WO2023037416A1 - Delay adjustment device and redundant line system - Google Patents

Delay adjustment device and redundant line system Download PDF

Info

Publication number
WO2023037416A1
WO2023037416A1 PCT/JP2021/032885 JP2021032885W WO2023037416A1 WO 2023037416 A1 WO2023037416 A1 WO 2023037416A1 JP 2021032885 W JP2021032885 W JP 2021032885W WO 2023037416 A1 WO2023037416 A1 WO 2023037416A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frame
buffer
reception
delay
Prior art date
Application number
PCT/JP2021/032885
Other languages
French (fr)
Japanese (ja)
Inventor
仁 長谷川
利文 宮城
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/032885 priority Critical patent/WO2023037416A1/en
Priority to JP2023546599A priority patent/JPWO2023037416A1/ja
Publication of WO2023037416A1 publication Critical patent/WO2023037416A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability

Definitions

  • the present disclosure relates to a delay adjustment device and a redundant line system, and more particularly to a delay adjustment device and redundant line system that enable uninterrupted switching of redundant communication lines.
  • a hitless switching technology is known, for example, as disclosed in Non-Patent Document 1.
  • the sending device copies the same frame to two redundant paths, and the receiving device checks the received frame, selects the normal frame, and sends it out. It is a redundancy technology that does not cause interruptions.
  • the upper device and lower device that have a redundant switching function between the operating system and the standby system are connected to each other by two systems, an operating system line and a standby system line.
  • the active system line is composed of a cable such as an optical cable
  • the standby system line is composed of a transmission device such as a wireless system
  • Jitter is the degree of change in delay time.
  • the inter-system delay difference and fluctuation must be less than the upper limit.
  • a mechanism is desired that reduces inter-system delay differences and fluctuations between devices.
  • the present disclosure has been made to solve the above-described problems, and is a delay adjustment device and a An object of the present invention is to provide a redundant line system.
  • a first aspect relates to the delay adjuster.
  • a delay adjuster is provided in the redundant line system.
  • a redundant line system is a system in which a transmitting device and a receiving device are connected by two systems, a first path and a second path. The first path and the second path transmit the same frame.
  • the delay adjusting device connects between the transmitting device and the receiving device.
  • the delay adjustment device includes a first transceiver, a second transceiver, and a controller.
  • the first transmission/reception unit temporarily stores frames received from the transmission device via the first path in a first buffer.
  • the second transmitting/receiving unit temporarily stores frames received from the transmitting device via the second path in a second buffer.
  • the control unit controls frame transmittable timings in the first transmission/reception unit and the second transmission/reception unit at regular intervals.
  • the control unit controls the difference between a first reception time of the measurement frame received from the transmission device via the first path and a second reception time of the measurement frame received from the transmission device via the second path.
  • Calculate differential delay time based on
  • the control unit sets the delay difference time in the first transmission/reception unit when the first reception time is earlier than the second reception time.
  • the control unit sets the delay difference time in the second transmission/reception unit when the second reception time is earlier than the first reception time.
  • the first transmitting/receiving unit stores the frame stored in the first buffer at the next transmittable timing after the delay difference time has passed after the frame is received. to the receiving device.
  • the first transmitting/receiving unit transmits the frame stored in the first buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
  • the second transmitting/receiving unit stores the frame stored in the second buffer at the next transmittable timing after the differential delay time has elapsed since the frame was received. to the receiving device.
  • the second transmitting/receiving unit transmits the frame stored in the second buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
  • the second aspect further has the following features in addition to the first aspect.
  • the controller sets the size of the first buffer larger than that of the second buffer as the delay difference time increases.
  • the controller sets the size of the second buffer larger than that of the first buffer as the delay difference time increases.
  • a third aspect relates to redundant line systems.
  • a redundant line system is a system in which a transmitting device and a receiving device are connected by two systems, a first path and a second path. The first path and the second path transmit the same frame.
  • a redundant line system comprises a delay adjustment device connecting between the transmitting device and the receiving device.
  • the delay adjustment device includes a first transceiver, a second transceiver, and a controller.
  • the first transmission/reception unit temporarily stores frames received from the transmission device via the first path in a first buffer.
  • the second transmitting/receiving unit temporarily stores frames received from the transmitting device via the second path in a second buffer.
  • the control unit controls frame transmittable timings in the first transmission/reception unit and the second transmission/reception unit at regular intervals.
  • the control unit controls the difference between a first reception time of the measurement frame received from the transmission device via the first path and a second reception time of the measurement frame received from the transmission device via the second path. Calculate differential delay time based on The control unit sets the delay difference time in the first transmission/reception unit when the first reception time is earlier than the second reception time. The control unit sets the delay difference time in the second transmission/reception unit when the second reception time is earlier than the first reception time. When the delay difference time is set, the first transmitting/receiving unit stores the frame stored in the first buffer at the next transmittable timing after the delay difference time has passed after the frame is received. to the receiving device.
  • the first transmitting/receiving unit transmits the frame stored in the first buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
  • the second transmitting/receiving unit stores the frame stored in the second buffer at the next transmittable timing after the differential delay time has elapsed since the frame was received. to the receiving device.
  • the second transmitting/receiving unit transmits the frame stored in the second buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
  • the fourth aspect further has the following features in addition to the third aspect.
  • the controller sets the size of the first buffer larger than that of the second buffer as the delay difference time increases.
  • the controller sets the size of the second buffer larger than that of the first buffer as the delay difference time increases.
  • inter-system delay difference can be absorbed by fixedly setting the calculated delay difference time to the transmitting/receiving unit that receives the frame first among the two transmitting/receiving units. Also, by controlling the transmittable timing of the frame sent from the buffer at regular intervals, it is possible to absorb fluctuations that occur in a wireless system or the like. High service quality can be ensured by uninterrupted switching between systems by absorbing inter-system delay differences and fluctuations. According to the present disclosure, even when two communication paths are configured using arbitrary devices, inter-system delay differences and fluctuations can be absorbed, and instantaneous switching between systems is possible.
  • FIG. 1 is a diagram for explaining a configuration example of a redundant line system according to an embodiment
  • FIG. 3 is a block diagram illustrating an overview of functions of the delay adjustment device according to the embodiment
  • FIG. 9 is a timing chart for explaining an example in which delay difference and fluctuation absorption processing are applied according to the embodiment
  • 7 is a flowchart illustrating delay difference and fluctuation absorption processing executed by the delay adjustment device 1 according to the embodiment
  • 2 is a block diagram showing a hardware configuration example of the delay adjustment device 1 according to the embodiment
  • Embodiment 1. Redundant Line System
  • FIG. 1 is a diagram for explaining a configuration example of a redundant line system according to an embodiment.
  • the redundant line system shown in FIG. 1 includes a delay adjustment device 1, a host device 2, a subordinate device 3, and a repeater 4 (an active repeater 4a and a standby repeater 4b).
  • the application of the delay adjustment device 1 will be described with an example of the downstream signal flow from the upper device 2 to the lower device 3 .
  • the upper device 2 functions as a transmitting device
  • the lower device 3 functions as a receiving device.
  • the redundant line system connects the upper device 2 and the lower device 3 with two systems, an active communication path (first path) and a standby communication path (second path).
  • the same frame copied in the upper device 2 as a transmitter is transmitted to the lower device 3 as a receiver via two redundant routes.
  • the transmission method is, for example, Ethernet (registered trademark).
  • the upper device 2 and the lower device 3 have a redundancy switching function between operation/standby systems.
  • the relay device 4 is composed of, for example, a wired optical cable or a wireless transmission device.
  • the active communication path is composed of one or more active relay devices 4a having optical cables.
  • the standby communication path is composed of one or more standby relay devices 4b having transmission devices such as wireless systems.
  • a large delay difference may occur between routes on routes with different route lengths and facilities. Also, when a transmission device is applied to a redundant line, fluctuations of the transmission device are inserted.
  • the delay adjustment device 1 is a device for absorbing inter-system delay differences and fluctuations.
  • the delay adjustment device 1 shown in FIG. 1 is connected between the relay device 4 and the lower device 3, that is, directly upstream of the receiving device.
  • the delay adjustment device 1 arranged in this way absorbs the inter-system delay difference and fluctuations of the frames transmitted from the two systems of the active relay device 4a and the standby relay device 4b, respectively. Send to the interface unit and the standby system interface unit.
  • FIG. 2 is a block diagram illustrating an overview of the functions of the delay adjustment apparatus 1 according to the embodiment.
  • the delay adjustment device 1 absorbs the inter-system delay difference and fluctuation (jitter), thereby enabling the high-level device 2 and the low-level device 3 to switch between the active system and the standby system without interruption.
  • the delay adjustment device 1 includes an active interface section 10 (first transmission/reception section), a standby interface section 20 (second transmission/reception section), and a control section 30 .
  • the working system interface section 10 includes a relay side interface 11 , a working side buffer 12 (first buffer), and a node side interface 13 .
  • the relay-side interface 11 has a communication circuit and connects to the active relay device 4a in FIG.
  • the relay-side interface 11 outputs the frame received from the active-system relay device 4 a on the active-system communication path to the active-side buffer 12 . Also, the relay-side interface 11 outputs signal arrival information of the received frame to the control unit 30 .
  • the operation-side buffer 12 is a FIFO type buffer, that is, a queue.
  • the working-side buffer 12 temporarily stores frames input from the relay-side interface 11 via the working-system communication path in order to absorb inter-system delay differences and fluctuations.
  • the node-side interface 13 has a communication circuit and connects to the active system interface section of the lower device 3 in FIG.
  • the node-side interface 13 can transmit the frames temporarily stored in the operation-side buffer 12 to the operation system interface section of the lower device 3 .
  • a transmission possible timing and a delay difference time can be set in the active interface unit 10 by the control unit 30, which will be described later.
  • the timing at which frames can be transmitted arrives at regular intervals.
  • the active interface unit 10 can transmit the frames stored in the active buffer 12 frame by frame each time a transmittable timing at a constant interval arrives. However, if the differential delay time is set, this does not apply until the differential delay time elapses.
  • the active interface unit 10 stores the The frame is transmitted to the lower device 3 . Further, when the differential delay time is not set, the active system interface unit 10, after receiving the frame, transmits the frame stored in the active buffer 12 to the lower device 3 at the next transmittable timing. Send to
  • the standby interface unit 20 has the same configuration as the active interface unit 10 .
  • the standby system interface unit 20 includes a relay side interface 21 , a standby side buffer 22 (second buffer), and a node side interface 23 .
  • the relay side interface 21 has a communication circuit and connects to the standby system relay device 4b in FIG.
  • the relay-side interface 21 outputs the frame received from the standby-system relay device 4 b on the standby-system communication path to the standby-side buffer 22 . Also, the relay-side interface 21 outputs signal arrival information of the received frame to the control unit 30 .
  • the standby buffer 22 is a FIFO type buffer, that is, a queue.
  • the standby-side buffer 22 temporarily stores the frame input from the relay-side interface 21 via the standby-system communication path in order to absorb inter-system delay differences and fluctuations.
  • the node-side interface 23 has a communication circuit and connects to the standby system interface unit of the lower device 3 in FIG.
  • the node-side interface 23 can transmit the frames temporarily stored in the standby-side buffer 22 to the standby-system interface section of the lower-level device 3 .
  • the standby system interface unit 20 can be set with a transmittable timing and a delay difference time by the control unit 30, which will be described later.
  • the timing at which frames can be transmitted arrives at regular intervals.
  • the standby system interface unit 20 can transmit the frames stored in the standby buffer 22 frame by frame each time a transmittable timing at a constant interval arrives. However, if the differential delay time is set, this does not apply until the differential delay time elapses.
  • the standby interface unit 20 stores the The frame is transmitted to the lower device 3 .
  • the standby system interface unit 20 receives the frame stored in the standby buffer 22 at the next transmittable timing after receiving the frame. Send to
  • the control unit 30 receives signal arrival information from the active interface unit 10 .
  • the operational system signal arrival information includes the reception time (first reception time TA) of the frame received by the operational system interface unit 10 .
  • the control unit 30 also receives signal arrival information from the standby system interface unit 20 .
  • the standby system signal arrival information includes the reception time (second reception time TB) of the frame received by the standby system interface unit 20 .
  • the delay difference detection processing 31 detects the first reception time TA of the measurement frame received from the host device 2 via the active communication path and the second reception time TA of the measurement frame received from the host device 2 via the standby communication path. A differential delay time is calculated based on the absolute value of the difference from TB. The delay difference detection processing 31 sets the delay difference time to the interface section that has received the measurement frame first, out of the active interface section 10 and the standby interface section 20 .
  • control unit 30 controls the timing at which frames can be transmitted in the active interface unit 10 and the standby interface unit 20 at regular intervals.
  • control unit 30 may set the buffer size of the interface unit that received the measurement packet earlier as the measured delay difference time increases. For example, when the first reception time TA is earlier than the second reception time TB, the control unit 30 sets the size of the operation buffer 12 larger than that of the standby buffer 22 as the delay difference time increases. When the second reception time TB is earlier than the first reception time TA, the controller 30 sets the size of the standby buffer 22 larger than that of the operation buffer 12 as the delay difference time increases.
  • FIG. 3 is a timing chart for explaining an example in which delay difference and fluctuation absorption processing are applied according to the embodiment.
  • the timing at which frames can be transmitted in the active interface section 10 and the standby interface section 20 is set to a constant interval T.
  • Ta is the reception time of the frame (hereinafter referred to as frame A) received by the active interface unit 10 after the measurement frame.
  • Tb is the reception time of the frame A received by the standby system interface section 20 .
  • X is the differential delay time calculated by the control unit 30 for the measurement frames received before frame A; In FIG. 3 , it is assumed that the delay difference time X is set in the active system interface unit 10 .
  • Y is the transmission waiting time from time Tc to transmittable timing T3.
  • the active interface unit 10 receives frame A and temporarily stores frame A in the active buffer 12 .
  • a delay difference time X is set in the active system interface unit 10 . Therefore, the active interface unit 10 waits until time Tc when the delay difference time X elapses from time Ta. After that, the active interface unit 10 transmits the frame A stored in the active buffer 12 to the lower device 3 at the next transmittable timing T3.
  • the standby system interface unit 20 receives frame A and temporarily stores frame A in the standby buffer 22 .
  • the delay difference time X is not set in the standby system interface section 20 . Therefore, the standby system interface unit transmits the frame A stored in the standby buffer 22 to the lower device 3 at the next transmittable timing T3.
  • the delay adjustment device 1 sets the differential delay time X in the active interface unit 10, and sets the active interface unit 10 and the standby interface unit 20 to transmit possible timings at the constant interval T. By setting, the delay difference and fluctuation can be absorbed.
  • FIG. 4 is a flowchart illustrating delay difference and fluctuation absorption processing executed by the delay adjustment device 1 according to the embodiment.
  • the frame transmittable timings of the active interface unit 10 and the standby interface unit 20 are set at regular intervals.
  • step S100 upon receiving a frame, the active interface section 10 causes the active buffer 12 to temporarily store the frame.
  • step S ⁇ b>101 the active interface unit 10 outputs signal arrival information to the control unit 30 .
  • the signal arrival information includes the frame reception time (first reception time TA).
  • step S200 when the standby system interface unit 20 receives the frame, it temporarily stores the frame in the standby buffer 22.
  • step S ⁇ b>201 the standby system interface unit 20 outputs signal arrival information to the control unit 30 .
  • the signal arrival information includes the frame reception time (second reception time TB).
  • step S300 the control unit 30 calculates the delay difference time (delay amount) based on the absolute value of the difference between the first reception time TA and the second reception time TB.
  • the control unit 30 outputs a command to set no differential delay time to the active interface unit 10 and the standby interface unit 20 in order to temporarily reset the differential delay time set in any of the interface units. do.
  • the active interface unit 10 sets the delay differential time input from the control unit 30 in step S102.
  • the set differential delay time is applied to the process of step S103 from the time the next frame is received.
  • the standby system interface unit 20 sets the delay difference time input from the control unit 30 in step S202.
  • the set differential delay time is applied to the process of step S203 from the time the next frame is received.
  • the processing related to the delay difference time in steps S101, S102, S200, S201, S300, and S301 described above may be executed each time a frame is received, or may be executed in each predetermined cycle. That is, recalculation and resetting of the differential delay time may be performed after a predetermined period of time.
  • step S103 the active system interface unit 10 determines whether or not a differential delay time is set. If the delay difference time is set, the process of step S104 is executed. If the delay difference time is not set, the process of step S105 is executed.
  • step S104 the active interface unit 10 receives the frame stored in the active buffer 12 at the next transmittable timing after the delay differential time has passed since the frame was received. to the lower device 3.
  • step S105 the working system interface unit 10 transmits the frame stored in the working buffer 12 to the lower device 3 at the next transmittable timing after receiving the frame. do.
  • step S203 the standby system interface section 20 determines whether or not a differential delay time is set. If the delay difference time is set, the process of step S204 is executed. If the delay difference time is not set, the process of step S205 is executed.
  • step S204 the standby system interface unit 20 receives the frame stored in the standby buffer 22 at the next transmittable timing after the delay difference time has passed since the frame was received. to the lower device 3.
  • step S205 the standby system interface unit 20 transmits the frame stored in the standby buffer 22 to the lower device 3 at the next transmittable timing after receiving the frame. do.
  • the delay adjustment device 1 is connected between the host device 2 and the relay device 4, the host device 3 functions as a transmitter, and the host device 2 functions as a receiver.
  • the active interface unit 10 is the first transmission/reception unit and the standby interface unit 20 is the second transmission/reception unit.
  • the unit 20 may be used as the first transmitting/receiving unit. That is, either of the two transmission/reception units of the delay adjustment device 1 may be connected to the active system or may be connected to the standby system.
  • the differential delay time is set in the appropriate one of the transmitting/receiving units.
  • the differential delay time calculated based on the difference in signal reception time between the active system and the standby system is fixedly set to the transmitting/receiving unit that receives first, the inter-system delay difference can be absorbed. Also, by controlling the transmittable timing of the frame sent from the buffer at regular intervals, it is possible to absorb fluctuations that occur in a wireless system or the like. High service quality can be ensured by uninterrupted switching between systems by absorbing inter-system delay differences and fluctuations.
  • the delay adjustment device 1 can absorb inter-system delay differences and fluctuations even when two communication paths are configured using arbitrary devices, and can switch between systems without instantaneous interruption. In addition, since it is possible to switch without interruption, it is not necessary to borrow a line from the customer for maintenance work, and maintenance work can be reduced.
  • FIG. 5 is a block diagram showing a hardware configuration example of the delay adjustment device 1 according to the embodiment.
  • the delay adjustment device 1 includes a control device 90 , an active communication circuit 95 and a standby communication circuit 96 .
  • the control device 90 controls the delay adjustment device 1 .
  • the control device 90 includes one or more processors 91 (hereinafter simply referred to as "processors 91") and one or more storage devices 92 (hereinafter simply referred to as “storage devices 92").
  • the processor 91 performs various types of information processing (including the processing of each unit shown in FIG. 2).
  • Processor 91 includes, for example, a CPU.
  • the storage device 92 stores various information necessary for processing by the processor 91 . Examples of the storage device 92 include volatile memory, nonvolatile memory, HDD, SSD, and the like.
  • the functions of the control device 90 are realized by the processor 91 executing a control program, which is a computer program.
  • a control program is stored in the storage device 92 .
  • the control program may be recorded on a computer-readable recording medium.
  • the operation side buffer 12 and the standby side buffer 22 in FIG. 2 may be realized by part of the storage device 92 .
  • the active communication circuit 95 includes the relay side interface 11 and the node side interface 13 of FIG. Note that the active communication circuit 95 may include a storage device that functions as the active buffer 12 in FIG. Standby system communication circuit 96 includes relay side interface 21 and node side interface 23 of FIG. The standby system communication circuit 96 may include a storage device that functions as the standby buffer 22 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

This delay adjustment device absorbs the inter-system delay difference and fluctuation between lines in two systems to enable inter-system uninterruptible switching. The delay adjustment device is provided with a first transmission/reception unit, a second transmission/reception unit, and a control unit. The control unit controls the transmittable timing of frames of each transmission/reception unit to be a constant interval. The control unit calculates a delay difference time on the basis of the difference between the frame reception times of the transmission/reception units. The control unit sets the delay difference time in the transmission/reception unit that received a frame first. The one transmission/reception unit in which the delay difference time is set transmits the frame, which is stored in a buffer, to a reception device at the next transmittable timing after the delay difference time has elapsed following reception of the frame. The other transmission/reception unit in which the delay difference time is not set transmits the frame, which is stored in a buffer, to the reception device at the next transmittable timing after reception of the frame.

Description

遅延調整装置および冗長回線システムDelay adjusters and redundant line systems
 本開示は、遅延調整装置および冗長回線システムに係り、特に冗長化された通信回線の無瞬断切替を可能とする遅延調整装置および冗長回線システムに関する。 The present disclosure relates to a delay adjustment device and a redundant line system, and more particularly to a delay adjustment device and redundant line system that enable uninterrupted switching of redundant communication lines.
 例えば非特許文献1に開示されるように、無瞬断切替技術が知られている。無瞬断切替技術は、送信装置が冗長化された2つの経路に同じフレームをコピーし、受信装置が到着したフレームをチェックし、正常なフレームを選択し送出することで、伝送路障害時に通信断を発生させない冗長化技術である。 A hitless switching technology is known, for example, as disclosed in Non-Patent Document 1. With hitless switching technology, the sending device copies the same frame to two redundant paths, and the receiving device checks the received frame, selects the normal frame, and sends it out. It is a redundancy technology that does not cause interruptions.
 例えば、専用線サービスにおいて、保守作業等で回線に瞬断が発生する場合には事前にお客様承諾の上、回線借用の手続きが必要となるため、保守者の作業が煩雑になる。また、収容する回線に遠隔医療等の重要な回線が含まれている場合は、回線の瞬断が許容されないため、冗長回線において確実に無瞬断切替が行える必要がある。 For example, in a leased line service, if there is a momentary interruption in the line due to maintenance work, etc., it is necessary to obtain the customer's consent in advance and take procedures to borrow the line, which makes the maintenance work complicated. Further, when an important line for telemedicine or the like is included in the lines to be accommodated, a momentary interruption of the line is not allowed, so it is necessary to reliably perform non-instantaneous interruption switching in the redundant line.
 運用系/待機系間の冗長切替機能を有する上位装置および下位装置は、装置間が運用系回線および待機系回線の2系統で接続されている。運用系回線が光ケーブルなどの有線で構成され、待機系回線が無線システム等の伝送装置で構成された場合においては、系間で大きな遅延差が発生する。また、回線に伝送装置を適用した場合は、伝送装置によるゆらぎ(ジッタ:jitter)が挿入されることになる。ジッタとは遅延時間の変化度合いである。装置間で無瞬断で冗長切替を行うには、系間遅延差およびゆらぎが上限値未満でなくてはならない。瞬断を抑制するために、装置間の系間遅延差およびゆらぎを小さくする仕組みが望まれている。 The upper device and lower device that have a redundant switching function between the operating system and the standby system are connected to each other by two systems, an operating system line and a standby system line. When the active system line is composed of a cable such as an optical cable and the standby system line is composed of a transmission device such as a wireless system, a large delay difference occurs between the systems. Also, when a transmission device is applied to the line, jitter is inserted due to the transmission device. Jitter is the degree of change in delay time. In order to perform redundancy switching between devices without interruption, the inter-system delay difference and fluctuation must be less than the upper limit. In order to suppress instantaneous interruptions, a mechanism is desired that reduces inter-system delay differences and fluctuations between devices.
 本開示は、上述のような課題を解決するためになされたもので、2系統の回線の系間遅延差およびゆらぎを吸収して、系間の無瞬断切替を可能とする遅延調整装置および冗長回線システムを提供することを目的とする。 The present disclosure has been made to solve the above-described problems, and is a delay adjustment device and a An object of the present invention is to provide a redundant line system.
 第1の観点は、遅延調整装置に関連する。
 遅延調整装置は、冗長回線システムに備えられる。冗長回線システムは、送信装置と受信装置との間を第1経路および第2経路の2系統で接続したシステムである。前記第1経路および前記第2経路は同じフレームを伝送する。
 前記遅延調整装置は、前記送信装置と前記受信装置との間を接続する。
 前記遅延調整装置は、第1送受信部と第2送受信部と制御部とを備える。
 第1送受信部は、前記送信装置から前記第1経路を介して受信したフレームを第1バッファに一時的に記憶する。
 第2送受信部は、前記送信装置から前記第2経路を介して受信したフレームを第2バッファに一時的に記憶する。
 制御部は、前記第1送受信部および前記第2送受信部におけるフレームの送信可能タイミングを一定間隔に制御する。
 前記制御部は、前記送信装置から前記第1経路を介して受信した測定フレームの第1受信時刻と前記送信装置から前記第2経路を介して受信した当該測定フレームの第2受信時刻との差に基づいて遅延差時間を計算する。
 前記制御部は、前記第1受信時刻が前記第2受信時刻より早い場合に、前記第1送受信部に前記遅延差時間を設定する。
 前記制御部は、前記第2受信時刻が前記第1受信時刻より早い場合に、前記第2送受信部に前記遅延差時間を設定する。
 前記第1送受信部は、前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信する。
 前記第1送受信部は、前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信する。
 前記第2送受信部は、前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信する。
 前記第2送受信部は、前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信する。
A first aspect relates to the delay adjuster.
A delay adjuster is provided in the redundant line system. A redundant line system is a system in which a transmitting device and a receiving device are connected by two systems, a first path and a second path. The first path and the second path transmit the same frame.
The delay adjusting device connects between the transmitting device and the receiving device.
The delay adjustment device includes a first transceiver, a second transceiver, and a controller.
The first transmission/reception unit temporarily stores frames received from the transmission device via the first path in a first buffer.
The second transmitting/receiving unit temporarily stores frames received from the transmitting device via the second path in a second buffer.
The control unit controls frame transmittable timings in the first transmission/reception unit and the second transmission/reception unit at regular intervals.
The control unit controls the difference between a first reception time of the measurement frame received from the transmission device via the first path and a second reception time of the measurement frame received from the transmission device via the second path. Calculate differential delay time based on
The control unit sets the delay difference time in the first transmission/reception unit when the first reception time is earlier than the second reception time.
The control unit sets the delay difference time in the second transmission/reception unit when the second reception time is earlier than the first reception time.
When the delay difference time is set, the first transmitting/receiving unit stores the frame stored in the first buffer at the next transmittable timing after the delay difference time has passed after the frame is received. to the receiving device.
The first transmitting/receiving unit transmits the frame stored in the first buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
When the differential delay time is set, the second transmitting/receiving unit stores the frame stored in the second buffer at the next transmittable timing after the differential delay time has elapsed since the frame was received. to the receiving device.
The second transmitting/receiving unit transmits the frame stored in the second buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
 第2の観点は、第1の観点に加えて、次の特徴を更に有する。
 前記制御部は、前記第1受信時刻が前記第2受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第1バッファのサイズを前記第2バッファに比して大きく設定する。
 前記制御部は、前記第2受信時刻が前記第1受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第2バッファのサイズを前記第1バッファに比して大きく設定する。
The second aspect further has the following features in addition to the first aspect.
When the first reception time is earlier than the second reception time, the controller sets the size of the first buffer larger than that of the second buffer as the delay difference time increases.
When the second reception time is earlier than the first reception time, the controller sets the size of the second buffer larger than that of the first buffer as the delay difference time increases.
 第3の観点は、冗長回線システムに関連する。
 冗長回線システムは、送信装置と受信装置との間を第1経路および第2経路の2系統で接続したシステムである。前記第1経路および前記第2経路は同じフレームを伝送する。
 冗長回線システムは、前記送信装置と前記受信装置との間を接続する遅延調整装置を備える。
 前記遅延調整装置は、第1送受信部と第2送受信部と制御部とを備える。
 第1送受信部は、前記送信装置から前記第1経路を介して受信したフレームを第1バッファに一時的に記憶する。
 第2送受信部は、前記送信装置から前記第2経路を介して受信したフレームを第2バッファに一時的に記憶する。
 制御部は、前記第1送受信部および前記第2送受信部におけるフレームの送信可能タイミングを一定間隔に制御する。
 前記制御部は、前記送信装置から前記第1経路を介して受信した測定フレームの第1受信時刻と前記送信装置から前記第2経路を介して受信した当該測定フレームの第2受信時刻との差に基づいて遅延差時間を計算する。
 前記制御部は、前記第1受信時刻が前記第2受信時刻より早い場合に、前記第1送受信部に前記遅延差時間を設定する。
 前記制御部は、前記第2受信時刻が前記第1受信時刻より早い場合に、前記第2送受信部に前記遅延差時間を設定する。
 前記第1送受信部は、前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信する。
 前記第1送受信部は、前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信する。
 前記第2送受信部は、前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信する。
 前記第2送受信部は、前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信する。
A third aspect relates to redundant line systems.
A redundant line system is a system in which a transmitting device and a receiving device are connected by two systems, a first path and a second path. The first path and the second path transmit the same frame.
A redundant line system comprises a delay adjustment device connecting between the transmitting device and the receiving device.
The delay adjustment device includes a first transceiver, a second transceiver, and a controller.
The first transmission/reception unit temporarily stores frames received from the transmission device via the first path in a first buffer.
The second transmitting/receiving unit temporarily stores frames received from the transmitting device via the second path in a second buffer.
The control unit controls frame transmittable timings in the first transmission/reception unit and the second transmission/reception unit at regular intervals.
The control unit controls the difference between a first reception time of the measurement frame received from the transmission device via the first path and a second reception time of the measurement frame received from the transmission device via the second path. Calculate differential delay time based on
The control unit sets the delay difference time in the first transmission/reception unit when the first reception time is earlier than the second reception time.
The control unit sets the delay difference time in the second transmission/reception unit when the second reception time is earlier than the first reception time.
When the delay difference time is set, the first transmitting/receiving unit stores the frame stored in the first buffer at the next transmittable timing after the delay difference time has passed after the frame is received. to the receiving device.
The first transmitting/receiving unit transmits the frame stored in the first buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
When the differential delay time is set, the second transmitting/receiving unit stores the frame stored in the second buffer at the next transmittable timing after the differential delay time has elapsed since the frame was received. to the receiving device.
The second transmitting/receiving unit transmits the frame stored in the second buffer to the receiving device at the next transmittable timing after receiving the frame when the delay difference time is not set.
 第4の観点は、第3の観点に加えて、次の特徴を更に有する。
 前記制御部は、前記第1受信時刻が前記第2受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第1バッファのサイズを前記第2バッファに比して大きく設定する。
 前記制御部は、前記第2受信時刻が前記第1受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第2バッファのサイズを前記第1バッファに比して大きく設定する。
The fourth aspect further has the following features in addition to the third aspect.
When the first reception time is earlier than the second reception time, the controller sets the size of the first buffer larger than that of the second buffer as the delay difference time increases.
When the second reception time is earlier than the first reception time, the controller sets the size of the second buffer larger than that of the first buffer as the delay difference time increases.
 本開示によれば、計算された遅延差時間を、2系統の送受信部のうちフレームを先に受信する送受信部に固定的に設定することにより、系間遅延差を吸収することができる。また、バッファから送出されるフレームの送信可能タイミングを一定間隔に制御することにより、無線システム等で発生するゆらぎを吸収することができる。系間遅延差およびゆらぎを吸収することで、系間の無瞬断切替による高いサービス品質を担保できる。本開示によれば、2系統の通信経路が任意の装置を使用して構成された場合でも、系間遅延差およびゆらぎを吸収でき、系間の無瞬断切替が可能である。 According to the present disclosure, inter-system delay difference can be absorbed by fixedly setting the calculated delay difference time to the transmitting/receiving unit that receives the frame first among the two transmitting/receiving units. Also, by controlling the transmittable timing of the frame sent from the buffer at regular intervals, it is possible to absorb fluctuations that occur in a wireless system or the like. High service quality can be ensured by uninterrupted switching between systems by absorbing inter-system delay differences and fluctuations. According to the present disclosure, even when two communication paths are configured using arbitrary devices, inter-system delay differences and fluctuations can be absorbed, and instantaneous switching between systems is possible.
実施の形態に係る冗長回線システムの構成例を説明するための図である。1 is a diagram for explaining a configuration example of a redundant line system according to an embodiment; FIG. 実施の形態に係る遅延調整装置が有する機能の概要を例示するブロック図である。3 is a block diagram illustrating an overview of functions of the delay adjustment device according to the embodiment; FIG. 実施の形態に係る、遅延差およびゆらぎ吸収処理が適用された例を説明するためのタイミングチャートである。9 is a timing chart for explaining an example in which delay difference and fluctuation absorption processing are applied according to the embodiment; 実施の形態に係る遅延調整装置1が実行する遅延差およびゆらぎ吸収処理を例示するフローチャートである。7 is a flowchart illustrating delay difference and fluctuation absorption processing executed by the delay adjustment device 1 according to the embodiment; 実施の形態に係る遅延調整装置1のハードウェア構成例を示すブロック図である。2 is a block diagram showing a hardware configuration example of the delay adjustment device 1 according to the embodiment; FIG.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Elements that are common in each drawing are denoted by the same reference numerals, and overlapping descriptions are omitted.
実施の形態1.
1.冗長回線システム
 図1は、実施の形態に係る冗長回線システムの構成例を説明するための図である。
 図1に示す冗長回線システムは、遅延調整装置1、上位装置2、下位装置3、中継装置4(運用系中継装置4a、待機系中継装置4b)を備える。以下の説明では、遅延調整装置1の適用に関して、上位装置2から下位装置3への下り方向の信号の流れを例に説明する。この場合、上位装置2は送信装置、下位装置3は受信装置として機能する。
Embodiment 1.
1. 1. Redundant Line System FIG. 1 is a diagram for explaining a configuration example of a redundant line system according to an embodiment.
The redundant line system shown in FIG. 1 includes a delay adjustment device 1, a host device 2, a subordinate device 3, and a repeater 4 (an active repeater 4a and a standby repeater 4b). In the following description, the application of the delay adjustment device 1 will be described with an example of the downstream signal flow from the upper device 2 to the lower device 3 . In this case, the upper device 2 functions as a transmitting device, and the lower device 3 functions as a receiving device.
 冗長回線システムは、上位装置2と下位装置3との間を運用系通信経路(第1経路)および待機系通信経路(第2経路)の2系統で接続する。送信装置としての上位装置2においてコピーされた同じフレームは、冗長化された2つの経路を介して、受信装置としての下位装置3まで伝送される。伝送方式は例えばイーサネット(登録商標)である。上位装置2および下位装置3は、運用/待機系間の冗長切替機能を有する。 The redundant line system connects the upper device 2 and the lower device 3 with two systems, an active communication path (first path) and a standby communication path (second path). The same frame copied in the upper device 2 as a transmitter is transmitted to the lower device 3 as a receiver via two redundant routes. The transmission method is, for example, Ethernet (registered trademark). The upper device 2 and the lower device 3 have a redundancy switching function between operation/standby systems.
 中継装置4は、例えば、有線の光ケーブルや、無線の伝送装置で構成される。一例として、運用系通信経路は、光ケーブルを有する1つ以上の運用系中継装置4aで構成されている。待機系通信経路は、無線システム等の伝送装置を有する1つ以上の待機系中継装置4bで構成されている。経路長や設備の異なる経路においては、経路間で大きな遅延差が発生しうる。また、冗長回線に伝送装置を適用した場合は、伝送装置のゆらぎが挿入される。 The relay device 4 is composed of, for example, a wired optical cable or a wireless transmission device. As an example, the active communication path is composed of one or more active relay devices 4a having optical cables. The standby communication path is composed of one or more standby relay devices 4b having transmission devices such as wireless systems. A large delay difference may occur between routes on routes with different route lengths and facilities. Also, when a transmission device is applied to a redundant line, fluctuations of the transmission device are inserted.
 遅延調整装置1は、系間遅延差およびゆらぎを吸収するための装置である。図1に示す遅延調整装置1は、中継装置4と下位装置3との間、すなわち受信装置の直上流に接続されている。このように配置された遅延調整装置1は、運用系中継装置4aおよび待機系中継装置4bの2系統からそれぞれ送信されたフレームの系間遅延差およびゆらぎを吸収して、下位装置3の運用系インタフェース部および待機系インタフェース部へ送信する。 The delay adjustment device 1 is a device for absorbing inter-system delay differences and fluctuations. The delay adjustment device 1 shown in FIG. 1 is connected between the relay device 4 and the lower device 3, that is, directly upstream of the receiving device. The delay adjustment device 1 arranged in this way absorbs the inter-system delay difference and fluctuations of the frames transmitted from the two systems of the active relay device 4a and the standby relay device 4b, respectively. Send to the interface unit and the standby system interface unit.
2.遅延調整装置の機能概要
 図2は、実施の形態に係る遅延調整装置1が有する機能の概要を例示するブロック図である。
2. Functional Overview of Delay Adjustment Apparatus FIG. 2 is a block diagram illustrating an overview of the functions of the delay adjustment apparatus 1 according to the embodiment.
 遅延調整装置1は、系間遅延差およびゆらぎ(ジッタ)を吸収することにより、上位装置2および下位装置3による運用系と待機系との間の無瞬断切替を可能とする。遅延調整装置1は、運用系インタフェース部10(第1送受信部)と、待機系インタフェース部20(第2送受信部)と、制御部30とを備える。 The delay adjustment device 1 absorbs the inter-system delay difference and fluctuation (jitter), thereby enabling the high-level device 2 and the low-level device 3 to switch between the active system and the standby system without interruption. The delay adjustment device 1 includes an active interface section 10 (first transmission/reception section), a standby interface section 20 (second transmission/reception section), and a control section 30 .
2-1.運用系インタフェース部
 運用系インタフェース部10は、中継側インタフェース11、運用側バッファ12(第1バッファ)、ノード側インタフェース13を備える。
2-1. Working System Interface Section The working system interface section 10 includes a relay side interface 11 , a working side buffer 12 (first buffer), and a node side interface 13 .
 中継側インタフェース11は、通信回路を有し、図1の運用系中継装置4aに接続する。中継側インタフェース11は、運用系通信経路の運用系中継装置4aから受信したフレームを運用側バッファ12へ出力する。また、中継側インタフェース11は、受信したフレームの信号到達情報を制御部30へ出力する。 The relay-side interface 11 has a communication circuit and connects to the active relay device 4a in FIG. The relay-side interface 11 outputs the frame received from the active-system relay device 4 a on the active-system communication path to the active-side buffer 12 . Also, the relay-side interface 11 outputs signal arrival information of the received frame to the control unit 30 .
 運用側バッファ12は、FIFO型のバッファ、すなわちキューである。運用側バッファ12は、系間遅延差とゆらぎを吸収するために、運用系通信経路を介して中継側インタフェース11から入力したフレームを一時的に記憶する。 The operation-side buffer 12 is a FIFO type buffer, that is, a queue. The working-side buffer 12 temporarily stores frames input from the relay-side interface 11 via the working-system communication path in order to absorb inter-system delay differences and fluctuations.
 ノード側インタフェース13は、通信回路を有し、図1の下位装置3の運用系インタフェース部に接続する。ノード側インタフェース13は、運用側バッファ12に一時的に記憶されたフレームを下位装置3の運用系インタフェース部へ送信可能である。 The node-side interface 13 has a communication circuit and connects to the active system interface section of the lower device 3 in FIG. The node-side interface 13 can transmit the frames temporarily stored in the operation-side buffer 12 to the operation system interface section of the lower device 3 .
 運用系インタフェース部10には、後述する制御部30により送信可能タイミングおよび遅延差時間が設定されうる。フレームを送信可能なタイミングは一定間隔で到来する。運用系インタフェース部10は、運用側バッファ12に記憶されたフレームを、一定間隔の送信可能タイミングが到来するたびにフレーム単位で送信可能である。ただし、遅延差時間が設定されている場合、遅延差時間が経過するまではこの限りではない。 A transmission possible timing and a delay difference time can be set in the active interface unit 10 by the control unit 30, which will be described later. The timing at which frames can be transmitted arrives at regular intervals. The active interface unit 10 can transmit the frames stored in the active buffer 12 frame by frame each time a transmittable timing at a constant interval arrives. However, if the differential delay time is set, this does not apply until the differential delay time elapses.
 運用系インタフェース部10は、遅延差時間が設定されている場合に、フレームを受信してから遅延差時間が経過した後、その次に到来する送信可能タイミングで、運用側バッファ12に記憶された当該フレームを下位装置3へ送信する。また、運用系インタフェース部10は、遅延差時間が設定されていない場合に、フレームを受信した後、その次に到来する送信可能タイミングで、運用側バッファ12に記憶された当該フレームを下位装置3へ送信する。 When the differential delay time is set, the active interface unit 10 stores the The frame is transmitted to the lower device 3 . Further, when the differential delay time is not set, the active system interface unit 10, after receiving the frame, transmits the frame stored in the active buffer 12 to the lower device 3 at the next transmittable timing. Send to
2-2.待機系インタフェース部
 待機系インタフェース部20は、運用系インタフェース部10と同等の構成を有する。待機系インタフェース部20は、中継側インタフェース21、待機側バッファ22(第2バッファ)、ノード側インタフェース23を備える。
2-2. Standby Interface Unit The standby interface unit 20 has the same configuration as the active interface unit 10 . The standby system interface unit 20 includes a relay side interface 21 , a standby side buffer 22 (second buffer), and a node side interface 23 .
 中継側インタフェース21は、通信回路を有し、図1の待機系中継装置4bに接続する。中継側インタフェース21は、待機系通信経路の待機系中継装置4bから受信したフレームを待機側バッファ22へ出力する。また、中継側インタフェース21は、受信したフレームの信号到達情報を制御部30へ出力する。 The relay side interface 21 has a communication circuit and connects to the standby system relay device 4b in FIG. The relay-side interface 21 outputs the frame received from the standby-system relay device 4 b on the standby-system communication path to the standby-side buffer 22 . Also, the relay-side interface 21 outputs signal arrival information of the received frame to the control unit 30 .
 待機側バッファ22は、FIFO型のバッファ、すなわちキューである。待機側バッファ22は、系間遅延差とゆらぎを吸収するために、待機系通信経路を介して中継側インタフェース21から入力したフレームを一時的に記憶する。 The standby buffer 22 is a FIFO type buffer, that is, a queue. The standby-side buffer 22 temporarily stores the frame input from the relay-side interface 21 via the standby-system communication path in order to absorb inter-system delay differences and fluctuations.
 ノード側インタフェース23は、通信回路を有し、図1の下位装置3の待機系インタフェース部に接続する。ノード側インタフェース23は、待機側バッファ22に一時的に記憶されたフレームを下位装置3の待機系インタフェース部へ送信可能である。 The node-side interface 23 has a communication circuit and connects to the standby system interface unit of the lower device 3 in FIG. The node-side interface 23 can transmit the frames temporarily stored in the standby-side buffer 22 to the standby-system interface section of the lower-level device 3 .
 待機系インタフェース部20には、後述する制御部30により送信可能タイミングおよび遅延差時間が設定されうる。フレームを送信可能なタイミングは一定間隔で到来する。待機系インタフェース部20は、待機側バッファ22に記憶されたフレームを、一定間隔の送信可能タイミングが到来するたびにフレーム単位で送信可能である。ただし、遅延差時間が設定されている場合、遅延差時間が経過するまではこの限りではない。 The standby system interface unit 20 can be set with a transmittable timing and a delay difference time by the control unit 30, which will be described later. The timing at which frames can be transmitted arrives at regular intervals. The standby system interface unit 20 can transmit the frames stored in the standby buffer 22 frame by frame each time a transmittable timing at a constant interval arrives. However, if the differential delay time is set, this does not apply until the differential delay time elapses.
 待機系インタフェース部20は、遅延差時間が設定されている場合に、フレームを受信してから遅延差時間が経過した後、その次に到来する送信可能タイミングで、待機側バッファ22に記憶された当該フレームを下位装置3へ送信する。また、待機系インタフェース部20は、遅延差時間が設定されていない場合に、フレームを受信した後、その次に到来する送信可能タイミングで、待機側バッファ22に記憶された当該フレームを下位装置3へ送信する。 When the differential delay time is set, the standby interface unit 20 stores the The frame is transmitted to the lower device 3 . In addition, when the delay difference time is not set, the standby system interface unit 20 receives the frame stored in the standby buffer 22 at the next transmittable timing after receiving the frame. Send to
2-3.制御部
 制御部30は、運用系インタフェース部10から信号到達情報を入力する。運用系の信号到達情報は、運用系インタフェース部10が受信したフレームの受信時刻(第1受信時刻TA)を含む。また、制御部30は、待機系インタフェース部20から信号到達情報を入力する。待機系の信号到達情報は、待機系インタフェース部20が受信したフレームの受信時刻(第2受信時刻TB)を含む。
2-3. Control Unit The control unit 30 receives signal arrival information from the active interface unit 10 . The operational system signal arrival information includes the reception time (first reception time TA) of the frame received by the operational system interface unit 10 . The control unit 30 also receives signal arrival information from the standby system interface unit 20 . The standby system signal arrival information includes the reception time (second reception time TB) of the frame received by the standby system interface unit 20 .
 便宜的に、遅延差検出処理31の対象となるフレームを測定フレームと称する。遅延差検出処理31は、上位装置2から運用系通信経路を介して受信した測定フレームの第1受信時刻TAと上位装置2から待機系通信経路を介して受信した当該測定フレームの第2受信時刻TBとの差の絶対値に基づいて遅延差時間を計算する。遅延差検出処理31は、運用系インタフェース部10および待機系インタフェース部20のうち、測定フレームを先に受信したインタフェース部に遅延差時間を設定する。 For convenience, the frame targeted for the delay difference detection process 31 will be referred to as a measurement frame. The delay difference detection processing 31 detects the first reception time TA of the measurement frame received from the host device 2 via the active communication path and the second reception time TA of the measurement frame received from the host device 2 via the standby communication path. A differential delay time is calculated based on the absolute value of the difference from TB. The delay difference detection processing 31 sets the delay difference time to the interface section that has received the measurement frame first, out of the active interface section 10 and the standby interface section 20 .
 また、制御部30は、運用系インタフェース部10および待機系インタフェース部20におけるフレームの送信可能タイミングを一定間隔に制御する。 In addition, the control unit 30 controls the timing at which frames can be transmitted in the active interface unit 10 and the standby interface unit 20 at regular intervals.
 また、制御部30は、測定した遅延差時間が大きいほど先に測定パケットを受信したインタフェース部のバッファサイズを大きく設定してもよい。例えば、制御部30は、第1受信時刻TAが第2受信時刻TBより早い場合に、遅延差時間が大きいほど、運用側バッファ12のサイズを待機側バッファ22に比して大きく設定する。制御部30は、第2受信時刻TBが第1受信時刻TAより早い場合に、遅延差時間が大きいほど、待機側バッファ22のサイズを運用側バッファ12に比して大きく設定する。 Also, the control unit 30 may set the buffer size of the interface unit that received the measurement packet earlier as the measured delay difference time increases. For example, when the first reception time TA is earlier than the second reception time TB, the control unit 30 sets the size of the operation buffer 12 larger than that of the standby buffer 22 as the delay difference time increases. When the second reception time TB is earlier than the first reception time TA, the controller 30 sets the size of the standby buffer 22 larger than that of the operation buffer 12 as the delay difference time increases.
3.遅延差およびゆらぎ吸収処理
3-1.具体例
 図3は、実施の形態に係る、遅延差およびゆらぎ吸収処理が適用された例を説明するためのタイミングチャートである。
3. Delay difference and fluctuation absorption processing 3-1. Specific Example FIG. 3 is a timing chart for explaining an example in which delay difference and fluctuation absorption processing are applied according to the embodiment.
 図3において、運用系インタフェース部10および待機系インタフェース部20におけるフレームの送信可能タイミングは一定間隔Tに設定されている。Taは、運用系インタフェース部10が、測定フレーム以降に受信したフレーム(以下、フレームAという)の受信時刻である。Tbは、待機系インタフェース部20が受信したフレームAの受信時刻である。Xは、フレームAよりも前に受信された測定フレームについて制御部30により計算された遅延差時間である。図3では、遅延差時間Xは、運用系インタフェース部10に設定されているものとする。Yは、時刻Tcから送信可能タイミングT3までの送信待ち時間である。  In FIG. 3, the timing at which frames can be transmitted in the active interface section 10 and the standby interface section 20 is set to a constant interval T. Ta is the reception time of the frame (hereinafter referred to as frame A) received by the active interface unit 10 after the measurement frame. Tb is the reception time of the frame A received by the standby system interface section 20 . X is the differential delay time calculated by the control unit 30 for the measurement frames received before frame A; In FIG. 3 , it is assumed that the delay difference time X is set in the active system interface unit 10 . Y is the transmission waiting time from time Tc to transmittable timing T3.
 時刻Taにおいて、運用系インタフェース部10は、フレームAを受信し、フレームAを運用側バッファ12に一時的に記憶させる。運用系インタフェース部10には遅延差時間Xが設定されている。そのため、運用系インタフェース部10は、時刻Taから遅延差時間Xが経過する時刻Tcまで待つ。その後、運用系インタフェース部10は、次の送信可能タイミングT3において、運用側バッファ12に記憶されたフレームAを下位装置3へ送信する。 At time Ta, the active interface unit 10 receives frame A and temporarily stores frame A in the active buffer 12 . A delay difference time X is set in the active system interface unit 10 . Therefore, the active interface unit 10 waits until time Tc when the delay difference time X elapses from time Ta. After that, the active interface unit 10 transmits the frame A stored in the active buffer 12 to the lower device 3 at the next transmittable timing T3.
 時刻Tbにおいて、待機系インタフェース部20は、フレームAを受信し、フレームAを待機側バッファ22に一時的に記憶させる。待機系インタフェース部20には遅延差時間Xが設定されていない。そのため、待機系インタフェース部は、次の送信可能タイミングT3において、待機側バッファ22に記憶されたフレームAを下位装置3へ送信する。 At time Tb, the standby system interface unit 20 receives frame A and temporarily stores frame A in the standby buffer 22 . The delay difference time X is not set in the standby system interface section 20 . Therefore, the standby system interface unit transmits the frame A stored in the standby buffer 22 to the lower device 3 at the next transmittable timing T3.
 このように、図3の例では、遅延調整装置1は、運用系インタフェース部10に遅延差時間Xを設定し、運用系インタフェース部10および待機系インタフェース部20に一定間隔Tの送信可能タイミングを設定することで、遅延差およびゆらぎを吸収することができる。 Thus, in the example of FIG. 3, the delay adjustment device 1 sets the differential delay time X in the active interface unit 10, and sets the active interface unit 10 and the standby interface unit 20 to transmit possible timings at the constant interval T. By setting, the delay difference and fluctuation can be absorbed.
3-2.フローチャートの例
 図4は、実施の形態に係る遅延調整装置1が実行する遅延差およびゆらぎ吸収処理を例示するフローチャートである。なお、運用系インタフェース部10および待機系インタフェース部20におけるフレームの送信可能タイミングは一定間隔に設定されている。
3-2. Example of Flowchart FIG. 4 is a flowchart illustrating delay difference and fluctuation absorption processing executed by the delay adjustment device 1 according to the embodiment. The frame transmittable timings of the active interface unit 10 and the standby interface unit 20 are set at regular intervals.
 ステップS100において、運用系インタフェース部10は、フレームを受信すると、運用側バッファ12にフレームを一時的に記憶させる。 In step S100, upon receiving a frame, the active interface section 10 causes the active buffer 12 to temporarily store the frame.
 ステップS101において、運用系インタフェース部10は、信号到達情報を制御部30へ出力する。信号到達情報は、フレームの受信時刻(第1受信時刻TA)を含む。 In step S<b>101 , the active interface unit 10 outputs signal arrival information to the control unit 30 . The signal arrival information includes the frame reception time (first reception time TA).
 ステップS200において、待機系インタフェース部20は、フレームを受信すると、待機側バッファ22にフレームを一時的に記憶させる。 In step S200, when the standby system interface unit 20 receives the frame, it temporarily stores the frame in the standby buffer 22.
 ステップS201において、待機系インタフェース部20は、信号到達情報を制御部30へ出力する。信号到達情報は、フレームの受信時刻(第2受信時刻TB)を含む。 In step S<b>201 , the standby system interface unit 20 outputs signal arrival information to the control unit 30 . The signal arrival information includes the frame reception time (second reception time TB).
 ステップS300において、制御部30は、第1受信時刻TAと第2受信時刻TBとの差の絶対値に基づいて遅延差時間(遅延量)を計算する。また、制御部30は、いずれかのインタフェース部に設定されている遅延差時間を一旦リセットするために、運用系インタフェース部10および待機系インタフェース部20へ遅延差時間を非設定にする命令を出力する。 In step S300, the control unit 30 calculates the delay difference time (delay amount) based on the absolute value of the difference between the first reception time TA and the second reception time TB. In addition, the control unit 30 outputs a command to set no differential delay time to the active interface unit 10 and the standby interface unit 20 in order to temporarily reset the differential delay time set in any of the interface units. do.
 ステップS301において、制御部30は、第1受信時刻TAと第2受信時刻TBとを比較する。TA<TBの場合に、制御部30は、遅延差時間を運用系インタフェース部10へ出力する。TA>TBの場合に、制御部30は、遅延差時間を待機系インタフェース部20へ出力する。なお、TA=TBの場合は、遅延差時間は0なので遅延差時間を出力する必要はない。 In step S301, the control unit 30 compares the first reception time TA and the second reception time TB. If TA<TB, the control unit 30 outputs the differential delay time to the active system interface unit 10 . If TA>TB, the control unit 30 outputs the differential delay time to the standby system interface unit 20 . When TA=TB, the differential delay time is 0, so there is no need to output the differential delay time.
 TA<TBの場合、ステップS102において、運用系インタフェース部10は、制御部30から入力した遅延差時間を設定する。設定された遅延差時間は、次のフレームを受信したときからステップS103の処理に適用される。 If TA<TB, the active interface unit 10 sets the delay differential time input from the control unit 30 in step S102. The set differential delay time is applied to the process of step S103 from the time the next frame is received.
 TA>TBの場合、ステップS202において、待機系インタフェース部20は、制御部30から入力した遅延差時間を設定する。設定された遅延差時間は、次のフレームを受信したときからステップS203の処理に適用される。 If TA>TB, the standby system interface unit 20 sets the delay difference time input from the control unit 30 in step S202. The set differential delay time is applied to the process of step S203 from the time the next frame is received.
 ところで、上述したステップS101、S102、S200、S201、S300、S301による遅延差時間に関する処理は、フレームを受信する度に実行されてもよいが、所定のサイクル毎に実行されてもよい。すなわち遅延差時間の再計算および再設定は所定期間後に実行されてもよい。 By the way, the processing related to the delay difference time in steps S101, S102, S200, S201, S300, and S301 described above may be executed each time a frame is received, or may be executed in each predetermined cycle. That is, recalculation and resetting of the differential delay time may be performed after a predetermined period of time.
 ステップS100に戻り説明を続ける。上述したステップS100においてフレームを受信後、ステップS103の処理が実行される。ステップS103において、運用系インタフェース部10は、遅延差時間が設定されているか否かを判定する。遅延差時間が設定されている場合はステップS104の処理が実行される。遅延差時間が設定されていない場合はステップS105の処理が実行される。 Return to step S100 and continue the explanation. After receiving the frame in step S100 described above, the process of step S103 is executed. In step S103, the active system interface unit 10 determines whether or not a differential delay time is set. If the delay difference time is set, the process of step S104 is executed. If the delay difference time is not set, the process of step S105 is executed.
 遅延差時間が設定されている場合、ステップS104において、運用系インタフェース部10は、フレームを受信してから遅延差時間が経過した後の次の送信可能タイミングに運用側バッファ12に記憶されたフレームを下位装置3へ送信する。 If the differential delay time is set, in step S104, the active interface unit 10 receives the frame stored in the active buffer 12 at the next transmittable timing after the delay differential time has passed since the frame was received. to the lower device 3.
 一方、遅延差時間が設定されていない場合、ステップS105において、運用系インタフェース部10は、フレームを受信した後の次の送信可能タイミングに運用側バッファ12に記憶されたフレームを下位装置3へ送信する。 On the other hand, if the delay difference time is not set, in step S105, the working system interface unit 10 transmits the frame stored in the working buffer 12 to the lower device 3 at the next transmittable timing after receiving the frame. do.
 ステップS200に戻り説明を続ける。上述したステップS200においてフレームを受信後、ステップS203の処理が実行される。ステップS203において、待機系インタフェース部20は、遅延差時間が設定されているか否かを判定する。遅延差時間が設定されている場合はステップS204の処理が実行される。遅延差時間が設定されていない場合はステップS205の処理が実行される。 Return to step S200 to continue the explanation. After receiving the frame in step S200 described above, the process of step S203 is executed. In step S203, the standby system interface section 20 determines whether or not a differential delay time is set. If the delay difference time is set, the process of step S204 is executed. If the delay difference time is not set, the process of step S205 is executed.
 遅延差時間が設定されている場合、ステップS204において、待機系インタフェース部20は、フレームを受信してから遅延差時間が経過した後の次の送信可能タイミングに待機側バッファ22に記憶されたフレームを下位装置3へ送信する。 If the delay difference time is set, in step S204, the standby system interface unit 20 receives the frame stored in the standby buffer 22 at the next transmittable timing after the delay difference time has passed since the frame was received. to the lower device 3.
 一方、遅延差時間が設定されていない場合、ステップS205において、待機系インタフェース部20は、フレームを受信した後の次の送信可能タイミングに待機側バッファ22に記憶されたフレームを下位装置3へ送信する。 On the other hand, if the delay difference time is not set, in step S205, the standby system interface unit 20 transmits the frame stored in the standby buffer 22 to the lower device 3 at the next transmittable timing after receiving the frame. do.
4.変形例
 ところで、上述した実施の形態では、上位装置2から下位装置3への下り方向の信号に対する遅延調整装置1の適用について説明したが、遅延調整装置1は下位装置3から上位装置2への上り方向の信号に対しても適用可能である。この場合、遅延調整装置1は、上位装置2と中継装置4との間に接続され、下位装置3は送信装置、上位装置2は受信装置として機能する。
4. MODIFICATIONS By the way, in the above-described embodiment, the application of the delay adjustment device 1 to the downlink signal from the higher-level device 2 to the lower-level device 3 has been described. It is also applicable to upstream signals. In this case, the delay adjustment device 1 is connected between the host device 2 and the relay device 4, the host device 3 functions as a transmitter, and the host device 2 functions as a receiver.
 また、上述した実施の形態では、運用系インタフェース部10を第1送受信部とし、待機系インタフェース部20を第2送受信部としているが、運用系インタフェース部10を第2送受信部とし、待機系インタフェース部20を第1送受信部としてもよい。すなわち、遅延調整装置1が有する2系統の送受信部のどちらを運用系に接続してもよいし、待機系に接続してもよい。遅延差時間は、適切な一方の送受信部に設定される。 Further, in the above-described embodiment, the active interface unit 10 is the first transmission/reception unit and the standby interface unit 20 is the second transmission/reception unit. The unit 20 may be used as the first transmitting/receiving unit. That is, either of the two transmission/reception units of the delay adjustment device 1 may be connected to the active system or may be connected to the standby system. The differential delay time is set in the appropriate one of the transmitting/receiving units.
5.効果
 以上説明したように、本実施の形態に係る冗長回線システムによれば、運用系および待機系の信号受信時刻の差に基づいて計算された遅延差時間を、2系統の送受信部のうちフレームを先に受信する送受信部に固定的に設定することにより、系間遅延差を吸収することができる。また、バッファから送出されるフレームの送信可能タイミングを一定間隔に制御することにより、無線システム等で発生するゆらぎを吸収することができる。系間遅延差およびゆらぎを吸収することで、系間の無瞬断切替による高いサービス品質を担保できる。遅延調整装置1は、2系統の通信経路が任意の装置を使用して構成された場合でも、系間遅延差およびゆらぎを吸収でき、系間の無瞬断切替が可能である。また、無瞬断切替が可能であるため、保守作業においてお客様に対する回線借用が不要であり保守稼働の低減が図れる。
5. Effect As described above, according to the redundant line system according to the present embodiment, the differential delay time calculated based on the difference in signal reception time between the active system and the standby system is is fixedly set to the transmitting/receiving unit that receives first, the inter-system delay difference can be absorbed. Also, by controlling the transmittable timing of the frame sent from the buffer at regular intervals, it is possible to absorb fluctuations that occur in a wireless system or the like. High service quality can be ensured by uninterrupted switching between systems by absorbing inter-system delay differences and fluctuations. The delay adjustment device 1 can absorb inter-system delay differences and fluctuations even when two communication paths are configured using arbitrary devices, and can switch between systems without instantaneous interruption. In addition, since it is possible to switch without interruption, it is not necessary to borrow a line from the customer for maintenance work, and maintenance work can be reduced.
6.ハードウェア構成例
 図5は、実施の形態に係る遅延調整装置1のハードウェア構成例を示すブロック図である。遅延調整装置1は、制御装置90、運用系通信回路95、待機系通信回路96を含む。
6. Hardware Configuration Example FIG. 5 is a block diagram showing a hardware configuration example of the delay adjustment device 1 according to the embodiment. The delay adjustment device 1 includes a control device 90 , an active communication circuit 95 and a standby communication circuit 96 .
 制御装置90は、遅延調整装置1の制御を行う。例えば、制御装置90は、1又は複数のプロセッサ91(以下、単に「プロセッサ91」と呼ぶ)及び1又は複数の記憶装置92(以下、単に「記憶装置92」と呼ぶ)を含む。プロセッサ91は、各種情報処理(図2に示す各部の処理を含む)を行う。プロセッサ91は、例えばCPUを含む。記憶装置92は、プロセッサ91による処理に必要な各種情報を格納する。記憶装置92としては、揮発性メモリ、不揮発性メモリ、HDD、SSD、等が例示される。プロセッサ91が、コンピュータプログラムである制御プログラムを実行することにより、制御装置90の機能が実現される。制御プログラムは、記憶装置92に格納される。制御プログラムは、コンピュータが読み取り可能な記録媒体に記録されてもよい。図2の運用側バッファ12および待機側バッファ22は、記憶装置92の一部により実現されてもよい。 The control device 90 controls the delay adjustment device 1 . For example, the control device 90 includes one or more processors 91 (hereinafter simply referred to as "processors 91") and one or more storage devices 92 (hereinafter simply referred to as "storage devices 92"). The processor 91 performs various types of information processing (including the processing of each unit shown in FIG. 2). Processor 91 includes, for example, a CPU. The storage device 92 stores various information necessary for processing by the processor 91 . Examples of the storage device 92 include volatile memory, nonvolatile memory, HDD, SSD, and the like. The functions of the control device 90 are realized by the processor 91 executing a control program, which is a computer program. A control program is stored in the storage device 92 . The control program may be recorded on a computer-readable recording medium. The operation side buffer 12 and the standby side buffer 22 in FIG. 2 may be realized by part of the storage device 92 .
 運用系通信回路95は、図2の中継側インタフェース11およびノード側インタフェース13を含む。なお、運用系通信回路95は、図2の運用側バッファ12として機能する記憶装置を備えてもよい。待機系通信回路96は、図2の中継側インタフェース21およびノード側インタフェース23を含む。なお、待機系通信回路96は、図2の待機側バッファ22として機能する記憶装置を備えてもよい。 The active communication circuit 95 includes the relay side interface 11 and the node side interface 13 of FIG. Note that the active communication circuit 95 may include a storage device that functions as the active buffer 12 in FIG. Standby system communication circuit 96 includes relay side interface 21 and node side interface 23 of FIG. The standby system communication circuit 96 may include a storage device that functions as the standby buffer 22 in FIG.
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。上述した実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、上述した実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. When referring to numbers such as the number, quantity, amount, range, etc. of each element in the above-described embodiments, unless otherwise specified or clearly specified in principle, the number referred to The invention is not limited. Also, the structures and the like described in the above-described embodiments are not necessarily essential to the present invention unless otherwise specified or clearly specified in principle.
1 遅延調整装置
2 上位装置
3 下位装置
4 中継装置
4a 運用系中継装置
4b 待機系中継装置
10 運用系インタフェース部
11 中継側インタフェース
12 運用側バッファ
13 ノード側インタフェース
20 待機系インタフェース部
21 中継側インタフェース
22 待機側バッファ
23 ノード側インタフェース
30 制御部
31 遅延差検出処理
90 制御装置
91 プロセッサ
92 記憶装置
95 運用系通信回路
96 待機系通信回路
1 Delay adjustment device 2 Upper device 3 Lower device 4 Relay device 4a Active relay device 4b Standby relay device 10 Active interface unit 11 Relay interface 12 Operation buffer 13 Node interface 20 Standby interface 21 Relay interface 22 standby-side buffer 23 node-side interface 30 control unit 31 delay difference detection processing 90 control device 91 processor 92 storage device 95 active communication circuit 96 standby communication circuit

Claims (4)

  1.  送信装置と受信装置との間を第1経路および第2経路の2系統で接続し、前記第1経路および前記第2経路は同じフレームを伝送する、冗長回線システムに備えられる遅延調整装置であって、
     前記遅延調整装置は、
      前記送信装置と前記受信装置との間を接続し、
      前記送信装置から前記第1経路を介して受信したフレームを第1バッファに一時的に記憶する第1送受信部と、
      前記送信装置から前記第2経路を介して受信したフレームを第2バッファに一時的に記憶する第2送受信部と、
      前記第1送受信部および前記第2送受信部におけるフレームの送信可能タイミングを一定間隔に制御する制御部と、を備え、
     前記制御部は、
      前記送信装置から前記第1経路を介して受信した測定フレームの第1受信時刻と前記送信装置から前記第2経路を介して受信した当該測定フレームの第2受信時刻との差に基づいて遅延差時間を計算し、
      前記第1受信時刻が前記第2受信時刻より早い場合に、前記第1送受信部に前記遅延差時間を設定し、
      前記第2受信時刻が前記第1受信時刻より早い場合に、前記第2送受信部に前記遅延差時間を設定し、
     前記第1送受信部は、
      前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信し、
      前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信し、
     前記第2送受信部は、
      前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信し、
      前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信すること、
     を特徴とする遅延調整装置。
    A delay adjustment device provided in a redundant line system, in which a transmission device and a reception device are connected by two systems of a first route and a second route, and the first route and the second route transmit the same frame. hand,
    The delay adjustment device is
    connecting between the transmitting device and the receiving device;
    a first transmission/reception unit that temporarily stores frames received from the transmission device via the first path in a first buffer;
    a second transmitting/receiving unit that temporarily stores frames received from the transmitting device via the second path in a second buffer;
    a control unit that controls frame transmittable timings in the first transmitting/receiving unit and the second transmitting/receiving unit at regular intervals;
    The control unit
    A delay difference based on a difference between a first reception time of the measurement frame received from the transmission device via the first path and a second reception time of the measurement frame received from the transmission device via the second path calculate time,
    when the first reception time is earlier than the second reception time, setting the delay difference time in the first transmission/reception unit;
    when the second reception time is earlier than the first reception time, setting the delay difference time in the second transmission/reception unit;
    The first transceiver unit
    When the differential delay time is set, the frame stored in the first buffer is transmitted to the receiving device at the next transmittable timing after the differential delay time has elapsed since the frame was received. ,
    when the delay difference time is not set, transmitting the frame stored in the first buffer to the receiving device at the next transmittable timing after receiving the frame;
    The second transmission/reception unit is
    When the differential delay time is set, the frame stored in the second buffer is transmitted to the receiving device at the next transmittable timing after the differential delay time has elapsed since the frame was received. ,
    transmitting the frame stored in the second buffer to the receiving device at the next transmittable timing after the frame is received when the delay difference time is not set;
    A delay adjustment device characterized by:
  2.  前記制御部は、
      前記第1受信時刻が前記第2受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第1バッファのサイズを前記第2バッファに比して大きく設定し、
      前記第2受信時刻が前記第1受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第2バッファのサイズを前記第1バッファに比して大きく設定すること、
     を特徴とする請求項1に記載の遅延調整装置。
    The control unit
    when the first reception time is earlier than the second reception time, setting the size of the first buffer larger than that of the second buffer as the delay difference time increases;
    setting the size of the second buffer larger than that of the first buffer as the delay difference time increases when the second reception time is earlier than the first reception time;
    The delay adjustment device according to claim 1, characterized by:
  3.  送信装置と受信装置との間を第1経路および第2経路の2系統で接続し、前記第1経路および前記第2経路は同じフレームを伝送する、冗長回線システムであって、
     前記送信装置と前記受信装置との間を接続する遅延調整装置を備え、
     前記遅延調整装置は、
      前記送信装置から前記第1経路を介して受信したフレームを第1バッファに一時的に記憶する第1送受信部と、
      前記送信装置から前記第2経路を介して受信したフレームを第2バッファに一時的に記憶する第2送受信部と、
      前記第1送受信部および前記第2送受信部におけるフレームの送信可能タイミングを一定間隔に制御する制御部と、を備え、
     前記制御部は、
      前記送信装置から前記第1経路を介して受信した測定フレームの第1受信時刻と前記送信装置から前記第2経路を介して受信した当該測定フレームの第2受信時刻との差に基づいて遅延差時間を計算し、
      前記第1受信時刻が前記第2受信時刻より早い場合に、前記第1送受信部に前記遅延差時間を設定し、
      前記第2受信時刻が前記第1受信時刻より早い場合に、前記第2送受信部に前記遅延差時間を設定し、
     前記第1送受信部は、
      前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信し、
      前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第1バッファに記憶された当該フレームを前記受信装置へ送信し、
     前記第2送受信部は、
      前記遅延差時間が設定されている場合に、フレームを受信してから前記遅延差時間が経過した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信し、
      前記遅延差時間が設定されていない場合に、フレームを受信した後の次の送信可能タイミングに前記第2バッファに記憶された当該フレームを前記受信装置へ送信すること、
     を特徴とする冗長回線システム。
    A redundant line system in which a transmitting device and a receiving device are connected by two systems of a first route and a second route, and the first route and the second route transmit the same frame,
    A delay adjustment device connecting between the transmitting device and the receiving device,
    The delay adjustment device is
    a first transmission/reception unit that temporarily stores frames received from the transmission device via the first path in a first buffer;
    a second transmitting/receiving unit that temporarily stores frames received from the transmitting device via the second path in a second buffer;
    a control unit that controls frame transmittable timings in the first transmitting/receiving unit and the second transmitting/receiving unit at regular intervals;
    The control unit
    A delay difference based on a difference between a first reception time of the measurement frame received from the transmission device via the first path and a second reception time of the measurement frame received from the transmission device via the second path calculate time,
    when the first reception time is earlier than the second reception time, setting the delay difference time in the first transmission/reception unit;
    when the second reception time is earlier than the first reception time, setting the delay difference time in the second transmission/reception unit;
    The first transceiver unit
    When the differential delay time is set, the frame stored in the first buffer is transmitted to the receiving device at the next transmittable timing after the differential delay time has elapsed since the frame was received. ,
    when the delay difference time is not set, transmitting the frame stored in the first buffer to the receiving device at the next transmittable timing after receiving the frame;
    The second transmission/reception unit is
    When the differential delay time is set, the frame stored in the second buffer is transmitted to the receiving device at the next transmittable timing after the differential delay time has elapsed since the frame was received. ,
    transmitting the frame stored in the second buffer to the receiving device at the next transmittable timing after the frame is received when the delay difference time is not set;
    A redundant line system characterized by:
  4.  前記制御部は、
      前記第1受信時刻が前記第2受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第1バッファのサイズを前記第2バッファに比して大きく設定し、
      前記第2受信時刻が前記第1受信時刻より早い場合に、前記遅延差時間が大きいほど、前記第2バッファのサイズを前記第1バッファに比して大きく設定すること、
     を特徴とする請求項3に記載の冗長回線システム。
    The control unit
    when the first reception time is earlier than the second reception time, setting the size of the first buffer larger than that of the second buffer as the delay difference time increases;
    setting the size of the second buffer larger than that of the first buffer as the delay difference time increases when the second reception time is earlier than the first reception time;
    4. The redundant line system according to claim 3, characterized by:
PCT/JP2021/032885 2021-09-07 2021-09-07 Delay adjustment device and redundant line system WO2023037416A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/032885 WO2023037416A1 (en) 2021-09-07 2021-09-07 Delay adjustment device and redundant line system
JP2023546599A JPWO2023037416A1 (en) 2021-09-07 2021-09-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032885 WO2023037416A1 (en) 2021-09-07 2021-09-07 Delay adjustment device and redundant line system

Publications (1)

Publication Number Publication Date
WO2023037416A1 true WO2023037416A1 (en) 2023-03-16

Family

ID=85507328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032885 WO2023037416A1 (en) 2021-09-07 2021-09-07 Delay adjustment device and redundant line system

Country Status (2)

Country Link
JP (1) JPWO2023037416A1 (en)
WO (1) WO2023037416A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018203A (en) * 2001-07-03 2003-01-17 Fujitsu Ltd Transmission device
JP2012114660A (en) * 2010-11-24 2012-06-14 Hitachi Ltd Packet transfer device and packet transfer method
JP2012178665A (en) * 2011-02-25 2012-09-13 Nippon Telegr & Teleph Corp <Ntt> Uninterruptible packet transmission device and uninterruptible packet transmission method
JP2013110659A (en) * 2011-11-24 2013-06-06 Oki Electric Ind Co Ltd Gateway unit
US20140347981A1 (en) * 2012-01-17 2014-11-27 Net Insight Intellectual Property Ab Network communication redundancy method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018203A (en) * 2001-07-03 2003-01-17 Fujitsu Ltd Transmission device
JP2012114660A (en) * 2010-11-24 2012-06-14 Hitachi Ltd Packet transfer device and packet transfer method
JP2012178665A (en) * 2011-02-25 2012-09-13 Nippon Telegr & Teleph Corp <Ntt> Uninterruptible packet transmission device and uninterruptible packet transmission method
JP2013110659A (en) * 2011-11-24 2013-06-06 Oki Electric Ind Co Ltd Gateway unit
US20140347981A1 (en) * 2012-01-17 2014-11-27 Net Insight Intellectual Property Ab Network communication redundancy method

Also Published As

Publication number Publication date
JPWO2023037416A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US8081663B2 (en) Time synchronization method and relay apparatus
JP6012908B2 (en) Relay device
JP2008167141A (en) Data transmission method and device, and communication system using the same
WO2008125041A1 (en) Method and device for controlling main-backup inversion
JP2008306545A (en) Uninterruptible packet switching device
WO2023037416A1 (en) Delay adjustment device and redundant line system
JP5678123B2 (en) Transmission apparatus, transmission path switching method, and program
US11444723B2 (en) Signal protection
US8873373B2 (en) Ethernet transmission method, transmission apparatus and system
JP3880482B2 (en) Duplex network computer system and computer system network duplication method
JP2013005210A (en) Packet transmission system, packet transmission device, and uninterruptible switching method
US11201822B2 (en) Switch, switch controlling method, and program
JP2011199530A (en) Transmitting device, transmission path switching method, and program
JP5756764B2 (en) Uninterruptible transmission equipment
JP3950741B2 (en) Non-instantaneous switching method
JP2023182975A (en) Network system and control method thereof
WO2023002539A1 (en) Signal transfer control device, signal transfer control method, signal transfer control program, and signal transfer system
JP2011172162A (en) Receiving apparatus, transmitting apparatus, communication system, communication method and program
JP6258376B2 (en) Uninterruptible switching system, uninterruptible receiving device, uninterruptible switching method, and uninterruptible switching program
JP2024088012A (en) COMMUNICATION DEVICE, CONTROL METHOD FOR COMMUNICATION DEVICE, AND PROGRAM
JP6299131B2 (en) Transport network system
JP2006217316A (en) Transmission apparatus which adjusts data residence time
JP6196150B2 (en) Wireless communication apparatus, wireless communication system, and wireless communication method
JP5925662B2 (en) Packet transmission apparatus and packet transmission control method
JP2009225121A (en) Repeating device, data transfer system, data transfer method, and data transfer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546599

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE