WO2023035702A1 - 数据传输方法、设备和存储介质 - Google Patents

数据传输方法、设备和存储介质 Download PDF

Info

Publication number
WO2023035702A1
WO2023035702A1 PCT/CN2022/097415 CN2022097415W WO2023035702A1 WO 2023035702 A1 WO2023035702 A1 WO 2023035702A1 CN 2022097415 W CN2022097415 W CN 2022097415W WO 2023035702 A1 WO2023035702 A1 WO 2023035702A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbs
transmission
control signaling
cell
network element
Prior art date
Application number
PCT/CN2022/097415
Other languages
English (en)
French (fr)
Inventor
许辉
纪中伟
丁剑锋
华孝泉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023035702A1 publication Critical patent/WO2023035702A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the communication field, in particular to a data transmission method, device and storage medium.
  • Multicast/Broadcast over Single Frequency Network can be used to simultaneously transmit the same content to multiple cells located in the same MBSFN area.
  • Domain macro-diversity improves multicast broadcast service (Multicast/Broadcast Service, MBS) signal instruction for cell edge users, and improves MBS transmission reliability at the same time.
  • MBS multicast broadcast service
  • NR New Radio, NR
  • MBS new air interface
  • 5G-based system architecture MBS is transmitted through the unicast subframe of the cell, which is completely different from the multi-cell MBSFN subframe transmission in LTE. Therefore, it is an urgent problem to realize multi-cell synchronous transmission in the NR-MBS area.
  • An embodiment of the present application provides a data transmission method applied to a first communication node, including:
  • An embodiment of the present application provides a data transmission method applied to a second communication node, including:
  • An embodiment of the present application provides a communication device, including: a communication module, a memory, and one or more processors;
  • the communication module is configured to perform communication interaction between the first communication node, the second communication node, the first network element, the second network element, the core network element, and the access layer network element;
  • the memory configured to store one or more programs
  • the one or more processors are made to implement the method described in any of the above embodiments.
  • An embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in any one of the foregoing embodiments is implemented.
  • Figure 1 is a schematic diagram of a 5G MBS system architecture provided by the prior art
  • Fig. 2 is a kind of LTE MBSFN transmission schematic diagram that the embodiment of the present application provides;
  • FIG. 3 is a schematic diagram of a 5G MBS service transmission mode provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an overall architecture of a 5G NG-RAN provided in an embodiment of the present application
  • FIG. 5 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of another data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of synchronous data transmission provided by an embodiment of the present application.
  • FIG. 8 is a flow chart of MBS multi-cell synchronous transmission provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of an MBS multi-cell synchronous transmission of MBS control signaling provided by an embodiment of the present application.
  • FIG. 10 is a flow chart of synchronous transmission of MBS user data by multiple MBS cells provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of receiving MBS control signaling and MBS user data of multiple cells provided by an embodiment of the present application
  • Fig. 12 is a flow chart of transmission of an MBS synchronization data packet provided by an embodiment of the present application.
  • Fig. 13 is a flow chart of transmission of MBS control signaling including ECP and MBS user data provided by the embodiment of the present application;
  • FIG. 14 is a flow chart of synchronous transmission of multiple cells under different CUs with OAM configuration provided by an embodiment of the present application
  • FIG. 15 is a flowchart of synchronous transmission of multiple cells under different CUs or gNBs provided by the embodiment of the present application;
  • FIG. 16 is a flow chart of a new access network element configuring multi-cell synchronous transmission provided by an embodiment of the present application
  • Fig. 17 is a structural block diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 18 is a structural block diagram of another data transmission device provided by an embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a 5G MBS system architecture provided by the prior art.
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2 is a schematic diagram of LTE MBSFN transmission provided by an embodiment of the present application.
  • MBSFN transmission MBMS data is simultaneously transmitted over the air interface through multiple cells synchronized in time.
  • a user equipment User Equipment, UE
  • ISI Inter-Symbol Interference
  • the UE receiver handles multi-cell transmissions with multi-path combining as it handles single-cell transmissions, without incurring additional complexity.
  • MBSFN transmission can greatly improve the spectrum efficiency, which plays a key role in the reception of cell edge users. At the same time, it may convert the transmission of adjacent cells that constitute inter-cell interference into useful signal energy, so the received signal power is greatly increased.
  • the physical multicast channel (Physical Multicast Channel, PMCH) subframe structure of MBSFN transmission uses an extended cyclic prefix (Cyclic Prefix, CP).
  • CP Cyclic Prefix
  • MBSFN transmission mode In LTE, the MBSFN transmission mode is adopted, the same Modulation and Coding Scheme (MCS) format is used in multiple cells, and the same physical resources are used to send the same content.
  • MCS Modulation and Coding Scheme
  • OFAM Operation Administration and Maintenance
  • UEs in multiple cells can receive multiple MBMS data with the same content and perform single frequency network (Single Frequency Network, SFN) combination, thereby improving the gain of the received signal.
  • Single Frequency Network, SFN Single Frequency Network
  • Multiple cells that use the same physical resource and transmit the same MBMS service in the MBSFN transmission mode constitute an MBSFN area.
  • MBS services may need to broadcast/multicast the same content in a large geographical area, such as user equipment firmware update, real-time public safety information broadcast, broadcast of image, video, audio and other content in stadiums/concert halls, etc. etc.
  • a large geographical area such as user equipment firmware update, real-time public safety information broadcast, broadcast of image, video, audio and other content in stadiums/concert halls, etc. etc.
  • multiple cells may be involved and need to send the same content at the same time. If SFN can be used for transmission, it will not only improve the spectrum efficiency, but also greatly reduce the signal interference between cells.
  • the synchronous transmission in the embodiment of this application refers to: the base station (gNBs) sends the same content on the same air interface resource, and the same resource includes: time domain, frequency domain, bandwidth segmentation (Bandwidth Part, BWP), and further includes Space domain (such as beam); the same content refers to the same MBS data, including the same MBS session identifier, the same MBS data packet number, the same MBS data packet time stamp, and the same MBS area identifier.
  • the transmission includes one of the following: multicast, broadcast.
  • FIG 3 is a schematic diagram of a 5G MBS service transmission mode provided by the embodiment of the present application, which includes two types from the perspective of the 5G core network: 5G core network (5GC) separate MBS service transmission mode and 5GC shared MBS service transmission mode; From the perspective of Radio Access Network (RAN), the above-mentioned 5GC shared MBS service transmission mode can be divided into two types on the air interface: point-to-point transmission mode and point-to-multipoint transmission mode.
  • 5GC 5G core network
  • RAN Radio Access Network
  • IPTV Internet of Things (Internet Of Thing, IOT) applications
  • V2X Vehicle to everything
  • FIG. 4 is a schematic diagram of an overall architecture of a 5G NG-RAN provided by an embodiment of the present application.
  • the NG-RAN includes one or more gNBs, and the gNBs are connected to the core network 5GC through the NG interface.
  • the gNBs can be interconnected through the Xn interface.
  • a gNB consists of a gNB-CU and one or more gNB-DUs.
  • the gNB-CU is responsible for the radio resource control (Radio Resource Control, RRC), service data adaptation protocol (Service Data Adaptation Protocol, SDAP) and packet data convergence protocol (Packet Data Convergence Protocol, PDCP) protocol logical node in gNB;
  • the gNB-DU is responsible for the radio link layer control (Radio Link Control, RLC), medium access control (Medium Access Control, MAC) and physical layer (Physical Layer, PHY) layer protocols in gNB.
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical Layer
  • One gNB-DU supports one or more cells, and one cell is supported by only one gNB-DU.
  • the gNB-CU and gNB-DU are connected through the F1 interface, and NG, Xn, and F1 are all logical interfaces.
  • 5G MBS with the new system architecture and wireless resource allocation method, the MBSFN transmission scheme in the existing LTE system cannot be used, and it is necessary to reselect and design the synchronous transmission of multiple cells.
  • 5G uses a single cell physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) to transmit MBS
  • 5G MBS and LTE eMBMS network architecture is completely different, no broadcast multicast service center (Broadcast-MulticastServiceCentre, BM-SC ), MBMS-GW (MBMS-GateWay, MBMS Gateway) and Multicell/Multicast Coordination Entity (Multicell/Multicast Coordination Entity, MCE, a logical entity specially introduced for MBSFN multi-cell transmission) and other network elements.
  • PDSCH Physical Downlink Shared Channel
  • the multi-cell synchronous transmission design for 5G MBS includes: for multi-cell synchronous transmission in the same first network element (for example, intra-DU) scenario, the gNB-DU is responsible for participating in MBS transmission Synchronous transmission of control signaling and user data of multiple cells in multiple cells; for multiple Cell synchronous transmission, the gNB-CU and multiple gNB-DUs participating in MBS transmission realize multi-cell synchronous transmission through the signaling interaction of the F1 interface, and the gNB-CU notifies multiple gNB-DUs of the same control signaling update count and time starting point ; Aiming at multi-cell synchronous transmission in different first communication nodes (for example, inter-gNB)/different second network elements (for example, inter-CU) scenarios, the synchronous transmission of control signaling and the synchronous transmission of user data are respectively designed: For the synchronous transmission of multi-cell control signaling, at least one of the following determines the same update time of the control signaling of multiple cells, and the same transmission resources of the corresponding multiple
  • the same MBS transmission resources include: time domain, frequency domain, code domain, sub-carrier space (Sub-Carrier Space, SCS), cyclic prefix (Cyclic Prefix, CP), modulation and coding strategy (Modulation and Coding Scheme, MCS), etc.
  • the above-mentioned MBS transmission resources include: MBS control signaling transmission resources and MBS user data transmission resources; function, MB-UPF)/User plane function (User plane function, UPF) and the synchronization data protocol between multiple gNBs participating in multi-cell transmission to determine the transmission time of user data.
  • the control signaling and the synchronization data protocol determine the sending time of the received MBS data packet on the air interface.
  • the above-mentioned control signaling is transmitted through a physical downlink control channel (Physical Downlink Control Channel, PDCCH), user data is transmitted through a PDSCH, and a synchronization data protocol packet is transmitted through an Internet Protocol (Internet Protocol, IP) packet; interested in receiving the MBS data
  • PDCCH Physical Downlink Control Channel
  • IP Internet Protocol
  • the UE receives and combines the control signaling on the PDCCH sent by multiple gNBs, the UE determines the sending time and resource of the MBS data according to the combined control signaling, and the UE receives and combines the MBS data on the PDSCH sent by the multiple gNBs.
  • a longer CP (ECP, extended CP) than the existing CP can be used to send MBS symbols, such as symbols carrying PDCCH and PDSCH.
  • ECP ECP
  • Using ECP can effectively achieve time-domain macro-diversity.
  • the MBS signals sent by multiple cells are combined, because the difference in multi-cell propagation delay is usually much larger than that of a single cell, and a longer CP helps to ensure that the received signal falls within the CP of the UE receiver to reduce The possibility of inter-symbol interference (ISI) is eliminated. This avoids the complexity of the equalizer at the UE receiver, but also results in some loss of peak data rate due to the overhead of the longer CP.
  • ISI inter-symbol interference
  • This avoids the complexity of the equalizer at the UE receiver, but also results in some loss of peak data rate due to the overhead of the longer CP.
  • the adoption of the ECP may also increase the complexity of UE hardware implementation.
  • the above synchronous transmission method is adopted, and the user equipment UE receives and combines MBS control signaling and user data according to the instructions of the base station, which greatly improves the spectral efficiency and the signal quality of the cell edge UE receiving MBS.
  • FIG. 5 is a flowchart of a data transmission method provided in an embodiment of the present application.
  • This embodiment can be executed by a data transmission device.
  • the data transmission device may be the first communication node.
  • the first communications node may be a base station.
  • this embodiment includes: S510-S530.
  • the multi-cell MBS transmission synchronization scenario includes one of the following: multi-cell synchronous transmission in the same first network element; multi-cell synchronous transmission in the same second network element under different first network elements ; Synchronous transmission of multiple cells under different second network elements or different first communication nodes.
  • the synchronous transmission of multiple cells in the same first network element refers to the inclusion of multiple cells in the same first network element, and the multiple cells are divided into one SFN area, that is, the synchronous transmission of multiple cells MBS control signaling and MBS user data.
  • synchronization refers to synchronous transmission in time, which also means that the same transmission resources are used to transmit the same content.
  • the same transmission resources include: time domain, frequency domain, BWP, subcarrier spacing, cyclic prefix, modulation and coding strategy, etc., the same
  • the contents include: MBS control signaling and MBS user data.
  • the synchronous transmission of multiple cells under different first network elements within the same second network element refers to the synchronous transmission of multiple first network elements under one first communication node.
  • the same second network element belongs to the same first communication node, that is, the synchronous transmission of multiple first network elements under one first communication node.
  • a second network element is responsible for the synchronous transmission of multiple first network elements, and the second network element configures the same transmission resources for the cells under multiple first network elements, and instructs multiple first network elements to transmit at the same transmission time With the same content, the second network element communicates with multiple first network elements through F1 interface signaling.
  • the synchronous transmission of multiple cells under different second network elements or different first communication nodes can be understood as different second network elements belonging to different first communication nodes. Only by synchronizing between multiple cells can the synchronous transmission of multiple cells under different second network elements or different first communication nodes be realized.
  • the first communication node determines the same transmission resource and transmission time of multiple cells according to the MBS control signaling synchronization strategy corresponding to each multi-cell MBS synchronization transmission scenario, and transmits The MBS control signaling is synchronously transmitted to the second communication node on the resource.
  • the first communication node determines the transmission time of multiple cells according to the MBS user data synchronization strategy corresponding to each multi-cell MBS synchronous transmission scenario, and transmits the MBS control signaling to the second communication node at the same transmission time Synchronous transfer of MBS user data.
  • the multi-cell MBS transmission scenario is multi-cell synchronous transmission in the same first network element
  • the MBS control signaling synchronization strategy corresponding to the multi-cell MBS synchronous transmission scenario is transmitted to the second network element through the air interface.
  • the two communication nodes transmit MBS control signaling synchronously, including: configuring the same transmission resources for multiple cells through the first network element and the second network element to which the first network element belongs; the same transmission in the multiple cells
  • the same MBS control signaling is simultaneously sent to the second communication node on the resource.
  • the second network element to which the first network element belongs and the second network element configure the same transmission resources for the multiple cells.
  • the same MBS control signaling is sent synchronously on the same transmission resources of the cells.
  • a first network element belongs to a first communication node, a communication node is connected to an MB-UPF, and the synchronization of MBS control signaling is in charge of the first network element and the second network element connected to the first network element.
  • the multi-cell MBS transmission scenario is multi-cell synchronous transmission under different first network elements in the same second network element, and the MBS control signaling corresponding to the multi-cell MBS synchronous transmission scenario
  • the synchronization policy synchronously transmits MBS control signaling to the second communication node on the air interface, including: the second network element sends synchronization indication information to the first network element through the first interface; the first network element transmits synchronization indication information according to the synchronization
  • the indication information synchronously transmits the same MBS control signaling to the second communication node at the same transmission time and the same transmission resource.
  • the first interface is an interface between the first network element and the second network element.
  • the same first network element belongs to the same first communication node, one communication node is connected to one MB-UPF, and the second The network element instructs the synchronization between multiple first network elements through the first interface, and the multiple first network elements transmit the same data to the second communication node synchronously at the same transmission time and on the same transmission resources according to the instructions of the second network element.
  • MBS control signaling MBS control signaling.
  • the multi-cell MBS transmission scenario is multi-cell synchronous transmission under different second network elements or different first communication nodes, and the MBS control signaling synchronization corresponding to the multi-cell MBS synchronous transmission scenario
  • the strategy transmits MBS control signaling synchronously to the second communication node on the air interface, including: at least one of the OAM configuration maintenance through operation management, coordination through the second interface, and newly added access layer network elements are configured to transmit MBS control signaling synchronously. The same transmission resources as the command.
  • the second interface is an interface between the first communication nodes.
  • the Different synchronous transmission mechanisms are configured between a communication node or different first network elements.
  • the first communication node coordinates through the second interface, or a newly added access layer network element (that is, a logical entity) is responsible for wireless interface synchronization.
  • OAM refers to sending instructions to multiple first communication nodes through the network management system, and multiple first communication nodes transmit MBS control signaling synchronously on the air interface according to the received instructions; there is a second interface between the first communication nodes, through the second Interaction of interface signaling enables multiple first communication nodes to send MBS control signaling synchronously; adds an access layer network element, which can be connected to multiple first communication nodes, and the first communication node according to the access Instructions from layer network elements transmit MBS control signaling synchronously on the air interface.
  • the transmission resource where the MBS control signaling is located is indicated by a system broadcast message, and the content of the MBS control signaling may be indicated by OAM, second interface signaling or a newly added access layer network element.
  • the MBS control signaling may be transmitted periodically, that is, the transmission periods of different first communication nodes or different first network elements are the same, and at the same time count for the same initial period, and the count increases by one every time a period passes.
  • the initial period of the MBS control signaling can be specified by OAM, the second interface signaling or a newly added access layer network element, and the value of the period counter is also saved by the corresponding network element, for example, the OAM server, the second A communication node or a newly added logical network element.
  • synchronously transmitting MBS user data to the second communication node over the air interface according to the MBS user data synchronization policy and the control signaling includes: determining the transmission time according to the MBS synchronization data packet sent by the core network element; according to the The transmission time and the MBS control signaling synchronously transmit the MBS user data to the second communication node.
  • the core network element sends the MBS synchronization data packet to the first communication node, so that multiple first communication nodes receive the same MBS user data from the core network.
  • the MBS synchronization data packet can be sent together with the MBS user data to multiple first communication nodes, or the core network element alone sends the MBS synchronization data packet to multiple first communication nodes.
  • the first communication node determines the transmission time of the MBS user data according to the MBS synchronization data packet, and synchronously transmits the MBS user data to the second communication node according to transmission synchronization and MBS control signaling.
  • the MBS synchronization data packet includes: a data packet time stamp; a data packet count value; and a cyclic redundancy check (CRC).
  • the data packet time stamp may be understood as a relative time value, that is, the relative time refers to the generation time value of the MBS data packet of multiple first communication nodes relative to a common starting time. The same relative time value can be set for the MBS data packets generated within the preset time range.
  • the preset time range is related to the MBS air interface scheduling cycle. For example, it can be set to one or more MBS air interface scheduling cycles; the data packet count value It refers to the count value of the current data packet in a synchronization cycle.
  • the multiple first communication nodes determine the MBS user data to be sent on the air interface according to the received MBS synchronization data packets, so as to realize the synchronous sending of the MBS user data on the air interface.
  • the MBS synchronization data packet further includes at least one of the following: data packet length; data packet payload.
  • the data packet length refers to the byte length of a specific data packet.
  • the MBS control signaling includes: MBS resource configuration signaling.
  • the MBS control signaling further includes at least one of the following: MBS-related system information block (System Information Block, SIB), MBS update notification, and MBS scheduling signaling.
  • SIB System Information Block
  • MBS update notification MBS scheduling signaling.
  • the content of the control signaling includes at least one of the following: MBS transmission resource; MBS transmission area; MBS update notification configuration information; MBS session identifier; MBS synchronization area identifier; MBS scheduling information.
  • the MBS transmission area refers to the transmission area of MBS user data, which may be indicated by a cell identifier.
  • the MBS transmission resources include: MBS control signaling transmission resources, and MBS user data transmission resources.
  • the MBS transmission resources include: time domain, frequency domain, and BWP.
  • the MBS transmission resource further includes at least one of the following: SCS, CP, MCS, and beam.
  • the data transmission method applied to the first communication node further includes: configuring an ECP, and the CP is used to carry symbol transmission of a physical downlink control channel PDCCH and symbol transmission of a physical downlink shared channel PDSCH.
  • the first communication node may determine the size of the ECP according to at least one of the following conditions: MBS transmission area, UE capability, MBS service requirements, OAM, and operator requirements.
  • the data transmission method applied to the first communication node further includes: according to the data synchronization strategy corresponding to the multi-cell MBS synchronous transmission scenario, synchronously transmit the MBS control including the ECP to the second communication node through the air interface signaling and MBS user data including the ECP.
  • the MBS control signaling including ECP refers to the PDCCH using ECP, that is, the symbol including PDCCH uses ECP;
  • the MBS user data including ECP refers to the MBS user data transmitted on PDSCH, that is, the symbol including PDSCH The symbol adopts ECP.
  • FIG. 6 is a flowchart of another data transmission method provided by the embodiment of the present application.
  • This embodiment can be executed by a data transmission device.
  • the data transmission device may be the second communication node.
  • the second communication node may be a terminal side (for example, user equipment).
  • this embodiment includes: S610-S630.
  • the second communication node receives the MBS announcement message sent by the application server to obtain the identifier of the MBS service, the transmission carrier frequency and other information.
  • S620 Receive MBS control signaling in a multi-cell MBS synchronous transmission scenario sent by the first communication node according to the MBS service announcement message.
  • the second communication node in the synchronization area receives a cell system broadcast message, acquires configuration information of MBS control signaling according to the system broadcast message, and receives MBS control signaling according to the configuration information.
  • the MBS control signaling includes MBS resource configuration signaling.
  • the MBS resource configuration signaling may include: RRC signaling, MAC CE signaling and PDCCH signaling.
  • the radio network temporary identity (Radio Network Tempory Identity, RNTI) value and time domain information corresponding to the temporary mobile group identity (Temporary Mobile Group Identity, TMGI) of interest are acquired through RRC signaling, and according to the RNTI value and time domain Control information required for information detection.
  • the MBS control signaling further includes an MBS update notification, that is, a message used to indicate that the MCCH has been updated.
  • the content of the MBS control signaling is divided into a semi-static part and a dynamic backup part, wherein the semi-static part is indicated by RRC signaling and MAC CE signaling, and carried by the PDSCH.
  • the content of the semi-static part may include: MBS session identifier, MBS transmission area, MBS scheduling cycle, etc.; the dynamic part uses the downlink control information (DownLink Control Information, DCI) indication on the PDCCH, and uses the RNTI corresponding to the MBS session identifier and the CRC of the PDCCH to do modulo 2 (exclusive OR ) operation, the dynamic part includes: beam, MBS frequency domain resource configuration, power control, modulation and coding strategy, MBS update notification, etc.
  • DCI DownLink Control Information
  • S630 Receive interested MBS user data according to the MBS control signaling.
  • the second communication node receives the interested MBS user data on the corresponding MBS transmission resource according to the instruction of the MBS control signaling.
  • the MBS user data may be carried by using the PDSCH.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission in the same first network element.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission under different first network elements in the same second network element.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission under different second network elements or different first communication nodes.
  • the data transmission method applied to the second communication node further includes:
  • the MBS control signaling including the ECP and the MBS user data including the ECP in the multi-cell MBS synchronous transmission scenario sent by the first communication node are received.
  • the second communication node receiving the MBS control signaling including the ECP refers to receiving the PDCCH including the ECP; the second communication node receiving the MBS user data including the ECP refers to receiving the PDSCH including the ECP.
  • the second communication node receives the PDCCH signal and the PDSCH signal including the ECP, and combines the PDCCH and PDSCH signals received by multiple cells.
  • FIG. 7 is a flow chart of synchronous data transmission provided by the embodiment of the present application.
  • the first network element is the DU
  • the second network element is the CU
  • the first communication node is the base station
  • the second communication node is the UE
  • the first interface is the F1 interface
  • the second interface is the Xn interface
  • the core network Take MB-UPF as an example to describe the synchronization process of data transmission.
  • the implementation process of data synchronization data in this embodiment includes S710-S740.
  • the base station determines a multi-cell MBS synchronous transmission scenario.
  • the multi-cell MBS synchronous transmission scenario includes: multi-cell synchronous transmission in the same DU; multi-cell synchronous transmission in different CUs in the same DU; multi-cell synchronous transmission in different CUs or different gNBs.
  • multiple cells are included in the same DU, and the multiple cells are divided into one SFN area, that is, multiple cells transmit MBS control signaling and MBS user data.
  • synchronization refers to synchronous transmission in time, which also means that the same transmission resources are used to transmit the same content.
  • the same transmission resources include: time domain, frequency domain, BWP, subcarrier spacing, cyclic prefix, modulation and coding strategy, etc., the same
  • the contents include: MBS control signaling and MBS user data.
  • the same CU belongs to the same gNB, that is, the synchronous transmission of multiple DUs under one gNB.
  • One CU is responsible for the synchronous transmission of multiple DUs.
  • the CU configures the same transmission resources for the cells under multiple DUs, and instructs multiple DUs to send the same content at the same transmission time.
  • the CU communicates with multiple DUs through the F1 interface. order to communicate.
  • the synchronous transmission of multiple cells under different CUs or different gNBs can be understood as different CUs belong to different gNBs, and the synchronization between multiple gNBs can be realized only when the synchronization between multiple gNBs is ensured.
  • Multi-cell synchronous transmission can be understood as different CUs belong to different gNBs, and the synchronization between multiple gNBs can be realized only when the synchronization between multiple gNBs is ensured.
  • the base station determines a corresponding MBS control signaling synchronization strategy and an MBS user data synchronization strategy according to a multi-cell MBS synchronization transmission scenario.
  • the CU and DU to which the DU belongs configure the same transmission resources for multiple cells, and the same transmission resources in multiple cells
  • the same MBS control signaling and MBS user data are sent on the resource at the same time.
  • the synchronization of MBS control signaling and MBS user data is in charge of the DU and the CU connected to the DU.
  • the same CU belongs to one gNB, one gNB is connected to one MB-UPF, and the CU indicates multiple cells through the F1 interface.
  • multiple DUs send the same MBS control signaling and MBS user data on the Uu air interface at the same transmission time and on the same transmission resource according to the CU instruction.
  • the first communication node coordinates through the second interface, or a newly added access layer network element (that is, a logical entity) is responsible for wireless interface synchronization.
  • OAM refers to sending instructions to multiple gNBs through the network management system, and multiple gNBs transmit MBS control signaling synchronously on the air interface according to the received instructions; there is a second interface Xn between gNBs, and through the second interface signaling interaction, multiple The gNB sends MBS control signaling synchronously; an access layer network element is added, and the access layer network element can be connected to multiple gNBs, and the gNB synchronously transmits the MBS control signaling on the air interface according to the instruction of the access layer network element.
  • the transmission resource where the MBS control signaling is located is indicated by a system broadcast message, and the content of the MBS control signaling may be indicated by OAM, Xn interface signaling or a newly added access layer network element.
  • the MBS control signaling may be transmitted periodically, that is, the transmission periods of different gNBs or different DUs are the same, and at the same time count for the same initial period, and the count increases by one every time a period passes.
  • the initial period of MBS control signaling can be specified by OAM, Xn interface signaling or newly added access layer network elements, and the value of the period counter is also saved by the corresponding network elements, for example, OAM server, gNB or A newly added logical network element.
  • the base station synchronously transmits the MBS control signaling to the UE according to the MBS control signaling synchronization strategy.
  • the base station synchronously transmits the MBS user data to the UE according to the MBS user data synchronization policy and the MBS control signaling.
  • MB-UPF For the synchronous transmission of MBS user data, MB-UPF sends MBS synchronization data packets to gNBs, so that multiple gNBs can receive the same MBS user data from the core network.
  • the MBS synchronization data packet and the MBS user data may be sent to multiple gNBs together, or the core network element alone sends the MBS synchronization data packet to multiple gNBs.
  • the gNB determines the transmission time of the MBS user data according to the MBS synchronization data packet, and synchronously transmits the MBS user data to the UE according to transmission synchronization and MBS control signaling.
  • the UE receives MBS control signaling and MBS user data.
  • the UE receives the MBS announcement message sent by the application server to obtain the identifier of the MBS service, the transmission carrier frequency and other information.
  • the UE in the synchronization area receives the system broadcast message of the cell, obtains the configuration information of the MBS control signaling according to the system broadcast message, and receives the MBS control signaling according to the configuration information.
  • the MBS control signaling includes MBS resource configuration signaling.
  • the MBS resource configuration signaling may include: RRC signaling, MAC CE signaling and PDCCH signaling.
  • the RNTI value and time domain information corresponding to the TMGI of interest are acquired through RRC signaling, and the required control information is detected according to the RNTI value and time domain information.
  • the MBS control signaling further includes an MBS update notification, that is, a message used to indicate that the MCCH has been updated.
  • the content of the MBS control signaling is divided into a semi-static part and a dynamic backup part, wherein the semi-static part is indicated by RRC signaling and MAC CE signaling, and carried by the PDSCH.
  • the content of the semi-static part may include: MBS session identifier, MBS transmission area, MBS scheduling cycle, etc.; the dynamic part uses the DCI indication on the PDCCH, and uses the RNTI corresponding to the MBS identifier and the CRC of the PDCCH to perform modulo 2 sum (exclusive OR) operation.
  • the dynamic part includes: beam, MBS frequency domain resource configuration, power control, modulation and coding strategy, MBS update notification, etc.
  • FIG. 8 is a flow chart of an MBS multi-cell synchronous transmission provided by an embodiment of the present application.
  • the scenario of multi-cell MBS synchronous transmission is intraDU, or inter-DU and intra-CU
  • the first network element is DU
  • the second network element is CU
  • the first communication node is a base station (gNB)
  • the second network element is a base station (gNB).
  • the communication node is the UE
  • the first interface is the F1 interface
  • the second interface is the Xn interface
  • the core network element is the MB-UPF as an example to illustrate the process of MBS synchronous transmission.
  • the synchronous transmission process in this embodiment includes:
  • the gNB configures the content of the MBS control signaling and the MBS transmission resources.
  • MBS control signaling refers to air interface signaling, including MBS-related SIB, MBS update notification, MBS scheduling signaling, MBS resource configuration signaling, etc.; the content of the MBS control signaling includes: MBS transmission Resources; MBS transmission area; MBS update notification configuration information; MBS session identifier; MBS synchronization area identifier; MBS scheduling information, etc.; Command transmission resources, such as time domain, frequency domain, BWP, SCS, CP, MCS, beam and other resource configurations.
  • the DU configures the lower layer signaling, such as MAC, RLC, and PHY layer signaling, and the CU to which the DU belongs configures the upper layer signaling, such as RRC, PDCP, and SDAP signaling; if it is an inter-DU
  • the CU to which the DU belongs configures the same MBS control signaling and MBS transmission resources in multiple cells.
  • the DU configures the MBS control signaling and MBS transmission resources of each DU itself, such as the system broadcast message in the DU.
  • the CU is responsible for the communication between each DU. synchronization between.
  • the gNB sends MBS control signaling.
  • the gNB sends the MBS control signaling on the configured MBS transmission resource, and the sending of the MBS control signaling is carried out in sequence: firstly, the system broadcast message is sent, and then the MBS update notification is sent sequentially, the MBS update notification configuration information, the MBS scheduling information.
  • the semi-static content part of the above message is sent periodically and repeatedly.
  • the PDCCH uses the same transmission mode in the common search space, and uses the RNTI corresponding to the MBS session identifier (such as TMGI) to perform an XOR operation on the CRC part of the PDCCH.
  • the gNB sends MBS user data.
  • MBS user data is sent from AF to MB-UPF, and then sent by MB-UPF to gNB, gNB receives MBS user data and stores it in a local buffer, and gNB according to the instruction of MBS control signaling (such as MBS scheduling information) Send MBS user data on the agreed MBS transmission resources.
  • MBS control signaling such as MBS scheduling information
  • the gNB determines whether to cache or discard the MBS user data received from the MB-UPF according to the information in the received MBS synchronization data packet header.
  • the MBS synchronization data packet header includes: data packet timestamp, data packet count value, data packet length, etc.
  • FIG. 9 is a flowchart of an MBS multi-cell synchronous transmission of MBS control signaling provided by an embodiment of the present application.
  • the multi-cell MBS synchronous transmission scenario is inter-gNB/inter-CU
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is an F1 interface
  • the second interface is an Xn interface
  • the core network element is an MB-UPF as an example to illustrate the process of MBS synchronous transmission of MBS control signaling.
  • the synchronous transmission process in this embodiment includes:
  • the AF sends an MBS announcement message to the UE, and the MBS announcement message includes: an MBS session identifier (such as TMGI), and an MBS area identifier.
  • the MBS announcement message further includes: MBS carrier frequency, start time and other information.
  • AF sends MBS announcement messages through application layer signaling, such as SIP signaling, SMS, 5G messages, HTTP pages, APP push, etc.;
  • UE can also pre-configure MBS service information, such as User Service Description (User Service Description, USD), USD
  • User Service Description User Service Description
  • USD User Service Description
  • the UE can acquire the session identifier of the interested MBS: TMGI or MBS multicast address.
  • the carrier frequency deployed by the MBS, the start time of the MBS session, etc. may also be acquired.
  • an MBS-related system broadcast message is sent, such as a system broadcast message including MBS update notification, MBS update notification configuration information, and the like.
  • the system broadcast message is sent periodically, or according to a UE request.
  • the semi-static control signaling refers to signaling transmitted through RRC and MAC CE, such as period, time offset, MBS session identifier, MBS area identifier and the like.
  • the semi-static control signaling further includes content such as carrier frequency, BWP, SCS, and CP.
  • the dynamic control signaling refers to signaling transmitted through the PDCCH, such as frequency domain resources, beam identification, power control, MCS and other content.
  • the dynamic control signaling further includes an MBS update notification.
  • FIG. 10 is a flowchart of an MBS multi-cell synchronous transmission of MBS user data provided by an embodiment of the present application.
  • the multi-cell MBS synchronous transmission scenario is inter-gNB/inter-CU
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is the F1 interface
  • the second interface is the Xn interface
  • the core network element is the MB-UPF as an example to illustrate the process of MBS synchronous transmission of MBS user data.
  • the synchronous transmission process in this embodiment includes:
  • the AF sends the MBS user data to the MB-UPF.
  • the AF can send the MBS user data to the MB-UPF in a unicast or multicast manner, and the specific manner is determined by the application and interface capabilities. If the transmission network supports multicast transmission, the AF sends the MBS user data to the MB-UPF through the multicast GTP-U tunnel; otherwise, the AF sends the MBS user data to the MB-UPF through the unicast GTP-U tunnel.
  • the MB-SMF configures the MB-UPF to forward the MBS user data.
  • MB-UPF can send MBS user data to gNB through unicast or multicast, if it is unicast transmission, MB-SMF configures MB-UPF to pass the MBS user data received from AF through multiple separate GTP - U tunnel is replicated to multiple gNBs. If it is multicast transmission, MB-SMF configures MB-UPF to transmit the MBS user data received from AF to multiple gNBs through a common GTP-U tunnel.
  • the MB-UPF sends the MBS user data to the UPF/gNB.
  • a GTP-U tunnel is established for each UPF/gNB, and the IP address of the gNB is used to indicate the gNB, that is, multiple GTP tunnels are established for multiple gNBs.
  • -U tunnel when the MB-UPF uses multicast to send MBS user data, a common GTP-U tunnel is established for multiple UPF/gNBs, and a multicast IP address is used to indicate multiple gNBs.
  • MBS synchronous data packet transmission can be adopted between MB-UPF and gNB.
  • the gNB sends the MBS user data over the air interface.
  • multiple gNBs transmit MBS user data on the air interface according to the instruction of the control signaling, and in order to ensure synchronization, multiple gNBs transmit the same MBS user data on the same MBS transmission resource at the same time.
  • FIG. 11 is a flow chart of receiving multi-cell MBS control signaling and MBS user data provided by the embodiment of the present application.
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is an F1 interface
  • the second interface is an Xn interface
  • the core is MB-UPF as an example, and the process of UE synchronously receiving MBS control signaling and MBS user data is described.
  • the synchronous receiving process in this embodiment includes:
  • the UE receives the MBS announcement message.
  • the UE receives the MBS announcement message through application layer signaling, and the application layer signaling includes one of the following: SMS, MMS, HTTP page, APP push, 5G message, and the like.
  • the MBS announcement message can be pre-configured in the UE, for example, through a USD (file), and the UE that has pre-configured the USD does not need to receive the MBS announcement message.
  • the UE receives an MBS-related system broadcast message.
  • the UE receives an MBS-related system broadcast message, and the system broadcast message is used to receive MBS control signaling.
  • the system broadcast message is sent periodically or on demand according to the UE's request.
  • the UE receives the MBS control signaling.
  • the UE receives the MBS control signaling according to the instruction of the system broadcast message, and the MBS control signaling is used to receive the MBS user data, for example, the UE determines whether it is interested in the MBS session identifier according to the MBS session identifier in the MBS control signaling. MBS service, if yes, acquire the resource configuration information of the interested MBS session.
  • the UE receives required MBS user data.
  • the UE obtains the resource location of the required MBS user data according to the instruction of the MBS control signaling, and receives the required MBS user data on the corresponding MBS transmission resource, the MBS user data is obtained through multiple cells,
  • the multipath delays of the MBS user data of multiple cells are within the range of the CP length of the symbol, it can be considered that the received multi-cell signals are all useful signals, and the final desired signal can be obtained through time domain combination.
  • FIG. 12 is a flow chart of transmitting an MBS synchronization data packet provided by the embodiment of the present application.
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is an F1 interface
  • the second interface is an Xn interface
  • the core The network element is MB-UPF as an example, and the transmission process of the MBS synchronization data packet is described.
  • the transmission process in this embodiment includes:
  • the MB-UPF sends an MBS synchronization data packet to the gNB.
  • the MBS synchronization data packet at least includes: a data packet time stamp, and a data packet count value.
  • the MBS synchronization data packet further includes: data packet length, MBS user data, CRC, and data packet payload.
  • the data packet time stamp is a relative time value, for example relative to a common starting reference time, and the data packets within a synchronization sequence length range are all set to the same time stamp, for example: if the synchronization sequence length is 100 milliseconds, then Packets arriving within 100 milliseconds are all timestamped to the same value.
  • the length of the synchronization sequence is set by the OAM, and is generally proportional to the MBS scheduling period.
  • the MBS scheduling period is the length of one or several synchronization sequences, and one synchronization sequence belongs to one MBS session.
  • the gNB determines the sending sequence of the MBS synchronization data packets on the air interface.
  • the gNB determines the transmission order of the air interface according to the indication of the MBS synchronization data packet, and if data damage or loss is detected:
  • the gNB stops sending the corresponding damaged or lost data packets on the air interface
  • the gNB stops sending data packets on the air interface until the next MBS scheduling period begins;
  • the gNB discards the relevant data frame, or notifies the upper layer of the wrong frame number.
  • the gNB sends the MBS user data on the air interface.
  • the gNB judges the consistency of the received MBS synchronization data packet and the local data packet count, and if they are consistent, the gNB sends the MBS user in the MBS scheduling period according to the value of the data packet time stamp in the MBS synchronization data packet. data.
  • FIG. 13 is a flowchart of transmission of MBS control signaling including ECP and MBS user data provided by the embodiment of the present application.
  • the first network element is the DU
  • the second network element is the CU
  • the first communication node is the base station (gNB)
  • the second communication node is the UE
  • the first interface is the F1 interface between the CU and the DU
  • the second The interface is the Xn interface between gNBs
  • the core network element is MB-UPF as an example
  • the transmission process of MBS control signaling including ECP and MBS user data is described.
  • the transmission process in this embodiment includes:
  • the gNB configures the extended CP.
  • the gNB sends the MBS control signaling including the ECP.
  • the MBS control signaling including the ECP refers to the PDCCH using the ECP, that is, the symbols including the PDCCH use the ECP.
  • the gNB sends MBS user data including the ECP.
  • MBS user data including ECP refers to MBS user data transmitted on PDSCH, that is, symbols including PDSCH use ECP.
  • the UE receives required MBS user data.
  • the UE receives the PDCCH and PDSCH including the ECP, and combines the PDCCH and PDSCH signals received by multiple cells.
  • FIG. 14 is a flow chart of synchronous transmission of multiple cells under different CUs with OAM configurations provided in an embodiment of the present application.
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is an F1 interface
  • the second interface is an Xn interface
  • the core is MB-UPF as an example, and the synchronous transmission process of multiple cells under different CUs is described.
  • the synchronous transmission process in this embodiment includes:
  • the OAM configures gNBs participating in MBS synchronous transmission.
  • the network management OAM configures MBS control signaling transmitted by multiple gNBs: air interface resources, transmission time, so as to ensure that multiple gNBs can realize synchronous transmission of air interface signaling.
  • the OAM configures MBS control signaling.
  • OAM configures the content of MBS control signaling: MBS-related SIB, MBS update notification, MBS scheduling signaling; MBS transmission resources; MBS transmission area; MBS update notification configuration information; MBS session identifier; MBS synchronization area identifier ; MBS scheduling information, etc.
  • the gNB sends MBS control signaling.
  • MBS control signaling is transmitted through system broadcast messages, MCCH, PDCCH, PDSCH, MBS scheduling messages, MBS update notification configuration information, and the like.
  • the control information can be sent periodically: such as system broadcast message, MBS update notification, MBS scheduling message, MBS update notification configuration information, etc., or dynamically sent: such as PDCCH.
  • FIG. 15 is a flow chart of synchronous transmission of multiple cells under different CUs or gNBs provided by the embodiment of the present application.
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is an F1 interface
  • the second interface is an Xn interface
  • the core is MB-UPF as an example, and the synchronous transmission process of multiple cells under different CUs or gNBs is described.
  • the synchronous transmission process in this embodiment includes:
  • S1510 may be implemented by a gNB, and may also be implemented by one of the following network elements: MB-SMF, MB-UPF, AF, etc.
  • the gNB can determine whether there is an Xn interface between gNBs.
  • the gNB can determine whether there is an Xn interface through signaling interaction with the relevant gNB, or through an instruction from an upper-layer core network element, such as MB-SMF and MB-UPF.
  • an Xn interface here means that there is an Xn interface between any two gNBs participating in multi-cell transmission: for example, assuming that there are three gNBs B1, B2, and B3 participating in MBS transmission, the existence of the Xn interface is It means: there is an Xn interface between any two gNBs in B1, B2, and B3.
  • any two gNBs have Xn interfaces, they coordinate synchronous transmission through the Xn interfaces: for example, the synchronous transmission of control signaling is realized through Xn interface signaling. Note that in order to ensure synchronous transmission, synchronous transmission can also be realized through the coordination of network elements of the upper layer core network.
  • the core network element includes one of the following: Multicast/Broadcast-Session Management function (MB-SMF), Broadcast Multicast-(Multicast/Broadcast-User Plane Function, MB-UPF), Access and Mobility Management Function (Access and Mobility Management Function, AMF), Application Server (Application Function/Application Server, AF/AS), etc., If three gNBs B1, B2, and B3 participate in MBS transmission, there is an Xn interface between B1 and B2/B3, there is no Xn interface between B2 and B3, and B1, B2, and B3 are all connected to MB-SMF1, then MB- SMF1 realizes the synchronous transmission of MBS.
  • MBS Multicast/Broadcast-Session Management function
  • MB-UPF Broadcast Multicast-(Multicast/Broadcast-User Plane Function, MB-UPF)
  • Access and Mobility Management Function Access and Mobility Management Function
  • AMF Access and Mobility Management Function
  • AF/AS Application Server
  • the gNB/CU configures multi-cell synchronization.
  • the gNB/CU in the case of an intra-CU/gNB scenario, is responsible for synchronous transmission of multiple cells under it, and the gNB configures corresponding control signaling.
  • FIG. 16 is a flow chart of a new access network element configuring multi-cell synchronous transmission provided by an embodiment of the present application.
  • the first network element is a DU
  • the second network element is a CU
  • the first communication node is a base station (gNB)
  • the second communication node is a UE
  • the first interface is an F1 interface
  • the second interface is an Xn interface
  • the core is MB-UPF as an example, and the process of configuring multi-cell synchronous transmission on the network element of the new access network is described.
  • the synchronous transmission process in this embodiment includes:
  • the new network element receives the multi-cell MBS indication information.
  • the new network element refers to a logical network element of the access layer, for example, it can be co-located with the gNB.
  • the new network element NE is connected to multiple gNBs, and the logical connection between the NE and the gNBs can be established by OAM or RRC signaling as required.
  • the new network element NE receives the indication information of multi-cell MBS transmission from the core network.
  • the new network element configures MBS control signaling and MBS transmission resources.
  • the new network element configures MBS control signaling and MBS transmission resources through a logical connection with the gNB.
  • the new network element sends indication information to the gNB.
  • the new network element sends indication information to the gNB through a logical interface, such as instructing the gNB on air interface resource configuration of the MBS, air interface sending time, air interface signaling content, and the like.
  • the gNB sends MBS control signaling and MBS user data over the air interface.
  • the gNB synchronously sends MBS control signaling and MBS user data over the air interface according to the instruction of the new network element.
  • FIG. 17 is a structural block diagram of a data transmission device provided in an embodiment of the present application. This embodiment is applied to data transmission equipment. As shown in FIG. 17 , the data transmission device in this embodiment includes: a determination module 1710 , a first transmission module 1720 and a second transmission module 1730 .
  • the determining module 1710 is configured to determine a multi-cell multicast broadcast service MBS synchronous transmission scenario
  • the first transmission module 1720 is configured to synchronously transmit MBS control signaling to the second communication node over the air interface according to the MBS control signaling synchronization strategy corresponding to the multi-cell MBS synchronization transmission scenario;
  • the second transmission module 1730 is configured to synchronously transmit the MBS user data to the second communication node over the air interface according to the MBS user data synchronization policy and the control signaling.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission in the same first network element.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission under different first network elements in the same second network element.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission under different second network elements or different first communication nodes.
  • the multi-cell MBS transmission scenario is multi-cell synchronous transmission in the same first network element
  • the first transmission module includes:
  • a configuration unit configured to configure the same transmission resources for multiple cells through the first network element and the second network element to which the first network element belongs;
  • the first sending unit is configured to simultaneously send the same MBS control signaling to the second communication node on the same transmission resources of the multiple cells.
  • the multi-cell MBS transmission scenario is multi-cell synchronous transmission under different first network elements in the same second network element
  • the first transmission module includes:
  • the second sending unit is configured such that the second network element sends synchronization indication information to the first network element through the first interface
  • the first transmission unit is configured such that the first network element synchronously transmits the same MBS control signaling to the second communication node at the same transmission time and on the same transmission resource according to the synchronization indication information.
  • the multi-cell MBS transmission scenario is multi-cell synchronous transmission under different second network elements or different first communication nodes
  • the first transmission module includes:
  • At least one of OAM configuration maintenance through operation management, second interface coordination, and newly added access layer network element configures the same transmission resource for synchronous transmission of MBS control signaling.
  • the second transmission module includes:
  • a determining unit configured to determine the transmission time according to the MBS synchronization data packet sent by the core network element
  • the second transmission unit is configured to synchronously transmit the MBS user data to the second communication node according to the transmission time and the MBS control signaling.
  • the MBS synchronization data packet includes: a data packet time stamp; a data packet count value; and a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the MBS synchronization data packet further includes at least one of the following: data packet length; data packet payload.
  • the MBS control signaling includes: MBS resource configuration signaling.
  • the MBS control signaling further includes at least one of the following: MBS-related system information block SIB, MBS update notification, and MBS scheduling signaling.
  • the content of the MBS control signaling includes at least one of the following: MBS transmission resource; MBS transmission area; MBS update notification configuration information; MBS session identifier; MBS synchronization area identifier; MBS scheduling information.
  • the MBS transmission resources include: MBS control signaling transmission resources, and MBS user data transmission resources.
  • the MBS transmission resources include: time domain, frequency domain, and bandwidth segment BWP.
  • the MBS transmission resource further includes at least one of the following: subcarrier spacing SCS, cyclic prefix CP, modulation and coding strategy MCS, and beam.
  • the data transmission device applied to the first communication node further includes: a configuration module configured to configure an extended cyclic prefix ECP, where the ECP is used for symbol transmission bearing the PDCCH and symbol transmission bearing the PDSCH.
  • a configuration module configured to configure an extended cyclic prefix ECP, where the ECP is used for symbol transmission bearing the PDCCH and symbol transmission bearing the PDSCH.
  • the data transmission device applied to the first communication node further includes: a third transmission module configured to synchronously transmit data to the second communication node over the air interface according to the data synchronization strategy corresponding to the multi-cell MBS synchronous transmission scenario MBS control signaling including the ECP and MBS user data including the ECP.
  • the data transmission device provided in this embodiment is configured to implement the data transmission method applied to the first communication node in the embodiment shown in FIG. 5 .
  • the implementation principle and technical effect of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 18 is a structural block diagram of another data transmission device provided in an embodiment of the present application. This embodiment is applied to a data transmission device, where the data transmission device may be a second communication node. As shown in FIG. 18 , the data transmission device in this embodiment includes: a first receiving module 1810 , a second receiving module 1820 and a third receiving module 1830 .
  • the first receiving module is configured to receive an MBS service announcement message.
  • the second receiving module is configured to receive the MBS control signaling in the multi-cell MBS synchronous transmission scenario sent by the first communication node according to the MBS service announcement message.
  • the third receiving module is configured to receive interested MBS user data according to the MBS control signaling.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission in the same first network element.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission under different first network elements in the same second network element.
  • the multi-cell MBS transmission synchronization scenario includes: multi-cell synchronous transmission under different second network elements or different first communication nodes.
  • the data transmission device applied to the second communication node further includes:
  • the fourth receiving module is configured to receive MBS control signaling including ECP and MBS user data including ECP sent by the first communication node in a multi-cell MBS synchronous transmission scenario.
  • the data transmission device provided in this embodiment is configured to implement the data transmission method applied to the second communication node in the embodiment shown in FIG. 6 .
  • the implementation principle and technical effect of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • Fig. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device provided by this application includes: a processor 1910 , a memory 1920 and a communication module 1930 .
  • the number of processors 1910 in the device may be one or more, and one processor 1910 is taken as an example in FIG. 19 .
  • the number of storage 1920 in the device may be one or more, and one storage 1920 is taken as an example in FIG. 19 .
  • the processor 1910, memory 1920, and communication module 1930 of the device may be connected through a bus or in other ways, and connection through a bus is taken as an example in FIG. 19 .
  • the device may be a first communication node (such as a base station).
  • the memory 1920 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to devices in any embodiment of the present application (for example, data applied to the first communication node
  • the determination module, the first transmission module and the second transmission module in the transmission device may include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 1920 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1920 may further include memory located remotely from the processor 1910, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 1930 is configured to perform communication interaction among the first communication node, the second communication node, the first network element, the second network element, the core network element, and the access layer network element.
  • the device provided above may be configured to execute the data transmission method applied to the first communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • the device provided above may be configured to execute the data transmission method applied to the second communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute a data transmission method applied to a first communication node.
  • the method includes: determining multiple The multi-cell broadcast service MBS synchronous transmission scenario; according to the MBS control signaling synchronization policy corresponding to the multi-cell MBS synchronous transmission scene, the MBS control signaling is synchronously transmitted to the second communication node on the air interface; The control signaling synchronously transmits the MBS user data to the second communication node on the air interface.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute a data transmission method applied to a second communication node.
  • the method includes: receiving an MBS A service announcement message; receiving MBS control signaling in a multi-cell MBS synchronous transmission scenario sent by the first communication node according to the MBS service announcement message; receiving interested MBS user data according to the MBS control signaling.
  • user equipment covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), Optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices
  • processors based on multi-core processor architectures such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种数据传输方法、设备和存储介质。该方法包括:确定多小区多播广播服务MBS同步传输场景;根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令;根据MBS用户数据同步策略和所述MBS控制信令在空口向第二通信节点同步传输MBS用户数据。

Description

数据传输方法、设备和存储介质
相关申请的交叉引用
本申请基于申请号为202111063839.6、申请日为2021年9月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,具体涉及一种数据传输方法、设备和存储介质。
背景技术
在长期演进(Long Term Evolution,LTE)中,可以利用单频网多播广播(Multicast/Broadcast over Single Frequency Network,MBSFN)将位于同一个MBSFN区域中的多个小区同时传输相同的内容,利用时域宏分集提高小区边缘用户的多播广播服务(Multicast/Broadcast Service,MBS)信号指令,同时提高MBS的传输可靠性。在R18新空口(New Radio,NR)-MBS采用了基于5G的系统架构,MBS通过小区的单播子帧传输,与LTE中多小区MBSFN子帧传输完全不同。因此,在NR-MBS区域中实现多小区同步传输,是一个亟待解决的问题。
发明内容
本申请实施例提供一种数据传输方法,应用于第一通信节点,包括:
确定多小区多播广播服务MBS同步传输场景;
根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令;
根据MBS用户数据同步策略和所述控制信令在空口向第二通信节点同步传输MBS用户数据。
本申请实施例提供一种数据传输方法,应用于第二通信节点,包括:
接收MBS服务公告消息;
根据所述MBS服务公告消息接收第一通信节点发送的多小区MBS同步传输场景下的MBS控制信令;
根据所述MBS控制信令接收感兴趣的MBS用户数据。
本申请实施例提供一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
所述通信模块,配置为在第一通信节点、第二通信节点、第一网元、第二网元、核心网元和接入层网元之间进行通信交互;
所述存储器,配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现 上述任一实施例所述的方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是现有技术提供的一种5G MBS系统架构示意图;
图2是本申请实施例提供的一种LTE MBSFN传输示意图;
图3是本申请实施例提供的一种5G MBS业务传输模式的示意图;
图4是本申请实施例提供的一种5G NG-RAN的整体架构示意图;
图5是本申请实施例提供的一种数据传输方法的流程图;
图6是本申请实施例提供的另一种数据传输方法的流程图;
图7是本申请实施例提供的一种数据同步传输的流程图;
图8是本申请实施例提供的一种MBS多小区同步传输的流程图;
图9是本申请实施例提供的一种MBS多小区同步传输MBS控制信令的流程图;
图10是本申请实施例提供的一种MBS多小区同步传输MBS用户数据的流程图;
图11是本申请实施例提供的一种接收多小区的MBS控制信令和MBS用户数据的流程图;
图12是本申请实施例提供的一种MBS同步数据包的传输流程图;
图13是本申请实施例提供的一种包含ECP的MBS控制信令和MBS用户数据的传输流程图;
图14是本申请实施例提供的一种OAM配置不同CU下多小区的同步传输流程图;
图15是本申请实施例提供的一种不同CU或gNBs下多小区的同步传输流程图;
图16是本申请实施例提供的一种新接入网网元配置多小区同步传输的流程图;
图17是本申请实施例提供的一种数据传输装置的结构框图;
图18是本申请实施例提供的另一种数据传输装置的结构框图;
图19是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请,并非用于限定本申请的范围。
随着因特网(Internet)的迅猛发展和大屏幕多功能移动终端的普及,出现了大量移动数据多媒体业务和各种高带宽多媒体业务,如视频会议、电视广播、视频点播、广告、网上教育、互动游戏等,这一方面满足了移动用户多业务的需求,同时也为移动运营商带来了新的业务增长点。这些移动数据多媒体业务要求多个用户能够同时接收相同数据,与一般的数据业务相比,具有数据量大、持续时间长、时延敏感等特点。
为了有效地利用移动网络资源,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在5G Rel-17中提出了MBS,该业务是一种从一个数据源向多个目标移动终端传送数据的技术,实现了网络(包括核心网和接入网)资源的共享,提高了网络资源(尤 其是空中接口资源)的利用率。3GPP定义的MBS业务不仅能够实现纯文本低速率的消息类组播和广播,而且还能够实现高速多媒体业务的广播和组播,提供多种丰富的视频、音频和多媒体业务,这无疑顺应了未来移动数据发展的趋势,为3GPP的发展提供了更好的业务前景。图1是现有技术提供的一种5G MBS系统架构示意图。
LTE的一个重要特性是基于同步单频网,采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)无线接口传输多媒体广播组播服务(Multimedia Broadcast Multicast Services,MBMS)数据,这称为MBSFN操作。
图2是本申请实施例提供的一种LTE MBSFN传输示意图。在MBSFN传输中,MBMS数据通过时间同步的多个小区在空中接口同时传输。用户设备(User Equipment,UE)接收到有多个小区传输的具有不同传输时延的MBMS信号。如果来自多个小区的信号在符号起始处的循环前缀内到达UE,就没有符号间干扰(Inter-Symbol Interference,ISI),UE可以将来自多个小区的MBSFN传输看作一个大的小区传输。UE接收机采用与处理单小区传输的多径合并来处理多小区传输,不会导致额外的复杂性。
MBSFN传输可以使频谱效率大大提高,对小区边缘用户的接收起到了关键性作用,同时可能将构成小区间干扰的邻小区传输转换成为有用的信号能量,因此接收信号功率大大增加。
为了实现多小区传输信号合并,MBSFN传输的物理多播信道(Physical Multicast Channel,PMCH)子帧结构使用扩展循环前缀(Cyclic Prefix,CP)。多小区传播时延的差别通常比单小区时延扩展要大得多,较长的CP有助于确保接收信号落在UE接收机的CP内从而减少了ISI的可能性。这就避免了UE接收机上均衡器的复杂性,但由于较长的CP的额外开销也导致了峰值数据率的一些损失。
在LTE中,采用MBSFN传输模式,在多个小区采用相同的调制与编码策略(Modulation and Coding Scheme,MCS)格式,采用相同的物理资源发送相同内容,MBMS多小区传输的特征:1)在MBSFN区域内同步传输;2)支持多小区MBMS传输合并;3)多播业务信道(Multicast Traffic CHannel,MTCH)和多播控制信道(Multicast Control CHannel,MCCH)在点到多点(Point-To-Multpoint,P-T-M)模式下映射到MCH传输信道上;4)MBSFN同步区域,MBSFN区域,MBSFN传输等,均由操作维护管理(Operation Administration and Maintenance,OAM)半静态配置。这样多个小区的UE可以接收到多个内容相同的MBMS数据并进行单频网(Single Frequency Network,SFN)合并,从而可以提高接收信号的增益。采用相同的物理资源并发送MBSFN发送模式发送相同MBMS业务的多个小区构成了一个MBSFN区域。
MBS业务可能需要在一个较大的地理区域中广播/多播发送相同的内容,如用户设备固件更新,实时的公共安全信息广播,体育场/音乐厅中等图像、视频、音频等内容的传播,等等,此时可能涉及多个小区需要同时发送相同的内容,如果能够采用SFN的方式传输,则不仅可提高频谱效率,同时还可以大大降低小区间的信号干扰。
在本申请实施例中的同步传输是指:基站(gNBs)在相同的空口资源上发送相同的内容,相同资源包括:时域、频域、带宽分段(Bandwidth Part,BWP),进一步还包括空域(如波束);相同的内容是指相同的MBS数据,包括相同的MBS会话标识、相同的MBS数据包编号、相同的MBS数据包时间戳、相同的MBS区域标识。所述传输包括以下之一:多播,广播。
图3是本申请实施例提供的一种5GMBS业务传输模式的示意图,从5G核心网角度来看 包括两类:5G核心网(5GC)单独MBS业务传输模式和5GC共享MBS业务传输模式;从无线接入网(Radio Access Network,RAN)角度看,上述5GC共享MBS业务传输模式在空口又可以分为两类:点到点传输模式和点到多点传输模式。
利用MBS技术向服务区域中发送广播数据的特点,可实现IPTV,软件分发,组通信,物联网(Internet Of Thing,IOT)应用,车联网(Vehicle to everything,V2X)应用等。
图4是本申请实施例提供的一种5GNG-RAN的整体架构示意图。如图4所示,NG-RAN包含一个或多个gNB,gNB通过NG接口连接到核心网5GC。gNB之间可通过Xn接口互联。一个gNB由一个gNB-CU和一个或多个gNB-DU组成。gNB-CU是负责gNB中的无线资源控制(Radio Resource Control,RRC),服务数据适配协议(Service Data Adaptation Protocol,SDAP)和分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)协议的逻辑节点;gNB-DU负责gNB中的无线链路层控制(Radio Link Control,RLC),介质访问控制(Medium Access Control,MAC)和物理层(Physical Layer,PHY)层协议。一个gNB-DU支持一个或多个小区,一个小区由唯一的一个gNB-DU支持。gNB-CU和gNB-DU通过F1接口连接,NG,Xn,F1都是逻辑接口。
在5G MBS中,采用新的系统架构和无线资源分配方式,现有LTE系统中MBSFN传输方案无法使用,需要重选设计多小区的同步传输,例如:在5G MBS中没有MBSFN传输方式,也没有MBSFN子帧设计,5G采用单小区的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输MBS,5G MBS与LTE eMBMS网络架构完全不同,没有增加广播组播业务中心(Broadcast-MulticastServiceCentre,BM-SC),MBMS-GW(MBMS-GateWay,MBMS网关)以及多小区/多播协调实体(Multicell/Multicast Coordination Entity,MCE,专门为MBSFN多小区传输而引入的一个逻辑实体)等网元。
本申请实施例中,针对5G MBS的多小区同步传输设计,包括:对于在同一个第一网元(比如,intra-DU)场景下的多小区同步传输,由gNB-DU负责实现参与MBS传输的多个小区的控制信令和用户数据的同步传输;对于同一个第二网元(比如,intra-gNB/intra-CU)场景下的不同第一网元(比如,inter-DU)下多小区同步传输,由gNB-CU和参与MBS传输的多个gNB-DU通过F1接口的信令交互实现多小区同步传输,gNB-CU通知多个gNB-DUs相同的控制信令更新计数和时间起点;针对不同第一通信节点(比如,inter-gNB)/不同第二网元(比如,inter-CU)场景下的多小区同步传输,分别对控制信令同步传输和用户数据同步传输进行设计:对于多小区控制信令同步传输,由以下至少之一确定多个小区的控制信令相同的更新时间,以及相应多个小区相同的传输资源:OAM,参与同步传输的多个gNB通过Xn接口信令进行协调,或者新增无线接入层逻辑网元。在一实施例中,相同的MBS传输资源包括:时域、频域、码域、子载波间隔(Sub-Carrier Space,SCS)、循环前缀(Cyclic Prefix,CP)、调制与编码策略(Modulation and Coding Scheme,MCS)等,上述MBS传输资源包括:MBS控制信令传输资源和MBS用户数据传输资源;对于多小区用户数据的同步传输,由广播组播-用户面功能(Multicast/Broadcast-User plane function,MB-UPF)/用户面功能(User plane function,UPF)和参与多小区传输的多个gNB之间的同步数据协议确定用户数据的传输时间,上述多个gNB根据上述多小区同步传输的控制信令和同步数据协议确定收到的MBS数据包在空口的发送时间。上述控制信令通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输,用户数据通过PDSCH传输,同步数据协议包通 过网际互连协议(Internet Protoco,IP)包传输;感兴趣接收所述MBS数据的UE接收、合并多个gNB发送的PDCCH上的控制信令,UE根据合并的控制信令确定MBS数据的发送时间和发送资源,UE接收、合并多个gNB发送的PDSCH上的MBS数据。
为了实现多小区MBS同步传输,可采用相比现有CP较长的CP(即ECP,扩展CP)发送MBS符号,如承载PDCCH和PDSCH的符号,采用ECP可有效地实现时域宏分集,将多个小区发送的MBS信号进行合并,因为多小区传播时延的差别通常比单小区时延扩展要大得多,较长的CP有助于确保接收信号落在UE接收机的CP内从而减少了符号间干扰ISI的可能性。这就避免了UE接收机上均衡器的复杂性,但由于较长的CP的额外开销也导致了峰值数据率的一些损失。另外,采用ECP也可能导致UE硬件实现的复杂性加大。
在5G NR MBS中采用上述同步传输的方法,用户设备UE根据基站指示接收、合并MBS控制信令和用户数据,大大提高了频谱效率和小区边缘UE接收MBS的信号质量。
在一实施例中,图5是本申请实施例提供的一种数据传输方法的流程图。本实施例可以由数据传输设备执行。其中,数据传输设备可以为第一通信节点。示例性地,第一通信节点可以为基站。如图5所示,本实施例包括:S510-S530。
S510、确定多小区多播广播服务MBS同步传输场景。
在一实施例中,多小区MBS传输同步场景,包括下述之一:同一个第一网元内的多小区同步传输;同一个第二网元内不同第一网元下的多小区同步传输;不同第二网元或不同第一通信节点下的多小区同步传输。在实施例中,同一个第一网元内的多小区同步传输,指的是同一个第一网元内包括多个小区,并且,多个小区划分为一个SFN区域,即多个小区同步传输MBS控制信令和MBS用户数据。其中,同步指的是时间上同步发送,也说明采用相同的传输资源发送相同内容,其中相同传输资源包括:时域、频域、BWP、子载波间隔、循环前缀、调制与编码策略等,相同的内容包括:MBS控制信令和MBS用户数据。
在一实施例中,同一个第二网元内不同第一网元下的多小区同步传输,指的是一个第一通信节点下的多个第一网元的同步传输。在实施例中,同一个第二网元属于同一个第一通信节点,即一个第一通信节点下的多个第一网元的同步传输。一个第二网元负责多个第一网元的同步传输,第二网元为多个第一网元下的小区配置相同的传输资源,并指示多个第一网元在相同的传输时间发送相同的内容,第二网元和多个第一网元之间通过F1接口信令进行通信。
在一实施例中,不同第二网元或不同第一通信节点下的多小区同步传输,可以理解为,不同的第二网元属于不同的第一通信节点,在保证多个第一通信节点之间的同步,才可以实现不同第二网元或不同第一通信节点下的多小区同步传输。
S520、根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令。
在实施例中,第一通信节点按照每个多小区MBS同步传输场景对应的MBS控制信令同步策略,确定多个小区的相同传输资源和传输时间,并在相同的传输时间,以及相同的传输资源上向第二通信节点同步传输MBS控制信令。
S530、根据MBS用户数据同步策略和所述MBS控制信令在空口向第二通信节点同步传输MBS用户数据。
在实施例中,第一通信节点按照每个多小区MBS同步传输场景对应的MBS用户数据同步 策略,确定多个小区的传输时间,并在相同的传输时间以及MBS控制信令向第二通信节点同步传输MBS用户数据。
在一实施例中,所述多小区MBS传输场景为同一个第一网元内的多小区同步传输,所述根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令,包括:通过所述第一网元和所述第一网元所属的第二网元为多个小区配置相同传输资源;在所述多个小区的相同传输资源上向第二通信节点同时发送相同的MBS控制信令。
在实施例中,在同一个第一网元内的多小区进行同步传输的场景下,第一网元所属的第二网元和第二网元为多个小区配置相同的传输资源,在多个小区的相同传输资源上同步发送相同的MBS控制信令。一个第一网元属于一个第一通信节点,一个通信节点连接到一个MB-UPF,MBS控制信令的同步由第一网元和连接到第一网元的第二网元负责。
在一实施例中,所述多小区MBS传输场景为同一个第二网元内不同第一网元下的多小区同步传输,所述根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令,包括:所述第二网元通过第一接口向所述第一网元发送同步指示信息;所述第一网元根据所述同步指示信息在相同传输时间和相同传输资源上向第二通信节点同步传输相同的MBS控制信令。
在实施例中,第一接口为第一网元和第二网元之间的接口。在同一个第二网元内不同第一网元下的多小区同步传输的场景下,同一个第一网元属于同一个第一通信节点,一个通信节点连接到一个MB-UPF,由第二网元通过第一接口指示多个第一网元之间的同步,多个第一网元根据第二网元的指示,在相同传输时间,相同传输资源上向第二通信节点同步传输相同的MBS控制信令。
在一实施例中,所述多小区MBS传输场景为不同第二网元或不同第一通信节点下的多小区同步传输,所述根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令,包括:通过操作管理维护OAM配置、通过第二接口协调、新增接入层网元中的至少之一配置用于同步传输MBS控制信令的相同传输资源。
在实施例中,第二接口为第一通信节点之间的接口。在不同第二网元或不同第一通信节点下的多小区同步传输的场景下,由于多个小区属于不同的第一通信节点或不同的第一网元,为了实现同步传输,在不同的第一通信节点或不同的第一网元之间配置不同的同步传输机制。
在实施例中,可以通过OAM配置,第一通信节点通过第二接口协调,或者新增接入层网元(即逻辑实体)负责无线接口同步。其中,OAM是指通过网管发送指令至多个第一通信节点,多个第一通信节点根据接收到的指令在空口同步传输MBS控制信令;第一通信节点之间存在第二接口,通过第二接口信令交互,实现多个第一通信节点同步发送MBS控制信令;新增接入层网元,该接入层网元可以连接到多个第一通信节点,第一通信节点根据接入层网元的指示在空口同步传输MBS控制信令。
在实施例中,MBS控制信令所在的传输资源由系统广播消息指示,MBS控制信令的内容可以由OAM、第二接口信令或新增的接入层网元进行指示。在实施例中,MBS控制信令可以采用周期性传输,即不同第一通信节点或不同第一网元的传输周期相同,同时针对相同起始周期计数,每过一个周期计数加一。其中,MBS控制信令的起始周期可以由OAM、第二接口 信令或新增的接入层网元进行指定,周期计数器的值也由对应的网元进行保存,比如,OAM服务器、第一通信节点或新增的逻辑网元。
在一实施例中,根据MBS用户数据同步策略和所述控制信令在空口向第二通信节点同步传输MBS用户数据,包括:根据核心网元发送的MBS同步数据包确定传输时间;按照所述传输时间和MBS控制信令向第二通信节点同步传输MBS用户数据。
在实施例中,核心网元向第一通信节点发送MBS同步数据包,以实现多个第一通信节点从核心网接收到相同的MBS用户数据。在一实施例中,可以将MBS同步数据包与MBS用户数据一起发送至多个第一通信节点,或者,由核心网元单独将MBS同步数据包发送至多个第一通信节点。在实施例中,第一通信节点根据MBS同步数据包确定MBS用户数据的传输时间,并按照传输同步和MBS控制信令向第二通信节点同步传输MBS用户数据。
在一实施例中,MBS同步数据包包括:数据包时间戳;数据包计数值;循环冗余校验CRC。在实施例中,数据包时间戳可以理解为相对时间值,即相对时间指的是多个第一通信节点相对于公共的起始时刻,MBS数据包的生成时间值。在预设的时间范围内产生的MBS数据包,可设置相同的相对时间值,预设的时间范围与MBS空口调度周期有关,如可设为一个或多个MBS空口调度周期;数据包计数值是指目前的数据包在一个同步周期内的计数值。在实施例中,多个第一通信节点根据接收到的MBS同步数据包的内容确定在空口上发送的MBS用户数据,以实现MBS用户数据在空口的同步发送。
在一实施例中,MBS同步数据包还至少包括以下之一:数据包长度;数据包有效载荷。数据包长度是指具体的数据包的字节长度。
在一实施例中,MBS控制信令包括:MBS资源配置信令。
在一实施例中,MBS控制信令还至少包括以下之一:MBS相关的系统消息块(System Information Block,SIB),MBS更新通知,MBS调度信令。
在一实施例中,控制信令的内容至少包括下述之一:MBS传输资源;MBS传输区域;MBS更新通知配置信息;MBS会话标识;MBS同步区域标识;MBS调度信息。在实施例中,MBS传输区域指的是MBS用户数据的传输区域,可以采用小区标识进行指示。
在一实施例中,MBS传输资源包括:MBS控制信令传输资源,MBS用户数据传输资源。
在一实施例中,MBS传输资源包括:时域,频域,BWP。
在一实施例中,MBS传输资源还至少包括下述之一:SCS,CP,MCS,波束。
在一实施例中,应用于第一通信节点的数据传输方法,还包括:配置ECP,CP用于承载物理下行控制信道PDCCH的符号传输,以及承载物理下行共享信道PDSCH的符号传输。在实施例中,第一通信节点可以根据至少下述条件之一确定ECP的大小:MBS传输区域,UE能力,MBS服务需求,OAM,运营商需求。在实施例中,ECP指的是超过现有CP长度的循环前缀。为了保证后向兼容,可以针对SCS=15KHz时采用ECP。
在一实施例中,应用于第一通信节点的数据传输方法,还包括:根据所述多小区MBS同步传输场景对应的数据同步策略在空口向第二通信节点同步传输包含所述ECP的MBS控制信令和包含所述ECP的MBS用户数据。在实施例中,包含ECP的MBS控制信令指的是采用了ECP的PDCCH,即包含PDCCH的符号采用ECP;包含ECP的MBS用户数据指的是PDSCH上传输的MBS用户数据,即包含PDSCH的符号采用ECP。
在一实施例中,图6是本申请实施例提供的另一种数据传输方法的流程图。本实施例可以由数据传输设备执行。其中,数据传输设备可以为第二通信节点。示例性地,第二通信节点可以为终端侧(比如,用户设备)。如图6所示,本实施例包括:S610-S630。
S610、接收MBS服务公告消息。
在实施例中,第二通信节点接收应用服务器发送的MBS公告消息,以得到MBS业务的标识,以及传输载频等信息。
S620、根据所述MBS服务公告消息接收第一通信节点发送的多小区MBS同步传输场景下的MBS控制信令。
在实施例中,处于同步区域中的第二通信节点接收小区系统广播消息,根据系统广播消息获取MBS控制信令的配置信息,根据配置信息接收MBS控制信令。在一实施例中,MBS控制信令包括MBS资源配置信令。其中,MBS资源配置信令可以包括:RRC信令、MAC CE信令和PDCCH信令。示例性地,通过RRC信令获取感兴趣的临时移动组标识(Temporary Mobile Group Identity,TMGI)对应的无线网络临时标识(Radio Network Tempory Identity,RNTI)值和时域信息,根据RNTI值和时域信息检测所需的控制信息。在一实施例中,MBS控制信令还包括MBS更新通知,即用于指示MCCH发生了更新的消息。在一实施例中,MBS控制信令的内容分为半静态部分和动态备部分,其中半静态部分采用RRC信令和MAC CE信令指示,并通过PDSCH承载,半静态部分的内容可包括:MBS会话标识,MBS传输区域,MBS调度周期等;动态部分采用PDCCH上的下行控制信息(DownLink Control Information,DCI)指示,并采用MBS会话标识对应的RNTI与PDCCH的CRC做模2和(异或)运算,动态部分内容包括:波束,MBS频域资源配置,功率控制,调制与编码策略,MBS更新通知等。
S630、根据所述MBS控制信令接收感兴趣的MBS用户数据。
在实施例中,第二通信节点根据MBS控制信令的指示,在相应的MBS传输资源上接收感兴趣的MBS用户数据。在实施例中,MBS用户数据可以采用PDSCH承载。
在一实施例中,多小区MBS传输同步场景,包括:同一个第一网元内的多小区同步传输。
在一实施例中,多小区MBS传输同步场景,包括:同一个第二网元内不同第一网元下的多小区同步传输。
在一实施例中,多小区MBS传输同步场景,包括:不同第二网元或不同第一通信节点下的多小区同步传输。
在一实施例中,应用于第二通信节点的数据传输方法,还包括:
接收第一通信节点发送的多小区MBS同步传输场景下的包含ECP的MBS控制信令和包含ECP的MBS用户数据。在实施例中,第二通信节点接收包含ECP的MBS控制信令,指的是接收包含ECP的PDCCH;第二通信节点接收包含ECP的MBS用户数据,指的是接收包含ECP的PDSCH。在实施例中,第二通信节点接收包含ECP的PDCCH信号和PDSCH信号,合并多小区接收到的PDCCH和PDSCH信号。
在一实施例中,图7是本申请实施例提供的一种数据同步传输的流程图。本实施例中,以第一网元为DU,第二网元为CU,第一通信节点为基站,第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对数据传输的同步过程进行说明。如图7所示,本实施例中的数据同步数据的实现过程包括S710-S740。
S710、基站确定多小区MBS同步传输场景。
在一实施例中,多小区MBS同步传输场景包括:同一个DU内的多小区同步传输;同一个DU内不同CU下的多小区同步传输;不同CU或不同gNB下的多小区同步传输。
在一实施例中,在同一个DU内的多小区同步传输的场景,同一个DU内包括多个小区,并且,多个小区划分为一个SFN区域,即多个小区同步传输MBS控制信令和MBS用户数据。其中,同步指的是时间上同步发送,也说明采用相同的传输资源发送相同内容,其中相同传输资源包括:时域、频域、BWP、子载波间隔、循环前缀、调制与编码策略等,相同的内容包括:MBS控制信令和MBS用户数据。
在一实施例中,同一个CU内不同DU下的多小区同步传输的场景,同一个CU属于同一个gNB,即一个gNB下的多个DU的同步传输。一个CU负责多个DU的同步传输,CU为多个DU下的小区配置相同的传输资源,并指示多个DU在相同的传输时间发送相同的内容,CU和多个DU之间通过F1接口信令进行通信。
在一实施例中,不同CU或不同gNB下的多小区同步传输,可以理解为,不同的CU属于不同的gNB,在保证多个gNB之间的同步,才可以实现不同CU或不同gNB下的多小区同步传输。
S720、基站根据多小区MBS同步传输场景确定对应的MBS控制信令同步策略和MBS用户数据同步策略。
在实施例中,针对同一个DU内的多小区同步传输的场景,即intra-DU的多小区同步,DU所属的CU和DU为多个小区配置相同的发送资源,在多个小区的相同发送资源上同时发送相同的MBS控制信令和MBS用户数据。一个DU属于一个gNB,一个gNB连接到一个MB-UPF,MBS控制信令和MBS用户数据的同步由DU和连接到DU的CU负责。
针对同一个DU内不同CU下的多小区同步传输的场景,即同一CU内部的不同DU下多小区同步,同一CU属于一个gNB,一个gNB连接到一个MB-UPF,由CU通过F1接口指示多个DU之间的同步,多个DU根据CU指示在相同的传输时间,相同的传输资源上,在Uu空口上发送相同的MBS控制信令和MBS用户数据。
针对不同CU或不同gNB下的多小区同步传输的场景,即由于多个小区属于不同的gNB或不同的DU,为了实现同步传输,在不同的gNB或不同的DU之间配置不同的同步传输机制。
在实施例中,可以通过OAM配置,第一通信节点通过第二接口协调,或者新增接入层网元(即逻辑实体)负责无线接口同步。其中,OAM是指通过网管发送指令至多个gNB,多个gNB根据接收到的指令在空口同步传输MBS控制信令;gNB之间存在第二接口Xn,通过第二接口信令交互,实现多个gNB同步发送MBS控制信令;新增接入层网元,该接入层网元可以连接到多个gNB,gNB根据接入层网元的指示在空口同步传输MBS控制信令。
在实施例中,MBS控制信令所在的传输资源由系统广播消息指示,MBS控制信令的内容可以由OAM、Xn接口信令或新增的接入层网元进行指示。在实施例中,MBS控制信令可以采用周期性传输,即不同gNB或不同DU的传输周期相同,同时针对相同起始周期计数,每过一个周期计数加一。其中,MBS控制信令的起始周期可以由OAM、Xn接口信令或新增的接入层网元进行指定,周期计数器的值也由对应的网元进行保存,比如,OAM服务器、gNB或新增的逻辑网元。
S730、基站按照MBS控制信令同步策略向UE同步传输MBS控制信令。
S740、基站按照MBS用户数据同步策略和MBS控制信令向UE同步传输MBS用户数据。
对于MBS用户数据的同步传输,MB-UPF向gNB发送MBS同步数据包,以实现多个gNB从核心网接收到相同的MBS用户数据。在一实施例中,可以将MBS同步数据包与MBS用户数据一起发送至多个gNB,或者,由核心网元单独将MBS同步数据包发送至多个gNB。在实施例中,gNB根据MBS同步数据包确定MBS用户数据的传输时间,并按照传输同步和MBS控制信令向UE同步传输MBS用户数据。
S750、UE接收MBS控制信令和MBS用户数据。
在实施例中,首先,UE接收应用服务器发送的MBS公告消息,以得到MBS业务的标识,以及传输载频等信息。
其次,处于同步区域中的UE接收小区系统广播消息,根据系统广播消息获取MBS控制信令的配置信息,根据配置信息接收MBS控制信令。在一实施例中,MBS控制信令包括MBS资源配置信令。其中,MBS资源配置信令可以包括:RRC信令、MAC CE信令和PDCCH信令。示例性地,通过RRC信令获取感兴趣的TMGI对应的RNTI值和时域信息,根据RNTI值和时域信息检测所需的控制信息。在一实施例中,MBS控制信令还包括MBS更新通知,即用于指示MCCH发生了更新的消息。在一实施例中,MBS控制信令的内容分为半静态部分和动态备部分,其中半静态部分采用RRC信令和MAC CE信令指示,并通过PDSCH承载,半静态部分的内容可包括:MBS会话标识,MBS传输区域,MBS调度周期等;动态部分采用PDCCH上的DCI指示,并采用MBS标识对应的RNTI与PDCCH的CRC做模2和(异或)运算,动态部分内容包括:波束,MBS频域资源配置,功率控制,调制与编码策略,MBS更新通知等。
在一实施例中,图8是本申请实施例提供的一种MBS多小区同步传输的流程图。本实施例以多小区MBS同步传输场景为intraDU,或者,inter-DU且intra-CU,以及第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对MBS同步传输的过程进行说明。如图8所示,本实施例中的同步传输流程包括:
S810、gNB配置MBS控制信令的内容和MBS传输资源。
在一实施例中,MBS控制信令是指空口信令,包括MBS相关的SIB,MBS更新通知,MBS调度信令,MBS资源配置信令等;所述MBS控制信令的内容包括:MBS传输资源;MBS传输区域;MBS更新通知配置信息;MBS会话标识;MBS同步区域标识;MBS调度信息等;MBS传输资源是指上述MBS相关的SIB,MBS更新通知,MBS调度信令,MBS资源配置信令的传输资源,如时域,频域,BWP,SCS,CP,MCS,波束等资源配置。
如果是intra-DU同步传输场景,由DU配置下层信令,如MAC、RLC、PHY层信令,由DU所属的CU配置上层信令,如RRC、PDCP、SDAP信令;如果是inter-DU场景,由DU所属的CU配置多小区中相同的MBS控制信令和MBS传输资源,DU配置各个DU自身的MBS控制信令和MBS传输资源,如DU中的系统广播消息,CU负责各个DU之间的同步。
S820、gNB发送MBS控制信令。
在实施例中,gNB在配置的MBS传输资源上发送MBS控制信令,MBS控制信令的发送按照次序进行:首先发送系统广播消息,然后依次发送MBS更新通知,MBS更新通知配置信息,MBS调度信息。上述消息中的半静态内容部分周期性重复发送。PDCCH在公共搜索空间,采 用相同的传输模式,并且采用MBS会话标识(如TMGI)对应的RNTI对PDCCH的CRC部分进行异或操作。
S830、gNB发送MBS用户数据。
在实施例中,MBS用户数据从AF发送到MB-UPF,由MB-UPF发送到gNB,gNB接收MBS用户数据并存储在本地缓存中,gNB根据MBS控制信令(如MBS调度信息)的指示在约定的MBS传输资源上发送MBS用户数据。gNB根据收到的MBS同步数据包头中的信息确定是否缓存或丢弃从MB-UPF收到的MBS用户数据,MBS同步数据包头中包含:数据包时间戳,数据包计数值,数据包长度等。
在一实施例中,图9是本申请实施例提供的一种MBS多小区同步传输MBS控制信令的流程图。本实施例以多小区MBS同步传输场景为inter-gNB/inter-CU,以及第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对MBS同步传输MBS控制信令的过程进行说明。如图9所示,本实施例中的同步传输流程包括:
S910、发送MBS公告消息。
在实施例中,AF向UE发送MBS公告消息,MBS公告消息包含:MBS会话标识(如TMGI),MBS区域标识。在一实施例中,MBS公告消息中还包括:MBS载频,开始时间等信息。AF通过应用层信令发送MBS公告消息,如SIP信令、短信、5G消息、HTTP页面、APP推送等;UE也可以预配置MBS服务信息,如用户服务描述(User Service Description,USD),USD中的内容与上述MBS公告消息内容一致,如果UE预配置了USD,则不需要获取MBS公告消息。
UE根据MBS公告消息可以获取所感兴趣的MBS的会话标识:TMGI或MBS多播地址。在一实施例中,还可以获取MBS部署的载频,MBS会话开始时间等。
S920、发送与MBS控制信令相关的系统广播消息。
在实施例中,发送MBS相关的系统广播消息,如包含MBS更新通知,MBS更新通知配置信息等内容的系统广播消息。所述系统广播消息周期性发送,或者根据UE请求发送。
S930、发送半静态控制信令。
在实施例中,所述半静态控制信令是指通过RRC、MAC CE传输的信令,如周期,时间偏移,MBS会话标识,MBS区域标识等内容。在一实施例中,半静态控制信令还包括:载频,BWP,SCS,CP等内容。
S940、发送动态控制信令。
在实施例中,动态控制信令是指通过PDCCH传输的信令,如频域资源,波束标识,功率控制,MCS等内容。在一实施例中,动态控制信令还包括MBS更新通知。
在一实施例中,图10是本申请实施例提供的一种MBS多小区同步传输MBS用户数据的流程图。本实施例以多小区MBS同步传输场景为inter-gNB/inter-CU,以及第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对MBS同步传输MBS用户数据的过程进行说明。如图10所示,本实施例中的同步传输流程包括:
S1010、AF向MB-UPF发送MBS用户数据。
在实施例中,AF可通过单播或多播方式向MB-UPF发送MBS用户数据,具体采用何种方式由应用和接口能力决定。如果传输网支持多播传输,则AF通过多播GTP-U隧道向MB-UPF发送MBS用户数据,否则,AF通过单播GTP-U隧道向MB-UPF发送MBS用户数据。
S1020、MB-SMF配置MB-UPF转发MBS用户数据。
在实施例中,MB-UPF可通过单播或多播向gNB发送MBS用户数据,如果是单播传输,MB-SMF配置MB-UPF将从AF收到的MBS用户数据通过多个单独的GTP-U隧道复制到多个gNBs,如果是多播传输,MB-SMF配置MB-UPF将从AF收到的MBS用户数据通过一个公用的GTP-U隧道传输到多个gNBs。
S1030、MB-UPF发送MBS用户数据到UPF/gNB。
在实施例中,MB-UPF采用单播发送MBS用户数据时,针对每个UPF/gNB,分别建立一个GTP-U隧道,采用gNB的IP地址指示gNB,即针对多个gNB,建立多个GTP-U隧道;所述MB-UPF采用多播发送MBS用户数据时,针对多个UPF/gNB,建立一个公用的GTP-U隧道,采用多播IP地址指示多个gNB。为了实现同步传输,MB-UPF和gNB之间可采用MBS同步数据包传输。
S1040、gNB在空口发送MBS用户数据。
在实施例中,多个gNB根据控制信令的指示在空口发送MBS用户数据,为了保证同步,多个gNB同时在相同的MBS传输资源上发送相同的MBS用户数据。
在一实施例中,图11是本申请实施例提供的一种接收多小区的MBS控制信令和MBS用户数据的流程图。本实施例以第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对UE同步接收MBS控制信令和MBS用户数据的过程进行说明。如图11所示,本实施例中的同步接收流程包括:
S1110、UE接收MBS公告消息。
在实施例中,UE通过应用层信令接收MBS公告消息,应用层信令包括以下之一:短信、彩信、HTTP页面、APP推送、5G消息等。MBS公告消息可预配置在UE中,如通过USD(文件方式,已预配置USD的UE不需要接收MBS公告消息。
S1120、UE接收MBS相关的系统广播消息。
在实施例中,UE接收MBS相关的系统广播消息,系统广播消息用于接收MBS控制信令。系统广播消息周期性发送,或者根据UE请求按需发送。
S1130、UE接收MBS控制信令。
在实施例中,UE根据系统广播消息的指示,接收MBS控制信令,所述MBS控制信令用于接收MBS用户数据,例如UE根据MBS控制信令中的MBS会话标识确定是否为所感兴趣的MBS服务,如果是,则获取感兴趣MBS会话的资源配置信息。
S1140、UE接收所需的MBS用户数据。
在实施例中,UE根据MBS控制信令的指示获取所需MBS用户数据的资源位置,并在相应的MBS传输资源上接收所需的MBS用户数据,所述MBS用户数据通过多个小区得到,当多个小区的MBS用户数据的多径时延在符号的CP长度范围内时,则可认为接收的多小区信号都是有用信号,通过时域合并得到最终的所需信号。
在一实施例中,图12是本申请实施例提供的一种MBS同步数据包的传输流程图。本实施例以第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE, 第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对MBS同步数据包的传输过程进行说明。如图12所示,本实施例中的传输流程包括:
S1210、MB-UPF向gNB发送MBS同步数据包。
在实施例中,至少存在两种MBS同步数据包格式:包含MBS用户数据,不包含MBS用户数据;MBS同步数据包中至少包含:数据包时间戳,数据包计数值。在一实施例中,MBS同步数据包,还包括:数据包长度,MBS用户数据,CRC,数据包有效载荷。其中,数据包时间戳为相对时间值,例如相对于一个公共起始参考时间,且在一个同步序列长度范围内的数据包都设为相同的时间戳,例如:同步序列长度为100毫秒,则在100毫秒内到达的数据包的时间戳都设为相同的数值。所述同步序列长度由OAM设置,一般与MBS调度周期成比例关系,如MBS调度周期为一个或几个同步序列的长度,一个同步序列属于一个MBS会话。
S1220、gNB确定MBS同步数据包在空口的发送次序。
在实施例中,gNB根据MBS同步数据包的指示确定空口的发送次序,如果检测到数据损坏或丢失:
1)如果MBS同步数据包中包含MBS用户数据,且包含数据包长度,则gNB停止在空口发送相应损坏或丢失的数据包;
2)如果MBS同步数据包中包含MBS用户数据,但不包含数据包长度,则gNB停止在空口发送数据包,直到下一个MBS调度周期开始;
3)如果MBS同步数据包中不包含MBS用户数据,则gNB丢弃相关的数据帧,或者通知上层发生错误的帧编号。
S1230、gNB在空口发送MBS用户数据。
在实施例中,gNB判断收到的MBS同步数据包和本地数据包计数的一致性,如果一致,则gNB根据MBS同步数据包中的数据包时间戳的值,在MBS调度周期中发送MBS用户数据。
在一实施例中,图13是本申请实施例提供的一种包含ECP的MBS控制信令和MBS用户数据的传输流程图。本实施例以第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为CU和DU之间的F1接口,第二接口为gNB之间的Xn接口,核心网元为MB-UPF为例,对包含ECP的MBS控制信令和MBS用户数据的传输过程进行说明。如图13所示,本实施例中的传输流程包括:
S1310、gNB配置扩展CP。
在实施例中,gNB根据以下条件一种或多种确定扩展CP的大小:MBS传输地理区域,UE能力,MBS服务需求,OAM,运营商需求等;扩展CP是指超过现有CP长度,为了保证后向兼容,可针对SCS=15KHz时采用ECP。
S1320、gNB发送包含ECP的MBS控制信令。
在实施例中,包含ECP的MBS控制信令是指采用了ECP的PDCCH,即包含PDCCH的符号采用ECP。
S1330、gNB发送包含ECP的MBS用户数据。
在实施例中,包含ECP的MBS用户数据是指PDSCH上传输的MBS用户数据,即包含PDSCH的符号采用ECP。
S1340、UE接收所需的MBS用户数据。
在实施例中,UE接收包含ECP的PDCCH和PDSCH,合并多小区收到的PDCCH和PDSCH信 号。
在一实施例中,图14是本申请实施例提供的一种OAM配置不同CU下多小区的同步传输流程图。本实施例以第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对不同CU下多小区的同步传输过程进行说明。如图14所示,本实施例中的同步传输流程包括:
S1410、OAM配置参与MBS同步传输的gNBs。
在实施例中,网管OAM配置多个gNBs传输的MBS控制信令:空口资源,传输时间,以保证多个gNB能够实现空口信令的同步传输。
S1420、OAM配置MBS控制信令。
在实施例中,OAM配置MBS控制信令的内容:MBS相关的SIB,MBS更新通知,MBS调度信令;MBS传输资源;MBS传输区域;MBS更新通知配置信息;MBS会话标识;MBS同步区域标识;MBS调度信息等。
S1430、gNB发送MBS控制信令。
在实施例中,MBS控制信令通过系统广播消息,MCCH,PDCCH,PDSCH,MBS调度消息,MBS更新通知配置信息等传输。所述控制信息可周期性发送:如系统广播消息,MBS更新通知,MBS调度消息,MBS更新通知配置信息等,或动态发送:如PDCCH。
在一实施例中,图15是本申请实施例提供的一种不同CU或gNBs下多小区的同步传输流程图。本实施例以第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对不同CU或gNBs下多小区的同步传输过程进行说明。如图15所示,本实施例中的同步传输流程包括:
S1510、是否为inter-CU/gNB多小区传输场景,如果是,则执行S1520;若否,则执行S1550。
在实施例中,S1510可以由gNB实现,还可以由以下网元之一实现:MB-SMF,MB-UPF,AF等。
S1520、是否有Xn接口,若是,则执行S1530;若否,则执行S1540。
在实施例中,如果是inter-CU/gNB场景,首先判断gNB之间是否存在Xn接口。gNB可通过与相关gNB之间的信令交互,或者通过上层核心网网元,如MB-SMF,MB-UPF的指示确定是否存在Xn接口。需要指出的是,这里存在Xn接口是指所有参与多小区传输的任意两个gNB之间都存在Xn接口:例如,假设有B1,B2,B3三个gNB参与MBS传输,所述存在Xn接口是指:B1,B2,B3中任意两个gNB之间都存在Xn接口。
S1530、通过Xn接口协调多小区同步。
如果任意两个gNB存在Xn接口,则通过Xn接口协调同步传输:如通过Xn接口信令实现控制信令的同步传输。注意,为了保证同步传输,也可以通过上层核心网网元的协调实现同步传输。
S1540、通过其他网元协调多小区同步。
部分gNB之间没有Xn接口,则通过共同的上层核心网网元实现同步传输,核心网元包括以下之一:广播组播-会话管理功能(Multicast/Broadcast-Session Management function,MB-SMF),广播组播-(Multicast/Broadcast-User Plane Function,MB-UPF), 接入和移动性管理功能(Access and Mobility Management Function,AMF),应用服务器(Application Function/Application Server,AF/AS)等,如由B1,B2,B3三个gNB参与MBS传输,B1和B2/B3之间有Xn接口,B2和B3之间没有Xn接口,B1,B2,B3都连接到MB-SMF1,则由MB-SMF1实现MBS的同步传输。
S1550、gNB/CU配置多小区同步。
在实施例中,在属于intra-CU/gNB场景的情况下,则由gNB/CU负责其下多小区的同步传输,所述gNB配置相应的控制信令。
在一实施例中,图16是本申请实施例提供的一种新接入网网元配置多小区同步传输的流程图。本实施例以第一网元为DU,第二网元为CU,第一通信节点为基站(gNB),第二通信节点为UE,第一接口为F1接口,第二接口为Xn接口,核心网元为MB-UPF为例,对新接入网网元配置多小区同步传输过程进行说明。如图16所示,本实施例中的同步传输流程包括:
S1610、新网元收到多小区MBS指示信息。
在实施例中,新网元(Network Element,NE)是指接入层的逻辑网元,例如可与gNB共位置部署。新网元NE连接到多个gNB,所述NE与gNB之间的逻辑连接可根据需要由OAM或者RRC信令建立。所述新网元NE从核心网收到多小区MBS传输的指示信息。
S1620、新网元配置MBS控制信令和MBS传输资源。
所述新网元通过与gNB之间的逻辑链接配置MBS控制信令和MBS传输资源。
S1630、新网元向gNB发送指示信息。
所述新网元通过逻辑接口向gNB发送指示信息,如指示gNB关于MBS的空口资源配置,空口发送时间,空口信令内容等。
S1640、gNB在空口发送MBS控制信令和MBS用户数据。
所述gNB根据新网元的指示在空口同步发送MBS控制信令和MBS用户数据。
在一实施例中,图17是本申请实施例提供的一种数据传输装置的结构框图。本实施例应用于数据传输设备。如图17所示,本实施例中的数据传输装置包括:确定模块1710、第一传输模块1720和第二传输模块1730。
其中,确定模块1710,配置为确定多小区多播广播服务MBS同步传输场景;
第一传输模块1720,配置为根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令;
第二传输模块1730,配置为根据MBS用户数据同步策略和所述控制信令在空口向第二通信节点同步传输MBS用户数据。
在一实施例中,多小区MBS传输同步场景,包括:同一个第一网元内的多小区同步传输。
在一实施例中,多小区MBS传输同步场景,包括:同一个第二网元内不同第一网元下的多小区同步传输。
在一实施例中,多小区MBS传输同步场景,包括:不同第二网元或不同第一通信节点下的多小区同步传输。
在一实施例中,所述多小区MBS传输场景为同一个第一网元内的多小区同步传输,第一传输模块,包括:
配置单元,配置为通过所述第一网元和所述第一网元所属的第二网元为多个小区配置相同传输资源;
第一发送单元,配置为在所述多个小区的相同传输资源上向第二通信节点同时发送相同的MBS控制信令。
在一实施例中,所述多小区MBS传输场景为同一个第二网元内不同第一网元下的多小区同步传输,第一传输模块,包括:
第二发送单元,配置为所述第二网元通过第一接口向所述第一网元发送同步指示信息;
第一传输单元,配置为所述第一网元根据所述同步指示信息在相同传输时间和相同传输资源上向第二通信节点同步传输相同的MBS控制信令。
在一实施例中,所述多小区MBS传输场景为不同第二网元或不同第一通信节点下的多小区同步传输,第一传输模块,包括:
通过操作管理维护OAM配置、通过第二接口协调、新增接入层网元中的至少之一配置用于同步传输MBS控制信令的相同传输资源。
在一实施例中,第二传输模块,包括:
确定单元,配置为根据核心网元发送的MBS同步数据包确定传输时间;
第二传输单元,配置为按照所述传输时间和MBS控制信令向第二通信节点同步传输MBS用户数据。
在一实施例中,MBS同步数据包包括:数据包时间戳;数据包计数值;循环冗余校验CRC。
在一实施例中,MBS同步数据包还至少包括以下之一:数据包长度;数据包有效载荷。
在一实施例中,MBS控制信令包括:MBS资源配置信令。
在一实施例中,MBS控制信令还至少包括以下之一:MBS相关的系统消息块SIB,MBS更新通知,MBS调度信令。
在一实施例中,MBS控制信令的内容至少包括下述之一:MBS传输资源;MBS传输区域;MBS更新通知配置信息;MBS会话标识;MBS同步区域标识;MBS调度信息。
在一实施例中,MBS传输资源包括:MBS控制信令传输资源,MBS用户数据传输资源。
在一实施例中,MBS传输资源包括:时域,频域,带宽分段BWP。
在一实施例中,MBS传输资源还至少包括下述之一:子载波间隔SCS,循环前缀CP,调制与编码策略MCS,波束。
在一实施例中,应用于第一通信节点的数据传输装置,还包括:配置模块,配置为配置扩展循环前缀ECP,ECP用于承载PDCCH的符号传输,以及承载PDSCH的符号传输。
在一实施例中,应用于第一通信节点的数据传输装置,还包括:第三传输模块,配置为根据所述多小区MBS同步传输场景对应的数据同步策略在空口向第二通信节点同步传输包含所述ECP的MBS控制信令和包含所述ECP的MBS用户数据。
本实施例提供的数据传输装置设置为实现图5所示实施例的应用于第一通信节点的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,在一实施例中,图18是本申请实施例提供的另一种数据传输装置的结构框图。本实施例应用于数据传输设备,其中,数据传输设备可以为第二通信节点。如图18所示,本实施例中的数据传输装置包括:第一接收模块1810、第二接收模块1820和第三接 收模块1830。
第一接收模块,配置为接收MBS服务公告消息。
第二接收模块,配置为根据所述MBS服务公告消息接收第一通信节点发送的多小区MBS同步传输场景下的MBS控制信令。
第三接收模块,配置为根据所述MBS控制信令接收感兴趣的MBS用户数据。
在一实施例中,多小区MBS传输同步场景,包括:同一个第一网元内的多小区同步传输。
在一实施例中,多小区MBS传输同步场景,包括:同一个第二网元内不同第一网元下的多小区同步传输。
在一实施例中,多小区MBS传输同步场景,包括:不同第二网元或不同第一通信节点下的多小区同步传输。
在一实施例中,应用于第二通信节点的数据传输装置,还包括:
第四接收模块,配置为接收第一通信节点发送的多小区MBS同步传输场景下的包含ECP的MBS控制信令和包含ECP的MBS用户数据。
本实施例提供的数据传输装置设置为实现图6所示实施例的应用于第二通信节点的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
图19是本申请实施例提供的一种通信设备的结构示意图。如图19所示,本申请提供的设备,包括:处理器1910、存储器1920和通信模块1930。该设备中处理器1910的数量可以是一个或者多个,图19中以一个处理器1910为例。该设备中存储器1920的数量可以是一个或者多个,图19中以一个存储器1920为例。该设备的处理器1910、存储器1920和通信模块1930可以通过总线或者其他方式连接,图19中以通过总线连接为例。在该实施例中,该设备为可以为第一通信节点(比如,基站)。
存储器1920作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,应用于第一通信节点的数据传输装置中的确定模块、第一传输模块和第二传输模块)。存储器1920可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1920可进一步包括相对于处理器1910远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块1930,配置为在第一通信节点、第二通信节点、第一网元、第二网元、核心网元和接入层网元之间进行通信交互。
在通信设备为第一通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的数据传输方法,具备相应的功能和效果。
在通信设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的数据传输方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的数据传输方法,该方法包括:确定多 小区多播广播服务MBS同步传输场景;根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令;根据MBS用户数据同步策略和所述控制信令在空口向第二通信节点同步传输MBS用户数据。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的数据传输方法,该方法包括:接收MBS服务公告消息;根据所述MBS服务公告消息接收第一通信节点发送的多小区MBS同步传输场景下的MBS控制信令;根据所述MBS控制信令接收感兴趣的MBS用户数据。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
以上所述仅为本申请的若干实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的本质和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种数据传输方法,应用于第一通信节点,包括:
    确定多小区多播广播服务MBS同步传输场景;
    根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令;
    根据MBS用户数据同步策略和所述MBS控制信令在空口向第二通信节点同步传输MBS用户数据。
  2. 根据权利要求1所述的方法,其中,所述多小区MBS传输同步场景,包括:同一个第一网元内的多小区同步传输。
  3. 根据权利要求1所述的方法,其中,所述多小区MBS传输同步场景,包括:同一个第二网元内不同第一网元下的多小区同步传输。
  4. 根据权利要求1所述的方法,其中,所述多小区MBS传输同步场景,包括:不同第二网元或不同第一通信节点下的多小区同步传输。
  5. 根据权利要求1所述的方法,其中,所述多小区MBS传输场景为同一个第一网元内的多小区同步传输,所述根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令,包括:
    通过所述第一网元和所述第一网元所属的第二网元为多个小区配置相同传输资源;
    在所述多个小区的相同传输资源上向第二通信节点同时发送相同的MBS控制信令。
  6. 根据权利要求1所述的方法,其中,所述多小区MBS传输场景为同一个第二网元内不同第一网元下的多小区同步传输,所述根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令,包括:
    所述第二网元通过第一接口向所述第一网元发送同步指示信息;
    所述第一网元根据所述同步指示信息在相同传输时间和相同传输资源上向第二通信节点同步传输相同的MBS控制信令。
  7. 根据权利要求1所述的方法,其中,所述多小区MBS传输场景为不同第二网元或不同第一通信节点下的多小区同步传输,所述根据所述多小区MBS同步传输场景对应的MBS控制信令同步策略在空口向第二通信节点同步传输MBS控制信令,包括:
    通过操作管理维护OAM配置、通过第二接口协调、新增接入层网元中的至少之一配置用于同步传输MBS控制信令的相同传输资源。
  8. 根据权利要求1所述的方法,其中,所述根据MBS用户数据同步策略和所述控制信令在空口向第二通信节点同步传输MBS用户数据,包括:
    根据核心网元发送的MBS同步数据包确定传输时间;
    按照所述传输时间和MBS控制信令向第二通信节点同步传输MBS用户数据。
  9. 根据权利要求8所述的方法,其中,所述MBS同步数据包包括:数据包时间戳;数据包计数值;循环冗余校验CRC。
  10. 根据权利要求9所述的方法,其中,所述MBS同步数据包还至少包括以下之一:数据包长度;数据包有效载荷。
  11. 根据权利要求1所述的方法,其中,所述MBS控制信令包括:MBS资源配置信令。
  12. 根据权利要求11所述的方法,其中,所述MBS控制信令还至少包括以下之一:MBS相关的系统消息块SIB,MBS更新通知,MBS调度信令。
  13. 根据权利要求1所述的方法,其中,所述MBS控制信令的内容至少包括下述之一:MBS传输资源;MBS传输区域;MBS更新通知配置信息;MBS会话标识;MBS同步区域标识;MBS调度信息。
  14. 根据权利要求13所述的方法,其中,所述MBS传输资源包括:MBS控制信令传输资源,MBS用户数据传输资源。
  15. 根据权利要求13所述的方法,其中,所述MBS传输资源包括:时域,频域,带宽分段BWP。
  16. 根据权利要求15所述的方法,其中,所述MBS传输资源还至少包括下述之一:子载波间隔SCS,循环前缀CP,调制与编码策略MCS,波束。
  17. 根据权利要求1-16任一所述的方法,还包括:
    配置扩展循环前缀ECP,所述ECP用于承载物理下行控制信道PDCCH的符号传输,以及承载物理下行共享信道PDSCH的符号传输。
  18. 根据权利要求17所述的方法,还包括:根据所述多小区MBS同步传输场景对应的数据同步策略在空口向第二通信节点同步传输包含所述ECP的MBS控制信令和包含所述ECP的MBS用户数据。
  19. 一种数据传输方法,应用于第二通信节点,包括:
    接收MBS服务公告消息;
    根据所述MBS服务公告消息接收第一通信节点发送的多小区MBS同步传输场景下的MBS控制信令;
    根据所述MBS控制信令接收感兴趣的MBS用户数据。
  20. 根据权利要求19所述的方法,还包括:
    接收第一通信节点发送的多小区MBS同步传输场景下的包含ECP的MBS控制信令和包含ECP的MBS用户数据。
  21. 一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
    所述通信模块,配置为在第一通信节点、第二通信节点、第一网元、第二网元、核心网元和接入层网元之间进行通信交互;
    所述存储器,配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述权利要求1-18或19-20中任一项所述的方法。
  22. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-18或19-20中任一项所述的方法。
PCT/CN2022/097415 2021-09-10 2022-06-07 数据传输方法、设备和存储介质 WO2023035702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111063839.6 2021-09-10
CN202111063839.6A CN115802293A (zh) 2021-09-10 2021-09-10 数据传输方法、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023035702A1 true WO2023035702A1 (zh) 2023-03-16

Family

ID=85417309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097415 WO2023035702A1 (zh) 2021-09-10 2022-06-07 数据传输方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN115802293A (zh)
WO (1) WO2023035702A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070905A1 (en) * 2006-10-03 2011-03-24 Muhammad Kazmi Method for transmission of mbms control information in a radio access network
CN112469142A (zh) * 2019-09-09 2021-03-09 北京三星通信技术研究有限公司 信道建立的方法、基站及多小区多播协调实体mce
WO2021109429A1 (en) * 2020-04-24 2021-06-10 Zte Corporation Access network signaling and resource allocation for multicast/broadcast sessions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070905A1 (en) * 2006-10-03 2011-03-24 Muhammad Kazmi Method for transmission of mbms control information in a radio access network
CN112469142A (zh) * 2019-09-09 2021-03-09 北京三星通信技术研究有限公司 信道建立的方法、基站及多小区多播协调实体mce
WO2021109429A1 (en) * 2020-04-24 2021-06-10 Zte Corporation Access network signaling and resource allocation for multicast/broadcast sessions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TD TECH, CHENGDU TD TECH: "Discussion on two delivery modes for NR MBS", 3GPP DRAFT; R2-2103507, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210412 - 20210420, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992113 *
ZTE: "Discussion on the split gNB architecture enhancement for MBS", 3GPP DRAFT; R3-204649, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20200817 - 20200828, 6 August 2020 (2020-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911222 *

Also Published As

Publication number Publication date
CN115802293A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US10952096B2 (en) Base station and user terminal
RU2586600C2 (ru) Способ и устройство для транспорта фрагментов описания сегментов инициализации динамической адаптивной потоковой передачи по нттр (dash) в качестве фрагментов описания пользовательских услуг
US9451588B2 (en) Scheduling method and scheduling device for MBMS, and base station including this scheduling device
US8929399B2 (en) Selectively multiplexing communication streams
US20080101270A1 (en) Enhanced multicast broadcast multimedia service
JP6321830B2 (ja) 基地局、ユーザ端末及び装置
US8599754B2 (en) Method, device, and system for configuring multicast broadcast single frequency network resources
WO2011147237A1 (zh) 多媒体广播组播业务控制信息的发送方法及装置
CN105635985B (zh) 确定挂起业务的方法及装置、指示信息处理方法及装置
CN101981874A (zh) 在网关和基站之间进行同步的方法及相应的网关和基站
CN105101097B (zh) 更新多媒体广播多播控制信道信息的方法及设备
EP4142394A1 (en) Broadcast/multicast service management method and apparatus, and electronic device and storage medium
WO2017070838A1 (zh) 资源调度方法、基站、调度器、节目源服务器和系统
JP5957143B2 (ja) 放送サービスのリソース割当方法、リソース管理センター及びmme
Huschke et al. An overview of the cellular broadcasting technology eMBMS in LTE
CN105743663A (zh) 一种数据传输装置和方法
WO2023035702A1 (zh) 数据传输方法、设备和存储介质
CN101662356B (zh) Embms系统中控制信令的同步方法与装置
Liu et al. Design of a next generation 5G broadcasting core network in China
CN101651488A (zh) 一种多媒体广播组播业务网元间的协同方法
van der Velde et al. Broadcast operation
US11368818B2 (en) Methods and systems for using multi-connectivity for multicast transmissions in a communication system
CN114363830B (zh) 多播数据的处理方法、核心网网关、业务服务器及终端
WO2009009946A1 (fr) Procédé pour réaliser un service de diffusion/multidiffusion multimédia amélioré dans une cellule multiporteuse
CALABUIG GASPAR Broadcasting in 4G mobile broadband networks and its evolution towards 5G

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866178

Country of ref document: EP

Effective date: 20240410