WO2023036342A1 - 天线模组及具有该天线模组的通信设备、通信系统 - Google Patents

天线模组及具有该天线模组的通信设备、通信系统 Download PDF

Info

Publication number
WO2023036342A1
WO2023036342A1 PCT/CN2022/118476 CN2022118476W WO2023036342A1 WO 2023036342 A1 WO2023036342 A1 WO 2023036342A1 CN 2022118476 W CN2022118476 W CN 2022118476W WO 2023036342 A1 WO2023036342 A1 WO 2023036342A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
antenna
radiation
positioning
module
Prior art date
Application number
PCT/CN2022/118476
Other languages
English (en)
French (fr)
Inventor
柯智慧
Original Assignee
联洲集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联洲集团有限公司 filed Critical 联洲集团有限公司
Publication of WO2023036342A1 publication Critical patent/WO2023036342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles

Definitions

  • the invention relates to the technical field of antennas, in particular to an antenna module based on space positioning technology, communication equipment and a communication system having the antenna module.
  • wireless directional communication can generally achieve better results than ordinary omnidirectional communication.
  • Existing wireless directional communication generally directly uses multiple physical directional antennas for coverage layout, but because its radiation field is fixed, the applicable scenarios are limited. For clients whose locations change, it is likely that multiple directional antennas will not The maximum gain radiation azimuth angle of the antenna; there are also some smart antennas that adjust the radiation azimuth map by means of signal strength detection, but due to the large real-time fluctuations of wireless signals, it is difficult to achieve accurate directional adjustment; there are also antenna array designs , such as an adaptive antenna array, which adjusts the radiation azimuth according to the relative position of the client, but requires additional complex antenna array design, and is not decoupled from the control system (communication equipment) of the antenna, and the cost of software and hardware implementation is high. very high.
  • the directional transmission in the existing wireless directional communication is basically one-way, mostly from the base station to the client, and there is no two-way or multi-directional directional transmission, so the transmission efficiency needs to be further improved.
  • the present invention provides an antenna module and a communication device and a communication system with the antenna module.
  • the precise position of the communication object is obtained through the space positioning technology, and the precise adjustment of the antenna orientation angle is realized, and it is decoupled from the control system of the antenna, reducing the design cost.
  • multiple communication devices in the communication system can be configured with antenna modules, so that directional communication can be performed between these communication devices, that is, the antenna modules of these communication devices can be automatically combined to perform multi-directional communication.
  • the directional communication on the computer constitutes an automatic multi-directional directional system.
  • an embodiment of the present invention provides a communication system, including a plurality of communication devices, wherein the antenna module of the first communication device in the plurality of communication devices is based on the peer terminal in the plurality of communication devices The location information of the communication device, determining a first target radiation azimuth corresponding to the location information of the peer communication device, and determining a corresponding first antenna radiation azimuth according to the first target radiation azimuth, so as to point to the peer communication device device; and the peer communication device determines a second target radiation azimuth corresponding to the location information of the first communication device based on the location information of the first communication device, and determines the corresponding radiation azimuth according to the second target radiation azimuth
  • the radiation direction of the second antenna is directed to the first communication device.
  • the number of the first communication device is one or more, and/or the number of the peer communication device of the first communication device is one or more.
  • the multiple communication devices included in the communication system include one of the following: multiple user terminals (such as clients); multiple wireless access points; multiple base stations; or user terminals, wireless access points and any combination of base stations.
  • the peer communication device includes a first peer communication device and a second peer communication device, wherein the antenna module of the first peer communication device and the antenna of the second peer communication device The modules independently determine the radiation azimuths of the second antennas respectively pointing to the first communication device.
  • the antenna module of the first communication device determines that it points to the peer communication device.
  • the radiation direction of the first antenna of the device is updated; and the radiation direction of the second antenna directed to the first communication device determined by the antenna module of the peer communication device is updated.
  • the antenna module included in the first communication device includes: a space positioning module, configured to determine the position of the peer communication device in three dimensions based on the positioning information obtained from the peer communication device of the first communication device. Position information in the coordinate system; an orientation adjustment algorithm module, configured to determine the target radiation orientation corresponding to the peer communication device based on the position information of the peer communication device in the three-dimensional coordinate system, and based on the determined target radiation Azimuth, select the antenna radiation azimuth from N radiation azimuths, and N is an integer greater than or equal to 1; and a directional antenna module, which includes a directional antenna structure providing the N radiation azimuths, for each peer communication device , for adjusting the orientation of the directional antenna structure based on the antenna radiation orientation selected by the orientation adjustment algorithm module, so as to point to the peer communication device.
  • a space positioning module configured to determine the position of the peer communication device in three dimensions based on the positioning information obtained from the peer communication device of the first communication device. Position information in the coordinate system
  • an orientation adjustment algorithm module configured
  • the space positioning module includes: a space positioning antenna submodule, including M positioning antennas, for receiving positioning information from a peer communication device of the first communication device, where M is an integer greater than or equal to 1; space The positioning algorithm sub-module is used to establish a three-dimensional coordinate system with the center of the M positioning antennas as the origin, and determine the position of each peer communication device of the communication device under the three-dimensional coordinate system according to the positioning information. The three-dimensional coordinates of the location information.
  • the directional adjustment algorithm module determines the antenna radiation azimuth, it is configured to: transform the three-dimensional coordinates of the peer communication device in the three-dimensional coordinate system into a target radiation azimuth; convert the target radiation azimuth comparing with the N radiation azimuths; and determining the radiation azimuth closest to the target radiation azimuth among the N radiation azimuths as the antenna radiation azimuth.
  • the directional antenna structure includes P antennas, and the P antennas are used to form the N radiation azimuths, and the numbers of P and N are the same or different.
  • an embodiment of the present invention provides an antenna module installed on a communication device, where the antenna module includes: a space positioning module configured to, based on the positioning information obtained from the peer communication device of the communication device, Determine the position information of the peer communication device of the communication device in the three-dimensional coordinate system; the orientation adjustment algorithm module is used to determine the position information of the peer communication device based on the position information of the peer communication device in the three-dimensional coordinate system
  • the directional antenna structure is used to adjust the orientation of the directional antenna structure based on the antenna radiation orientation selected by the orientation adjustment algorithm module, so as to point to the peer communication device.
  • the space positioning module includes: a space positioning antenna submodule, including M positioning antennas, for receiving positioning information from the peer communication device of the communication device, where M is an integer greater than or equal to 1; space The positioning algorithm submodule is configured to establish a three-dimensional coordinate system with the center of the M positioning antennas as the origin, and determine the behavior of the peer communication device of the communication device in the three-dimensional coordinate system according to the positioning information The three-dimensional coordinates of the location information.
  • M an integer greater than or equal to 1
  • space The positioning algorithm submodule is configured to establish a three-dimensional coordinate system with the center of the M positioning antennas as the origin, and determine the behavior of the peer communication device of the communication device in the three-dimensional coordinate system according to the positioning information The three-dimensional coordinates of the location information.
  • the spatial positioning algorithm sub-module determines the three-dimensional coordinates, it is configured to: calculate the distance of the peer communication device relative to each positioning antenna of the antenna module according to the positioning information information and phase difference information of the timing information received by any two antennas; and determining the three-dimensional coordinates of the peer communication device in the three-dimensional coordinate system according to the distance information and the phase difference information.
  • the positioning information is a wireless data packet with a time stamp.
  • the spatial positioning algorithm submodule determines the three-dimensional coordinates, it is further configured to: calculate according to the time stamp in the positioning information received by each of the M positioning antennas Calculate the transmission time of the positioning information, and calculate the distance information of the peer communication device relative to each positioning antenna of the antenna module in combination with the transmission speed of the positioning information; calculate any two positioning antennas receiving The obtained phase difference information between the positioning information, the phase difference information is associated with the position relationship of the M positioning antennas; and based on the distance information and the phase difference information, determine the position according to the trigonometric function relationship The three-dimensional coordinates of the peer communication device in the three-dimensional coordinate system.
  • the orientation adjustment algorithm module determines the target radiation azimuth, it is configured to: transform the three-dimensional coordinates of the peer communication device in the three-dimensional coordinate system into the target radiation azimuth; convert the target radiation azimuth comparing with the N radiation azimuths; and determining the radiation azimuth closest to the target radiation azimuth among the N radiation azimuths as the antenna radiation azimuth.
  • the three-dimensional coordinates are in the form of point coordinates; and the target radiation azimuth and the N radiation azimuths are in the form of angular coordinates.
  • the directional adjustment algorithm module is further configured to: pre-divide the three-dimensional coordinate system into the N radiation azimuths in the form of angular coordinates according to the directional antenna structure included in the directional antenna module.
  • the directional antenna structure includes P antennas, and the P antennas are used to form the N radiation azimuths, and the numbers of P and N are the same or different.
  • an embodiment of the present invention provides a communication device, where the communication device includes the antenna module as described in the second aspect.
  • an embodiment of the present invention provides a communication method in the communication system according to the first aspect, the method includes: for each communication device in the plurality of communication devices in the communication system, by The antenna module of the communication device determines at least one first target radiation azimuth respectively corresponding to the position information of the at least one peer communication device based on the position information of at least one peer communication device among the plurality of communication devices; The antenna module of each peer communication device determines a second target radiation direction corresponding to the location information of the communication device based on the location information of the communication device, and the antenna module of the communication device determines the second target radiation orientation based on each The first target radiation azimuth determines the first antenna radiation azimuth corresponding to the first target radiation azimuth to point to the peer communication device corresponding to the first target radiation azimuth, and the antenna module of each peer communication device A second antenna radiation orientation is determined based on the determined second target radiation orientation to point to the communication device.
  • Fig. 1A is a schematic structural diagram of an embodiment of a communication system provided by the present invention.
  • Fig. 1B is a schematic flowchart of an embodiment of a communication method of a communication system provided by the present invention.
  • Fig. 2 is a schematic structural diagram of an embodiment of an antenna module provided by the present invention.
  • Fig. 3 is a schematic diagram of an embodiment of transforming three-dimensional coordinates into target radiation orientations.
  • Fig. 1A is a schematic structural diagram of an embodiment of a communication system provided by the present invention.
  • a communication system 100 includes a plurality of communication devices ( 11 , 12 , 13 . . . 1N), and communication can be performed between two communication devices.
  • An antenna module is installed on each communication device, and the antenna module can perform transmission required for communication in multiple radiation directions.
  • the multiple communication devices (11, 12, 13...1N) included in the communication system may be multiple user terminals (for example, clients), multiple wireless access points (APs), or multiple communication base stations, and of course It is other types of communication devices; or the types of the multiple communication devices (11, 12, 13...1N) can be different, for example, they can be any combination of user terminals, wireless access points and communication base stations.
  • the antenna module of the first communication device 11 is based on the multiple communication devices (11, 12, 13...1N) of the location information of the peer communication device (that is, the communication object that communicates with the current communication device, so it can also be called the communication object), and determine the first corresponding to the location information of the peer communication device.
  • Target Radiation Azimuth the location information of the peer communication device
  • the first communication device may be any communication device in the communication system, and the number of the first communication device may be one or more.
  • each first communication device may also have one or more peer communication devices.
  • a first communication device for example, communication device 11
  • other two communication devices for example, communication devices 12 and 13
  • these two communication devices serve as peer communication devices of the first communication device
  • the second An antenna module of a communication device may determine the location information of the two peer communication devices (for example, communication devices 12 and 13 ), and determine two corresponding first target radiation azimuths.
  • Each (first or second) target radiation azimuth may be an ideal radiation azimuth from the antenna module of the current communication device to the antenna module of the peer communication device, for example, the azimuth of a line connecting the two in a three-dimensional coordinate system.
  • the antenna module of the first communication device (communication device 11, communication device 12, communication device 13...or one of communication device 1N) is based on the opposite communication device (for example, communication device 11, communication device 12, communication device 13...or the first target radiation direction corresponding to the position information of the communication device 1N) determines a corresponding first antenna radiation direction, and uses the determined first antenna radiation direction to point to the peer communication device, To perform directional communication from the first communication device to the peer communication device.
  • the (first or second) antenna radiation orientation is the radiation orientation closest to the (first or second) target radiation orientation among the multiple radiation orientations determined according to the directional antenna structure included in the antenna module .
  • each peer communication device is also installed with an antenna module, this process can also be similarly performed.
  • the antenna module of the peer communication device determines the second target radiation azimuth corresponding to the position information of the first communication device based on the position information of the first communication device, and the antenna module of the peer communication device determines The determined second target radiation azimuth determines the second antenna radiation azimuth, and uses the determined second antenna radiation azimuth to point to the first communication device, so as to perform directional communication from the peer communication device to the communication device.
  • the antenna module of the peer communication device (for example, 12) of the first communication device (for example, 11) can determine the position information of the first communication device (for example, 11), and determine the second target radiation direction, and then A second antenna radiation azimuth corresponding to the second target radiation azimuth is determined.
  • each peer communication device of each first communication device may determine the second radiation azimuth corresponding to the first communication device independently.
  • the first communication device (11) includes a first peer communication device (12) and a second peer communication device (13), wherein the antenna module of the first peer communication device (12) determines to point to the first During the second antenna radiation azimuth of the communication device (11), the antenna module of the second peer communication device (13) can also determine the second antenna radiation azimuth pointing to the first communication device.
  • the position of the communication device performing directional communication may change, so that the antenna module of the relevant communication device needs to re-determine the antenna radiation direction according to the updated position.
  • the first antenna radiation direction determined by the antenna module of the first communication device and directed to the peer communication device is updated; And the second antenna radiation direction directed to the first communication device determined by the antenna module of the peer communication device is updated.
  • the first antenna radiation direction directed to the peer communication device 12 determined by the antenna module of the first communication device 11 is updated, and the antenna module of the peer communication device 12
  • the group-determined second antenna radiation azimuth pointing to the first communication device 11 is updated.
  • the antenna module of the first communication device determines based on the updated relative position information from the first communication device. An updated target radiation azimuth from the device to the peer communication device, and then an updated first antenna radiation azimuth is determined. For the peer communication device, the process is similar.
  • the radiation direction of the first antenna directed to the peer communication device 12 determined by the antenna module of the first communication device 11 is updated, and the peer communication device The radiation direction of the second antenna directed to the first communication device 11 determined by the antenna module of 12 is updated.
  • the operation of the antenna module of each other peer communication device is similar to that of the antenna module of the peer communication device 12 .
  • the antenna module of each communication device may regularly or periodically determine the location information of each peer communication device, so that the associated antenna radiation azimuth may be updated, so as to use the updated antenna radiation azimuth for directional communication.
  • each communication device may broadcast its own positioning information (for example, through GPS, etc.), for example, it may be broadcast regularly or periodically through its antenna module , so that the antenna module of the peer communication device of the communication device can determine the location information of the communication device based on the location information. That is, the antenna module of each communication device may include a spatial positioning module.
  • the antenna module of each communication device may include a directional adjustment algorithm module, so that the target radiation azimuth can be determined based on the position information of the peer communication device obtained by the spatial positioning module, Further, a corresponding antenna radiation direction is selected from a plurality of radiation directions determined according to the directional antenna structure included in the antenna module.
  • the antenna module of each communication device may also include a directional antenna module, and the directional antenna module includes a directional antenna structure, for example, an adaptive wire array, a directional antenna array, etc., and the directional antenna structure may be used to provide N radiation orientations, such as realized by P antennas, P and N are integers greater than or equal to 1, and may be the same or different, and the P antennas may be oriented based on the antenna radiation orientation selected by the orientation adjustment algorithm module Adjust to point to the peer communication device.
  • each of the P antennas may be a non-omnidirectional antenna (such as a directional antenna) or an omnidirectional antenna.
  • the directional antenna module can include multiple directional antenna structures, for example, each antenna structure can be used for directional communication with a peer communication device, so that the communication device can simultaneously perform the transmission required for two-way directional communication with multiple peer communication devices or, the directional antenna module may include only one antenna structure, for example, this antenna structure may be used for the transmission required for two-way directional communication with different peer communication devices at different times.
  • antenna module An exemplary structure of the antenna module will be described later with reference to FIG. 2 .
  • this example structure is only provided to help better understand the present invention.
  • the antenna module can adopt other designs, as long as the above-mentioned position determination process, positioning antenna radiation direction determination and directional antenna structure adjustment can be realized. Just the process.
  • a communication method for a communication system is also provided, and the communication system may be the communication system 100 as described above with reference to FIG. 1A .
  • FIG. 1B shows a schematic flowchart of the communication method.
  • step S110 the antenna module of the first communication device among the plurality of communication devices in the communication system determines the distance between the corresponding communication device and the corresponding communication device based on the location information of the corresponding communication device among the plurality of communication devices.
  • the first target radiation azimuth corresponding to the position information and determine the corresponding first antenna radiation azimuth according to the first target radiation azimuth, so as to point to the peer communication device.
  • the first communication device may be any communication device in the communication system 100 .
  • step S120 the peer communication device determines a second target radiation azimuth corresponding to the position information of the first communication device based on the position information of the first communication device, and according to the second target radiation
  • the azimuth determines a corresponding second antenna radiation azimuth to point to the first communication device.
  • the peer communication device may be any communication device in the communication system 100 that communicates with the first communication device.
  • the antenna module of each communication device in the communication system can determine the position information of the peer communication device, and determine a target radiation direction according to the position information, Further, the corresponding antenna radiation direction is determined, and then the antenna module uses the determined antenna radiation direction to point to the communication device at the opposite end, so that directional transmission can be realized.
  • This process can be decoupled from the antenna control system (communication device), thus reducing software , The cost of hardware implementation.
  • each communication device in the communication system can perform such a process based on its installed antenna module, so it is also possible to realize directional communication between any two communication devices in multiple directions in the communication system, that is, Multi-directional directional communication can be realized.
  • FIG. 2 is a schematic structural diagram of an embodiment of an antenna module provided by the present invention.
  • the antenna module is installed on the communication equipment.
  • the antenna module 200 may include a spatial positioning module 21 , a directional adjustment algorithm module 22 and a directional antenna module 23 .
  • the spatial positioning module 21 is configured to determine the position information of the peer communication device of the communication device in the three-dimensional coordinate system based on the positioning information obtained from the peer communication device of the communication device.
  • the spatial positioning module 21 may include a spatial positioning antenna submodule 21-1 and a spatial positioning algorithm submodule 21-2.
  • the space positioning antenna sub-module 21-1 may include M positioning antennas for receiving positioning information from a peer communication device of the communication device, M is an integer greater than or equal to 1, and each positioning antenna may include multiple antenna branches.
  • the space positioning antenna sub-module 21-1 can transmit positioning information to the space positioning algorithm sub-module 21-2; wherein, optionally, the M positioning antennas are arranged on different spatial planes, and the distance between any two positioning antennas is within half a wavelength.
  • the spatial positioning algorithm sub-module 21-2 can be used to establish a three-dimensional coordinate system with the center of the M positioning antennas as the origin, and determine the position information of the peer communication device of the communication device under the three-dimensional coordinate system according to the positioning information three-dimensional coordinates.
  • the spatial positioning algorithm sub-module 21-2 can calculate the distance information of the peer communication device relative to each positioning antenna of the antenna module and the distance information received by any two antennas according to the positioning information.
  • the phase difference information of the timing information and determine the three-dimensional coordinates of the peer communication device in the three-dimensional coordinate system according to the distance information and the phase difference information, and transmit the three-dimensional coordinates to the orientation adjustment algorithm module 22 .
  • the orientation adjustment algorithm module 22 can be used to determine the target radiation azimuth corresponding to the peer communication device based on the position information of the peer communication device in the three-dimensional coordinate system, and based on the determined target radiation In Azimuth, select the antenna radiation azimuth, and N is an integer greater than or equal to 1.
  • the directional adjustment algorithm module 22 may provide the directional antenna module 23 with selection information of antenna radiation azimuths.
  • the directional antenna module 23 may include a directional antenna structure capable of providing the N radiation azimuths, so that the directional antenna structure may be directional adjusted based on the antenna radiation azimuth selected by the directional adjustment algorithm module to point to the opposite communication device.
  • the directional antenna structure included in the directional antenna module 23 may be based on an adaptive wire array or a directional antenna array.
  • the directional antenna structure may include P antennas, which are used to receive the antenna radiation azimuth selected by the directional adjustment algorithm module, and perform directional adjustment to the P antennas according to the antenna radiation azimuth; wherein, P>0, P root
  • P and the number N of radiation orientations may be the same or different.
  • the three-dimensional space can be divided into N radiation spaces by sector, and the direction in which the gain of the main wave in each radiation space is the largest is a radiation azimuth, so that N radiation azimuths can be obtained.
  • the present invention does not limit the specific implementation manner of the directional antenna structure, as long as N radiation directions can be formed.
  • each of the P antennas may be a non-omnidirectional antenna (such as a directional antenna) or an omnidirectional antenna.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical connection, it can be an electrical connection, it can also be a communication; it can be a direct connection, or it can be An indirect connection through an intermediary may be an internal communication between two elements or an interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms according to specific situations.
  • the antenna module is installed on the communication device. After the power is turned on, a three-dimensional coordinate system is first established based on the spatial positioning antenna sub-module 21-1 as the origin.
  • the positioning antennas in the spatial positioning antenna sub-module 21-1 respectively receive the positioning information broadcast by the peer communication device, wherein the positioning information has a time stamp, and transmit the positioning information to the spatial positioning algorithm sub-module.
  • the spatial positioning algorithm sub-module 21-2 can calculate the distance information and phase information of the peer communication device relative to each positioning antenna according to the received positioning information, and further determine the position of the peer communication device in the three-dimensional coordinate system.
  • the three-dimensional coordinates (x, y, z) in, that is, the location of the communication object is obtained, and then the three-dimensional coordinates (x, y, z) are transmitted to the orientation adjustment algorithm module 22 .
  • the directional antenna module divides the three-dimensional space into N radiation azimuths ( ⁇ , ⁇ )_n according to sectors. The larger the value of N, the finer the three-dimensional space is divided, and the better the effect of directional communication.
  • the orientation adjustment algorithm module 22 can uniquely convert the three-dimensional coordinates (x, y, z) into the corresponding target according to the corresponding relationship of the three-dimensional coordinate system.
  • radiation azimuth ( ⁇ , ⁇ ) and determine the antenna radiation azimuth ( ⁇ , ⁇ )_n based on the target radiation azimuth ( ⁇ , ⁇ ) and transmit it to the directional antenna module 23 .
  • the directional antenna module 23 After receiving the antenna radiation azimuth ( ⁇ , ⁇ )_n, the directional antenna module 23 adjusts the orientation of the directional antenna structure, and controls the directional antenna structure to work on the antenna radiation azimuth ( ⁇ , ⁇ )_n.
  • the antenna module can also broadcast positioning information to the outside world for the communication device at the opposite end to locate it, thereby realizing two-way positioning.
  • the above-mentioned positioning process can be performed between multiple communication devices. For example, the positioning information broadcast by the communication device 11 in FIG. The communication device 11 performs positioning, so multi-directional positioning can also be realized.
  • the antenna module is an independent system that can be installed on any communication device that requires an antenna, such as user terminals, communication base stations, APs, etc.
  • any two communication devices communicating with each other are equipped with the antenna module of the present invention, bidirectional positioning can be realized between the two communication devices.
  • An antenna module installed on a communication device provided by the present invention can determine the position of the peer communication device through wireless positioning technology, which can improve the accuracy of positioning and realize accurate and stable directional antenna adjustment; at the same time, the antenna module has The transceiver function can realize two-way (multi-directional) positioning, and then realize two-way (multi-directional) directional communication; in addition, the antenna module is independent of the communication device itself, decoupled from the communication device, and does not need to be controlled by the communication device, reducing the Design difficulty and design cost of communication equipment.
  • the positioning information is a wireless data packet with a time stamp.
  • the signal form and modulation method of the positioning information can be set according to the actual situation, and it is only necessary to ensure that the signal form and modulation method of each pair of communication devices are the same, and that they can recognize each other.
  • the spatial positioning algorithm sub-module 21-1 specifically determines the three-dimensional coordinates of the peer communication device in the three-dimensional coordinate system through the following steps:
  • phase difference information between the positioning information (for example, positioning signals) received by any two positioning antennas, where the phase difference information is associated with the positional relationship of the M positioning antennas;
  • a time stamp is added to the positioning information, and the antenna module of the communication device receives the positioning information through the positioning antenna, and then calculates the positioning information based on the time stamp in the positioning information.
  • the time-of-flight in that is, TOF, and use the time-of-flight to multiply the flight speed t of the positioning information in the air, then the distance between each positioning antenna and the communication device at the opposite end can be calculated respectively.
  • the phase difference of arrival of the positioning information received by two antennas can be calculated, that is, PDOA.
  • the three-dimensional coordinates of the communication device at the opposite end can be calculated according to the relationship of trigonometric functions in the established three-dimensional coordinate system.
  • the directional adjustment algorithm module 22 determines the antenna radiation orientation, it is specifically used for:
  • the target radiation azimuth is compared with the pre-divided N radiation azimuths, and the radiation azimuth closest to the target radiation azimuth among the N radiation azimuths is determined as the antenna radiation azimuth.
  • the three-dimensional coordinates are in the form of point coordinates, and the target radiation azimuth and the N radiation azimuths are in the form of angular coordinates.
  • the orientation adjustment algorithm module 22 converts the three-dimensional coordinates into the target radiation orientation, specifically:
  • the orientation adjustment algorithm module 22 can also:
  • the three-dimensional coordinate system is divided into N radiation azimuths corresponding to the directional antenna module 23 in the form of angular coordinates in advance.
  • the three-dimensional coordinates (x, y, z) are acquired by the space positioning module 21 (specifically, the space positioning antenna sub-module 21-1). , pitch angle) form, divided into N radiation azimuths, the specific implementation method is not limited, for example, use P antennas to divide the space into N small-angle sectors, and divide the main wave in each small-angle sector
  • the direction of maximum gain serves as a radiation azimuth.
  • Other smart antennas, adaptive antenna arrays, etc. may also be used.
  • Each radiation azimuth corresponding to the directional antenna module 23 is expressed as ( ⁇ , ⁇ )_n in the three-dimensional coordinate system, thus an array of radiation azimuths can be obtained.
  • the directional antenna module 23 may also pre-divide the three-dimensional coordinate system into the above-mentioned N radiation azimuths in the form of angular coordinates, and provide information on the divided N radiation azimuths to the directional adjustment algorithm module 22 .
  • the three-dimensional coordinates (x, y, z) can be converted into corresponding accurate target radiation orientations ( ⁇ , ⁇ ).
  • the target radiation azimuth ( ⁇ , ⁇ ) can be compared with ( ⁇ , ⁇ )_n, and a value closest to the target radiation azimuth ( ⁇ , ⁇ ) can be obtained , and determine the antenna associated with the radiation azimuth corresponding to the closest value as the target antenna (the radiation azimuth formed by it is the same as the above-mentioned antenna radiation azimuth), and transmit the information of the determined target antenna to the directional antenna module 23.
  • the directional antenna module 14 is specifically used for:
  • the three-dimensional space can be divided into N radiation spaces by sectors, wherein the main wave in each radiation space
  • the direction with the largest gain is a radiation azimuth, so that N radiation azimuths can be obtained.
  • the direction of the maximum gain of the main wave in the antenna radiation field is uniquely identified as the radiation azimuth, which can quickly and conveniently determine the radiation azimuth of the directional antenna.
  • each module or sub-module can be recombined according to different functions, and the antenna module can also be divided into more or fewer modules, or each module can be divided into further more or fewer sub-modules.
  • each of the space positioning module 21 mentioned in the present invention (for example, including a space positioning antenna sub-module 21-1, a space positioning algorithm sub-module 21-2), a directional adjustment algorithm module 22 or a directional antenna module 23
  • electronic hardware e.g., a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic , discrete hardware components, etc.
  • computer software such as may be stored in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable ROM (EPROM), etc.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable ROM
  • the specific work flow of the antenna module provided by the present invention is as follows:
  • the present invention realizes the specific work flow of the above-mentioned antenna module and the above-mentioned communication method, which can also be completed by instructing related hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program is executed by the processor, the specific work flow of the above-mentioned antenna module can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random Access memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal and software distribution medium, etc.
  • computer readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer readable media does not include Electrical carrier signals and telecommunication signals.
  • the present invention also provides a communication device, the communication device includes the antenna module as described in any one of the above embodiments.
  • the communication device may be a user terminal device, a communication base station, an AP, etc., or may be other devices that need to use an antenna.
  • the communication system may include a communication base station (also referred to as a base station for short) and client.
  • a communication base station also referred to as a base station for short
  • client client
  • the antenna module of the communication base station establishes a three-dimensional coordinate system.
  • "STA_Position” indicates the orientation point of the client under this coordinate system.
  • the three-dimensional coordinates are (x, y, z);
  • the radiation azimuth diagram of the directional antenna structure that is, "ANT_Position”
  • ANT_Position the radiation azimuth diagram of the directional antenna structure
  • the spatial positioning module uses its own spatial positioning algorithm and spatial positioning antenna to locate the "position point” information of the associated client, and write it into the "STA_Position" position point information table;
  • the client can also obtain the orientation point information of the communication base station, and can also achieve precise directional transmission from the client to the base station through the same operation.
  • the client may be multiple clients, and there may be multiple communication base stations.
  • the antenna module is installed on the base station and the client respectively.
  • the two antenna modules are the same and can exchange roles.
  • the operation of the client is exactly the same as that of the communication base station, and the directional antenna adjustment on the client is completed.
  • the two-way directional communication between the base station and the client can be completed.
  • the acquired STA_Position of the client changes, rewrite the location point information table, and then continue to establish a two-way directional communication mechanism.
  • the communication system may include a first communication device (main router AP1 ) and the second communication device (sub-routing AP2), thereby forming a MESH network.
  • AP1 and AP2 are installed, their positions are fixed; AP1 and AP2 are connected wirelessly to form a MESH.
  • AP1 maps the information of each position of the radiation field of the directional antenna structure included in its directional antenna module to the above-mentioned three-dimensional coordinate system, and counts it as multiple "Position_ant";
  • AP1 uses the "spatial positioning algorithm sub-module" in the spatial positioning module in the antenna module to locate the orientation point of AP2 on the coordinate system, which is counted as “Position_son1"; since the coordinate system is the same, "Position_son1" and " Position_ant” has a corresponding relationship;
  • AP1 has obtained the precise azimuth of sub-AP2; AP1 adjusts the radiation azimuth to sub-AP2 through the "positioning adjustment algorithm module” and "directional antenna module".
  • the MESH system (AP1 and AP2) can realize accurate two-way directional backhaul communication.
  • the MESH network can include more sub-routing APs, so that it can be simultaneously or time-sharing (according to the number of directional antenna structures) between AP1 and each sub-routing AP in more sub-routing APs Conduct two-way directional backhaul communication.

