WO2023037432A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023037432A1
WO2023037432A1 PCT/JP2021/032968 JP2021032968W WO2023037432A1 WO 2023037432 A1 WO2023037432 A1 WO 2023037432A1 JP 2021032968 W JP2021032968 W JP 2021032968W WO 2023037432 A1 WO2023037432 A1 WO 2023037432A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell group
serving cell
inter
information
Prior art date
Application number
PCT/JP2021/032968
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/032968 priority Critical patent/WO2023037432A1/ja
Priority to CN202180104005.7A priority patent/CN118202744A/zh
Priority to JP2023546613A priority patent/JPWO2023037432A1/ja
Publication of WO2023037432A1 publication Critical patent/WO2023037432A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • TRPs Transmission/Reception Points
  • MTRPs Multi-TRPs
  • the serving cell When multi-TRP is applied, the serving cell may be changed to a cell with a different PCI from the serving cell due to at least one of layer 1 and layer 2 signaling (L1/L2 inter-cell mobility (layer1/layer2 inter-cell mobility)).
  • L1/L2 inter-cell mobility layer1/layer2 inter-cell mobility
  • problems such as reduced communication throughput may occur.
  • one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately perform cell-related settings.
  • a terminal is for operation of at least one of carrier aggregation and dual connectivity, or for operation of inter-cell mobility by at least one of Layer 1 and Layer 2, including an instruction indicating cell group setting information and a control unit for controlling transmission and reception in cells within the cell group indicated by the setting information.
  • settings regarding cells can be appropriately performed.
  • FIG. 1A shows an example of inter-cell mobility (eg, single-TRP inter-cell mobility) involving non-serving cells.
  • FIG. 1B shows an example of inter-cell mobility when using multi-TRP.
  • FIG. 2 is a diagram showing an outline of a serving cell configuration (ServingCellConfig).
  • FIG. 3 is a diagram showing an outline of cell group setting (CellGroupConfig).
  • FIG. 4A is a diagram illustrating an example of HARQ entities per cell in the MAC entity.
  • FIG. 4B is a diagram showing an example of cell group setting corresponding to FIG. 4A.
  • FIG. 5 is a diagram showing an example of cell group setting for Option 1-1-1.
  • FIG. 6 is a diagram showing an example of cell group setting for Option 1-1-2.
  • FIG. 7A is a diagram illustrating an example of a MAC entity/HARQ entity when a cell group for CA/DC operation is configured.
  • FIG. 7B is a diagram showing an example of cell group setting corresponding to FIG. 7A.
  • FIG. 8A is a diagram illustrating an example of MAC/HARQ entities when a cell group for L1/L2 inter-cell mobility operation is configured.
  • FIG. 8B is a diagram showing an example of cell group setting corresponding to FIG. 8A.
  • FIG. 9 is a diagram illustrating an example of MAC entities/HARQ entities in the first embodiment.
  • 10A to 10C are diagrams showing examples of cell group setting corresponding to FIG.
  • FIG. 11 is a diagram showing a first example of serving cell group configuration (ServCellGroupConfig).
  • FIG. 12 is a diagram showing a second example of serving cell group configuration (ServCellGroupConfig).
  • FIG. 13 is a diagram illustrating an example of MAC entities/HARQ entities in the second embodiment.
  • 14A to 14C are diagrams showing examples of cell group setting corresponding to FIG.
  • FIG. 15A is a diagram illustrating an example of a cell configuration before L1/L2 inter-cell mobility.
  • FIG. 15B is a diagram illustrating an example cell configuration after L1/L2 inter-cell mobility in option 3-1.
  • FIG. 15C is a diagram illustrating an example cell configuration after L1/L2 inter-cell mobility in option 3-2.
  • FIG. 16 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
  • FIG. 17 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment;
  • FIG. 19 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of a vehicle according to one embodiment;
  • Multi-TRP One or more Cells/Transmission/Reception Points (TRP) (Multi-TRP (MTRP)) are considered for DL transmission to the UE. Also, it is being considered that the UE makes UL transmissions to one or more cells/TRPs.
  • the serving cell may be read as the TRP in the serving cell.
  • layer1/layer2 (L1/L2) signaling, MAC CE/DCI may be interchanged.
  • a PCI that is different from the physical cell identity (PCI) of the current serving cell may be simply referred to as a "different PCI.”
  • the following procedure is performed.
  • Scenario 1 supports multi-TRP inter-cell mobility, but may be a scenario that does not support multi-TRP inter-cell mobility.
  • the UE From the serving cell, the UE sets the SSB for beam measurement of the TRP corresponding to the PCI different from the serving cell, and the settings necessary for using radio resources for data transmission and reception, including the resources of the different PCI. receive.
  • the UE performs beam measurements for TRPs corresponding to different PCIs and reports beam measurement results to the serving cell.
  • TCI states associated with TRPs corresponding to different PCIs are activated by L1/L2 signaling from the serving cell.
  • UEs transmit and receive using UE dedicated channels on TRPs corresponding to different PCIs.
  • the UE should always cover the serving cell, even in the case of multi-TRP.
  • the UE needs to use common channels (Broadcast Control Channel (BCCH), Paging Channel (PCH)) from the serving cell, etc., as in conventional systems.
  • BCCH Broadcast Control Channel
  • PCH Paging Channel
  • the serving cell (serving cell assumption in the UE) is not changed when the UE transmits and receives signals to and from non-serving cells/TRPs (TRPs corresponding to the non-serving cell's PCI).
  • the UE is configured with higher layer parameters related to PCI of non-serving cells from the serving cell.
  • Scenario 1 is, for example, Rel. 17.
  • Scenario 2 applies L1/L2 inter-cell mobility.
  • L1/L2 inter-cell mobility allows serving cell changes using features such as beam control without RRC reconfiguration. In other words, it is possible to transmit to and receive from non-serving cells without handover. Since a data communication unavailable period occurs such as RRC reconnection is required for handover, data communication can be continued even when the serving cell is changed by applying L1/L2 inter-cell mobility that does not require handover. be able to.
  • Scenario 2 is, for example, Rel. 18 may be applied. In Scenario 2, for example, the following procedure is performed.
  • the UE receives from the serving cell the configuration of SSBs of cells with different PCIs (non-serving cells) for beam measurement/serving cell change.
  • the UE performs beam measurements for cells using different PCIs and reports the measurement results to the serving cell.
  • the UE may receive the configuration of cells with different PCIs (serving cell configuration) through higher layer signaling (eg, RRC). In other words, pre-configuration regarding serving cell change may be performed. This setting may be performed together with the setting in (1), or may be performed separately.
  • the TCI states of cells with different PCIs may be activated by L1/L2 signaling according to the change of serving cell. Activating the TCI state and changing the serving cell may be done separately.
  • the UE changes the serving cell (assumed serving cell) and starts receiving/transmitting using the preconfigured UE-specific channel and TCI state.
  • the serving cell (assumed serving cell in the UE) is updated by L1/L2 signaling.
  • FIGS. 1A and 1B An example in which a UE receives channels/signals from multiple cells/TRPs in inter-cell mobility will be described using FIGS. 1A and 1B.
  • FIG. 1A shows an example of inter-cell mobility (eg, single TRP inter-cell mobility) including non-serving cells.
  • Single TRP may refer to the case where only one TRP out of multiple TRPs transmits to the UE (which may be referred to as single mode).
  • the UE is from the base station/TRP of cell #1 (PCI#1), which is the serving cell, and the base station/TRP of cell #3 (Non-serving cell), which is not the serving cell (Non-serving cell) It shows the case of receiving a channel/signal.
  • PCI#1 the base station/TRP of cell #1
  • Non-serving cell Non-serving cell
  • the serving cell of the UE switches from cell #1 to cell #3.
  • TCI state updates may be performed by DCI/MAC CE and port (eg, antenna port)/TRP/point selection may be performed dynamically.
  • the UE can change cells/beams at high speed by using DCI/MAC CE.
  • FIG. 1B shows an example of inter-cell mobility when using multi-TRP.
  • the UE is shown receiving channels/signals from TRP#1 and TRP2.
  • TRP#1 exists in cell #1 (PCI#1)
  • TRP#2 exists in cell #2 (PCI#2).
  • PCI#1 exists in cell #1
  • PCI#2 exists in cell #2 (PCI#2)
  • PCI#2 exists in cell #2
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • Non-Coherent Joint Transmission may be used as one form of multi-TRP transmission.
  • NCJT may be performed between multiple cells (cells of different PCIs).
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) to a first signal/channel using a first precoding. (eg, PDSCH).
  • TRP#2 also modulation-maps a second codeword and layer-maps a second number of layers (e.g., two layers) to a second signal/channel (e.g., PDSCH).
  • Multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode ).
  • DCI single DCI
  • S-DCI single DCI
  • PDCCH single PDCCH
  • One DCI may be transmitted from one TRP of a multi-TRP.
  • a configuration that utilizes one DCI in multi-TRP may be referred to as single DCI-based multi-TRP (mTRP/MTRP).
  • a case (which may be called a master-slave mode) in which each multi-TRP transmits part of the control signal to the UE and the multi-TRP transmits the data signal may be applied.
  • Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) respectively (multimaster mode). Multiple DCIs may be transmitted from multiple TRPs respectively.
  • M-DCI multiple DCI
  • PDCCH multiple PDCCH
  • Multiple DCIs may be transmitted from multiple TRPs respectively.
  • a configuration that utilizes multiple DCIs in multi-TRP may be referred to as multi-DCI-based multi-TRP (mTRP/MTRP).
  • CSI feedback may be referred to as separate feedback, separate CSI feedback, and so on.
  • “separate” may be read interchangeably with “independent.”
  • L1/L2 inter-cell mobility When communicating with one TRP (single TRP applied), the UE's L1/L2 inter-cell mobility may be configured only for multiple cells with approximately the same serving cell configurations. .
  • the UE When communicating with one TRP (when applying a single TRP), the UE receives in advance the configuration of multiple candidate serving cells, which are non-serving cells corresponding to the frequency, by higher layer signaling (RRC reconfiguration signaling). good too. Then, when the UE receives an instruction indicating one of the plurality of candidate serving cells by MAC CE/DCI, the UE may change the serving cell (may perform handover) to the candidate serving cell indicated by the instruction.
  • RRC reconfiguration signaling higher layer signaling
  • the UE may receive (or may be configured for) configuration of multiple candidate serving cells, which are non-serving cells corresponding to the frequency, through higher layer signaling (RRC reconfiguration signaling). Then, when the UE receives information about the QCL of the non-serving cell (QCL/TCI) by MAC CE or DCI, the serving cell is changed (handed over) to a candidate serving cell corresponding to the non-serving cell (related), QCL may be applied.
  • RRC reconfiguration signaling higher layer signaling
  • the UE may simultaneously apply/maintain/support/retain at least two (multiple) candidate serving cell configurations among the multiple candidate serving cell configurations.
  • a UE may communicate simultaneously for multiple serving cells corresponding to its multiple candidate serving cell configurations.
  • the UE may receive information indicating common TCI states associated with other cells having a PCI that is different from the physical cell identity (PCI) of the serving cell.
  • a common TCI state may be a TCI state that is applicable to multiple types of channels/signals.
  • the common TCI state is at least one of a first TCI state common to both downlink (DL) and uplink (UL), a second TCI state common to DL, and a third TCI state common to UL. may be
  • the first TCI state may be a TCI state (joint TCI state) applicable to multiple types of DL and UL channels/signals.
  • the second TCI state may be a TCI state applicable to multiple types of DL channels/signals (separate DL TCI state).
  • the third TCI state may be a TCI state applicable to multiple types of UL channels/signals (separate UL TCI state).
  • the UE may receive information indicating the first to third TCI states, eg, by MAC CE and DCI.
  • the UE applies at least one of the first TCI state, the second TCI state, and the third TCI state indicated in the information to a specific channel transmitted/received to/from the other cell.
  • FIG. 2 is a diagram showing an outline of a serving cell configuration (ServingCellConfig).
  • FIG. 2 uses Abstract Syntax Notation One (ASN.1), and "1>", “2>” . . .
  • the notation "6>” indicates the hierarchy of the configuration.
  • the drawings showing settings in this disclosure use similar notation and may correspond to RRC information elements (parameters).
  • the serving cell configuration includes at least a serving cell index (ServCellIndex), a physical cell ID (physCellId), a downlink (configuration related to downlink), and an uplink (configuration related to uplink). .
  • FIG. 3 is a diagram showing an outline of the cell group setting (CellGroupConfig).
  • a cell group configuration may be applied to a master cell group (MCG) or a secondary cell group (SCG) in carrier aggregation.
  • the cell group settings include a cell group ID, a list of associations with corresponding RLC (Radio Link Control) entities and radio bearers (rlc-BearerToAddModList), MAC cell group settings (mac-CellGroupConfig), physical Contains cell group configuration (physicalCellGroupConfig), special cell configuration (spCellConfig), secondary cell list (sCellToAddModList).
  • Each base station (for example, LTE base station/NR base station) has a MAC (Medium Access Control) entity.
  • a MAC entity is a process entity that performs MAC layer processing.
  • MAC layer processing includes, for example, at least one of logical channel multiplexing, retransmission control (HARQ: Hybrid Automatic Repeat reQuest), scheduling, data multiplexing across multiple carriers (CC), and data demultiplexing. included.
  • HARQ Hybrid Automatic Repeat reQuest
  • FIG. 4A is a diagram showing an example of HARQ entities for each cell in the MAC entity.
  • CA carrier aggregation
  • DC dual connectivity
  • a HARQ entity may manage multiple HARQ processes in parallel.
  • FIG. 4B is a diagram showing an example of cell group setting corresponding to FIG. 4A.
  • the cell group configuration includes a cell group ID (cellGroupId), a special cell configuration (spCellConfig), and a list of secondary cells (sCellToAddModList).
  • cellGroupId a cell group ID
  • spCellConfig a special cell configuration
  • sCellToAddModList a list of secondary cells
  • L1/L2 signaling may change the serving cell to a cell with a different PCI than the serving cell (L1/L2 inter-cell mobility).
  • L1/L2 inter-cell mobility After 18, a new signaling configuration framework is preferably considered.
  • L1/L2 inter-cell mobility is performed, if cell-related settings are not appropriately performed, problems such as reduced communication throughput may occur. Accordingly, the present inventors conceived of a terminal in which cell-related settings can be appropriately performed.
  • A/B and “at least one of A and B” may be read interchangeably. Also, in the present disclosure, “A/B/C” may mean “at least one of A, B and C.”
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • information elements IEs
  • settings etc.
  • MAC Control Element CE
  • update command activation/deactivation command, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
  • DCI downlink control information
  • UCI uplink control information
  • indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • CORESETPoolIndex CORESET Pool Index
  • cells, serving cells, CCs, BWPs, BWPs in CCs, and bands may be read interchangeably.
  • other cell, non-serving cell, cell with different PCI, candidate serving cell, cell with PCI different from the PCI of the current serving cell, another serving cell may be interchanged.
  • multiple TCI state/spatial relationships enabled by RRC/DCI and/or multi-TRP based on single DCI and multi-TRP based on multiple DCIs may be read interchangeably.
  • multi-TRPs based on multi-DCI setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably.
  • multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states may be read interchangeably.
  • the cell group, serving cell group, master cell group (MCG), and secondary cell group (SCG) may be read interchangeably.
  • L1/L2, L1/L2 signaling, and MAC CE/DCI may be read interchangeably.
  • "For CA/DC operation” may mean corresponding to/related to or applicable to CA/DC.
  • "For L1/L2 inter-cell mobility operation” may mean supporting/relevant to or applied to L1/L2 inter-cell mobility.
  • a serving cell may be replaced by a cell that transmits the PDSCH.
  • a candidate cell may refer to a candidate cell to become a serving cell due to L1/L2 inter-cell mobility.
  • the UE reuses the CA/DC framework for L1/L2 inter-cell mobility operation and includes a new indication explicitly/implicitly for CA/DC or L1/L2 inter-cell mobility operation;
  • Cell group configuration (CellGroupConfig) (cell group configuration information) may be received by higher layer signaling (for example, RRC signaling) for each cell group.
  • the indication may be a new RRC parameter or an existing RRC parameter (eg Cell Group ID).
  • the UE may control transmission and reception in cells within the cell group indicated in the configuration information. Multiple cells on the same frequency may be used for L1/L2 inter-cell mobility operation, which may be serving cells.
  • the control in the present disclosure is, for example, Rel. Applies to 18+.
  • the UE indicates cell group configuration information, including a new indication (new RRC parameter) indicating whether the cell group (cell group configuration) is for CA/DC operation or L1/L2 inter-cell mobility operation (purpose of cell group). may receive.
  • new indication new RRC parameter
  • L1/L2 inter-cell mobility operation purpose of cell group
  • FIG. 5 is a diagram showing an example of cell group setting for option 1-1-1.
  • “new indicator for cell group purpose” in FIG. 5 is the new RRC parameter for this option.
  • “new indicator for cell group purpose” is, for example, 1-bit information, and if the value is 1 (or 0), it indicates that the cell group is for CA/DC operation, and the value is 0 (or 1) It may be indicated that the cell group is for L1/L2 inter-cell mobility operation when .
  • the UE may receive a cell group ID (cellGroupId) that indicates whether the cell group (cell group configuration) is for CA/DC operation or L1/L2 inter-cell mobility operation.
  • This cell group ID has a different value depending on whether the cell group is for CA/DC operation or L1/L2 inter-cell mobility operation. That is, the existing RRC parameter cell group ID is reused to implicitly indicate the purpose of the cell group. This allows the purpose of the cell group to be indicated without increasing the existing RRC parameters.
  • cellGroupId ⁇ 2 indicates the cell group used for L1/L2 inter-cell mobility.
  • FIG. 6 is a diagram showing an example of cell group setting for Option 1-1-2.
  • cellGroupId ⁇ 2 indicates the cell group used for L1/L2 inter-cell mobility.
  • the value of cellGroupId is not limited to this example.
  • cellGroupId ⁇ 3 may indicate a cell group for L1/L2 inter-cell mobility.
  • RRC parameters in the cell group configuration may be used as RRC parameters that implicitly indicate whether the cell group is for CA/DC operation or L1/L2 inter-cell mobility operation. For example, if the secondary cell is configured in sCellToAddModList, it indicates that the cell group is for CA/DC operation, and if the candidate cell is configured in sCellToAddModList, the cell group is for L1/L2 inter-cell mobility operation. You can show that there is
  • a separate MAC entity for a cell group may not be configured if the cell group is indicated for L1/L2 inter-cell mobility operation.
  • a separate HARQ entity may not be used for each cell in a cell group. That is, all cells within a cell group may share HARQ entities and share all HARQ process IDs.
  • Example 2 Alternatively, separate HARQ entities may be used for each cell in the cell group. For example, different HARQ entities may be used for each frequency that a cell supports.
  • SpCell means "the current serving cell before L1/L2 mobility on a certain frequency” for the purpose of a new cell group.
  • SCell means "a candidate cell for L1/L2 mobility on the frequency of the current serving cell” for the purpose of a new cell group.
  • Physical cell group configuration means "a cell group-specific parameter configuration that is common to all cells within a cell group" for the purpose of a new cell group.
  • a candidate cell may refer to a new serving cell candidate after an L1/L2 inter-cell mobility operation.
  • Any serving cell may be configured with multiple candidate cells within a cell group. That is, when reusing the CA/DC framework, any serving cell (SpCell/SCell) may be included in "spCellConfig" as the current serving cell for L1/L2 mobility.
  • a SpCell may be the only cell configured with multiple candidate cells within a cell group. That is, when reusing the CA/DC framework, only SpCells may be included in "spCellConfig" as the current serving cell for L1/L2 mobility, and SCells may not be included.
  • a SCell may be the only cell configured with multiple candidate cells within a cell group. That is, when reusing the CA/DC framework, only SCells may be included in "spCellConfig" as the current serving cell for L1/L2 mobility, and SpCells may not be included.
  • the maximum number of multiple candidate cells for a serving cell on the same frequency for L1/L2 inter-cell mobility (configured in sCellToAddModList) is different for each serving cell.
  • maximum number of serving cells configurable in "spCellConfig” maximum number of cell groups for L1/L2 inter-cell mobility, cells included in all cell groups for L1/L2 inter-cell mobility (per MCG/SCG) may be set.
  • These maximum numbers may be defined in the specification or may be set in the UE by higher layer signaling or the like. Also, the UE may report these maximum numbers as UE capability information and receive settings according to the report through higher layer signaling or the like.
  • FIG. 7A is a diagram showing an example of a MAC entity/HARQ entity when a cell group for CA/DC operation is set.
  • a separate HARQ entity is used for each cell in the MAC entity corresponding to the cell group (MCG/SCG).
  • MCG/SCG cell group
  • Each cell corresponds to a different frequency.
  • FIG. 7B is a diagram showing an example of cell group setting corresponding to FIG. 7A.
  • FIG. 8A is a diagram showing an example of a MAC entity/HARQ entity when a cell group for L1/L2 inter-cell mobility operation is configured.
  • a common (single) HARQ entity is used for multiple cells in the MAC entity corresponding to the cell group. Each cell corresponds to the same frequency.
  • FIG. 8A corresponds to example 1 of [[HARQ entity]] described above.
  • FIG. 8B is a diagram showing an example of cell group settings corresponding to FIG. 8A.
  • new indicator for cell group purpose indicates that it is for L1/L2 inter-cell mobility operation.
  • spCellConfig a serving cell corresponding to any of options 1-2-1 to 1-2-3 is set.
  • spCellConfig is set to, for example, “SpCell/SCell#1/SCell#2/SCell#3" when Option 1-2-1 is applied, and when Option 1-2-2 is applied, If “SpCell” is set and option 1-2-3 is applied, "SCell#1/SCell#2/SCell#3" may be set.
  • FIG. 9 is a diagram showing an example of MAC entities/HARQ entities in the first embodiment.
  • the cells within the frame shown in A of FIG. 9 are the cells of the cell group (MCG/SCG) for CA/DC operation. Each cell corresponds to a different frequency.
  • the cells in the frame shown in FIG. 9B are the cells of the cell group for L1/L2 inter-cell mobility operation, and the serving cell is the SpCell. Each cell in B corresponds to the same frequency.
  • the cells in the frame shown in FIG. 9C are the cells of the cell group for L1/L2 inter-cell mobility operation, and the serving cell is the SCell. Each cell in C corresponds to the same frequency.
  • each cell corresponds to a different frequency (CC), but in L1/L2 inter-cell mobility (multi-TRP), each cell (cells with different PCIs) corresponds to the same frequency (CC). handle.
  • Candidate cell #X in C may be different from candidate cell #1 in B (PCI/frequency may be different).
  • X may be a regenerated index at a certain frequency, eg starting from 1. The recreated index corresponds to at least a portion of the PCI and may be the index created for the candidate cell.
  • each cell may support different frequencies.
  • each cell may share the same HARQ entity corresponding to PDSCH scheduling.
  • 10A to 10C are diagrams showing examples of cell group settings corresponding to FIG. 10A to 10C correspond to the cells (cell groups) within the frames of A, B, and C in FIG. 9, respectively.
  • “cellGroupId”, “new indicator for cell group purpose”, “spCellConfig” and “sCellToAddModList” respectively correspond to the cells (cell groups) within the frames of A, B and C in FIG.
  • reusing the CA/DC framework for L1/L2 inter-cell mobility operations to perform cell group configuration for L1/L2 inter-cell mobility without adding new RRC information elements. can be done.
  • the UE may receive configuration information about the serving cell group (hereinafter sometimes referred to as serving cell group configuration (“ServCellGroupConfig”)) for L1/L2 inter-cell mobility operation via higher layer signaling (RRC signaling). .
  • the UE controls transmission and reception in cells within the cell group indicated by the configuration information regarding the serving cell group.
  • the control in the present disclosure is, for example, Rel. May be applied after 18.
  • the name of the configuration information is described as "ServCellGroupConfig", but other names may be used.
  • "Different PCI” means a PCI different from the serving cell. Serving cell group configuration and specific RRC parameters may be interchanged.
  • the UE may be configured to associate multiple cells (eg, candidate cells) with different PCIs in the serving cell group corresponding to the serving cell/CC with the serving cell through higher layer signaling.
  • multiple cells eg, candidate cells
  • HARQ Entity (Example 1) A separate HARQ entity may not be used for each cell in the serving cell group. That is, all cells within a cell group may share HARQ entities with the serving cell and share all HARQ process IDs.
  • a separate HARQ entity may be used for each cell in the serving cell group.
  • different HARQ entities may be used for each frequency that a cell supports.
  • information including common parameters applied to the serving cell in the serving cell group and multiple cells in the serving cell group having different PCIs from the serving cell is configured by higher layer signaling. good.
  • the serving cell group setting may be included in the cell group setting (CellGroupConfig) or serving cell setting (ServingCellConfig) corresponding to CA/DC, or may be associated with the cell group setting or serving cell setting corresponding to CA/DC. good.
  • a new serving cell group may be configured for any serving cell (SpCell/SCell). That is, any serving cell may be configured with a serving cell group having multiple candidate cells for L1/L2 inter-cell mobility.
  • a new serving cell group may be configured only for the SpCell. That is, only SpCells may be configured with a serving cell group having multiple candidate cells for L1/L2 inter-cell mobility.
  • a new serving cell group may be configured only for the SCell. That is, only SCells may be configured with a serving cell group having multiple candidate cells for L1/L2 inter-cell mobility.
  • maximum number of multiple candidate cells (configured in "CandidateCellList") for serving cell on the same frequency for L1/L2 inter-cell mobility (may be different for each serving cell), serving cell
  • the maximum number of serving cells that can be configured in group configuration and the maximum number of cells configured in all serving cell group configurations (per MCG/SCG) may be different.
  • These maximum numbers may be defined in the specification or may be set in the UE by higher layer signaling or the like. Also, the UE may report these maximum numbers as UE capability information and receive settings according to the report through higher layer signaling or the like.
  • FIG. 11 is a diagram showing a first example of serving cell group configuration (ServCellGroupConfig).
  • the serving cell group configuration includes a serving cell group ID (servCellGroupId) that identifies the serving cell, a specification of the serving cell included in the serving cell group (ServCel), common parameters of the serving cell group (CommonParametersForServCellGroupConfig), and a list of candidate cells related to the serving cell (CandidateCellList).
  • serving cell group ID serving cell group ID
  • ServCel a specification of the serving cell included in the serving cell group
  • CommonParametersForServCellGroupConfig Common parameters of the serving cell group
  • CandidateCellList a list of candidate cells related to the serving cell
  • the serving cell group ID may start from 0, for example.
  • the serving cell (ServCel) is set to any serving cell (SpCell/SCell) when option 2-1-1 is applied, and SpCell is set when option 2-1-2 is applied, and option 2-1- 3, SCell is set.
  • a candidate cell corresponds to the same frequency as the serving cell and has a different PCI than the serving cell.
  • FIG. 12 is a diagram showing a second example of serving cell group configuration (ServCellGroupConfig). The description of the same parts as in the example of FIG. 11 is omitted.
  • the serving cell group setting includes cellGroupId and is different from the example in FIG. 11 in that it includes multiple serving cell designations "ServCell.”
  • the serving cell group setting exists for each cell group setting (CellGroupConfig) and may correspond to a plurality of serving cells.
  • FIG. 12 may correspond to option 2-1-2.
  • FIG. 13 is a diagram showing an example of MAC entities/HARQ entities in the second embodiment.
  • Frame A in FIG. 13 shows a cell group including one SpCell and three SCells. Each cell in A corresponds to a different frequency.
  • Box B of FIG. 13 shows cell groups for L1/L2 inter-cell mobility operation. The serving cell of the cell group is SpCell. Each cell in B corresponds to the same frequency.
  • Box C of FIG. 13 shows cell groups for L1/L2 inter-cell mobility operation. The serving cell of the cell group is SCell#2. Each cell in C corresponds to the same frequency. Description of FIG. 13 similar to that of FIG. 9 will be omitted.
  • each cell may support the same frequency.
  • Each cell may also share the same HARQ entity for scheduling.
  • FIGS. 14A to 14C are diagrams showing examples of cell group settings corresponding to FIG. 14A to 14C correspond to the cells (cell groups) within the frames of A, B, and C in FIG. 13, respectively.
  • “cellGroupId”, “new indicator for cell group purpose”, “spCellConfig”, and “sCellToAddModList” in FIG. 14A respectively correspond to the cells (cell groups) within the frame of A in FIG.
  • “servCellGroupId”, “ServCell”, “CommonParametersForServCellGroupConfig”, and “CandidateCellList” in FIGS. 14B and 14C respectively correspond to the cells (cell groups) within the frames of B and C in FIG.
  • the UE is a candidate A new configuration may be received as the serving cell configuration (ServingCellConfig) of cell #y.
  • the UE may control transmission and reception in candidate cell #y that has been changed to the serving cell based on its serving cell configuration.
  • the UE may receive MAC CE/DCI containing a new field indicating the re-created index for the cell, eg for each new cell group.
  • the recreated index corresponds to at least a portion of the PCI and may be the index created for the candidate cell.
  • the third embodiment may be applied in combination with the first/second embodiments.
  • the cell group of this serving cell #x may be released and the configuration of all other candidate cells in the corresponding cell group may be flushed, cleared.
  • the UE may receive the cell group configuration of the new serving cell #y according to RRC reconfiguration.
  • FIG. 15A is a diagram showing an example of a cell configuration before L1/L2 inter-cell mobility.
  • a cell group including the serving cell SpCell#0, candidate cells Candidate cells#1 to #3, and SCell#1 is set.
  • SpCell#0 corresponds to the serving cell #x
  • candidate cell#2 corresponds to the candidate cell #y.
  • FIG. 15B is a diagram illustrating an example cell configuration after L1/L2 inter-cell mobility in option 3-1.
  • the cell group is released, the settings of Candidate cells #1 to #3 are deleted, and Candidate cell #2 is set as the serving cell.
  • FIG. 15C is a diagram illustrating an example cell configuration after L1/L2 inter-cell mobility in option 3-2.
  • the cell group is not released, the settings of SpCell#0 and Candidate cell#2 are exchanged, Candidate cell#2 becomes the serving cell, and SpCell#0 (Cell#0) becomes the candidate cell.
  • the candidate cell when a candidate cell is changed to a serving cell, it is possible to flexibly configure the candidate cell (serving cell).
  • the purpose of reusing the CA/DC framework as in the first embodiment or introducing new configuration information "ServCellGroupConfig" as in the second embodiment is to associate with the serving cell for L1/L2 inter-cell mobility. is to set a plurality of candidate cells to be used. This allows the UE to receive the configuration of each candidate cell.
  • candidate cell #y becomes the current serving cell (see the third embodiment).
  • the UE may then receive a new configuration "ServCellGroupConfig" (see second embodiment) for candidate cell #y.
  • the serving cell may be replaced with the cell that transmits the PDSCH.
  • a new DCI field may be added with a number of bits corresponding to the number of candidate cells. For example, if 7 candidate cells are configured in the new cell group corresponding to serving cell #x, a 3-bit DCI field may be added to indicate the self-scheduling serving cell change. If 3 candidate cells are configured in the new cell group to serve cell #x, 2 bits of DCI may be added to indicate the change of self-scheduling serving cell.
  • the carrier indicator field (CIF) of the DCI may indicate the target CC and the new DCI field may indicate candidate cells configured in the new cell group corresponding to the target CC.
  • the number of bits in the new DCI field is determined by the maximum number of candidate cells set for each corresponding new cell group (MCG/SCG) in CA/DC.
  • the new DCI field contains 3 bits are required. That is, the number of bits corresponding to the maximum number of candidate cells among the number of candidate cells in the cell group of each CC is applied to the new DCI field. If the target CC is a frequency (CC) with 3 candidate cells, only values 0, 1, 2, 3 may be used.
  • the original cell group may be released or updated according to the third embodiment example.
  • the UE may send (report) UE capability information to the network (base station) indicating whether it supports at least one of the processes in the present disclosure. At least one of each process in the present disclosure may be applied only to UEs that have transmitted specific UE capability information or support the specific UE capability. Also, the UE may receive information for instructing/configuring at least one of the processes in the present disclosure through DCI/MAC CE/higher layer signaling (eg, RRC) or the like. The information may correspond to UE capability information sent by the UE.
  • the UE capability information may be at least one of (1) to (8) below.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 16 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 17 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 includes an instruction indicating whether for operation of at least one of carrier aggregation and dual connectivity, or for operation of inter-cell mobility by at least one of Layer 1 and Layer 2, and transmits the cell group setting information.
  • the control unit 110 may control transmission and reception in cells within the cell group indicated by the setting information.
  • FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 includes an instruction indicating whether for operation of at least one of carrier aggregation and dual connectivity, or for operation of inter-cell mobility by at least one of Layer 1 and Layer 2, receives the cell group setting information.
  • the indication may be a cell group ID.
  • the control unit 210 may control transmission and reception in cells within the cell group indicated by the setting information.
  • the transmitting/receiving unit 220 may receive configuration information about the serving cell group, which is used for operation of inter-cell mobility by at least one of layer 1 and layer 2.
  • the control unit 210 may control transmission/reception in cells within the cell group indicated by the configuration information regarding the serving cell group.
  • the transmitting/receiving unit 220 may receive the serving cell setting of the candidate cell.
  • the control unit 210 may control transmission and reception in the candidate cell changed to the serving cell based on the serving cell setting.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 19 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 20 is a diagram showing an example of a vehicle according to one embodiment.
  • a vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, Various sensors (including current sensor 50, rotation speed sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service A unit 59 and a communication module 60 are provided.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 controls various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), camera, positioning locator (eg, Global Navigation Satellite System (GNSS), etc.), map information (eg, High Definition (HD)) Maps, Autonomous Vehicle (AV) maps, etc.), Gyro systems (e.g., Inertial Measurement Unit (IMU), Inertial Navigation System (INS), etc.), Artificial Intelligence Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's workload, and one or more ECUs that control these devices.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, the above-described base station 10, user terminal 20, etc. (may function as the base station 10, user terminal 20, etc.).
  • the communication module 60 may transmit signals from the various sensors 50 to 58 described above and information obtained based on these signals input to the electronic control unit 49 to an external device via wireless communication.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • Communication module 60 also stores various information received from external devices in memory 62 available to microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を受信する受信部と、前記設定情報が示すセルグループ内のセルにおける送受信を制御する制御部と、を有することを特徴とする。本開示の一態様によれば、セルに関する設定が適切に行うことができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 無線通信システムにおいて、1つ又は複数のセル/送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。
 マルチTRPを適用した場合に、レイヤ1及びレイヤ2の少なくとも一方のシグナリングによって、サービングセルが、当該サービングセルとは異なるPCIのセルに変更される可能性がある(L1/L2セル間モビリティ(layer1/layer2 inter-cell mobility))。L1/L2セル間モビリティが行われる場合に、セルに関する設定が適切に行われなければ、通信スループットが低下するなどの問題が生じるおそれがある。
 そこで、本開示は、セルに関する設定が適切に行うことができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を受信する受信部と、前記設定情報が示すセルグループ内のセルにおける送受信を制御する制御部と、を有することを特徴とする。
 本開示の一態様によれば、セルに関する設定が適切に行うことができる。
図1Aは、非サービングセルを含むセル間モビリティ(例えば、シングルTRPのセル間モビリティ)の一例を示している。図1Bは、マルチTRPを利用する場合のセル間モビリティの一例を示している。 図2は、サービングセル設定(ServingCellConfig)の概略を示す図である。 図3は、セルグループ設定(CellGroupConfig)の概略を示す図である。 図4Aは、MACエンティティにおけるセル毎のHARQエンティティの例を示す図である。図4Bは、図4Aに対応するセルグループ設定の例を示す図である。 図5は、オプション1-1-1のセルグループ設定の例を示す図である。 図6は、オプション1-1-2のセルグループ設定の例を示す図である。 図7Aは、CA/DC動作用のセルグループが設定された場合のMACエンティティ/HARQエンティティの例を示す図である。図7Bは、図7Aに対応するセルグループ設定の例を示す図である。 図8Aは、L1/L2セル間モビリティ動作用のセルグループが設定された場合のMACエンティティ/HARQエンティティの例を示す図である。図8Bは、図8Aに対応するセルグループ設定の例を示す図である。 図9は、第1の実施形態におけるMACエンティティ/HARQエンティティの例を示す図である。 図10A~図10Cは、図9に対応するセルグループ設定の例を示す図である。 図11は、サービングセルグループ設定(ServCellGroupConfig)の第1の例を示す図である。 図12は、サービングセルグループ設定(ServCellGroupConfig)の第2の例を示す図である。 図13は、第2の実施形態におけるMACエンティティ/HARQエンティティの例を示す図である。 図14A~図14Cは、図13に対応するセルグループ設定の例を示す図である。 図15Aは、L1/L2セル間モビリティ前のセル構成の例を示す図である。図15Bは、オプション3-1における、L1/L2セル間モビリティ後のセル構成の例を示す図である。図15Cは、オプション3-2における、L1/L2セル間モビリティ後のセル構成の例を示す図である。 図16は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図17は、一実施形態に係る基地局の構成の一例を示す図である。 図18は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図19は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図20は、一実施形態に係る車両の一例を示す図である。
(マルチTRP)
 1つ又は複数のセル/送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のセル/TRPに対してUL送信を行うことが検討されている。この場合の手順として、以下のシナリオ1又はシナリオ2が考えられる。なお、本開示において、サービングセルは、サービングセル内のTRPに読み替えられてもよい。layer1/layer2(L1/L2)シグナリング、MAC CE/DCIは、互いに読み替えられてもよい。本開示において、現在のサービングセルの物理セルID(Physical Cell Identity(PCI))とは異なるPCIを、単に「異なるPCI」と記載することがある。シナリオ1では、例えば、以下の手順が行われる。
<シナリオ1>
 シナリオ1は、例えば、マルチTRPのセル間モビリティに対応するが、マルチTRPのセル間モビリティに対応しないシナリオであっても構わない。
(1)UEは、サービングセルから、当該サービングセルとは異なるPCIに対応するTRPのビーム測定用のSSBの設定、及び異なるPCIのリソースを含む、データ送受信に無線リソースを使用するために必要な設定を受信する。
(2)UEは、異なるPCIに対応するTRPのビーム測定を実行し、ビーム測定結果をサービングセルに報告する。
(3)上記の報告に基づいて、異なるPCIに対応するTRPに関連付けられたTCI状態が、サービングセルからのL1/L2シグナリングによって、アクティブ化される。
(4)UEは、異なるPCIに対応するTRP上のUE個別(dedicated)チャネルを使用して送受信する。
(5)UEは、マルチTRPの場合も含めて、常にサービングセルをカバーしている必要がある。UEは、従来システムと同様に、サービングセルからの共通チャネル(ブロードキャスト制御チャネル(BCCH:Broadcast Control Channel)、ページングチャネル(PCH:Paging Channel))などを使用する必要がある。
 シナリオ1では、UEが、非サービングセル/TRP(非サービングセルのPCIに対応するTRP)と信号を送受信するときに、サービングセル(UEにおけるサービングセルの想定)は変更されない。UEは、サービングセルから、非サービングセルのPCIに関連する上位レイヤパラメータを設定される。シナリオ1は、例えば、Rel.17において適用されてもよい。
<シナリオ2>
 シナリオ2では、L1/L2セル間モビリティを適用する。L1/L2セル間モビリティでは、RRC再設定せずに、ビーム制御などの機能を用いてサービングセル変更が可能である。言い換えると、ハンドオーバーせずに、非サービングセルとの送受信が可能である。ハンドオーバーのためにはRRC再接続が必要になるなど、データ通信不可期間が生じるので、ハンドオーバー不要なL1/L2セル間モビリティを適用することにより、サービングセル変更の際にもデータ通信を継続することができる。シナリオ2は、例えば、Rel.18において適用されてもよい。シナリオ2では、例えば、以下の手順が行われる。
(1)UEは、サービングセルから、ビーム測定/サービングセルの変更のために、異なるPCIを持つセル(非サービングセル)のSSBの設定を受信する。
(2)UEは、異なるPCIを使用したセルのビーム測定を実行し、測定結果をサービングセルに報告する。
(3)UEは、異なるPCIを持つセルの設定(サービングセル設定)を、上位レイヤシグナリング(例えばRRC)によって受信してもよい。つまり、サービングセル変更に関する事前設定が行われてもよい。この設定は、(1)における設定とともに行われてもよいし、別々に行われてもよい。
(4)上記の報告に基づいて、異なるPCIを持つセルのTCI状態は、サービングセルの変更に従ってL1/L2シグナリングによってアクティブ化されてもよい。TCI状態のアクティブ化及びサービングセルの変更は、別々に行われてもよい。
(5)UEは、サービングセル(サービングセルの想定)を変更し、予め設定されたUE個別のチャネルとTCI状態を使用して受信/送信を開始する。
 つまり、シナリオ2では、サービングセル(UEにおけるサービングセルの想定)がL1/L2シグナリングによって更新される。
 UEが、セル間モビリティにおいて、複数のセル/TRPからのチャネル/信号を受信する場合の例について、図1A、Bを用いて説明する。
 図1Aは、非サービングセルを含むセル間モビリティ(例えば、シングルTRPのセル間モビリティ)の一例を示している。シングルTRPは、マルチTRPのうち1つのTRPのみがUEに対して送信を行うケース(シングルモードと呼ばれてもよい)を意味してもよい。ここでは、UEは、サービングセルであるセル#1(PCI#1)の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cell)セル#3(PCI#3)の基地局/TRPとからチャネル/信号を受信する場合を示している。
 例えば、UEのサービングセルが、セル#1からセル#3にスイッチする。この場合、DCI/MAC CEによりTCI状態のアップデートが行われ、ポート(例えば、アンテナポート)/TRP/ポイントの選択がダイナミックに行われてもよい。UEは、DCI/MAC CEを用いることにより、高速にセル/ビームを変更することができる。
 図1Bは、マルチTRPを利用する場合のセル間モビリティの一例を示している。ここでは、UEは、TRP#1とTRP2からチャネル/信号を受信する場合を示している。ここでは、TRP#1がセル#1(PCI#1)、TRP#2がセル#2(PCI#2)に存在する場合を示している。セル#1(PCI#1)、セル#2(PCI#2)のサービングセル設定は同じであるとする。
 マルチTRP(TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。図1Bでは、複数のセル(異なるPCIのセル)間でNCJTが行われてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1の信号/チャネル(例えば、PDSCH)を送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2の信号/チャネル(例えば、PDSCH)を送信する。
 NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、TRP#1からの第1のPDSCHと、TRP#2からの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPにおいて1つのDCIを利用する構成は、シングルDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)が適用されてもよい。
 マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。マルチTRPにおいて複数のDCIを利用する構成は、マルチDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示に置いて、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。
<L1/L2セル間モビリティ>
[候補サービングセルの設定]
 L1/L2セル間モビリティの例について説明する。1つのTRPと通信を行う場合(シングルTRPを適用した場合)、ほぼ同じサービングセル設定(serving cell configurations)を有する複数のセルのみに対して、UEのL1/L2セル間モビリティが設定されてもよい。
 1つのTRPと通信を行う場合(シングルTRPを適用した場合)、UEは、周波数に対応する非サービングセルである複数の候補サービングセルの設定を、上位レイヤシグナリング(RRC再設定シグナリング)により予め受信してもよい。そして、UEは、その複数の候補サービングセルのいずれかを示す指示をMAC CE/DCIにより受信した場合、その指示が示す候補サービングセルへ、サービングセルを変更してもよい(ハンドオーバーしてもよい)。
 UEは、周波数に対応する非サービングセルである複数の候補サービングセルの設定を、上位レイヤシグナリング(RRC再設定シグナリング)により受信してもよい(設定されてもよい)。そして、UEは、非サービングセルのQCLに関する情報(QCL/TCI)をMAC CE又はDCIにより受信した場合、非サービングセルに対応する(関連する)候補サービングセルへ、サービングセルを変更し(ハンドオーバーし)、そのQCLを適用してもよい。
 UEは、周波数に対応する複数の候補サービングセル設定が設定される場合、複数の候補サービングセル設定のうちの少なくとも2つの(複数の)候補サービングセル設定を同時に適用/維持/サポート/保持してもよい。UEは、その複数の候補サービングセル設定に対応する複数のサービングセルに対して同時に通信を行ってもよい。
[共通TCI状態の指示]
 UEは、サービングセルの物理セルID(PCI)とは異なるPCIを持つ他のセルに関連付けられた共通TCI状態を指示する情報を受信してもよい。共通TCI状態は、複数種類のチャネル/信号に適用可能なTCI状態であってもよい。共通TCI状態は、下りリンク(DL)及び上りリンク(UL)の両方に共通な第1のTCI状態、DLに共通な第2のTCI状態、ULに共通な第3のTCI状態の少なくとも1つであってもよい。
 第1のTCI状態は、DL及びULの複数種類のチャネル/信号に適用可能なTCI状態(ジョイントTCI状態)であってもよい。第2のTCI状態は、DLの複数種類のチャネル/信号に適用可能なTCI状態(セパレートDL TCI状態)であってもよい。第3のTCI状態は、ULの複数種類のチャネル/信号に適用可能なTCI状態(セパレートUL TCI状態)であってもよい。
 UEは、第1~第3のTCI状態を指示する情報を、例えば、MAC CE及びDCIによって受信してもよい。UEは、当該情報において指示された、第1のTCI状態、第2のTCI状態、第3のTCI状態の少なくとも1つを、当該他のセルに対して送信/受信される特定のチャネルに適用してもよい。
(セルの設定)
 図2は、サービングセル設定(ServingCellConfig)の概略を示す図である。図2は、Abstract Syntax Notation One(ASN.1)を用いており、「1>」、「2>」...「6>」という表記は、構成の階層を示している。本開示における設定を示す図面は、同様の記法が用いられており、RRC情報要素(パラメータ)に対応していてもよい。図2に示すように、サービングセル設定は、少なくともサービングセルインデックス(ServCellIndex)、物理セルID(physCellId)、下りリンク(downlink)(下りリンクに関する設定)、上りリンク(uplink)(上りリンクに関する設定)を含む。
 図3は、セルグループ設定(CellGroupConfig)の概略を示す図である。セルグループ設定は、キャリアアグリゲーションにおけるマスターセルグループ(MCG)又はセカンダリセルグループ(SCG)に適用されてもよい。図3に示すように、セルグループ設定は、セルグループID、対応するRLC(Radio Link Control)エンティティ及び無線ベアラとの関連付けのリスト(rlc-BearerToAddModList)、MACセルグループ設定(mac-CellGroupConfig)、物理セルグループ設定(physicalCellGroupConfig)、スペシャルセル設定(spCellConfig)、セカンダリセルのリスト(sCellToAddModList)を含む。
 基地局(例えば、LTE基地局/NR基地局)は、それぞれ、MAC(Medium Access Control)エンティティを有する。MACエンティティとは、MACレイヤの処理を行う処理実体(process enitity)である。MACレイヤの処理には、例えば、論理チャネルの多重化、再送制御(HARQ:Hybrid Automatic Repeat reQuest)、スケジューリング、複数のキャリア(CC)に跨るデータの多重化、当該データの分離化の少なくとも一つが含まれる。
 図4Aは、MACエンティティにおけるセル毎のHARQエンティティの例を示す図である。キャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)が設定されたUEに対し、セル(CC)毎に1つの独立したHARQエンティティが存在してもよい。HARQエンティティは、複数のHARQプロセスを並行して管理してもよい。
 図4Bは、図4Aに対応するセルグループ設定の例を示す図である。図4Bに示すように、セルグループ設定は、セルグループID(cellGroupId)、スペシャルセル設定(spCellConfig)、セカンダリセルのリスト(sCellToAddModList)を含む。
(分析)
 マルチTRPセル間の設定は、シングルセル設定フレームワークに基づいている。TRP、非サービングセル、及び、サービングセルとは異なるPCIを持つセルの概念は、サービングセル設定において、設定される。Rel.17のセル間モビリティ(セル間ビーム管理とも呼ばれる)も、シングルセル設定フレームワークに基づいている。これは、異なるPCIを持つセルが、サービングセル設定において設定されていることを意味する。
 しかし、L1/L2シグナリングによって、サービングセルが、当該サービングセルとは異なるPCIのセルに変更される可能性がある(L1/L2セル間モビリティ)。Rel.18以降のL1/L2セル間モビリティでは、新しいシグナリング設定フレームワークを検討されることが好ましい。L1/L2セル間モビリティが行われる場合に、セルに関する設定が適切に行われなければ、通信スループットが低下するなどの問題が生じるおそれがある。そこで、本発明者らは、セルに関する設定が適切に行うことができる端末を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、セル、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、セル、サービングセル、CC、BWP、CC内のBWP、バンド、は互いに読み替えられてもよい。本開示において、他のセル、非サービングセル、異なるPCIを持つセル、候補サービングセル、現在のサービングセルのPCIとは異なるPCIを持つセル、別のサービングセルは、互いに言い換えられてもよい。
 本開示において、マルチTRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。
 本開示において、セルグループ、サービングセルグループ、マスターセルグループ(MCG)、セカンダリセルグループ(SCG)は、互いに読み替えられてもよい。L1/L2、L1/L2シグナリング、MAC CE/DCIは、互いに読み替えられてもよい。「CA/DC動作用」は、CA/DCに対応/関連すること、又はCA/DCに適用されることを意味してもよい。「L1/L2セル間モビリティ動作用」は、L1/L2セル間モビリティに対応/関連すること、又はL1/L2セル間モビリティに適用されることを意味してもよい。サービングセルは、PDSCHを送信するセルに置き換えられてもよい。候補セルは、L1/L2セル間モビリティによりサービングセルとなる候補のセルを意味してもよい。
(無線通信方法)
<第1の実施形態>
 UEは、L1/L2セル間モビリティ動作にCA/DCフレームワークを再利用し、CA/DC動作用か、L1/L2セル間モビリティ動作用かを明示的/暗黙的に示す新しい指示を含む、セルグループ設定(CellGroupConfig)(セルグループ設定情報)をセルグループ毎に、上位レイヤシグナリング(例えばRRCシグナリング)により受信してもよい。当該指示は、新しいRRCパラメータ又は既存のRRCパラメータ(例えばセルグループID)であってもよい。UEは、当該設定情報に示されるセルグループ内のセルにおける送受信を制御してもよい。L1/L2セル間モビリティ動作には、サービングセルとなる可能性がある、同じ周波数上の複数のセルを用いてもよい。本開示における制御は、例えば、Rel.18以降で適用される。
[オプション1-1-1]
 UEは、セルグループ(セルグループ設定)がCA/DC動作用か、L1/L2セル間モビリティ動作用か(セルグループの目的)を示す新しい指示(新しいRRCパラメータ)を含む、セルグループ設定情報を受信してもよい。
 図5は、オプション1-1-1のセルグループ設定の例を示す図である。図5の"new indicator for cell group purpose"が、本オプションの新しいRRCパラメータである。"new indicator for cell group purpose"は、例えば、1ビットの情報であり、値が1(又は0)の場合にセルグループがCA/DC動作用であることを示し、値が0(又は1)の場合にセルグループがL1/L2セル間モビリティ動作用であることを示してもよい。
[オプション1-1-2]
 UEは、セルグループ(セルグループ設定)がCA/DC動作用か、L1/L2セル間モビリティ動作用かを示すセルグループID(cellGroupId)を受信してもよい。このセルグループIDは、セルグループがCA/DC動作用か、L1/L2セル間モビリティ動作用かに応じて値が異なっている。つまり、既存のRRCパラメータであるセルグループIDを再利用して、セルグループの目的が暗黙的に示される。これにより、既存のRRCパラメータを増加させずにセルグループの目的を示すことができる。
 例えば、Rel.17と同様に、cellGroupId=0はCA/DCのマスターセルグループを示し、cellGroupId=1は、CA/DCのセカンダリセルグループを示し、cellGroupId≧2は、L1/L2セル間モビリティに用いるセルグループを示してもよい。
 図6は、オプション1-1-2のセルグループ設定の例を示す図である。上述のように、cellGroupId=0 or 1は、CA/DCのマスタ/セカンダリセルグループを示し、cellGroupId≧2は、L1/L2セル間モビリティに用いるセルグループを示す。ただし、cellGroupIdの値はこの例に限られない。
 なお、Rel.18以降において、CA/DCにおいて3つ以上のセルグループをサポートしてもよい。3つのセルグループをサポートする場合、例えば、cellGroupId=0は、CA/DCのマスターセルグループを示しcellGroupId=1は、CA/DCのセカンダリセルグループを示し、cellGroupId=2は、CA/DCの3番目のセルグループを示してもよい。また、cellGroupId≧3は、L1/L2セル間モビリティのセルグループを示してもよい。
 セルグループがCA/DC動作用か、L1/L2セル間モビリティ動作用かを暗示的に示すRRCパラメータとして、セルグループ設定内の他のパラメータが用いられてもよい。例えば、sCellToAddModListにセカンダリセルが設定されている場合、セルグループがCA/DC動作用であることを示し、sCellToAddModListに候補セルが設定されている場合、セルグループがL1/L2セル間モビリティ動作用であることを示してもよい。
[MACエンティティ/HARQエンティティ]
 上述した、明示的/暗黙的な新しい指示により、セルグループがL1/L2セル間モビリティ動作用であることが示されている場合、CA/DC動作用である場合との相違点について、説明する。
[[MACエンティティ]]
 セルグループがL1/L2セル間モビリティ動作用であることが示されている場合、セルグループ用の独立したMACエンティティが設定されなくてもよい。
[[HARQエンティティ]]
(例1)セルグループ内の各セルに、別のHARQエンティティが用いられなくてもよい。つまり、セルグループ内の全てのセルは、HARQエンティティを共有し、全てのHARQプロセスIDを共有してもよい。
(例2)又は、セルグループ内の各セルに、別のHARQエンティティが用いられてもよい。例えば、セルが対応する周波数毎に、異なるHARQエンティティが用いられてもよい。
[L1/L2セル間モビリティ動作にCA/DC設定シグナリング(フレームワーク)を再利用する場合のパラメータ解釈]
 新しいセルグループの目的(L1/L2セル間モビリティ)のために再利用されるCA/DC設定シグナリングにおける各パラメータについて説明する。
 "SpCell"は、新しいセルグループの目的において、「ある周波数における、L1/L2モビリティ前の現在のサービングセル」を意味する。
 "SCell"は、新しいセルグループの目的において、「現在のサービングセルの周波数における、L1/L2モビリティの候補セル」を意味する。
 物理セルグループ設定(physicalCellGroupConfig)は、新しいセルグループの目的において、「セルグループ内のすべてのセルに共通する、セルグループ固有のパラメータ設定」を意味する。
[セルグループがL1/L2セル間モビリティ動作用である場合のパラメータ]
 新しいセルグループの目的が、L1/L2セル間モビリティ動作用に設定された場合の各パラメータの意味について説明する。候補セルは、L1/L2セル間モビリティ動作後の新しいサービングセルの候補を意味してもよい。
[オプション1-2-1]
 任意のサービングセル(SpCell/SCell)が、セルグループ内の複数の候補セルとともに設定されてもよい。つまり、CA/DCフレームワークを再利用する際に、任意のサービングセル(SpCell/SCell)が、L1/L2モビリティのための現在のサービングセルとして"spCellConfig"に含まれていてもよい。
[オプション1-2-2]
 セルグループ内の複数の候補セルとともに設定されるセルは、SpCellのみであってもよい。つまり、CA/DCフレームワークを再利用する際に、SpCellのみが、L1/L2モビリティのための現在のサービングセルとして"spCellConfig"に含まれ、SCellは、含まれなくてよい。
[オプション1-2-3]
 セルグループ内の複数の候補セルとともに設定されるセルは、SCellのみであってもよい。つまり、CA/DCフレームワークを再利用する際に、SCellのみが、L1/L2モビリティのための現在のサービングセルとして"spCellConfig"に含まれ、SpCellは、含まれなくてよい。
 セルグループの新しい目的(L1/L2セル間モビリティ)のために、L1/L2セル間モビリティのための同一周波数上のサービングセルに対する複数の候補セルの最大数(sCellToAddModListに設定される。サービングセル毎に異なっていてもよい)、"spCellConfig"に設定可能なサービングセルの最大数、L1/L2セル間モビリティのためのセルグループの最大数、L1/L2セル間モビリティのための全てのセルグループに含まれるセルの最大数(MCG/SCGごと)が設定されてもよい。
 これらの最大数は、仕様において定義されてもよいし、上位レイヤシグナリング等によりUEに設定されてもよい。また、UEは、これらの最大数をUE能力情報として報告し、報告に応じた設定を上位レイヤシグナリング等により受信してもよい。
[具体例]
 本実施形態のセルグループ設定、MACエンティティ/HARQエンティティの例について説明する。
 図7Aは、CA/DC動作用のセルグループが設定された場合のMACエンティティ/HARQエンティティの例を示す図である。図7Aでは、セルグループ(MCG/SCG)に対応するMACエンティティにおいて、セル毎に別のHARQエンティティが用いられる。各セルは異なる周波数に対応する。
 図7Bは、図7Aに対応するセルグループ設定の例を示す図である。図7BのcellGroupId=0はCA/DCのセルグループ(例えばマスターセルグループ)を示している。また、"new indicator for cell group purpose"は、CA/DC動作用であることを示している。
 図8Aは、L1/L2セル間モビリティ動作用のセルグループが設定された場合のMACエンティティ/HARQエンティティの例を示す図である。図8Aでは、セルグループに対応するMACエンティティにおいて、複数のセルに共通の(1つの)HARQエンティティが用いられる。各セルは同じ周波数に対応する。図8Aは、上述した[[HARQエンティティ]]の例1に対応する。
 図8Bは、図8Aに対応するセルグループ設定の例を示す図である。図8BのcellGroupId=2はL1/L2セル間モビリティのセルグループを示している。"new indicator for cell group purpose"は、L1/L2セル間モビリティ動作用であることを示している。
 また、"spCellConfig"では、オプション1-2-1~1-2-3のいずれかに対応するサービングセルが設定される。"spCellConfig"は、例えば、オプション1-2-1が適用される場合、"SpCell/SCell#1/SCell#2/SCell#3"が設定され、オプション1-2-2が適用される場合、"SpCell"が設定され、オプション1-2-3が適用される場合、"SCell#1/SCell#2/SCell#3"が設定されてもよい。
 図9は、第1の実施形態におけるMACエンティティ/HARQエンティティの例を示す図である。図9のAに示す枠内のセルは、CA/DC動作用のセルグループ(MCG/SCG)のセルである。各セルは異なる周波数に対応する。図9のBに示す枠内のセルは、L1/L2セル間モビリティ動作用のセルグループのセルであり、サービングセルがSpCellである場合の例である。B内の各セルは同じ周波数に対応する。図9のCに示す枠内のセルは、L1/L2セル間モビリティ動作用のセルグループのセルであり、サービングセルがSCellである場合の例である。C内の各セルは同じ周波数に対応する。
 つまり、CA/DCでは、各セルは、それぞれ異なる周波数(CC)に対応するが、L1/L2セル間モビリティ(マルチTRP)では、各セル(PCIが異なるセル)は、同じ周波数(CC)に対応する。C内の候補セル(Candidate cell)#Xは、B内の候補セル#1とは異なっていてもよい(PCI/周波数が異なっていてもよい)。Xは、ある周波数における再作成されたインデックスであってもよく、例えば、1から開始されてもよい。再作成されたインデックスは、PCIの少なくとも1部に対応し、候補セル用に作成されたインデックスであってもよい。
 別の例では、L1/L2セル間モビリティのケースであっても、各セル(SpCell/Scell、Candidate cell)が異なる周波数に対応していてもよい。ただし、各セルが、PDSCHスケジューリングに対応する同じHARQエンティティを共有していてもよい。
 図10A~図10Cは、図9に対応するセルグループ設定の例を示す図である。図10A~図10Cは、それぞれ、図9のA,B,Cの枠内のセル(セルグループ)に対応する。"cellGroupId"、"new indicator for cell group purpose"、"spCellConfig"、"sCellToAddModList"は、それぞれ、図9のA,B,Cの枠内のセル(セルグループ)に対応している。
 第1の実施形態では、L1/L2セル間モビリティ動作にCA/DCフレームワークを再利用することにより、新しいRRC情報要素を追加せずに、L1/L2セル間モビリティに関するセルグループ設定を行うことができる。
<第2の実施形態>
 UEは、L1/L2セル間モビリティ動作のために、サービングセルグループに関する設定情報(以下、サービングセルグループ設定("ServCellGroupConfig")と称することがある)を上位レイヤシグナリング(RRCシグナリング)により受信してもよい。UEは、サービングセルグループに関する設定情報が示すセルグループ内のセルにおける送受信を制御する。本開示における制御は、例えば、Rel.18以降で適用されてもよい。本開示において、当該設定情報の名称を"ServCellGroupConfig"として記載するが、他の名称が使用されてもよい。「異なるPCI」は、サービングセルと異なるPCIを意味する。サービングセルグループ設定、特定のRRCパラメータは、互いに読み替えられてもよい。
 UEは、上位レイヤシグナリングにより、サービングセル/CCに対応するサービングセルグループ内の異なるPCIを持つ複数のセル(例えば候補セル)がサービングセルに関連付けて設定されてもよい。
[HARQエンティティ]
(例1)サービングセルグループ内の各セルに、別のHARQエンティティが用いられなくてもよい。つまり、セルグループ内のすべてのセルは、HARQエンティティをサービングセルと共有し、全てのHARQプロセスIDを共有してもよい。
(例2)サービングセルグループ内の各セルに、別のHARQエンティティが用いられてもよい。例えば、セルが対応する周波数毎に、異なるHARQエンティティが用いられてもよい。
 UEは、上位レイヤシグナリングにより、サービングセルグループ内のサービングセルと、当該サービングセルとは異なるPCIを持つ、サービングセルグループ内の複数のセルとに適用される共通パラメータを含む情報(information element)が設定されてもよい。
 サービングセルグループ設定は、CA/DCに対応するセルグループ設定(CellGroupConfig)又はサービングセル設定(ServingCellConfig)に含まれていてもよいし、CA/DCに対応するセルグループ設定又はサービングセル設定に関連づけられていてもよい。
[オプション2-1]
 任意のサービングセル(SpCell/SCell)に対して、新しいサービングセルグループが設定されてもよい。つまり、任意のサービングセルが、L1/L2セル間モビリティの複数の候補セルを有するサービングセルグループとともに設定されてもよい。
[オプション2-2]
 SpCellに対してのみ、新しいサービングセルグループが設定されてもよい。つまり、SpCellのみが、L1/L2セル間モビリティの複数の候補セルを有するサービングセルグループとともに設定されてもよい。
[オプション2-3]
 SCellに対してのみ、新しいサービングセルグループが設定されてもよい。つまり、SCellのみが、L1/L2セル間モビリティの複数の候補セルを有するサービングセルグループとともに設定されてもよい。
 サービングセルグループ設定に対して、L1/L2セル間モビリティの同じ周波数でのサービングセルの複数の候補セル("CandidateCellList"に設定される)の数の最大数(サービングセル毎に異なっていてもよい)、サービングセルグループ設定において設定できるサービングセルの最大数、全てのサービングセルグループ設定において設定されるセルの最大数(MCG/SCG毎)が異なっていてもよい。
 これらの最大数は、仕様において定義されてもよいし、上位レイヤシグナリング等によりUEに設定されてもよい。また、UEは、これらの最大数をUE能力情報として報告し、報告に応じた設定を上位レイヤシグナリング等により受信してもよい。
 図11は、サービングセルグループ設定(ServCellGroupConfig)の第1の例を示す図である。サービングセルグループ設定は、サービングセルを識別するサービングセルグループID(servCellGroupId)、サービングセルグループに含まれるサービングセルの指定(ServCel)、サービングセルグループの共通パラメータ(CommonParametersForServCellGroupConfig)、サービングセルに関連する候補セルのリスト(CandidateCellList)を含む。
 サービングセルグループID(servCellGroupId)は、例えば0から開始されてもよい。サービングセル(ServCel)は、オプション2-1-1を適用する場合、任意のサービングセル(SpCell/SCell)が設定され、オプション2-1-2を適用する場合、SpCellが設定され、オプション2-1-3を適用する場合、SCellが設定される。候補セルは、サービングセルと同じ周波数に対応し、サービングセルとは異なるPCIを持つ。
 図12は、サービングセルグループ設定(ServCellGroupConfig)の第2の例を示す図である。図11の例と同様の部分については、説明を省略する。図12では、サービングセルグループ設定は、cellGroupIdを含み、複数のサービングセルの指定"ServCell"を含む点で図11の例と異なる。図12では、サービングセルグループ設定は、セルグループ設定(CellGroupConfig)毎に存在し、複数のサービングセルに対応していてもよい。図12は、オプション2-1-2に対応していてもよい。
 図13は、第2の実施形態におけるMACエンティティ/HARQエンティティの例を示す図である。図13のAの枠は、1つのSpCellと3つのSCellとを含むセルグループを示す。A内の各セルは異なる周波数に対応する。図13のBの枠は、L1/L2セル間モビリティ動作用のセルグループを示す。当該セルグループのサービングセルはSpCellである。B内の各セルは同じ周波数に対応する。図13のCの枠は、L1/L2セル間モビリティ動作用のセルグループを示す。当該セルグループのサービングセルは、SCell#2である。C内の各セルは同じ周波数に対応する。図13について、図9と同様の点について、説明を省略する。
 別の例では、L1/L2セル間モビリティのケースであっても、各セル(SpCell/Scell、Candidate cell)が同じ周波数に対応していてもよい。また、各セルが、スケジューリングのために同じHARQエンティティを共有していてもよい。
 図14A~図14Cは、図13に対応するセルグループ設定の例を示す図である。図14A~図14Cは、それぞれ、図13のA,B,Cの枠内のセル(セルグループ)に対応する。図14Aの"cellGroupId"、"new indicator for cell group purpose"、"spCellConfig"、"sCellToAddModList"は、それぞれ、図13のAの枠内のセル(セルグループ)に対応している。図14B,Cの"servCellGroupId"、"ServCell"、"CommonParametersForServCellGroupConfig"、"CandidateCellList"は、それぞれ、図13のB,Cの枠内のセル(セルグループ)に対応している。
 第2の実施形態では、CA/DC用の設定情報とは異なる新しい設定情報(サービングセルグループ設定)を用いることにより、L1/L2セル間モビリティのために、柔軟な設定が可能となる。
<第3の実施形態>
 UEは、MAC CE/DCIにより(L1/L2セル間モビリティにより)、ある周波数における候補セル#yがサービングセル#xに変更される(サービングセル#xが候補セル#yに変更される)場合、候補セル#yのサービングセル設定(ServingCellConfig)として新しい設定を受信してもよい。UEは、そのサービングセル設定に基づいて、サービングセルに変更された候補セル#yにおける送受信を制御してもよい。当該L1/L2セル間モビリティにおいて、UEは、例えば、新しいセルグループ毎に、セルに対する再作成されたインデックスを示す新しいフィールドを含むMAC CE/DCIを受信してもよい。再作成されたインデックスは、PCIの少なくとも1部に対応し、候補セル用に作成されたインデックスであってもよい。第3の実施形態は、第1/第2の実施形態と組み合わせて適用されてもよい。
[オプション3-1]
 このサービングセル#xのセルグループが解放され、対応するセルグループ内の他のすべての候補セルの設定が削除(flush、clear)されてもよい。UEは、RRCの再構成(RRC reconfiguration)に応じて、新しいサービングセル#yのセルグループの設定を受信してもよい。
 図15Aは、L1/L2セル間モビリティ前のセル構成の例を示す図である。図15Aでは、サービングセルであるSpCell#0、候補セルであるCandidate celll#1~#3、SCell#1を含むセルグループが設定されている。SpCell#0が、上記サービングセル#xに対応し、candidate celll#2が、上記候補セル#yに対応する。図15Bは、オプション3-1における、L1/L2セル間モビリティ後のセル構成の例を示す図である。図15Bでは、セルグループが解放され、Candidate celll#1~#3の設定が削除され、Candidate celll#2がサービングセルとして設定される。
[オプション3-2]
 サービングセル#xのセルグループは保持されるが、セル#xの設定とセル#yの設定が交換される更新が行われてもよい。つまり、セル#yはセルグループのサービングセルになり、セル#xは、セル#yの代わりにセルグループの候補セルとなる。当該候補セルは、セルグループ設定の候補セルリストに含まれる。
 オプション3-1と同様に、L1/L2セル間モビリティ前のセル構成として図15Aを適用した場合の例を説明する。図15Cは、オプション3-2における、L1/L2セル間モビリティ後のセル構成の例を示す図である。図15Cでは、セルグループは解放されず、SpCell#0の設定とCandidate celll#2の設定とが交換され、Candidate celll#2がサービングセルとなり、SpCell#0(Cell#0)が候補セルとなる。
 第3の実施形態によれば、候補セルがサービングセルに変更された場合に、その候補セル(サービングセル)に対して柔軟な設定を行うことができる。
<分析>
 第1の実施形態のようにCA/DCフレームワークを再利用する、又は第2の実施形態のように、新しい設定情報"ServCellGroupConfig"を導入する目的は、L1/L2セル間モビリティのサービングセルに関連付けられる複数の候補セルを設定することである。これにより、UEは、各候補セルの設定を受信することができる。
 UEは、L1/L2シグナリングにより、ある周波数でのサービングセルが候補セル#yに変更することを指示された場合、候補セル#yは現在のサービングセルになる(第3の実施形態を参照)。そして、UEは、候補セル#yのための新しい設定"ServCellGroupConfig"(第2の実施形態を参照)を受信してもよい。本開示において、サービングセルは、PDSCHを送信するセルに置き換えられてもよい。
 候補セルの数に応じたビット数を有する、新しいDCIフィールドが追加されてもよい。例えば、7つの候補セルが、サービングセル#xに対応する新しいセルグループに設定されている場合、セルフスケジューリングのサービングセルの変更を示すために、3ビットのDCIフィールドが追加されてもよい。セル#xを提供するために新しいセルグループに3つの候補セルが設定されている場合、セルフスケジューリングのサービングセルの変更を示すために2ビットのDCIが追加されてもよい。
 クロスキャリアスケジューリングが設定されている場合、DCIのキャリアインジケータフィールド(CIF)はターゲットCCを示し、新しいDCIフィールドが、ターゲットCCに対応すする新しいセルグループにおいて設定された候補セルを示してもよい。新しいDCIフィールドのビット数は、CA/DCにおいて対応する新しいセルグループ(MCG/SCG)毎に設定された候補セルの数の最大値によって決まる。
 クロスキャリアスケジューリングにおいて、ある周波数(CC)において新しいセルグループの3つの候補セルが設定され、他の周波数(CC)において、新しいセルグループの7つの候補セルで設定される場合、新しいDCIフィールドには3ビットが必要となる。つまり、各CCのセルグループ内の候補セル数のうちの最大の候補セル数に応じたビット数が、新しいDCIフィールドに適用される。ターゲットCCが3つの候補セルを持つ周波数(CC)である場合、値0、1、2、3のみが使用されてもよい。元のセルグループは、第3の実施形態の例に従って、解放又は更新されてもよい。
<UE能力(capability)>
 UEは、本開示における各処理の少なくとも1つをサポートするかを示すUE能力情報をネットワーク(基地局)に送信(報告)してもよい。本開示における各処理の少なくとも1つは、特定のUE能力情報を送信したUE又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。また、UEは、本開示における各処理の少なくとも1つを指示/設定する情報をDCI/MAC CE/上位レイヤシグナリング(例えば、RRC)等により受信してもよい。当該情報は、UEが送信したUE能力情報に対応していてもよい。UE能力情報は、下記の(1)~(8)の少なくとも1つであってもよい。
(1)新しいセルグループの目的(L1/L2セル間モビリティ)のためのCA/DCフレームワークの再利用をサポートするかどうか。
(2)セルグループの明示的/暗黙的な新しい目的の指示(CA/DC動作用か、L1/L2セル間モビリティ動作用かの指示)をサポートするかどうか。
(3)L1/L2セル間モビリティの新しいサービングセルグループの設定(ServCellGroupConfig)をサポートするかどうか。
(4)L1/L2セル間モビリティのサービングセルに関連付けられた複数の候補セルの設定をサポートするかどうか。
(5)任意のサービング、SpCellのみ、又はSCellのみに対して、上記(1)~(4)の少なくとも1つのUE能力をサポートするかどうか。
(6)L1/L2セル間モビリティに関して、任意のサービングセル/SpCell/SCellに対応するセルグループ毎にサポートされる候補セルの最大数。
(7)サポートされるセルグループの最大数。
(8)全てのセルグループ(MCG/SCG毎)においてサポートされている候補セルの最大数。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図16は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図17は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を送信してもよい。
 制御部110は、前記設定情報が示すセルグループ内のセルにおける送受信を制御してもよい。
(ユーザ端末)
 図18は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を受信してもよい。前記指示は、セルグループIDであってもよい。
 制御部210は、前記設定情報が示すセルグループ内のセルにおける送受信を制御してもよい。
 送受信部220は、レイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作に用いられる、サービングセルグループに関する設定情報を受信してもよい。制御部210は、前記サービングセルグループに関する設定情報が示すセルグループ内のセルにおける送受信を制御してもよい。
 送受信部220は、前記レイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティにより、候補セルがサービングセルに変更される場合、前記候補セルのサービングセル設定を受信してもよい。制御部210は、前記サービングセル設定に基づいて、サービングセルに変更された前記候補セルにおける送受信を制御してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図19は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図20は、一実施形態に係る車両の一例を示す図である。図20に示すように、車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS)など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61および車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10、ユーザ端末20などであってもよい(基地局10、ユーザ端末20などとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号及びこれらの信号に基づいて得られる情報を、無線通信を介して外部装置へ送信してもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を受信する受信部と、
     前記設定情報が示すセルグループ内のセルにおける送受信を制御する制御部と、
     を有する端末。
  2.  前記指示は、セルグループIDである
     請求項1に記載の端末。
  3.  前記受信部は、レイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作に用いられる、サービングセルグループに関する設定情報を受信し、
     前記制御部は、前記サービングセルグループに関する設定情報が示すセルグループ内のセルにおける送受信を制御する
     請求項1又は請求項2に記載の端末。
  4.  前記受信部は、前記レイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティにより、候補セルがサービングセルに変更される場合、前記候補セルのサービングセル設定を受信し、
     前記制御部は、前記サービングセル設定に基づいて、サービングセルに変更された前記候補セルにおける送受信を制御する
     請求項1から3のうちのいずれかに記載の端末。
  5.  キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を受信する工程と、
     前記設定情報が示すセルグループ内のセルにおける送受信を制御する工程と、
     を有する端末の無線通信方法。
  6.  キャリアアグリゲーション及びデュアルコネクティビティの少なくとも一方の動作用か、又はレイヤ1及びレイヤ2の少なくとも一方によるセル間モビリティの動作用かを示す指示を含む、セルグループ設定情報を送信する送信部と、
     前記設定情報が示すセルグループ内のセルにおける送受信を制御する制御部と、
     を有する基地局。
PCT/JP2021/032968 2021-09-08 2021-09-08 端末、無線通信方法及び基地局 WO2023037432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/032968 WO2023037432A1 (ja) 2021-09-08 2021-09-08 端末、無線通信方法及び基地局
CN202180104005.7A CN118202744A (zh) 2021-09-08 2021-09-08 终端、无线通信方法以及基站
JP2023546613A JPWO2023037432A1 (ja) 2021-09-08 2021-09-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032968 WO2023037432A1 (ja) 2021-09-08 2021-09-08 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2023037432A1 true WO2023037432A1 (ja) 2023-03-16

Family

ID=85507334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032968 WO2023037432A1 (ja) 2021-09-08 2021-09-08 端末、無線通信方法及び基地局

Country Status (3)

Country Link
JP (1) JPWO2023037432A1 (ja)
CN (1) CN118202744A (ja)
WO (1) WO2023037432A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020179A1 (ja) * 2013-08-09 2015-02-12 三菱電機株式会社 通信システム
JP2020511850A (ja) * 2017-03-23 2020-04-16 コンヴィーダ ワイヤレス, エルエルシー New Radioにおけるダウンリンク測定設計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020179A1 (ja) * 2013-08-09 2015-02-12 三菱電機株式会社 通信システム
JP2020511850A (ja) * 2017-03-23 2020-04-16 コンヴィーダ ワイヤレス, エルエルシー New Radioにおけるダウンリンク測定設計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300 V8.12.0, April 2010 (2010-04-01)

Also Published As

Publication number Publication date
JPWO2023037432A1 (ja) 2023-03-16
CN118202744A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2023037432A1 (ja) 端末、無線通信方法及び基地局
WO2024009474A1 (ja) 端末、無線通信方法及び基地局
WO2024009475A1 (ja) 端末、無線通信方法及び基地局
WO2024009473A1 (ja) 端末、無線通信方法及び基地局
WO2024085129A1 (ja) 端末、無線通信方法及び基地局
WO2024085128A1 (ja) 端末、無線通信方法及び基地局
WO2023100317A1 (ja) 端末、無線通信方法及び基地局
WO2023073929A1 (ja) 端末、無線通信方法及び基地局
WO2024018609A1 (ja) 端末、無線通信方法及び基地局
WO2023073930A1 (ja) 端末、無線通信方法及び基地局
WO2024018608A1 (ja) 端末、無線通信方法及び基地局
WO2023090340A1 (ja) 端末、無線通信方法及び基地局
WO2023073908A1 (ja) 端末、無線通信方法及び基地局
WO2023162725A1 (ja) 端末、無線通信方法及び基地局
WO2023053460A1 (ja) 端末、無線通信方法及び基地局
WO2023073939A1 (ja) 端末、無線通信方法及び基地局
WO2023063235A1 (ja) 端末、無線通信方法及び基地局
WO2023162726A1 (ja) 端末、無線通信方法及び基地局
WO2023136055A1 (ja) 端末、無線通信方法及び基地局
WO2023152905A1 (ja) 端末、無線通信方法及び基地局
WO2023063233A1 (ja) 端末、無線通信方法及び基地局
WO2023148871A1 (ja) 端末、無線通信方法及び基地局
WO2023085355A1 (ja) 端末、無線通信方法及び基地局
WO2024034085A1 (ja) 端末、無線通信方法及び基地局
WO2023100351A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546613

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021956729

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021956729

Country of ref document: EP

Effective date: 20240408