WO2023036708A1 - Calculateur de controle moteur - Google Patents

Calculateur de controle moteur Download PDF

Info

Publication number
WO2023036708A1
WO2023036708A1 PCT/EP2022/074487 EP2022074487W WO2023036708A1 WO 2023036708 A1 WO2023036708 A1 WO 2023036708A1 EP 2022074487 W EP2022074487 W EP 2022074487W WO 2023036708 A1 WO2023036708 A1 WO 2023036708A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
sensor
wired
computer
link
Prior art date
Application number
PCT/EP2022/074487
Other languages
English (en)
Inventor
Pascal Rochard
Stéphane Eloy
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Priority to CN202280061081.9A priority Critical patent/CN117999407A/zh
Publication of WO2023036708A1 publication Critical patent/WO2023036708A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit

Definitions

  • the invention relates to the field of heat engines for motor vehicles and more specifically the field of control computers for a motor vehicle heat engine.
  • a heat engine of a motor vehicle comprises hollow cylinders each defining a combustion chamber into which is injected a mixture of air and fuel. This mixture is compressed in the cylinder by a piston and ignited so as to cause the displacement of the piston in translation inside the cylinder.
  • crankshaft The movement of the pistons in each cylinder of the engine rotates an engine shaft called the "crankshaft" making it possible, via a transmission system, to rotate the wheels of the vehicle.
  • the vehicle also comprises a thermal engine control system, making it possible to control the injection of fuel into each combustion chamber, according to the torque command issued by the driver.
  • the heat engine control system comprises a crankshaft sensor and a control unit.
  • the sensor is mounted opposite a toothed target fixed to the crankshaft and measures the variations in the magnetic field generated by the passage of the teeth in front of the sensor.
  • the sensor thus generates a signal in slots which it sends to the control unit on a first wired link.
  • the control unit can thus determine the angular position of the crankshaft in order to determine the appropriate command to send to each injector at the appropriate time.
  • the control unit is also capable of supplying the sensor with electrical energy via a second wired link separate from the first wired link.
  • the control unit includes a power supply device, electrically connected to the sensor via the second wired link.
  • the control unit detects this malfunction and activates a degraded mode in which torque demand would be limited. In some cases, the control unit could also ask the driver to stop his vehicle as soon as possible. The activation of degraded modes as described previously can be disturbing for the user of the vehicle.
  • the invention relates to a computer for a motor vehicle, said computer being able to be electrically connected to a sensor of the vehicle on a wired communication link in order to receive an output signal generated by said sensor, said sensor being electrically powered by a power supply module via a wired power supply link, the computer being remarkable in that it is configured for:
  • measuring device be electrically connected to a measuring device by a wired measurement exchange link, said measuring device being configured to measure the variations of the electric current flowing on the wired power supply link,
  • the wired power supply link makes it possible to supply current to the sensor.
  • the sensor continues to operate normally and the computer can receive the information measured by the sensor via the measuring device.
  • the computer is an engine control computer
  • the sensor is a crankshaft sensor and a short-circuit occurs
  • the computer is always able to determine the position and the rotational speed of the crankshaft from the information measured by the measuring device.
  • the ECU controls the injection of fuel into each combustion chamber of the engine according to the determined position and rotational speed of the crankshaft.
  • the motor can operate normally, whether or not there is a short-circuit between the wired power supply link and the wired communication link.
  • the invention also relates to a motor vehicle comprising: To. a sensor comprising a power supply connector and an output connector through which the sensor is able to generate an output signal, b. a power supply module capable of providing a power supply voltage, electrically connected to the power supply connector by a wired power supply link, c. a current measuring device, able to measure the variation of the current between the power supply module and the power supply connector, d. a calculator as presented above.
  • the vehicle comprising a multiplexer, said multiplexer comprising: a. a first input electrically connected to the output connector, b. a second input electrically connected to the current measuring device, c. an output electrically connected to the computer, d. a selection input connected to the computer, the computer being configured for: a. when a short circuit is detected, issuing a command to the selection input of the multiplexer, indicating to said multiplexer to connect the second input to the output of the multiplexer, b. receive the current variation between the power supply module and the power supply connector measured by the measurement device and transmitted via the multiplexer.
  • the multiplexer makes it easy to connect the computer to the output connector when no short-circuit is detected and to the measuring device when a short-circuit is detected.
  • the vehicle comprises a pull-up resistor connected between a supply terminal and the output connector of the sensor, said supply terminal being capable of supplying a second supply voltage whose value is equal to the power supply voltage provided by the power supply module.
  • the generated output signal varies between a low voltage level and a high voltage level, for which the voltage is greater than that of the low level.
  • the resistance of draw is used to impose the value of the high voltage level when the output signal is supplied by the sensor via the output connector.
  • the vehicle comprises a ground, the sensor comprising a ground connector electrically connected to ground.
  • the senor comprises a bipolar transistor, the collector of which is electrically connected to the output connector by a protection resistor and the emitter of which is connected to the ground connector.
  • the senor comprises a MOSFET transistor, the drain of which is electrically connected to the output connector by a protection resistor and the source of which is connected to the ground connector.
  • the invention also relates to a method for estimating an output signal, implemented by a vehicle as described above, said method comprising the steps of: a. detection on the wired communication link of an anomaly relating to a short-circuit between the wired power supply link and the wired communication link, b. reception of measurements of the variation of the current flowing between the power supply module and the sensor when an anomaly is detected, c. estimation of the output signal from the current variation measurements received on the wired measurement exchange link.
  • the method makes it possible, in the event of a short-circuit detected between the wired power supply link and the wired communication link, to supply a current variation to the computer, so that said computer is capable of estimating the exit.
  • the computer has access to the information measured by the sensor.
  • the computer is an engine control computer
  • the sensor is a crankshaft sensor and a short-circuit occurs
  • the computer is always able to determine the position and the rotational speed of the crankshaft from the information measured by the measuring device.
  • the ECU controls the injection of fuel into each combustion chamber of the engine according to the determined position and rotational speed of the crankshaft.
  • the motor can operate normally, whether or not there is a short-circuit between the wired power supply link and the wired communication link.
  • Figure 1 is a schematic representation of an embodiment of the vehicle according to the invention.
  • FIG 2 is a schematic illustration of a second embodiment of the vehicle according to the invention.
  • the vehicle includes a heat engine.
  • the thermal engine comprises a plurality of cylinders, a crankshaft and at least one camshaft. More precisely still, in this non-limiting example, the thermal engine comprises a line of cylinders connected to a camshaft and to the crankshaft.
  • Each cylinder is hollow and defines a combustion chamber in which a piston slides. A mixture of air and fuel, introduced into the combustion chamber, is compressed by the piston. The mixture ignites and causes the piston to move in translation inside the cylinder.
  • each cylinder is connected to the crankshaft via its piston.
  • Each cylinder comprises an intake valve, through which the gases are introduced into the combustion chamber, and an exhaust valve, through which the gases are expelled from the combustion chamber.
  • the inlet valve and the exhaust valve are connected to the camshaft of the corresponding cylinder line.
  • a toothed target is attached to the crankshaft.
  • the target could also be magnetic.
  • the target, toothed or magnetic could be attached to a camshaft.
  • the vehicle also comprises a sensor 10, a power supply module 20, at least one mass M, a current measuring device 30 and a computer 40 for engine control.
  • the power supply module 20 is capable of supplying a supply voltage.
  • the supply voltage is for example defined at +5 volts.
  • the sensor 10 includes a power connector 11, a ground connector 12 and an output connector 13.
  • the power supply connector 11 is electrically connected to the power supply module 20, by a wired power supply link L1, thus allowing the sensor 10 to be supplied with electrical energy.
  • Ground connector 12 is electrically connected to ground M.
  • sensor 10 is capable of generating an output signal via output connector 13.
  • the output signal corresponds to a slotted signal, in other words, a square signal, regularly alternating between a so-called "high” level and a so-called “low” level.
  • the voltage corresponding to the high level is higher than the voltage corresponding to the low level.
  • the low level voltage is close to 0 volts and the high level voltage corresponds to the voltage supplied by the power supply module 20, in particular at +5 volts.
  • the sensor 10 can for example be mounted in the vehicle so as to be arranged facing said target.
  • the output signal is therefore relative to said target.
  • the senor 10 also includes a magnetic field level detection device.
  • the output signal is therefore relative to the magnetic field level measured by the detection device during the passage of a tooth of the toothed target opposite the sensor 10.
  • each high level of the output signal corresponds to the passage of a tooth of the target in front of the sensor 10 and each low level corresponds to the passage of a space between two teeth. consecutive shots of the target in front of sensor 10.
  • the senor 10 comprises for example an NPN bipolar transistor, the collector of which is electrically connected to the output connector 13 by a protection resistor Rp and the emitter of which is connected to the ground connector 12.
  • the base of the NPN bipolar transistor is connected to the magnetic field level detection device.
  • the base of the transistor is controlled by the magnetic field level detection device. More precisely still, this is a bipolar transistor with so-called “open collector” assembly, known to those skilled in the art.
  • the sensor 10 comprises a MOSFET transistor, the drain of which is electrically connected to the output connector 13 by a protection resistor Rp and the source of which is connected to the ground connector 12.
  • the gate of the MOSFET transistor is connected to the magnetic field level detection device. In other words, the gate of the transistor is controlled by the magnetic field level detection device.
  • the transistor, bipolar or MOSFET behaves like a closed switch when the output signal is at low level and like an open switch when the output signal is at high level.
  • the vehicle also includes a so-called “pulling” resistor Rt electrically connected between the output connector 13 and a power supply terminal "B1".
  • the supply terminal B1 is able to supply a second supply voltage, in particular equal to that supplied by the supply module 20.
  • the pull-up resistor Rt is connected between the collector, or the drain, of the transistor of the sensor 10 and the supply terminal B1.
  • the pull-up resistor Rt makes it possible in particular to impose the high voltage level of the output signal, generated at the output connector 13.
  • the pull-up resistor Rt is connected to ground M and makes it possible to define the low level voltage which results from saturation. of the transistor.
  • the current measuring device 30 is electrically connected to the wired power supply link L1. In other words, the current measuring device 30 is configured to measure the variations of the electric current flowing on the wired power supply link L1.
  • the measurement device 30 acquires a measurement signal corresponding to a variation in voltage proportional to the variation in the current flowing on the wired supply link L1.
  • the measuring device 30 acquires a measuring signal corresponding directly to the variation of the current flowing on the wired power supply link L1.
  • the measurement signal corresponds to a signal in squares alternating regularly between a so-called "high” state and a so-called “low” state.
  • the value measured for a low state is lower than the value measured for a high state.
  • the transistor of sensor 10 behaves like an open switch.
  • the transistor of sensor 10 behaves like a closed switch, in other words the transistor is saturated, and a overcurrent, detectable by the measuring device 30, occurs between the power supply module 20 and the power supply connector 11 .
  • the form of the measurement signal, in voltage or in current, representing the variation in current in the wired supply link L1 is similar to that of the voltage output signal.
  • the frequency, respectively the pulse width of each slot, of the measurement signal corresponds to the frequency, respectively the pulse width of each slot, of the output signal.
  • the measurement signal also faithfully represents the operation of the sensor 10, just as the output signal does when there is no short circuit.
  • the measuring signal varies between 0 volts and the second supply voltage supplied by the supply terminal B1.
  • the value of the low state corresponds to 0 volts and the value of the high state corresponds to + 5 volts.
  • the measuring device 30 is also electrically connected to the computer 40 via a wired measurement exchange link L3.
  • the measurement device 30 is thus able to send the measurement signal, via the wired measurement exchange link L3, to the computer 40.
  • the vehicle also includes a multiplexer 50.
  • the multiplexer 50 includes a first input E1, a second input E2, a selection input E50 and an output S50.
  • the first input E1 is electrically connected to the output connector 13.
  • the second input E2 is electrically connected to the current measuring device 30, the output S50 is electrically connected to the computer 40.
  • the selection input E50 is also connected to the calculator 40.
  • the multiplexer 50 is able to electrically connect the output S50 to the first input E1 or the second input E2.
  • the multiplexer 50 is capable of being controlled by the computer 40, via the selection input E50, in order to know whether the multiplexer 50 should connect the first input E1 or the second input E2 to the output S50.
  • the computer 40 is electrically connected to the output connector 13 of the sensor 10 by a wired communication link L2.
  • the computer 40 is able to receive the output signal generated by the sensor 10 via the wired communication link L2.
  • the computer 40 is connected to the measuring device 30 via the wired measurement exchange link L3, in order to receive the variation of the current measured by the measuring device 30.
  • the computer 40 is also configured to control the multiplexer 50.
  • the computer 40 is configured to issue a command to the selection input E50 of the multiplexer 50, the command comprising a set of instructions indicating the multiplexer 50 to connect the output S50 to the first input E1 or to the second input E2.
  • the output connector 13 is connected to the power supply module 20 and the voltage at the output of the connector output 13 corresponds to a DC voltage, equal to the voltage supplied by the power supply module 20.
  • the computer 40 is configured to detect on the wired communication link L2 an anomaly relating to a short-circuit between the wired supply link L1 and the wired communication link L2. For this, the computer 40 is able to detect when the voltage of the output signal received corresponds to a direct voltage of value equal to the voltage supplied by the power supply module 20 and that, simultaneously with this, the computer 40 receives information signifying to him the passage of at least one tooth of the target opposite the sensor 10.
  • the computer 40 is also configured to issue a command to the selection input E50 of the multiplexer 50, indicating to said multiplexer 50 to connect the second input E2 to the output S50 of the multiplexer 50 , and therefore to disconnect the first input E1 from the output S50.
  • output S50 of multiplexer 50 is connected to first input E1 of computer 40 and not to second input E2.
  • the computer 40 is configured to receive from the measuring device 30 the measurement signal representing the variation of the current flowing between the power supply module 20 and the sensor 10. More precisely, the computer 40 receives the measurements of the variations of the current via the measurement exchange link L3.
  • the computer 40 is configured to estimate the output signal from the measurement signal received via the wired measurement exchange link L3.
  • the computer 40 directly receives a variation in voltage, proportional to the variation in current on the wired supply link L1.
  • the computer 40 converts the variation of the measured current received into a variation of voltage proportional to said variation of current, so that the voltage varies between a maximum value and a minimum value.
  • the minimum value of the voltage variation determined by the computer 40 corresponds for example to 0 volts and the maximum value corresponds to the second supply voltage supplied by the supply terminal B1.
  • the computer 40 reconstitutes the output signal normally transmitted by the sensor 10.
  • the computer 40 is an engine control computer.
  • the computer 40 is then configured to measure the duration between the edges, rising or falling, of the estimated output signal to determine the position and speed of rotation of the shaft to which the target is fixed, and in particular here, to the crankshaft.
  • the computer 40 is then capable of controlling the injection of fuel into each combustion chamber, according to the speed command issued by the driver and the speed of rotation of the determined shaft.
  • the computer 40 can also be able to send a power supply command to the power supply module 20, in particular after detection of a short-circuit as described previously, indicating to the power supply module 20 to continue to power the sensor 10.
  • the computer 40 is connected to the power supply module 20 by a serial peripheral interface, for "Serial Peripheral Interface" in English, known to those skilled in the art.
  • the computer 40 comprises a processor, in particular a microprocessor, capable of implementing a set of instructions allowing these functions to be performed.
  • FIG. 2 there is shown an example of an embodiment of the vehicle according to the invention.
  • the power supply module 20 includes the current measuring device 30.
  • the vehicle includes a control module 60 comprising the power supply module 20, the power supply terminal B1, the multiplexer 50, the mass M, the pull-up resistor Rt and the computer 40 for engine control.
  • the pull-up resistor Rt is therefore here connected on the one hand to a power source and on the other hand to the wired communication link L2.
  • this type of control module 60 can be used for any system comprising a sensor capable of generating an output signal, corresponding to an alternation between a high level and a low level, and comprising a transistor, the collector (or the drain) has the role of output signal transmitter, and a computer comprising a power supply module capable of supplying electrical energy to the sensor.
  • control module 60 as presented previously could be used in the vehicle gearbox control unit, in particular to determine the position and/or the movement of the shafts mounted in the gearbox.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

L'invention concerne un calculateur (40) pour véhicule automobile, apte à être relié électriquement à un capteur (10) du véhicule sur un lien filaire de communication (L2) afin de recevoir un signal de sortie généré par ledit capteur (10), ledit capteur (10) étant alimenté électriquement par un module d'alimentation (20) via un lien filaire d'alimentation (L1), le calculateur (40) étant remarquable en ce qu'il est apte à être relié électriquement à un dispositif de mesure (30) configuré pour mesurer les variations du courant électrique circulant sur le lien filaire d'alimentation (L1), et en ce qu'il est configuré pour détecter sur le lien filaire de communication (L2) un court-circuit entre le lien filaire d'alimentation (L1) et le lien filaire de communication (L2), à recevoir du dispositif de mesure (30) les mesures des variations du courant et le capteur (10) et à estimer le signal de sortie à partir des mesures de variation de courant reçues.

Description

DESCRIPTION
CALCULATEUR DE CONTROLE MOTEUR
[Domaine technique]
[0001] L’invention concerne le domaine des moteurs thermiques pour véhicules automobiles et plus précisément le domaine des calculateurs de contrôle d’un moteur thermique de véhicule automobile.
[Etat de la technique antérieure]
[0002] De manière connue, un moteur thermique de véhicule automobile comprend des cylindres creux délimitant chacun une chambre de combustion dans laquelle est injecté un mélange d’air et de carburant. Ce mélange est compressé dans le cylindre par un piston et enflammé de manière à provoquer le déplacement du piston en translation à l’intérieur du cylindre.
[0003] Le déplacement des pistons dans chaque cylindre du moteur entraine en rotation un arbre moteur appelé « vilebrequin » permettant, via un système de transmission, d’entrainer en rotation les roues du véhicule.
[0004] Le véhicule comprend également un système de contrôle du moteur thermique, permettant de commander l’injection de carburant dans chaque chambre de combustion, en fonction de la commande de couple émise par le conducteur.
[0005] De nos jours, le système de contrôle du moteur thermique comprend un capteur de vilebrequin et une unité de contrôle. Le capteur est monté en regard d’une cible dentée fixée sur le vilebrequin et mesure les variations du champ magnétique générées par le passage des dents devant le capteur. Le capteur génère ainsi un signal en créneaux qu’il envoie à l’unité de contrôle sur un premier lien filaire. L’unité de contrôle peut ainsi déterminer la position angulaire du vilebrequin afin de déterminer la commande adéquate à envoyer à chaque injecteur au moment opportun.
[0006] L’unité de contrôle est également apte à alimenter le capteur en énergie électrique par un deuxième lien filaire distinct du premier lien filaire. Par exemple, l’unité de contrôle comprend un dispositif d’alimentation, connecté électriquement au capteur via le deuxième lien filaire.
[0007] Cependant, il peut arriver qu’un court-circuit survienne entre le premier lien filaire et le deuxième lien filaire. Dans ce cas, le capteur n’est plus apte à générer le signal en créneaux et à le transmettre à l’unité de contrôle par le premier lien filaire. De manière connue, l’unité de contrôle détecte ce dysfonctionnement et active un mode dégradé dans lequel la demande de couple serait limitée. Dans certains cas, l’unité de contrôle pourrait aussi demander au conducteur d’arrêter son véhicule le plus rapidement possible. L’activation des modes dégradés tels que décrits précédemment peut être dérangeante pour l’utilisateur du véhicule.
[0008] Ainsi, il existe le besoin d’une solution permettant de remédier, au moins partiellement, à ces inconvénients.
[Exposé de l’invention]
[0009] A cette fin, l’invention concerne un calculateur pour véhicule automobile, ledit calculateur étant apte à être relié électriquement à un capteur du véhicule sur un lien filaire de communication afin de recevoir un signal de sortie généré par ledit capteur, ledit capteur étant alimenté électriquement par un module d’alimentation via un lien filaire d’alimentation, le calculateur étant remarquable en ce qu’il est configuré pour :
- être relié électriquement à un dispositif de mesure par un lien filaire d’échange de mesures, ledit dispositif de mesure étant configuré pour mesurer les variations du courant électrique circulant sur le lien filaire d’alimentation,
- détecter sur le lien filaire de communication une anomalie relative à un court-circuit entre le lien filaire d’alimentation et le lien filaire de communication,
- recevoir du dispositif de mesure les mesures des variations du courant circulant entre le module d’alimentation et le capteur lorsqu’une anomalie est détectée,
- estimer le signal de sortie à partir des mesures de variation de courant reçues sur le lien filaire d’échange de mesures.
[0010] Ainsi, même lorsqu’un court-circuit entre le lien filaire d’alimentation et le lien filaire de communication survient, le lien filaire d’alimentation permet d’alimenter en courant le capteur. De cette façon, le capteur continue de fonctionner normalement et le calculateur peut recevoir les informations mesurées par le capteur via le dispositif de mesure. Notamment, lorsque le calculateur est un calculateur de contrôle moteur, lorsque le capteur est un capteur de vilebrequin et qu’un court-circuit survient, le calculateur est toujours apte à déterminer la position et la vitesse de rotation du vilebrequin à partir des informations mesurées par le dispositif de mesure. Ensuite, le calculateur commande l’injection de carburant dans chaque chambre de combustion du moteur en fonction de la position et de la vitesse de rotation du vilebrequin déterminées. Ainsi, le moteur peut fonctionner normalement, qu’il y ait un court-circuit ou non entre le lien filaire d’alimentation et le lien filaire de communication.
[0011] L’invention concerne également un véhicule automobile comprenant : a. un capteur comprenant un connecteur d’alimentation et un connecteur de sortie par lequel le capteur est apte à générer un signal de sortie, b. un module d’alimentation apte à fournir une tension d’alimentation, relié électriquement au connecteur de d’alimentation par un lien filaire d’alimentation, c. un dispositif de mesure de courant, apte à mesurer la variation du courant entre le module d’alimentation et le connecteur d’alimentation, d. un calculateur tel que présenté précédemment.
[0012] De préférence, le véhicule comprenant un multiplexeur, ledit multiplexeur comprenant : a. une première entrée connectée électriquement au connecteur de sortie, b. une deuxième entrée connectée électriquement au dispositif de mesure de courant, c. une sortie connectée électriquement au calculateur, d. une entrée de sélection connectée au calculateur, le calculateur étant configuré pour : a. lorsqu’un court-circuit est détecté, émettre une commande à l’entrée de sélection du multiplexeur, indiquant audit multiplexeur de connecter la deuxième entrée à la sortie du multiplexeur, b. recevoir la variation du courant entre le module d’alimentation et le connecteur d’alimentation mesurée par le dispositif de mesure et transmise via le multiplexeur.
[0013] Ainsi, le multiplexeur permet facilement de relier le calculateur au connecteur de sortie lorsqu’aucun court-circuit n’est détecté et au dispositif de mesure lorsqu’un court- circuit est détecté.
[0014] De préférence encore, le véhicule comprend une résistance de tirage connectée entre une borne d’alimentation et le connecteur de sortie du capteur, ladite borne d’alimentation étant apte à fournir une deuxième tension d’alimentation dont la valeur est égale à la tension d’alimentation fournie par le module d’alimentation.
[0015] Le signal de sortie généré varie entre un niveau bas de tension et un niveau haut de tension, pour lequel la tension est supérieure à celle du niveau bas. La résistance de tirage permet d’imposer la valeur du niveau haut de tension lorsque le signal de sortie est fourni par le capteur via le connecteur de sortie.
[0016] De manière préférée, le véhicule comprend une masse, le capteur comprenant un connecteur de masse connecté électriquement à la masse.
[0017] Avantageusement, le capteur comprend un transistor bipolaire, dont le collecteur est connecté électriquement au connecteur de sortie par une résistance de protection et dont l’émetteur est relié au connecteur de masse.
[0018] De manière avantageuse, selon une autre forme de réalisation, le capteur comprend un transistor MOSFET, dont le drain est connecté électriquement au connecteur de sortie par une résistance de protection et dont la source est reliée au connecteur de masse.
[0019] L’invention concerne également un procédé d’estimation d’un signal de sortie, mis en œuvre par un véhicule tel que décrit précédemment, ledit procédé comprenant les étapes de : a. détection sur le lien filaire de communication d’une anomalie relative à un court-circuit entre le lien filaire d’alimentation et le lien filaire de communication, b. réception des mesures de la variation du courant circulant entre le module d’alimentation et le capteur lorsqu’une anomalie est détectée, c. estimation du signal de sortie à partir des mesures de variation de courant reçues sur le lien filaire d’échange de mesures.
[0020] Ainsi, le procédé permet, en cas de court-circuit détecté entre le lien filaire d’alimentation et le lien filaire de communication, de fournir une variation de courant au calculateur, afin que ledit calculateur soit apte à estimer le signal de sortie. De cette façon, même en cas de court-circuit, le calculateur a accès aux informations mesurées par le capteur. Notamment, lorsque le calculateur est un calculateur de contrôle moteur, lorsque le capteur est un capteur de vilebrequin et qu’un court-circuit survient, le calculateur est toujours apte à déterminer la position et la vitesse de rotation du vilebrequin à partir des informations mesurées par le dispositif de mesure. Ensuite, le calculateur commande l’injection de carburant dans chaque chambre de combustion du moteur en fonction de la position et de la vitesse de rotation du vilebrequin déterminées. Ainsi, le moteur peut fonctionner normalement, qu’il y ait un court-circuit ou non entre le lien filaire d’alimentation et le lien filaire de communication.
[Description des dessins] [0021] D’autres caractéristiques et avantages de l’invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :
[0022] [Fig 1] La figure 1 est une représentation schématique d’une forme de réalisation du véhicule selon l’invention.
[0023] [Fig 2] La figure 2 est une illustration schématique d’une deuxième forme de réalisation du véhicule selon l’invention.
[Description des modes de réalisation]
[0024] Il va maintenant être décrit une forme de réalisation du véhicule selon l’invention.
[0025] Le véhicule comprend un moteur thermique. Le moteur thermique comprend une pluralité de cylindres, un vilebrequin et au moins un arbre à cames. Plus précisément encore, dans cet exemple non limitatif, le moteur thermique comprend une ligne de cylindres reliée à un arbre à cames et au vilebrequin.
[0026] Chaque cylindre est creux et délimite une chambre de combustion dans laquelle coulisse un piston. Un mélange d’air et de carburant, introduit dans la chambre de combustion, est compressé par le piston. Le mélange s’enflamme et provoque le déplacement du piston en translation à l’intérieur du cylindre. Par ailleurs, chaque cylindre est relié au vilebrequin via son piston.
[0027] Chaque cylindre comprend une soupape d’admission, par laquelle les gaz sont introduits dans la chambre de combustion, et une soupape d’échappement, par laquelle les gaz sont expulsés de la chambre de combustion. La soupape d’admission et la soupape d’échappement sont reliées à l’arbre à cames de la ligne de cylindres correspondant.
[0028] Une cible dentée est fixée sur le vilebrequin. La cible pourrait également être magnétique.
[0029] Dans une autre forme de réalisation encore, la cible, dentée ou magnétique, pourrait être fixée sur un arbre à came.
[0030] En référence à la figure 1 , le véhicule comprend également un capteur 10, un module d’alimentation 20, au moins une masse M, un dispositif de mesure 30 de courant et un calculateur 40 de contrôle moteur.
[0031] Le module d’alimentation 20 est apte à fournir une tension d’alimentation. La tension d’alimentation est par exemple définie à +5 Volts. [0032] Le capteur 10 comprend un connecteur d’alimentation 11 , un connecteur de masse 12 et un connecteur de sortie 13.
[0033] Le connecteur d’alimentation 11 est connecté électriquement au module d’alimentation 20, par un lien filaire d’alimentation L1 , permettant ainsi l’alimentation du capteur 10 en énergie électrique. Le connecteur de masse 12 est relié électriquement à la masse M. Enfin, le capteur 10 est apte à générer un signal de sortie par le connecteur de sortie 13.
[0034] Plus précisément, le signal de sortie correspond à un signal en créneaux, autrement dit, un signal carré, alternant régulièrement entre un niveau dit « haut » et un niveau dit « bas ». La tension correspondant au niveau haut est plus élevée que la tension correspondant niveau bas. Notamment, la tension du niveau bas est proche de 0 volt et la tension du niveau haut correspond à la tension fournie par le module d’alimentation 20, notamment à +5 volts.
[0035] Le capteur 10 peut par exemple être monté dans le véhicule de sorte à être disposé en regard de ladite cible. Le signal de sortie est donc relatif à ladite cible.
[0036] De plus, le capteur 10 comprend également un dispositif de détection de niveau de champ magnétique. Le signal de sortie est donc relatif au niveau de champ magnétique mesuré par le dispositif de détection lors du passage d’une dent de la cible dentée en regard du capteur 10.
[0037] Par exemple, pour une cible dentée fixée sur le vilebrequin, chaque niveau haut du signal de sortie correspond au passage d’une dent de la cible devant le capteur 10 et chaque niveau bas correspond au passage d’un espace entre deux dents consécutives de la cible devant le capteur 10.
[0038] Toujours en référence à la figure 1 , le capteur 10 comprend par exemple un transistor bipolaire NPN, dont le collecteur est connecté électriquement au connecteur de sortie 13 par une résistance de protection Rp et dont l’émetteur est relié au connecteur de masse 12. De plus, la base du transistor bipolaire NPN est connectée au dispositif de détection de niveau de champ magnétique. Autrement dit, la base du transistor est commandée par le dispositif de détection de niveau de champ magnétique. Plus précisément encore, il s’agit ici d’un transistor bipolaire à montage dit « collecteur ouvert », connu de l’homme du métier.
[0039] Selon une autre forme de réalisation du capteur 10, non représentée sur les figures, le capteur 10 comprend un transistor MOSFET, dont le drain est connecté électriquement au connecteur de sortie 13 par une résistance de protection Rp et dont la source est reliée au connecteur de masse 12. La grille du transistor MOSFET est connectée au dispositif de détection de niveau de champ magnétique. Autrement dit, la grille du transistor est commandée par le dispositif de détection de niveau de champ magnétique.
[0040] Le transistor, bipolaire ou MOSFET, se comporte comme un interrupteur fermé lorsque le signal de sortie est au niveau bas et comme un interrupteur ouvert lorsque le signal de sortie est au niveau haut.
[0041] Le véhicule comprend également une résistance dite « de tirage » Rt connectée électriquement entre le connecteur de sortie 13 et une borne d’alimentation « B1 ». La borne d’alimentation B1 est apte à fournir une deuxième tension d’alimentation, notamment égale à celle fournie par le module d’alimentation 20. Autrement dit, la résistance de tirage Rt est connectée entre le collecteur, ou le drain, du transistor du capteur 10 et la borne d’alimentation B1.
[0042] Lorsque le transistor du capteur 10 se comporte comme un interrupteur ouvert, la résistance de tirage Rt permet notamment d’imposer le niveau haut de tension du signal de sortie, généré au connecteur de sortie 13.
[0043] Lorsque le transistor du capteur 10 est saturé, autrement dit lorsque le capteur 10 se comporte comme un interrupteur fermé, la résistance de tirage Rt est connectée à la masse M et permet de définir la tension du niveau bas qui résulte de la saturation du transistor.
[0044] Le dispositif de mesure 30 de courant est connecté électriquement sur le lien filaire d’alimentation L1. Autrement dit, le dispositif de mesure 30 de courant est configuré pour mesurer les variations du courant électrique circulant sur le lien filaire d’alimentation L1.
[0045] Plus précisément, selon une première forme de réalisation, le dispositif de mesure 30 acquière un signal de mesure correspondant à une variation de tension proportionnelle à la variation du courant circulant sur le lien filaire d’alimentation L1.
[0046] Selon une deuxième forme de réalisation, le dispositif de mesure 30 acquière un signal de mesure correspondant directement à la variation du courant circulant sur le lien filaire d’alimentation L1.
[0047] Le signal de mesure correspond à un signal en créneaux alternant régulièrement entre un état dit « haut » et un état dit « bas ». La valeur mesurée pour un état bas est inférieure à la valeur mesurée pour un état haut. Lors d’un état haut, le transistor du capteur 10 se comporte comme un interrupteur ouvert. Lors d’un état bas, le transistor du capteur 10 se comporte comme un interrupteur fermé, autrement dit le transistor est saturé, et une surintensité, détectable par le dispositif de mesure 30, survient entre le module d’alimentation 20 et le connecteur d’alimentation 11 .
[0048] Ainsi, la forme du signal de mesure, en tension ou en courant, représentant la variation de courant dans le lien filaire d’alimentation L1 est semblable à celle du signal de sortie en tension. Notamment, la fréquence, respectivement la largeur d’impulsion de chaque créneau, du signal de mesure correspond à la fréquence, respectivement à la largeur d’impulsion de chaque créneau, du signal de sortie. Ainsi, le signal de mesure représente également fidèlement le fonctionnement du capteur 10, tout comme le fait le signal de sortie lorsqu’il n’y a pas de court-circuit.
[0049] De plus, selon première forme de réalisation du dispositif de mesure 30, le signal de mesure varie entre 0 volt et la deuxième tension d’alimentation fournie par la borne d’alimentation B1 . Autrement dit, dans le cas présent, la valeur de l’état bas correspond à 0 volt et la valeur de l’état haut correspond à + 5 volts.
[0050] Le dispositif de mesure 30 est également relié électriquement au calculateur 40 via un lien filaire d’échange de mesures L3. Le dispositif de mesure 30 est ainsi apte à envoyer le signal de mesure, via le lien filaire d’échange de mesures L3, au calculateur 40.
[0051] Le véhicule comprend également un multiplexeur 50. Le multiplexeur 50 comprend une première entrée E1 , une deuxième entrée E2, une entrée de sélection E50 et une sortie S50. La première entrée E1 est connectée électriquement au connecteur de sortie 13. La deuxième entrée E2 est connectée électriquement au dispositif de mesure 30 de courant, la sortie S50 est connectée électriquement au calculateur 40. Enfin, l’entrée de sélection E50 est également connectée au calculateur 40.
[0052] Le multiplexeur 50 est apte à relier électriquement la sortie S50 à la première entrée E1 ou la deuxième entrée E2.
[0053] Le multiplexeur 50 est apte à être commandé par le calculateur 40, via l’entrée de sélection E50, afin de savoir si le multiplexeur 50 doit connecter la première entrée E1 ou la deuxième entrée E2 à la sortie S50.
[0054] Le calculateur 40 est connecté électriquement au connecteur de sortie 13 du capteur 10 par un lien filaire de communication L2. Ainsi, le calculateur 40 est apte à recevoir le signal de sortie généré par le capteur 10 via le lien filaire de communication L2. D’autre part, le calculateur 40 est relié au dispositif de mesure 30 via le lien filaire d’échange de mesures L3, afin de recevoir la variation du courant mesurée par le dispositif de mesure 30. [0055] Par ailleurs, le calculateur 40 est également configuré pour commander le multiplexeur 50. Pour cela, le calculateur 40 est configuré pour émettre une commande à l’entrée de sélection E50 du multiplexeur 50, la commande comprenant un ensemble d’instructions indiquant au multiplexeur 50 de connecter la sortie S50 à la première entrée E1 ou à la deuxième entrée E2.
[0056] De plus, lorsqu’un court-circuit survient entre le lien filaire d’alimentation L1 et le lien filaire de communication L2, alors le connecteur de sortie 13 est connecté au module d’alimentation 20 et la tension en sortie du connecteur de sortie 13 correspond à une tension continue, égale à la tension fournie par le module d’alimentation 20.
[0057] Le calculateur 40 est configuré pour détecter sur le lien filaire de communication L2 une anomalie relative à un court-circuit entre le lien filaire d’alimentation L1 et le lien filaire de communication L2. Pour cela, le calculateur 40 est apte à détecter lorsque la tension du signal de sortie reçu correspond à une tension continue de valeur égale à la tension fournie par le module d’alimentation 20 et que, simultanément à cela, le calculateur 40 reçoit une information lui signifiant le passage d’au moins une dent de la cible en regard du capteur 10.
[0058] Lorsqu’un court-circuit est détecté, le calculateur 40 est également configuré pour émettre une commande à l’entrée de sélection E50 du multiplexeur 50, indiquant audit multiplexeur 50 de connecter la deuxième entrée E2 à la sortie S50 du multiplexeur 50, et donc de déconnecter la première entrée E1 de la sortie S50.
[0059] Par défaut, lorsqu’aucun court-circuit n’est détecté par le calculateur 40, la sortie S50 du multiplexeur 50 est connectée à la première entrée E1 du calculateur 40 et non à la deuxième entrée E2.
[0060] De plus, lorsqu’une anomalie, notamment un court-circuit, est détectée, le calculateur 40 est configuré pour recevoir du dispositif de mesure 30 le signal de mesure représentant la variation du courant circulant entre le module d’alimentation 20 et le capteur 10. Plus précisément, le calculateur 40 reçoit les mesures des variations du courant via le lien d’échange de mesures L3.
[0061] Enfin, le calculateur 40 est configuré pour estimer le signal de sortie à partir du signal de mesure reçu via le lien filaire d’échange de mesures L3.
[0062] Plus précisément, lorsque le dispositif de mesure 30 correspond à la première forme de réalisation, le calculateur 40 reçoit directement une variation de tension, proportionnelle à la variation de courant sur le lien filaire de d’alimentation L1. [0063] Lorsque le dispositif de mesure 30 correspond à la deuxième forme de réalisation, le calculateur 40 convertit la variation du courant mesurée reçue en une variation de tension proportionnelle à ladite variation de courant, de sorte que la tension varie entre une valeur maximale et une valeur minimale.
[0064] La valeur minimale de la variation de tension déterminée par le calculateur 40 correspond par exemple à 0 volt et la valeur maximale correspond à la deuxième tension d’alimentation fournie par la borne d’alimentation B1.
[0065] Ainsi, le calculateur 40 reconstitue le signal de sortie normalement transmis par le capteur 10.
[0066] Selon l’exemple décrit précédemment, le calculateur 40 est un calculateur de contrôle moteur. Le calculateur 40 est alors configuré pour mesurer la durée entre les fronts, montants ou descendants, du signal de sortie estimé pour déterminer la position et vitesse de rotation de l’arbre auquel est fixé la cible, et notamment ici, au vilebrequin. Ainsi, le calculateur 40 est ensuite apte à commander l’injection de carburant dans chaque chambre de combustion, en fonction de la commande de vitesse émise par le conducteur et de la vitesse de rotation de l’arbre déterminée.
[0067] Par ailleurs, le calculateur 40 peut également être apte à émettre une commande d’alimentation au module d’alimentation 20, notamment après détection d’un court-circuit tel que décrit précédemment, indiquant au module d’alimentation 20 de continuer d’alimenter le capteur 10. Par exemple, le calculateur 40 est relié au module d’alimentation 20 par une interface périphérique en série, pour « Serial Peripheral Interface » en langue anglaise, connue de l’homme du métier.
[0068] Le calculateur 40 comprend un processeur, notamment un microprocesseur, apte à mettre en œuvre un ensemble d’instructions permettant de réaliser ces fonctions.
[0069] En référence à la figure 2, il est représenté un exemple d’une forme de réalisation du véhicule selon l’invention.
[0070] Selon cet exemple, le module d’alimentation 20 comprend le dispositif de mesure 30 de courant.
[0071] De plus, le véhicule comprend un module de contrôle 60 comprenant le module d’alimentation 20, la borne d’alimentation B1 , le multiplexeur 50, la masse M, la résistance de tirage Rt et le calculateur 40 de contrôle moteur. La résistance de tirage Rt est donc ici reliée d’une part à une source d’alimentation et d’autre part au lien filaire de communication L2. [0072] Par ailleurs, ce type de module de contrôle 60 peut être utilisé pour tout système comprenant un capteur apte à générer un signal de sortie, correspondant à une alternance entre un niveau haut et un niveau bas, et comprenant un transistor, dont le collecteur (ou le drain) a le rôle d’émetteur de signal de sortie, et un calculateur comprenant un module d’alimentation apte à alimenter en énergie électrique le capteur.
[0073] Par exemple, le module de contrôle 60 tel que présenté précédemment pourrait être utilisé dans le boîtier de contrôle de boite de vitesse du véhicule, notamment pour déterminer la position et/ou le déplacement des arbres montés dans la boite de vitesse.

Claims

Revendications
[Revendication 1] Calculateur (40) pour véhicule automobile, ledit calculateur (40) étant apte à être relié électriquement à un capteur (10) du véhicule sur un lien filaire de communication (L2) afin de recevoir un signal de sortie généré par ledit capteur (10), ledit capteur (10) étant alimenté électriquement par un module d’alimentation (20) via un lien filaire d’alimentation (L1), le calculateur (40) étant caractérisé en ce qu’il est configuré pour :
- être relié électriquement à un dispositif de mesure (30) par un lien filaire d’échange de mesures (L3), ledit dispositif de mesure (30) étant configuré pour mesurer les variations du courant électrique circulant sur le lien filaire d’alimentation (L1),
- détecter sur le lien filaire de communication (L2) une anomalie relative à un court-circuit entre le lien filaire d’alimentation (L1) et le lien filaire de communication (L2),
- recevoir du dispositif de mesure (30) les mesures des variations du courant circulant entre le module d’alimentation (20) et le capteur (10) lorsqu’une anomalie est détectée,
- estimer le signal de sortie à partir des mesures de variation de courant reçues sur le lien filaire d’échange de mesures (L3).
[Revendication 2] Véhicule automobile comprenant : a) un capteur (10) comprenant un connecteur d’alimentation (11) et un connecteur de sortie (13) par lequel le capteur (10) est apte à générer un signal de sortie, b) un module d’alimentation (20) apte à fournir une tension d’alimentation, relié électriquement au connecteur d’alimentation (11) par un lien filaire d’alimentation (L1), c) un dispositif de mesure (30) de courant, apte à mesurer la variation du courant entre le module d’alimentation (20) et le connecteur d’alimentation (11), d) un calculateur (40) selon la revendication précédente.
[Revendication 3] Véhicule selon la revendication précédente, comprenant un multiplexeur (50), ledit multiplexeur (50) comprenant : a) une première entrée (E1) connectée électriquement au connecteur de sortie (13), b) une deuxième entrée (E2) connectée électriquement au dispositif de mesure (30) de courant, c) une sortie (S50) connectée électriquement au calculateur (40), d) une entrée (E50) de sélection connectée au calculateur (40), le calculateur (40) étant configuré pour :
- lorsqu’un court-circuit est détecté, émettre une commande à l’entrée (E50) de sélection du multiplexeur (50), indiquant audit multiplexeur (50) de connecter la deuxième entrée (E2) à la sortie (S50) du multiplexeur (50), - recevoir la variation du courant entre le module d’alimentation (20) et le connecteur d’alimentation (11) mesurée par le dispositif de mesure (30) et transmise via le multiplexeur (50).
[Revendication 4] Véhicule selon l’une quelconque des revendications 2 ou 3, comprenant une résistance de tirage (Rt) connectée entre une borne d’alimentation (B1) et le connecteur de sortie (13) du capteur (10), ladite borne d’alimentation (B1) étant apte à fournir une deuxième tension d’alimentation dont la valeur est égale à la tension d’alimentation fournie par le module d’alimentation (20).
[Revendication 5] Véhicule selon l’une quelconque des revendications 2 à 4, comprenant une masse (M), le capteur (10) comprenant un connecteur de masse (12) connecté électriquement à la masse (M).
[Revendication 6] Véhicule selon la revendication 5, dans lequel le capteur (10) comprend un transistor bipolaire, dont le collecteur est connecté électriquement au connecteur de sortie (13) par une résistance de protection (Rp) et dont l’émetteur est relié au connecteur de masse (12).
[Revendication 7] Véhicule selon la revendication 5, dans lequel le capteur (10) comprend un transistor MOSFET, dont le drain est connecté électriquement au connecteur de sortie (13) par une résistance de protection (Rp) et dont la source est reliée au connecteur de masse (12).
[Revendication 8] Procédé d’estimation d’un signal de sortie, mis en œuvre par un véhicule selon l’une quelconque des revendications 2 à 7, ledit procédé comprenant les étapes de : a) détection sur le lien filaire de communication (L2) d’une anomalie relative à un court-circuit entre le lien filaire d’alimentation (L1) et le lien filaire de communication (L2), b) réception des mesures de la variation du courant circulant entre le module d’alimentation (20) et le capteur (10) lorsqu’une anomalie est détectée, c) estimation du signal de sortie à partir des mesures de variation de courant reçues sur le lien filaire d’échange de mesures (L3).
PCT/EP2022/074487 2021-09-10 2022-09-02 Calculateur de controle moteur WO2023036708A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061081.9A CN117999407A (zh) 2021-09-10 2022-09-02 引擎控制计算机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2109509 2021-09-10
FR2109509A FR3127027B1 (fr) 2021-09-10 2021-09-10 Calculateur de contrôle moteur

Publications (1)

Publication Number Publication Date
WO2023036708A1 true WO2023036708A1 (fr) 2023-03-16

Family

ID=79171166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/074487 WO2023036708A1 (fr) 2021-09-10 2022-09-02 Calculateur de controle moteur

Country Status (3)

Country Link
CN (1) CN117999407A (fr)
FR (1) FR3127027B1 (fr)
WO (1) WO2023036708A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186706A1 (fr) * 2008-11-12 2010-05-19 Alstom Transport S.A. Dispositif de détection d'anomalie pour une installation de supervision d'un vehicule ferroviaire, installation et procédé associés
CN102852642B (zh) * 2011-06-28 2016-01-20 通用汽车环球科技运作有限责任公司 标定发动机曲轴-凸轮轴关系和改进车辆跛行回家模式的系统和方法
FR3029283A1 (fr) * 2014-11-28 2016-06-03 Continental Automotive France Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur
FR3071921A1 (fr) * 2017-09-29 2019-04-05 Continental Automotive France Capteur de vilebrequin, de transmission ou d'arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
DE102019201973A1 (de) * 2018-02-21 2019-08-22 Denso Corporation Einspritzüberwachungsvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186706A1 (fr) * 2008-11-12 2010-05-19 Alstom Transport S.A. Dispositif de détection d'anomalie pour une installation de supervision d'un vehicule ferroviaire, installation et procédé associés
CN102852642B (zh) * 2011-06-28 2016-01-20 通用汽车环球科技运作有限责任公司 标定发动机曲轴-凸轮轴关系和改进车辆跛行回家模式的系统和方法
FR3029283A1 (fr) * 2014-11-28 2016-06-03 Continental Automotive France Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur
US11112277B2 (en) * 2014-11-28 2021-09-07 Continental Automotive France Camshaft or crankshaft sensor for automotive vehicle and diagnostic method for such a sensor
FR3071921A1 (fr) * 2017-09-29 2019-04-05 Continental Automotive France Capteur de vilebrequin, de transmission ou d'arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
DE102019201973A1 (de) * 2018-02-21 2019-08-22 Denso Corporation Einspritzüberwachungsvorrichtung

Also Published As

Publication number Publication date
FR3127027A1 (fr) 2023-03-17
FR3127027B1 (fr) 2023-08-04
CN117999407A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
FR2460508A1 (fr) Appareil pour tester un systeme de commande dans un vehicule automobile
FR2851610A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR2488336A1 (fr) Systeme d'alimentation en carburant pour un moteur a combustion interne du type a injection
FR2520892A1 (fr) Systeme regulateur de la vitesse d'un moteur
FR2710105A1 (fr) Procédé pour surveiller le comportement au démarrage d'un système de catalyseur d'un véhicule automobile.
FR2766873A1 (fr) Dispositif de commande de moteur a combustion interne
FR2684795A1 (fr) Systeme de commande d'un utilisateur inductif.
FR2549145A1 (fr) Procede de commande en boucle fermee de la vitesse au ralenti d'un moteur a combustion interne
WO2023036708A1 (fr) Calculateur de controle moteur
FR2686562A1 (fr) Dispositif d'entrainement d'une pompe rotative a vide pour un amplificateur pneumatique d'un systeme de freinage de vehicule automobile electrique.
FR2528117A1 (fr) Dispositif d'arret-demarrage pour moteur a combustion interne de vehicule
CN102278218B (zh) 检测十六烷值的方法和装置
FR2626954A1 (fr) Vanne rotative a commande electrique et dispositif d'alimentation pour moteur en comportant application
FR2816709A1 (fr) Procede et dispositif pour le diagnostic d'un etage final de systeme d'echappement de vehicule automobile
WO2012072252A1 (fr) Procede pour determiner la temperature d'une bobine d'allumage
FR2514418A1 (fr) Installation de dosage de carburant a commande ou reglage electronique pour moteur a combustion interne
FR2952409A1 (fr) Procede et dispositif pour determiner la temperature d'une bougie de prechauffage d'un moteur thermique
FR2712979A1 (fr) Procédé et dispositif pour déterminer la température des gaz d'échappement avec une sonde lambda utilisés dans un véhicule à moteur ou une installation de chauffage.
FR3110200A1 (fr) Dispositif et procédé de détection d'une défaillance d'un moteur à combustion interne pour véhicule automobile
EP2802767B1 (fr) Procede de commande de l'avance pour l'allumage commande d'un moteur a combustion interne
FR2905408A1 (fr) Procede de commande pour moteur suralimente
FR2466618A1 (fr) Systeme de controle de combustible pour moteur a combustion interne
FR3120921A1 (fr) Procédé de diagnostic d’un fonctionnement erroné d’un moteur de véhicule
FR2985395A1 (fr) Procede de commande d'un moteur electrique a courant continu
WO2023025586A1 (fr) Procédé d'allumage d'un moteur thermique d'un véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22772522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061081.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE