WO2023035708A1 - 风机叶片声音信号采集最优位置及其选取方法 - Google Patents

风机叶片声音信号采集最优位置及其选取方法 Download PDF

Info

Publication number
WO2023035708A1
WO2023035708A1 PCT/CN2022/098268 CN2022098268W WO2023035708A1 WO 2023035708 A1 WO2023035708 A1 WO 2023035708A1 CN 2022098268 W CN2022098268 W CN 2022098268W WO 2023035708 A1 WO2023035708 A1 WO 2023035708A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
blade
sound
sound signal
sound pressure
Prior art date
Application number
PCT/CN2022/098268
Other languages
English (en)
French (fr)
Inventor
王剑钊
李卫东
任鑫
王�华
童彤
王恩民
赵鹏程
李小翔
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to EP22851004.6A priority Critical patent/EP4180658A4/en
Publication of WO2023035708A1 publication Critical patent/WO2023035708A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0691Rotors characterised by their construction elements of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/333Noise or sound levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/81Microphones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the disclosure belongs to the technical field of wind power generation, and in particular relates to an optimal position for collecting sound signals of fan blades and a selection method thereof.
  • Wind turbines are increasingly being used in large quantities. Wind turbines are generally located in harsh environments. Continuous erosion such as wind and sand, freezing, salt spray, and impact will cause blade damage and failure. In severe cases, blade breakage will occur. Safety and other accidents, resulting in greater economic losses.
  • blade damage and faults have been mostly relied on on-site patrol inspection by maintenance personnel, and the method of hearing abnormal aerodynamic sounds through artificial ears to judge whether the blade is working normally is greatly affected by the climate and the efficiency is not high.
  • some electronic devices judge blade failures by collecting sound signals emitted by blades, and then analyze them in time domain and frequency domain.
  • the electronic equipment for collecting and capturing sound signals will change greatly due to different placement positions, and the collected sound signals are often not effective signals, which brings great obstacles to analyzing blade faults through sound signals.
  • the purpose of the present disclosure is to provide an optimal location for sound signal collection of fan blades and its selection method, which can obtain a relatively high-amplitude sound pressure intensity, and the spectrum distribution of the collected sound signals is relatively wide, which can meet the needs of high-quality sound collection and analysis of blades. At the same time, it can superimpose the sound characteristics generated by blade faults, which is conducive to the next step of fault feature analysis.
  • An embodiment of the present disclosure proposes an optimal position for sound signal collection of fan blades.
  • the optimal position is located on the vertical projection of the wind turbine impeller’s windward rotation plane on the ground.
  • the distance between the optimal position and the center point of the tower is R ⁇ sin ⁇ , R is the radius of rotation of the impeller, and ⁇ is the angle between the blade closest to the ground and the vertical axis of the tower when the sound pressure and sound pressure level intensity generated by the normal operation of the wind turbine are at their maximum.
  • is 50°.
  • Another embodiment of the present disclosure proposes a method for selecting the optimal position for collecting the sound signal of the above-mentioned fan blade, including:
  • S1 Select the main wind direction of the wind turbine, and determine the windward rotation plane of the impeller of the wind turbine according to the main wind direction;
  • S3 Measure the sound pressure and sound pressure level intensity generated during normal operation of the wind turbine. When the sound pressure and sound pressure level are at their maximum value, the tip of the blade is on the vertical projection of the wind turbine impeller's windward rotation plane on the ground. The projection point of is the optimal position for collecting the sound signal of the fan blade.
  • the impeller rotates clockwise against the wind.
  • the specification parameters of the wind turbine include the radius of the hub of the wind turbine and the length of the blades.
  • the included angle between the blade closest to the ground and the vertical axis of the tower is 50°.
  • the optimal position for collecting the sound signal of the fan blade in the embodiment of the present disclosure is simple, the sound pressure intensity of a higher amplitude can be obtained, and the spectrum distribution of the collected sound signal is relatively wide, which can meet the high-quality sound collection and analysis of the blade At the same time, it can superimpose the sound characteristics generated by blade faults, which is conducive to the next step of fault feature analysis.
  • the method for selecting the optimal position for collecting the sound signal of the above-mentioned fan blade proposed by the embodiments of the present disclosure is to determine the windward rotation plane of the impeller of the wind turbine, and when the sound pressure and sound pressure level intensity generated by the normal operation of the wind turbine are at the maximum value, this At this time, the projection point of the blade tip on the vertical projection of the wind turbine impeller's windward rotation plane on the ground is determined as the optimal position for collecting the sound signal of the fan blade.
  • the aerodynamic sound emitted when the impeller of the wind turbine sweeps the wind is mainly generated at the leading edge of the blade.
  • the sound pressure and sound pressure level intensity generated by the wind turbine are at their maximum, the sound is collected from the projection point of the blade tip vertically downward to the ground position.
  • the sound pressure and sound pressure level obtained by the signal are also maximum.
  • the sound pressure and sound pressure level intensity generated are the highest.
  • the distance between the blade closest to the ground and the vertical axis of the tower is The angle between them is 50°.
  • each wind turbine in the wind field is affected by the direction of the wind, and the impeller rotation will have one or two main wind rotation planes. According to the change of the wind direction, several fan blade sound signals are added. Acquisition points can effectively improve the accuracy of signal acquisition.
  • Figure 1 is a front view of a wind turbine rotating in the wind
  • Fig. 2 is a schematic diagram of the optimal position for collecting sound signals of fan blades.
  • 1 is the tower
  • 2 is the blade
  • 3 is the hub
  • 4 is the vertical projection of the wind turbine impeller's windward rotation plane on the ground.
  • the optimal position for collecting the sound signal of the fan blade in the embodiment of the present disclosure is located on the vertical projection 4 of the wind turbine impeller's windward rotation plane on the ground, that is, the line segment where OB is located in the figure, and the optimal position and
  • the angle, ⁇ , between the nearest blade on the ground and the vertical axis of the tower is generally 50°.
  • B is the projection point of the maximum rotation radius of the impeller.
  • the method for selecting the optimal location for collecting the fan blade sound signal proposed by the embodiments of the present disclosure includes: S1-S3.
  • S1 Select the main wind direction of the wind turbine, and determine the windward rotation plane of the impeller of the wind turbine according to the main wind direction; the impeller usually rotates clockwise.
  • S2 Calculate the radius of the windward rotation plane of the impeller of the wind turbine according to the specification parameters of the wind turbine; the specification parameters of the wind turbine include the radius of the hub 3 of the wind turbine and the length of the blade 2 .
  • the optimal position D point changes accordingly, but the optimal position D point is on the same plane as the rotation plane.
  • the fluctuation range of the main wind direction in the same season according to the fluctuation range of the main wind direction in the same season, several sound signal collection points of fan blades are added. In the same season, there may be small-scale fluctuations in the main wind direction. According to the fluctuation range, adding a number of fan blade sound signal collection points can effectively improve the accuracy of signal collection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

提出了一种风机叶片声音信号采集最优位置及其选取方法,通过确定风电机组的叶轮迎风旋转平面,当风电机组正常运行产生的声压和声压级强度为最大值时,将该叶片叶尖在风电机组叶轮迎风旋转平面在地面的垂直投影上的投影点确定为风机叶片声音信号采集最优位置。风电机组叶轮旋转扫风时发出的气动声音主要产生于叶片前缘端,当声压和声压级强度最大时,此时的叶尖垂直向下到地面位置的投影点采集声音信号获得的声压和声压级也最大。

Description

风机叶片声音信号采集最优位置及其选取方法
相关申请的交叉引用
本申请基于申请号为202111051210.X、申请日为2021年9月8日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开属于风力发电技术领域,具体涉及一种风机叶片声音信号采集最优位置及其选取方法。
背景技术
随着新能源发电技术的发展,风力发电机组越来越多地被大量应用。风力发电机组一般地处恶劣环境,风沙、冰冻、盐雾、冲击等持续性侵蚀会造成叶片损坏、故障,严重时会发生叶片断裂,不仅影响风力发电机组正常发电,还可能发生人身安全、设备安全等事故,造成较大的经济损失。
长期以来,叶片损坏故障多靠维护人员现场巡逻检查,通过人工耳朵听辨气动声音异常的方法来判断叶片是否工作正常,受气候影响大,效率不高。相关技术中,有一些电子设备通过采集叶片发出的声音信号,再进行时域、频域分析来判断叶片故障,但因为风电机组地处野外,叶片受激发出呼啸声音受各种气动噪声影响,而采集捕捉声音信号的电子设备因放置位置的不同会发生很大变化,采集到的声音信号经常不是有效信号,给通过声音信号分析叶片故障带来极大障碍。
发明内容
本公开的目的在于提供一种风机叶片声音信号采集最优位置及其选取方法,能够获得较高幅度的声压强度,采集到的声音信号的频谱分布较宽泛,能 满足叶片高质量声音采集分析故障的需要,同时能叠加叶片故障所产生的声音特征,有利于进行下一步故障特征分析。
本公开是通过以下技术方案来实现的:
本公开一方面实施例提出了一种风机叶片声音信号采集最优位置,所述最优位置位于风电机组叶轮迎风旋转平面在地面的垂直投影上,所述最优位置与塔筒中心点的距离为R×sinα,R为叶轮的旋转半径,α为风电机组正常运行产生的声压和声压级强度最大时,距离地面最近的叶片与塔筒竖直轴线之间的夹角。
在一些实施例中,α为50°。
本公开另一方面实施例提出了一种上述风机叶片声音信号采集最优位置的选取方法,包括:
S1:选定风电机组主要来风方向,并根据主要来风方向确定风电机组叶轮迎风旋转平面;
S2:根据风电机组的规格参数,计算风电机组叶轮迎风旋转平面的半径;
S3:测量风电机组正常运行时产生的声压和声压级强度,当声压和声压级强度为最大值时,此时该叶片叶尖在风电机组叶轮迎风旋转平面在地面的垂直投影上的投影点,即为风机叶片声音信号采集最优位置。
在一些实施例中,S1中,叶轮旋转方向为迎风顺时针。
在一些实施例中,S2中,风电机组的规格参数包括风机轮毂半径和叶片长度。
在一些实施例中,S3中,当声压和声压级强度为最大值时,距离地面最近的叶片与塔筒竖直轴线之间的夹角为50°。
在一些实施例中,S3中,根据同一季节主要来风方向的波动范围,增设若干风机叶片声音信号采集点。
在一些实施例中,S3中,根据不同季节主要来风方向的改变,增设若干 风机叶片声音信号采集点。
本公开具有以下有益的技术效果:
本公开实施例中的风机叶片声音信号采集最优位置,位置点的设置简单,能够获得较高幅度的声压强度,采集到的声音信号的频谱分布较宽泛,能满足叶片高质量声音采集分析故障的需要,同时能叠加叶片故障所产生的声音特征,有利于进行下一步故障特征分析。
由于风电场风电机组大多布置在环境恶劣的野外,针对叶片损伤的检测,越来越多采用收集声音信号进行时频域分析的电子检测装置来实现,但前端采集的声音信号的品质有很大差别,有些甚至不能反映叶片故障所产生的声音特征,对后续故障分析造成较大影响。本公开实施例提出的上述风机叶片声音信号采集最优位置的选取方法,通过确定风电机组的叶轮迎风旋转平面,当风电机组正常运行产生的声压和声压级强度为最大值时,将此时该叶片叶尖在风电机组叶轮迎风旋转平面在地面的垂直投影上的投影点确定为风机叶片声音信号采集最优位置。风电机组叶轮旋转扫风时发出的气动声音主要产生于叶片前缘端,当风电机组产生的声压和声压级强度最大时,此时的叶尖垂直向下到地面位置的投影点采集声音信号获得的声压和声压级也最大。通过在该点设置声音信号采集装置,一是可以采集到较高幅度的声压强度;二是声音信号的频谱分布较宽泛,介于0到8KHz范围内,满足叶片高质量声音采集分析故障的需要;三是采集到声音信号能叠加叶片故障所产生的声音特征,有利于进一步特征分析。
进一步地,经过试验,当风电机组叶轮顺时针旋转到与12点时钟方向夹角130°时,产生的声压和声压级强度最大,此时距离地面最近的叶片与塔筒竖直轴线之间的夹角为50°。
进一步地,同一季节中,主要来风方向可能存在小范围的波动,根据波动范围增设若干风机叶片声音信号采集点,能够有效提高信号采集的精度。
进一步地,不同季节由于季节来风的原因,风场每台风电机组受到来风方向的影响,叶轮旋转会有一到两个主要来风旋转平面,根据来风方向的改变增设若干风机叶片声音信号采集点,能够有效提高信号采集的精度。
附图说明
图1为风电机组迎风旋转平面正视图;
图2为风机叶片声音信号采集最优位置的示意图。
图中:1为塔筒,2为叶片,3为轮毂,4为风电机组叶轮迎风旋转平面在地面的垂直投影。
具体实施方式
下面以附图和具体实施例对本公开做进一步的详细说明,所述是对本公开的解释而不是限定。
如图1和图2,本公开实施例的风机叶片声音信号采集最优位置,位于风电机组叶轮迎风旋转平面在地面的垂直投影4上,即图中OB所在的线段,所述最优位置与塔筒中心点O的距离为R×sinα,R为叶轮的旋转半径,叶轮的旋转半径R=轮毂半径+叶片长度;α为风电机组正常运行产生的声压和声压级强度最大时,距离地面最近的叶片与塔筒竖直轴线之间的夹角,α一般为50°。B为叶轮的最大旋转半径投影点。
本公开实施例提出的上述风机叶片声音信号采集最优位置的选取方法,包括:S1-S3。
S1:选定风电机组主要来风方向,并根据主要来风方向确定风电机组叶轮迎风旋转平面;叶轮旋转通常为顺时针旋转。
S2:根据风电机组的规格参数,计算风电机组叶轮迎风旋转平面的半径;风电机组的规格参数包括风机轮毂3半径和叶片2长度。
S3:测量风电机组正常运行时产生的声压和声压级强度,当声压和声压级强度为最大值时,此时该叶片2叶尖在风电机组叶轮迎风旋转平面在地面的垂 直投影4上的投影点D,即为风机叶片声音信号采集最优位置。经过试验,当风电机组叶轮顺时针旋转到与12点时钟方向夹角130°时,产生的声压和声压级强度最大,此时距离地面最近的叶片2与塔筒1竖直轴线之间的夹角为50°。
来风方向改变,最优位置D点随之改变,但最优位置D点与旋转平面在同一平面上。
在本公开的一个实施例中,根据同一季节主要来风方向的波动范围,增设若干风机叶片声音信号采集点。同一季节中,主要来风方向可能存在小范围的波动,根据波动范围增设若干风机叶片声音信号采集点,能够有效提高信号采集的精度。
在本公开的一个实施例中,根据不同季节主要来风方向的改变,增设若干风机叶片声音信号采集点。不同季节由于季节来风的原因,风场每台风电机组受到来风方向的影响,叶轮旋转会有一到两个主要来风旋转平面,根据来风方向的改变增设若干风机叶片声音信号采集点,能够有效提高信号采集的精度。
需要说明的是,以上所述仅为本公开实施方式的一部分,根据本公开所描述的系统所做的等效变化,均包括在本公开的保护范围内。本公开所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本公开的结构或者超越本权利要求书所定义的范围,均属于本公开的保护范围。

Claims (8)

  1. 一种风机叶片声音信号采集最优位置,其特征在于,所述最优位置位于风电机组叶轮迎风旋转平面在地面的垂直投影上,所述最优位置与塔筒(1)中心点的距离为R×sinα,R为叶轮的旋转半径,α为风电机组正常运行产生的声压和声压级强度最大时,距离地面最近的叶片(2)与塔筒(1)竖直轴线之间的夹角。
  2. 如权利要求1所述的风机叶片声音信号采集最优位置,其特征在于,α为50°。
  3. 如权利要求1或2所述的风机叶片声音信号采集最优位置的选取方法,其特征在于,包括:
    S1:选定风电机组主要来风方向,并根据主要来风方向确定风电机组叶轮迎风旋转平面;
    S2:根据风电机组的规格参数,计算风电机组叶轮迎风旋转平面的半径;
    S3:测量风电机组正常运行时产生的声压和声压级强度,当声压和声压级强度为最大值时,此时该叶片(2)叶尖在风电机组叶轮迎风旋转平面在地面的垂直投影(4)上的投影点,即为风机叶片声音信号采集最优位置。
  4. 如权利要求3所述的风机叶片声音信号采集最优位置的选取方法,其特征在于,S1中,叶轮旋转方向为迎风顺时针。
  5. 如权利要求3或4所述的风机叶片声音信号采集最优位置的选取方法,其特征在于,S2中,风电机组的规格参数包括风机轮毂(3)半径和叶片(2)长度。
  6. 如权利要求3至5中任一项所述的风机叶片声音信号采集最优位置的选取方法,其特征在于,S3中,当声压和声压级强度为最大值时,距离地面最近的叶片(2)与塔筒(1)竖直轴线之间的夹角为50°。
  7. 如权利要求3至6中任一项所述的风机叶片声音信号采集最优位置的选取方法,其特征在于,S3中,根据同一季节主要来风方向的波动范围,增设若干风机叶片声音信号采集点。
  8. 如权利要求3至7中任一项所述的风机叶片声音信号采集最优位置的选取方法,其特征在于,S3中,根据不同季节主要来风方向的改变,增设若干风机叶片声音信号采集点。
PCT/CN2022/098268 2021-09-08 2022-06-10 风机叶片声音信号采集最优位置及其选取方法 WO2023035708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22851004.6A EP4180658A4 (en) 2021-09-08 2022-06-10 OPTIMAL POSITION FOR COLLECTION OF SOUND SIGNAL FROM WIND TURBINE BLADE AND ITS SELECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111051210.XA CN113790129B (zh) 2021-09-08 2021-09-08 一种风机叶片声音信号采集最优位置选取方法
CN202111051210.X 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023035708A1 true WO2023035708A1 (zh) 2023-03-16

Family

ID=79182826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098268 WO2023035708A1 (zh) 2021-09-08 2022-06-10 风机叶片声音信号采集最优位置及其选取方法

Country Status (3)

Country Link
EP (1) EP4180658A4 (zh)
CN (1) CN113790129B (zh)
WO (1) WO2023035708A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790129B (zh) * 2021-09-08 2022-11-08 中国华能集团清洁能源技术研究院有限公司 一种风机叶片声音信号采集最优位置选取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284787A1 (en) * 2007-12-31 2010-11-11 General Electric Company Individual blade noise measurement system and method for wind turbines
US20140278151A1 (en) * 2013-03-15 2014-09-18 Digital Wind Systems, Inc. Nondestructive acoustic doppler testing of wind turbine blades from the ground during operation
CN109322797A (zh) * 2017-07-31 2019-02-12 上海绿孚科技有限公司 基于声音处理的风力发电机组的叶片状态监测系统及检测方法
CN111120223A (zh) * 2019-12-16 2020-05-08 大连赛听科技有限公司 一种基于双阵列的叶片故障监测方法与设备
CN111287913A (zh) * 2020-03-24 2020-06-16 内蒙古工业大学 一种基于旋转平台风力机叶片噪声测试装置
CN113790129A (zh) * 2021-09-08 2021-12-14 中国华能集团清洁能源技术研究院有限公司 一种风机叶片声音信号采集最优位置及其选取方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471880A (en) * 1994-04-28 1995-12-05 Electric Power Research Institute Method and apparatus for isolating and identifying periodic Doppler signals in a turbine
JP5207074B2 (ja) * 2009-06-05 2013-06-12 清水建設株式会社 風力発電風車ブレードの異常判定方法、異常判定装置、及び、異常判定プログラム
CN204704074U (zh) * 2015-05-22 2015-10-14 中能电力科技开发有限公司 风电机组叶片噪声检测装置
CN207195098U (zh) * 2017-07-31 2018-04-06 上海绿孚科技有限公司 一种基于声音处理的风力发电机组的叶片状态监测系统
US20210055266A1 (en) * 2018-04-26 2021-02-25 Ping Services Pty Ltd An Apparatus and Method of Detecting Anomalies in an Acoustic Signal
CN113090471B (zh) * 2019-12-23 2022-10-14 新疆金风科技股份有限公司 风力发电机组的塔架净空音频监测系统、方法及装置
CN212454697U (zh) * 2020-07-02 2021-02-02 中国船舶重工集团海装风电股份有限公司 一种风力发电机组叶片运行状态检测装置
CN112324629A (zh) * 2020-11-09 2021-02-05 华能陕西靖边电力有限公司 一种基于振动和声音的风电叶片早期损伤监测系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284787A1 (en) * 2007-12-31 2010-11-11 General Electric Company Individual blade noise measurement system and method for wind turbines
US20140278151A1 (en) * 2013-03-15 2014-09-18 Digital Wind Systems, Inc. Nondestructive acoustic doppler testing of wind turbine blades from the ground during operation
CN109322797A (zh) * 2017-07-31 2019-02-12 上海绿孚科技有限公司 基于声音处理的风力发电机组的叶片状态监测系统及检测方法
CN111120223A (zh) * 2019-12-16 2020-05-08 大连赛听科技有限公司 一种基于双阵列的叶片故障监测方法与设备
CN111287913A (zh) * 2020-03-24 2020-06-16 内蒙古工业大学 一种基于旋转平台风力机叶片噪声测试装置
CN113790129A (zh) * 2021-09-08 2021-12-14 中国华能集团清洁能源技术研究院有限公司 一种风机叶片声音信号采集最优位置及其选取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180658A4

Also Published As

Publication number Publication date
CN113790129B (zh) 2022-11-08
CN113790129A (zh) 2021-12-14
EP4180658A4 (en) 2024-03-06
EP4180658A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
CN103080540B (zh) 风电场中风力涡轮机的控制
US7895018B2 (en) Event monitoring via combination of signals
CN104101652B (zh) 一种基于音频信号的风电叶片损伤监测方法及监测系统
Migliore et al. Acoustic tests of small wind turbines
CN101813055A (zh) 具有叶尖挠度检测的风力发电机
WO2023035708A1 (zh) 风机叶片声音信号采集最优位置及其选取方法
US11946452B2 (en) Control system for wind turbines in cold climates
CN109118057A (zh) 一种基于实时功率曲线的风电机组出力评价方法
Mendoza et al. Power performance test report for the US department of energy 1.5-megawatt wind turbine
CN212454697U (zh) 一种风力发电机组叶片运行状态检测装置
CN109241693A (zh) 测算风力发电机组防雷等级的方法
Santos et al. Mechanical loads test report for the US Department of Energy 1.5-megawatt wind turbine
CN204832111U (zh) 一种风场运行中的风力发电机叶片检测装置
CN115065155B (zh) 一种基于5g通讯的风电场升压站的风险预警系统
CN114812504B (zh) 一种用于海上风电基础的多参数协同监测系统
Bao et al. A data-driven approach for identification and compensation of wind turbine inherent yaw misalignment
Mendoza et al. Duration Test Report for the SWIFT Wind Turbine
LeBlanc et al. Recommendations for risk assessments of ice throw and blade failure in Ontario
CN114399060B (zh) 一种基于风雨同侵指数的风力发电机叶片养护方法
Evans et al. Effects of different meteorological conditions on wind turbine noise
CN115855465A (zh) 一种基于混响噪声的风力机叶片状态监测系统和方法
CN115855461B (zh) 一种风电机组风机叶片噪音异常系统和方法
CN214836884U (zh) 一种用于海上风电机组功率特性测量的装置
Gkarakis Performance analysis of an operating windfarm of 21MW in Greece for a period of three years
CN115330076A (zh) 一种风电机组风速缺失数据的修补方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022851004

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE