed in a cylinder block 2, pistons 4 slidably arranged inside the cylinders 3, and pistons 4 and a cylinder head 5 formed between the pistons 4 and the cylinder head 5. and a combustion chamber 6 .
  • the piston 4 is connected to a crankshaft 8 via a connecting rod 7 , and reciprocating motion of the piston 4 along the inner wall of the cylinder 3 causes the crankshaft 8 to rotate.
  • a circulation path for circulating cooling water for cooling the engine 1 may be formed on the inner wall of the cylinder 3 in some cases.
  • the cylinder head 5 is provided with an intake port 10 and an exhaust port 11 .
  • the combustion chamber 6 is communicated with an intake passage 12 via an intake port 10 and communicated with an exhaust passage 13 via an exhaust port 11 .
  • the intake port 10 is opened and closed by an intake valve 14 and the exhaust port 11 is opened and closed by an exhaust valve 15 .
  • a throttle valve 16 and an injector 17 are provided in the intake passage 12 on the upstream side of the intake valve 14 .
  • the injector 17 is arranged on the side surface of the intake passage 12 on the downstream side of the throttle valve 16 with the fuel injection opening directed toward the intake port 10 .
  • the throttle valve 16 is composed of, for example, a butterfly valve, and adjusts the amount of intake air flowing into the combustion chamber 6 by the throttle valve 16 .
  • the throttle valve 16 is driven by a throttle actuator such as an electric motor.
  • the intake valve 14 and the exhaust valve 15 are driven to open and close at predetermined timing synchronized with the rotation of the crankshaft 8 by a valve mechanism (not shown).
  • the opening and closing timings of the intake valve 14 and the exhaust valve 15 can be changed as appropriate.
  • the injector 17 is driven by a control signal from a controller 31, which will be described later with reference to FIG.
  • the fuel injection amount from the injector 17 is controlled according to the intake air amount of the engine 1 so that the actual air-fuel ratio (intake air amount A/fuel injection amount F) becomes the theoretical air-fuel ratio corresponding to the alcohol concentration.
  • the injector 17 is driven by, for example, a piezo actuator and has high responsiveness.
  • the injector 17 is not limited to being arranged in the intake passage 12, but may be arranged in the cylinder block 2 or the cylinder head 5 so as to face the inside of the combustion chamber 6 as an in-cylinder fuel injection valve. There may be.
  • a spark plug 18 is attached to each cylinder head 5 so as to face the combustion chamber 6 of the cylinder 3 .
  • the spark plug 18 is arranged between the intake port 10 and the exhaust port 11 and generates a spark by electric energy to ignite the mixture of fuel and air inside the combustion chamber 6 .
  • the exhaust passage 13 is provided with an exhaust purification device 19 having a three-way catalyst or the like for purifying exhaust gas.
  • the temperature of the engine 1 cooling water temperature, lubricating oil temperature, etc.
  • the outside air temperature In the low temperature state, the fuel injected from the injector 17 is difficult to evaporate, and the alcohol fuel has low ignitability at low temperatures, so there is a risk that startability at low temperatures will deteriorate.
  • FIG. 2 is a block diagram showing the configuration of the internal combustion engine control device 30 of this embodiment.
  • the control device 30 has a controller 31, and outputs control signals to the throttle valve 16, the injector 17, and the spark plug 18 based on signals detected by various sensors connected to the controller 31. do.
  • the controller 31 controls the opening of the throttle valve 16, the fuel injection of the injector 17, and the ignition of the spark plug 18 in starting control of the engine 1, which will be described later with reference to FIG. It controls lighting/lighting out of the indicators 22 and 23 .
  • the controller 31 is a computer configured by an electronic control unit (ECU) and including a CPU 31a, a ROM 31b, a RAM 31c, an I/O interface (IF) 31d and other circuits.
  • ECU electronice control unit
  • IF I/O interface
  • Sensors connected to the controller 31 include a crank angle sensor 32, an intake sensor 33, an exhaust gas sensor 34, a water temperature sensor 35, an engine temperature sensor 36, a vehicle speed sensor 37 and an outside air temperature sensor 38.
  • the crank angle sensor 32 is provided in the crankcase of the cylinder block 2 and outputs a pulse signal as the crankshaft 8 rotates.
  • the controller 31 calculates the engine speed based on the pulse signal output from the crank angle sensor 32 .
  • the controller 31 also calculates the number of times of cranking in the low temperature start control of the engine 1 described later with reference to FIG. 4 based on the pulse signal output from the crank angle sensor 32 .
  • the controller 31 determines the crank angle at the start of the intake stroke of the cylinder 3, that is, the crank angle ( phase).
  • the intake stroke crank angle is the crank angle when the piston 4 descends from the top dead center (TDC) to the bottom dead center (BDC), and is determined within the range of 0° to 180°.
  • the compression stroke crank angle is the crank angle when the piston 4 rises from the bottom dead center to the top dead center, and is determined within the range of 180° to 360°.
  • the intake sensor 33 is provided on the downstream side of the throttle valve 16 in the intake passage 12, and is composed of a pressure sensor, an air flow meter that detects the amount of intake air, a throttle opening sensor that detects the throttle opening, and the like.
  • the controller 31 calculates the intake pressure or intake air amount on the downstream side of the throttle valve 16 based on the signal output from the intake sensor 33 .
  • the exhaust gas sensor 34 is provided in the exhaust passage 13 and is composed of an air-fuel ratio sensor, an oxygen sensor, or the like that detects the air-fuel ratio or rich/lean of the exhaust gas of the engine 1 .
  • An exhaust purification device 19 is provided downstream of the exhaust gas sensor 34 .
  • Controller 31 calculates the actual air-fuel ratio based on the signal output from exhaust gas sensor 34 .
  • the water temperature sensor 35 is provided in the circulation path through which the cooling water of the engine 1 circulates, and is composed of a temperature sensor or the like that detects the temperature of the cooling water.
  • the controller 31 calculates the temperature of the cooling water of the engine 1 (engine water temperature) from the signal output from the water temperature sensor 35 .
  • the controller 31 is also connected to an accelerator opening sensor for detecting the amount of operation of the accelerator pedal (accelerator opening).
  • the engine temperature sensor 36 is provided in the oil pan or oil filter and is composed of a temperature sensor or the like that detects the temperature of the engine oil.
  • the controller 31 calculates the temperature of the engine 1 based on the signal output from the engine temperature sensor 36 . If a long time has passed since the engine 1 was stopped and the temperature of the engine 1 is approximately the same as the coolant temperature, the coolant temperature of the engine 1 detected by the coolant temperature sensor 35 You may calculate the temperature of the engine 1 based on. Further, when a long time has passed since the engine 1 was stopped and the temperature of the engine 1 is approximately the same as the temperature of the outside air, the temperature of the outside air detected by the outside temperature sensor 38, which will be described later, is used. The temperature of the engine 1 may be calculated by
  • the vehicle speed sensor 37 outputs a pulse signal accompanying rotation of the wheels or axles according to the speed of the vehicle in which the engine 1 is mounted. Controller 31 calculates the speed of the vehicle based on the pulse signal output from vehicle speed sensor 37 .
  • the outside air temperature sensor 38 is provided at a position that is not affected by the heat of the engine 1 or direct sunlight, and is composed of a temperature sensor or the like that detects the outside air temperature.
  • the controller 31 calculates the outside air temperature of the vehicle based on the signal output by the outside air temperature sensor 38 .
  • a temperature sensor may be added to the intake sensor 33 and the outside air temperature of the vehicle may be calculated based on the intake air temperature detected by the intake sensor 33 . Further, when a long time has passed since the engine 1 was stopped and the temperature of the cooling water for the engine 1 is approximately the same as the temperature of the outside air, the cooling of the engine 1 detected by the water temperature sensor 35 The outside air temperature of the vehicle may be calculated based on the water temperature.
  • a power supply circuit 39 that detects the output voltage of the battery 40 is also connected to the controller 31 .
  • a signal is also input to the controller 31 from the starter switch 20 operated by the user (occupant) when starting the engine 1 .
  • the starter switch 20 When the starter switch 20 is turned on and a signal instructing the start of the engine 1 is input, the controller 31 starts start control of the engine 1, which will be described later with reference to FIG.
  • the starter switch 20 is a start assisting unit for inputting a start command for the engine 1 to the controller 31.
  • it is a push button type switch, but it is an ignition switch of a type in which a key is inserted into a key cylinder. good too.
  • the cranking mechanism 21 is composed of a starter motor, a flywheel, etc. that rotate (crank) the crankshaft 8 when the starter switch 20 is turned on and a signal instructing the start of the engine 1 is input.
  • the controller 31 controls lighting/extinguishing of the low temperature start indicator 22 and the start failure indicator 23 provided on the meter panel (not shown).
  • the low temperature start indicator 22 is composed of an LED, a liquid crystal display, or the like that is lit during low temperature start control, which will be described later with reference to FIG.
  • the start impossibility indicator 23 is composed of an LED, a liquid crystal display, or the like that lights up during fail control, which will be described later with reference to FIG.
  • FIG. 3 is a flowchart showing an example of the start control process for the engine 1 of this embodiment. 3 is realized by the CPU executing a program stored in the ROM of the controller 31 and controlling the indicators 22 and 23, the throttle valve 16, the injector 17, the spark plug 18 and the cranking mechanism 21. be.
  • the user continues to press the starter switch 20 until the engine 1 is started in the start control of the engine 1 in FIG. 3, and cranking is performed while the starter switch 20 is being pressed.
  • cranking is continued even if the starter switch 20 is not pressed thereafter, so-called one-push start configuration may be used.
  • step S1 the controller 31 waits until the starter switch 20 is turned on and a signal instructing the start of the engine 1 is input.
  • the controller 31 determines that the starter switch 20 is turned on, the process proceeds to step S3.
  • step S3 the controller 31 reads the signals output from the various sensors 32-38 in FIG.
  • step S5 the controller 31 determines whether the vehicle speed V is zero based on the signal detected by the vehicle speed sensor 37. If the controller 31 determines that the vehicle speed V is zero, the process proceeds to step S7, and if it determines that the vehicle speed is not zero, the controller 31 ignores the command to start the engine 1 in step S1, and proceeds to the flowchart of FIG. End the process.
  • step S7 based on the signal detected by the engine temperature sensor 36, the controller 31 determines whether the engine temperature Teng is equal to or less than a predetermined temperature threshold value Tth1. If the controller 31 determines that the engine temperature Teng is equal to or lower than the predetermined temperature threshold Tth1, the process proceeds to step S9, and if it determines that the engine temperature Teng is higher than the predetermined temperature threshold Tth1, the process proceeds to step S23. proceed to Note that the threshold Tth1 of the engine temperature Teng is set to 5° C. or less, for example.
  • step S9 the controller 31 determines whether the outside air temperature Tout is equal to or lower than a predetermined temperature threshold Tth2 based on the signal detected by the water temperature sensor 35 or the outside air temperature sensor 38. If the controller 31 determines that the outside air temperature Tout is equal to or lower than the predetermined temperature threshold Tth2, the process proceeds to step S11, and if it determines that the outside air temperature Tout is higher than the predetermined temperature threshold Tth2, the process proceeds to step S23. proceed to Note that the threshold Tth2 of the outside air temperature Tout is set to, for example, 5° C. or less.
  • step S11 the controller 31 lights the low temperature start indicator 22 to notify the user that the low temperature start control will start.
  • the user can be made to recognize that the low-temperature start is being performed, and that the starter switch 20 needs to be kept pressed.
  • the one-push start configuration it is possible to make the user aware that it is necessary to wait because the engine is being started at a low temperature.
  • step S13 the controller 31 determines whether the output voltage Vbat of the battery 40 detected by the power supply circuit 39 is equal to or higher than a predetermined voltage threshold Vth.
  • the process proceeds to step S15, and determines that the output voltage Vbat of the battery 40 is less than the predetermined voltage threshold Vth. If so, the process proceeds to step S21.
  • the threshold Vth of the output voltage Vbat of the battery 40 is set to, for example, the voltage (eg, 5 V) immediately before the battery 40 runs out.
  • the low temperature start control is not executed, thereby suppressing the consumption of the battery 40 . In this way, it is possible to determine that the engine 1 cannot be started before starting the low temperature start control, so unnecessary discharging of the battery 40 can be avoided.
  • step S15 the controller 31 starts the low temperature start control of the engine 1. Details will be described later with reference to FIG.
  • step S17 the controller 31 turns off the low temperature start indicator 22 and notifies the user that the low temperature start control has ended. This makes it possible for the user to recognize that the low temperature start control has ended and that it is no longer necessary to keep pressing the starter switch 20 . Moreover, in the case of the one-push start configuration, it is possible to make the user aware that there is no longer a need to wait because the engine is being started at low temperature.
  • step S19 the controller 31 shifts to idling operation.
  • the controller 31 starts fail control.
  • fail control the controller 31 turns on the start-disabled indicator 23 and ends the processing of the flowchart of FIG.
  • the user can be notified that the engine 1 cannot be started because the output voltage Vbat of the battery 40 is low. Since both the low-temperature start indicator 22 and the start-disabled indicator 23 are lit, the engine 1 cannot be started because the engine temperature Teng and the outside air temperature Tout are low and the output voltage Vbat of the battery 40 is low. The user can be made to recognize that. Further, when the engine temperature Teng and the outside air temperature Tout become high, only the indicator 23 when the start is impossible lights up, so that the user is made aware that the engine 1 cannot be started because the output voltage Vbat of the battery 40 is low. be able to. It should be noted that a warning light such as a battery mark or a lamp may be turned on or blinked to notify the user that the battery voltage is low, instead of using the start-disabled indicator 23 .
  • step S23 the controller 31 starts normal engine 1 startup control. Details will be described later with reference to FIG.
  • FIG. 3 is a flowchart showing an example of the low temperature start control process for the engine 1 in step S15 of FIG.
  • step S31 the controller 31 determines whether or not the starter switch 20 that was turned on at step S1 in FIG. 3 is turned off. If the controller 31 determines that the starter switch 20 is not turned off, the process proceeds to step S33, and if it determines that the starter switch 20 is turned off, the process proceeds to step S45. In the case of the one-push start configuration, the process of step S33 is executed without making the determination of step S31.
  • step S33 the controller 31 fully opens the throttle valve 16 to prohibit fuel injection from the injector 17 and ignition from the spark plug 18.
  • the controller 31 drives the starter motor of the cranking mechanism 21 to start cranking.
  • step S37 based on the pulse signal detected by the crank angle sensor 32, the controller 31 waits until the number of times of cranking P reaches or exceeds the threshold value Pth of the predetermined number of times.
  • the controller 31 determines that the number of times of cranking P has reached or exceeded the predetermined number of times threshold value Pth, the process proceeds to step S39.
  • step S39 the controller 31 starts fuel injection from the injector 17 and ignition from the spark plug 18 while keeping the opening of the throttle valve 16 fully open.
  • step S41 the controller 31 determines whether or not the engine speed Ne is greater than or equal to a predetermined engine speed threshold value Nth. If the controller 31 determines that the engine speed Ne is equal to or greater than the predetermined speed threshold Nth, the process proceeds to step S43, and if it determines that the engine speed Ne is less than the predetermined speed threshold Nth. advances the process to step S45.
  • step S43 the controller 31 stops driving the starter motor of the cranking mechanism 21, ends the cranking started at step S35, and proceeds to step S17 in FIG.
  • step S45 the controller 31 turns off the low temperature start indicator 22 that was lit in step S11 of FIG. 3, notifies the user that the low temperature start control has ended, and ends the processing of the flowcharts of FIGS. 3 and 4. .
  • FIG. 6 is a timing chart showing the operation during low temperature start control in this embodiment.
  • the controller 31 controls the engine temperature Teng and the outside air temperature Tout while the vehicle speed V is zero. is equal to or lower than predetermined temperatures Tth1 and Tth2, the throttle valve 16 is fully opened, fuel injection from the injector 17 and ignition of the spark plug 18 are prohibited, and cranking is performed a predetermined number of times Pth by the cranking mechanism 21. Fuel injection of the injector 17 and ignition of the ignition plug 18 are started.
  • the number of times of cranking corresponds to the number of revolutions of the crankshaft 8, and the threshold value Pth of the number of times of cranking is set to a number of revolutions that can be driven within 5 to 10 seconds (for example, 5 to 6 revolutions).
  • the outside air temperature Tout, and the output voltage Vbat of the battery 40 exceed the threshold values Tth1, Tth2, and Vth, respectively.
  • the period of cranking (5 to 10 seconds) may be determined.
  • the controller 31 performs cranking a predetermined number of times Pth, and then gradually increases the amount of fuel injected from the injector 17 to achieve the optimal fuel consumption during normal start control. Control is performed so as to shift to the air-fuel ratio (F1 ⁇ F2 ⁇ F3).
  • the fuel injection amount F1 at the beginning of fuel injection is made smaller than the fuel injection amount for the optimum air-fuel ratio during normal start control, thereby improving the low-temperature ignitability.
  • the controller 31 performs cranking a predetermined number of times Pth, and then gradually increases the amount of fuel injected from the injector 17 to achieve the optimal fuel consumption during normal start control. Control is performed so as to shift to the air-fuel ratio (F1 ⁇ F2 ⁇ F3).
  • the fuel injection amount F1 at the beginning of fuel injection is made smaller than the fuel injection amount for the optimum air-fuel ratio during normal start control, thereby improving the low-temperature ignitability.
  • the low temperature start control of the present embodiment the air inside the combustion chamber 6 is compressed by cranking without using a heater, and the temperature of the air near the spark plug 18 is increased. In order to achieve this, it is possible to improve the low-temperature ignitability in the case of using the alcohol fuel. In addition, since no heater is used, carbon neutrality can be achieved with a low-cost configuration that does not require additional equipment or the like.
  • the low temperature start control is executed when both the engine temperature Teng and the outside air temperature Tout are equal to or lower than the predetermined temperatures Tth1 and Tth2.
  • the temperature Teng of the engine 1 may be approximately the same temperature as the outside air temperature Tout, when at least one of the engine temperature Teng and the outside air temperature Tout is equal to or lower than the predetermined temperatures Tth1, Tth2, the low temperature You may make it perform starting control.
  • FIG. 5 is a flowchart showing an example of normal start control processing for the engine 1 in step S23 of FIG.
  • step S51 the controller 31 determines whether the starter switch 20 that was turned on at step S1 in FIG. 3 is turned off. If the controller 31 determines that the starter switch 20 is not turned off, the process proceeds to step S53, and if it is determined that the starter switch 20 is turned off, the process of the flowcharts of FIGS. 3 and 4 is terminated. In the case of the one-push start configuration, the process of step S53 is executed without making the determination of step S51.
  • the controller 31 drives the starter motor of the cranking mechanism 21 to start cranking.
  • step S55 the controller 31 fully opens the throttle valve 16 and starts fuel injection from the injector 17 and ignition from the spark plug 18.
  • step S57 the controller 31 determines whether or not the engine speed Ne is greater than or equal to a predetermined engine speed threshold value Nth. If the controller 31 determines that the engine speed Ne is equal to or greater than the predetermined speed threshold Nth, the process proceeds to step S59; if it determines that the engine speed Ne is less than the predetermined speed threshold Nth, ends the processing of the flow charts of FIGS.
  • step S59 the controller 31 stops driving the starter motor of the cranking mechanism 21, ends the cranking started at step S53, and proceeds to step S19 in FIG.
  • a control device 30 for an internal combustion engine 1 that can use an alcohol fuel or a mixed fuel in which an alcohol fuel is mixed with a hydrocarbon fuel, a first temperature detection means 36 for detecting the temperature Teng of the internal combustion engine 1; a second temperature detection means 38 for detecting an outside air temperature Tout introduced into the internal combustion engine 1; A control means 31 for controlling the internal combustion engine 1 in response to detection of a start command for the internal combustion engine 1, When starting the internal combustion engine 1, the control means 31 prohibits fuel injection and ignition when at least one of the engine temperature Teng and the outside air temperature Tout is equal to or lower than predetermined temperatures Tth1 and Tth2. After performing cranking for a predetermined number of times Pth, the low temperature start control is executed to perform the fuel injection and the ignition.
  • the air inside the combustion chamber is compressed and heated by cranking without using a heater, low-temperature ignitability can be improved when alcohol fuel is used to achieve carbon neutrality. can be done.
  • carbon neutrality can be achieved with a low-cost configuration that does not require additional equipment or the like.
  • the control means 31 controls to gradually increase the fuel injection amount when starting the fuel injection after the predetermined number of times of cranking Pth.
  • the second aspect by minimizing the amount of fuel injection required for starting the internal combustion engine 1 and minimizing the latent heat of vaporization of the fuel at the time of starting the internal combustion engine 1, the excess of the combustion chamber due to fuel injection is reduced. cooling can be suppressed.
  • the first indicator 22 is provided to notify the occupant of the low temperature start control state.
  • the first indicator 22 notifies that the low temperature start control is to be executed when the temperatures Tth1, Tth2 or lower.
  • the third aspect it is possible to make the user aware that it is time to start at low temperatures, and to make the user aware that it is necessary to continue the operation to start starting the internal combustion engine 1 . Also, in the case of the one-push start configuration, it is possible to make the user aware that it is necessary to wait because the engine is being started at a low temperature.
  • a start assist means 20 for receiving a user operation for inputting a start command for the internal combustion engine 1 to the control means 31, The control means 31 performs the cranking while the starting assist means 20 is being operated.
  • the fourth aspect it is possible to make the user aware that it is necessary to continue the operation to start starting the internal combustion engine 1 .
  • a start assist means 20 for receiving a user operation for inputting a start command for the internal combustion engine 1 to the control means 31, The cranking is performed in response to the operation of the starting assist means 20 .
  • the fifth aspect it is possible to make the user aware that it is necessary to wait because the engine is being started at low temperature.
  • the control means 31 comprises a second indicator 23 that indicates that the internal combustion engine 1 cannot be started, and a battery 40 that supplies electric power for the cranking. , when the voltage of the battery 40 is lower than a predetermined threshold value Vth, it is determined that the internal combustion engine 1 cannot be started, and the second indicator 23 notifies that the low temperature start control is not executed.
  • the user can be notified that the internal combustion engine 1 cannot be started because the output voltage Vbat of the battery 40 is low. Further, since both the low-temperature start indicator 22 and the unstartable indicator 23 are lit, at least one of the temperature Teng of the internal combustion engine 1 and the outside air temperature Tout is low and the output voltage Vbat of the battery 40 is low. The user can be made aware that 1 start-up is not possible. Further, when at least one of the temperature Teng of the internal combustion engine 1 and the outside air temperature Tout becomes high, only the indicator 23 for when the engine cannot be started lights up. A user can be made to recognize that there is.
  • the internal combustion engine 1 is a first temperature detection means 36 for detecting the temperature Teng of the internal combustion engine 1; a second temperature detection means 38 for detecting an outside air temperature Tout introduced into the internal combustion engine;
  • the control method (Fig. 3) for an internal combustion engine 1 capable of using an alcohol fuel or a mixed fuel in which an alcohol fuel is mixed with a hydrocarbon fuel,
  • the internal combustion engine 1 is a first temperature detection means 36 for detecting the temperature Teng of the internal combustion engine 1; a second temperature detection means 38 for detecting an outside air temperature Tout introduced into the internal combustion engine;
  • step S15 of controlling the internal combustion engine in response to detection of a start command for the internal combustion engine 1;
  • step S15 when the internal combustion engine 1 is started and at least one of the temperature Teng of the internal combustion engine 1 and the outside air temperature Tout is equal to or lower than predetermined temperatures Tth1 and Tth2, fuel injection and After performing cranking for a predetermined number of times Pth in a state in which ignition is prohibited, low-temperature start control is executed in which the fuel injection and the ignition are performed.
  • the air in the combustion chamber is compressed and heated by cranking without using a heater, low-temperature ignitability can be improved when alcohol fuel is used to achieve carbon neutrality. can be done.
  • carbon neutrality can be achieved with a low-cost configuration that does not require additional equipment or the like.
  • a computer program corresponding to the start control of the engine 1 of the embodiment described above and a storage medium storing the computer program are supplied to a computer mounted on a vehicle, and the computer stores the computer program in the storage medium.
  • the stored program code may be read and executed.

Abstract

An engine 1 can use alcohol fuel or a mixed fuel obtained by mixing alcohol fuel with hydrocarbon fuel, and a control device 30 comprises: an engine temperature sensor 36 that detects the temperature Teng of the engine 1; an outside air temperature sensor 38 that detects the temperature Tout of outside air introduced to the engine 1; and a controller 31 that controls the engine 1 in accordance with detecting a start command of the engine 1. If at least one among the engine temperature Teng and the outside air temperature Tout is equal to or less than a prescribed temperature Tth1, Tth2 when starting the engine 1, the controller 31 executes low-temperature start control for performing a prescribed number Pth of crankings in a state where fuel injection and ignition are prohibited, and thereafter performing the fuel injection and ignition.

Description

内燃機関の制御装置及び制御方法CONTROL DEVICE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
 本発明は、内燃機関の始動時の制御技術に関する。 The present invention relates to control technology when starting an internal combustion engine.
 特許文献1には、アルコール燃料を利用可能な内燃機関において、吸気用ヒータが発生した熱量と吸気負圧が所定以上となるまで燃料噴射を禁止する制御方法が記載されている。特許文献2には、冷却水温度が-20℃以下のときに、排気弁を閉じ空気を還流させつつ、燃料噴射を禁止する制御方法が記載されている。 Patent Document 1 describes a control method for prohibiting fuel injection in an internal combustion engine that can use alcohol fuel until the amount of heat generated by the intake heater and the intake negative pressure reach or exceed a predetermined value. Patent Document 2 describes a control method for prohibiting fuel injection while closing an exhaust valve to recirculate air when the cooling water temperature is -20° C. or lower.
特開2014-137019号公報JP 2014-137019 A 特開平10-288069号公報JP-A-10-288069
 カーボンニュートラルを実現するためには、内燃機関に利用される燃料を炭化水素燃料からアルコール燃料(例えば、エタノール100%)にすることが望ましいが、アルコール燃料は低温時の着火性が低いため、低温時の始動性に改善の余地がある。しかしながら、上記特許文献1、2のように、電気ヒータにより燃料又は吸入空気を加熱する構成では、電気ヒータを導入する分のコストが高くなるとともに、電気ヒータの消費電力に見合うようにバッテリ容量を大きくする必要がある。 In order to achieve carbon neutrality, it is desirable to change the fuel used in the internal combustion engine from a hydrocarbon fuel to an alcohol fuel (e.g., 100% ethanol). There is room for improvement in the time startability. However, in the configuration in which the fuel or the intake air is heated by an electric heater as in Patent Documents 1 and 2, the introduction of the electric heater increases the cost, and the battery capacity is reduced to match the power consumption of the electric heater. need to be bigger.
 本発明は、上記課題に鑑みてなされ、追加の機器等を必要としない廉価な構成でアルコール燃料を利用可能な内燃機関における低温時の始動性を向上できる技術を実現する。 The present invention has been made in view of the above problems, and realizes a technology that can improve startability at low temperatures in an internal combustion engine that can use alcohol fuel with a low-cost configuration that does not require additional equipment.
 上記課題を解決するために、本発明は、アルコール燃料又は炭化水素燃料にアルコール燃料を混合した混合燃料を利用可能な内燃機関の制御装置であって、前記内燃機関の温度を検出する第1の温度検出手段と、前記内燃機関に導入される外気温度を検出する第2の温度検出手段と、前記内燃機関の始動指令を検出したことに応じて前記内燃機関を制御する制御手段と、を備え、前記制御手段は、前記内燃機関を始動する場合に、前記内燃機関の温度及び前記外気温度の少なくともいずれかが所定の温度以下のとき、燃料噴射及び点火を禁止した状態で所定回数のクランキングを行った後に前記燃料噴射及び前記点火を行う低温始動制御を実行する。 In order to solve the above-mentioned problems, the present invention provides a control device for an internal combustion engine that can use alcohol fuel or a mixed fuel in which alcohol fuel is mixed with hydrocarbon fuel, comprising a first control device for detecting the temperature of the internal combustion engine. temperature detecting means; second temperature detecting means for detecting the temperature of outside air introduced into the internal combustion engine; and control means for controlling the internal combustion engine in response to detection of a start command for the internal combustion engine. and the control means performs cranking a predetermined number of times while prohibiting fuel injection and ignition when at least one of the temperature of the internal combustion engine and the temperature of the outside air is lower than a predetermined temperature when starting the internal combustion engine. After performing the low temperature start control for performing the fuel injection and the ignition.
 また、本発明は、アルコール燃料又は炭化水素燃料にアルコール燃料を混合した混合燃料を利用可能な内燃機関の制御方法であって、前記内燃機関は、前記内燃機関の温度を検出する第1の温度検出手段と、前記内燃機関に導入される外気温度を検出する第2の温度検出手段と、を備え、前記制御方法は、前記内燃機関の始動指令を検出したことに応じて前記内燃機関を制御するステップを備え、前記制御するステップでは、前記内燃機関を始動する場合に、前記内燃機関の温度及び前記外気温度の少なくともいずれかが所定の温度以下のとき、燃料噴射及び点火を禁止した状態で所定回数のクランキングを行った後に前記燃料噴射及び前記点火を行う低温始動制御を実行する。 Further, the present invention is a control method for an internal combustion engine capable of using an alcohol fuel or a mixed fuel obtained by mixing an alcohol fuel with a hydrocarbon fuel, wherein the internal combustion engine detects a first temperature sensor for detecting the temperature of the internal combustion engine. and a second temperature detecting means for detecting the temperature of outside air introduced into the internal combustion engine, wherein the control method controls the internal combustion engine in response to detection of a start command for the internal combustion engine. wherein, when starting the internal combustion engine, the controlling step prohibits fuel injection and ignition when at least one of the temperature of the internal combustion engine and the temperature of the outside air is equal to or lower than a predetermined temperature. After performing cranking for a predetermined number of times, the low temperature start control is executed to perform the fuel injection and the ignition.
 本発明によれば、追加の機器等を必要としない廉価な構成でアルコール燃料を利用可能な内燃機関における低温時の始動性を向上できる技術を実現することができる。 According to the present invention, it is possible to realize a technology that can improve startability at low temperatures in an internal combustion engine that can use alcohol fuel with a low-cost configuration that does not require additional equipment.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar configurations are given the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本実施形態の内燃機関の要部構成を概略的に示す概略断面図である。 図2は、本実施形態の内燃機関の制御装置の構成を示すブロック図である。 図3は、本実施形態の内燃機関の始動制御を示すフローチャートである。 図4は、本実施形態の内燃機関の低温始動制御を示すフローチャートである。 図5は、本実施形態の内燃機関の通常始動制御を示すフローチャートである。 図6は、本実施形態の低温始動制御時の動作を示すタイミングチャートである。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
FIG. 1 is a schematic cross-sectional view schematically showing the configuration of essential parts of an internal combustion engine of this embodiment. FIG. 2 is a block diagram showing the configuration of the control device for the internal combustion engine of this embodiment. FIG. 3 is a flowchart showing start control of the internal combustion engine according to this embodiment. FIG. 4 is a flowchart showing the low temperature start control of the internal combustion engine of this embodiment. FIG. 5 is a flow chart showing normal starting control of the internal combustion engine of this embodiment. FIG. 6 is a timing chart showing the operation during low temperature start control in this embodiment.
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the features described in the embodiments may be combined arbitrarily. Also, the same or similar configurations are denoted by the same reference numerals, and redundant explanations are omitted.
 本実施形態の内燃機関の制御装置は、内燃機関としての火花点火式のエンジンに適用される。エンジンは、例えば動作周期(1サイクル)の間に吸気、膨張、圧縮及び排気の4つの行程を経る4サイクルエンジンである。エンジンは、カーボンニュートラルを実現するために、エタノール等のアルコール燃料が利用可能であるが、ガソリンに所定割合(例えば、85%)のアルコールを混合した混合燃料を利用することもできる。 The control device for an internal combustion engine of this embodiment is applied to a spark ignition engine as an internal combustion engine. The engine is, for example, a four-cycle engine that undergoes four strokes of intake, expansion, compression and exhaust during an operating cycle (one cycle). In order to achieve carbon neutrality, the engine can use alcohol fuel such as ethanol, but it can also use a mixed fuel in which a predetermined percentage (eg, 85%) of alcohol is mixed with gasoline.
 本実施形態では、自動二輪車等の鞍乗型車両に搭載されるエンジンの制御装置の例を説明するが、これに限らず、三輪車、四輪車(普通自動車、軽自動車、トラック等)等の車両、船舶(船外機含む)等、車両以外の移動体、ショベルカー、ブルドーザ等の作業機に搭載されるエンジンの制御装置にも適用可能である。 In the present embodiment, an example of a control device for an engine mounted on a saddle type vehicle such as a motorcycle will be described, but the present invention is not limited to this, and can be used for three-wheeled vehicles, four-wheeled vehicles (regular automobiles, light automobiles, trucks, etc.). The present invention can also be applied to control devices for engines mounted on moving bodies other than vehicles, such as vehicles and ships (including outboard motors), and working machines such as shovels and bulldozers.
 図1は、本実施形態の内燃機関の制御装置に適用されるエンジン1の要部構成を概略的に示す断面図である。なお、エンジン1は多気筒エンジンであるが、図1には単一の気筒のみを示す。図1に示すように、エンジン1は、シリンダブロック2に形成された複数のシリンダ3と、シリンダ3の内部に摺動可能に配置されたピストン4と、ピストン4とシリンダヘッド5の間に形成された燃焼室6と、を有する。ピストン4は、コンロッド7を介してクランクシャフト8に連結され、シリンダ3の内壁に沿ってピストン4が往復動作することにより、クランクシャフト8が回転する。なお、シリンダ3の内壁には、エンジン1を冷却するための冷却水を循環する循環経路が形成される場合もある。 FIG. 1 is a cross-sectional view schematically showing the main configuration of an engine 1 that is applied to the internal combustion engine control device of this embodiment. Although the engine 1 is a multi-cylinder engine, FIG. 1 shows only a single cylinder. As shown in FIG. 1, an engine 1 includes a plurality of cylinders 3 formed in a cylinder block 2, pistons 4 slidably arranged inside the cylinders 3, and pistons 4 and a cylinder head 5 formed between the pistons 4 and the cylinder head 5. and a combustion chamber 6 . The piston 4 is connected to a crankshaft 8 via a connecting rod 7 , and reciprocating motion of the piston 4 along the inner wall of the cylinder 3 causes the crankshaft 8 to rotate. A circulation path for circulating cooling water for cooling the engine 1 may be formed on the inner wall of the cylinder 3 in some cases.
 シリンダヘッド5には、吸気ポート10と排気ポート11とが設けられる。燃焼室6には、吸気ポート10を介して吸気通路12が連通するとともに、排気ポート11を介して排気通路13が連通する。吸気ポート10は吸気バルブ14により開閉され、排気ポート11は排気バルブ15により開閉される。吸気バルブ14の上流側の吸気通路12には、スロットルバルブ16及びインジェクタ17が設けられる。インジェクタ17は、スロットルバルブ16よりも下流側の吸気通路12の側面に、燃料噴射口を吸気ポート10に向けて配置される。 The cylinder head 5 is provided with an intake port 10 and an exhaust port 11 . The combustion chamber 6 is communicated with an intake passage 12 via an intake port 10 and communicated with an exhaust passage 13 via an exhaust port 11 . The intake port 10 is opened and closed by an intake valve 14 and the exhaust port 11 is opened and closed by an exhaust valve 15 . A throttle valve 16 and an injector 17 are provided in the intake passage 12 on the upstream side of the intake valve 14 . The injector 17 is arranged on the side surface of the intake passage 12 on the downstream side of the throttle valve 16 with the fuel injection opening directed toward the intake port 10 .
 スロットルバルブ16は、例えば、バタフライ弁により構成され、スロットルバルブ16により燃焼室6へ流れる吸気量が調整される。なお、スロットルバルブ16は、電動モータ等のスロットル用アクチュエータにより駆動される。吸気バルブ14と排気バルブ15とは、不図示の動弁機構により、クランクシャフト8の回転に同期した所定のタイミングで開閉駆動される。なお、吸気バルブ14及び排気バルブ15の開閉のタイミングは適宜変更可能である。 The throttle valve 16 is composed of, for example, a butterfly valve, and adjusts the amount of intake air flowing into the combustion chamber 6 by the throttle valve 16 . The throttle valve 16 is driven by a throttle actuator such as an electric motor. The intake valve 14 and the exhaust valve 15 are driven to open and close at predetermined timing synchronized with the rotation of the crankshaft 8 by a valve mechanism (not shown). The opening and closing timings of the intake valve 14 and the exhaust valve 15 can be changed as appropriate.
 インジェクタ17は、図2で後述するコントローラ31からの制御信号により駆動され、所定の噴射タイミングでかつ所定のパルス幅で開弁し、燃焼室6の内部に燃料を噴射する。インジェクタ17からの燃料噴射量は、実空燃比(吸入空気量A/燃料噴射量F)がアルコール濃度に応じた理論空燃比となるようにエンジン1の吸入空気量に応じて制御される。インジェクタ17は、例えばピエゾアクチュエータにより駆動され、高い応答性を有する。なお、インジェクタ17は、吸気通路12に配置された構成に限らず、筒内噴射型の燃料噴射弁として、燃焼室6の内部に臨むようにシリンダブロック2又はシリンダヘッド5に配置された構成であってもよい。 The injector 17 is driven by a control signal from a controller 31, which will be described later with reference to FIG. The fuel injection amount from the injector 17 is controlled according to the intake air amount of the engine 1 so that the actual air-fuel ratio (intake air amount A/fuel injection amount F) becomes the theoretical air-fuel ratio corresponding to the alcohol concentration. The injector 17 is driven by, for example, a piezo actuator and has high responsiveness. The injector 17 is not limited to being arranged in the intake passage 12, but may be arranged in the cylinder block 2 or the cylinder head 5 so as to face the inside of the combustion chamber 6 as an in-cylinder fuel injection valve. There may be.
 シリンダヘッド5には、シリンダ3の燃焼室6に臨むようにそれぞれ点火プラグ18が装着される。点火プラグ18は、吸気ポート10と排気ポート11との間に配置され、電気エネルギーにより火花を発生し、燃焼室6の内部の燃料と空気との混合気を点火する。 A spark plug 18 is attached to each cylinder head 5 so as to face the combustion chamber 6 of the cylinder 3 . The spark plug 18 is arranged between the intake port 10 and the exhaust port 11 and generates a spark by electric energy to ignite the mixture of fuel and air inside the combustion chamber 6 .
 排気通路13には、排気ガスを浄化する三元触媒等を備えた排気浄化装置19が設けられている。 The exhaust passage 13 is provided with an exhaust purification device 19 having a three-way catalyst or the like for purifying exhaust gas.
 本実施形態のエンジン1のように、カーボンニュートラルを実現するためにアルコール燃料又はアルコール濃度が高い混合燃料を利用する場合、例えば、エンジン1の温度(冷却水温度、潤滑油温度等)あるいは外気温度等が低い状態では、インジェクタ17から噴射した燃料は気化しにくく、アルコール燃料は低温時の着火性が低いため、低温時の始動性が低下するおそれがある。 As in the engine 1 of the present embodiment, when alcohol fuel or a mixed fuel with a high alcohol concentration is used to achieve carbon neutrality, for example, the temperature of the engine 1 (cooling water temperature, lubricating oil temperature, etc.) or the outside air temperature In the low temperature state, the fuel injected from the injector 17 is difficult to evaporate, and the alcohol fuel has low ignitability at low temperatures, so there is a risk that startability at low temperatures will deteriorate.
 そこで、本実施形態では、以下に説明する内燃機関の制御装置30により実行される低温始動制御によりアルコール燃料を利用した場合であっても低温時の始動性を向上し、カーボンニュートラルを実現することができる。 Therefore, in the present embodiment, even when alcohol fuel is used, startability at low temperatures is improved by low temperature start control executed by the control device 30 for the internal combustion engine, which will be described below, and carbon neutrality is realized. can be done.
 図2は、本実施形態の内燃機関の制御装置30の構成を示すブロック図である。図2に示すように、制御装置30は、コントローラ31を有し、コントローラ31に接続された各種センサにより検出された信号に基づいて、スロットルバルブ16、インジェクタ17及び点火プラグ18に制御信号を出力する。また、コントローラ31は、図3で後述するエンジン1の始動制御において、スロットルバルブ16の開度、インジェクタ17の燃料噴射、点火プラグ18の点火を制御するとともに、不図示のメータパネルに設けられたインジケータ22、23の点灯/消灯を制御する。 FIG. 2 is a block diagram showing the configuration of the internal combustion engine control device 30 of this embodiment. As shown in FIG. 2, the control device 30 has a controller 31, and outputs control signals to the throttle valve 16, the injector 17, and the spark plug 18 based on signals detected by various sensors connected to the controller 31. do. Further, the controller 31 controls the opening of the throttle valve 16, the fuel injection of the injector 17, and the ignition of the spark plug 18 in starting control of the engine 1, which will be described later with reference to FIG. It controls lighting/lighting out of the indicators 22 and 23 .
 コントローラ31は、電子制御ユニット(ECU)により構成され、CPU31a、ROM31b、RAM31c及びI/Oインターフェース(IF)31dその他の回路を含むコンピュータである。 The controller 31 is a computer configured by an electronic control unit (ECU) and including a CPU 31a, a ROM 31b, a RAM 31c, an I/O interface (IF) 31d and other circuits.
 コントローラ31に接続されたセンサは、クランク角センサ32、吸気センサ33、排出ガスセンサ34、水温センサ35、エンジン温度センサ36、車速センサ37及び外気温センサ38を含む。 Sensors connected to the controller 31 include a crank angle sensor 32, an intake sensor 33, an exhaust gas sensor 34, a water temperature sensor 35, an engine temperature sensor 36, a vehicle speed sensor 37 and an outside air temperature sensor 38.
 クランク角センサ32は、シリンダブロック2のクランクケースに設けられ、クランクシャフト8の回転に伴いパルス信号を出力する。コントローラ31は、クランク角センサ32から出力されたパルス信号に基づいて、エンジン回転数を算出する。また、コントローラ31は、クランク角センサ32から出力されたパルス信号に基づいて、図4で後述するエンジン1の低温始動制御においてクランキング回数を算出する。 The crank angle sensor 32 is provided in the crankcase of the cylinder block 2 and outputs a pulse signal as the crankshaft 8 rotates. The controller 31 calculates the engine speed based on the pulse signal output from the crank angle sensor 32 . The controller 31 also calculates the number of times of cranking in the low temperature start control of the engine 1 described later with reference to FIG. 4 based on the pulse signal output from the crank angle sensor 32 .
 また、コントローラ31は、クランク角センサ32から出力された信号に基づいて、シリンダ3の吸気行程開始時のクランク角、すなわちピストン4の上死点の位置を基準(0°)としたクランク角(位相)を特定する。吸入行程のクランク角は、ピストン4が上死点(TDC)から下死点(BDC)まで降下するときのクランク角であり、0°~180°の範囲内で定まる。圧縮行程のクランク角は、ピストン4が下死点から上死点まで上昇する時のクランク角であり、180°~360°までの範囲内で定まる。 Based on the signal output from the crank angle sensor 32, the controller 31 determines the crank angle at the start of the intake stroke of the cylinder 3, that is, the crank angle ( phase). The intake stroke crank angle is the crank angle when the piston 4 descends from the top dead center (TDC) to the bottom dead center (BDC), and is determined within the range of 0° to 180°. The compression stroke crank angle is the crank angle when the piston 4 rises from the bottom dead center to the top dead center, and is determined within the range of 180° to 360°.
 吸気センサ33は、吸気通路12におけるスロットルバルブ16の下流側に設けられ、圧力センサ、吸入空気量を検出するエアフローメータ、スロットル開度を検出するスロットル開度センサ等で構成されている。コントローラ31は、吸気センサ33から出力された信号に基づいて、スロットルバルブ16の下流側の吸気圧力又は吸入空気量を算出する。 The intake sensor 33 is provided on the downstream side of the throttle valve 16 in the intake passage 12, and is composed of a pressure sensor, an air flow meter that detects the amount of intake air, a throttle opening sensor that detects the throttle opening, and the like. The controller 31 calculates the intake pressure or intake air amount on the downstream side of the throttle valve 16 based on the signal output from the intake sensor 33 .
 排出ガスセンサ34は、排気通路13に設けられ、エンジン1の排出ガスの空燃比又はリッチ/リーン等を検出する空燃比センサあるいは酸素センサ等で構成されている。排出ガスセンサ34の下流側に排気浄化装置19が設けられている。コントローラ31は、排出ガスセンサ34により出力された信号に基づいて実空燃比を算出する。 The exhaust gas sensor 34 is provided in the exhaust passage 13 and is composed of an air-fuel ratio sensor, an oxygen sensor, or the like that detects the air-fuel ratio or rich/lean of the exhaust gas of the engine 1 . An exhaust purification device 19 is provided downstream of the exhaust gas sensor 34 . Controller 31 calculates the actual air-fuel ratio based on the signal output from exhaust gas sensor 34 .
 水温センサ35は、エンジン1の冷却水が循環する循環経路に設けられ、冷却水の温度を検出する温度センサ等で構成されている。コントローラ31は、水温センサ35から出力された信号により、エンジン1の冷却水の温度(エンジン水温)を算出する。なお、図示は省略するが、コントローラ31には、アクセルペダルの操作量(アクセル開度)を検出するアクセル開度センサ等も接続される。 The water temperature sensor 35 is provided in the circulation path through which the cooling water of the engine 1 circulates, and is composed of a temperature sensor or the like that detects the temperature of the cooling water. The controller 31 calculates the temperature of the cooling water of the engine 1 (engine water temperature) from the signal output from the water temperature sensor 35 . Although not shown, the controller 31 is also connected to an accelerator opening sensor for detecting the amount of operation of the accelerator pedal (accelerator opening).
 エンジン温度センサ36は、オイルパン又はオイルフィルタに設けられ、エンジンオイルの温度を検出する温度センサ等で構成されている。コントローラ31は、エンジン温度センサ36から出力された信号により、エンジン1の温度を算出する。なお、エンジン1を停止してから長時間が経過しており、エンジン1の温度が冷却水温度と略同じ温度となっている場合には、水温センサ35により検出されたエンジン1の冷却水温度に基づいてエンジン1の温度を算出してもよい。また、エンジン1を停止してから長時間が経過しており、エンジン1の温度が外気温度と略同じ温度となっている場合には、後述する外気温センサ38により検出された外気温度に基づいてエンジン1の温度を算出してもよい。 The engine temperature sensor 36 is provided in the oil pan or oil filter and is composed of a temperature sensor or the like that detects the temperature of the engine oil. The controller 31 calculates the temperature of the engine 1 based on the signal output from the engine temperature sensor 36 . If a long time has passed since the engine 1 was stopped and the temperature of the engine 1 is approximately the same as the coolant temperature, the coolant temperature of the engine 1 detected by the coolant temperature sensor 35 You may calculate the temperature of the engine 1 based on. Further, when a long time has passed since the engine 1 was stopped and the temperature of the engine 1 is approximately the same as the temperature of the outside air, the temperature of the outside air detected by the outside temperature sensor 38, which will be described later, is used. The temperature of the engine 1 may be calculated by
 車速センサ37は、エンジン1が搭載されている車両の速度に応じてホイール又はアクスル等の回転伴いパルス信号を出力する。コントローラ31は、車速センサ37から出力されたパルス信号に基づいて、車両の速度を算出する。 The vehicle speed sensor 37 outputs a pulse signal accompanying rotation of the wheels or axles according to the speed of the vehicle in which the engine 1 is mounted. Controller 31 calculates the speed of the vehicle based on the pulse signal output from vehicle speed sensor 37 .
 外気温センサ38は、エンジン1の熱や直射日光の影響を受けない位置に設けられ、外気温度を検出する温度センサ等で構成されている。コントローラ31は、外気温センサ38により出力された信号に基づいて、車両の外気温度を算出する。なお、吸気センサ33に温度センサを追加し、吸気センサ33により検出された吸気温度に基づいて車両の外気温度を算出してもよい。また、エンジン1を停止してから長時間が経過しており、エンジン1の冷却水の温度が外気温度と略同じ温度となっている場合には、水温センサ35により検出されたエンジン1の冷却水温度に基づいて車両の外気温度を算出してもよい。 The outside air temperature sensor 38 is provided at a position that is not affected by the heat of the engine 1 or direct sunlight, and is composed of a temperature sensor or the like that detects the outside air temperature. The controller 31 calculates the outside air temperature of the vehicle based on the signal output by the outside air temperature sensor 38 . A temperature sensor may be added to the intake sensor 33 and the outside air temperature of the vehicle may be calculated based on the intake air temperature detected by the intake sensor 33 . Further, when a long time has passed since the engine 1 was stopped and the temperature of the cooling water for the engine 1 is approximately the same as the temperature of the outside air, the cooling of the engine 1 detected by the water temperature sensor 35 The outside air temperature of the vehicle may be calculated based on the water temperature.
 また、コントローラ31には、バッテリ40の出力電圧を検出する電源回路39が接続されている。 A power supply circuit 39 that detects the output voltage of the battery 40 is also connected to the controller 31 .
 また、コントローラ31には、ユーザ(乗員)がエンジン1を始動する際に操作するスタータスイッチ20から信号が入力される。コントローラ31は、スタータスイッチ20がオンされ、エンジン1の始動を指令する信号が入力されると、図3で後述するエンジン1の始動制御を開始する。なお、スタータスイッチ20は、エンジン1の始動指令をコントローラ31に入力するための始動補助部であり、例えば、押しボタン式のスイッチであるが、キーをキーシリンダに差し込む形式のイグニッションスイッチであってもよい。 A signal is also input to the controller 31 from the starter switch 20 operated by the user (occupant) when starting the engine 1 . When the starter switch 20 is turned on and a signal instructing the start of the engine 1 is input, the controller 31 starts start control of the engine 1, which will be described later with reference to FIG. The starter switch 20 is a start assisting unit for inputting a start command for the engine 1 to the controller 31. For example, it is a push button type switch, but it is an ignition switch of a type in which a key is inserted into a key cylinder. good too.
 クランキング機構21は、スタータスイッチ20がオンされ、エンジン1の始動を指令する信号が入力された場合に、クランクシャフト8を回転(クランキング)させるセルモータ及びフライホイール等で構成されている。 The cranking mechanism 21 is composed of a starter motor, a flywheel, etc. that rotate (crank) the crankshaft 8 when the starter switch 20 is turned on and a signal instructing the start of the engine 1 is input.
 コントローラ31は、不図示のメータパネルに設けられた低温始動インジケータ22及び始動不能インジケータ23の点灯/消灯を制御する。低温始動インジケータ22は、図3で後述する低温始動制御時に点灯するLED、液晶表示器等で構成されている。始動不能インジケータ23は、図3で後述するフェール制御時に点灯するLED、液晶表示器等で構成されている。 The controller 31 controls lighting/extinguishing of the low temperature start indicator 22 and the start failure indicator 23 provided on the meter panel (not shown). The low temperature start indicator 22 is composed of an LED, a liquid crystal display, or the like that is lit during low temperature start control, which will be described later with reference to FIG. The start impossibility indicator 23 is composed of an LED, a liquid crystal display, or the like that lights up during fail control, which will be described later with reference to FIG.
 <エンジン1の始動制御>
 次に、図3を参照して、本実施形態のエンジン1の始動制御について説明する。
<Starting Control of Engine 1>
Next, with reference to FIG. 3, start control of the engine 1 of this embodiment will be described.
 図3は、本実施形態のエンジン1の始動制御処理の一例を示すフローチャートである。なお、図3の処理は、コントローラ31のROMに記憶されたプログラムをCPUが実行し、インジケータ22、23、スロットルバルブ16、インジェクタ17、点火プラグ18及びクランキング機構21を制御することにより実現される。 FIG. 3 is a flowchart showing an example of the start control process for the engine 1 of this embodiment. 3 is realized by the CPU executing a program stored in the ROM of the controller 31 and controlling the indicators 22 and 23, the throttle valve 16, the injector 17, the spark plug 18 and the cranking mechanism 21. be.
 なお、本実施形態では、図3のエンジン1の始動制御においてエンジン1が始動するまでユーザがスタータスイッチ20を押し続け、スタータスイッチ20が押されている期間クランキングを行う構成の例を説明するが、ユーザがスタータスイッチ20を一旦押すと、その後スタータスイッチ20を押さなくてもクランキングを行い続ける、いわゆるワンプッシュスタートの構成であってもよい。 In this embodiment, the user continues to press the starter switch 20 until the engine 1 is started in the start control of the engine 1 in FIG. 3, and cranking is performed while the starter switch 20 is being pressed. However, once the starter switch 20 is pressed by the user, cranking is continued even if the starter switch 20 is not pressed thereafter, so-called one-push start configuration may be used.
 ステップS1では、コントローラ31は、スタータスイッチ20がオンされ、エンジン1の始動を指令する信号が入力されるまで待機する。コントローラ31は、スタータスイッチ20がオンされたと判定した場合は処理をステップS3に進める。 In step S1, the controller 31 waits until the starter switch 20 is turned on and a signal instructing the start of the engine 1 is input. When the controller 31 determines that the starter switch 20 is turned on, the process proceeds to step S3.
 ステップS3では、コントローラ31は、図2の各種センサ32~38から出力された信号を読み込む。 In step S3, the controller 31 reads the signals output from the various sensors 32-38 in FIG.
 ステップS5では、コントローラ31は、車速センサ37により検出された信号に基づいて、車速Vがゼロであるか否かを判定する。コントローラ31は、車速Vがゼロであると判定した場合は処理をステップS7に進め、車速がゼロではないと判定した場合は、ステップS1のエンジン1の始動指令を無視し、図3のフローチャートの処理を終了する。 In step S5, the controller 31 determines whether the vehicle speed V is zero based on the signal detected by the vehicle speed sensor 37. If the controller 31 determines that the vehicle speed V is zero, the process proceeds to step S7, and if it determines that the vehicle speed is not zero, the controller 31 ignores the command to start the engine 1 in step S1, and proceeds to the flowchart of FIG. End the process.
 ステップS7では、コントローラ31は、エンジン温度センサ36により検出された信号に基づいて、エンジン温度Tengが所定の温度の閾値Tth1以下であるか否かを判定する。コントローラ31は、エンジン温度Tengが所定の温度の閾値Tth1以下であると判定した場合は処理をステップS9に進め、エンジン温度Tengが所定の温度の閾値Tth1より高いと判定した場合は処理をステップS23に進める。なお、エンジン温度Tengの閾値Tth1は、例えば5℃以下に設定される。 In step S7, based on the signal detected by the engine temperature sensor 36, the controller 31 determines whether the engine temperature Teng is equal to or less than a predetermined temperature threshold value Tth1. If the controller 31 determines that the engine temperature Teng is equal to or lower than the predetermined temperature threshold Tth1, the process proceeds to step S9, and if it determines that the engine temperature Teng is higher than the predetermined temperature threshold Tth1, the process proceeds to step S23. proceed to Note that the threshold Tth1 of the engine temperature Teng is set to 5° C. or less, for example.
 ステップS9では、コントローラ31は、水温センサ35又は外気温センサ38により検出された信号に基づいて、外気温度Toutが所定の温度の閾値Tth2以下であるか否かを判定する。コントローラ31は、外気温度Toutが所定の温度の閾値Tth2以下であると判定した場合は処理をステップS11に進め、外気温度Toutが所定の温度の閾値Tth2より高いと判定した場合は処理をステップS23に進める。なお、外気温度Toutの閾値Tth2は、例えば5℃以下に設定される。 In step S9, the controller 31 determines whether the outside air temperature Tout is equal to or lower than a predetermined temperature threshold Tth2 based on the signal detected by the water temperature sensor 35 or the outside air temperature sensor 38. If the controller 31 determines that the outside air temperature Tout is equal to or lower than the predetermined temperature threshold Tth2, the process proceeds to step S11, and if it determines that the outside air temperature Tout is higher than the predetermined temperature threshold Tth2, the process proceeds to step S23. proceed to Note that the threshold Tth2 of the outside air temperature Tout is set to, for example, 5° C. or less.
 ステップS11では、コントローラ31は、低温始動インジケータ22を点灯して、低温始動制御を開始することをユーザに通知する。これにより、低温始動時であることをユーザに認知させると共に、スタータスイッチ20を押し続ける必要があることをユーザに認知させることができる。また、ワンプッシュスタートの構成であった場合は、低温始動中のため待機する必要があることをユーザに認知させることができる。 In step S11, the controller 31 lights the low temperature start indicator 22 to notify the user that the low temperature start control will start. As a result, the user can be made to recognize that the low-temperature start is being performed, and that the starter switch 20 needs to be kept pressed. Also, in the case of the one-push start configuration, it is possible to make the user aware that it is necessary to wait because the engine is being started at a low temperature.
 ステップS13では、コントローラ31は、電源回路39により検出されたバッテリ40の出力電圧Vbatが所定の電圧の閾値Vth以上であるか否かを判定する。コントローラ31は、バッテリ40の出力電圧Vbatが所定の電圧の閾値Vth以上であると判定した場合は処理をステップS15に進め、バッテリ40の出力電圧Vbatが所定の電圧の閾値Vth未満であると判定した場合は処理をステップS21に進める。なお、バッテリ40の出力電圧Vbatの閾値Vthは、例えばバッテリ上がり直前の電圧(例えば5V)に設定される。このように、バッテリ40の出力電圧Vbatが所定より低い場合は、低温始動制御を実行しないようにしてバッテリ40の消耗を抑えることができる。このように、低温始動制御を開始する前にエンジン1の始動が不可能であることを判定できるので、バッテリ40の不要な放電を避けることができる。 In step S13, the controller 31 determines whether the output voltage Vbat of the battery 40 detected by the power supply circuit 39 is equal to or higher than a predetermined voltage threshold Vth. When the controller 31 determines that the output voltage Vbat of the battery 40 is equal to or higher than the predetermined voltage threshold Vth, the process proceeds to step S15, and determines that the output voltage Vbat of the battery 40 is less than the predetermined voltage threshold Vth. If so, the process proceeds to step S21. Note that the threshold Vth of the output voltage Vbat of the battery 40 is set to, for example, the voltage (eg, 5 V) immediately before the battery 40 runs out. As described above, when the output voltage Vbat of the battery 40 is lower than a predetermined value, the low temperature start control is not executed, thereby suppressing the consumption of the battery 40 . In this way, it is possible to determine that the engine 1 cannot be started before starting the low temperature start control, so unnecessary discharging of the battery 40 can be avoided.
 ステップS15では、コントローラ31は、エンジン1の低温始動制御を開始する。詳細は図4で後述する。 At step S15, the controller 31 starts the low temperature start control of the engine 1. Details will be described later with reference to FIG.
 ステップS17では、コントローラ31は、低温始動インジケータ22を消灯して、低温始動制御が終了したことをユーザに通知する。これにより、低温始動制御が終了したことをユーザに認知させると共に、スタータスイッチ20を押し続ける必要がなくなったことをユーザに認知させることができる。また、ワンプッシュスタートの構成であった場合は、低温始動中のため待機する必要がなくなったことをユーザに認知させることができる。 In step S17, the controller 31 turns off the low temperature start indicator 22 and notifies the user that the low temperature start control has ended. This makes it possible for the user to recognize that the low temperature start control has ended and that it is no longer necessary to keep pressing the starter switch 20 . Moreover, in the case of the one-push start configuration, it is possible to make the user aware that there is no longer a need to wait because the engine is being started at low temperature.
 ステップS19では、コントローラ31は、アイドリング運転に移行する。 At step S19, the controller 31 shifts to idling operation.
 ステップS21では、コントローラ31は、フェール制御を開始する。フェール制御では、コントローラ31は、始動不能インジケータ23を点灯し、図3のフローチャートの処理を終了する。これにより、バッテリ40の出力電圧Vbatが低いためエンジン1の始動が不可能であることをユーザに通知することができる。また、低温始動時のインジケータ22と始動不能時のインジケータ23が両方点灯するので、エンジン温度Teng及び外気温度Toutが低温かつバッテリ40の出力電圧Vbatが低いことによりエンジン1の始動が不可能であることをユーザに認知させることができる。また、エンジン温度Teng及び外気温度Toutが高くなると、始動不能時のインジケータ23だけが点灯するので、バッテリ40の出力電圧Vbatが低いことによりエンジン1の始動が不可能であることをユーザに認知させることができる。なお、始動不能インジケータ23に代えて、バッテリマーク又はランプ等の警告灯を点灯又は点滅させてバッテリ電圧が低いことをユーザに通知してもよい。 At step S21, the controller 31 starts fail control. In fail control, the controller 31 turns on the start-disabled indicator 23 and ends the processing of the flowchart of FIG. Thus, the user can be notified that the engine 1 cannot be started because the output voltage Vbat of the battery 40 is low. Since both the low-temperature start indicator 22 and the start-disabled indicator 23 are lit, the engine 1 cannot be started because the engine temperature Teng and the outside air temperature Tout are low and the output voltage Vbat of the battery 40 is low. The user can be made to recognize that. Further, when the engine temperature Teng and the outside air temperature Tout become high, only the indicator 23 when the start is impossible lights up, so that the user is made aware that the engine 1 cannot be started because the output voltage Vbat of the battery 40 is low. be able to. It should be noted that a warning light such as a battery mark or a lamp may be turned on or blinked to notify the user that the battery voltage is low, instead of using the start-disabled indicator 23 .
 ステップS23では、コントローラ31は、通常のエンジン1の始動制御を開始する。詳細は図5で後述する。 In step S23, the controller 31 starts normal engine 1 startup control. Details will be described later with reference to FIG.
 <エンジン1の低温始動制御>
 次に、図4を参照して、図3のステップS15におけるエンジン1の低温始動制御について説明する。
<Low temperature start control of engine 1>
Next, the low temperature start control of the engine 1 in step S15 of FIG. 3 will be described with reference to FIG.
 図3は、図3のステップS15におけるエンジン1の低温始動制御処理の一例を示すフローチャートである。 FIG. 3 is a flowchart showing an example of the low temperature start control process for the engine 1 in step S15 of FIG.
 ステップS31では、コントローラ31は、図3のステップS1でオンされたスタータスイッチ20がオフされたか否かを判定する。コントローラ31は、スタータスイッチ20がオフされていないと判定した場合は処理をステップS33に進め、スタータスイッチ20がオフされたと判定した場合は処理をステップS45に進める。なお、ワンプッシュスタートの構成であった場合は、ステップS31の判定は行わずに、ステップS33の処理が実行される。 At step S31, the controller 31 determines whether or not the starter switch 20 that was turned on at step S1 in FIG. 3 is turned off. If the controller 31 determines that the starter switch 20 is not turned off, the process proceeds to step S33, and if it determines that the starter switch 20 is turned off, the process proceeds to step S45. In the case of the one-push start configuration, the process of step S33 is executed without making the determination of step S31.
 ステップS33では、コントローラ31は、スロットルバルブ16の開度を全開にし、インジェクタ17の燃料噴射及び点火プラグ18の点火を禁止する。 In step S33, the controller 31 fully opens the throttle valve 16 to prohibit fuel injection from the injector 17 and ignition from the spark plug 18.
 ステップS35では、コントローラ31は、クランキング機構21のセルモータを駆動してクランキングを開始する。 At step S35, the controller 31 drives the starter motor of the cranking mechanism 21 to start cranking.
 ステップS37では、コントローラ31は、クランク角センサ32により検出されたパルス信号に基づいて、クランキング回数Pが所定の回数の閾値Pth以上になるまで待機する。コントローラ31は、クランキング回数Pが所定の回数の閾値Pth以上になったと判定した場合は処理をステップS39に進める。 In step S37, based on the pulse signal detected by the crank angle sensor 32, the controller 31 waits until the number of times of cranking P reaches or exceeds the threshold value Pth of the predetermined number of times. When the controller 31 determines that the number of times of cranking P has reached or exceeded the predetermined number of times threshold value Pth, the process proceeds to step S39.
 ステップS39では、コントローラ31は、スロットルバルブ16の開度を全開にしたまま、インジェクタ17の燃料噴射及び点火プラグ18の点火を開始する。 In step S39, the controller 31 starts fuel injection from the injector 17 and ignition from the spark plug 18 while keeping the opening of the throttle valve 16 fully open.
 ステップS41では、コントローラ31は、エンジン回転数Neが所定の回転数の閾値Nth以上であるか否かを判定する。コントローラ31は、エンジン回転数Neが所定の回転数の閾値Nth以上であると判定した場合は処理をステップS43に進め、エンジン回転数Neが所定の回転数の閾値Nth未満であると判定した場合は処理をステップS45に進める。 In step S41, the controller 31 determines whether or not the engine speed Ne is greater than or equal to a predetermined engine speed threshold value Nth. If the controller 31 determines that the engine speed Ne is equal to or greater than the predetermined speed threshold Nth, the process proceeds to step S43, and if it determines that the engine speed Ne is less than the predetermined speed threshold Nth. advances the process to step S45.
 ステップS43では、コントローラ31は、クランキング機構21のセルモータの駆動を停止してステップS35で開始したクランキングを終了し、図3のステップS17に進む。 At step S43, the controller 31 stops driving the starter motor of the cranking mechanism 21, ends the cranking started at step S35, and proceeds to step S17 in FIG.
 ステップS45では、コントローラ31は、図3のステップS11で点灯した低温始動インジケータ22を消灯して、低温始動制御が終了したことをユーザに通知し、図3及び図4のフローチャートの処理を終了する。 In step S45, the controller 31 turns off the low temperature start indicator 22 that was lit in step S11 of FIG. 3, notifies the user that the low temperature start control has ended, and ends the processing of the flowcharts of FIGS. 3 and 4. .
 図6は、本実施形態の低温始動制御時の動作を示すタイミングチャートである。 FIG. 6 is a timing chart showing the operation during low temperature start control in this embodiment.
 本実施形態のエンジン1の低温始動制御によれば、カーボンニュートラルを実現するために、エンジン1の始動指令を受けた後、コントローラ31は、車速Vがゼロの状態でエンジン温度Teng及び外気温度Toutが所定の温度Tth1、Tth2以下のときに、スロットルバルブ16を全開とし、インジェクタ17の燃料噴射及び点火プラグ18の点火を禁止した状態でクランキング機構21により所定回数Pthのクランキングを行った後にインジェクタ17の燃料噴射及び点火プラグ18の点火を開始する。 According to the low-temperature start control of the engine 1 of the present embodiment, in order to achieve carbon neutrality, after receiving a command to start the engine 1, the controller 31 controls the engine temperature Teng and the outside air temperature Tout while the vehicle speed V is zero. is equal to or lower than predetermined temperatures Tth1 and Tth2, the throttle valve 16 is fully opened, fuel injection from the injector 17 and ignition of the spark plug 18 are prohibited, and cranking is performed a predetermined number of times Pth by the cranking mechanism 21. Fuel injection of the injector 17 and ignition of the ignition plug 18 are started.
 クランキング回数は、クランクシャフト8の回転数に対応し、クランキング回数の閾値Pthは5~10秒以内に駆動可能な回転数(例えば、5~6回転)に設定されるが、エンジン温度Teng、外気温度Tout、バッテリ40の出力電圧Vbatがそれぞれ閾値Tth1、Tth2、Vthを超えた時点が上限値となる。なお、図4のステップS37ではクランキング回数を判定しているが、これに限らず、クランキング期間(5~10秒)を判定してもよい。 The number of times of cranking corresponds to the number of revolutions of the crankshaft 8, and the threshold value Pth of the number of times of cranking is set to a number of revolutions that can be driven within 5 to 10 seconds (for example, 5 to 6 revolutions). , the outside air temperature Tout, and the output voltage Vbat of the battery 40 exceed the threshold values Tth1, Tth2, and Vth, respectively. Although the number of times of cranking is determined in step S37 of FIG. 4, the period of cranking (5 to 10 seconds) may be determined.
 コントローラ31は、本実施形態の低温始動制御においてカーボンニュートラルを実現するために、所定回数Pthのクランキングを行った後に、インジェクタ17から噴射する燃料を徐々に増加させながら通常始動制御時の最適な空燃比に移行するように制御する(F1<F2<F3)。特に、燃料噴射開始初期の燃料噴射量F1は、通常始動制御時の最適な空燃比の燃料噴射量よりも少なくなるようにして低温着火性を向上させる。このように、エンジン1の始動に必要な燃料噴射量を最小限にして、エンジン1の低温始動時における燃料の気化潜熱をできるだけ小さくすることで、燃料噴射による燃焼室6の過度の冷却を抑えることができる。これにより、カーボンニュートラルを実現するためにアルコール燃料を用いた場合における低温着火性を向上させることができる。 In order to achieve carbon neutrality in the low temperature start control of the present embodiment, the controller 31 performs cranking a predetermined number of times Pth, and then gradually increases the amount of fuel injected from the injector 17 to achieve the optimal fuel consumption during normal start control. Control is performed so as to shift to the air-fuel ratio (F1<F2<F3). In particular, the fuel injection amount F1 at the beginning of fuel injection is made smaller than the fuel injection amount for the optimum air-fuel ratio during normal start control, thereby improving the low-temperature ignitability. Thus, by minimizing the amount of fuel injection necessary for starting the engine 1 and minimizing the latent heat of vaporization of the fuel when starting the engine 1 at a low temperature, excessive cooling of the combustion chamber 6 due to fuel injection is suppressed. be able to. As a result, the low-temperature ignitability can be improved when alcohol fuel is used to achieve carbon neutrality.
 なお、図4の低温始動制御における、空燃比A/F、クランキング回数P又はクランキング期間、点火時期、燃料噴射時期等は、車種ごとに予め実験等を行って得られ、プログラムのパラメータとして設定される。 The air-fuel ratio A/F, cranking number P or cranking period, ignition timing, fuel injection timing, etc. in the low temperature start control of FIG. set.
 以上のように、本実施形態の低温始動制御によれば、ヒータを用いずにクランキングにより燃焼室6の内部の空気を圧縮し点火プラグ18の近傍の空気を昇温するため、カーボンニュートラルを実現するためにアルコール燃料を用いた場合における低温着火性を向上させることができる。また、ヒータを用いないため、追加の機器等を必要としない廉価な構成でカーボンニュートラルを実現することができる。 なお、本実施形態では、エンジン温度Teng及び外気温度Toutがいずれも所定の温度Tth1、Tth2以下のときに低温始動制御が実行される例を説明したが、エンジン1を停止してから長時間が経過しており、エンジン1の温度Tengが外気温度Toutと略同じ温度となっている場合もあるので、エンジン温度Teng及び外気温度Toutの少なくともいずれかが所定の温度Tth1、Tth2以下のときに低温始動制御を実行するようにしてもよい。 As described above, according to the low temperature start control of the present embodiment, the air inside the combustion chamber 6 is compressed by cranking without using a heater, and the temperature of the air near the spark plug 18 is increased. In order to achieve this, it is possible to improve the low-temperature ignitability in the case of using the alcohol fuel. In addition, since no heater is used, carbon neutrality can be achieved with a low-cost configuration that does not require additional equipment or the like. In the present embodiment, the low temperature start control is executed when both the engine temperature Teng and the outside air temperature Tout are equal to or lower than the predetermined temperatures Tth1 and Tth2. Since the temperature Teng of the engine 1 may be approximately the same temperature as the outside air temperature Tout, when at least one of the engine temperature Teng and the outside air temperature Tout is equal to or lower than the predetermined temperatures Tth1, Tth2, the low temperature You may make it perform starting control.
 <エンジン1の通常始動制御>
 次に、図5を参照して、図3のステップS23におけるエンジン1の通常始動制御について説明する。
<Normal Start Control of Engine 1>
Next, normal start control of the engine 1 in step S23 of FIG. 3 will be described with reference to FIG.
 図5は、図3のステップS23におけるエンジン1の通常始動制御処理の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of normal start control processing for the engine 1 in step S23 of FIG.
 ステップS51では、コントローラ31は、図3のステップS1でオンされたスタータスイッチ20がオフされたか否かを判定する。コントローラ31は、スタータスイッチ20がオフされていないと判定した場合は処理をステップS53に進め、スタータスイッチ20がオフされたと判定した場合は図3及び図4のフローチャートの処理を終了する。なお、ワンプッシュスタートの構成であった場合は、ステップS51の判定は行わずに、ステップS53の処理が実行される。 At step S51, the controller 31 determines whether the starter switch 20 that was turned on at step S1 in FIG. 3 is turned off. If the controller 31 determines that the starter switch 20 is not turned off, the process proceeds to step S53, and if it is determined that the starter switch 20 is turned off, the process of the flowcharts of FIGS. 3 and 4 is terminated. In the case of the one-push start configuration, the process of step S53 is executed without making the determination of step S51.
 ステップS53では、コントローラ31は、クランキング機構21のセルモータを駆動してクランキングを開始する。 At step S53, the controller 31 drives the starter motor of the cranking mechanism 21 to start cranking.
 ステップS55では、コントローラ31は、スロットルバルブ16の開度を全開にし、インジェクタ17の燃料噴射及び点火プラグ18の点火を開始する。 In step S55, the controller 31 fully opens the throttle valve 16 and starts fuel injection from the injector 17 and ignition from the spark plug 18.
 ステップS57では、コントローラ31は、エンジン回転数Neが所定の回転数の閾値Nth以上であるか否かを判定する。コントローラ31は、エンジン回転数Neが所定の回転数の閾値Nth以上であると判定した場合は処理をステップS59に進め、エンジン回転数Neが所定の回転数の閾値Nth未満であると判定した場合は図3及び図4のフローチャートの処理を終了する。 In step S57, the controller 31 determines whether or not the engine speed Ne is greater than or equal to a predetermined engine speed threshold value Nth. If the controller 31 determines that the engine speed Ne is equal to or greater than the predetermined speed threshold Nth, the process proceeds to step S59; if it determines that the engine speed Ne is less than the predetermined speed threshold Nth, ends the processing of the flow charts of FIGS.
 ステップS59では、コントローラ31は、クランキング機構21のセルモータの駆動を停止してステップS53で開始したクランキングを終了し、図3のステップS19に進む。 At step S59, the controller 31 stops driving the starter motor of the cranking mechanism 21, ends the cranking started at step S53, and proceeds to step S19 in FIG.
 [実施形態のまとめ]
 <第1の態様>
 アルコール燃料又は炭化水素燃料にアルコール燃料を混合した混合燃料を利用可能な内燃機関1の制御装置30であって、
 前記内燃機関1の温度Tengを検出する第1の温度検出手段36と、
 前記内燃機関1に導入される外気温度Toutを検出する第2の温度検出手段38と、
 前記内燃機関1の始動指令を検出したことに応じて前記内燃機関1を制御する制御手段31と、を備え、
 前記制御手段31は、前記内燃機関1を始動する場合に、前記エンジンの温度Teng及び前記外気温度Toutの少なくともいずれかが所定の温度Tth1、Tth2以下のとき、燃料噴射及び点火を禁止した状態で所定回数Pthのクランキングを行った後に前記燃料噴射及び前記点火を行う低温始動制御を実行する。
[Summary of embodiment]
<First Aspect>
A control device 30 for an internal combustion engine 1 that can use an alcohol fuel or a mixed fuel in which an alcohol fuel is mixed with a hydrocarbon fuel,
a first temperature detection means 36 for detecting the temperature Teng of the internal combustion engine 1;
a second temperature detection means 38 for detecting an outside air temperature Tout introduced into the internal combustion engine 1;
A control means 31 for controlling the internal combustion engine 1 in response to detection of a start command for the internal combustion engine 1,
When starting the internal combustion engine 1, the control means 31 prohibits fuel injection and ignition when at least one of the engine temperature Teng and the outside air temperature Tout is equal to or lower than predetermined temperatures Tth1 and Tth2. After performing cranking for a predetermined number of times Pth, the low temperature start control is executed to perform the fuel injection and the ignition.
 第1の態様によれば、ヒータを用いずにクランキングにより燃焼室内部の空気を圧縮し昇温するため、カーボンニュートラルを実現するためにアルコール燃料を用いた場合における低温着火性を向上させることができる。また、ヒータを用いないため、追加の機器等を必要としない廉価な構成でカーボンニュートラルを実現することができる。 According to the first aspect, since the air inside the combustion chamber is compressed and heated by cranking without using a heater, low-temperature ignitability can be improved when alcohol fuel is used to achieve carbon neutrality. can be done. In addition, since no heater is used, carbon neutrality can be achieved with a low-cost configuration that does not require additional equipment or the like.
 <第2の態様>
 第1の態様において、前記制御手段31は、前記低温始動制御において、前記所定回数Pthのクランキングを行った後に前記燃料噴射を開始する場合に燃料噴射量を徐々に増加するように制御する。
<Second Aspect>
In the first mode, in the low temperature start control, the control means 31 controls to gradually increase the fuel injection amount when starting the fuel injection after the predetermined number of times of cranking Pth.
 第2の態様によれば、内燃機関1の始動に必要な燃料噴射量を最小限にして、内燃機関1の始動時における燃料の気化潜熱をできるだけ小さくすることで、燃料噴射による燃焼室の過度の冷却を抑えることができる。 According to the second aspect, by minimizing the amount of fuel injection required for starting the internal combustion engine 1 and minimizing the latent heat of vaporization of the fuel at the time of starting the internal combustion engine 1, the excess of the combustion chamber due to fuel injection is reduced. cooling can be suppressed.
 <第3の態様>
 第1又は第2の態様において、乗員に低温始動制御状態であることを知らせる第1のインジケータ22を備え、前記制御手段31は、前記エンジンの温度Teng及び前記外気温度Toutの少なくともいずれかが所定の温度Tth1、Tth2以下のとき、前記低温始動制御を実行することを前記第1のインジケータ22により通知する。
<Third Aspect>
In the first or second aspect, the first indicator 22 is provided to notify the occupant of the low temperature start control state. The first indicator 22 notifies that the low temperature start control is to be executed when the temperatures Tth1, Tth2 or lower.
 第3の態様によれば、低温始動時であることをユーザに認知させると共に、内燃機関1の始動を開始する操作をし続ける必要があることをユーザに認知させることができる。また、ワンプッシュスタートの構成であった場合は、低温始動中のため待機する必要があることをユーザに認知させることができる。 According to the third aspect, it is possible to make the user aware that it is time to start at low temperatures, and to make the user aware that it is necessary to continue the operation to start starting the internal combustion engine 1 . Also, in the case of the one-push start configuration, it is possible to make the user aware that it is necessary to wait because the engine is being started at a low temperature.
 <第4の態様>
 第1から第3のいずれかの態様において、前記内燃機関1の始動指令を前記制御手段31に入力するためのユーザ操作を受け付ける始動補助手段20を備え、
 前記制御手段31は、前記始動補助手段20が操作されている期間前記クランキングを行う。
<Fourth Aspect>
In any one of the first to third aspects, a start assist means 20 for receiving a user operation for inputting a start command for the internal combustion engine 1 to the control means 31,
The control means 31 performs the cranking while the starting assist means 20 is being operated.
 第4の態様によれば、内燃機関1の始動を開始する操作をし続ける必要があることをユーザに認知させることができる。 According to the fourth aspect, it is possible to make the user aware that it is necessary to continue the operation to start starting the internal combustion engine 1 .
 <第5の態様>
 第1から第3のいずれかの態様において、前記内燃機関1の始動指令を前記制御手段31に入力するためのユーザ操作を受け付ける始動補助手段20を備え、
 前記始動補助手段20が操作されたことに応じて前記クランキングを行う。
<Fifth Aspect>
In any one of the first to third aspects, a start assist means 20 for receiving a user operation for inputting a start command for the internal combustion engine 1 to the control means 31,
The cranking is performed in response to the operation of the starting assist means 20 .
 第5の態様によれば、低温始動中のため待機する必要があることをユーザに認知させることができる。 According to the fifth aspect, it is possible to make the user aware that it is necessary to wait because the engine is being started at low temperature.
 <第6の態様>
 第3の態様において、前記内燃機関1の始動が不可能であることを知らせる第2のインジケータ23と、前記クランキングを行うための電力を供給するバッテリ40と、を備え、前記制御手段31は、前記バッテリ40の電圧が所定の閾値Vthより低い場合、前記内燃機関1の始動が不可能であると判定し、前記低温始動制御を実行しないことを前記第2のインジケータ23により通知する。
<Sixth Aspect>
In the third aspect, the control means 31 comprises a second indicator 23 that indicates that the internal combustion engine 1 cannot be started, and a battery 40 that supplies electric power for the cranking. , when the voltage of the battery 40 is lower than a predetermined threshold value Vth, it is determined that the internal combustion engine 1 cannot be started, and the second indicator 23 notifies that the low temperature start control is not executed.
 第6の態様によれば、バッテリ40の出力電圧Vbatが低いため内燃機関1の始動が不可能であることをユーザに通知することができる。また、低温始動時のインジケータ22と始動不能時のインジケータ23が両方点灯するので、内燃機関1の温度Teng及び外気温度Toutの少なくともいずれかが低温かつバッテリ40の出力電圧Vbatが低いことにより内燃機関1の始動が不可能であることをユーザに認知させることができる。また、内燃機関1の温度Teng及び外気温度Toutの少なくともいずれかが高くなると、始動不能時のインジケータ23だけが点灯するので、バッテリ40の出力電圧Vbatが低いことによりエンジン1の始動が不可能であることをユーザに認知させることができる。 According to the sixth aspect, the user can be notified that the internal combustion engine 1 cannot be started because the output voltage Vbat of the battery 40 is low. Further, since both the low-temperature start indicator 22 and the unstartable indicator 23 are lit, at least one of the temperature Teng of the internal combustion engine 1 and the outside air temperature Tout is low and the output voltage Vbat of the battery 40 is low. The user can be made aware that 1 start-up is not possible. Further, when at least one of the temperature Teng of the internal combustion engine 1 and the outside air temperature Tout becomes high, only the indicator 23 for when the engine cannot be started lights up. A user can be made to recognize that there is.
 <第7の態様>
 アルコール燃料又は炭化水素燃料にアルコール燃料を混合した混合燃料を利用可能な内燃機関1の制御方法(図3)であって、
 前記内燃機関1は、
 前記内燃機関1の温度Tengを検出する第1の温度検出手段36と、
 前記内燃機関に導入される外気温度Toutを検出する第2の温度検出手段38と、を備え、
 前記制御方法(図3)は、
 前記内燃機関1の始動指令を検出したことに応じて前記内燃機関を制御するステップ(ステップS15)を備え、
 前記制御するステップ(ステップS15)では、前記内燃機関1を始動する場合に、前記内燃機関1の温度Teng及び前記外気温度Toutの少なくともいずれかが所定の温度Tth1、Tth2以下のとき、燃料噴射及び点火を禁止した状態で所定回数Pthのクランキングを行った後に前記燃料噴射及び前記点火を行う低温始動制御を実行する。
<Seventh Aspect>
A control method (FIG. 3) for an internal combustion engine 1 capable of using an alcohol fuel or a mixed fuel in which an alcohol fuel is mixed with a hydrocarbon fuel,
The internal combustion engine 1 is
a first temperature detection means 36 for detecting the temperature Teng of the internal combustion engine 1;
a second temperature detection means 38 for detecting an outside air temperature Tout introduced into the internal combustion engine;
The control method (Fig. 3) comprises:
A step (step S15) of controlling the internal combustion engine in response to detection of a start command for the internal combustion engine 1;
In the controlling step (step S15), when the internal combustion engine 1 is started and at least one of the temperature Teng of the internal combustion engine 1 and the outside air temperature Tout is equal to or lower than predetermined temperatures Tth1 and Tth2, fuel injection and After performing cranking for a predetermined number of times Pth in a state in which ignition is prohibited, low-temperature start control is executed in which the fuel injection and the ignition are performed.
 第7の態様によれば、ヒータを用いずにクランキングにより燃焼室内部の空気を圧縮し昇温するため、カーボンニュートラルを実現するためにアルコール燃料を用いた場合における低温着火性を向上させることができる。また、ヒータを用いないため、追加の機器等を必要としない廉価な構成でカーボンニュートラルを実現することができる。 According to the seventh aspect, since the air in the combustion chamber is compressed and heated by cranking without using a heater, low-temperature ignitability can be improved when alcohol fuel is used to achieve carbon neutrality. can be done. In addition, since no heater is used, carbon neutrality can be achieved with a low-cost configuration that does not require additional equipment or the like.
 なお、本発明は、上述した実施形態のエンジン1の始動制御に対応するコンピュータプログラムや当該コンピュータプログラムが格納された記憶媒体を、車両に搭載されたコンピュータに供給して、当該コンピュータが記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。 In the present invention, a computer program corresponding to the start control of the engine 1 of the embodiment described above and a storage medium storing the computer program are supplied to a computer mounted on a vehicle, and the computer stores the computer program in the storage medium. The stored program code may be read and executed.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the invention.
1…エンジン(内燃機関)
2…シリンダブロック
3…シリンダ
4…ピストン
5…シリンダヘッド
6…燃焼室
7…コンロッド
8…クランクシャフト
10…吸気ポート
11…排気ポート
12…吸気通路
13…排気通路
14…吸気バルブ
15…排気バルブ
16…スロットルバルブ
17…インジェクタ
18…点火プラグ
19…排気浄化装置
20…スタータスイッチ(始動補助手段)
21…クランキング機構
22…低温始動インジケータ(第1のインジケータ)
23…始動不能インジケータ(第2のインジケータ)
30…制御装置
31…コントローラ(制御手段)
32…クランク角センサ
33…吸気センサ
34…排出ガスセンサ
35…水温センサ
36…エンジン温度センサ(第1の温度検出手段)
37…車速センサ
38…外気温センサ(第2の温度検出手段)
39…電源回路
40…バッテリ
1... Engine (internal combustion engine)
Reference Signs List 2 Cylinder block 3 Cylinder 4 Piston 5 Cylinder head 6 Combustion chamber 7 Connecting rod 8 Crankshaft 10 Intake port 11 Exhaust port 12 Intake passage 13 Exhaust passage 14 Intake valve 15 Exhaust valve 16 ... Throttle valve 17 ... Injector 18 ... Spark plug 19 ... Exhaust purification device 20 ... Starter switch (starting auxiliary means)
21... Cranking mechanism 22... Low temperature start indicator (first indicator)
23 . . . Inability to start indicator (second indicator)
30... Control device 31... Controller (control means)
32... crank angle sensor 33... intake sensor 34... exhaust gas sensor 35... water temperature sensor 36... engine temperature sensor (first temperature detection means)
37... vehicle speed sensor 38... outside air temperature sensor (second temperature detection means)
39 power supply circuit 40 battery

Claims (7)

  1.  アルコール燃料又は炭化水素燃料にアルコール燃料を混合した混合燃料を利用可能な内燃機関の制御装置であって、
     前記内燃機関の温度を検出する第1の温度検出手段と、
     前記内燃機関に導入される外気温度を検出する第2の温度検出手段と、
     前記内燃機関の始動指令を検出したことに応じて前記内燃機関を制御する制御手段と、を備え、
     前記制御手段は、前記内燃機関を始動する場合に、前記内燃機関の温度及び前記外気温度の少なくともいずれかが所定の温度以下のとき、燃料噴射及び点火を禁止した状態で所定回数のクランキングを行った後に前記燃料噴射及び前記点火を行う低温始動制御を実行することを特徴とする内燃機関の制御装置。
    A control device for an internal combustion engine capable of using an alcohol fuel or a mixed fuel obtained by mixing an alcohol fuel with a hydrocarbon fuel,
    a first temperature detection means for detecting the temperature of the internal combustion engine;
    a second temperature detection means for detecting the temperature of outside air introduced into the internal combustion engine;
    a control means for controlling the internal combustion engine in response to detection of a start command for the internal combustion engine;
    When starting the internal combustion engine, the control means performs cranking a predetermined number of times while prohibiting fuel injection and ignition when at least one of the temperature of the internal combustion engine and the temperature of the outside air is lower than a predetermined temperature. A control device for an internal combustion engine, characterized in that it executes low temperature start control in which the fuel injection and the ignition are performed after the fuel injection and the ignition.
  2.  前記制御手段は、前記低温始動制御において、前記所定回数のクランキングを行った後に前記燃料噴射を開始する場合に燃料噴射量を徐々に増加するように制御することを特徴とする請求項1に記載の内燃機関の制御装置。 2. In the low temperature start control, the control means controls to gradually increase the fuel injection amount when starting the fuel injection after the predetermined number of crankings. Control device for an internal combustion engine as described.
  3.  乗員に低温始動制御状態であることを知らせる第1のインジケータを備え、
    前記制御手段は、前記内燃機関の温度及び前記外気温度の少なくともいずれかが所定の温度以下のとき、前記低温始動制御を実行することを前記第1のインジケータにより通知することを特徴とする請求項1又は2に記載の内燃機関の制御装置。
    A first indicator that informs the occupant of the cold start control state,
    3. The control means, when at least one of the temperature of the internal combustion engine and the temperature of the outside air is below a predetermined temperature, notifies the execution of the low temperature start control by means of the first indicator. 3. The control device for an internal combustion engine according to 1 or 2.
  4.  前記内燃機関の始動指令を前記制御手段に入力するためのユーザ操作を受け付ける始動補助手段を備え、
     前記制御手段は、前記始動補助手段が操作されている期間前記クランキングを行うことを特徴とする請求項1から3のいずれか1項に記載の内燃機関の制御装置。
    starting assist means for receiving a user operation for inputting a start command for the internal combustion engine to the control means;
    4. The control apparatus for an internal combustion engine according to claim 1, wherein said control means performs said cranking while said starting assist means is being operated.
  5.  前記内燃機関の始動指令を前記制御手段に入力するためのユーザ操作を受け付ける始動補助手段を備え、
     前記始動補助手段が操作されたことに応じて前記クランキングを行うことを特徴とする請求項1から3のいずれか1項に記載の内燃機関の制御装置。
    starting assist means for receiving a user operation for inputting a start command for the internal combustion engine to the control means;
    4. The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein said cranking is performed in response to said start assist means being operated.
  6.  前記内燃機関の始動が不可能であることを知らせる第2のインジケータと、
     前記クランキングを行うための電力を供給するバッテリと、を備え、
     前記制御手段は、前記バッテリの電圧が所定の閾値より低い場合、前記内燃機関の始動が不可能であると判定し、前記低温始動制御を実行しないことを前記第2のインジケータにより通知することを特徴とする請求項3に記載の内燃機関の制御装置。
    a second indicator indicating that the internal combustion engine cannot be started;
    A battery that supplies power for performing the cranking,
    When the voltage of the battery is lower than a predetermined threshold, the control means determines that the internal combustion engine cannot be started, and notifies by the second indicator that the low temperature start control is not executed. 4. A control device for an internal combustion engine according to claim 3.
  7.  アルコール燃料又は炭化水素燃料にアルコール燃料を混合した混合燃料を利用可能な内燃機関の制御方法であって、
     前記内燃機関は、
     前記内燃機関の温度を検出する第1の温度検出手段と、
     前記内燃機関に導入される外気温度を検出する第2の温度検出手段と、を備え、
     前記制御方法は、
     前記内燃機関の始動指令を検出したことに応じて前記内燃機関を制御するステップを備え、
     前記制御するステップでは、前記内燃機関を始動する場合に、前記内燃機関の温度及び前記外気温度の少なくともいずれかが所定の温度以下のとき、燃料噴射及び点火を禁止した状態で所定回数のクランキングを行った後に前記燃料噴射及び前記点火を行う低温始動制御を実行することを特徴とする内燃機関の制御方法。
    A control method for an internal combustion engine capable of using an alcohol fuel or a mixed fuel obtained by mixing an alcohol fuel with a hydrocarbon fuel,
    The internal combustion engine is
    a first temperature detection means for detecting the temperature of the internal combustion engine;
    a second temperature detection means for detecting the temperature of outside air introduced into the internal combustion engine;
    The control method is
    comprising a step of controlling the internal combustion engine in response to detecting a start command for the internal combustion engine;
    In the controlling step, when starting the internal combustion engine, when at least one of the temperature of the internal combustion engine and the temperature of the outside air is equal to or lower than a predetermined temperature, cranking is performed a predetermined number of times while fuel injection and ignition are prohibited. A control method for an internal combustion engine, characterized by executing low-temperature start control in which the fuel injection and the ignition are performed after performing the above.
PCT/JP2021/033599 2021-09-13 2021-09-13 Control device and control method for internal combustion engine WO2023037558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033599 WO2023037558A1 (en) 2021-09-13 2021-09-13 Control device and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033599 WO2023037558A1 (en) 2021-09-13 2021-09-13 Control device and control method for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2023037558A1 true WO2023037558A1 (en) 2023-03-16

Family

ID=85506246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033599 WO2023037558A1 (en) 2021-09-13 2021-09-13 Control device and control method for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2023037558A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180187A (en) * 2007-01-26 2008-08-07 Honda Motor Co Ltd Vehicle start information display device
JP2009002314A (en) * 2007-06-25 2009-01-08 Denso Corp Start control system of internal combustion engine
US20090120396A1 (en) * 2007-11-08 2009-05-14 Delphi Technologies, Inc. Method for cold starting of ethanol-fueled engines
JP2010019240A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Control device of internal combustion engine
JP2010038140A (en) * 2008-08-08 2010-02-18 Yamaha Motor Co Ltd Vehicle
JP2013241879A (en) * 2012-05-21 2013-12-05 Denso Corp Starting control device of cylinder injection type internal combustion engine
JP2019202684A (en) * 2018-05-24 2019-11-28 アイシン精機株式会社 Control device for hybrid vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180187A (en) * 2007-01-26 2008-08-07 Honda Motor Co Ltd Vehicle start information display device
JP2009002314A (en) * 2007-06-25 2009-01-08 Denso Corp Start control system of internal combustion engine
US20090120396A1 (en) * 2007-11-08 2009-05-14 Delphi Technologies, Inc. Method for cold starting of ethanol-fueled engines
JP2010019240A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Control device of internal combustion engine
JP2010038140A (en) * 2008-08-08 2010-02-18 Yamaha Motor Co Ltd Vehicle
JP2013241879A (en) * 2012-05-21 2013-12-05 Denso Corp Starting control device of cylinder injection type internal combustion engine
JP2019202684A (en) * 2018-05-24 2019-11-28 アイシン精機株式会社 Control device for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5741352B2 (en) Start control device for compression self-ignition engine
US8109092B2 (en) Methods and systems for engine control
US8439002B2 (en) Methods and systems for engine control
US20130080036A1 (en) Device and method for controlling start of compression self-ignition engine
US10626816B2 (en) Systems and methods for compression heated air
EP1698780A2 (en) Starting method and system for internal combustion engine
JP2007198308A (en) Starting control device for internal combustion engine
JP2008508461A (en) Control device and control method for internal combustion engine
JP2010084660A (en) Control method for direct-injection engine with turbosupercharger, and control device for the same
JP2004036429A (en) Control device for internal combustion engine
JP2008240856A (en) Automatic engine stopping device for vehicle with automatic transmission
JP6171746B2 (en) Engine start control device
JP5141067B2 (en) Automatic stop device for vehicle engine
JP4379325B2 (en) Vehicle control device
EP2765291B1 (en) Method for operating a compression ignition internal combustion engine with direct fuel injection
JP2009235990A (en) Automatic stop device for diesel engine
JP2009052416A (en) Automatic stop device for engine
WO2023037558A1 (en) Control device and control method for internal combustion engine
JP2005030236A (en) Control device of vehicle
JP2007023868A (en) Engine starting method and engine starter
WO2019043808A1 (en) Control method for internal combustion device, and control device for internal combustion engine
US6766790B2 (en) Method for warming-up an internal combustion engine
JP5935275B2 (en) Start control device for compression self-ignition engine
JP2009062961A (en) Control device of diesel engine
JP4379327B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956853

Country of ref document: EP

Kind code of ref document: A1