Abstract

提供了一种天线模组及具有该天线模组的通信设备、通信系统,可以实现精确的天线定向角度调整,并且可以实现通信设备之间的多向定向通信。通信系统包括多个通信设备,其中的第一通信设备的天线模组基于该多个通信设备中的对端通信设备的位置信息,确定与对端通信设备的位置信息对应的第一目标辐射方位,并根据第一目标辐射方位确定对应的第一天线辐射方位,以指向对端通信设备。对端通信设备基于第一通信设备的位置信息,确定与第一通信设备的位置信息对应的第二目标辐射方位,并根据第二目标辐射方位确定对应的第二天线辐射方位,以指向第一通信设备。

Description

天线模组及具有该天线模组的通信设备、通信系统 技术领域
本发明涉及天线技术领域,特别是涉及一种基于空间定位技术的天线模组及具有该天线模组的通信设备、通信系统。
背景技术
得益于定向天线较大的物理增益,无线定向通信一般都能比普通的全向通信能获得更好的效果,同时由于定向性,也能有效地避免来源于其他角度方向的信号干扰。
现有的无线定向通信,一般是直接使用多根物理定向天线来做覆盖布局,但是由于其辐射场是固定的,适应的场景有限,对于位置发生变化的客户端,很有可能不在多根定向天线的最大增益辐射方位角度上;也有一些智能天线,通过信号强度检测的方式来调整辐射方位图,但是由于无线信号的实时波动较大,难以实现精确的定向调整;还有采用天线阵设计的,比如自适应天线阵,根据客户端的相对位置来调整辐射方位图,但是需要额外增加复杂的天线阵设计,而且与天线的控制系统(通信设备)并不解耦,软、硬件实现的成本都很高。
另外,现有的无线定向通信中的定向传输基本都是单向的,多数是基站到客户端,并不存在双向以及多向的定向传输,从而在传输效率上还待进一步改进。
还有一种点对点式的通信系统方式,因为天线指向性非常强,一是需要确保基站、客户端相互准确对准;二是对准后,就不能进行任意的移动了;否则天线方向性发生偏转,影响通信质量、甚至连接失败;灵活性非常受限,组网也较为困难。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本发明的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明提供一种天线模组及具有该天线模组的通信设备、通信系统,通过空间定位技术获取通信对象的精确位置,实现精确的天线定向角度调整,而且与天线的控制系统解耦,降低设计成本。此外,可以通过在通信系统中的多个通信设备均配置天线模组,从而可以在这些通信设备两两之间进行定向通信,即可以自动组合这些通信设备的天线模组,从而进行多个方向上的定向通信,构成自动多向定向系统。
第一方面,本发明的实施例提供了一种通信系统,包括多个通信设备,其中所述多个通信设备中的第一通信设备的天线模组基于所述多个通信设备中的对端通信设备的位置信息,确定与所述对端通信设备的位置信息对应的第一目标辐射方位,并根据所述第一目标辐射方位确定对应的第一天线辐射方位,以指向所述对端通信设备;以及所述对端通信设备基于所述第一通信设备的位置信息,确定与所述第一通信设备的位置信息对应的第二目标辐射方位,并根据所述第二目标辐射方位确定对应的第二天线辐射方位,以指向所述第一通信设备。
可选地,所述第一通信设备的数量为一个或多个,和/或所述第一通信设备的对端通信设备的数量为一个或多个。
可选地,所述通信系统包括的所述多个通信设备包括以下之一:多个用户终端(例如客户端);多个无线接入点;多个基站;或者用户终端、无线接入点和基站的任意组合。
可选地,所述对端通信设备包括第一对端通信设备和第二对端通信设备,其中,所述第一对端通信设备的天线模组和所述第二对端通信设备的天线模组相互独立地确定各自指向所述第一通信设备的第二天线辐射方位。
可选地,其中,在所述第一通信设备和所述对端通信设备中的至少一者的位置信息发生更新时,所述第一通信设备的天线模组确定的指向所述对端通信设备的第一天线辐射方位被更新;以及所述对端通信设备的天线模组确定的指向所述第一通信设备的第二天线辐射方位被更新。
可选地,所述第一通信设备包括的天线模组包括:空间定位模块,用于基于从所述第一通信设备的对端通信设备获取的定位信息,确定所述对端通信设备在三维坐标系下的位置信息;定向调节算法模块,用于基于所述对端通信设备在三维坐标系下的位置信息,确定所述对端通信设备对应的目标辐射方位,并且基于所确定的目标辐射方位,从N个辐射方位中选择天线辐射方位, 并且N为大于等于1的整数;以及定向天线模块,其包括提供所述N个辐射方位的定向天线结构,用于针对每个对端通信设备,用于基于所述定向调节算法模块所选择的天线辐射方位对所述定向天线结构进行定向调节,以指向所述对端通信设备。
可选地,所述空间定位模块包括:空间定位天线子模块,包括M根定位天线,用于从所述第一通信设备的对端通信设备接收定位信息,M为大于等于1的整数;空间定位算法子模块,用于以所述M根定位天线的中心为原点建立三维坐标系,根据所述定位信息确定所述通信设备的每个对端通信设备在所述三维坐标系下的作为所述位置信息的三维坐标。
可选地,所述定向调节算法模块在确定天线辐射方位时,被配置为:将所述对端通信设备在所述三维坐标系中的三维坐标转换为目标辐射方位;将所述目标辐射方位与所述N个辐射方位进行比较;以及将所述N个辐射方位中与所述目标辐射方位最接近的辐射方位确定为所述天线辐射方位。
可选地,所述定向天线结构包括P根天线,并且所述P根天线用于形成所述N个辐射方位,P和N的数量相同或不同。
第二方面,本发明实施例提供一种天线模组,安装在通信设备上,所述天线模组包括:空间定位模块,用于基于从所述通信设备的对端通信设备获取的定位信息,确定所述通信设备的对端通信设备在所述三维坐标系下的位置信息;定向调节算法模块,用于基于所述对端通信设备在三维坐标系下的位置信息,确定所述对端通信设备对应的目标辐射方位,并且基于所确定的目标辐射方位,从N个辐射方位中选择天线辐射方位,N为大于等于1的整数;以及定向天线模块,其包括提供所述N个辐射方位的定向天线结构,用于基于定向调节算法模块所选择的天线辐射方位对所述定向天线结构进行定向调节,以指向所述对端通信设备。
可选地,所述空间定位模块包括:空间定位天线子模块,包括M根定位天线,用于从所述通信设备的所述对端通信设备接收定位信息,M为大于等于1的整数;空间定位算法子模块,用于以所述M根定位天线的中心为原点建立三维坐标系,并且根据所述定位信息确定所述通信设备的所述对端通信设备在所述三维坐标系下的作为所述位置信息的三维坐标。
可选地,所述空间定位算法子模块在确定所述三维坐标时,被配置为:根据所述定位信息计算出所述对端通信设备相对于所述天线模组的每根定位天 线的距离信息以及任何两根天线接收的所述定时信息的相位差信息;以及根据所述距离信息以及所述相位差信息确定所述对端通信设备在所述三维坐标系下的三维坐标。
可选地,所述定位信息为带有时间戳的无线数据报文。
可选地,所述空间定位算法子模块在确定所述三维坐标时,还被配置为:根据所述M根定位天线中的每一根定位天线接收到的所述定位信息中的时间戳计算出所述定位信息的传输时间,并结合所述定位信息的传输速度分别计算出所述对端通信设备相对于所述天线模组的每根定位天线的距离信息;计算任何两根定位天线接收到的所述定位信息之间的相位差信息,所述相位差信息与所述M根定位天线的位置关系相关联;以及基于所述距离信息以及所述相位差信息,根据三角函数关系确定所述对端通信设备在所述三维坐标系中的三维坐标。
可选地,所述定向调节算法模块在确定目标辐射方位时,被配置为:将所述对端通信设备在所述三维坐标系中的三维坐标转换为目标辐射方位;将所述目标辐射方位与所述N个辐射方位进行比较;以及将所述N个辐射方位中与所述目标辐射方位最接近的辐射方位确定为所述天线辐射方位。
可选地,所述三维坐标为点坐标形式;以及所述目标辐射方位与所述N个辐射方位为角坐标形式。
可选地,所述定向调节算法模块还用于:根据定向天线模块所包括的定向天线结构,预先将所述三维坐标系按照角坐标的形式,划分为所述N个辐射方位。
可选地,所述定向天线结构包括P根天线,并且所述P根天线用于形成所述N个辐射方位,P和N的数量相同或不同。
第三方面,本发明实施例提供一种通信设备,所述通信设备包括如第二方面所述的天线模组。
第四方面,本发明实施例提供一种如第一方面所述的通信系统的通信方法,所述方法包括:对于所述通信系统中的所述多个通信设备中的每个通信设备,由所述通信设备的天线模块基于所述多个通信设备中的至少一个对端通信设备的位置信息,确定与所述至少一个对端通信设备的位置信息分别对应的至少一个第一目标辐射方位;由每个对端通信设备的天线模组基于所述通信设备的位置信息,确定与所述通信设备的位置信息对应的第二目标辐射方 位,以及由所述通信设备的天线模组基于每个第一目标辐射方位确定与所述第一目标辐射方位对应的第一天线辐射方位,以指向所述第一目标辐射方位对应的对端通信设备,并且由每个对端通信设备的天线模组基于所确定的第二目标辐射方位确定第二天线辐射方位,以指向所述通信设备。
附图说明
为了更清楚地说明本发明实施例的技术特征,下面将对本发明实施例中所需要使用的附图做简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本发明提供的一种通信系统的一个实施例的结构示意图。
图1B是本发明提供的一种通信系统的通信方法的一个实施例的流程示意图。
图2是本发明提供的一种天线模组的一个实施例的结构示意图;以及
图3是三维坐标转换为目标辐射方位的一个实施例的示意图。
具体实施方式
为了对本发明的技术特征、目的、效果有更加清楚的理解,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例仅用于说明本发明,但是不用来限制本发明的保护范围。基于本发明的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的其他实施例,都应属于本发明的保护范围。
在本发明的描述中,应当理解的是,本文中的编号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有顺序或者技术含义,不能理解为规定或者暗示所描述的对象的重要性。
应当理解,在本发明中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
图1A是本发明提供的一种通信系统的实施例的结构示意图。
如图1A所示,通信系统100包括多个通信设备(11,12,13…1N),且通信设备两两之间可以进行通信。每个通信设备上安装有天线模组,天线模组可以在多个辐射方位上进行通信所需要的传输。
该通信系统包括的多个通信设备(11,12,13…1N)可以是多个用户终端(例如,客户端)、多个无线接入点(AP),或者多个通信基站,当然还可以是其他类型的通信设备;或者该多个通信设备(11,12,13…1N)的类型可以不同,例如可以是用户终端、无线接入点和通信基站的任意组合。
对于通信系统中的一个或多个通信设备(通信设备11、通信设备12、通信设备13…或者通信设备1N),例如,第一通信设备11的天线模组基于该多个通信设备(11,12,13…1N)中的对端通信设备(即与当前通信设备进行通信的通信对象,因此也可以称为通信对象)的位置信息,确定与该对端通信设备的位置信息对应的第一目标辐射方位。
可选地,第一通信设备可以是通信系统中的任意通信设备,并且第一通信设备的数量可以是一个或多个。可选地,每个第一通信设备的对端通信设备的数量也可以是一个或多个。
例如,第一通信设备(例如,通信设备11)需要与其他两个通信设备(例如,通信设备12和13)通信,那么这两个通信设备作为第一通信设备的对端通信设备,并且第一通信设备的天线模组可以确定这两个对端通信设备(例如,通信设备12和13)的位置信息,并且确定分别对应的两个第一目标辐射方位。每个(第一或第二)目标辐射方位可以是从当前通信设备的天线模组到对端通信设备的天线模组的理想辐射方位,例如在三维坐标系下两者连线的方位。
然后,第一通信设备(通信设备11、通信设备12、通信设备13…或者通信设备1N中的一者)的天线模组基于对端通信设备(例如,通信设备11、通信设备12、通信设备13…或者通信设备1N中的另一者)的位置信息对应的第一目标辐射方位确定所对应的一个第一天线辐射方位,并利用所确定的第一天线辐射方位指向该对端通信设备,以进行从第一通信设备到对端通信设备的定向通信。
在本发明中,(第一或第二)天线辐射方位为根据天线模组所包括的定向天线结构而决定的多个辐射方位中与(第一或第二)目标辐射方位最接近 的辐射方位。
类似的,每个对端通信设备由于也安装了天线模组,因此也可类似的进行该过程。
例如,对端通信设备的天线模组基于该第一通信设备的位置信息,确定与该第一通信设备的位置信息对应的第二目标辐射方位,以及该对端通信设备的天线模组基于所确定的第二目标辐射方位确定第二天线辐射方位,并利用所确定的第二天线辐射方位指向第一通信设备,以进行从该对端通信设备到该通信设备的定向通信。
例如,第一通信设备(例如,11)的对端通信设备(例如,12)的天线模组可以确定该第一通信设备(例如,11)的位置信息,并且确定第二目标辐射方位,进而确定出该第二目标辐射方位对应的第二天线辐射方位。
此外,每个第一通信设备的每个对端通信设备确定指向该第一通信设备对应的第二辐射方位的过程可以是独立的。例如,第一通信设备(11)包括第一对端通信设备(12)和第二对端通信设备(13),其中,在第一对端通信设备(12)的天线模组确定指向第一通信设备(11)的第二天线辐射方位期间,所述第二对端通信设备(13)的天线模组也可以确定指向第一通信设备的第二天线辐射方位。
在一些情况下,进行定向通信的通信设备的位置都可能发生变化,这样,相关通信设备的天线模组需要根据更新后的位置来重新确定天线辐射方位。
可选地,在第一通信设备和对端通信设备中的至少一者的位置信息发生更新时,第一通信设备的天线模组确定的指向对端通信设备的第一天线辐射方位被更新;以及对端通信设备的天线模组确定的指向第一通信设备的第二天线辐射方位被更新。
例如,在第一通信设备11的位置信息发生更新时,第一通信设备11的天线模组确定的指向对端通信设备12的第一天线辐射方位被更新,并且对端通信设备12的天线模组确定的指向该第一通信设备11的第二天线辐射方位被更新。例如,第一通信设备11的位置变化,那么对端通信设备相对于该第一通信设备的相对位置也会改变,因此第一通信设备的天线模组基于更新的相对位置信息确定从第一通信设备到对端通信设备的更新的目标辐射方位,进而确定更新的第一天线辐射方位。对于对端通信设备来说,也是类似的过程。
同理,在对端通信设备12的位置信息发生更新时,该第一通信设备11的天线模组确定的指向该对端通信设备12的第一天线辐射方位被更新,并且该对端通信设备12的天线模组确定的指向第一通信设备11的第二天线辐射方位被更新。
在第一通信设备11具有多个对端通信设备的情况下,每个其他对端通信设备的天线模组的操作与对端通信设备12的天线模组的操作也类似。
可选地,每个通信设备的天线模组可以定期或者周期性地确定每个对端通信设备的位置信息,从而可以更新相关联的天线辐射方位,以利用更新的天线辐射方位进行定向通信。
可选地,关于每个通信设备的位置信息的确定,每个通信设备可以广播确定自身的定位信息(例如,通过GPS等方式),例如,可以通过其天线模组定期或者周期性地被广播,从而该通信设备的对端通信设备的天线模组可以基于定位信息来确定该通信设备的位置信息。即,每个通信设备的天线模组可以包括空间定位模块。
可选地,关于每个天线辐射方位的确定,每个通信设备的天线模组中可以包括定向调节算法模块,从而可以基于空间定位模块得到的对端通信设备的位置信息来确定目标辐射方位,进而从根据天线模组所包括的定向天线结构而决定的多个辐射方位中选择出对应的天线辐射方位。
可选地,每个通信设备的天线模组还可以包括定向天线模块,该定向天线模块包括定向天线结构,例如,自适应连线阵列、定向天线阵列等等,并且定向天线结构可以用于提供N个辐射方位,例如通过P根天线来实现,P和N为大于等于1的整数,且可以相同或不相同,可以基于定向调节算法模块所选择的天线辐射方位对所述P根天线进行定向调节,以指向所述对端通信设备。可选地,P根天线中的每根天线可以是非全向天线(例如定向天线)或者全向天线。
定向天线模块可以包括多个定向天线结构,例如,每个天线结构可以用于与一个对端通信设备进行定向通信,从而通信设备可以同时与多个对端通信设备进行双向定向通信所需要的传输;或者,定向天线模块可以包括仅一个天线结构,例如,该天线结构可以用于在不同时间与不同的对端通信设备进行双向定向通信所需要的传输。
天线模组的一种示例结构将在后文参考图2进行描述。但是,提供该示 例结构仅仅是帮助更好地理解本发明,本领域技术人员应当明白,天线模组可以采用其他设计,只要能够实现上述位置确定过程、定位天线辐射方位确定和定向天线结构的调整过程即可。
根据本发明的另一方面,还提供了一种用于通信系统的通信方法,该通信系统可以是如前面参考图1A所描述的通信系统100。
图1B示出了该通信方法的流程示意图。
在步骤S110中,由通信系统中的多个通信设备中的第一通信设备的天线模组基于所述多个通信设备中的对端通信设备的位置信息,确定与所述对端通信设备的位置信息对应的第一目标辐射方位,并根据所述第一目标辐射方位确定对应的第一天线辐射方位,以指向所述对端通信设备。
例如,该第一通信设备可以是通信系统100中的任何一个通信设备。
在步骤S120中,由所述对端通信设备基于所述第一通信设备的位置信息,确定与所述第一通信设备的位置信息对应的第二目标辐射方位,并根据所述第二目标辐射方位确定对应的第二天线辐射方位,以指向所述第一通信设备。
例如,该对端通信设备可以是通信系统100中的与第一通信设备进行通信的任何一个通信设备。
上述各个步骤的更多内容可以如参考图1A描述的通信系统以及后文参考图2-3描述的天线模组的相关部分类似,因此这里省略对各个步骤的具体内容的详细描述。
在图1A所述的通信系统以及图1B所述的通信方法中,通信系统的每个通信设备的天线模组可以确定对端通信设备的位置信息,并根据该位置信息确定一个目标辐射方位,进而确定对应的天线辐射方位,进而该天线模组利用所确定的天线辐射方位指向对端通信设备,可以实现定向传输,该过程可以与天线的控制系统(通信设备)解耦,因此可以降低软、硬件实现的成本。此外,通信系统中的每个通信设备基于其安装的天线模组均可进行这样的过程,因此也可以实现通信系统内的在多个方向上的任何两个通信设备之间的定向通信,即可以实现多向定向通信。
图2所示为本发明提供的一种天线模组的一个实施例的结构示意图。该天线模组安装到通信设备上。
如图2所示,所述天线模组200可以包括空间定位模块21、定向调节算法模块22和定向天线模块23。
空间定位模块21用于基于从该通信设备的对端通信设备获取的定位信息,确定该通信设备的对端通信设备在所述三维坐标系下的位置信息。
可选地,如图2中示出,作为示例,空间定位模块21可以包括空间定位天线子模块21-1和空间定位算法子模块21-2。
空间定位天线子模块21-1可以包括M根定位天线,用于从通信设备的对端通信设备接收定位信息,M为大于等于1的整数,并且每根定位天线可以包括多个天线支路。空间定位天线子模块21-1可以将定位信息传输给空间定位算法子模块21-2;其中,可选地,M根定位天线布局在非同一空间平面上,且两两定位天线之间间距在半波长之内。
空间定位算法子模块21-2可以用于以M根定位天线的中心为原点建立三维坐标系,并且根据所述定位信息确定通信设备的对端通信设备在所述三维坐标系下的作为位置信息的三维坐标。
可选地,空间定位算法子模块21-2可以根据所述定位信息计算出所述对端通信设备相对于所述天线模组的每根定位天线的距离信息以及任何两根天线接收的所述定时信息的相位差信息,并根据所述距离信息以及所述相位差信息确定所述对端通信设备在所述三维坐标系下的三维坐标,并将该三维坐标传输给定向调节算法模块22。
另外,定向调节算法模块22可以用于基于该对端通信设备在三维坐标系下的位置信息,确定该对端通信设备对应的目标辐射方位,并且基于所确定的目标辐射方位,从N个辐射方位中选择天线辐射方位,N为大于等于1的整数。可选地,定向调节算法模块22可以天线辐射方位的选择信息提供给定向天线模块23。
定向天线模块23可以包括能够提供所述N个辐射方位的定向天线结构,从而可以基于定向调节算法模块所选择的天线辐射方位对定向天线结构进行定向调节,以指向对端通信设备。
可选地,如图2中示出,作为示例,定向天线模块23包括的定向天线结构可以基于自适应连线阵列、定向天线阵列。例如,该定向天线结构可以包括P根天线,用于接收定向调节算法模块所选择的天线辐射方位,根据所述天线辐射方位对所述P根天线进行定向调节;其中,P>0,P根天线的辐射场覆盖整个三维空间。P与辐射方位的数量N可以相同或者不同。例如,基于P根天线,三维立体空间按扇区可以被划分为N个辐射空间,其中每个 辐射空间中的主波增益最大的方向为一个辐射方位,从而可以得到N个辐射方位。但是,本发明对定向天线结构的具体实现方式不做限制,只要能够形成N个辐射方位即可。可选地,P根天线中的每根天线可以是非全向天线(例如定向天线)或者全向天线。
其中,在所述天线模组1中,所述空间定位模块21的空间定位天线子模块21-1与所述空间定位算法子模块21-2连接,所述空间定位算法子模块21-1与所述定向调节算法模块22连接,所述定向调节算法模块22与所述定向天线模块23连接。术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
具体而言,天线模组安装在通信设备上,在通电之后,首先基于所述空间定位天线子模块21-1为原点建立三维坐标系,在对对端通信设备进行定位时,首先通过所述空间定位天线子模块21-1中的定位天线分别接收对端通信设备广播的定位信息,其中,该定位信息中具有时间戳,并将该定位信息传输至空间定位算法子模块中。
空间定位算法子模块21-2可以根据接收到的定位信息计算出所述对端通信设备相对于各定位天线的距离信息以及相位信息,并进一步确定所述对端通信设备在所述三维坐标系中的三维坐标(x,y,z),即获得了通信对象的定位,然后将所述三维坐标(x,y,z)传输给所述定向调节算法模块22。
所述定向天线模块将三维立体空间按扇区划分为N个辐射方位(α,β)_n,N的值越大,则三维立体空间被划分得越细致,定向通信的效果越好。所述定向调节算法模块22在接收到所述三维坐标(x,y,z)之后,根据三维坐标系的对应关系,可以将所述三维坐标(x,y,z)唯一转换为对应的目标辐射方位(α,β),并基于所述目标辐射方位(α,β)确定出天线辐射方位(α,β)_n传输给所述定向天线模块23。
所述定向天线模块23接收到所述天线辐射方位(α,β)_n后,对定向天线结构进行定向调节,控制定向天线结构工作到该天线辐射方位(α,β)_n上。
在对该通信设备的对端通信设备进行定位的同时,所述天线模组还能够 向外界广播定位信息,供对端通信设备对其进行定位,从而实现双向定位。并且,可以在多个通信设备之间进行上述定位过程,例如,图1中的通信设备11广播的定位信息可以被对端通信设备12和13接收到,并供对端通信设备12和13对通信设备11进行定位,因此也可以实现多向定位。
需要说明的是,所述天线模组是一个独立的系统,可以安装到任何需要天线的通信设备上进行应用,例如用户终端、通信基站、AP等。当互相通信的任何两个通信设备均安装了本发明的天线模组时,则可以在这两个通信设备之间实现双向定位。
本发明提供的一种安装到通信设备的天线模组,通过无线定位技术确定对端通信设备的位置,能够提高定位的准确率,实现精确稳定的定向天线调节;与此同时,天线模组具有收发功能,能够实现双向(多向)定位,进而实现双向(多向)定向通信;除此之外,天线模组独立于通信设备本身,与通信设备解耦,无需通信设备进行管控,降低了通信设备的设计难度以及设计成本。
在一个优选实施例中,所述定位信息为带有时间戳的无线数据报文。
可以理解的,所述定位信息的信号形式、调制方式可以根据实际情况进行设定,只需要保证每一对通信设备双方的信号形式相同、调制方式相同,可以相互识别即可。
在一个优选实施例中,所述空间定位算法子模块21-1具体通过如下步骤确定对端通信设备在所述三维坐标系中的三维坐标:
根据每一根定位天线接收到的所述定位信息中的时间戳计算出所述定位信息的传输时间,并结合所述定位信息的传输速度分别计算出所述对端通信设备相对于每根定位天线的距离信息;
计算任何两根定位天线接收到的所述定位信息(例如,定位信号)之间的相位差信息,所述相位差信息与所述M根定位天线的位置关系相关联;以及
基于所述对端通信设备相对于每根定位天线的距离信息以及任何两根定位天线接收到的所述定位信息之间的相位差信息,根据三角函数关系确定所述对端通信设备在所述三维坐标系中的三维坐标。
具体而言,对端通信设备在广播定位信息时,定位信息中有加入时间戳,通信设备的天线模组通过定位天线分别接收定位信息,然后根据定位信息中的时间戳来计算定位信息在空气中的飞行时间,即TOF,并使用该飞行时间 乘上定位信息在空气中的飞行速度t,则可以分别计算出每根定位天线与对端通信设备的距离。
同时,由于各定位天线存在布局距离,而同一位置上的对端通信设备的定位信息是不变的,因此该定位信息达到不同定位天线上的相位就存在差异(其中,定位信息在传播过程中存在直射路径、衍射路径以及折射路径,此处说的是直射路径),那么就可以计算出两两天线接收到的定位信息的到达相位差,即PDOA。
在得到了距离信息、相位信息之后,则可以在已建立的三维坐标系中,根据三角函数关系计算出对端通信设备的三维坐标。
在一个优选实施例中,所述定向调节算法模块22在确定天线辐射方位时,具体用于:
将从空间定位模块21接收的对端通信设备在所述三维坐标系中的三维坐标转换为目标辐射方位;
将所述目标辐射方位与预先划分的N个辐射方位进行比较,将所述N个辐射方位中与所述目标辐射方位最接近的辐射方位确定为天线辐射方位。
可选地,三维坐标为点坐标形式,并且所述目标辐射方位与所述N个辐射方位为角坐标形式。
在一个优选实施例中,定向调节算法模块22将三维坐标转换为目标辐射方位,具体为:
此外,定向调节算法模块22为了确定天线辐射方位,还可以:
根据定向天线模块23所包括的定向天线结构,预先将所述三维坐标系按照角坐标的形式,划分为定向天线模块23对应的N个辐射方位。
具体而言,所述三维坐标(x,y,z)由空间定位模块21(具体为空间定位天线子模块21-1)获取,在三维坐标系中,将整个三维空间按照角坐标(水平角、俯仰角)的形式,划分成N个辐射方位,其具体实现方法不做限制,比如,使用P根天线将空间划分成N个小角度扇区,并将每个小角度扇区中主波最大增益的方向作为一个辐射方位。也可以使用其它智能天线、自适应天线阵等。定向天线模块23对应的每一个辐射方位在三维坐标系中表示为(α,β)_n,由此可得到一个辐射方位的数组。
可选地,也可以由定向天线模块23预先将所述三维坐标系按照角坐标的形式划分为上述N个辐射方位,并将所划分的N个辐射方位的信息提供给定 向调节算法模块22。
根据三维坐标的对应关系,如图2所示,所述三维坐标(x,y,z)可以转换为对应的准确的目标辐射方位(α,β)。
将目标辐射方位(α,β)与(α,β)_n进行比较,得到一个离该目标辐射方位(α,β)最接近的值,并确定该最接近的值对应的辐射方位,作为天线辐射方位,并将该确定的天线辐射方位的信息传输到定向天线模块23。
例如,在定向天线结构包括P根天线的情况下,可以将目标辐射方位(α,β)与(α,β)_n进行比较,得到一个离该目标辐射方位(α,β)最接近的值,并确定该最接近的值对应的辐射方位关联的天线,作为目标天线(其形成的辐射方位与上述天线辐射方位相同),并将该确定的目标天线的信息传输到定向天线模块23。
相应地,所述定向天线模块14具体用于:
从定向调节算法模块22接收天线辐射方位或者所述目标天线的信息,根据天线辐射方位或者所述目标天线的信息对所述定向天线结构进行定向调节,控制所述定向天线结构工作到该天线辐射方位上,能够实现多方向的定向通信。
在一个优选实施例中,在定向天线结构包括P根天线的情况下,基于所述P根天线,三维立体空间按扇区可以被划分为N个辐射空间,其中每个辐射空间中的主波增益最大的方向为一个辐射方位,从而可以得到N个辐射方位。。将天线辐射场中主波最大增益的方向唯一标识为辐射方位,能够快速、便捷地确定定向天线的辐射方位。
另外,应注意,虽然在以示例的方式示出了上述各模块和子模块,但是应理解,根据不同的功能还可以对各模块或子模块的功能进行重新组合,还可以将天线模组划分为更多或更少的模块,或者每个模块还可以被划分为进一步的更多或更少子模块。在本发明中提及的空间定位模块21(例如包括空间定位天线子模块21-1、空间定位算法子模块21-2)、定向调节算法模块22或者定向天线模块23中的每一者中的至少一部分可以可用电子硬件(例如,通用目的处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程逻辑门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件等等)、计算机软件(例如可以存储于随机接入存储器(RAM)、闪存、只读存储器(ROM)、可擦除可编程ROM(EPROM)等等)或两者的组合来 实现。
本发明提供的天线模组的具体工作流程如下:
S10,向外界发送定位信息,和/或接收外界的定位信息;
S20,根据外界的定位信息确定对端通信设备的位置信息;
S30,控制定向天线的辐射方位指向对端通信设备的方向。
应当理解,本发明实现上述天线模组的具体工作流程以及如前面所述的通信方法,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述天线模组的具体工作流程。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
相应的,本发明还提供一种通信设备,所述通信设备包括如上述任一实施例所述的天线模组。
具体而言,所述通信设备可以是用户终端设备、通信基站、AP等,也可以是其他需要使用到天线的设备。
相应的,作为一种包括采用图2-3所示的天线模组的多个通信设备的通信系统(如图1所示)的具体示例,通信系统可以包括通信基站(也简称为基站)和客户端。
此时,整个通信系统的工作流程为:
1.首先以“空间定位模块”中的“空间定位天线子模块”为基础,通信基站的天线模组建立三维坐标系,“STA_Position”表示该坐标系下的客户端的方位点,该方位点的三维坐标为(x,y,z);
在上述三维坐标系中同时建立定向天线结构的辐射方位图,即“ANT_Position”,因为是在同一三维坐标系下的方位点信息,与“STA_Position”可以建立一一对应关系。
2.通信基站侧获取客户端的方位点信息:空间定位模块通过自己的空间定位算法,以及空间定位天线,定位出所关联的客户端的“方位点”信息,写入“STA_Position”方位点信息表;
将“STA_Position”信息同步到天线模组的定向调节算法模块,定向调节算法模块根据三维坐标系的一一对应关系,得到转换的与辐射方位“ANT_Position”具有相同形式的坐标的目标辐射方位,并将其对应到最接近的辐射方位ANT_Position信息,然后定向天线模块进行定向天线的定向调节,实现基站到客户端的精确定向传输。
3.客户端侧获取通信基站的方位信息:由于两边都有该天线模组,客户端也可以获取通信基站的方位点信息,也可以通过相同的操作,实现客户端到基站的精确定向传输。
其中,客户端可以是多客户端,通信基站也可以有多个。
由此可见,该天线模组分别安装到基站、客户端上,两个天线模组是一样的,可以互换角色,客户端的操作跟通信基站完全一样,完成客户端上的定向天线调节,这样就可以完成基站和客户端之间双向定向通信。
4.通信基站、客户端位置变化:
如果通信基站、客户端位置发生变化,获取的客户端STA_Position发生变化,重新写入方位点信息表,之后即继续建立双向定向通信机制。
或者,作为一种包括采用图2-3所示的天线模组的多个通信设备的通信系统(如图1所示)的另一具体示例,通信系统可以包括第一通信设备(主路由AP1)和第二通信设备(子路由AP2),由此组成MESH网络。
此时,整个通信系统的工作流程为:
1.AP1与AP2安装好后,位置固定;AP1与AP2通过无线连接,形成MESH。
2.以AP1上的天线模组中的空间定位模块中的“空间定位天线子模块”为基础,建立三维坐标系;
3.AP1通过将其定向天线模组中包括的定向天线结构的辐射场各方位点的信息,映射到上述三维坐标系上,计为多个“Position_ant”;
4.AP1借助天线模组中的空间定位模块中的“空间定位算法子模块”定位AP2在该坐标系上的方位点,计为“Position_son1”;由于坐标系是同一个,“Position_son1”与“Position_ant”有对应关系;
5.经过上述步骤后,AP1即获取了子AP2的精确方位;AP1通过“定位调节 算法模块”和“定向天线模块”调整辐射方位指向子AP2。
6.对于AP2,同样进行上述(2)~(5)步骤后,可以将天线辐射方位指向AP1。
之后MESH系统(AP1与AP2)即可实现精确的双向定向backhaul通信。
当然,如前面所述,MESH网络可以包括更多的子路由AP,从而可以同时或分时(根据定向天线结构的数量)在AP1与更多的子路由AP中的每一个子路由AP之间进行双向定向backhaul通信。
以上所述,仅是本发明的优选实施方式,但本发明的保护范围并不局限于此,应当指出,对于本领域技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干等效的明显变型方式和/或等同替换方式,这些明显变型方式和/或等同替换方式也应视为本发明的保护范围。

Claims (20)

  1. 一种通信系统,包括多个通信设备,其中:
    所述多个通信设备中的第一通信设备的天线模组基于所述多个通信设备中的对端通信设备的位置信息,确定与所述对端通信设备的位置信息对应的第一目标辐射方位,并根据所述第一目标辐射方位确定对应的第一天线辐射方位,以指向所述对端通信设备;以及
    所述对端通信设备基于所述第一通信设备的位置信息,确定与所述第一通信设备的位置信息对应的第二目标辐射方位,并根据所述第二目标辐射方位确定对应的第二天线辐射方位,以指向所述第一通信设备。
  2. 根据权利要求1所述的通信系统,其中,所述第一通信设备的数量为一个或多个,和/或所述第一通信设备的对端通信设备的数量为一个或多个。
  3. 根据权利要求1所述的通信系统,其中,所述通信系统包括的所述多个通信设备包括以下之一:
    多个用户终端;
    多个无线接入点;
    多个基站;或者
    用户终端、无线接入点和基站的任意组合。
  4. 根据权利要求1所述的通信系统,其中,所述对端通信设备包括第一对端通信设备和第二对端通信设备,
    其中,所述第一对端通信设备的天线模组和所述第二对端通信设备的天线模组相互独立地确定各自指向所述第一通信设备的第二天线辐射方位。
  5. 根据权利要求1所述的通信系统,其中,在所述第一通信设备和所述对端通信设备中的至少一者的位置信息发生更新时,
    所述第一通信设备的天线模组确定的指向所述对端通信设备的第一天线辐射方位被更新;以及
    所述对端通信设备的天线模组确定的指向所述第一通信设备的第二天线辐射方位被更新。
  6. 根据权利要求1所述的通信系统,其中,所述第一通信设备的天线模组包括:
    空间定位模块,用于基于从所述第一通信设备的对端通信设备获取的定位信息,确定所述对端通信设备在三维坐标系下的位置信息;
    定向调节算法模块,用于基于所述对端通信设备在三维坐标系下的位置信息,确定所述对端通信设备对应的目标辐射方位,并且基于所确定的目标辐射方位,从N个辐射方位中选择天线辐射方位,并且N为大于等于1的整数;以及
    定向天线模块,其包括提供所述N个辐射方位的定向天线结构,用于基于所述定向调节算法模块所选择的天线辐射方位对所述定向天线结构进行定向调节,以指向所述对端通信设备。
  7. 根据权利要求6所述的通信系统,其中,所述空间定位模块包括:
    空间定位天线子模块,包括M根定位天线,用于从所述第一通信设备的对端通信设备接收定位信息,M为大于等于1的整数;
    空间定位算法子模块,用于以所述M根定位天线的中心为原点建立三维坐标系,根据所述定位信息确定所述对端通信设备在所述三维坐标系下的作为所述位置信息的三维坐标。
  8. 根据权利要求7所述的通信系统,其中,所述定向调节算法模块在确定天线辐射方位时,被配置为:
    将所述对端通信设备在所述三维坐标系中的三维坐标转换为目标辐射方位;
    将所述目标辐射方位与所述N个辐射方位进行比较;以及
    将所述N个辐射方位中与所述目标辐射方位最接近的辐射方位确定为所述天线辐射方位。
  9. 根据权利要求7所述的通信系统,其中,所述定向天线结构包括P根天线,并且所述P根天线用于形成所述N个辐射方位,P和N的数量相同或不同。
  10. 一种天线模组,安装在通信设备上,所述天线模组包括:
    空间定位模块,用于基于从所述通信设备的对端通信设备获取的定位信息,确定所述对端通信设备在所述三维坐标系下的位置信息;
    定向调节算法模块,用于基于所述对端通信设备在三维坐标系下的位置信息,确定所述对端通信设备对应的目标辐射方位,并且基于所确定的目标辐射方位,从N个辐射方位中选择天线辐射方位,N为大于等于1的整数;以及
    定向天线模块,其包括提供所述N个辐射方位的定向天线结构,用于基于定向调节算法模块所选择的天线辐射方位对所述定向天线结构进行定向调节,以指向所述对端通信设备。
  11. 根据权利要求10所述的天线模组,其中,所述空间定位模块包括:
    空间定位天线子模块,包括M根定位天线,用于从所述通信设备的所述对端通信设备接收定位信息,M为大于等于1的整数;
    空间定位算法子模块,用于以所述M根定位天线的中心为原点建立三维坐标系,并且根据所述定位信息确定所述对端通信设备在所述三维坐标系下的作为所述位置信息的三维坐标。
  12. 根据权利要求11所述的天线模组,其中,所述空间定位算法子模块在确定所述三维坐标时,被配置为:
    根据所述定位信息计算出所述对端通信设备相对于所述天线模组的每根定位天线的距离信息以及任何两根天线接收的所述定时信息的相位差信息;以及
    根据所述距离信息以及所述相位差信息确定所述对端通信设备在所述三维坐标系下的三维坐标。
  13. 根据权利要求12所述的天线模组,其中,所述定位信息为带有时间戳的无线数据报文。
  14. 根据权利要求13所述的天线模组,其中,所述空间定位算法子模块 在确定所述三维坐标时,还被配置为:
    根据所述M根定位天线中的每一根定位天线接收到的所述定位信息中的时间戳计算出所述定位信息的传输时间,并结合所述定位信息的传输速度分别计算出所述对端通信设备相对于每根定位天线的距离信息;
    计算任何两根定位天线接收到的所述定位信息之间的相位差信息,所述相位差信息与所述M根定位天线的位置关系相关联;以及
    基于所述距离信息以及所述相位差信息,根据三角函数关系确定所述对端通信设备在所述三维坐标系中的三维坐标。
  15. 根据权利要求10所述的天线模组,其中,所述定向调节算法模块在确定目标辐射方位时,被配置为:
    将所述对端通信设备在所述三维坐标系中的三维坐标转换为目标辐射方位;
    将所述目标辐射方位与所述N个辐射方位进行比较;以及
    将所述N个辐射方位中与所述目标辐射方位最接近的辐射方位确定为所述天线辐射方位。
  16. 根据权利要求15所述的天线模组,其中,
    所述三维坐标为点坐标形式;以及
    所述目标辐射方位与所述N个辐射方位为角坐标形式。
  17. 根据权利要求16所述的天线模组,其中,所述定向调节算法模块还用于:
    根据定向天线模块所包括的定向天线结构,预先将所述三维坐标系按照角坐标的形式,划分为所述N个辐射方位。
  18. 根据权利要求17所述的天线模组,其中,所述定向天线结构包括P根天线,并且所述P根天线用于形成所述N个辐射方位,P和N的数量相同或不同。
  19. 一种通信设备,其特征在于,所述通信设备包括如权利要求10所述 的天线模组。
  20. 一种如权利要求1所述的通信系统的通信方法,包括:
    由所述通信系统中的多个通信设备中的第一通信设备的天线模组基于所述多个通信设备中的对端通信设备的位置信息,确定与所述对端通信设备的位置信息对应的第一目标辐射方位,并根据所述第一目标辐射方位确定对应的第一天线辐射方位,以指向所述对端通信设备;以及
    由所述对端通信设备基于所述第一通信设备的位置信息,确定与所述第一通信设备的位置信息对应的第二目标辐射方位,并根据所述第二目标辐射方位确定对应的第二天线辐射方位,以指向所述第一通信设备。
PCT/CN2022/118476 2021-09-13 2022-09-13 天线模组及具有该天线模组的通信设备、通信系统 WO2023036342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111071908.8A CN113948867A (zh) 2021-09-13 2021-09-13 天线模组及具有该天线模组的通信设备、通信系统
CN202111071908.8 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023036342A1 true WO2023036342A1 (zh) 2023-03-16

Family

ID=79328104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118476 WO2023036342A1 (zh) 2021-09-13 2022-09-13 天线模组及具有该天线模组的通信设备、通信系统

Country Status (2)

Country Link
CN (1) CN113948867A (zh)
WO (1) WO2023036342A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948867A (zh) * 2021-09-13 2022-01-18 深圳市联洲国际技术有限公司 天线模组及具有该天线模组的通信设备、通信系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892492A (zh) * 2016-06-07 2016-08-24 南方科技大学 一种无人机通信控制方法和装置
CN106602226A (zh) * 2015-10-15 2017-04-26 现代自动车株式会社 天线设备、具有天线设备的车辆以及控制天线设备的方法
CN107078391A (zh) * 2016-12-01 2017-08-18 深圳市大疆创新科技有限公司 定向天线的追踪方法及通信设备
CN113259906A (zh) * 2021-05-08 2021-08-13 广州小鹏新能源汽车有限公司 一种车辆间的通信方法、装置、电子设备和介质
CN113376571A (zh) * 2021-05-07 2021-09-10 北京冰锋科技有限责任公司 Uwb多天线定位方法
CN113948867A (zh) * 2021-09-13 2022-01-18 深圳市联洲国际技术有限公司 天线模组及具有该天线模组的通信设备、通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602226A (zh) * 2015-10-15 2017-04-26 现代自动车株式会社 天线设备、具有天线设备的车辆以及控制天线设备的方法
CN105892492A (zh) * 2016-06-07 2016-08-24 南方科技大学 一种无人机通信控制方法和装置
CN107078391A (zh) * 2016-12-01 2017-08-18 深圳市大疆创新科技有限公司 定向天线的追踪方法及通信设备
CN113376571A (zh) * 2021-05-07 2021-09-10 北京冰锋科技有限责任公司 Uwb多天线定位方法
CN113259906A (zh) * 2021-05-08 2021-08-13 广州小鹏新能源汽车有限公司 一种车辆间的通信方法、装置、电子设备和介质
CN113948867A (zh) * 2021-09-13 2022-01-18 深圳市联洲国际技术有限公司 天线模组及具有该天线模组的通信设备、通信系统

Also Published As

Publication number Publication date
CN113948867A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
US11929802B2 (en) Unmanned aerial vehicle communication
CN103558594B (zh) 基于机载设备的相控阵波束合成方法
US9907045B2 (en) Method and system for determining a location of wireless device
Mavromatis et al. Beam alignment for millimetre wave links with motion prediction of autonomous vehicles
US10091757B2 (en) Base-station control apparatus and position estimation method
US10142000B2 (en) Antenna apparatus
US11516809B2 (en) Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
CN109346845B (zh) 天线调整方法、装置、设备、无人机系统及可读存储介质
KR20170036722A (ko) 무선 시스템들에서의 적응적 빔 배치를 위한 방법
WO2023036342A1 (zh) 天线模组及具有该天线模组的通信设备、通信系统
CN103281711A (zh) 一种短距离无线宽带通信方法和系统
CN102856667A (zh) 一种多波束天线系统
WO2015004895A1 (ja) 無線通信システム、基地局および制御方法
EP3659212A1 (en) System and method for beamforming using a phased array antenna
CN111224701B (zh) 波束成形装置、控制波束成形的方法、装置及设备
CN109495153B (zh) 用于波束训练与跟踪的异构网络、移动装置及方法
KR100464332B1 (ko) 이동통신시스템에서 어레이 안테나의 송신빔 형성 장치 및방법
GB2514548A (en) Method of configuring a high-frequency radio module, associated multiband radio communication device and system
CN104242996A (zh) 一种建立通信链路的方法、系统及装置
US10965039B1 (en) System and method for fleet command and control communications with secondary radar functionality using 360° multi-beam hemispherical array
CN108352619A (zh) 一种反射面天线及天线对准方法
CN113114308A (zh) 一种天线控制方法和电子设备
WO2022001793A1 (zh) 有效全向辐射功率控制方法、装置及存储介质
Roy et al. Neighborhood tracking and location estimation of nodes in ad hoc networks using directional antenna: a testbed implementation
US10429485B1 (en) Systems, devices and methods for location identification and reporting using radio frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866803

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022866803

Country of ref document: EP

Effective date: 20240412