WO2023036018A1 - 用于皮肤的离子电渗透装置及其贴片 - Google Patents

用于皮肤的离子电渗透装置及其贴片 Download PDF

Info

Publication number
WO2023036018A1
WO2023036018A1 PCT/CN2022/115908 CN2022115908W WO2023036018A1 WO 2023036018 A1 WO2023036018 A1 WO 2023036018A1 CN 2022115908 W CN2022115908 W CN 2022115908W WO 2023036018 A1 WO2023036018 A1 WO 2023036018A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive
layer
skin
electrode circuit
Prior art date
Application number
PCT/CN2022/115908
Other languages
English (en)
French (fr)
Inventor
牛占峰
王晓兰
Original Assignee
北京意安平顺网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京意安平顺网络科技有限公司 filed Critical 北京意安平顺网络科技有限公司
Publication of WO2023036018A1 publication Critical patent/WO2023036018A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents

Definitions

  • the present disclosure relates to the field of iontophoresis commonly used in medical and cosmetic fields, and more particularly, to an iontophoresis patch device for skin and a patch for the device.
  • iontophoresis technology works by applying a fluid containing a positively or negatively charged active ingredient to the skin and covering the fluid with either the positive or negative electrode pad of the iontophoresis device while the other pad In contact with another skin part of the body, the principle of same-sex repulsion is used to drive the charged active ingredients to quickly penetrate into the skin in the electrified state, thereby achieving the purpose of transdermal drug delivery in the medical field or skin care in the cosmetic field Purpose.
  • drugs can be introduced through the sebaceous glands, sweat glands and intercellular spaces in the skin of the joints, palms, soles, face, back, neck, shoulders, arms, legs, etc.
  • the active ingredients are quickly introduced into the deep skin and bone gaps, and the introduced drugs can further gradually enter the body through blood circulation.
  • beauty instruments using ion permeation technology can not only achieve positive ion export to clean the skin, but also can achieve positive ion import or negative ion import for skin care products.
  • positive ion introduction when a skin care product with positively charged active ionic components is applied with a high potential by the positive electrode of the beauty instrument, the skin care product will accelerate its movement and penetrate into the skin through the sebaceous glands, sweat glands and intercellular spaces of the skin, even It can penetrate into the dermis, thereby improving the penetration ability of skin care products.
  • the dust, garbage and excess keratin residues in the surface layer of the skin are usually positively charged, and can be separated from the skin through the low-potential adsorption generated by the negative electrode of the beauty instrument, thereby achieving deep cleansing of the skin.
  • the iontophoresis device usually needs to be equipped with a hand-held handle to assist in the formation of the human body's electrical circuit, and the introduction efficiency is low and the operation is inconvenient.
  • An aspect of the present disclosure is to provide a highly integrated iontophoretic patch for skin and an iontophoretic device for skin.
  • Another aspect of the present disclosure is to provide an iontophoresis patch for skin and an iontophoresis device for skin that can simultaneously introduce drugs or skin care products at multiple points.
  • an iontophoresis patch for skin includes: an adsorption layer configured to absorb fluid containing positive ions or negative ions; a first electrode circuit arranged on one of the adsorption layers side and has one or more conductive contacts; the second electrode circuit is arranged on the other side of the adsorption layer for contacting the skin, wherein the first electrode circuit can be connected to the positive pole and the negative pole of the power supply One electrode is electrically connected, the second electrode circuit can be electrically connected to the other electrode of the positive pole and the negative pole of the power supply, and at least one of the conductive contacts is opposite to the second electrode circuit.
  • the adsorption layer is arranged in a staggered manner, wherein the part of the first electrode circuit other than the conductive contact and the second electrode circuit are electrically insulated from the adsorption layer.
  • an iontophoretic patch for the skin comprises: a membrane cloth layer having a microporous structure suitable for storing a fluid having a charged active ingredient; an introduction electrode disposed on the One side of the membrane cloth layer, and has a plurality of exposed ion introduction points; the export electrode is arranged on the other side of the membrane cloth layer to contact the skin, wherein the import electrode and the export electrode are configured to be able to A plurality of microcurrent loops are formed through the plurality of ion introduction points, the adsorbed liquid on the membrane cloth layer and the skin, and the lead-out electrode.
  • an iontophoresis device for skin includes the aforementioned iontophoresis patch for skin and a power module including the power supply and the power control circuit, wherein the The power module is integrated with the iontophoresis patch for skin or connected detachably.
  • the iontophoresis device for skin of the present disclosure since the active electrode and the inert electrode are integrated on the same membrane cloth layer, not only the structure of the iontophoresis patch is compact and reasonable, but also the use of the iontophoresis device for skin More convenient.
  • the iontophoresis device for skin according to the present disclosure can realize simultaneous introduction of drugs or skin care products at multiple points, so the introduction efficiency can be greatly improved.
  • FIG. 1 is a plan view of one side of an iontophoresis device for skin according to a first embodiment of the present disclosure, showing a patch and a power module separated from the patch;
  • FIG. 2 is a plan view of another side of the iontophoresis device for skin according to the first embodiment of the present disclosure, showing the patch and the power module separated from the patch;
  • FIG. 3 is a plan view of a surface insulating layer of a first electrode circuit of a patch according to a first embodiment of the present disclosure
  • FIG. 4 is a plan view of a conductor layer of a first electrode circuit of a patch according to a first embodiment of the present disclosure
  • FIG. 5 is a plan view of a bottom insulating layer of a first electrode circuit of a patch according to a first embodiment of the present disclosure
  • FIG. 6 is a plan view of a film cloth layer of a patch according to a first embodiment of the present disclosure
  • FIG. 7 is a plan view of an insulating layer of a second electrode circuit of a patch according to the first embodiment of the present disclosure
  • FIG. 8 is a plan view of a conductor layer of a second electrode circuit of the patch according to the first embodiment of the present disclosure
  • FIG. 9 is a plan view of the conductive hydrogel layer of the second electrode circuit of the patch according to the first embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of decomposing and stacking a patch according to the first embodiment of the present disclosure
  • FIG. 11 is a plan view of another side of an iontophoresis device for skin according to a second embodiment of the present disclosure, showing a patch and a power module separated from the patch;
  • FIG. 12 is a plan view showing an insulating layer of a second electrode circuit of a patch according to a second embodiment of the present disclosure
  • FIG. 13 is a plan view showing a conductor layer of a second electrode circuit of a patch according to a second embodiment of the present disclosure
  • FIG. 14 is a plan view showing a conductive hydrogel layer of a patch according to a second embodiment of the present disclosure.
  • Fig. 15 is an exploded stack diagram showing a patch according to a second embodiment of the present disclosure.
  • first means “first”, “second” and “third” may be used herein to describe various members, components, regions, layers or sections, these members, components, regions, layers or sections should not be referred to as These terms are limited. Rather, these terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.
  • a first member, a first component, a first region, a first layer, or a first portion referred to in examples described herein could also be termed a second member, a second component, or a first portion without departing from the teachings of the examples.
  • the iontophoresis device 1000 for skin mainly includes two parts: a patch 10 and a power module 400 .
  • the patch 10 includes a film cloth layer 100 and a first electrode circuit 200 and a second electrode circuit 300 respectively arranged on both sides of the film cloth layer 100 .
  • the side of the patch 10 on which the second electrode circuit 300 is arranged is adapted to fit the skin.
  • the power module 400 mainly includes a power supply (not shown) and a power control circuit (not shown).
  • the power supply control circuit adjusts the output voltage of the power supply to change the magnitude of the current flowing in the first electrode circuit 200 and the second electrode circuit 300 .
  • Indicator lights 410 and 420 are provided on the power module 400 to indicate the working status of the entire iontophoresis device.
  • the power control circuit of the power module 400 also controls the power supply mode of the power supply, wherein the power supply mode includes continuous power supply and pulse power supply.
  • the membrane cloth layer 100 is formed of a porous material, so the membrane cloth layer 100 can absorb or carry fluid and be used as an adsorption layer for fluid form medicine or skin care products.
  • drugs or skin care products refer to drugs or skin care products containing positively or negatively charged active ingredients, which are collectively referred to as fluids hereinafter.
  • the fluid can be either Newtonian or non-Newtonian. Therefore, the fluid that can be absorbed or carried by the membrane cloth layer 100 can be in various forms such as liquid, gel, emulsion, and paste.
  • the membrane cloth layer 100 can be plant fiber cloth, animal fiber cloth, microbial fiber cloth or chemical fiber cloth, and can be in the form of non-woven fabric or woven fabric.
  • the membrane cloth layer 100 may be silk cloth, chitin fiber cloth, lyocell fiber cloth (for example, Tencel cloth) or cupro fiber cloth.
  • the first electrode circuit 200 is connected to one electrode of a power source (not shown) in the power module 400, and the second electrode circuit 300 is connected to the other electrode of the power source.
  • the first electrode circuit 200, the membrane cloth layer 100 with fluid, the skin and the second electrode circuit 300 form one or more microcurrents. loop circuit.
  • the first electrode circuit 200 has a plurality of conductive contacts 222 exposed relative to the film cloth layer 100 or directly contacting the film cloth layer 100 . That is to say, the conductive contact 222 directly in contact with the membrane cloth layer 100 serves as the iontophoresis device 1000's ion introduction point, while the other parts of the first electrode circuit 200 are insulated relative to the membrane cloth layer 100, which can pass
  • the first electrode circuit 200 introduces a fluid, such as a drug or skin care product, to the skin from one or more points.
  • the second electrode circuit 300 arranged on the other side of the membrane cloth layer 100 is also insulated from the membrane cloth layer 100 as a whole. In this way, when the side of the patch 10 having the second electrode circuit 300 is attached to human skin, the first electrode circuit 200 can serve as an incoming electrode or an active electrode, while the second electrode circuit 300 can serve as an outgoing electrode or an inert electrode. electrode.
  • the membrane cloth layer 100 When energized, if the membrane cloth layer 100 is loaded with positively charged active ingredient fluid and the first electrode circuit 200 is electrically connected to the positive pole of the power supply, the high potential generated around the conductive contact 222 will drive the active ingredient from the membrane cloth.
  • the layer 100 accelerates the movement to the inside of the skin through the intercellular space of the skin, the sebaceous glands and the sweat glands, so as to realize the electroosmotic introduction of the fluid, that is, positive iontophoresis.
  • the film cloth layer 100 is loaded with negatively charged active ingredient fluid and the first electrode circuit 200 is electrically connected to the negative pole of the power supply, the low potential generated around the conductive contact 222 will drive the fluid with the active ingredient from The film cloth layer 100 accelerates the movement to the inside of the skin through the intercellular space of the skin, the sebaceous glands and the sweat glands, so as to realize the electroosmotic introduction of the fluid, that is, the introduction of negative ions.
  • the positively charged dirt in the stratum corneum of the skin can be absorbed by the second electrode circuit 300 with low potential, so as to achieve the auxiliary effect of deep cleansing of the skin.
  • the relative arrangement of the first electrode circuit 200 and the second electrode circuit 300 on the membrane cloth layer 100 is very important.
  • the conductive contacts 222 and the second electrode circuit 300 should be kept staggered, that is, the second electrode circuit 300 should not be arranged on the membrane cloth layer 100 where the conductive contacts 222 are arranged. . If the second electrode circuit 300 is formed in a pattern as a whole, it is better to arrange the conductive contacts 222 at the hollowed out positions of the second electrode circuit 300 .
  • the conductive contact 222 and the second electrode circuit 300 are arranged on both sides of the same position of the film cloth layer 100, the conductive contact 222 is equivalent to being covered by the insulating layer 310 of the second electrode circuit 300 (will be described in detail below) With respect to the electrical isolation of the skin, it is impossible to form a microcircuit loop with the corresponding second electrode circuit 300 , so that effective iontophoresis cannot be achieved.
  • the arrangement and structure of the first electrode circuit 200 and the second electrode circuit 300 of the iontophoresis device 1000 for skin according to the first embodiment of the present disclosure and the corresponding iontophoresis process will be described in detail below with reference to FIGS. 1-10 . .
  • the first electrode circuit 200 includes a first insulating layer 210 (also referred to as a bottom insulating layer), a conductor layer 220 having at least one exposed conductive contact, and The second insulating layer 230 (may also be referred to as a surface insulating layer).
  • the first insulating layer 210 is directly disposed on the membrane cloth layer 100 .
  • the conductor layer 220 is arranged on the first insulating layer 210 and comprises a conductive contact 222 , a power connection or a power connection contact 223 and an electrical connection 221 .
  • the power connection contact 223 and the electrical connection part 221 of the conductor layer 220 are all arranged on the first insulating layer 210.
  • a second insulating layer 230 can be further stacked on the conductor layer 220 to At least the electrical connection portion 223 of the conductor layer 220 is insulated and sealed.
  • the first insulating layer 210 and the second insulating layer 230 can completely electrically insulate the electrical connection portion 223 of the conductor layer 220 and only allow the conductive contact 222 of the conductor layer 220 to form an electrical connection with the fluid-absorbed membrane cloth layer 100 and the skin relationship, and form a micro-current circuit through the skin and the second electrode circuit 300 to realize iontophoresis.
  • the second insulating layer 230 can selectively cover the conductive contacts.
  • Point 222 either covers one or more of conductive contacts 222 , or covers a portion of the area of conductive contacts 222 .
  • the second insulating layer 230 can also be completely omitted.
  • the second electrode circuit 300 includes an insulating layer 310 adhered to the other side of the film cloth layer 100 , and a conductive layer disposed on the insulating layer 310 .
  • the conductive layer may include a conductive layer 320 and a conductive hydrogel layer 330 covering the conductive layer 320 .
  • the insulating layer 310 insulates the conductive layer 320 relative to the membrane cloth layer 100, so that the first electrode circuit 200 can pass through the conductive contact 222, the membrane cloth layer 100 adsorbed with fluid, the skin and the second electrode circuit 300 adjacent to the conductive contact 222.
  • the conductive layer forms a micro current loop.
  • the skin contact resistance can be reduced by providing the conductive hydrogel layer 330 , thereby reducing the operating voltage of the power supply in the power module 400 .
  • the conductive hydrogel layer 330 is optional, but not required. As long as the voltage of the power module 400 can ensure that the current density in the multiple micro-current loops formed between the first electrode circuit 200 and the second electrode circuit 300 is within a desired range, the conductive hydrogel layer 330 may not be coated.
  • the current density of each microcurrent loop can be set at less than 10mA/cm 2 , and the voltage of the power module 400 can be set between 1.5V and 110V. Further considering the tolerance and sensitivity of human nerves, the current density of each microcurrent loop can be set to less than 5mA/cm 2 , and can be set to less than 2mA/cm 2 according to specific skin parts. For sensitive skin parts, For example, the face, preferably between 0.5mA/cm 2 and 1mA/cm 2 , the operating voltage of the power module 400 can be set to be lower than or equal to 36V, preferably between 5V-8V.
  • the power source of the power module 400 may be a button battery, a flexible battery or an IoT battery (for example, an IoT battery produced by Fujian Nanping Nanfu Battery Co., Ltd.).
  • an IoT battery for example, an IoT battery produced by Fujian Nanping Nanfu Battery Co., Ltd.
  • the operating voltage of the power module can be set to be greater than 36V, but it is only necessary to ensure that the current flowing through the skin will not cause damage to the skin and other organs of the human body.
  • the power supply mode of the power supply includes DC pulse power supply and DC continuous power supply.
  • the magnitude of the current density should consider the duration of power supply, and in the case of pulse power supply, the magnitude of the current density should consider the frequency of pulses and the duration of power supply.
  • the current density in the pulse power supply mode can be greater than that in the continuous power supply mode. The longer the power supply time is, the lower the current density should be, so as not to cause damage to the skin or other tissues of the human body.
  • a detailed structure of the first insulating layer 210 will be described in detail below with reference to FIG. 5 .
  • the first insulating layer 210 includes a main body portion 211 and a connection portion 212, wherein the main body portion 211 is used to electrically insulate the electrical connection portion 221 of the conductor layer 220, and the connection portion 212 is used to connect the conductor layer 220.
  • the power connection part 223 is electrically insulated.
  • the main body 211 is formed in a mesh pattern with a plurality of triangular hollows, and a circular hole 215 is formed at the apex of each triangle, through which the conductive contacts 222 directly contact the membrane cloth layer 100 .
  • the hollow part is formed in the form of a triangle, but the hollow part can also be formed in other shapes such as polygons or circles such as quadrilateral, pentagon, and hexagon.
  • the larger the proportion of the hollow part on the membrane cloth layer 100 the better, because the insulating layer 210 adhered to the membrane cloth layer will have a certain negative impact on the ability of the membrane cloth layer 100 to absorb fluid. Therefore, the larger the overall area of the hollow part, the smaller the performance loss of the patch 10 for absorbing fluid, and it is beneficial to the air permeability of the patch 10 when it is attached to the skin.
  • the conductive contacts 222 of the first electrode circuit 200 there is a clear correspondence between the conductive contacts 222 of the first electrode circuit 200 and the patterned components of the second electrode circuit, so that each conductive contact 222 can be connected to the conductive layer of the adjacent second electrode circuit. A microcurrent loop is formed between them. Therefore, it is very advantageous to design the first electrode circuit 200 to have a regular grid pattern. Therefore, the polygonal ring and the circular ring are preferably regular polygonal rings and perfect circular rings, but, as long as the conductive contacts 222 and the second electrode circuit 300 are staggered, non-regular polygonal rings and non-circular rings (such as elliptical ring) can also realize the micro current loop.
  • the grid pattern of the first insulating layer 210 shown in FIG. 5 is formed of a plurality of triangles sharing sides, but the present disclosure is not limited thereto.
  • the mesh pattern of the first insulating layer 210 may include a plurality of polygonal rings or a plurality of circular rings connected by connecting parts, a plurality of polygonal rings or a plurality of circular rings adjacent to each other, polygonal rings connected by connecting parts and circular rings or polygonal rings and circular rings adjacent to each other.
  • adjacent to each other means that adjacent polygonal rings and/or circular rings share adjacent sides, there are side portions overlapping each other, or adjacent sides are connected together.
  • Each polygonal ring or circular ring has a certain width, preferably, the width is between 1mm and 5mm.
  • the shape and size of the circular hole 215 are preferably equal to the shape and size of the conductive contact 222 of the conductor layer 220 , for example, the circular hole 215 and the conductive contact 222 are circular with a diameter of 1 mm to 10 mm.
  • the circular hole 215 is slightly larger or smaller than the conductive contact 222 or the conductive contact 222 is not completely aligned with the circular hole 215, nor will it affect the effect of iontophoresis contemplated by the present application. have a very noticeable impact.
  • the pattern shape of the first electrode circuit 200 (more specifically, the first insulating layer 210 of the first electrode circuit 200) is described in a hollow shape, but it can also be said that the first insulating layer 210 as a whole or
  • the main body portion 211 of the first insulating layer 210 is formed in a grid shape connected by straight line portions 214, wherein the circular holes 215 for passing through the conductive contacts 222 are formed at grid-like connection points or grid nodes. place.
  • the grid or pattern of the first insulating layer 210 can also be formed by connecting curved parts or connecting straight parts and curved parts, as long as the first insulating layer 210 can make the conductive layer 220
  • the parts other than the conductive contacts 222 need only be electrically insulated from the membrane cloth layer 100 .
  • the smaller the area ratio of the first insulating layer 210 relative to the film cloth layer 100 the better, so as to increase the air permeability and fluid absorption capacity of the patch 10 .
  • the circular holes 215 for penetrating the conductive contacts 222 are preferably formed at the grid-shaped connection points, but not limited thereto, that is, the circular holes 215 can also be formed in the first insulating layer 210 Other positions, for example, are formed on the straight line portion or the curved line portion of the grid-like pattern.
  • the conductive contact 222 adopts a circular shape to make the current density around each ion introduction point uniform, but the conductive contact 222 can also adopt a triangular, square, rectangular, rhombus, or hexagonal shape. and other suitable shapes. In this case, preferably, the conductive contact 222 adopts a regular polygonal shape, so as to facilitate the uniform distribution of the micro current.
  • the size and shape of the hole 215 is the same as the size and shape of the conductive contact 222 .
  • the conductive contact 222 is formed on a straight line or a curved line of the grid pattern instead of a connection point of the grid pattern, two or more contacts may be provided on one straight line or one curved line as required. More conductive contacts.
  • the maximum outer diameter of the conductive contact is preferably less than 20mm.
  • the shape of the conductive contact 222 can also be various shapes, not limited to a circle, for example, it can be various shapes such as square, rectangle, rhombus, triangle, and ring.
  • a through hole 213 is also formed on the connecting portion 212 of the first insulating layer 210 , and the through hole is used to guide the conductor layer 320 of the second electrode circuit 300 to the first electrode circuit 200 through an electrical connector 323 .
  • the first insulating layer 210 is formed of an elastic or flexible insulating material, preferably a thermoplastic elastomer material.
  • the first insulating layer 210 may be made of polyurethane (PU), polyvinyl chloride (PVC), silicone rubber (Silicone rubber), polyethylene terephthalate (PET, polyethylene terephthalate), polyolefin elastomer ( POE, polyolefin elastomer) or thermoplastic polyurethane elastomer (TPU, thermoplastic polyurethane elastomer), and can be adhered to one side of the film cloth layer 100 by thermal transfer printing.
  • PU polyurethane
  • PVC polyvinyl chloride
  • silicone rubber Siliconelast
  • PET polyethylene terephthalate
  • POE polyolefin elastomer
  • TPU thermoplastic polyurethane elastomer
  • the first insulating layer 210 is formed in a mesh pattern or in a hollow shape, but the first insulating layer 210 covers all the film cloth layers except for the positions corresponding to the conductive contacts 222. 100 is also possible, as long as the fluid absorbed by the membrane cloth layer 100 can meet the actual use requirements.
  • the connection part 212 protrudes relative to the main body part 211, but the connection part 212 may not protrude from the main body part 211, for example, any part of the main body part 211 may be set to be connected. part 212, as long as the first insulating layer 210 electrically insulates the power connection part 223 of the conductor layer 220.
  • the conductor layer 320 of the second electrode circuit 300 is electrically connected to the power module 400 through the through hole 213 on the first insulating layer 210 through the electrical connector 323 , for example,
  • the electrical connection can be made by means of magnetic adsorption, clamping, direct contact, and the like.
  • the conductor layer 220 of the first electrode circuit 200 can also be electrically connected to the power module 400 by means of magnetic attraction, clamping, direct contact and the like.
  • the present disclosure is not limited thereto, for example, the conductor layer 320 of the second electrode circuit 300 may be directly electrically connected to the power module 400 through flexible wires without the need for the electrical connector 323 . In this case, the via hole 213 on the first insulating layer 210 may be omitted.
  • the conductor layer 220 of the first electrode circuit 200 can also be electrically connected to the power module 400 through a flexible wire.
  • the conductor layer 220 may be entirely formed of a conductor material such as conductive glue, conductive paste, conductive paint, graphene or metal foil (eg, gold foil, silver foil, aluminum foil, gold-plated aluminum foil, etc.).
  • a conductor material such as conductive glue, conductive paste, conductive paint, graphene or metal foil (eg, gold foil, silver foil, aluminum foil, gold-plated aluminum foil, etc.).
  • the effective conductor components in conductive coatings such as conductive glue, conductive paint, or conductive paste can be metals or metal oxides such as copper and silver, or non-metals such as carbon, graphite, and nanotubes, and can also be Conductive polymer materials such as polyaniline (PANI, Polyaniline), polypyrrole (polypyrrole), polythiophene (polythiophene), polyquinoline (polyquinoline).
  • the conductive material of the conductive layer may be printed (eg, screen printed), plated, sputtered, thermally pressed, sprayed, deposited, electrostatically adsorbed or adhered to the first insulating layer 210 .
  • the position of the conductive contact 222 of the conductive layer 220 corresponds to the position of the hole 215 of the first insulating layer 210 , and the conductive contact 222 of the conductive layer 220 and the power connection contact 223 are connected to each other through the wire-shaped electrical connection portion 221 .
  • the conductor layer 220 is also formed in a mesh shape, and the mesh shape substantially coincides with the mesh shape of the first insulating layer 210 . Since the first insulating layer 210 is used to electrically insulate the electrical connection portion 221 from the film cloth layer 100 , the width of the straight portion 214 of the first insulating layer 210 must be greater than the width of the electrical connection portion 221 .
  • the conductive layer 220 can be integrally printed with conductive silver paste and/or graphene on the first insulating layer 210 and the film cloth layer 100 by screen printing, but the disclosure is not limited thereto, and the conductive layer 220 can also be Formed integrally from metal foil.
  • different parts of the conductor layer 220 may be formed using different materials or using different processes.
  • the electrical connection part 221 is formed by metal wire, metal foil, conductive silver paste or graphene, while the conductive contact 222 and/or the power connection contact 223 is formed by metal foil.
  • the conductive contacts 222 and/or the power connection contacts 223 are formed of conductive silver paste or graphene, while the electrical connection portion 221 is formed of metal foil or metal wires. According to the selection of the material of the conductor layer 220 , an appropriate process may be selected to attach the selected material to the first insulating layer 210 .
  • the pattern or grid shape of the conductor layer 220 is preferably consistent with the pattern or grid shape of the first insulating layer 210, however, the pattern or grid shape of the conductor layer 220 may be consistent with the first insulation layer 210 according to the arrangement of the conductive contacts 222.
  • the pattern or grid shape of the insulating layer 210 is not completely consistent.
  • the advantage of the conductive layer 220 being formed in a grid shape is that when the patch 10 is applied to uneven parts such as the face and joints of the body, if the partial edge of the patch 10 is cut to better fit the skin, The electrical connectivity of the conductive contact 222 of the conductor layer 220 will not be affected, that is, the conductive contact 222 is still electrically connected to the power module 400 .
  • the specific structure of the second insulating layer 210 will be described in detail below with reference to FIGS. 1 and 3 .
  • the shape and size of the second insulating layer 230 may be substantially the same as that of the first insulating layer 210 .
  • the difference between the second insulating layer 230 and the first insulating layer 210 is that two through holes 233 are formed on the connecting portion 232 of the second insulating layer 230 to assist the first electrode circuit 200 and the second electrode circuit 300 It is electrically connected with the power module 400 .
  • One through hole 233 is used to connect the power supply connection contact 223 of the auxiliary first electrode circuit 200 with an electrode 450 (for example, positive pole) of the power supply module 400, and the other through hole 233 is used to assist the electrical connection of the second electrode circuit 300.
  • the connecting piece 323 (see FIG. 2 ) is connected to the other electrode 440 (eg, negative pole) of the power supply of the power module 400 .
  • the main body portion 231 of the second insulating layer 230 can be configured to be identical to the main body portion 211 of the first insulating layer 210 , and the shape and pattern of the second insulating layer 230 will not be repeated here.
  • the present disclosure is not limited thereto, for example, the width of the straight portion 234 constituting the main body portion 231 may be smaller or larger than the width of the straight portion 214 as long as the first insulating layer 210 and the second insulating layer 230 can electrically connect the conductor layer 220 It is only necessary for the portion 221 to be electrically insulated from the membrane cloth layer 100 . As described above, if the fluid adsorbed or carried by the membrane cloth layer 100 is a non-Newtonian fluid with poor fluidity, the second insulating layer 230 can be omitted.
  • via holes 235 are formed at connection points of the grid pattern of the second insulating layer 230 for exposing the conductive contacts 222 .
  • the exposure of the conductive contacts 222 by the second insulating layer 230 helps to improve the ability of the membrane cloth layer 100 to absorb fluid and increase the air permeability of the patch 10 . If the air permeability and fluid absorption capacity of the patch 10 are sufficient, no through hole 235 may be formed on the second insulating layer 230 , or only one or several through holes 235 may be formed.
  • the first electrode circuit 200 is insulated from the membrane cloth layer 100 that absorbs or does not absorb fluid. With such a structure, the first electrode circuit 200 only forms one or several microcurrent circuits through one or several conductive contacts, the fluid-absorbed film cloth layer 100 , the skin, and the second electrode circuit 300 which will be described in detail below. Thus, when the iontophoresis device for skin 1000 according to the first embodiment of the present disclosure is energized, the first electrode circuit 200 can form a driving potential to drive the charged active ingredient contained in the membrane cloth layer 100 to accelerate.
  • the conductor layer 220 in the first electrode circuit 200 is formed in a grid shape, the current can be highly subdivided, which helps the iontophoresis device to achieve uniform current distribution during use. For this reason, the first electrode circuit 200, more specifically, the degree of density of the mesh of the conductor layer 220 can be adjusted or designed according to the current required by the attached skin. In addition, the distance between adjacent conductive contacts 222 and the size of each conductive contact 222 can be specifically designed according to the introduction needs of specific introduction sites.
  • introduction needs include, but not limited to, the composition of the substance to be introduced (that is, skin care products or medicines), the form of the substance, the amount of the substance, the position of the skin, the resistance of the local skin, the sensitivity of the nerves of the skin, the At least one of time setting and user preference, among which, the resistance of the local skin, the position of the skin and the composition of the implant are particularly important.
  • the shape of the membrane cloth layer 100 will be described in detail below with reference to FIG. 6 .
  • the membrane cloth layer 100 includes a main body 101 and a connecting portion, wherein the shape of the main body 101 corresponds to the shape of the main body of the first electrode circuit 200 and the shape of the main body of the second electrode circuit 300, and the connecting portion 102 corresponds to the shape of the first electrode circuit 200 and the shape of the connection portion of the second electrode circuit 300.
  • a through hole 103 is formed on the connecting portion 102 for guiding the conductor layer 320 of the second electrode circuit 300 to the first electrode circuit 200 side. According to the foregoing description, if the conductor layer 320 of the second electrode circuit 300 is electrically connected to the power module 400 through a flexible wire, the through hole 103 can be omitted.
  • a specific structure of the second electrode circuit 300 will be described in detail below with reference to FIGS. 2 and 7 to 10 .
  • the second electrode circuit 300 includes an insulating layer 310 attached to the membrane cloth layer 100 , a conductor layer 320 arranged on the insulating layer, and a conductive hydrogel layer covering the conductor layer 320 .
  • the insulating layer 310, the conductive layer 320 and the conductive hydrogel layer 330 are similar in shape, and are all grid structures formed by hexagonal rings.
  • the insulating layer 310 electrically insulates the conductive layer 320 from the film cloth layer 100 , and therefore, the width of the side of the hexagonal ring of the insulating layer 310 is greater than the width of the side of the hexagonal ring of the conductive layer 320 .
  • the conductive hydrogel layer 330 reduces the contact resistance between the second electrode circuit 300 and the skin, therefore, the width of the side of the hexagonal ring of the conductive hydrogel layer 330 is greater than that of the side of the hexagonal ring of the conductive layer 320.
  • Width but less than the width of the side of the hexagonal ring of the insulating layer 310, to prevent the conductive contact 222 of the first electrode circuit 200 from forming a microcurrent loop between the fluid adsorbed by the membrane cloth layer 100 and the conductive hydrogel layer 330 And avoid the skin.
  • the conductive hydrogel layer 330 can be omitted if the circuit design of the iontophoresis device can ensure the current density in the microcurrent loop.
  • the second electrode circuit 300 is formed as a hexagonal hole grid (ie, a honeycomb hole grid), and each conductive contact 222 of the first electrode circuit 200 is preferably disposed on The center of the hexagonal hole of the grid pattern of the second electrode circuit 300 .
  • the shape of the pattern of the second electrode circuit 300 is not limited thereto.
  • the second electrode circuit 300 may also be formed into grids of various shapes such as square hole grids, rectangular hole grids, rhombus hole grids, round hole grids, elliptical hole grids, and special-shaped hole grids. That is to say, the second electrode circuit 300, like the first electrode circuit 200, can be formed as a grid pattern spliced by straight line segments or curved segments, or can be formed as a grid pattern spliced by straight line segments and curved segments. pattern.
  • the second electrode circuit 300 can also be formed to have a hollowed out pattern according to needs, in this case, each conductive contact 222 is preferably disposed in the corresponding hollowed out part of the second electrode circuit 300 .
  • the hollow part can be various regular or irregular shapes such as circle, square, hexagon, and the hollow part can be closed or open.
  • the second electrode circuit 200 when the second electrode circuit 200 is formed in the form of a pattern, there is a corresponding relationship between the components of the pattern of the second electrode circuit 200 and the conductive contacts 222, which helps to form mutual Multiple microcurrent loops connected in parallel.
  • the grid pattern of the insulating layer 310 shown in FIG. 7 is formed by a plurality of polygonal rings of other shapes sharing sides, not limited to hexagonal rings.
  • the grid pattern of the insulating layer 310 may include a plurality of polygonal rings or a plurality of circular rings connected by connecting parts, a plurality of polygonal rings or a plurality of circular rings adjacent to each other, polygonal rings and circular rings connected by connecting parts. rings or polygonal rings and circular rings adjacent to each other.
  • adjacent to each other means that adjacent polygonal rings and/or circular rings share adjacent sides, there are side portions overlapping each other, or adjacent sides are connected together.
  • Each polygonal ring or circular ring of the insulating layer 310 has a certain width, preferably, the width is between 1 mm and 5 mm.
  • the boundary of the second electrode circuit 300 is preferably separated from the edge of the conductive contact 222 by a distance between 1 mm and 10 mm.
  • the boundary of the insulating layer of the second electrode circuit 300 is directly adjacent to the edge of the conductive contact 222 . That is, the boundary of the conductive contact 222 may coincide with the boundary of the insulating layer of the second electrode circuit 300 , that is, the distance between the boundary of the second electrode circuit 300 and the edge of the conductive contact 222 is in the range of 0 to 10 mm.
  • the material and forming method of the insulating layer 310 of the second electrode circuit 300 are the same as those of the first insulating layer 210 of the first electrode circuit 200 , and will not be described again here.
  • the material and processing method of the conductor layer 320 of the second electrode circuit 300 are similar to those of the conductor layer 200 of the first electrode circuit 200 .
  • the conductor layer 320 of the second electrode circuit 300 may also be formed on the insulating layer 310 by conductive silver paste, graphene or metal foil. Conductive silver paste may be printed on the insulating layer 310 by screen printing.
  • using conductive silver paste or graphene to print the conductor layers 220 and 330 can make the patch 100 not too stiff compared to the case of using metal foil to form the conductor layer.
  • silver has excellent electrical conductivity, and metallic silver has no negative effect on the skin and will not cause allergic reactions on the skin.
  • one side of the second electrode circuit 300 contacts the skin and does not need to be covered by an insulating layer.
  • the insulating layer 310, the conductor layer 320, and the conductive hydrogel layer 330 of the second electrode circuit 300 will be described in detail below with reference to FIGS. 7-9.
  • the insulating layer 310 includes a mesh main body 311 spliced by hexagonal rings and a connecting portion 312 protruding from the main body 311 .
  • a through hole 313 is formed on the connection portion 312 for guiding the electrical connector 323 to electrically connect the conductor layer 320 to the first electrode circuit 200 side.
  • the connection part 312 may be directly provided on a part of the main body part 311 .
  • the conductor layer 320 includes a mesh main body 321 spliced by hexagonal rings and a connecting portion 322 protruding from the main body 321 .
  • a through hole 325 is formed on the connection portion 322 for guiding the electrical connector 323 to electrically connect the conductor layer 320 to the first electrode circuit 200 side.
  • the overall size of the conductor layer 320 and the width of the hexagonal ring are smaller than the overall size of the insulating layer 310 and the width of the hexagonal ring, so that the insulating layer 310 can fully insulate the conductive layer 320 from the film cloth layer 100 .
  • connection part 322 may be directly provided on a part of the main body part 311 .
  • the conductive hydrogel layer 330 includes a mesh-like main body 331 spliced by hexagonal rings and a connecting portion 332 protruding from the main body 331 .
  • the connection part 332 may also be formed of an insulating material.
  • the conductive hydrogel layer 330 can also be replaced by a conductive silica gel layer.
  • the structure of the iontophoresis device 1000 for skin according to the first embodiment of the present disclosure is described above in detail with reference to FIGS. 1 and 10 .
  • the structure of an iontophoresis device 2000 for skin according to a second embodiment of the present disclosure will be described in detail below with reference to FIGS. 11 to 15 .
  • an iontophoresis device 2000 for skin includes a patch 20 and a power module 400 .
  • the patch 20 includes a film cloth layer 100 and a first electrode circuit 200 and a second electrode circuit 600 respectively arranged on both sides of the film cloth layer 100 .
  • the difference between the second electrode circuit 600 of the patch 20 and the second electrode circuit 300 of the patch 10 is mainly in the pattern shape.
  • the second electrode circuit 600 includes an insulating layer 610 , a conductive layer 620 and a conductive hydrogel layer 630 .
  • the insulating layer 610 includes a main body portion 611 having a plurality of circular hollow portions and a connecting portion 612 .
  • a through hole 613 for guiding the conductor layer 620 to the first electrode circuit 200 side is provided on the connection portion 612 .
  • Each circular hollow portion of the insulating layer 610 corresponds to one conductive contact 222 , wherein the conductive contact 222 is preferably disposed at the center of the corresponding circular hollow portion.
  • the conductor layer 620 includes a main body portion 621 having a circular hollow portion and a connection portion 622 .
  • a through hole 625 for guiding the conductor layer 620 to the first electrode circuit 200 side is provided on the connection portion 622 .
  • Each circular hollow part of the conductor layer 620 corresponds to one conductive contact 222, wherein the conductive contact 222 is preferably arranged at the center of the corresponding circular hollow part.
  • the diameter of the circular hollow part of the conductor layer 620 is smaller than the diameter of the corresponding circular hollow part of the insulating layer 610, and the overall size of the conductor layer 620 is also slightly smaller than The overall size of the insulating layer 610 .
  • the conductive hydrogel layer 630 includes a main body portion 631 of a circular hollow portion and a connecting portion 632 .
  • the overall size of the conductive hydrogel layer 630 can be slightly larger than the overall size of the conductive layer 620, but should not exceed the overall size of the insulating layer 610, so as to prevent the conductive hydrogel layer 630 and the conductive layer 620 from being directly adsorbed to each other when the device is powered on.
  • the fluid-filled membrane cloth layer 100 and the first electrode circuit 200 directly form a micro-current loop while avoiding the skin.
  • the hollow part of the second electrode circuit 600 is formed as a closed circle, but the present disclosure is not limited thereto, that is, the hollow part may not be closed, because the conductor layer 620 of the second electrode circuit 600 is formed by The form of the integral sheet-like celestial pole is formed, and the potential is the same under the electrified state.
  • the shape of the second electrode circuit 600 can be various, for example, it can be an interconnected strip pattern, a grid pattern or a hollow pattern, as long as it can be connected with the skin and the first electrode circuit 200 in the electrified state.
  • a plurality of conductive contacts 222 may form a plurality of parallel micro-current circuits.
  • the second electrode circuit 600 is formed as a hollow pattern with closed hollows and each conductive contact 222 is located at the center of the corresponding hollow, so that the microcurrent circuit can evenly pass through the skin.
  • each conductive contact 222 of the first electrode circuit 200 corresponds to a hollowed out portion of the second electrode circuit 600, however, the disclosure is not limited thereto, two or more conductive contacts 222 may correspond to a hollow part. That is to say, there is a corresponding relationship between the conductive contacts 222 and the components of the pattern of the second electrode circuit 300 or 600, which may be a one-to-one relationship or a many-to-one relationship.
  • the patches 10 and 20 each have a main body and a connecting portion, wherein, since the first electrode circuit and the second electrode circuit are both in a grid structure or a pattern structure, the connecting portion does not have to be separated from the main body. Protruding, can be integrated with the main body. In other words, a part of the main body can be set as a connecting portion for electrical connection with the power module 400 .
  • both the first electrode circuit 200 and the second electrode circuit 300 are formed in a stacked structure, but the first electrode circuit 200 can also be formed in other ways.
  • other conductive parts and insulating parts connected to the conductive contacts 222 in the first electrode circuit 200 are formed of metal wires with an insulating layer such as enameled wires, and the conductive contacts 222 may be formed of metal foil for convenient connection.
  • a positioning layer for assisting in positioning the conductive contacts may be provided on the film cloth layer 100 of the patch 10 or 20 .
  • the material of the auxiliary layer may be the same as that of the membrane cloth layer 100 .
  • a current adjustment button 430 can be set on the power module 400 to adjust the current density of the microcurrent.
  • the power module 400 may be integrated with the patch 10 or 20, or detachably formed.
  • patches 10 and 20 can be adaptively adjusted according to the position to be applied.
  • patches 10 and 20 can be manufactured into various shapes such as square, circular, rectangular, palm-shaped, sole-shaped, eye-patched, nose-pasted, mask-shaped, circular, etc., to adapt to different parts of the human body. Usage requirements.
  • the plurality of conductive contacts are basically regularly arranged, but the application is not limited thereto, that is, the plurality of conductive contacts can also be specifically arranged according to specific needs, that is, adjacent The distance between the conductive contacts can be different.
  • the two electrode circuits of the iontophoresis device for skin are respectively arranged on opposite sides of the membrane cloth, the structure is compact and reasonable, and unnecessary waste of materials is reduced.
  • the iontophoresis device for skin can realize the function of introducing medicine or skin care products to the skin at multiple points, and the introduction efficiency is high.
  • both the first electrode circuit and the second electrode circuit of the patch of the iontophoresis device for skin are formed in a mesh shape or have a hollow pattern, so even if it is cut open One or several places will not affect the use effect of the device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种用于皮肤的离子电渗透装置及其贴片。所述装置包括电源模块(400)和贴片,贴片包括:吸附层(100),被配置为能够吸附含有正离子或负离子的流体;第一电极电路(200),布置在吸附层(100)的一侧并具有一个或更多个导电触点(222);第二电极电路(300),布置在吸附层(100)的用于接触皮肤的另一侧,其中,第一电极电路(200)能够与电源的正极和负极中的一个电极电连接,第二电极电路(300)能够与连接电源的正极和负极中的另一个电极电连接,并且导电触点(222)中的至少一个导电触点与第二电极电路(300)相对于吸附层(100)错开布置,其中,第一电极电路(200)的导电触点(222)以外的部分和第二电极电路(300)均相对于吸附层电绝缘。用于皮肤的离子电渗透装置及其贴片结构紧凑,并且能够从多点同时向皮肤导入药物或护肤品。

Description

用于皮肤的离子电渗透装置及其贴片 技术领域
本公开涉及医疗和美容领域中常用的离子电渗透领域,更具体地,涉及一种用于皮肤的离子电渗透贴装置及用于该装置的贴片。
背景技术
总的来说,离子电渗透技术通过将含有带正电荷或负电荷的活性成分的流体涂敷在皮肤上并用离子电渗透装置的正电极片或负电极片覆盖流体,同时使另一个电极片与身体的另一处皮肤位置接触,在通电状态下利用同性相斥的原理驱动带电荷的活性成分快速渗透进入皮肤内,由此实现医疗领域的透皮给药目的或美容领域的护理皮肤的目的。
利用透皮给药技术,可以经由人体的关节、手掌、脚掌、面部、后背、颈部、肩部、胳膊、腿等部位的皮肤处的皮脂腺、汗腺和细胞间隙导入药物,从而将药物的有效成分快速导入到皮肤深处、骨头间隙,被导入的药物可以进一步经由血液循环逐渐进入身体内部。
在美容领域,采用离子渗透技术的美容仪不仅可以实现正离子导出以清洁皮肤,还可以实现对护肤品的正离子导入或负离子导入。以正离子导入为例,当具有正电荷活性离子成分的护肤品被美容仪的正电极施加高电位时,护肤品会加速运动,并通过皮肤的皮脂腺、汗腺和细胞间隙渗透到皮肤里面,甚至可以进入真皮层,由此提高护肤品的渗入能力。此外,皮肤表层中的尘埃、垃圾和多余的角质残留物通常带有正电荷,可以通过美容仪的负电极产生的低电位的吸附而与皮肤分离,由此实现对皮肤的深层清洁。
然而,离子电渗透导入装置通常需要配置手持手柄来辅助形成人体电回路,导入效率低,操作不方便。
发明内容
技术问题
本公开的一方面在于提供一种高度集成的用于皮肤的离子电渗透贴片和 一种用于皮肤的离子电渗透装置。
本公开的另一方面在于提供一种能够实现多点同时导入药物或护肤品的用于皮肤的离子电渗透贴片和一种用于皮肤的离子电渗透装置。
技术方案
根据本公开的一方面,一种用于皮肤的离子电渗透贴片,包括:吸附层,被配置为能够吸附含有正离子或负离子的流体;第一电极电路,布置在所述吸附层的一侧并具有一个或更多个导电触点;第二电极电路,布置在所述吸附层的用于接触皮肤的另一侧,其中,所述第一电极电路能够与电源的正极和负极中的一个电极电连接,所述第二电极电路能够与电源的正极和负极中的另一个电极电连接,并且所述导电触点中的至少一个导电触点与所述第二电极电路相对于所述吸附层错开布置,其中,所述第一电极电路的导电触点以外的部分和所述第二电极电路均相对于所述吸附层电绝缘。
根据本公开的另一方面,一种用于皮肤的离子电渗透贴片,包括:膜布层,具有微孔隙结构,适于储存具有带电荷的活性成分的流体;导入电极,布置在所述膜布层的一侧,并具有多个暴露的离子导入点;导出电极,布置在所述膜布层的另一侧以接触皮肤,其中,所述导入电极和所述导出电极被配置为能够通过所述多个离子导入点、所述膜布层上吸附的液体和皮肤与所述导出电极形成多个微电流回路。
根据本公开的另一方面,一种用于皮肤的离子电渗透装置,包括如前所述的用于皮肤的离子电渗透贴片和包括所述电源和电源控制电路的电源模块,其中,所述电源模块与所述用于皮肤的离子电渗透贴片集成在一起或者可拆卸地连接。
本公开的有益效果
根据本公开的用于皮肤的离子电渗透装置,由于活性电极和惰性电极均集成在同一膜布层上,不仅离子电渗透贴片的结构紧凑合理,而且用于皮肤的离子电渗透装置的使用更加方便。此外,根据本公开的用于皮肤的离子电渗透装置能够实现多点同时导入药物或护肤品,因此导入效率可大幅提高。
附图说明
通过下面结合附图对实施例进行的描述,本公开的这些和/或其它方面将变得明显,并且更易于理解,在附图中:
图1是根据本公开的第一实施例的用于皮肤的离子电渗透装置的一侧的平面图,示出了贴片和与贴片分离的电源模块;
图2是根据本公开的第一实施例的用于皮肤的离子电渗透装置的另一侧的平面图,示出了贴片和与贴片分离的电源模块;
图3是根据本公开的第一实施例的贴片的第一电极电路的表面绝缘层的平面图;
图4是根据本公开的第一实施例的贴片的第一电极电路的导体层的平面图;
图5是根据本公开的第一实施例的贴片的第一电极电路的底部绝缘层的平面图;
图6是根据本公开的第一实施例的贴片的膜布层的平面图;
图7是根据本公开的第一实施例的贴片的第二电极电路的绝缘层的平面图;
图8是根据本公开的第一实施例的贴片的第二电极电路的导体层的平面图;
图9是根据本公开的第一实施例的贴片的第二电极电路的导电水凝胶层的平面图;
图10是根据本公开的第一实施例的贴片的分解层叠示意图;
图11是根据本公开的第二实施例的用于皮肤的离子电渗透装置的另一侧的平面图,示出了贴片和与贴片分离的电源模块;
图12是示出了根据本公开的第二实施例的贴片的第二电极电路的绝缘层的平面图;
图13是示出了根据本公开的第二实施例的贴片的第二电极电路的导体层的平面图;
图14是示出了根据本公开的第二实施例的贴片的导电水凝胶层的平面图;
图15是示出了根据本公开的第二实施例的贴片的分解层叠示意图。
具体实施方式
现在将参照附图详细地描述本公开的实施例,其示例在附图中示出,其中,相同的标号始终指示相同的元件。
提供下面的具体实施方式以帮助读者获得对在此描述的方法、设备和/或系统的全面理解。然而,在理解本申请的公开之后,在此描述的方法、设备和/或系统的各种改变、修改和等同物将是清楚的。例如,在此描述的操作的顺序仅是示例,并且不限于在此阐述的那些顺序,而是除了必须以特定的顺序发生的操作之外,可如在理解本申请的公开之后将是清楚的那样被改变。此外,为了更加清楚和简明,本领域已知的特征的描述可被省略。
在此描述的特征可以以不同的形式来实现,而不应被解释为限于在此描述的示例。相反,已提供在此描述的示例,以仅示出实现在此描述的方法、设备和/或系统的许多可行方式中的一些可行方式,所述许多可行方式在理解本申请的公开之后将是清楚的。
如在此使用的,术语“和/或”包括相关联的所列项中的任何一个以及任何两个或更多个的任何组合。
尽管在此可使用诸如“第一”、“第二”和“第三”的术语来描述各种构件、组件、区域、层或部分,但是这些构件、组件、区域、层或部分不应被这些术语所限制。相反,这些术语仅用于将一个构件、组件、区域、层或部分与另一构件、组件、区域、层或部分进行区分。因此,在不脱离示例的教导的情况下,在此描述的示例中所称的第一构件、第一组件、第一区域、第一层或第一部分也可被称为第二构件、第二组件、第二区域、第二层或第二部分。
在说明书中,当元件(诸如,层、区域或基底)被描述为“在”另一元件上、“连接到”或“结合到”另一元件时,该元件可直接“在”另一元件上、直接“连接到”或“结合到”另一元件,或者可存在介于其间的一个或多个其他元件。相反,当元件被描述为“直接在”另一元件上、“直接连接到”或“直接结合到”另一元件时,则不存在介于其间的其他元件。
在此使用的术语仅用于描述各种示例,并不将用于限制公开。除非上下文另外清楚地指示,否则单数形式也意在包括复数形式。术语“包含”、“包括”和“具有”说明存在叙述的特征、数量、操作、构件、元件和/或它们的组合,但不排除存在或添加一个或多个其他特征、数量、操作、构件、元件和/或它们的组合。
除非另有定义,否则在此使用的所有术语(包括技术术语和科学术语)具有与由本申请所属领域的普通技术人员在理解本申请之后通常理解的含义 相同的含义。除非在此明确地如此定义,否则术语(诸如,在通用词典中定义的术语)应被解释为具有与它们在相关领域的上下文和本申请中的含义一致的含义,并且不应被理想化或过于形式化地解释。
此外,在示例的描述中,当认为公知的相关结构或功能的详细描述将引起对本申请的模糊解释时,将省略这样的详细描述。
参照图1、图2和图10所示,根据本公开的第一实施例的用于皮肤的离子电渗透装置1000主要包括贴片10和电源模块400两部分。如图10所示,贴片10包括膜布层100和分别布置在膜布层100的两侧的第一电极电路200和第二电极电路300。贴片10的布置有第二电极电路300的一侧用于贴合皮肤。如图1所示,电源模块400主要包括电源(未示出)和电源控制电路(未示出)。电源控制电路调节电源的输出电压,用以改变在第一电极电路200和第二电极电路300中流动的电流的大小。电源模块400上设置有指示灯410和420,以指示整个离子电渗透装置的工作状态。此外,电源模块400的电源控制电路还控制电源的供电模式,其中,供电模式包括持续供电和脉冲供电。
膜布层100由多孔材料形成,因此膜布层100能够吸附或承载流体而作为流体形态的药物或护肤品的吸附层。这里,药物或护肤品指的是含有带正电荷或负电荷的活性成分的药物或护肤品,以下统称为流体。流体可以是牛顿流体也可以是非牛顿流体,因此膜布层100能够吸附或承载的流体可以是液体、凝胶、乳液、膏状物等各种形态。
膜布层100可以是植物纤维布、动物纤维布、微生物纤维布或化学纤维布,可以是无纺布的形式也可以是纺织布的形式。优选地,膜布层100可以是蚕丝布、甲壳素纤维布、莱赛尔纤维布(例如,天丝布)或铜氨纤维布。
如图1所示,第一电极电路200与电源模块400中的电源(未示出)的一个电极连接,而第二电极电路300与电源的另一个电极连接。为了实现将膜布层100中承载的流体导入皮肤的目的,在通电状态下,第一电极电路200、具有流体的膜布层100、皮肤和第二电极电路300形成一个或更多个微电流循环电路。
具体地,第一电极电路200具有相对于膜布层100暴露或者直接接触膜布层100的多个导电触点222。也就是说,与膜布层100直接接触的导电触点222作为离子电渗入装置1000的离子导入点,而第一电极电路200的其它 部分相对于膜布层100是绝缘的,由此可以通过第一电极电路200从一个或更多个点向皮肤导入如药物或护肤品这样的流体。布置在膜布层100的另一侧的第二电极电路300整体上相对于膜布层100也是绝缘的。这样,当贴片10的具有第二电极电路300的一侧被贴附至人体皮肤上时,第一电极电路200可以作为导入电极或活性电极,而第二电极电路300可以作为导出电极或者惰性电极。
当通电时,如果膜布层100中承载有带正电荷的活性成分的流体并且第一电极电路200与电源的正极电连接时,导电触点222周围产生的高电位会驱使活性成分从膜布层100经由皮肤的细胞间隙、皮脂腺和汗腺加快运动到皮肤的内部,实现流体的电渗透导入,即,正离子导入。反之,如果膜布层100中承载有带负电荷的活性成分的流体并且第一电极电路200与电源的负极电连接时,导电触点222周围产生的低电位会驱使带有活性成分的流体从膜布层100经由皮肤的细胞间隙、皮脂腺和汗腺加快运动到皮肤的内部,实现流体的电渗透导入,即,负离子导入。此外,在正离子导入过程中,皮肤角质层中的带有正电荷的污垢可以被具有低电位的第二电极电路300吸附,从而达到深度清洁皮肤的辅助作用。
为了实现有效的多点离子导入,第一电极电路200和第二电极电路300在膜布层100上的相对布置,尤其是导电触点222和第二电极电路300的相对布置非常重要。总的来说,在膜布层100上,导电触点222与第二电极电路300应该保持错开布置,即,在膜布层100上布置有导电触点222的位置不设置第二电极电路300。如果第二电极电路300整体上以图案的形式形成,则导电触点222的布置位置位于第二电极电路300的镂空位置为佳。否则,如果导电触点222和第二电极电路300布置在膜布层100的同一位置的两侧,则导电触点222相当于被第二电极电路300的绝缘层310(将在下面详细描述)相对于皮肤电隔离,无法与对应的第二电极电路300形成微电路回路,进而无法实现有效的离子电渗透。
下面将参照附图1-10详细描述根据本公开第一实施例的用于皮肤的离子电渗透装置1000的第一电极电路200和第二电极电路300的布置和结构以及相应的离子电渗透过程。
如图1、图3至图5和图10所示,第一电极电路200包括第一绝缘层210(也可被称为底部绝缘层)、具有暴露的至少一个导电触点的导体层220和 第二绝缘层230(也可被称为表面绝缘层)。如图10所示,第一绝缘层210直接布置在膜布层100上。导体层220被布置在第一绝缘层210上,并包括导电触点222、电源连接部或电源连接触点223和电连接部221。除了导电触点222之外,导体层220的电源连接触点223和电连接部221均布置在第一绝缘层210上,此外,在导体层220上还可以进一步层叠第二绝缘层230,以至少对导体层220的电连接部223进行绝缘密封。第一绝缘层210和第二绝缘层230可以将导体层220的电连接部223完全电绝缘而只允许导体层220的导电触点222能够与吸附有流体的膜布层100和皮肤形成电连接关系,并通过皮肤和第二电极电路300形成微电流回路,实现离子电渗透导入。
根据导体层220的导电触点222的材料特性,例如易氧化程度,和/或者根据第二绝缘层230的材料属性,例如柔软程度和透气程度,第二绝缘层230可以选择性地覆盖导电触点222,或者覆盖导电触点222中的一个或更多个,或者覆盖导电触点222的面积的一部分。
在能够确保导体层220相对于膜布层100绝缘的情况下,例如,在膜布层100吸附的流体为非牛顿流体的情况下,第二绝缘层230也可以被完全省略。
如图2以及图7-10所示,第二电极电路300包括粘附到膜布层100的另一侧的绝缘层310、布置在绝缘层310上的导电层。导电层可以包括导体层320和覆盖导体层320的导电水凝胶层330。绝缘层310使得导电层320相对于膜布层100绝缘,这样第一电极电路200可以经由导电触点222、吸附有流体的膜布层100、皮肤和临近导电触点222的第二电极电路300的导电层形成微电流回路。通过设置导电水凝胶层330可以减小皮肤接触电阻,由此可以降低电源模块400中的电源的工作电压。由此,导电水凝胶层330是可选择性涂覆的,而不是必须的。只要电源模块400的电压能够保证第一电极电路200和第二电极电路300之间形成的多个微电流回路中的电流密度在期望的范围内,可以不涂覆导电水凝胶层330。
综合考虑人体安全电压、安全电流、离子电渗透的效率,每个微电流回路电流密度可以被设定在小于10mA/cm 2,电源模块400的电压可以被设定在1.5V至110V之间。进一步考虑人体神经耐受度和敏感度,每个微电流回路电流密度可以被设定为小于5mA/cm 2,根据具体皮肤部位可以设定为小于2mA/cm 2,对于比较敏感的皮肤部位,例如面部,最好在0.5mA/cm 2至1mA/cm 2 之间,电源模块400的工作电压可以被设置为低于或等于36V,优选地可以被设定在5V-8V之间。电源模块400的电源可以是纽扣电池、柔性电池或物联电池(例如,福建南平南孚电池有限公司生产的物联电池)。然而,本领域技术人员应当理解,电源模块的工作电压可以被设置为大于36V,但是需要保证流过皮肤的电流不会对皮肤和人体的其它器官造成伤害即可。
此外,如前面所描述的,电源的供电模式包括直流脉冲供电和直流持续供电。本领域技术人员应当理解,在持续供电的情况下,电流密度的大小应该考虑供电的持续时间,而在脉冲供电的情况下,电流密度的大小应该考虑脉冲的频率和供电的持续时间。总之,脉冲供电模式下的电流密度可以大于在持续供电模式下的电流密度,供电时间越长,电流密度适宜越小,以免对皮肤或人体的其它组织造成损伤。
下面将参照图5详细描述第一绝缘层210的详细结构。
如图5所示,第一绝缘层210包括主体部211和连接部212,其中,主体部211用于对导体层220的电连接部221进行电绝缘,而连接部212用于对导体层220的电源连接部223进行电绝缘。主体部211形成为具有多个三角形镂空部的网状图案,在每个三角形的顶点处形成有圆形的孔215,导电触点222通过该孔215直接接触膜布层100。在本实施中,镂空部以三角形的形式形成,但是镂空部也可以形成为四边形、五边形、六边形等其它形状的多边形或者圆形。本领域人员应当了解,镂空部在膜布层100上所占的比例越大越好,因为粘附在膜布层上的绝缘层210对膜布层100吸附流体的能力会造成一定的负面影响,因此镂空部的总体面积越大,贴片10的吸附流体的性能损失越小,并且有利于贴片10贴附皮肤时的透气性。
优选地,第一电极电路200的导电触点222和第二电极电路的图案的组成部分之间具有明确的对应关系,这样,每个导电触点222可以和邻近的第二电极电路的导电层之间形成一个微电流回路。因此,将第一电极电路200设计为具有规则的网格图案是非常有利的。所以,多边形环和圆形环优选为正多边形环和正圆形环,但是,只要导电触点222和第二电极电路300之间错开布置,非正多边形环和非正圆形环(如椭圆形环)也能够实现微电流回路。
在图5所示的第一绝缘层210的网格图案由多个共用边的三角形形成,但是本公开不限于此。例如,第一绝缘层210的网格图案可以包括通过连接 部连接的多个多边形环或多个圆形环、互相邻接的多个多边形环或多个圆形环、通过连接部连接的多边形环和圆形环或互相邻接的多边形环和圆形环。这里,互相邻接意味着相邻的多边形环和/或圆形环共用相邻的边、存在互相重合的边部分或者相邻的边连接在一起。
每个多边形环或圆形环具有一定的宽度,优选地,宽度在1mm至5mm之间。圆形的孔215的形状和尺寸优选等于导体层220的导电触点222的形状和尺寸,例如圆形的孔215和导电触点222为直径1mm至10mm的圆形。但是考虑到制造偏差的存在,圆形的孔215比导电触点222略大或者略小或者导电触点222与圆形的孔215未完全对准也不会对本申请构思的离子电渗透的效果造成非常明显的影响。
在上面的描述中,以镂空形状描述了第一电极电路200(更为具体地,第一电极电路200的第一绝缘层210)的图案形状,但是也可以说第一绝缘层210整体上或者第一绝缘层210的主体部211形成为由直线部214连接的网格状,其中,用于透过导电触点222的圆形的孔215形成在网格状的连接点或者说网格节点处。
此外,本领域技术人员应当理解,第一绝缘层210的网格或图案也可以由曲线部连接而成或者由直线部和曲线部连接而成,只要第一绝缘层210能够使导体层220的导电触点222以外的部分相对于膜布层100电绝缘即可。此外,如前所述,第一绝缘层210相对于膜布层100的面积占比越小越好,以增加贴片10的透气性和吸附流体的能力。同样地,用于透过导电触点222的圆形的孔215优选地形成在网格状的连接点处,但不限于此,即,圆形的孔215也可以形成在第一绝缘层210的其它位置处,例如,形成在网格状图案的直线部或曲线部上。另外,在本公开的实施中,导电触点222采用圆形形状,以使每个离子导入点周围的电流密度均匀,但是导电触点222也可以采用三角形、正方形、长方形、菱形、六边形等其它合适的形状。在此情况下,优选地,导电触点222采用正多边形形状,以有助于微电流均匀分布。与之相应地,孔215的大小和形状与导电触点222的大小和形状相同。另外,在导电触点222形成在网格状图案的直线部或曲线部上而非形成在网格图案的连接点的情况下,可以在一条直线部或一条曲线部上根据需要设置两个或更多个导电触点。考虑到人体安全电流和离子电渗透需求电流,导电触点的最大外径最好小于20mm。然而,在导电触点处的电流密度被设定为较低的 情况下,将导电触点的最大外径进一步扩大也是可行的。此外,导电触点222的形状也可以是各种形状,而不限于圆形,例如可以是正方形、长方形、菱形、三角形、圆环形等各种形状。
如图5所示,第一绝缘层210的连接部212上还形成有通孔213,该通孔用于将第二电极电路300的导体层320通过电连接件323引导至第一电极电路200一侧,以方便将第二电极电路300和电源模块400的另一个电极电连接。优选地,第一绝缘层210由弹性绝缘材料或柔性绝缘材料形成,优选地由热塑性弹性体材料形成。具体地,第一绝缘层210可以由聚氨酯(PU)、聚氯乙烯(PVC)、硅橡胶(Silicone rubber)、聚对苯二甲酸乙二醇酯(PET,polyethylene terephthalate)、聚烯烃弹性体(POE,polyolefin elastomer)或热塑性聚氨酯弹性体(TPU,thermoplastic polyurethane elastomer)形成,并且可以通过热转印的方式被粘附到膜布层100的一侧。
在上面的描述中参照附图5描述了第一绝缘层210形成为网状图案或者以镂空形状形成,但是第一绝缘层210在除了导电触点222对应的位置以外的位置全部覆盖膜布层100也是可以的,只要膜布层100吸附的流体能够满足实际的使用需求即可。另外,在附图5的实施例中,连接部212相对于主体部211是突出的,但是连接部212也可以不从主体部211突出,例如,可以将主体部211的任意一部分设定为连接部212,只要第一绝缘层210将导体层220的电源连接部223电绝缘即可。
再者,在图1-10示出的实施例中,第二电极电路300的导体层320通过电连接件323穿过第一绝缘层210上的通孔213与电源模块400电连接,例如,可以通过磁吸附、卡接、直接接触等方式进行电连接。类似地,第一电极电路200的导体层220也可以通过磁吸附、卡接、直接接触等方式与电源模块400电连接。但是本公开不限于此,例如,第二电极电路300的导体层320可以通过柔性导线直接与电源模块400电连接而不需要电连接件323。在此情况下,第一绝缘层210上的通孔213可以被省略。类似地,第一电极电路200的导体层220也可以通过柔性导线与电源模块400电连接。
下面将参照附图1和附图4详细描述导体层220的具体结构。
导体层220可以整体上由诸如导电胶、导电浆、导电漆、石墨烯或金属箔(例如金箔、银箔、铝箔、镀金铝箔等)的导体材料形成。其中,导电胶、导电漆、或导电浆这样的导电涂料中的有效导体成分可以是铜、银这样的金 属或金属氧化物,也可以是碳、石墨、纳米管这样的非金属,还可以是诸如聚苯胺(PANI,Polyaniline)、聚吡咯(polypyrrole)、聚噻吩(polythiophene)、聚喹啉(polyquinoline)的导电高分子材料。导体层的导体材料可以被印刷(例如丝网印刷)、镀覆、溅射、热压、喷涂、沉积、静电吸附或粘附到第一绝缘层210上。导体层220的导电触点222的位置对应于第一绝缘层210的孔215的位置,导体层220的导电触点222和电源连接触点223通过导线形状的电连接部221互相连接。由此,导体层220也形成为网格形状,并且该网格形状与第一绝缘层210的网格形状基本一致。由于第一绝缘层210用于使电连接部221相对于膜布层100电绝缘,第一绝缘层210的直线部214的宽度有必要大于电连接部221的宽度。
例如,导体层220可以通过丝网印刷的方式将导电银浆和/或石墨烯整体地印制在第一绝缘层210和膜布层100上,但是本公开不限于此,导体层220也可以由金属箔整体形成。此外,导体层220的不同部分可以采用不同的材料或采用不同的工艺形成。例如,电连接部221由金属导线、金属箔、导电银浆或石墨烯形成,而导电触点222和/或电源连接触点223由金属箔形成。或者,导电触点222和/或电源连接触点223由导电银浆或石墨烯形成,而电连接部221由金属箔或金属导线形成。根据导体层220的材料的选择,可以选择适合的工艺以将选择的材料附着到第一绝缘层210上。
此外,导体层220的图案或网格形状优选地与第一绝缘层210的图案或网格形状一致,然而,导体层220的图案或网格形状可以根据导电触点222的布置而与第一绝缘层210的图案或网格形状不完全一致。导体层220以网格形状形成的优点在于,当贴片10被贴敷到身体的面部、关节等不平坦部位时,如果将贴片10的局部边缘剪开以更好地贴合皮肤时,不会影响导体层220的导电触点222的电连通性,即,导电触点222依然与电源模块400是电连接的。
下面将参照附图1和3详细描述第二绝缘层210的具体结构。
总的来说,第二绝缘层230的形状和尺寸可以与第一绝缘层210的形状和尺寸可以基本相同。
第二绝缘层230与第一绝缘层210的不同之处在于,在第二绝缘层230的连接部232上形成有两个通孔233,用于辅助第一电极电路200和第二电极电路300与电源模块400进行电连接。一个通孔233用于辅助第一电极电 路200的电源连接触点223与电源模块400的电源的一个电极450(例如,正极)连接,另一个通孔233用于辅助第二电极电路300的电连接件323(参见图2)与电源模块400的电源的另一个电极440(例如,负极)连接。
第二绝缘层230的主体部231可以被设置为与第一绝缘层210的主体部211完全相同,在此不再赘述第二绝缘层230的形状和图案。然而,本公开不限于此,例如,构成主体部231的直线部234的宽度可以小于或大于直线部214的宽度,只要第一绝缘层210和第二绝缘层230能够将导体层220的电连接部221相对于膜布层100电绝缘即可。如前面所描述的,如果膜布层100吸附或承载的流体为流动性很差的非牛顿流体时,第二绝缘层230可以被省略。
在图3所示出的实施例中,在第二绝缘层230的网格图案的连接点处形成有通孔235,用于暴露导电触点222。第二绝缘层230暴露导电触点222有助于提高膜布层100吸附流体的能力并增加贴片10的透气性。如果贴片10的透气性和吸附流体的能力足够的情况下,可以在第二绝缘层230上不形成通孔235,或者可以只形成一个或若干通孔235。
通过参照附图1-5的描述,第一电极电路200除了导电触点222之外,相对于吸附或未吸附流体的膜布层100都是绝缘的。通过这样的结构,第一电极电路200仅通过一个或若干导电触点与吸附有流体的膜布层100、皮肤和接下来将要详细描述的第二电极电路300形成一个或若干个微电流电路。由此,在根据本公开第一实施例的用于皮肤的离子电渗透装置1000通电的情况下,第一电极电路200可以形成驱动电位以驱动膜布层100中含有的带电荷的活性成分加速朝向皮肤内部运动,实现药品或护肤品的离子电渗透效应,加快皮肤对药品或护肤品的吸收效率和增大被导入皮肤的药品或护肤品的,从而与传统的贴附导入相比可以大大减少贴附贴片的时间。
此外,由于第一电极电路200中的导体层220形成为网格形状,因此可以将电流高度细分,有助于离子电渗透装置在使用过程中实现电流均匀分布。为此,第一电极电路200,更具体地,导体层220的网格的疏密程度可以根据被贴附的皮肤所需要的电流大小而调整或设计。此外,相邻的导电触点222之间的距离以及每个导电触点222的尺寸可以根据具体的导入部位的导入需要进行具体的设计。在此,导入需要包括但不限于被导入物(即,护肤品或药品)的成分、导入物的形态、导入物的量、皮肤的位置、局部皮肤的电阻 大小、皮肤的神经敏感度、导入时间设置、用户的喜好中的至少一种,其中,局部皮肤的电阻大小、皮肤的位置和导入物的成分尤其重要。下面将参照图6详细描述膜布层100的形状。
膜布层100包括主体部101和连接部,其中,主体部101的形状对应于第一电极电路200的主体部和第二电极电路300的主体部的形状,连接部102对应于第一电极电路200的连接部和第二电极电路300的连接部的形状。在本实施中,在连接部102上形成有通孔103,用于将第二电极电路300的导体层320引导至第一电极电路200侧。根据前面的描述,如果通过柔性导线将第二电极电路300的导体层320与电源模块400电连接,通孔103可以被省略。
下面将参照图2和图7至图10详细描述第二电极电路300的具体结构。
如图10所示,在本实施例中,第二电极电路300包括贴附至膜布层100的绝缘层310、布置在绝缘层上的导体层320以及覆盖导体层320的导电水凝胶层。绝缘层310、导体层320和导电水凝胶层330的形状类似,均为由六边形环形成的网格结构。
绝缘层310使导体层320相对于膜布层100电绝缘,因此,绝缘层310的六边形环的边的宽度大于导体层320的六边形环的边的宽度。导电水凝胶层330减小第二电极电路300与皮肤之间的接触电阻,因此,导电水凝胶层330的六边形环的边的宽度大于导体层320的六边形环的边的宽度,但是小于绝缘层310的六边形环的边的宽度,以防止第一电极电路200的导电触点222通过膜布层100吸附的流体和导电水凝胶层330之间形成微电流回路而避开皮肤。
如前面所描述的,在离子电渗透装置的电路设计能够保证微电流回路中的电流密度的情况下,可以省略导电水凝胶层330。
在本公开的第一示例性实施例中,第二电极电路300形成为六边形孔网格(即,蜂巢孔网格),第一电极电路200的每个导电触点222优选地设置在第二电极电路300的网格图案的六边形孔的中心。
与第一电极电路200的图案类似,第二电极电路300的图案形状不限于在此。例如,第二电极电路300也可以形成为正方形孔网格、长方形孔网格、菱形孔网格、圆孔网格、椭圆形孔网格、异形孔网格等各种形状的网格。也就是说,第二电极电路300与第一电极电路200一样可以形成为由直线段或 曲线段拼接而成的网格图案,也可以形成为由直线段和曲线段共同拼接而成的网格图案。可选地,根据需要,第二电极电路300也可以形成为具有镂空图案,在此情况下,每个导电触点222优选地设置在对应的第二电极电路300的镂空部分中。镂空部分可以是圆形、正方形、六边形等各种规则或不规则形状,并且镂空部分可以是闭合的,也可以是非闭合的。
由此可见,在所述第二电极电路200以图案的形式形成的情况下,所述第二电极电路200的图案的组成部分与所述导电触点222存在对应关系,这样有助于形成彼此并联的多个微电流回路。
与第一电极电路200的图案类似,在图7所示的绝缘层310的网格图案由多个共用边的其它形状的多边形环形成,而不局限于六边形环。例如,绝缘层310的网格图案可以包括通过连接部连接的多个多边形环或多个圆形环、互相邻接的多个多边形环或多个圆形环、通过连接部连接的多边形环和圆形环或互相邻接的多边形环和圆形环。这里,互相邻接意味着相邻的多边形环和/或圆形环共用相邻的边、存在互相重合的边部分或者相邻的边连接在一起。
绝缘层310的每个多边形环或圆形环具有一定的宽度,优选地,宽度在1mm至5mm之间。此外,第二电极电路300的边界与导电触点222的边缘优选隔开1mm至10mm之间的间隔。然而,第二电极电路300的绝缘层的边界与导电触点222的边缘直接相邻也是可行的。即,导电触点222的边界可以与第二电极电路300的绝缘层的边界重合,即,第二电极电路300的边界与导电触点222的边缘直接的间隔在0至10mm的范围内。
第二电极电路300的绝缘层310的材料和形成方式与第一电极电路200的第一绝缘层210的材料和形成方式相同,在此不再重复描述。第二电极电路300的导体层320与第一电极电路200的导体层200的材料和加工方法类似。例如,第二电极电路300的导体层320也可以由导电银浆、石墨烯或金属箔形成在绝缘层310上。导电银浆可以通过丝网印刷被印制在绝缘层310上。
在本实施例中采用导电银浆或石墨烯印刷导体层220和330与利用金属箔形成导体层的情况相比可以使贴片100不会过分僵硬。另外,银的导电性能优异,并且金属银对皮肤没有负面作用,不会引发皮肤的过敏反应。
与第一电极电路200不同的是,第二电极电路300的一侧接触皮肤,不 需要被绝缘层覆盖。
下面将参照附图7-9详细描述第二电极电路300的绝缘层310、导体层320和导电水凝胶层330。
如图7所示,绝缘层310包括由六边形环拼接而成的网状主体部311以及从主体部311突出的连接部312。在连接部312上形成有通孔313,用于引导电连接件323将导体层320电连接至第一电极电路200侧。如前所述,在导体层320通过柔性导线与电源模块400中的电源的一个电极440直接电连接时,通孔313可以被省略。在此情况下,连接部312可以直接设置在主体部311的一部分上。
如图8所示,导体层320包括由六边形环拼接而成的网状主体部321和从主体部321突出的连接部322。在连接部322上形成有通孔325,用于引导电连接件323将导体层320电连接至第一电极电路200侧。导体层320的整体尺寸和六边形环的宽度均小于绝缘层310的整体尺寸和六边形环的宽度,从而绝缘层310可以使导体层320相对于膜布层100充分绝缘。如前所述,在导体层320通过柔性导线与电源模块400中的电源的一个电极440直接电连接时,通孔315可以被省略。在此情况下,连接部322可以直接设置在主体部311的一部分上。
如图9所示,导电水凝胶层330包括由六边形环拼接而成的网状主体部331和从主体部331突出的连接部332。如前所述,在导体层320通过柔性导线与电源模块400中的电源的一个电极440直接电连接时,无需在导电水凝胶层330上设置连接部332。此外,连接部332也可以由绝缘材料形成。另外,导电水凝胶层330也可以由导电硅胶层替代。
与第一电极电路200类似,第二电极电路300相对于膜布层100的面积占比越小越好,由此可以增加贴片10的透气性以及吸附流体的能力。
上面参照附图1和10详细描述了根据本公开的第一实施例的用于皮肤的离子电渗透装置1000的结构。下面将参照附图11至15详细描述根据本公开的第二实施例的用于皮肤的离子电渗透装置2000的结构。
如图11所示,根据本公开的第二实施例的用于皮肤的离子电渗透装置2000包括贴片20和电源模块400。贴片20包括膜布层100和分别布置在膜布层100两侧的第一电极电路200和第二电极电路600。贴片20的第二电极电路600与贴片10的第二电极电路300的不同之处主要在于图案形状。
如图15所示,第二电极电路600包括绝缘层610、导体层620和导电水凝胶层630。
如图12所示,绝缘层610包括具有多个圆形镂空部的主体部611和连接部612。在连接部612上设置有通孔613用于将导体层620引导至第一电极电路200侧。
绝缘层610的每个圆形镂空部对应于一个导电触点222,其中,导电触点222被优选地设置在对应的圆形镂空部的中心。
如图13所示,导体层620包括具有圆形镂空部的主体部621和连接部622。在连接部622上设置有通孔625用于将导体层620引导至第一电极电路200侧。
导体层620的每个圆形镂空部对应于一个导电触点222,其中,导电触点222被优选地设置在对应的圆形镂空部的中心。为了实现对导体层620相对于膜布层100的电绝缘,导体层620的圆形镂空部的直径小于绝缘层610的对应的圆形镂空部的直径,并且导体层620的整体尺寸也略小于绝缘层610的整体尺寸。
如图14所示,导电水凝胶层630包括圆形镂空部的主体部631和连接部632。导电水凝胶层630的整体尺寸可以略大于导体层620的整体尺寸,但是不宜超过绝缘层610的整体尺寸,以防止在装置通电的状态下导电水凝胶层630和导体层620直接与吸附有流体的膜布层100和第一电极电路200直接形成微电流回路而避开皮肤。
在本实施例中,第二电极电路600的镂空部形成为封闭的圆形,然而本公开不限于此,即,镂空部分也可以是不封闭的,因为第二电极电路600的导体层620以整体的片状天极的形式形成,在通电状况下电位是相同的。换句话说,第二电极电路600的形状可以多种多样,例如,可以是互相连接的条状图案,网格图案或镂空图案,只要其能够在通电状态下与皮肤和第一电极电路200的多个导电触点222形成多个并联的微电流电路即可。优选地,第二电极电路600形成为具有封闭的镂空部的镂空图案并且每个导电触点222位于对应的镂空部的中心,以使得微电流电路可以均匀地通过皮肤。
另外,在本申请的实施例中,第一电极电路200的每个导电触点222对应于第二电极电路600的一个镂空部,然而本公开不限于此,两个或更多个导电触点222可以对应于一个镂空部。也就是说,导电触点222与第二电极 电路300或600的图案的组成部分之间存在着对应关系,可以是一对一的关系,也可以是多对一的关系。
在上面描述的实施例中,贴片10和20均具有主体部和连接部,其中,由于第一电极电路和第二电极电路均是网格结构或图案结构,因此连接部不是必须从主体部突出的,可以与主体部集成在一起。或者说,可以将主体部的一部分设定为连接部,用于与电源模块400进行电连接。
另外,在本申请的实施例中,第一电极电路200与第二电极电路300均形成为层叠结构,但是第一电极电路200还可以以其它方式形成。例如,第一电极电路200中连接导电触点222的其它导体部分和绝缘部分由带有绝缘层的金属导线例如漆包线形成,并且为了方便连接,导电触点222可以由金属箔形成。在此情况下,可以在贴片10或20的膜布层100上设置辅助定位导电触点的定位层。辅助层的材料可以与膜布层100的材料相同。
鉴于不同的皮肤位置处的神经敏感度不同,而且每个人的电流耐受度不同,如图1所示,在电源模块400上可以设置电流调节按钮430,以调节微电流的电流密度。电源模块400可以与贴片10或20集成在一起,或者可拆卸地形成。
本领域技术人员应当清楚,贴片10和20的形状可以根据被贴敷的位置而进行适应性的调整。例如,贴片10和20可以被制造成方形、圆形、长方形、手掌形、脚掌形、眼贴形、鼻贴形、面膜形、圆环形等各种形状,以适应人体的不同部位的使用需求。
另外,在上面的两个实施例中,多个导电触点基本上是规则布置的,但是本申请不限于此,即,多个导电触点也可以根据具体需要具体排布,即,相邻的导电触点之间的距离可以是不同的。
通过上面的描述可知,根据本公开的实施例的用于皮肤的离子电渗透装置的两个电极电路分别布置在膜布的相对两侧,结构构紧凑合理,减少了不必要的材料浪费。
此外,根据本公开的实施例的用于皮肤的离子电渗透装置能够实现向皮肤多点导入药物或护肤品的作用,导入效率高。
再者,根据本公开的实施例的用于皮肤的离子电渗透装置的贴片的第一电极电路和第二电极电路均形成为网状或具有镂空图案,因此在使用时即便将其剪开一处或几处,也不会影响该装置的使用效果。
上面对本申请的具体实施方式进行了详细描述,虽然已表示和描述了一些实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本申请的原理和精神的情况下,可以对这些实施例进行修改和完善(例如,可以对不同实施例中描述的不同特征进行组合),这些修改和完善也应在本申请的保护范围内。

Claims (33)

  1. 一种用于皮肤的离子电渗透贴片,其中,所述用于皮肤的离子电渗透贴片包括:膜布层(100),被配置为能够吸附含有正离子或负离子的流体;第一电极电路(200),布置在所述膜布层(100)的一侧,并具有多个导电触点(222),形成导入电极;第二电极电路(300),布置在所述膜布层(100)的另一侧,用于接触皮肤,形成导出电极;所述第一电极电路(200)的导电触点(222)以外的部分和所述第二电极电路(300)均相对于所述膜布层(100)电绝缘;所述第一电极电路(200)能够与电源的正极和负极中的一个电极电连接,所述第二电极电路(300)能够与电源的正极和负极中的另一个电极电连接,并且所述导电触点(222)与所述第二电极电路(300)相对于所述膜布层(100)错开布置,其中,所述第一电极电路(200)具有网状图案,在所述网状图案的多个连接点处形成有导电触点(222),所述第二电极电路(300)以图案的形式形成,并且每个导电触点(222)的位置均对应于所述第二电极电路(300)的图案中的一个闭合的或非闭合的镂空部分。
  2. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第二电极电路(300)具有网状图案,并且所述每个导电触点(222)的位置对应于所述第二电极电路(300)的网状图案的一个网孔。
  3. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)的网状图案包括多边形环和/或圆形环,或者所述第一电极电路(200)的网状图案包括直线部和/或曲线部。
  4. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)的网状图案包括通过连接部连接的多个多边形环或多个圆形环、互相邻接的多个多边形环或多个圆形环、通过连接部连接的多边形环和圆形环或互相邻接的多边形环和圆形环。
  5. 如权利要求2所述的用于皮肤的离子电渗透贴片,其中,所述第二电极电路(300)的网状图案包括多边形环和/或圆形环,或者所述第二电极电路(300)的网状图案包括直线部和/或曲线部。
  6. 如权利要求2所述的用于皮肤的离子电渗透贴片,其中,所述第二电极电路(300)的网状图案包括通过连接部连接的多个多边形环或多个圆形环、互相邻接的多个多边形环或多个圆形环、通过连接部连接的多边形环和圆形 环或互相邻接的多边形环和圆形环。
  7. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,每个导电触点(222)与所述第二电极电路(300)的任意部分均不重叠。
  8. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)形成为三角孔网格,所述第二电极电路(300)形成为由蜂巢孔网格或圆孔网格。
  9. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)包括直接接触所述膜布层(100)的第一绝缘层(210)以及布置在所述第一绝缘层(210)上并具有所述导电触点(222)和电连接部(221)的第一导体层(220),其中,所述第一绝缘层(210)的对应于所述导电触点(222)的位置是镂空的。
  10. 如权利要求9所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)还包括至少覆盖所述第一导体层(220)的所述电连接部(221)的第二绝缘层(230)。
  11. 如权利要求10所述的用于皮肤的离子电渗透贴片,其中,所述第二绝缘层(230)的图案与所述第一导体层(220)的图案对应,并且所述第二绝缘层(230)的对应于所述导电触点(222)的位置是镂空的或非镂空的。
  12. 如权利要求9所述的用于皮肤的离子电渗透贴片,其中,所述第一导体层(220)的方阻值小于100欧姆/□。
  13. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第二电极电路(300)包括直接接触所述膜布层(100)的第三绝缘层(310)以及布置在第三绝缘层(310)上的第二导体层(320),其中,所述第三绝缘层的(310)至少对应于所述导电触点(222)的位置是镂空的。
  14. 如权利要求13所述的用于皮肤的离子电渗透贴片,其中,所述电渗透贴片还包括基本上覆盖第二导体层(320)的导电水凝胶层或导电硅胶层(330),以接触皮肤并导电,其中,所述导电水凝胶层或导电硅胶层(330)的图案对应于所述第二导体层(320)的图案。
  15. 如权利要求13所述的用于皮肤的离子电渗透贴片,其中,所述第三绝缘层(310)的图案与所述第二导体层(320)的图案对应。
  16. 如权利要求13所述的用于皮肤的离子电渗透贴片,其中,所述第二导体层(320)的方阻值小于100欧姆/□。
  17. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)的导电触点(222)通过金属导线、导电油墨、导电浆、导电漆、导电胶、导电布、导电膜、导电纸和金属箔中的至少一种与所述电源电连接。
  18. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)的导体部分的至少一部分或所述第二电极电路(300)的导体部分的至少一部分由导电油墨、导电浆、导电漆、导电胶、导电布、导电膜、导电纸和金属箔中的至少一种形成。
  19. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)和所述第二电极电路(300)均具有电源连接部。
  20. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)的绝缘层和/或所述第二电极电路(300)的绝缘层通过热转印工艺被粘附到所述膜布层(100)。
  21. 如权利要求1所述的用于皮肤的离子电渗透贴片,其中,所述第一电极电路(200)的导体层通过喷涂、溅射、镀覆、沉积、热压、粘附、静电吸附和印刷中的至少一种工艺将导体材料附着到所述第一电极电路(200)的绝缘层和所述膜布层(100)上而形成,和/或所述第二电极电路(300)的导体层通过喷涂、溅射、镀覆、沉积、热压、印刷、粘附、静电吸附和印刷中的至少一种工艺将导体材料附着到所述第二电极电路(300)的绝缘层上而形成。
  22. 一种用于皮肤的离子电渗透贴片,其中,所述用于皮肤的电渗透贴片包括:膜布层(100),具有微孔隙结构,适于储存具有带电荷的活性成分的流体;导入电极(200),布置在所述膜布层(100)的一侧,并具有直接接触所述膜布层(100)的多个离子导入点(222);导出电极(300),布置在所述膜布层(100)的另一侧以接触皮肤,所述导入电极(200)的离子导入点(222)以外的部分和所述导出电极(300)均相对于所述膜布层(100)电绝缘;所述导入电极(200)和所述导出电极(300)被配置为能够通过所述多个离子导入点(200)、所述膜布层(100)上吸附的液体和皮肤与所述导出电极(300)形成多个微电流回路;并且所述离子导入点(222)与所述导出电极(300)相对于所述膜布层(100)错开布置,其中,所述导入电极(200)具有网状图案,在所述网状图案的多个连接点处形成有离子导入点(222),所述导出电极(300)以图案的形式形成,并且每个离子导入(222)点的位 置均对应于所述导出电极(300)的图案中的一个闭合的或非闭合的镂空部分。
  23. 如权利要求22所述的用于皮肤的离子电渗透贴片,其中,所述导出电极(300)通过导电水凝胶层或导电硅胶层接触皮肤。
  24. 如权利要求22所述的用于皮肤的离子电渗透贴片,其中,所述导入电极(200)还包括导线部分和绝缘部分,所述导出电极包括导电部分和绝缘部分,其中,所述导入电极(200)的绝缘部分使所述导入电极(200)的导线部分相对于所述膜布层(100)电绝缘,所述导出电极(300)的绝缘部分使所述导出电极(300)的导电部分相对于所述膜布层(100)电绝缘。
  25. 如权利要求24所述的用于皮肤的离子电渗透贴片,其中,所述导入电极(200)的导线部分的宽度在0.5mm至3mm之间。
  26. 如权利要求22所述的用于皮肤的离子电渗透贴片,其中,所述离子导入点(222)的最大外径在1mm至20mm之间,所述离子导入点(222)的边界和邻近的导出电极的边界在所述膜布层(100)平面上间隔0至10mm的距离。
  27. 如权利要求24所述的用于皮肤的离子电渗透贴片,其中,所述导出电极(300)的导电部分包括导体层和所述导电水凝胶层或所述导电硅胶层,所述导电水凝胶层或所述导电硅胶层的宽度大于或等于所述导出电极(300)的导体层的宽度并且小于所述导出电极(300)的绝缘部分的宽度。
  28. 如权利要求22所述的用于皮肤的离子电渗透贴片,其中,所述导入电极(200)和/或导出电极(300)的绝缘部分由弹性绝缘材料或柔性绝缘材料形成。
  29. 一种用于皮肤的离子电渗透装置,其中,所述用于皮肤的电渗透装置包括如权利要求1-28中的任一项所述的用于皮肤的离子电渗透贴片和包括所述电源和电源控制电路的电源模块(400),其中,所述电源模块(400)与所述用于皮肤的离子电渗透贴片集成在一起或者可拆卸地连接。
  30. 如权利要求29所述的用于皮肤的离子电渗透装置,其中,所述电源包括柔性电池、纽扣电池或物联电池。
  31. 如权利要求29所述的用于皮肤的离子电渗透装置,其中,所述电源模块(400)被布置在用于皮肤的离子电渗透贴片上或者通过导线与所述用于皮肤的离子电渗透贴片电连接。
  32. 如权利要求29所述的用于皮肤的离子电渗透装置,其中,所述电源 模块(400)通过柔性导线、磁吸附、卡扣结构和直接接触中的一种或者两种方式与所述用于皮肤的离子电渗透贴片电连接。
  33. 如权利要求29用于皮肤的离子电渗透装置,其中,所述电源模块的电源控制电路控制电源的电压大小和/或供电模式,其中,所述供电模式包括持续供电和脉冲供电。
PCT/CN2022/115908 2021-09-08 2022-09-08 用于皮肤的离子电渗透装置及其贴片 WO2023036018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111051015.7 2021-09-08
CN202111051015.7A CN113713248B (zh) 2021-09-08 2021-09-08 用于皮肤的离子电渗透装置及其贴片

Publications (1)

Publication Number Publication Date
WO2023036018A1 true WO2023036018A1 (zh) 2023-03-16

Family

ID=78682758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115908 WO2023036018A1 (zh) 2021-09-08 2022-09-08 用于皮肤的离子电渗透装置及其贴片

Country Status (2)

Country Link
CN (1) CN113713248B (zh)
WO (1) WO2023036018A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713248B (zh) * 2021-09-08 2022-07-05 北京意安平顺网络科技有限公司 用于皮肤的离子电渗透装置及其贴片
WO2024080248A1 (ja) * 2022-10-13 2024-04-18 ヤーマン株式会社 美容マスク

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131455A (zh) * 2008-06-30 2011-07-20 内莫拉制药有限公司 反向离子电渗用贴片
US20130066255A1 (en) * 2011-07-06 2013-03-14 Isis Biopolymer, Inc. Iontophoretic patch with side tab
CN106659890A (zh) * 2014-07-29 2017-05-10 莱雅公司 多电极柔性电动面膜
CN108159563A (zh) * 2016-12-07 2018-06-15 恩客斯(上海)商贸有限公司 电皮肤裹布
CN113713248A (zh) * 2021-09-08 2021-11-30 北京意安平顺网络科技有限公司 用于皮肤的离子电渗透装置及其贴片

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2126487C (en) * 1993-06-23 2001-05-29 Keiichiro Okabe Iontophoresis device
US5944685A (en) * 1996-02-09 1999-08-31 Polytronics, Ltd. Skin-contact type medical treatment apparatus
CN205198688U (zh) * 2015-11-05 2016-05-04 朱九成 一种带电离子化妆品的丰胸贴
CN210020862U (zh) * 2019-01-07 2020-02-07 成都柔电云科科技有限公司 一种贴片面膜
CN109529191A (zh) * 2019-01-07 2019-03-29 成都柔电云科科技有限公司 一种贴片面膜
CN111888641B (zh) * 2019-05-06 2023-09-22 上海肤泰科技有限公司 离子电渗透的给药装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131455A (zh) * 2008-06-30 2011-07-20 内莫拉制药有限公司 反向离子电渗用贴片
US20130066255A1 (en) * 2011-07-06 2013-03-14 Isis Biopolymer, Inc. Iontophoretic patch with side tab
CN106659890A (zh) * 2014-07-29 2017-05-10 莱雅公司 多电极柔性电动面膜
CN108159563A (zh) * 2016-12-07 2018-06-15 恩客斯(上海)商贸有限公司 电皮肤裹布
CN113713248A (zh) * 2021-09-08 2021-11-30 北京意安平顺网络科技有限公司 用于皮肤的离子电渗透装置及其贴片

Also Published As

Publication number Publication date
CN113713248B (zh) 2022-07-05
CN113713248A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2023036018A1 (zh) 用于皮肤的离子电渗透装置及其贴片
CN113905782B (zh) 皮肤护理设备用发光二极管贴片及包括其的皮肤护理设备
US9610440B2 (en) Systems, devices, and methods for transdermal delivery
KR20050115313A (ko) 가요성의 전도성 소자를 갖는 저장소 하우징을 구비하는전기전송 장치
JP2010505518A5 (zh)
JP2005506158A5 (zh)
CN108159563A (zh) 电皮肤裹布
JP6168639B2 (ja) 生体電池治療具
WO2007043429A1 (ja) イオン導入器用フェース・ヘッドパッド及びそれを備えたイオン導入装置
WO2014050823A1 (ja) シート電極
US20150272906A1 (en) Systems, devices, and methods for transdermal delivery
KR20220031861A (ko) 이온토포레시스 투여 장치
KR20110127371A (ko) 카본시트가 구비된 전기마스크 장치
EP3801739B1 (en) Apparatus for increasing absorption of medications and cosmeceuticals through the skin of the user
CN111035851B (zh) 应用于电刺激按摩仪的电极组件和颈椎电刺激按摩仪
AU2006210702B2 (en) Electrode arrangement for applying electrical signals to the skin of an animal
KR101110135B1 (ko) 고전도 하이드로겔층이 구비된 전기마스크 장치
JP2001190693A (ja) 電極構造体
US8457735B2 (en) Field controlling electrode
CN213667538U (zh) 应用于按摩仪的电极组件和颈椎按摩仪
JP2013158363A (ja) 生体用電極及びそのシート並びにイオントフォレシス装置
JP2000176024A (ja) 電極構造体
CN117653902A (zh) 电子敷贴膜及电子敷贴膜系统
CN117815531A (zh) 一种敷料装置
KR20240025161A (ko) 미세전류 자극 마스크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE