WO2023090340A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023090340A1
WO2023090340A1 PCT/JP2022/042479 JP2022042479W WO2023090340A1 WO 2023090340 A1 WO2023090340 A1 WO 2023090340A1 JP 2022042479 W JP2022042479 W JP 2022042479W WO 2023090340 A1 WO2023090340 A1 WO 2023090340A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
information
state
states
Prior art date
Application number
PCT/JP2022/042479
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP22895621.5A priority Critical patent/EP4436059A1/en
Priority to CN202280087335.4A priority patent/CN118511447A/zh
Priority to JP2023562362A priority patent/JPWO2023090340A1/ja
Publication of WO2023090340A1 publication Critical patent/WO2023090340A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • a user terminal receives information (QCL assumption/Transmission Configuration Indication (TCI) state/spatial relationship ) to control the sending and receiving process.
  • QCI Quality of Service
  • TCI Transmission Configuration Indication
  • the relationship between the TCI states supported in existing systems e.g., Rel. 15/16
  • the TCI states supported in Rel The problem is how to control the TCI state in consideration of the setting with the TCI state. If the TCI state is not properly controlled, there is a risk of deterioration in communication quality, throughput, and the like.
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control setting/application of the TCI state even when the unified TCI state is supported. .
  • a terminal includes a first transmission configuration indicator (TCI) state set for one channel or signal and a second TCI state set for multiple types of channels or signals, a receiving unit that receives information about a TCI state that is set or activated based on the terminal capabilities related to the total number; and a control unit that controls at least one of UL transmission and DL reception based on the information about the TCI state.
  • TCI transmission configuration indicator
  • FIG. 1 is a diagram illustrating an example of simultaneous beam updating of multiple CCs.
  • 2A and 2B are diagrams illustrating an example of a unified/common TCI framework.
  • 3A and 3B are diagrams illustrating an example of a CC-specific TCI state pool and a CC common TCI state pool.
  • 4A and 4B are diagrams illustrating an example of TCI states in a CC-specific TCI state pool.
  • 5A and 5B are diagrams illustrating an example of TCI states in the CC common TCI state pool.
  • 6A and 6B are diagrams illustrating examples of CC-specific RSs in TCI state.
  • 7A and 7B are diagrams illustrating examples of CC common RSs in the TCI state.
  • FIG. 8A and 8B are diagrams illustrating an example of TCI state setting/activation based on UE capabilities in this embodiment.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of a vehicle according to one embodiment;
  • the reception processing e.g., reception, demapping, demodulation, decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
  • the TCI state may represent those that apply to downlink signals/channels.
  • the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
  • the TCI state is information about the pseudo-co-location (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for the QCL.
  • QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
  • QCL type A QCL-A
  • QCL type B QCL-B
  • QCL type C QCL-C
  • QCL-D Spatial reception parameters.
  • CORESET Control Resource Set
  • QCL QCL type D
  • a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Uplink Control Channel
  • RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SRS reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be called an SS/PBCH block.
  • a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
  • one MAC CE can update the beam index (TCI state) of multiple CCs.
  • a UE can be configured by RRC with up to two applicable CC lists (eg, applicable-CC-list). If two applicable CC lists are configured, the two applicable CC lists may correspond to intra-band CA in FR1 and intra-band CA in FR2, respectively.
  • the network sends the UE-specific PDSCH TCI States Activation/Deactivation MAC CE for UE-specific PDSCH MAC CE for the serving cell or simultaneous TCI-UpdateList1. ) or the set of serving cells configured in simultaneous TCI-UpdateList2 (simultaneousTCI-UpdateList2). If the indicated serving cell is configured as part of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2, then its MAC CE is configured within the set of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2. Applies to all serving cells.
  • the network sends the serving cell's or simultaneous TCI-UpdateList1 or simultaneous TCI-UpdateList2 by sending TCI States Indication for UE-specific PDCCH MAC CE.
  • (simultaneousTCI-UpdateList2) may indicate the configured TCI state of the set of serving cells configured in (simultaneousTCI-UpdateList2). If the indicated serving cell is configured as part of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2, then its MAC CE is configured within the set of Simultaneous TCI Update List 1 or Simultaneous TCI Update List 2. Applies to all serving cells.
  • PDCCH TCI state activation MAC CE activates the TCI state associated with the same CORESET ID on all BWP/CCs in the applicable CC list.
  • PDSCH TCI state activation MAC CE activates TCI state on all BWP/CCs in the applicable CC list.
  • A-SRS/SP-SRS spatial relationship activation MAC CE activates the spatial relationship associated with the same SRS resource ID on all BWP/CCs in the applicable CC list.
  • the UE is configured with an applicable CC list indicating CC #0, #1, #2, #3 and a list indicating 64 TCI states for each CC's CORESET or PDSCH. .
  • the corresponding TCI states are activated in CC#1, #2, and #3.
  • the UE may base procedure A below.
  • the UE issues an activation command to map up to 8 TCI states to codepoints in the DCI field (TCI field) within one CC/DL BWP or within one set of CC/BWPs. receive. If a set of TCI state IDs is activated for a set of CC/DL BWPs, where the applicable list of CCs is determined by the CCs indicated in the activation command, and the same The set applies to all DL BWPs within the indicated CC.
  • One set of TCI state IDs can be activated for one set of CC/DL BWPs.
  • the UE may base procedure B below.
  • the simultaneous TCI update list (simultaneousTCI-UpdateList-r16 and simultaneousTCI-UpdateListSecond-r16)
  • the simultaneous TCI cell list (simultaneousTCI- CellList)
  • the UE has an index p in all configured DL BWPs of all configured cells in one list determined from the serving cell index provided by the MAC CE command.
  • CORESET apply the antenna port quasi co-location (QCL) provided by the TCI state with the same activated TCI state ID value.
  • QCL quasi co-location
  • a concurrent TCI cell list may be provided for concurrent TCI state activation.
  • the UE may base procedure C below.
  • spatial relation information for SP or AP-SRS resource set by SRS resource information element (higher layer parameter SRS-Resource) is activated/updated by MAC CE.
  • the CC's applicable list is indicated by the simultaneous spatial update list (higher layer parameter simultaneousSpatial-UpdateList-r16 or simultaneousSpatial-UpdateListSecond-r16), and in all BWPs within the indicated CC, the same SRS resource
  • the spatial relationship information is applied to the SP or AP-SRS resource with ID.
  • a simultaneous TCI cell list (simultaneousTCI-CellList), a simultaneous TCI update list (at least one of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16) are serving cells whose TCI relationships can be updated simultaneously using MAC CE. is a list of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16 do not contain the same serving cell.
  • a simultaneous spatial update list (at least one of the upper layer parameters simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16) is a list of serving cells whose spatial relationships can be updated simultaneously using MAC CE.
  • simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16 do not contain the same serving cell.
  • the simultaneous TCI update list and the simultaneous spatial update list are set by RRC
  • the CORESET pool index of the CORESET is set by RRC
  • the TCI codepoints mapped to TCI states are indicated by MAC CE.
  • CC list, new CC list, simultaneous TCI cell list, simultaneousTCI-CellList, simultaneous TCI update list, simultaneousTCI-UpdateList1-r16, simultaneousTCI-UpdateList2-r16, simultaneous spatial update list, simultaneousSpatial-UpdatedList1-r16, simultaneousSpatial- UpdatedList2-r16, may be read interchangeably.
  • simultaneousTCI-UpdateList1, simultaneousTCI-UpdateList1-r16, and simultaneousTCI-UpdateList-r16 may be read interchangeably.
  • simultaneousTCI-UpdateList2, simultaneousTCI-UpdateList2-r16, and simultaneousTCI-UpdateListSecond-r16 may be read interchangeably.
  • simultaneousSpatial-UpdatedList1, simultaneousSpatial-UpdatedList1-r16, and simultaneousSpatial-UpdateList-r16 may be read interchangeably.
  • simultaneousSpatial-UpdatedList2, simultaneousSpatial-UpdatedList2-r16, and simultaneousSpatial-UpdateListSecond-r16 may be read interchangeably.
  • the unified TCI framework allows UL and DL channels to be controlled by a common framework.
  • the unified TCI framework is Rel. Instead of defining TCI conditions or spatial relationships per channel as in 15, a common beam (common TCI condition) may be indicated and applied to all channels in the UL and DL, or for the UL A common beam may be applied to all channels in the UL and a common beam for the DL may be applied to all channels in the DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
  • the UE assumes different TCI states for each of UL and DL (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool).
  • the UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation).
  • the PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may indicate common beam/unified TCI state from the same TCI pool for both UL and DL (joint common TCI pool, joint TCI pool, set).
  • X (>1) TCI states may be activated by MAC CE.
  • the UL/DL DCI may select 1 out of X active TCI states.
  • the selected TCI state may apply to both UL and DL channels/RS.
  • the TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by MAC CE (active TCI state, active TCI pool, set).
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs and may be defined. At least one of N and M may be signaled/configured/indicated to the UE via higher layer signaling/physical layer signaling.
  • the UE has X UL and DL common TCI states (corresponding to X TRPs) (joint TCI status) is signaled/set/indicated.
  • the UE is notified/configured/instructed of a TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs (joint TCI state for multiple TRPs).
  • multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs State may mean signaled/set/indicated (separate TCI state for multiple TRPs).
  • N and M are 1 or 2
  • N and M may be 3 or more, and N and M may be different.
  • the RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states out of multiple configured TCI states.
  • a DCI may indicate one of multiple TCI states that have been activated.
  • DCI may be UL/DL DCI.
  • the indicated TCI conditions may apply to at least one (or all) of the UL/DL channels/RSs.
  • One DCI may indicate both UL TCI and DL TCI.
  • one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL respectively.
  • At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be called a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
  • Multiple TCI states activated by a MAC CE may be called an active TCI pool (active common TCI pool).
  • RRC parameters higher layer parameters that configure multiple TCI states
  • configuration information that configures multiple TCI states, or simply "configuration information.”
  • to indicate one of the plurality of TCI states using the DCI may be receiving indication information indicating one of the plurality of TCI states included in the DCI. , it may simply be to receive "instruction information”.
  • the RRC parameters configure multiple TCI states (joint common TCI pools) for both DL and UL.
  • the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of the UL and DL may be configured/activated.
  • a DL DCI or a new DCI format may select (indicate) one or more (eg, one) TCI states.
  • the selected TCI state may be applied to one or more (or all) DL channels/RS.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE is Rel.
  • a 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL.
  • a UL DCI or new DCI format may select (indicate) one or more (eg, one) TCI states.
  • the selected TCI state may be applied to one or more (or all) UL channels/RS.
  • the UL channel may be PUSCH/SRS/PUCCH.
  • different DCIs may indicate UL TCI and DL DCI separately.
  • the beam directing DCI for unified/common TCI state may be DCI format 1_1/1_2 with DL assignment (scheduling).
  • the beam directing DCI for the unified/common TCI state may be DCI format 1_1/1_2 without DL assignment (scheduling) or may be a new DCI format. This is useful when there is no DL data but beam pointing to unified/common TCI state.
  • the RRC-configured TCI status pool is defined in Rel. 15/16 may be configured in the PDSCH configuration (PDSCH-Config) for each BWP/CC. Such RRC-configured TCI state pool configuration does not imply that separate DL/ULTCI state pools are excluded or supported.
  • the RRC-configured TCI state pool may not be in the PDSCH configuration (PDSCH-Config) for each BWP/CC and may be replaced by a reference to the RRC-configured TCI state pool in the reference BWP/CC. .
  • the RRC-configured TCI state pool is configured.
  • the UE applies the RRC-configured TCI state pool in that reference BWP/CC.
  • a UE capability is introduced to report the maximum number of TCI state pools to support across multiple BWPs and multiple CCs in a band, the candidate value of which includes at least one.
  • the source RS determined from the common TCI state ID indicated to provide the QCL type D indication and determine the UL TX spatial filter may be configured in the target CC or another CC.
  • configurations 1 to 2 below may be supported without additional QCL rules.
  • Configuration 1 One source RS across multiple CCs determined from common TCI State ID indicated to provide QCL type D indication and determine UL TX spatial filter for a set of configured CCs may be [[Configuration 2]] One source RS per CC is determined from the indicated common TCI state ID to provide QCL type D indication and determine the UL TX spatial filter for the set of configured CCs. may Multiple CC-specific source RSs may be associated with the same QCL type D RS.
  • the configured CC/BWP set includes all BWPs in the configured CC.
  • CC-specific TCI state pool/configuration (case 1) and CC-common TCI state pool/configuration (case 2) may be supported.
  • FIG. 3A shows an example of a CC-specific TCI state pool.
  • the TCI status list in PDSCH configuration is configured for BWP1 in CC1
  • the TCI status list in PDSCH configuration is configured for BWP1 in CC2.
  • One MAC CE/DCI indicates the TCI state ID.
  • FIG. 3B shows an example of a CC common TCI state pool.
  • the TCI status list in PDSCH configuration is configured for BWP1 in CC1
  • the TCI status list in PDSCH configuration is absent for BWP1 in CC2.
  • One MAC CE/DCI indicates a TCI state ID (eg, TCI state #2).
  • TCI state information element (TCI-State) in the TCI state pool contains TCI state ID, QCL type 1 (QCL information, QCL-Info), and QCL type 2 (QCL information, QCL-Info). may contain.
  • FIG. 4A shows an example where the TCI state in the CC-specific TCI state pool indicates a CC-specific QCL type D RS.
  • FIG. 4B shows an example where the TCI state in the CC-specific TCI state pool indicates CC common QCL type D RS.
  • FIG. 5A shows an example where the TCI state in the CC common TCI state pool indicates a CC-specific QCL type D RS.
  • FIG. 5B shows an example where the TCI state in the CC common TCI state pool indicates CC common QCL type D RS.
  • the TCI state may indicate CC-specific (BWP/CC-specific) RSs (eg, QCL type A RSs) on each BWP/CC.
  • CC-specific (BWP/CC-specific) RSs eg, QCL type A RSs
  • FIG. 6A shows an example where the TCI state in the CC-specific TCI state pool indicates the CC-specific RS.
  • the TCI state set for BWP1 in CC1 indicates the CC-specific RS for BWP1 in CC1.
  • the TCI state set for BWP1 in CC2 indicates the CC-specific RS for BWP1 in CC2.
  • FIG. 6B shows an example where the TCI state in the CC common TCI state pool indicates CC-specific RSs.
  • the TCI state set for BWP1 in CC1 indicates the CC-specific RS for BWP1 in CC1 and the CC-specific RS for BWP1 in CC2 (with the same RS ID).
  • the TCI state set for BWP1 in CC1 may not contain the BWP/CC ID.
  • the TCI state may indicate a CC-common (BWP/CC-common) RS on each BWP/CC (eg, QCL type D RS of CSI-RS with repetition).
  • BWP/CC-common CC-common
  • FIG. 7A shows an example where the TCI state in the CC-specific TCI state pool indicates CC-common RS.
  • the TCI state set for BWP1 in CC1 indicates the CC common RS for BWP1 in CC1
  • the TCI state set for BWP1 in CC2 indicates the (same) CC common RS for BWP1 in CC2.
  • FIG. 7B shows an example where the TCI state in the CC common TCI state pool indicates the CC common RS.
  • the TCI state set for BWP1 in CC1 indicates the CC common RS for all CCs/BWPs.
  • the TCI state may include QCL type A RS/QCL type D RS, QCL type A RS for frequency range (FR) 1, QCL type A RS for FR2 /QCL type D RS may be included.
  • multi-TRP PDSCH In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
  • TRP Transmission/Reception Points
  • MTRP multi TRP
  • a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • Non-Coherent Joint Transmission NCJT may be used as one form of multi-TRP transmission.
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH.
  • TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)).
  • Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
  • the RVs may be the same or different for the multi-TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
  • TRP may be read as a CORESET pool index.
  • a CORESET pool index of 1 is set.
  • Two different values (eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI. [conditions] "Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
  • DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
  • DL DCI format e.g., 1_1, 1_2
  • UL DCI format e.g., 0_1, 0_2
  • UE group common UE-group common
  • the common TCI state indicated to the UE is expected to be common between CCs (cells) (at least QCL type D between CCs). This conforms to existing specifications (Rel. 15/16) is not supported.
  • updating/activating a common TCI state ID is being considered to provide common QCL information/common UL transmit spatial filters across a set of configured CCs.
  • a single TCI state pool configured by RRC for a set of multiple CCs (cells)/BWPs configured may be shared (configured). For example, a cell group TCI state may be defined, or a TCI state pool for the PDSCH in the reference cell may be reused. There is no CC (cell) ID for the QCL type A RS in the TCI state, and the CC (cell) ID for the QCL type A RS may be determined according to the target CC (cell) of the TCI state.
  • a common TCI state pool is set for each of multiple CC/BWPs, so if one common TCI state is indicated by MAC CE/DCI, the indicated common TCI state is (all CC/BWPs included in a preset CC/BWP list).
  • a TCI state pool may be configured by RRC for each individual CC.
  • a common TCI state pool is set up (shared) for multiple CCs by RRC, the TCI states in the common TCI state pool are indicated by a common TCI state ID, and one determined based on the TCI state.
  • the RS will be used to indicate QCL type D across multiple CC/sets configured (Constraint 1).
  • a separate common TCI state pool is configured per CC by RRC, the TCI state in the common state pool is indicated by the common TCI state ID, and one RS determined based on that TCI state is configured will be used to denote QCL type D over a set of multiple CCs/sets (Constraint 2).
  • TCI status of Rel.15/16/Unified TCI status after Rel.17 TCI status of Rel.15/16/Unified TCI status after Rel.17
  • Rel. 17 and the unified TCI state introduced/supported in Rel. It is also desirable to reduce the processing load on the UE due to switching operations between TCI states (eg DL)/spatial relationships (eg UL) as specified in 15/16. From this point of view, Rel. 15/16 TCI state/space relationship and Rel. It is conceivable that any one of the 17 unified TCI states may be set/applied. Alternatively, the setting/activation of either TCI state (or the number of TCI states that are set/activated for either TCI state) may be limited.
  • the beam eg, QCL type D RS in the TCI state
  • the beam will be common (eg, SSB common between CCs) for each CC, but Rel. 15 TCI state/space relations and Rel.
  • 17 TCI states are supported to be configured on another CC. In this case, Rel. 15/16 TCI state/space relationship and Rel. 17 TCI states or in the same band Rel. 15/16 TCI state/space relationship and Rel.
  • a configuration in which only one of the 17 TCI states is applied/set is also conceivable.
  • Rel. 15/16 TCI state/space relationship and Rel. A configuration in which only one of the 17 TCI states is applied/set is also envisioned. For example, when the unified TCI state (or Rel. 17 TCI state) is set in any CC (or cell) in any band, the UE is set to Rel. Configurations that do not expect/assume a 15/16 TCI state/spatial relationship to be established are also conceivable. However, if the UE does not support unified TCI state on only one band, then the question arises how to control the setting of the TCI state.
  • MIMO multi-TRP
  • multi-PDSCH/multi-PUSCH is where multiple PDSCH/PUSCH are scheduled in different slots by one DCI
  • the beam indication eg, TCI state/QCL assumption/spatial relationship indication
  • the beam indication for each PDSCH/PUSCH is Rel. 15/16 supported TCI state/spatial relationships.
  • the unified TCI state is set/applied in other CCs (or all CCs) in the band. It may not be possible to activate/apply. Therefore, Rel. 15/16 TCI state/space relationship, or Rel.
  • the configuration of the 17 unified TCI states (eg, restriction of either one) is preferably done on a per-band (or per-band) and per-cell/CC (or per-cell/band) basis.
  • Rel. 15/16 TCI state/space relationship and Rel. 17 unified TCI states configuration (e.g. restriction of one or the other) is done per band/per cell, increasing the number of TCI states/uniform TCI states configured per band/CC respectively increases the handling of the UE. There is also the possibility that the load will increase.
  • the inventors of the present invention set Rel. 15/16 TCI state/space relationship and Rel. Focusing on the case where setting/activation of 17 unified TCI states is performed, the present embodiment was conceived by studying a configuration capable of suppressing an increase in the processing load of the UE in such a case.
  • the configurable/activatable Rel. 15/16 TCI state/space relationship and Rel. Define UE capabilities (eg, UE capabilities) for the total number (or total number) of 17 unified TCI states, and control the setting/application/activation of TCI states based on the UE capabilities.
  • A/B and “at least one of A and B” may be read interchangeably. Also, in the present disclosure, “A/B/C” may mean “at least one of A, B and C.”
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • information elements IEs
  • settings etc.
  • MAC Control Element CE
  • update command activation/deactivation command, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
  • DCI downlink control information
  • UCI uplink control information
  • indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • DMRS port group e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI State (unified TCI state), common TCI state (common TCI state), Quasi-Co-Location (QCL), QCL assumption, etc. may be read interchangeably.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI state
  • UL TCI state uplink TCI state
  • unified TCI State unified TCI state
  • common TCI state common TCI state
  • QCL Quasi-Co-Location
  • common beam common TCI, common TCI state, Rel. 17 TCI states, Rel. 17 and later TCI states, unified TCI, unified TCI state, TCI states applied to multiple types of channels/RSs, TCI states applied to multiple (multiple types) of channels/RSs, applied to multiple types of channels/RSs Possible TCI states, TCI states for multiple types of signals, TCI states for multiple types of channels/RS, TCI states, unified TCI states, UL and DL TCI states for joint TCI indication, UL for separate TCI indication Only TCI state, DL only TCI state for separate TCI indication, joint TCI state for DL and UL, separate TCI state for each of DL and UL may be read interchangeably.
  • TCI state/spatial relationships that apply only to specific channels/RSs may be read interchangeably.
  • multiple TCI states set by RRC IE multiple TCI states activated by MAC CE, information on one or more TCI states, TCI state setting, TCI state pool, active TCI state pool, common TCI State pool, unified TCI state pool, TCI state list, unified TCI state list, joint TCI state pool, separate TCI state pool, separate DL/UL TCI state pool, DL TCI state pool, UL TCI state pool, separate DL TCI state pool , separate UL TCI state pool, may be read interchangeably.
  • DL TCI, DL only TCI (DL only TCI), separate DL only TCI, DL common TCI, DL unified TCI, common TCI, and unified TCI may be read interchangeably.
  • UL TCI, UL only TCI, separate UL only TCI, UL common TCI, UL unified TCI, common TCI, and unified TCI may be read interchangeably.
  • the channel/RS to which the unified TCI state is applied may be PDSCH/PDCCH/CSI-RS/PUSCH/PUCCH/SRS.
  • BWP, CC (cell), and CC (cell)/BWP may be read interchangeably.
  • Rel. 15/16 supported TCI state/space relations and Rel.
  • a UE capability eg, UE capability
  • TCI states eg, unified TCI states
  • a TCI state supported by 15/16 may be a TCI state corresponding to (or set/applied/activated for) one channel/signal.
  • TCI states e.g., unified TCI states
  • V.17 are TCIs that support (or are configured/applied/activated for) multiple types of channels/signals. state.
  • the TCI states introduced/supported after V.17 are also referred to as "unified TCI state" or "secondary TCI state".
  • the UE shall However, it may be assumed that the first TCI state and the second TCI state are not set/activated. An assumption may be read as an expectation, a judgment or a determination.
  • the network sets/activates the first TCI state and the second TCI every predetermined unit based on the UE capability with respect to the total number of the first TCI state and the second TCI state.
  • Information about the state eg, configuration information
  • the UE may report the UE capability information to the network in advance (see FIG. 8B).
  • the network may configure the UE capability information in the UE using higher layer parameters or the like.
  • the total number of first TCI states and second TCI states may be the total number of first TCI states and second TCI states that can be set in a predetermined unit.
  • the configuration of the TCI state may be configured by higher layer parameters (eg, RRC).
  • the network uses the upper layer parameters to set the first TCI state and the second TCI state for each predetermined unit so that the total number corresponding to the UE capability is not exceeded (below the total number) / control notifications.
  • the total number of first TCI states and second TCI states may be the total number of first TCI states and second TCI states that can be activated in a predetermined unit.
  • Setting the TCI state may be activated by MAC CE (or MAC CE + DCI).
  • the network does not exceed the total number corresponding to the UE capability (below the total number)
  • the first TCI state and the second controls the activation of the TCI state of Activation may be read as activation, enabling, deactivation, invalidation, or disabling.
  • Predetermined units for considering the total number of first TCI state and second TCI state are bandwidth part (e.g., BWP), CC (or cell), band, frequency range (e.g., FR), and UE It may be at least one.
  • bandwidth part e.g., BWP
  • CC or cell
  • band e.g., FR
  • UE It may be at least one.
  • the total number of first TCI states and second TCI states supported/allowed per CC may be defined.
  • the UE may also report the UE capability in terms of the total number of primary TCI states and secondary TCI states that it can support per CC.
  • the total number of first TCI states and second TCI states that the UE can support may be defined/reported separately for each CC, or may be commonly defined/reported for multiple CCs.
  • the total number of first and second TCI states supported/allowed per band (e.g., configuration supported/allowed across all BWPs and all CCs in a band) is may be specified.
  • the UE may also report the UE capability in terms of the total number of primary TCI states and secondary TCI states that it can support per band.
  • the total number of first TCI states and second TCI states that the UE can support may be specified/reported separately for each band, or may be specified/reported commonly for multiple bands.
  • the UE may report UE capability information for both the total number of primary and secondary TCI states per CC and the total number of primary and secondary TCI states per band. good.
  • the bandwidth portion (eg, BWP) may be set by higher layer parameters.
  • CCs (or cells) may be configured by higher layer parameters or may be predefined in specifications.
  • One CC may include one or more BWPs.
  • the band may be predefined in the specification or may be set by upper layer parameters.
  • One or more CCs (or BWPs) may be included in one band range.
  • the frequency range may be predefined in the specification or set by higher layer parameters.
  • One frequency range may include one or more bands (or CC/BWP).
  • first TCI states and second TCI states are specified/reported per band, support over one or more CCs (or one or more CCs and one or more BWPs) included in the band. / may indicate the total number of first and second TCI states allowed.
  • the number of second TCI states may be the number of TCI state pools (eg, TCI state pool)/the number of TCI state lists (eg, TCI state list).
  • the number of second TCI states may be the number of joint TCI states, the number of separate TCI states, or the sum of the number of joint TCI states or the number of separate TCI states.
  • the network/base station shall set/activate either the first TCI state or the second TCI state per CC so as not to exceed the total number in the band/in all bands. may be controlled.
  • the network/base station controls to set/activate either the first TCI state or the second TCI state for each band so as not to exceed the total number in all bands. good too.
  • the maximum number (or total number) of the first TCI state that can be set/activated in a predetermined unit and/or the maximum number (or total number) of second TCI states that can be set/activated in a predetermined unit.
  • the base station determines a unit (e.g., The TCI state to be set/activated may be determined for each CC unit/band unit).
  • the TCI state to be set/activated may be determined for each CC unit/band unit.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 is a terminal capability related to the total number of a first transmission configuration indicator (TCI) state set for one channel or signal and a second TCI state set for a plurality of types of channels or signals. may transmit information about the TCI state that is set or activated based on.
  • TCI transmission configuration indicator
  • the control unit 110 may control at least one of UL transmission and DL reception based on information about the TCI state.
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
  • RLC layer processing eg, RLC retransmission control
  • MAC layer processing eg, HARQ retransmission control
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 is a terminal capability related to the total number of a first transmission configuration indicator (TCI) state set for one channel or signal and a second TCI state set for a plurality of types of channels or signals. may receive information about the TCI state that is set or activated based on. Transceiver 220 may report terminal capabilities in terms of the total number of first TCI states and second TCI states.
  • TCI transmission configuration indicator
  • the control unit 210 may control at least one of UL transmission and DL reception based on information about the TCI state.
  • the total number of the first TCI state and the second TCI state is configurable (e.g., configurable simultaneously) for at least one of each partial bandwidth, each cell, each band, each frequency range, and each terminal. It may be the total number of first TCI states and second TCI states.
  • a total number of first TCI states and second TCI states can be activated (e.g., simultaneously activated) in at least one of per sub-bandwidth, per cell, per band, per frequency range, and per terminal. It may be the total number of first TCI states and second TCI states such that
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 13 is a diagram showing an example of a vehicle according to one embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
  • various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
  • information service unit 59 and communication module 60.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
  • an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
  • an output device e.g., display, speaker, LED lamp, touch panel, etc.
  • the driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by communication module 60 may include information based on the above inputs.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
  • the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

統一TCI状態がサポートされる場合であってもTCI状態の設定/適用を適切に制御すること。本開示の一態様に係る端末は、1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信する受信部と、前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 Rel.15/16 NRにおいて、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することがサポートされている。
 また、将来の無線通信システム(例えば、Rel.17 NR以降)において、設定/アクティベート/指示されたTCI状態をチャネル/reference signal(RS)の複数種類に適用する統一TCI状態が検討されている。
 しかしながら、統一TCI状態が導入/サポートされる場合、既存システム(例えば、Rel.15/16)においてサポートされるTCI状態との関係(例えば、Rel.15/16でサポートされるTCI状態と、統一TCI状態との設定)を考慮してTCI状態をどのように制御するかが問題となる。TCI状態が適切に制御されない場合、通信品質の低下、スループットの低下など、を招くおそれがある。
 そこで、本開示は、統一TCI状態がサポートされる場合であってもTCI状態の設定/適用を適切に制御することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信する受信部と、前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する制御部と、を有する。
 本開示の一態様によれば、統一TCI状態がサポートされる場合であってもTCI状態の設定/適用を適切に制御することができる。
図1は、複数CCの同時ビーム更新の一例を示す図である。 図2A及び2Bは、統一/共通TCIフレームワークの一例を示す図である。 図3A及び3Bは、CC固有TCI状態プール及びCC共通TCI状態プールの一例を示す図である。 図4A及び4Bは、CC固有TCI状態プール内のTCI状態の一例を示す図である。 図5A及び5Bは、CC共通TCI状態プール内のTCI状態の一例を示す図である。 図6A及び6Bは、TCI状態におけるCC固有RSの一例を示す図である。 図7A及び7Bは、TCI状態におけるCC共通RSの一例を示す図である。 図8A及び8Bは、本実施の形態におけるUE能力に基づくTCI状態の設定/アクティブ化の一例を示す図である。 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図10は、一実施形態に係る基地局の構成の一例を示す図である。 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図13は、一実施形態に係る車両の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(複数CCの同時ビーム更新)
 Rel.16において、1つのMAC CEが複数のCCのビームインデックス(TCI状態)を更新できる。
 UEは、2つまでの適用可能CCリスト(例えば、applicable-CC-list)をRRCによって設定されることができる。2つの適用可能CCリストが設定される場合、2つの適用可能CCリストは、FR1におけるバンド内CAと、FR2におけるバンド内CAと、にそれぞれ対応してもよい。
 ネットワークは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)を送ることによって、サービングセルの、又は、同時TCI更新リスト1(simultaneousTCI-UpdateList1)又は同時TCI更新リスト2(simultaneousTCI-UpdateList2)内において設定されたサービングセルのセットの、設定されたTCI状態をアクティベート及びディアクティベートしてもよい。もし指示されたサービングセルが同時TCI更新リスト1又は同時TCI更新リスト2の一部として設定されている場合、そのMAC CEは、同時TCI更新リスト1又は同時TCI更新リスト2のセット内に設定された全てのサービングセルに適用される。
 ネットワークは、UE固有PDCCH用TCI状態指示MAC CE(TCI States Indication for UE-specific PDCCH MAC CE)を送ることによって、サービングセルの、又は、同時TCI更新リスト1(simultaneousTCI-UpdateList1)又は同時TCI更新リスト2(simultaneousTCI-UpdateList2)内において設定されたサービングセルのセットの、設定されたTCI状態を指示してもよい。もし指示されたサービングセルが同時TCI更新リスト1又は同時TCI更新リスト2の一部として設定されている場合、そのMAC CEは、同時TCI更新リスト1又は同時TCI更新リスト2のセット内に設定された全てのサービングセルに適用される。
 PDCCHのTCI状態のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上の同じCORESET IDに関連付けられたTCI状態をアクティベートする。
 PDSCHのTCI状態のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上のTCI状態をアクティベートする。
 A-SRS/SP-SRSの空間関係のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上の同じSRSリソースIDに関連付けられた空間関係をアクティベートする。
 図1の例において、UEは、CC#0、#1、#2、#3を示す適用可能CCリストと、各CCのCORESET又はPDSCHに対して64個のTCI状態を示すリストを設定される。MAC CEによってCC#0の1つのTCI状態がアクティベートされる場合、CC#1、#2、#3において、対応するTCI状態がアクティベートされる。
 このような同時ビーム更新は、シングルTRPケースにのみ適用可能であることが検討されている。
 PDSCHに対し、UEは、次の手順Aに基づいてもよい。
[手順A]
 UEは、1つのCC/DL BWP内において、又はCC/BWPの1つのセット内において、DCIフィールド(TCIフィールド)のコードポイントに、8個までのTCI状態をマップするための、アクティベーションコマンドを受信する。CC/DL BWPの1つのセットに対してTCI状態IDの1つのセットがアクティベートされる場合、そこで、CCの適用可能リストが、アクティベーションコマンド内において指示されたCCによって決定され、TCI状態の同じセットが、指示されたCC内の全てのDL BWPに対して適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、TCI状態IDの1つのセットは、CC/DL BWPの1つのセットに対してアクティベートされることができる。
 PDCCHに対し、UEは、次の手順Bに基づいてもよい。
[手順B]
 もしUEが、同時TCI更新リスト(simultaneousTCI-UpdateList-r16及びsimultaneousTCI-UpdateListSecond-r16の少なくとも1つ)による同時TCI状態アクティベーションのためのセルの2つまでのリストを、同時TCIセルリスト(simultaneousTCI-CellList)によって提供される場合、UEは、MAC CEコマンドによって提供されるサービングセルインデックスから決定される1つのリスト内の全ての設定されたセルの全ての設定されたDL BWP内の、インデックスpを有するCORESETに対して、同じアクティベートされたTCI状態ID値を有するTCI状態によって提供されるアンテナポートquasi co-location(QCL)を適用する。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、同時TCI状態アクティベーション用に、同時TCIセルリストが提供されることができる。
 セミパーシステント(semi-persistent(SP))/非周期的(aperiodic(AP))-SRSに対し、UEは、次の手順Cに基づいてもよい。
[手順C]
 CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる場合、そこで、CCの適用可能リストが、同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdateList-r16又はsimultaneousSpatial-UpdateListSecond-r16)によって指示され、指示されたCC内の全てのBWPにおいて、同じSRSリソースIDを有するSP又はAP-SRSリソースに対して、その空間関係情報が適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる。
 同時TCIセルリスト(simultaneousTCI-CellList)、同時TCI更新リスト(simultaneousTCI-UpdateList1-r16及びsimultaneousTCI-UpdateList2-r16の少なくとも1つ)は、MAC CEを用いて、TCI関係を同時に更新されることができるサービングセルのリストである。simultaneousTCI-UpdateList1-r16とsimultaneousTCI-UpdateList2-r16とは、同じサービングセルを含まない。
 同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdatedList1-r16及びsimultaneousSpatial-UpdatedList2-r16の少なくとも1つ)は、MAC CEを用いて、空間関係を同時に更新されることができるサービングセルのリストである。simultaneousSpatial-UpdatedList1-r16とsimultaneousSpatial-UpdatedList2-r16とは、同じサービングセルを含まない。
 ここで、同時TCI更新リスト、同時空間更新リストは、RRCによって設定され、CORESETのCORESETプールインデックスは、RRCによって設定され、TCI状態にマップされるTCIコードポイントは、MAC CEによって指示される。
 本開示において、CCリスト、新規CCリスト、同時TCIセルリスト、simultaneousTCI-CellList、同時TCI更新リスト、simultaneousTCI-UpdateList1-r16、simultaneousTCI-UpdateList2-r16、同時空間更新リスト、simultaneousSpatial-UpdatedList1-r16、simultaneousSpatial-UpdatedList2-r16、は互いに読み替えられてもよい。
 本開示において、simultaneousTCI-UpdateList1、simultaneousTCI-UpdateList1-r16、simultaneousTCI-UpdateList-r16、は互いに読み替えられてもよい。本開示において、simultaneousTCI-UpdateList2、simultaneousTCI-UpdateList2-r16、simultaneousTCI-UpdateListSecond-r16、は互いに読み替えられてもよい。
 本開示において、simultaneousSpatial-UpdatedList1、simultaneousSpatial-UpdatedList1-r16、simultaneousSpatial-UpdateList-r16、は互いに読み替えられてもよい。本開示において、simultaneousSpatial-UpdatedList2、simultaneousSpatial-UpdatedList2-r16、simultaneousSpatial-UpdateListSecond-r16、は互いに読み替えられてもよい。
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。
 本開示において、N=M=X(Xは任意の整数)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL及びDLに共通のTCI状態(ジョイントTCI状態)が通知/設定/指示されることを意味してもよい。また、N=X(Xは任意の整数)、M=Y(Yは任意の整数、Y=Xであってもよい)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL TCI状態及びY個の(Y個のTRPに対応する)DL TCI状態(すなわち、セパレートTCI状態)がそれぞれ通知/設定/指示されることを意味してもよい。
 例えば、N=M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(単一TRPのためのジョイントTCI状態)。
 また、例えば、N=1、M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL TCI状態と、1つのDL TCI状態と、が別々に通知/設定/指示されることを意味してもよい(単一TRPのためのセパレートTCI状態)。
 また、例えば、N=M=2と記載される場合は、UEに対し、複数の(2つの)TRPに対する、複数の(2つの)のUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(複数TRPのためのジョイントTCI状態)。
 また、例えば、N=2、M=2と記載される場合は、UEに対し、複数(2つ)のTRPに対する、複数の(2つの)UL TCI状態と、複数の(2つの)DL TCI状態と、が通知/設定/指示されることを意味してもよい(複数TRPのためのセパレートTCI状態)。
 なお、上記例においては、N及びMの値が1又は2のケースを説明したが、N及びMの値は3以上であってもよいし、N及びMは異なってもよい。
 Rel.17においてN=M=1がサポートされることが検討されている。Rel.18以降において他のケースがサポートされることが検討されている。
 図2Aの例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。
 この図の例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。
 図2Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。
 統一/共通TCI状態に対するビーム指示DCIは、DLアサインメント(スケジューリング)を伴うDCIフォーマット1_1/1_2であってもよい。
 統一/共通TCI状態に対するビーム指示DCIは、DLアサインメント(スケジューリング)を伴わないDCIフォーマット1_1/1_2であってもよいし、新規DCIフォーマットであってもよい。これは、DLデータはないが統一/共通TCI状態に対するビーム指示がある場合に有益である。
(CAにおける統一TCI状態プール)
 Rel.17の統一TCIフレームワークにおいて、複数CC/複数BWPのセットに跨って、UE個別PDCCH/PDSCHのための共通QCL情報と、UE個別PUSCH/PUCCHのための共通UL TX空間フィルタと、の少なくとも1つを提供するための、共通TCI状態IDの更新及びアクティベーションに対し、以下の想定1-1から1-4が検討されている。
[想定1-1]
 RRC設定されるTCI状態プールは、Rel.15/16のように、各BWP/CCに対するPDSCH設定(PDSCH-Config)内において設定さてもよい。このようなRRC設定されるTCI状態プール設定は、セパレートDL/ULTCI状態プールが除かれる又はサポートされることを暗示していない。
[想定1-2]
 RRC設定されるTCI状態プールは、各BWP/CCに対するPDSCH設定(PDSCH-Config)内になくてもよく、参照BWP/CC内のRRC設定されるTCI状態プールへの参照に置き換えられてもよい。参照BWP/CCのPDSCH設定(PDSCH-Config)内において、RRC設定されるTCI状態プールが設定される。PDSCH設定が、参照BWP/CC内のRRC設定されるTCI状態プールへの参照を含む、BWP/CCに対し、UEは、その参照BWP/CC内のRRC設定されるTCI状態プールを適用する。
[想定1-3]
 TCI状態のQCL情報(QCL-Info)内のQCLタイプA/DのソースRSに対するBWP/CC ID(bwp-Id/cell)がない場合、UEは、QCLタイプA/Dのソース1-RSが、TCI状態が適用されるBWP/CC内にあると想定する。
[想定1-4]
 バンド内の複数BWP及び複数CCに跨ってサポートするTCI状態プールの最大数を報告するためのUE能力が導入され、その候補値は少なくとも1を含む。
 Rel.17の統一TCIフレームワークにおいて、複数CC/複数BWPのセットに跨って、UE個別PDCCH/PDSCHのための共通QCL情報と、UE個別PUSCH/PUCCHのための共通UL TX空間フィルタと、の少なくとも1つを提供するための、共通TCI状態IDの更新及びアクティベーションに対し、以下の想定2-1から2-3が検討されている。
[想定2-1]
 ターゲットCCに対し、QCLタイプD指示を提供しUL TX空間フィルタを決定するために指示された共通TCI状態IDから決定されるソースRSは、ターゲットCC又は他のCC内において設定されてもよい。
[想定2-2]
 バンド内(intra-band)CAに対し、以下の設定1から2は、追加のQCLルールを伴わずにサポートされてもよい。
[[設定1]]複数CCに跨る1つのソースRSは、設定されたCCのセットに対し、QCLタイプD指示を提供しUL TX空間フィルタを決定するために指示された共通TCI状態IDから決定されてもよい。
[[設定2]]CC毎の1つのソースRSは、設定されたCCのセットに対し、QCLタイプD指示を提供しUL TX空間フィルタを決定するために指示された共通TCI状態IDから決定されてもよい。複数のCC固有ソースRSは、同じQCLタイプD RSに関連付けられてもよい。
[想定2-3]
 設定されたCC/BWPのセットは、設定されたCC内の全てのBWPを含む。
 CAにおいて、CC固有(CC-specific)TCI状態プール/設定(ケース1)と、CC共通(CC-common)TCI状態プール/設定(ケース2)と、がサポートされてもよい。
[ケース1]
 図3Aは、CC固有TCI状態プールの一例を示す。この例においては、CC1内のBWP1に対してPDSCH設定内のTCI状態リストが設定され、CC2内のBWP1に対してPDSCH設定内のTCI状態リストが設定される。1つのMAC CE/DCIがTCI状態IDを指示する。
[ケース2]
 図3Bは、CC共通TCI状態プールの一例を示す。この例においては、CC1内のBWP1に対してPDSCH設定内のTCI状態リストが設定され、CC2内のBWP1に対してPDSCH設定内のTCI状態リストが設定されない(absent)。1つのMAC CE/DCIがTCI状態ID(例えば、TCI状態#2)を指示する。
 TCI状態プール内の1つのTCI状態情報要素(TCI-State)は、TCI状態IDと、QCLタイプ1(QCL情報、QCL-Info)と、QCLタイプ2(QCL情報、QCL-Info)と、を含んでもよい。
[ケース1]
 図4Aは、CC固有TCI状態プール内のTCI状態が、CC固有QCLタイプD RSを示す例を示す。QCLタイプ1は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeA)を含む。QCLタイプ2は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeD)を含む。
 図4Bは、CC固有TCI状態プール内のTCI状態が、CC共通QCLタイプD RSを示す例を示す。QCLタイプ1は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeA)を含む。QCLタイプ2は、セルID(cell=#1)、BWP ID(bwp-Id=#1)、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeD)を含む。
[ケース2]
 図5Aは、CC共通TCI状態プール内のTCI状態が、CC固有QCLタイプD RSを示す例を示す。QCLタイプ1は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeA)を含む。QCLタイプ2は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeD)を含む。
 図5Bは、CC共通TCI状態プール内のTCI状態が、CC共通QCLタイプD RSを示す例を示す。QCLタイプ1は、セルID、BWP IDを含まず、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeA)を含む。QCLタイプ2は、セルID(cell=#1)、BWP ID(bwp-Id=#1)、参照信号(referenceSignal=NZP-CSI-RS#5)、QCLタイプ(qcl-Type=typeD)を含む。
 ケース1及び2の両方において、TCI状態は、各BWP/CC上のCC固有(BWP/CC固有)RS(例えば、QCLタイプA RS)を指示してもよい。
[ケース1]
 図6Aは、CC固有TCI状態プール内のTCI状態がCC固有RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、CC1内のBWP1に対するCC固有RSを示す。CC2内のBWP1に対して設定されたTCI状態は、CC2内のBWP1に対するCC固有RSを示す。
[ケース2]
 図6Bは、CC共通TCI状態プール内のTCI状態がCC固有RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、CC1内のBWP1に対するCC固有RSと、CC2内のBWP1に対するCC固有RSと、(の同じRS ID)を示す。CC1内のBWP1に対して設定されたTCI状態は、BWP/CC IDを含まなくてもよい。
 ケース1及び2の両方において、TCI状態は、各BWP/CC上のCC共通(BWP/CC共通)RS(例えば、繰り返しを伴うCSI-RSのQCLタイプD RS)を指示してもよい。
[ケース1]
 図7Aは、CC固有TCI状態プール内のTCI状態がCC共通RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、CC1内のBWP1に対するCC共通RSを示し、CC2内のBWP1に対して設定されたTCI状態は、CC2内のBWP1に対する(同じ)CC共通RSを示す。
[ケース2]
 図7Bは、CC共通TCI状態プール内のTCI状態がCC共通RSを指示する例を示す。CC1内のBWP1に対して設定されたTCI状態は、全てのCC/BWPに対するCC共通RSを示す。
 本開示において、TCI状態は、QCLタイプA RS/QCLタイプD RSを含んでもよいし、frequency range(FR)1に対してQCLタイプA RSを含んでもよいし、FR2に対してQCLタイプA RS/QCLタイプD RSを含んでもよい。
(マルチTRP PDSCH)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。
 マルチTRPに対するUltra-Reliable and Low Latency Communications(URLLC)において、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返しスキーム(URLLCスキーム、信頼性拡張(reliability enhancement)スキーム、例えば、スキーム1a、2a、2b、3、4)がサポートされることが検討されている。スキーム1aにおいて、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。
(キャリアアグリゲーション(CA)における統一TCIフレームワーク)
 Rel.17以降のNRにおいて、CAにおける統一TCI状態フレームワークを導入することが検討されている。UEに対して指示される共通TCI状態は、CC(セル)間で共通(少なくともCC間でQCLタイプD)となることが予想される。これは、QCLタイプDの異なるDLチャネル/RSの同時受信、および、空間関係の異なるULチャネル/RSの同時送信が、複数TRPを利用する送受信等のケースを除いて、既存の仕様(Rel.15/16)でサポートされていないことに起因する。
 また、統一TCIフレームワークにおいて、設定された複数CCのセットにわたって、共通QCL情報/共通UL送信空間フィルタの提供のために、共通TCI状態IDの更新/アクティベーションが検討されている。
 CAに対するTCI状態プールとして、以下のオプション1及び2が検討されている。
[オプション1]
 設定された複数CC(セル)/BWPのセットに対してRRCによって設定された単一のTCI状態プールが共有(設定)されてもよい。例えば、セルグループTCI状態が規定されてもよいし、参照セル内のPDSCH用TCI状態プールが再利用されてもよい。TCI状態内に、QCLタイプA RSに対するCC(セル) IDは無く、TCI状態のターゲットCC(セル)に従って、QCLタイプA RSに対するCC(セル) IDが決定されてもよい。
 オプション1では、複数のCC/BWPごとに共通TCI状態プールが設定されるので、MAC CE/DCIで1つの共通TCI状態が指示される場合、当該指示される共通TCI状態が全てのCC/BWP(予め設定されたCC/BWPリストに含まれる全てのCC/BWP)に適用されてもよい。
[オプション2]
 個々のCCごとに、RRCによってTCI状態プールが設定されてもよい。
 オプション2では、Rel.16同様に、同時ビーム更新の適用CC/BWPリストがRRCで予め設定され、CC/BWPリストに含まれるいずれかのCC/BWPにおいてMAC CE/DCIでビームの更新が行われる場合、当該更新が全てのCC/BWPに適用されてもよい。
 オプション1において、RRCによって複数CCに対して共通TCI状態プールが設定(共有)され、共通TCI状態プール内のTCI状態が共通TCI状態IDによって指示され、そのTCI状態に基づいて決定された1つのRSが、設定された複数のCC/のセットにわたるQCLタイプDを指示するために用いられることになる(制約1)。
 オプション2において、RRCによってCCごとに個別の共通TCI状態プールが設定され、共通状態プール内のTCI状態が共通TCI状態IDによって指示され、そのTCI状態に基づいて決定された1つのRSが、設定された複数のCC/のセットにわたるQCLタイプDを指示するために用いられることになる(制約2)。
(Rel.15/16のTCI状態/Rel.17以降の統一TCI状態)
 将来のNRでは、Rel.17で導入/サポートされる統一TCI状態と、Rel.15/16で規定されているTCI状態(例えば、DL)/空間関係(例えば、UL)と、の切り替え動作によるUEの処理負荷を低減することも望まれる。かかる観点から、Rel.15/16のTCI状態/空間関係とRel.17の統一TCI状態のうち、いずれか一方のTCI状態が設定/適用されることも考えられる。あるいは、いずれか一方のTCI状態の設定/アクティブ化(又は、いずれか一方のTCI状態について、設定/アクティブ化されるTCI状態の数)が制限されることも考えられる。
 同一バンドにおいて、CC毎にビーム(例えば、TCI状態のQCLタイプD RS)は共通(例えば、CC間で共通のSSB)になることが想定されるが、Rel.15のTCI状態/空間関係と、Rel.17のTCI状態と、が別のCCで設定されることがサポートされるケースも考えられれる。この場合、Rel.15/16のTCI状態/空間関係と、Rel.17のTCI状態とを明確にする、又は同一バンドにおいてRel.15/16のTCI状態/空間関係と、Rel.17のTCI状態と、のいずれかのみ適用/設定される構成とすることも考えられる。
 さらに、UE負荷を考慮して、全てのバンドにおいて、Rel.15/16のTCI状態/空間関係と、Rel.17のTCI状態と、のいずれか一方のみ適用/設定される構成とすることも想定される。例えば、UEがいずれかのバンド内のいずれかのCC(又は、セル)において統一TCI状態(又は、Rel.17 TCI状態)が設定される場合、UEは、Rel.15/16のTCI状態/空間関係が設定されることを期待/想定しない構成とすることも考えられる。しかし、UEが1つのバンドでのみ統一TCI状態をサポートしていない場合、TCI状態の設定をどのように制御するかが問題となる。
 また、Rel.17以降において、マルチTRP(MIMO)、マルチPDSCH/マルチPUSCH等を行う場合、Rel.15/16のTCI状態/空間関係を利用して送信/受信が制御されるケースも想定される。例えば、マルチPDSCH/マルチPUSCHは、1つのDCIにより異なるスロットにおいて複数のPDSCH/PUSCHがスケジュールされ、各PDSCH/PUSCHのビーム指示(例えば、TCI状態/QCL想定/空間関係の指示)がRel.15/16でサポートされるTCI状態/空間関係に基づいて行われることが考えられる。
 かかる場合に、1つのCCにおいてこれらの送受信制御(例えば、マルチPDSCH/マルチPUSCH)が設定/適用される場合、バンド内の他のCC(又は、全てのCC)においても統一TCI状態の設定/アクティブ化/適用することができなくなるおそれがある。そのため、Rel.15/16のTCI状態/空間関係、又はRel.17の統一TCI状態の設定(例えば、いずれか一方の制限)は、バンド毎(又は、バンド単位)、及びセル/CC毎(又は、セル/バンド単位)で行われることが望ましい。
 一方で、Rel.15/16のTCI状態/空間関係とRel.17の統一TCI状態の設定(例えば、いずれか一方の制限)がバンド毎/セル毎に行われる場合、バンド/CC単位でそれぞれ設定されるTCI状態/統一TCI状態の数の増加によりUEの処理負荷が増大するおそれも考えられる。
 本発明者等は、バンド単位/CC(又は、セル)単位でRel.15/16のTCI状態/空間関係とRel.17の統一TCI状態の設定/アクティブ化が行われるケースに着目し、かかる場合にUEの処理負荷の増大を抑制できる構成について検討して本実施の形態を着想した。本実施の形態の一態様では、設定可能/アクティブ化可能となる、Rel.15/16のTCI状態/空間関係とRel.17の統一TCI状態の合計数(又は、トータル数)に関するUE能力(例えば、UE capability)を規定し、当該UE能力に基づいてTCI状態の設定/適用/アクティブ化を制御する。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、共通ビーム、共通TCI、共通TCI状態、Rel.17のTCI状態、Rel.17以降のTCI状態、統一TCI、統一TCI状態、チャネル/RSの複数種類に適用されるTCI状態、複数(複数種類)のチャネル/RSに適用されるTCI状態、複数種類のチャネル/RSに適用可能なTCI状態、複数種類の信号に対するTCI状態、チャネル/RSの複数種類に対するTCI状態、TCI状態、統一TCI状態、ジョイントTCI指示のためのUL及びDLのTCI状態、セパレートTCI指示のためのULのみのTCI状態、セパレートTCI指示のためのDLのみのTCI状態、DL及びULのためのジョイントTCI状態、DL及びULのそれぞれのためのセパレートTCI状態、は互いに読み替えられてもよい。
 本開示において、Rel.15/16のTCI状態、特定のチャネル/RSのみに適用されるTCI状態/空間関係、チャネル/RSの1つの種類に適用されるTCI状態/空間関係、は互いに読み替えられてもよい。
 本開示において、RRC IEによって設定された複数のTCI状態、MAC CEによってアクティベートされた複数のTCI状態、1つ以上のTCI状態に関する情報、TCI状態設定、TCI状態プール、アクティブTCI状態プール、共通TCI状態プール、統一TCI状態プール、TCI状態リスト、統一TCI状態リスト、ジョイントTCI状態プール、セパレートTCI状態プール、セパレートDL/UL TCI状態プール、DL TCI状態プール、UL TCI状態プール、セパレートDL TCI状態プール、セパレートUL TCI状態プール、は互いに読み替えられてもよい。
 本開示において、DL TCI、DLのみのTCI(DL only TCI)、セパレートなDLのみのTCI、DL共通TCI、DL統一TCI、共通TCI、統一TCI、は互いに読み替えられてもよい。本開示において、UL TCI、ULのみのTCI(UL only TCI)、セパレートなULのみのTCI、UL共通TCI、UL統一TCI、共通TCI、統一TCI、は互いに読み替えられてもよい。
 本開示において、統一TCI状態が適用されるチャネル/RSは、PDSCH/PDCCH/CSI-RS/PUSCH/PUCCH/SRSであってもよい。
 本開示において、BWP、CC(セル)、CC(セル)/BWP、は互いに読み替えられてもよい。
(無線通信方法)
 本実施の形態では、Rel.15/16でサポートされるTCI状態/空間関係と、Rel.17以降に導入/サポートされるTCI状態(例えば、統一TCI状態)の合計数に関するUE能力(例えば、UE capability)を規定する場合について説明する。
 Rel.15/16でサポートされるTCI状態は、1つのチャネル/信号に対応する(又は、1つのチャネル/信号に対して設定/適用/アクティブ化される)TCI状態であってもよい。Rel.17以降に導入/サポートされるTCI状態(例えば、統一TCI状態)は、複数種類のチャネル/信号に対応する(又は、複数種類のチャネル/信号に対して設定/適用/アクティブ化される)TCI状態であってもよい。以下の説明では、Rel.15/16でサポートされるTCI状態を「Rel.15/16のTCI状態」又は「第1のTCI状態」、Rel.17以降に導入/サポートされるTCI状態を「統一TCI状態」又は「第2のTCI状態」とも記す。
 第1のTCI状態(又は、Rel.15/16のTCI状態)と第2TCI状態(又は、統一TCI状態)の合計数に関するUE能力が規定される場合、UEは、当該合計数を満たす範囲でしか、第1のTCI状態と第2のTCI状態が設定/アクティブ化されないと想定してもよい。想定は、期待、判断又は決定と読み替えられてもよい。
 ネットワーク(又は、基地局)は、第1のTCI状態と第2のTCI状態の合計数に関するUE能力に基づいて、所定単位毎に設定/アクティブ化される第1のTCI状態と第2のTCI状態に関する情報(例えば、設定情報)をUEに通知してもよい(図8A参照)。また、UEは、当該UE能力情報をあらかじめネットワークに報告してもよい(図8B参照)。ネットワークは、UEから報告されるUE能力情報に基いて(又は、UE能力情報の報告なしで)、上位レイヤパラメータ等を利用して当該UE能力情報をUEに設定してもよい。
 第1のTCI状態と第2のTCI状態の合計数は、所定単位において設定可能な第1のTCI状態と第2のTCI状態の合計数であってもよい。TCI状態の設定は、上位レイヤパラメータ(例えば、RRC)により設定されてもよい。ネットワークは、上位レイヤパラメータを利用して、UE能力に対応する合計数を超えないように(合計数以下となるように)、所定単位毎に第1のTCI状態と第2のTCI状態の設定/通知を制御する。
 あるいは、第1のTCI状態と第2のTCI状態の合計数は、所定単位においてアクティブ化可能な第1のTCI状態と第2のTCI状態の合計数であってもよい。TCI状態の設定は、MAC CE(又は、MAC CE+DCI)によりアクティブ化されてもよい。ネットワークは、MAC CE(又は、MAC CE+DCI)を利用して、UE能力に対応する合計数を超えないように(合計数以下となるように)、所定単位毎に第1のTCI状態と第2のTCI状態のアクティブ化を制御する。なお、アクティブ化は、有効化、イネーブル化、ディアクティブ化、無効化、又はディセーブル化と読み替えられてもよい。
 第1のTCI状態と第2のTCI状態の合計数を考慮する所定単位は、帯域幅部分(例えば、BWP)、CC(又は、セル)、バンド、周波数レンジ(例えば、FR)、及びUEの少なくとも一つであってもよい。
 例えば、CC毎にサポート/許容される第1のTCI状態と第2のTCI状態の合計数が規定されてもよい。また、UEは、CC毎にサポート可能な第1のTCI状態と第2のTCI状態の合計数に関するUE能力を報告してもよい。UEがサポート可能な第1のTCI状態と第2のTCI状態の合計数は、CC毎に別々に規定/報告されてもよいし、複数のCCに共通に規定/報告されてもよい。
 他の例として、バンド毎にサポート/許容される(例えば、バンド内の全てのBWPと全てのCCにわたって設定がサポート/許容される)第1のTCI状態と第2のTCI状態の合計数が規定されてもよい。また、UEは、バンド毎にサポート可能な第1のTCI状態と第2のTCI状態の合計数に関するUE能力を報告してもよい。UEがサポート可能な第1のTCI状態と第2のTCI状態の合計数は、バンド毎に別々に規定/報告されてもよいし、複数のバンドに共通に規定/報告されてもよい。
 UEは、CC毎の第1のTCI状態と第2のTCI状態の合計数と、バンド毎の第1のTCI状態と第2のTCI状態の合計数の両方に関するUE能力情報を報告してもよい。
 帯域幅部分(例えば、BWP)は、上位レイヤパラメータにより設定されてもよい。CC(又は、セル)は、上位レイヤパラメータにより設定されてもよいし、仕様であらかじめ定義されてもよい。1CCの範囲に1又は複数のBWPが含まれてもよい。
 バンドは、仕様であらかじめ定義されてもよいし、上位レイヤパラメータにより設定されてもよい。1バンドの範囲に1又は複数のCC(又は、BWP)が含まれてもよい。周波数レンジは、仕様であらかじめ定義されてもよいし、上位レイヤパラメータにより設定されてもよい。1周波数レンジに1又は複数のバンド(又は、CC/BWP)が含まれてもよい。
 例えば、第1のTCI状態と第2のTCI状態の合計数がバンド単位で規定/報告される場合、バンドに含まれる1以上のCC(又は、1以上のCC及び1以上のBWP)にわたってサポート/許容される第1のTCI状態と第2のTCI状態の合計数を示してもよい。
 なお、本開示において、第2のTCI状態の数は、TCI状態プール(例えば、TCI state pool)数/TCI状態リスト(例えば、TCI state list)数であってもよい。第2のTCI状態の数は、ジョイントTCI状態の数又はセパレートTCI状態の数、であってもよいし、ジョイントTCI状態の数又はセパレートTCI状態の数の合計であってもよい。
 第1のTCI状態と第2のTCI状態のいずれか一方のみの設定/アクティブ化(又は、一方の設定/アクティブ化の制限)がCC毎に行われる場合を想定する。かかる場合、第1のTCI状態と第2のTCI状態の合計数のUE能力は、バンド単位(per band)/全てのバンド単位(per all bands)で規定/報告されてもよい。ネットワーク/基地局は、バンド内/全てのバンド内において、当該合計数を超えないように、CC毎に第1のTCI状態と第2のTCI状態のいずれか一方を設定/アクティブ化するように制御してもよい。
 第1のTCI状態と第2のTCI状態のいずれか一方のみの設定/アクティブ化(又は、一方の設定/アクティブ化の制限)がバンド毎に行われる場合を想定する。かかる場合、第1のTCI状態と第2のTCI状態の合計数のUE能力は、全てのバンド単位(per all bands)で規定/報告されてもよい。ネットワーク/基地局は、全てのバンド内において、当該合計数を超えないように、バンド毎に第1のTCI状態と第2のTCI状態のいずれか一方を設定/アクティブ化するように制御してもよい。
 このように、第1のTCI状態と第2のTCI状態のいずれか一方のみの設定/アクティブ化(又は、一方の設定/アクティブ化の制限)がCC単位/バンド単位に基づいて行われる場合であっても、設定/アクティブ化可能な第1のTCI状態と第2のTCI状態の合計数を規定することにより、UEの処理負荷(例えば、UEのメモリー消費等)が増大することを抑制できる。
 なお、UEは、第1のTCI状態と第2のTCI状態の合計数に関するUE能力に加えて、所定単位において設定/アクティブ化可能な第1のTCI状態の最大数(又は、合計数)、及び所定単位において設定/アクティブ化可能な第2のTCI状態の最大数(又は、合計数)の少なくとも一つを報告してもよい。
 基地局は、所定単位における第1のTCI状態の最大数/第2のTCI状態の最大数と、第1のTCI状態+第2のTCI状態の合計数と、に基づいてある単位(例えば、CC単位/バンド単位)毎に設定/アクティブ化するTCI状態を決定してもよい。このように、第1のTCI状態/第2のTCI状態の最大数と、第1のTCI状態と第2のTCI状態の合計数と、を考慮することにより、第1のTCI状態と第2のTCI状態の設定/アクティブ化を適切に行うことが可能となる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を送信してもよい。
 制御部110は、TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御してもよい。
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信してもよい。送受信部220は、第1のTCI状態と第2のTCI状態の合計数に関する端末能力を報告してもよい。
 制御部210は、TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御してもよい。
 第1のTCI状態と第2のTCI状態の合計数は、部分帯域幅毎、セル毎、バンド毎、周波数レンジ毎、及び端末毎の少なくとも一つにおいて設定可能(例えば、同時に設定可能)となる第1のTCI状態と第2のTCI状態の合計数であってもよい。
 第1のTCI状態と第2のTCI状態の合計数は、部分帯域幅毎、セル毎、バンド毎、周波数レンジ毎、及び端末毎の少なくとも一つにおいてアクティブ化可能(例えば、同時にアクティブ化可能)となる第1のTCI状態と第2のTCI状態の合計数であってもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図13は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 本出願は、2021年11月17日出願の特願2021-187357に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信する受信部と、
     前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する制御部と、を有する端末。
  2.  前記第1のTCI状態と前記第2のTCI状態の合計数は、部分帯域幅毎、セル毎、バンド毎、周波数レンジ毎、及び端末毎の少なくとも一つにおいて設定可能となる前記第1のTCI状態と前記第2のTCI状態の合計数である請求項1に記載の端末。
  3.  前記第1のTCI状態と前記第2のTCI状態の合計数は、部分帯域幅毎、セル毎、バンド毎、周波数レンジ毎、及び端末毎の少なくとも一つにおいてアクティブ化可能となる前記第1のTCI状態と前記第2のTCI状態の合計数である請求項1に記載の端末。
  4.  前記第1のTCI状態と前記第2のTCI状態の合計数に関する端末能力を報告する送信部と、をさらに有する請求項1から請求項3のいずれかに記載の端末。
  5.  1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を受信する工程と、
     前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する工程と、を有する端末の無線通信方法。
  6.  1つのチャネル又は信号に設定される第1の送信コンフィグレーション指標(TCI)状態と、複数種類のチャネル又は信号に設定される第2のTCI状態と、の合計数に関する端末能力に基づいて設定又はアクティブ化されるTCI状態に関する情報を送信する送信部と、
     前記TCI状態に関する情報に基いて、UL送信及びDL受信の少なくとも一方を制御する制御部と、を有する基地局。
PCT/JP2022/042479 2021-11-17 2022-11-16 端末、無線通信方法及び基地局 WO2023090340A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22895621.5A EP4436059A1 (en) 2021-11-17 2022-11-16 Terminal, wireless communication method, and base station
CN202280087335.4A CN118511447A (zh) 2021-11-17 2022-11-16 终端、无线通信方法以及基站
JP2023562362A JPWO2023090340A1 (ja) 2021-11-17 2022-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-187357 2021-11-17
JP2021187357 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023090340A1 true WO2023090340A1 (ja) 2023-05-25

Family

ID=86397073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042479 WO2023090340A1 (ja) 2021-11-17 2022-11-16 端末、無線通信方法及び基地局

Country Status (4)

Country Link
EP (1) EP4436059A1 (ja)
JP (1) JPWO2023090340A1 (ja)
CN (1) CN118511447A (ja)
WO (1) WO2023090340A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224968A1 (ja) * 2020-05-07 2021-11-11 株式会社Nttドコモ 端末、無線通信方法及び基地局
JP2021187357A (ja) 2020-06-02 2021-12-13 トヨタ紡織株式会社 シートフレームおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224968A1 (ja) * 2020-05-07 2021-11-11 株式会社Nttドコモ 端末、無線通信方法及び基地局
JP2021187357A (ja) 2020-06-02 2021-12-13 トヨタ紡織株式会社 シートフレームおよびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Enhancement on multi-beam operation", 3GPP DRAFT; R1-2107485, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038400 *
NTT DOCOMO, INC: "Discussion on multi-beam operation", 3GPP DRAFT; R1-2112089, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 5 November 2021 (2021-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074375 *

Also Published As

Publication number Publication date
CN118511447A (zh) 2024-08-16
JPWO2023090340A1 (ja) 2023-05-25
EP4436059A1 (en) 2024-09-25

Similar Documents

Publication Publication Date Title
WO2023090340A1 (ja) 端末、無線通信方法及び基地局
WO2023162725A1 (ja) 端末、無線通信方法及び基地局
WO2023162436A1 (ja) 端末、無線通信方法及び基地局
WO2023148871A1 (ja) 端末、無線通信方法及び基地局
WO2023085355A1 (ja) 端末、無線通信方法及び基地局
WO2023053460A1 (ja) 端末、無線通信方法及び基地局
WO2023162726A1 (ja) 端末、無線通信方法及び基地局
WO2023152905A1 (ja) 端末、無線通信方法及び基地局
WO2023085354A1 (ja) 端末、無線通信方法及び基地局
WO2023136055A1 (ja) 端末、無線通信方法及び基地局
WO2023090341A1 (ja) 端末、無線通信方法及び基地局
WO2023167214A1 (ja) 端末、無線通信方法及び基地局
WO2023095288A1 (ja) 端末、無線通信方法及び基地局
WO2023058236A1 (ja) 端末、無線通信方法及び基地局
WO2023058235A1 (ja) 端末、無線通信方法及び基地局
WO2023100317A1 (ja) 端末、無線通信方法及び基地局
WO2023053258A1 (ja) 端末、無線通信方法及び基地局
WO2023095289A1 (ja) 端末、無線通信方法及び基地局
WO2023063233A1 (ja) 端末、無線通信方法及び基地局
WO2023053259A1 (ja) 端末、無線通信方法及び基地局
WO2023162724A1 (ja) 端末、無線通信方法及び基地局
WO2023084642A1 (ja) 端末、無線通信方法及び基地局
WO2023084643A1 (ja) 端末、無線通信方法及び基地局
WO2023162437A1 (ja) 端末、無線通信方法及び基地局
WO2023090339A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562362

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022895621

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022895621

Country of ref document: EP

Effective date: 20240617