WO2023090340A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2023090340A1 WO2023090340A1 PCT/JP2022/042479 JP2022042479W WO2023090340A1 WO 2023090340 A1 WO2023090340 A1 WO 2023090340A1 JP 2022042479 W JP2022042479 W JP 2022042479W WO 2023090340 A1 WO2023090340 A1 WO 2023090340A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tci
- tci state
- information
- state
- states
- Prior art date
Links
- 238000004891 communication Methods 0.000 title description 74
- 238000000034 method Methods 0.000 title description 30
- 230000005540 biological transmission Effects 0.000 claims abstract description 89
- 238000012545 processing Methods 0.000 description 58
- 230000004913 activation Effects 0.000 description 20
- 230000011664 signaling Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 238000005259 measurement Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 11
- 230000009977 dual effect Effects 0.000 description 10
- 238000010295 mobile communication Methods 0.000 description 9
- 238000013507 mapping Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 101100020598 Homo sapiens LAPTM4A gene Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 102100034728 Lysosomal-associated transmembrane protein 4A Human genes 0.000 description 1
- 108700026140 MAC combination Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
Definitions
- the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
- 5G 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- a user terminal receives information (QCL assumption/Transmission Configuration Indication (TCI) state/spatial relationship ) to control the sending and receiving process.
- QCI Quality of Service
- TCI Transmission Configuration Indication
- the relationship between the TCI states supported in existing systems e.g., Rel. 15/16
- the TCI states supported in Rel The problem is how to control the TCI state in consideration of the setting with the TCI state. If the TCI state is not properly controlled, there is a risk of deterioration in communication quality, throughput, and the like.
- one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control setting/application of the TCI state even when the unified TCI state is supported. .
- a terminal includes a first transmission configuration indicator (TCI) state set for one channel or signal and a second TCI state set for multiple types of channels or signals, a receiving unit that receives information about a TCI state that is set or activated based on the terminal capabilities related to the total number; and a control unit that controls at least one of UL transmission and DL reception based on the information about the TCI state.
- TCI transmission configuration indicator
- FIG. 1 is a diagram illustrating an example of simultaneous beam updating of multiple CCs.
- 2A and 2B are diagrams illustrating an example of a unified/common TCI framework.
- 3A and 3B are diagrams illustrating an example of a CC-specific TCI state pool and a CC common TCI state pool.
- 4A and 4B are diagrams illustrating an example of TCI states in a CC-specific TCI state pool.
- 5A and 5B are diagrams illustrating an example of TCI states in the CC common TCI state pool.
- 6A and 6B are diagrams illustrating examples of CC-specific RSs in TCI state.
- 7A and 7B are diagrams illustrating examples of CC common RSs in the TCI state.
- FIG. 8A and 8B are diagrams illustrating an example of TCI state setting/activation based on UE capabilities in this embodiment.
- FIG. 9 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
- FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
- FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
- FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
- FIG. 13 is a diagram illustrating an example of a vehicle according to one embodiment;
- the reception processing e.g., reception, demapping, demodulation, decoding
- transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
- the TCI state may represent those that apply to downlink signals/channels.
- the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
- the TCI state is information about the pseudo-co-location (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
- the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
- QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
- the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
- QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
- QCL types A plurality of types (QCL types) may be defined for the QCL.
- QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
- QCL type A QCL-A
- QCL type B QCL-B
- QCL type C QCL-C
- QCL-D Spatial reception parameters.
- CORESET Control Resource Set
- QCL QCL type D
- a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
- Tx beam transmit beam
- Rx beam receive beam
- the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
- the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
- Physical layer signaling may be, for example, downlink control information (DCI).
- DCI downlink control information
- Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
- PDSCH Physical Downlink Shared Channel
- PDCCH Physical Uplink Control Channel
- RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
- SSB synchronization signal block
- CSI-RS channel state information reference signal
- Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
- SRS reference signal
- TRS tracking reference signal
- QRS QCL detection reference signal
- An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- An SSB may also be called an SS/PBCH block.
- a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
- one MAC CE can update the beam index (TCI state) of multiple CCs.
- a UE can be configured by RRC with up to two applicable CC lists (eg, applicable-CC-list). If two applicable CC lists are configured, the two applicable CC lists may correspond to intra-band CA in FR1 and intra-band CA in FR2, respectively.
- the network sends the UE-specific PDSCH TCI States Activation/Deactivation MAC CE for UE-specific PDSCH MAC CE for the serving cell or simultaneous TCI-UpdateList1. ) or the set of serving cells configured in simultaneous TCI-UpdateList2 (simultaneousTCI-UpdateList2). If the indicated serving cell is configured as part of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2, then its MAC CE is configured within the set of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2. Applies to all serving cells.
- the network sends the serving cell's or simultaneous TCI-UpdateList1 or simultaneous TCI-UpdateList2 by sending TCI States Indication for UE-specific PDCCH MAC CE.
- (simultaneousTCI-UpdateList2) may indicate the configured TCI state of the set of serving cells configured in (simultaneousTCI-UpdateList2). If the indicated serving cell is configured as part of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2, then its MAC CE is configured within the set of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2. Applies to all serving cells.
- PDCCH TCI state activation MAC CE activates the TCI state associated with the same CORESET ID on all BWP/CCs in the applicable CC list.
- PDSCH TCI state activation MAC CE activates TCI state on all BWP/CCs in the applicable CC list.
- A-SRS/SP-SRS spatial relationship activation MAC CE activates the spatial relationship associated with the same SRS resource ID on all BWP/CCs in the applicable CC list.
- the UE is configured with an applicable CC list indicating CC #0, #1, #2, #3 and a list indicating 64 TCI states for each CC's CORESET or PDSCH. .
- the corresponding TCI states are activated in CC#1, #2, and #3.
- the UE may base procedure A below.
- the UE issues an activation command to map up to 8 TCI states to codepoints in the DCI field (TCI field) within one CC/DL BWP or within one set of CC/BWPs. receive. If a set of TCI state IDs is activated for a set of CC/DL BWPs, where the applicable list of CCs is determined by the CCs indicated in the activation command, and the same The set applies to all DL BWPs within the indicated CC.
- One set of TCI state IDs can be activated for one set of CC/DL BWPs.
- the UE may base procedure B below.
- the simultaneous TCI update list (simultaneousTCI-UpdateList-r16 and simultaneousTCI-UpdateListSecond-r16)
- the simultaneous TCI cell list (simultaneousTCI- CellList)
- the UE has an index p in all configured DL BWPs of all configured cells in one list determined from the serving cell index provided by the MAC CE command.
- CORESET apply the antenna port quasi co-location (QCL) provided by the TCI state with the same activated TCI state ID value.
- QCL quasi co-location
- a concurrent TCI cell list may be provided for concurrent TCI state activation.
- the UE may base procedure C below.
- spatial relation information for SP or AP-SRS resource set by SRS resource information element (higher layer parameter SRS-Resource) is activated/updated by MAC CE.
- the CC's applicable list is indicated by the simultaneous spatial update list (higher layer parameter simultaneousSpatial-UpdateList-r16 or simultaneousSpatial-UpdateListSecond-r16), and in all BWPs within the indicated CC, the same SRS resource
- the spatial relationship information is applied to the SP or AP-SRS resource with ID.
- a simultaneous TCI cell list (simultaneousTCI-CellList), a simultaneous TCI update list (at least one of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16) are serving cells whose TCI relationships can be updated simultaneously using MAC CE. is a list of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16 do not contain the same serving cell.
- a simultaneous spatial update list (at least one of the upper layer parameters simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16) is a list of serving cells whose spatial relationships can be updated simultaneously using MAC CE.
- simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16 do not contain the same serving cell.
- the simultaneous TCI update list and the simultaneous spatial update list are set by RRC
- the CORESET pool index of the CORESET is set by RRC
- the TCI codepoints mapped to TCI states are indicated by MAC CE.
- CC list, new CC list, simultaneous TCI cell list, simultaneousTCI-CellList, simultaneous TCI update list, simultaneousTCI-UpdateList1-r16, simultaneousTCI-UpdateList2-r16, simultaneous spatial update list, simultaneousSpatial-UpdatedList1-r16, simultaneousSpatial- UpdatedList2-r16, may be read interchangeably.
- simultaneousTCI-UpdateList1, simultaneousTCI-UpdateList1-r16, and simultaneousTCI-UpdateList-r16 may be read interchangeably.
- simultaneousTCI-UpdateList2, simultaneousTCI-UpdateList2-r16, and simultaneousTCI-UpdateListSecond-r16 may be read interchangeably.
- simultaneousSpatial-UpdatedList1, simultaneousSpatial-UpdatedList1-r16, and simultaneousSpatial-UpdateList-r16 may be read interchangeably.
- simultaneousSpatial-UpdatedList2, simultaneousSpatial-UpdatedList2-r16, and simultaneousSpatial-UpdateListSecond-r16 may be read interchangeably.
- the unified TCI framework allows UL and DL channels to be controlled by a common framework.
- the unified TCI framework is Rel. Instead of defining TCI conditions or spatial relationships per channel as in 15, a common beam (common TCI condition) may be indicated and applied to all channels in the UL and DL, or for the UL A common beam may be applied to all channels in the UL and a common beam for the DL may be applied to all channels in the DL.
- One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
- the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
- the UE assumes different TCI states for each of UL and DL (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool).
- the UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation).
- the PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
- DCI-based beam management may indicate common beam/unified TCI state from the same TCI pool for both UL and DL (joint common TCI pool, joint TCI pool, set).
- X (>1) TCI states may be activated by MAC CE.
- the UL/DL DCI may select 1 out of X active TCI states.
- the selected TCI state may apply to both UL and DL channels/RS.
- the TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by MAC CE (active TCI state, active TCI pool, set).
- Each TCI state may be a QCL type A/D RS.
- SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
- the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs and may be defined. At least one of N and M may be signaled/configured/indicated to the UE via higher layer signaling/physical layer signaling.
- the UE has X UL and DL common TCI states (corresponding to X TRPs) (joint TCI status) is signaled/set/indicated.
- the UE is notified/configured/instructed of a TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs (joint TCI state for multiple TRPs).
- multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs State may mean signaled/set/indicated (separate TCI state for multiple TRPs).
- N and M are 1 or 2
- N and M may be 3 or more, and N and M may be different.
- the RRC parameters configure multiple TCI states for both DL and UL.
- the MAC CE may activate multiple TCI states out of multiple configured TCI states.
- a DCI may indicate one of multiple TCI states that have been activated.
- DCI may be UL/DL DCI.
- the indicated TCI conditions may apply to at least one (or all) of the UL/DL channels/RSs.
- One DCI may indicate both UL TCI and DL TCI.
- one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL respectively.
- At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be called a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
- Multiple TCI states activated by a MAC CE may be called an active TCI pool (active common TCI pool).
- RRC parameters higher layer parameters that configure multiple TCI states
- configuration information that configures multiple TCI states, or simply "configuration information.”
- to indicate one of the plurality of TCI states using the DCI may be receiving indication information indicating one of the plurality of TCI states included in the DCI. , it may simply be to receive "instruction information”.
- the RRC parameters configure multiple TCI states (joint common TCI pools) for both DL and UL.
- the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of the UL and DL may be configured/activated.
- a DL DCI or a new DCI format may select (indicate) one or more (eg, one) TCI states.
- the selected TCI state may be applied to one or more (or all) DL channels/RS.
- the DL channel may be PDCCH/PDSCH/CSI-RS.
- the UE is Rel.
- a 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL.
- a UL DCI or new DCI format may select (indicate) one or more (eg, one) TCI states.
- the selected TCI state may be applied to one or more (or all) UL channels/RS.
- the UL channel may be PUSCH/SRS/PUCCH.
- different DCIs may indicate UL TCI and DL DCI separately.
- the beam directing DCI for unified/common TCI state may be DCI format 1_1/1_2 with DL assignment (scheduling).
- the beam directing DCI for the unified/common TCI state may be DCI format 1_1/1_2 without DL assignment (scheduling) or may be a new DCI format. This is useful when there is no DL data but beam pointing to unified/common TCI state.
- the RRC-configured TCI status pool is defined in Rel. 15/16 may be configured in the PDSCH configuration (PDSCH-Config) for each BWP/CC. Such RRC-configured TCI state pool configuration does not imply that separate DL/ULTCI state pools are excluded or supported.
- the RRC-configured TCI state pool may not be in the PDSCH configuration (PDSCH-Config) for each BWP/CC and may be replaced by a reference to the RRC-configured TCI state pool in the reference BWP/CC. .
- the RRC-configured TCI state pool is configured.
- the UE applies the RRC-configured TCI state pool in that reference BWP/CC.
- a UE capability is introduced to report the maximum number of TCI state pools to support across multiple BWPs and multiple CCs in a band, the candidate value of which includes at least one.
- the source RS determined from the common TCI state ID indicated to provide the QCL type D indication and determine the UL TX spatial filter may be configured in the target CC or another CC.
- configurations 1 to 2 below may be supported without additional QCL rules.
- Configuration 1 One source RS across multiple CCs determined from common TCI State ID indicated to provide QCL type D indication and determine UL TX spatial filter for a set of configured CCs may be [[Configuration 2]] One source RS per CC is determined from the indicated common TCI state ID to provide QCL type D indication and determine the UL TX spatial filter for the set of configured CCs. may Multiple CC-specific source RSs may be associated with the same QCL type D RS.
- the configured CC/BWP set includes all BWPs in the configured CC.
- CC-specific TCI state pool/configuration (case 1) and CC-common TCI state pool/configuration (case 2) may be supported.
- FIG. 3A shows an example of a CC-specific TCI state pool.
- the TCI status list in PDSCH configuration is configured for BWP1 in CC1
- the TCI status list in PDSCH configuration is configured for BWP1 in CC2.
- One MAC CE/DCI indicates the TCI state ID.
- FIG. 3B shows an example of a CC common TCI state pool.
- the TCI status list in PDSCH configuration is configured for BWP1 in CC1
- the TCI status list in PDSCH configuration is absent for BWP1 in CC2.
- One MAC CE/DCI indicates a TCI state ID (eg, TCI state #2).
- TCI state information element (TCI-State) in the TCI state pool contains TCI state ID, QCL type 1 (QCL information, QCL-Info), and QCL type 2 (QCL information, QCL-Info). may contain.
- FIG. 4A shows an example where the TCI state in the CC-specific TCI state pool indicates a CC-specific QCL type D RS.
- FIG. 4B shows an example where the TCI state in the CC-specific TCI state pool indicates CC common QCL type D RS.
- FIG. 5A shows an example where the TCI state in the CC common TCI state pool indicates a CC-specific QCL type D RS.
- FIG. 5B shows an example where the TCI state in the CC common TCI state pool indicates CC common QCL type D RS.
- the TCI state may indicate CC-specific (BWP/CC-specific) RSs (eg, QCL type A RSs) on each BWP/CC.
- CC-specific (BWP/CC-specific) RSs eg, QCL type A RSs
- FIG. 6A shows an example where the TCI state in the CC-specific TCI state pool indicates the CC-specific RS.
- the TCI state set for BWP1 in CC1 indicates the CC-specific RS for BWP1 in CC1.
- the TCI state set for BWP1 in CC2 indicates the CC-specific RS for BWP1 in CC2.
- FIG. 6B shows an example where the TCI state in the CC common TCI state pool indicates CC-specific RSs.
- the TCI state set for BWP1 in CC1 indicates the CC-specific RS for BWP1 in CC1 and the CC-specific RS for BWP1 in CC2 (with the same RS ID).
- the TCI state set for BWP1 in CC1 may not contain the BWP/CC ID.
- the TCI state may indicate a CC-common (BWP/CC-common) RS on each BWP/CC (eg, QCL type D RS of CSI-RS with repetition).
- BWP/CC-common CC-common
- FIG. 7A shows an example where the TCI state in the CC-specific TCI state pool indicates CC-common RS.
- the TCI state set for BWP1 in CC1 indicates the CC common RS for BWP1 in CC1
- the TCI state set for BWP1 in CC2 indicates the (same) CC common RS for BWP1 in CC2.
- FIG. 7B shows an example where the TCI state in the CC common TCI state pool indicates the CC common RS.
- the TCI state set for BWP1 in CC1 indicates the CC common RS for all CCs/BWPs.
- the TCI state may include QCL type A RS/QCL type D RS, QCL type A RS for frequency range (FR) 1, QCL type A RS for FR2 /QCL type D RS may be included.
- multi-TRP PDSCH In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
- TRP Transmission/Reception Points
- MTRP multi TRP
- a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
- the cell ID may be a physical cell ID or a virtual cell ID.
- Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
- Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
- Non-Coherent Joint Transmission NCJT may be used as one form of multi-TRP transmission.
- TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH.
- TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
- multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
- first PDSCH and second PDSCH are not quasi-co-located (QCL).
- Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
- Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)).
- Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
- the RVs may be the same or different for the multi-TRPs.
- multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
- TDM time division multiplexed
- multiple PDSCHs from multiple TRPs are transmitted within one slot.
- multiple PDSCHs from multiple TRPs are transmitted in different slots.
- one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
- the UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
- TRP may be read as a CORESET pool index.
- a CORESET pool index of 1 is set.
- Two different values (eg, 0 and 1) of the CORESET pool index are set.
- the UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI. [conditions] "Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
- DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
- DL DCI format e.g., 1_1, 1_2
- UL DCI format e.g., 0_1, 0_2
- UE group common UE-group common
- the common TCI state indicated to the UE is expected to be common between CCs (cells) (at least QCL type D between CCs). This conforms to existing specifications (Rel. 15/16) is not supported.
- updating/activating a common TCI state ID is being considered to provide common QCL information/common UL transmit spatial filters across a set of configured CCs.
- a single TCI state pool configured by RRC for a set of multiple CCs (cells)/BWPs configured may be shared (configured). For example, a cell group TCI state may be defined, or a TCI state pool for the PDSCH in the reference cell may be reused. There is no CC (cell) ID for the QCL type A RS in the TCI state, and the CC (cell) ID for the QCL type A RS may be determined according to the target CC (cell) of the TCI state.
- a common TCI state pool is set for each of multiple CC/BWPs, so if one common TCI state is indicated by MAC CE/DCI, the indicated common TCI state is (all CC/BWPs included in a preset CC/BWP list).
- a TCI state pool may be configured by RRC for each individual CC.
- a common TCI state pool is set up (shared) for multiple CCs by RRC, the TCI states in the common TCI state pool are indicated by a common TCI state ID, and one determined based on the TCI state.
- the RS will be used to indicate QCL type D across multiple CC/sets configured (Constraint 1).
- a separate common TCI state pool is configured per CC by RRC, the TCI state in the common state pool is indicated by the common TCI state ID, and one RS determined based on that TCI state is configured will be used to denote QCL type D over a set of multiple CCs/sets (Constraint 2).
- TCI status of Rel.15/16/Unified TCI status after Rel.17 TCI status of Rel.15/16/Unified TCI status after Rel.17
- Rel. 17 and the unified TCI state introduced/supported in Rel. It is also desirable to reduce the processing load on the UE due to switching operations between TCI states (eg DL)/spatial relationships (eg UL) as specified in 15/16. From this point of view, Rel. 15/16 TCI state/space relationship and Rel. It is conceivable that any one of the 17 unified TCI states may be set/applied. Alternatively, the setting/activation of either TCI state (or the number of TCI states that are set/activated for either TCI state) may be limited.
- the beam eg, QCL type D RS in the TCI state
- the beam will be common (eg, SSB common between CCs) for each CC, but Rel. 15 TCI state/space relations and Rel.
- 17 TCI states are supported to be configured on another CC. In this case, Rel. 15/16 TCI state/space relationship and Rel. 17 TCI states or in the same band Rel. 15/16 TCI state/space relationship and Rel.
- a configuration in which only one of the 17 TCI states is applied/set is also conceivable.
- Rel. 15/16 TCI state/space relationship and Rel. A configuration in which only one of the 17 TCI states is applied/set is also envisioned. For example, when the unified TCI state (or Rel. 17 TCI state) is set in any CC (or cell) in any band, the UE is set to Rel. Configurations that do not expect/assume a 15/16 TCI state/spatial relationship to be established are also conceivable. However, if the UE does not support unified TCI state on only one band, then the question arises how to control the setting of the TCI state.
- MIMO multi-TRP
- multi-PDSCH/multi-PUSCH is where multiple PDSCH/PUSCH are scheduled in different slots by one DCI
- the beam indication eg, TCI state/QCL assumption/spatial relationship indication
- the beam indication for each PDSCH/PUSCH is Rel. 15/16 supported TCI state/spatial relationships.
- the unified TCI state is set/applied in other CCs (or all CCs) in the band. It may not be possible to activate/apply. Therefore, Rel. 15/16 TCI state/space relationship, or Rel.
- the configuration of the 17 unified TCI states (eg, restriction of either one) is preferably done on a per-band (or per-band) and per-cell/CC (or per-cell/band) basis.
- Rel. 15/16 TCI state/space relationship and Rel. 17 unified TCI states configuration (e.g. restriction of one or the other) is done per band/per cell, increasing the number of TCI states/uniform TCI states configured per band/CC respectively increases the handling of the UE. There is also the possibility that the load will increase.
- the inventors of the present invention set Rel. 15/16 TCI state/space relationship and Rel. Focusing on the case where setting/activation of 17 unified TCI states is performed, the present embodiment was conceived by studying a configuration capable of suppressing an increase in the processing load of the UE in such a case.
- the configurable/activatable Rel. 15/16 TCI state/space relationship and Rel. Define UE capabilities (eg, UE capabilities) for the total number (or total number) of 17 unified TCI states, and control the setting/application/activation of TCI states based on the UE capabilities.
- A/B and “at least one of A and B” may be read interchangeably. Also, in the present disclosure, “A/B/C” may mean “at least one of A, B and C.”
- activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
- supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters
- information elements IEs
- settings etc.
- MAC Control Element CE
- update command activation/deactivation command, etc.
- higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like.
- Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
- DCI downlink control information
- UCI uplink control information
- indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably.
- sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
- DMRS port group e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI State (unified TCI state), common TCI state (common TCI state), Quasi-Co-Location (QCL), QCL assumption, etc. may be read interchangeably.
- TCI state downlink Transmission Configuration Indication state
- DL TCI state uplink TCI state
- UL TCI state uplink TCI state
- unified TCI State unified TCI state
- common TCI state common TCI state
- QCL Quasi-Co-Location
- common beam common TCI, common TCI state, Rel. 17 TCI states, Rel. 17 and later TCI states, unified TCI, unified TCI state, TCI states applied to multiple types of channels/RSs, TCI states applied to multiple (multiple types) of channels/RSs, applied to multiple types of channels/RSs Possible TCI states, TCI states for multiple types of signals, TCI states for multiple types of channels/RS, TCI states, unified TCI states, UL and DL TCI states for joint TCI indication, UL for separate TCI indication Only TCI state, DL only TCI state for separate TCI indication, joint TCI state for DL and UL, separate TCI state for each of DL and UL may be read interchangeably.
- TCI state/spatial relationships that apply only to specific channels/RSs may be read interchangeably.
- multiple TCI states set by RRC IE multiple TCI states activated by MAC CE, information on one or more TCI states, TCI state setting, TCI state pool, active TCI state pool, common TCI State pool, unified TCI state pool, TCI state list, unified TCI state list, joint TCI state pool, separate TCI state pool, separate DL/UL TCI state pool, DL TCI state pool, UL TCI state pool, separate DL TCI state pool , separate UL TCI state pool, may be read interchangeably.
- DL TCI, DL only TCI (DL only TCI), separate DL only TCI, DL common TCI, DL unified TCI, common TCI, and unified TCI may be read interchangeably.
- UL TCI, UL only TCI, separate UL only TCI, UL common TCI, UL unified TCI, common TCI, and unified TCI may be read interchangeably.
- the channel/RS to which the unified TCI state is applied may be PDSCH/PDCCH/CSI-RS/PUSCH/PUCCH/SRS.
- BWP, CC (cell), and CC (cell)/BWP may be read interchangeably.
- Rel. 15/16 supported TCI state/space relations and Rel.
- a UE capability eg, UE capability
- TCI states eg, unified TCI states
- a TCI state supported by 15/16 may be a TCI state corresponding to (or set/applied/activated for) one channel/signal.
- TCI states e.g., unified TCI states
- V.17 are TCIs that support (or are configured/applied/activated for) multiple types of channels/signals. state.
- the TCI states introduced/supported after V.17 are also referred to as "unified TCI state" or "secondary TCI state".
- the UE shall However, it may be assumed that the first TCI state and the second TCI state are not set/activated. An assumption may be read as an expectation, a judgment or a determination.
- the network sets/activates the first TCI state and the second TCI every predetermined unit based on the UE capability with respect to the total number of the first TCI state and the second TCI state.
- Information about the state eg, configuration information
- the UE may report the UE capability information to the network in advance (see FIG. 8B).
- the network may configure the UE capability information in the UE using higher layer parameters or the like.
- the total number of first TCI states and second TCI states may be the total number of first TCI states and second TCI states that can be set in a predetermined unit.
- the configuration of the TCI state may be configured by higher layer parameters (eg, RRC).
- the network uses the upper layer parameters to set the first TCI state and the second TCI state for each predetermined unit so that the total number corresponding to the UE capability is not exceeded (below the total number) / control notifications.
- the total number of first TCI states and second TCI states may be the total number of first TCI states and second TCI states that can be activated in a predetermined unit.
- Setting the TCI state may be activated by MAC CE (or MAC CE + DCI).
- the network does not exceed the total number corresponding to the UE capability (below the total number)
- the first TCI state and the second controls the activation of the TCI state of Activation may be read as activation, enabling, deactivation, invalidation, or disabling.
- Predetermined units for considering the total number of first TCI state and second TCI state are bandwidth part (e.g., BWP), CC (or cell), band, frequency range (e.g., FR), and UE It may be at least one.
- bandwidth part e.g., BWP
- CC or cell
- band e.g., FR
- UE It may be at least one.
- the total number of first TCI states and second TCI states supported/allowed per CC may be defined.
- the UE may also report the UE capability in terms of the total number of primary TCI states and secondary TCI states that it can support per CC.
- the total number of first TCI states and second TCI states that the UE can support may be defined/reported separately for each CC, or may be commonly defined/reported for multiple CCs.
- the total number of first and second TCI states supported/allowed per band (e.g., configuration supported/allowed across all BWPs and all CCs in a band) is may be specified.
- the UE may also report the UE capability in terms of the total number of primary TCI states and secondary TCI states that it can support per band.
- the total number of first TCI states and second TCI states that the UE can support may be specified/reported separately for each band, or may be specified/reported commonly for multiple bands.
- the UE may report UE capability information for both the total number of primary and secondary TCI states per CC and the total number of primary and secondary TCI states per band. good.
- the bandwidth portion (eg, BWP) may be set by higher layer parameters.
- CCs (or cells) may be configured by higher layer parameters or may be predefined in specifications.
- One CC may include one or more BWPs.
- the band may be predefined in the specification or may be set by upper layer parameters.
- One or more CCs (or BWPs) may be included in one band range.
- the frequency range may be predefined in the specification or set by higher layer parameters.
- One frequency range may include one or more bands (or CC/BWP).
- first TCI states and second TCI states are specified/reported per band, support over one or more CCs (or one or more CCs and one or more BWPs) included in the band. / may indicate the total number of first and second TCI states allowed.
- the number of second TCI states may be the number of TCI state pools (eg, TCI state pool)/the number of TCI state lists (eg, TCI state list).
- the number of second TCI states may be the number of joint TCI states, the number of separate TCI states, or the sum of the number of joint TCI states or the number of separate TCI states.
- the network/base station shall set/activate either the first TCI state or the second TCI state per CC so as not to exceed the total number in the band/in all bands. may be controlled.
- the network/base station controls to set/activate either the first TCI state or the second TCI state for each band so as not to exceed the total number in all bands. good too.
- the maximum number (or total number) of the first TCI state that can be set/activated in a predetermined unit and/or the maximum number (or total number) of second TCI states that can be set/activated in a predetermined unit.
- the base station determines a unit (e.g., The TCI state to be set/activated may be determined for each CC unit/band unit).
- the TCI state to be set/activated may be determined for each CC unit/band unit.
- wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
- FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
- LTE Long Term Evolution
- 5G NR 5th generation mobile communication system New Radio
- 3GPP Third Generation Partnership Project
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- RATs Radio Access Technologies
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
- LTE Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E -UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
- dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
- gNB NR base stations
- a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
- a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
- the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
- the user terminal 20 may connect to at least one of the multiple base stations 10 .
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
- Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 directly or via another base station 10 .
- the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
- a radio access scheme based on orthogonal frequency division multiplexing may be used.
- OFDM orthogonal frequency division multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a radio access method may be called a waveform.
- other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
- the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
- a downlink shared channel Physical Downlink Shared Channel (PDSCH)
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
- PUSCH uplink shared channel
- PUCCH uplink control channel
- PRACH Physical Random Access Channel
- User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
- User data, higher layer control information, and the like may be transmitted by PUSCH.
- a Master Information Block (MIB) may be transmitted by the PBCH.
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
- DCI downlink control information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- PDSCH may be replaced with DL data
- PUSCH may be replaced with UL data.
- a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
- CORESET corresponds to a resource searching for DCI.
- the search space corresponds to the search area and search method of PDCCH candidates.
- a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
- PUCCH channel state information
- acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
- SR scheduling request
- a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
- downlink, uplink, etc. may be expressed without adding "link”.
- various channels may be expressed without adding "Physical" to the head.
- synchronization signals SS
- downlink reference signals DL-RS
- the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
- CRS cell-specific reference signal
- CSI-RS channel state information reference signal
- DMRS Demodulation reference signal
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
- SS, SSB, etc. may also be referred to as reference signals.
- DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
- FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
- the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
- One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
- this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
- the control unit 110 controls the base station 10 as a whole.
- the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
- the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
- the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
- the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
- the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
- the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
- the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
- the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
- the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
- the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
- the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
- the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
- digital beamforming eg, precoding
- analog beamforming eg, phase rotation
- the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control for example, HARQ retransmission control
- the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
- channel coding which may include error correction coding
- modulation modulation
- mapping mapping
- filtering filtering
- DFT discrete Fourier transform
- DFT discrete Fourier transform
- the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
- the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
- the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
- FFT Fast Fourier transform
- IDFT Inverse Discrete Fourier transform
- the transmitting/receiving unit 120 may measure the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
- the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- RSSI Received Signal Strength Indicator
- channel information for example, CSI
- the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
- the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
- the transmitting/receiving unit 120 is a terminal capability related to the total number of a first transmission configuration indicator (TCI) state set for one channel or signal and a second TCI state set for a plurality of types of channels or signals. may transmit information about the TCI state that is set or activated based on.
- TCI transmission configuration indicator
- the control unit 110 may control at least one of UL transmission and DL reception based on information about the TCI state.
- FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
- the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
- One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
- this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
- the control unit 210 controls the user terminal 20 as a whole.
- the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
- the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
- the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
- the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
- the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
- the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
- the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
- the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
- the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
- the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
- digital beamforming eg, precoding
- analog beamforming eg, phase rotation
- the transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
- RLC layer processing eg, RLC retransmission control
- MAC layer processing eg, HARQ retransmission control
- the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
- Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
- the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
- the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
- the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
- the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmitting/receiving section 220 may measure the received signal.
- the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
- the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
- the measurement result may be output to control section 210 .
- the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
- the transmitting/receiving unit 220 is a terminal capability related to the total number of a first transmission configuration indicator (TCI) state set for one channel or signal and a second TCI state set for a plurality of types of channels or signals. may receive information about the TCI state that is set or activated based on. Transceiver 220 may report terminal capabilities in terms of the total number of first TCI states and second TCI states.
- TCI transmission configuration indicator
- the control unit 210 may control at least one of UL transmission and DL reception based on information about the TCI state.
- the total number of the first TCI state and the second TCI state is configurable (e.g., configurable simultaneously) for at least one of each partial bandwidth, each cell, each band, each frequency range, and each terminal. It may be the total number of first TCI states and second TCI states.
- a total number of first TCI states and second TCI states can be activated (e.g., simultaneously activated) in at least one of per sub-bandwidth, per cell, per band, per frequency range, and per terminal. It may be the total number of first TCI states and second TCI states such that
- each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
- a functional block may be implemented by combining software in the one device or the plurality of devices.
- function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
- a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
- the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
- processor 1001 may be implemented by one or more chips.
- predetermined software program
- the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
- the processor 1001 operates an operating system and controls the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- FIG. 10 FIG. 10
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
- programs program codes
- software modules software modules
- data etc.
- the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
- the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
- the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
- the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
- a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
- the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
- the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
- Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may consist of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
- a subframe may consist of one or more slots in the time domain.
- a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
- a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
- Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
- a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a unit of time based on numerology.
- a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
- one subframe may be called a TTI
- a plurality of consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum scheduling time unit in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
- a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
- a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
- the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
- the short TTI e.g., shortened TTI, etc.
- a TTI having the above TTI length may be read instead.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
- the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
- the number of subcarriers included in an RB may be determined based on neumerology.
- an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
- One TTI, one subframe, etc. may each be configured with one or more resource blocks.
- One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
- PRB Physical Resource Block
- SCG Sub-Carrier Group
- REG Resource Element Group
- PRB pair RB Also called a pair.
- a resource block may be composed of one or more resource elements (Resource Element (RE)).
- RE resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
- the common RB may be identified by an RB index based on the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP for UL
- BWP for DL DL BWP
- One or multiple BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
- the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
- information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input and output through multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
- Uplink Control Information (UCI) Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
- RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
- MAC signaling may be notified using, for example, a MAC Control Element (CE).
- CE MAC Control Element
- notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
- the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
- a “network” may refer to devices (eg, base stations) included in a network.
- precoding "precoding weight”
- QCL Quality of Co-Location
- TCI state Transmission Configuration Indication state
- spatialal patial relation
- spatialal domain filter "transmission power”
- phase rotation "antenna port
- antenna port group "layer”
- number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
- base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
- a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
- a base station can accommodate one or more (eg, three) cells.
- the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
- a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
- RRH Head
- the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
- MS Mobile Station
- UE User Equipment
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
- the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
- Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
- the mobile body may be a mobile body that autonomously travels based on an operation command.
- the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
- a vehicle e.g., car, airplane, etc.
- an unmanned mobile object e.g., drone, self-driving car, etc.
- a robot manned or unmanned .
- at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 13 is a diagram showing an example of a vehicle according to one embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
- various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
- information service unit 59 and communication module 60.
- the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
- the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
- the electronic control unit 49 may be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
- air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
- the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
- various information/services for example, multimedia information/multimedia services
- the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
- an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
- an output device e.g., display, speaker, LED lamp, touch panel, etc.
- the driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
- the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
- the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
- Communication module 60 may be internal or external to electronic control 49 .
- the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
- the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
- the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
- the PUSCH transmitted by communication module 60 may include information based on the above inputs.
- the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
- the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
- the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
- the base station in the present disclosure may be read as a user terminal.
- communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
- the user terminal 20 may have the functions of the base station 10 described above.
- words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
- uplink channels, downlink channels, etc. may be read as sidelink channels.
- user terminals in the present disclosure may be read as base stations.
- the base station 10 may have the functions of the user terminal 20 described above.
- operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
- various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or a decimal number
- Future Radio Access FAA
- RAT New-Radio Access Technology
- NR New Radio
- NX New radio access
- FX Future generation radio access
- GSM registered trademark
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802 .11 Wi-Fi®
- IEEE 802.16 WiMAX®
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
- any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
- determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
- determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
- determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
- Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
- connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
- a and B are different may mean “A and B are different from each other.”
- the term may also mean that "A and B are different from C”.
- Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
・QCLタイプD(QCL-D):空間受信パラメータ。
Rel.16において、1つのMAC CEが複数のCCのビームインデックス(TCI状態)を更新できる。
[手順A]
UEは、1つのCC/DL BWP内において、又はCC/BWPの1つのセット内において、DCIフィールド(TCIフィールド)のコードポイントに、8個までのTCI状態をマップするための、アクティベーションコマンドを受信する。CC/DL BWPの1つのセットに対してTCI状態IDの1つのセットがアクティベートされる場合、そこで、CCの適用可能リストが、アクティベーションコマンド内において指示されたCCによって決定され、TCI状態の同じセットが、指示されたCC内の全てのDL BWPに対して適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、TCI状態IDの1つのセットは、CC/DL BWPの1つのセットに対してアクティベートされることができる。
[手順B]
もしUEが、同時TCI更新リスト(simultaneousTCI-UpdateList-r16及びsimultaneousTCI-UpdateListSecond-r16の少なくとも1つ)による同時TCI状態アクティベーションのためのセルの2つまでのリストを、同時TCIセルリスト(simultaneousTCI-CellList)によって提供される場合、UEは、MAC CEコマンドによって提供されるサービングセルインデックスから決定される1つのリスト内の全ての設定されたセルの全ての設定されたDL BWP内の、インデックスpを有するCORESETに対して、同じアクティベートされたTCI状態ID値を有するTCI状態によって提供されるアンテナポートquasi co-location(QCL)を適用する。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、同時TCI状態アクティベーション用に、同時TCIセルリストが提供されることができる。
[手順C]
CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる場合、そこで、CCの適用可能リストが、同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdateList-r16又はsimultaneousSpatial-UpdateListSecond-r16)によって指示され、指示されたCC内の全てのBWPにおいて、同じSRSリソースIDを有するSP又はAP-SRSリソースに対して、その空間関係情報が適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる。
統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
Rel.17の統一TCIフレームワークにおいて、複数CC/複数BWPのセットに跨って、UE個別PDCCH/PDSCHのための共通QCL情報と、UE個別PUSCH/PUCCHのための共通UL TX空間フィルタと、の少なくとも1つを提供するための、共通TCI状態IDの更新及びアクティベーションに対し、以下の想定1-1から1-4が検討されている。
RRC設定されるTCI状態プールは、Rel.15/16のように、各BWP/CCに対するPDSCH設定(PDSCH-Config)内において設定さてもよい。このようなRRC設定されるTCI状態プール設定は、セパレートDL/ULTCI状態プールが除かれる又はサポートされることを暗示していない。
RRC設定されるTCI状態プールは、各BWP/CCに対するPDSCH設定(PDSCH-Config)内になくてもよく、参照BWP/CC内のRRC設定されるTCI状態プールへの参照に置き換えられてもよい。参照BWP/CCのPDSCH設定(PDSCH-Config)内において、RRC設定されるTCI状態プールが設定される。PDSCH設定が、参照BWP/CC内のRRC設定されるTCI状態プールへの参照を含む、BWP/CCに対し、UEは、その参照BWP/CC内のRRC設定されるTCI状態プールを適用する。
TCI状態のQCL情報(QCL-Info)内のQCLタイプA/DのソースRSに対するBWP/CC ID(bwp-Id/cell)がない場合、UEは、QCLタイプA/Dのソース1-RSが、TCI状態が適用されるBWP/CC内にあると想定する。
バンド内の複数BWP及び複数CCに跨ってサポートするTCI状態プールの最大数を報告するためのUE能力が導入され、その候補値は少なくとも1を含む。
ターゲットCCに対し、QCLタイプD指示を提供しUL TX空間フィルタを決定するために指示された共通TCI状態IDから決定されるソースRSは、ターゲットCC又は他のCC内において設定されてもよい。
バンド内(intra-band)CAに対し、以下の設定1から2は、追加のQCLルールを伴わずにサポートされてもよい。
[[設定1]]複数CCに跨る1つのソースRSは、設定されたCCのセットに対し、QCLタイプD指示を提供しUL TX空間フィルタを決定するために指示された共通TCI状態IDから決定されてもよい。
[[設定2]]CC毎の1つのソースRSは、設定されたCCのセットに対し、QCLタイプD指示を提供しUL TX空間フィルタを決定するために指示された共通TCI状態IDから決定されてもよい。複数のCC固有ソースRSは、同じQCLタイプD RSに関連付けられてもよい。
設定されたCC/BWPのセットは、設定されたCC内の全てのBWPを含む。
図3Aは、CC固有TCI状態プールの一例を示す。この例においては、CC1内のBWP1に対してPDSCH設定内のTCI状態リストが設定され、CC2内のBWP1に対してPDSCH設定内のTCI状態リストが設定される。1つのMAC CE/DCIがTCI状態IDを指示する。
図3Bは、CC共通TCI状態プールの一例を示す。この例においては、CC1内のBWP1に対してPDSCH設定内のTCI状態リストが設定され、CC2内のBWP1に対してPDSCH設定内のTCI状態リストが設定されない(absent)。1つのMAC CE/DCIがTCI状態ID(例えば、TCI状態#2)を指示する。
図4Aは、CC固有TCI状態プール内のTCI状態が、CC固有QCLタイプD RSを示す例を示す。QCLタイプ1は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeA)を含む。QCLタイプ2は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeD)を含む。
図5Aは、CC共通TCI状態プール内のTCI状態が、CC固有QCLタイプD RSを示す例を示す。QCLタイプ1は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeA)を含む。QCLタイプ2は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeD)を含む。
図6Aは、CC固有TCI状態プール内のTCI状態がCC固有RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、CC1内のBWP1に対するCC固有RSを示す。CC2内のBWP1に対して設定されたTCI状態は、CC2内のBWP1に対するCC固有RSを示す。
図6Bは、CC共通TCI状態プール内のTCI状態がCC固有RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、CC1内のBWP1に対するCC固有RSと、CC2内のBWP1に対するCC固有RSと、(の同じRS ID)を示す。CC1内のBWP1に対して設定されたTCI状態は、BWP/CC IDを含まなくてもよい。
図7Aは、CC固有TCI状態プール内のTCI状態がCC共通RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、CC1内のBWP1に対するCC共通RSを示し、CC2内のBWP1に対して設定されたTCI状態は、CC2内のBWP1に対する(同じ)CC共通RSを示す。
図7Bは、CC共通TCI状態プール内のTCI状態がCC共通RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、全てのCC/BWPに対するCC共通RSを示す。
NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
[条件1]
1のCORESETプールインデックスが設定される。
[条件2]
CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
[条件]
DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
Rel.17以降のNRにおいて、CAにおける統一TCI状態フレームワークを導入することが検討されている。UEに対して指示される共通TCI状態は、CC(セル)間で共通(少なくともCC間でQCLタイプD)となることが予想される。これは、QCLタイプDの異なるDLチャネル/RSの同時受信、および、空間関係の異なるULチャネル/RSの同時送信が、複数TRPを利用する送受信等のケースを除いて、既存の仕様(Rel.15/16)でサポートされていないことに起因する。
設定された複数CC(セル)/BWPのセットに対してRRCによって設定された単一のTCI状態プールが共有(設定)されてもよい。例えば、セルグループTCI状態が規定されてもよいし、参照セル内のPDSCH用TCI状態プールが再利用されてもよい。TCI状態内に、QCLタイプA RSに対するCC(セル) IDは無く、TCI状態のターゲットCC(セル)に従って、QCLタイプA RSに対するCC(セル) IDが決定されてもよい。
個々のCCごとに、RRCによってTCI状態プールが設定されてもよい。
将来のNRでは、Rel.17で導入/サポートされる統一TCI状態と、Rel.15/16で規定されているTCI状態(例えば、DL)/空間関係(例えば、UL)と、の切り替え動作によるUEの処理負荷を低減することも望まれる。かかる観点から、Rel.15/16のTCI状態/空間関係とRel.17の統一TCI状態のうち、いずれか一方のTCI状態が設定/適用されることも考えられる。あるいは、いずれか一方のTCI状態の設定/アクティブ化(又は、いずれか一方のTCI状態について、設定/アクティブ化されるTCI状態の数)が制限されることも考えられる。
本実施の形態では、Rel.15/16でサポートされるTCI状態/空間関係と、Rel.17以降に導入/サポートされるTCI状態(例えば、統一TCI状態)の合計数に関するUE能力(例えば、UE capability)を規定する場合について説明する。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
Claims (6)
- 1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信する受信部と、
前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する制御部と、を有する端末。 - 前記第1のTCI状態と前記第2のTCI状態の合計数は、部分帯域幅毎、セル毎、バンド毎、周波数レンジ毎、及び端末毎の少なくとも一つにおいて設定可能となる前記第1のTCI状態と前記第2のTCI状態の合計数である請求項1に記載の端末。
- 前記第1のTCI状態と前記第2のTCI状態の合計数は、部分帯域幅毎、セル毎、バンド毎、周波数レンジ毎、及び端末毎の少なくとも一つにおいてアクティブ化可能となる前記第1のTCI状態と前記第2のTCI状態の合計数である請求項1に記載の端末。
- 前記第1のTCI状態と前記第2のTCI状態の合計数に関する端末能力を報告する送信部と、をさらに有する請求項1から請求項3のいずれかに記載の端末。
- 1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信する工程と、
前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する工程と、を有する端末の無線通信方法。 - 1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を送信する送信部と、
前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する制御部と、を有する基地局。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22895621.5A EP4436059A1 (en) | 2021-11-17 | 2022-11-16 | Terminal, wireless communication method, and base station |
CN202280087335.4A CN118511447A (zh) | 2021-11-17 | 2022-11-16 | 终端、无线通信方法以及基站 |
JP2023562362A JPWO2023090340A1 (ja) | 2021-11-17 | 2022-11-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-187357 | 2021-11-17 | ||
JP2021187357 | 2021-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090340A1 true WO2023090340A1 (ja) | 2023-05-25 |
Family
ID=86397073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042479 WO2023090340A1 (ja) | 2021-11-17 | 2022-11-16 | 端末、無線通信方法及び基地局 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4436059A1 (ja) |
JP (1) | JPWO2023090340A1 (ja) |
CN (1) | CN118511447A (ja) |
WO (1) | WO2023090340A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021224968A1 (ja) * | 2020-05-07 | 2021-11-11 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
JP2021187357A (ja) | 2020-06-02 | 2021-12-13 | トヨタ紡織株式会社 | シートフレームおよびその製造方法 |
-
2022
- 2022-11-16 CN CN202280087335.4A patent/CN118511447A/zh active Pending
- 2022-11-16 EP EP22895621.5A patent/EP4436059A1/en active Pending
- 2022-11-16 JP JP2023562362A patent/JPWO2023090340A1/ja active Pending
- 2022-11-16 WO PCT/JP2022/042479 patent/WO2023090340A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021224968A1 (ja) * | 2020-05-07 | 2021-11-11 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
JP2021187357A (ja) | 2020-06-02 | 2021-12-13 | トヨタ紡織株式会社 | シートフレームおよびその製造方法 |
Non-Patent Citations (2)
Title |
---|
MEDIATEK INC.: "Enhancement on multi-beam operation", 3GPP DRAFT; R1-2107485, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038400 * |
NTT DOCOMO, INC: "Discussion on multi-beam operation", 3GPP DRAFT; R1-2112089, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 5 November 2021 (2021-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074375 * |
Also Published As
Publication number | Publication date |
---|---|
CN118511447A (zh) | 2024-08-16 |
JPWO2023090340A1 (ja) | 2023-05-25 |
EP4436059A1 (en) | 2024-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023090340A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023162725A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023162436A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023148871A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023085355A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023053460A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023162726A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023152905A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023085354A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023136055A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023090341A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023167214A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023095288A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023058236A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023058235A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023100317A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023053258A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023095289A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023063233A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023053259A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023162724A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023084642A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023084643A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023162437A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023090339A1 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895621 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023562362 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022895621 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022895621 Country of ref document: EP Effective date: 20240617 |