WO2023035444A1 - 一种不锈钢丝及其制备方法和不锈钢弹簧 - Google Patents
一种不锈钢丝及其制备方法和不锈钢弹簧 Download PDFInfo
- Publication number
- WO2023035444A1 WO2023035444A1 PCT/CN2021/136501 CN2021136501W WO2023035444A1 WO 2023035444 A1 WO2023035444 A1 WO 2023035444A1 CN 2021136501 W CN2021136501 W CN 2021136501W WO 2023035444 A1 WO2023035444 A1 WO 2023035444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- steel wire
- optionally
- pass
- deformation
- Prior art date
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 193
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000010935 stainless steel Substances 0.000 title abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 45
- 239000000243 solution Substances 0.000 claims description 44
- 238000005491 wire drawing Methods 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000006104 solid solution Substances 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 28
- 230000001050 lubricating effect Effects 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 9
- 238000005868 electrolysis reaction Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 239000011575 calcium Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000010405 anode material Substances 0.000 claims description 2
- 239000010406 cathode material Substances 0.000 claims description 2
- 239000012487 rinsing solution Substances 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 31
- 238000005260 corrosion Methods 0.000 description 18
- 230000007797 corrosion Effects 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005554 pickling Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 229910000639 Spring steel Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/02—Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
- C25F1/02—Pickling; Descaling
- C25F1/04—Pickling; Descaling in solution
- C25F1/06—Iron or steel
Definitions
- the application belongs to the technical field of high-temperature wire processing, and relates to a stainless steel wire, a preparation method thereof, and a stainless steel spring.
- Piano wire is a high-strength spring material that is cold-drawn after quenching in a lead bath. It has a very high strength limit and elastic limit, and is a widely used small spring material. Piano wire has strict quality and performance requirements. According to its application, it can be divided into dynamic springs, high-stress mechanical springs and valve springs. The production process of piano steel wire is generally divided into three parts: rough drawing, annealing (solution treatment), and fine drawing. After each drawing, it is drawn again after solution treatment, and finally drawn to the required specifications. At the same time, according to the performance of the finished product Adjust the amount of deformation in the final pull.
- the heat treatment before drawing the finished product generally adopts sorbite treatment of electric contact heating to ensure uniform performance of the steel wire rod, increase heating speed, shorten heating time, and reduce heat generated by heating.
- the iron oxide scale and decarburization layer are pickled with hydrochloric acid after heat treatment to speed up the pickling speed and make the surface of the steel wire have a good surface quality.
- the uncoated steel wire can be treated with phosphating coating, and the coated steel wire can be treated with yellowing or borax.
- carbon steel has a cumbersome process for making piano wire, and in order to ensure corrosion resistance, the surface will generally be surface treated, such as galvanized, nickel-plated, etc.
- Using stainless steel to process steel wire has high strength and good plasticity. Advantages of corrosion resistance without plating.
- CN112391577A discloses a pseudo-austenitic stainless spring steel wire and its performance control method. : ⁇ 0.030, Ni: 7.00 ⁇ 11.00, Cr: 16.0 ⁇ 19.0, Ti: 0.1 ⁇ 0.3, and the rest is Fe, in which the molar ratio of Ti, N, C chemical composition satisfies nTi/nN+C is less than 1, by adjusting the Ti content It can not only fix carbon and refine grain, but also improve the anti-intergranular corrosion ability of stainless steel wire.
- This application adjusts the comprehensive composition and the large deformation amount (>30%) to control the martensite start transformation temperature, so that a very small amount of martensite can be dispersed and distributed on the austenite matrix near room temperature.
- the method obtains a corrosion-resistant spring steel wire material by changing the raw material composition, but the tolerance to the product steel wire has little change.
- CN112593170A discloses a heat treatment method after cold deformation of GH4169 high-temperature alloy wire, which belongs to the technical field of high-temperature alloy wire preparation, provides a method for realizing the optimal control of cold-drawing deformation and heat treatment process, and is aimed at the GH4169 high-temperature alloy wire
- the intermediate heat treatment method after cold deformation specifically, the obtained cold-drawn wire is subjected to solution heat treatment, and is kept at 1000°C-1020°C for 5-20 minutes; then the temperature is lowered to 960°C at a cooling rate of 20°C/min. Insulation for 60 minutes: finally filled with argon for air cooling; and during the solution heat treatment process, the vacuum degree is ⁇ 10Pa.
- the method realizes the wire material in the cold-drawn state, and obtains the ideal recrystallized grain and precipitated phase structure according to the optimal control of the cold-drawn deformation amount and the corresponding heat treatment temperature.
- the product produced by this method has higher precision and tolerance. High, but the process conditions of this method are strict and the production cost is high, so it is only suitable for high-value materials with small dosage.
- CN112658048A discloses a cold working method of CH4169 superalloy wire material for spring wire with high dimensional accuracy, good surface quality, superior performance and uniform structure, comprising the following steps: a, placing GH4169 hot-rolled bar material in a resistance furnace for solidification Dissolution treatment; b. Pickling to remove the surface oxide layer, then take out and rinse with water and dry: c. Perform swaging and drawing; d. Place the material in a resistance furnace for annealing heat treatment: e.
- step f repeat step c to step e for a total of 1 to 3 times with the material treated in step e, and then carry out swaging and drawing as the final deformation; g, repeat step d and step e, Then carry out tension straightening, and finally get GH4169 superalloy spring wire.
- the steps of the invention are relatively complicated, the process conditions are strict, and the efficiency of the pickling step is low and the pollution is relatively large.
- the application proposes a stainless steel wire and its preparation method And stainless steel springs, by controlling the content of raw material elements, solid solution temperature and improving the deformation of the pass, the stable production of low-stress matte stainless steel wire with a diameter of 0.5mm and a strength reaching SWPA level and springs made of this stainless steel wire.
- the present application provides a stainless steel wire. Based on the total mass of the stainless steel wire being 100%, the chemical composition of the stainless steel wire includes: C: 0.03%-0.08%, Ni: 6.50 %-7.50%, Cr: 16.50%-17.50%, N: 0.15-0.17%, Si ⁇ 1.00%, Mn ⁇ 2.00%, P ⁇ 0.025% and S ⁇ 0.025%, the remaining components are Fe and unavoidable impurities .
- Each element in the formula represents the percentage content of the element, and the increase Increased the corrosion resistance and strength of the wire.
- the chemical composition of the stainless steel wire includes by mass percentage: C: 0.03%-0.08%, such as 0.03%, 0.04%, 0.05%, 0.06%, 0.07% % or 0.08%, but not limited to the listed values, other unlisted values within this range are also applicable.
- the chemical composition of the stainless steel wire includes: Ni: 6.50%-7.50%, for example, it can be 6.50%, 6.75%, 7.00%, 7.25% or 7.50% %, but not limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
- the chemical composition of the stainless steel wire includes by mass percentage: Cr: 16.50%-17.50%, for example, it can be 16.50%, 16.75%, 17.00%, 17.25% or 17.50% %, but not limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
- the chemical composition of the stainless steel wire includes: N: 0.15-0.17%, for example, it can be 0.15%, 0.155%, 0.16%, 0.165% or 0.17%. , but not limited to the listed values, other unlisted values within this range are also applicable.
- the chemical composition of the stainless steel wire includes: Si ⁇ 1.00% by mass percentage, such as 1.00%, 0.95%, 0.90%, 0.85% or 0.80%, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
- the chemical composition of the stainless steel wire includes: Mn ⁇ 2.00%, for example, 2.00%, 1.95%, 1.90%, 1.85%, 1.80%, 1.75% %, 1.70%, 1.65% or 1.60%, but not limited to the listed values, other unlisted values within this range are also applicable.
- the chemical composition of the stainless steel wire includes: P ⁇ 0.025% by mass percentage, such as 0.025%, 0.0225%, 0.020%, 0.0175% or 0.0150%, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
- the chemical composition of the stainless steel wire includes: S ⁇ 0.025% by mass percentage, such as 0.025%, 0.0225%, 0.020%, 0.0175% or 0.0150%, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
- the chemical composition of the stainless steel wire includes: C: 0.03%-0.05%, Ni: 6.50%-7.00%, Cr: 16.50%-17.00% and N: 0.16-0.17%.
- the chemical composition of the stainless steel wire includes: C: 0.03%-0.05%, such as 0.03%, 0.04% or 0.05%, but not limited to For the listed values, other unlisted values within the range of values are also applicable.
- the chemical composition of the stainless steel wire includes: Ni: 6.50%-7.00%, such as 6.50%, 6.75% or 7.00%, but not limited to For the listed values, other unlisted values within the range of values are also applicable.
- the chemical composition of the stainless steel wire includes: Cr: 16.50%-17.00%, for example, 16.50%, 16.75% or 17.00%, but not limited to For the listed values, other unlisted values within the range of values are also applicable.
- the chemical composition of the stainless steel wire includes: N: 0.16-0.17%, for example, 0.16%, 0.165% or 0.17%, but not limited to Numerical values listed, other unlisted numerical values within the numerical range are also applicable.
- the diameter of the stainless steel wire is less than 2mm, optionally less than 0.5mm, for example, it can be 1.8mm, 1.7mm, 1.75mm, 1.6mm, 1.5mm, 1.25mm, 1.0mm, 0.75mm, 0.5mm mm, or 0.4mm, but not limited to the listed values, other unlisted values within this range are also applicable.
- the stainless steel wire product provided by this application has a specification of less than 2mm and its strength reaches SWPA level, that is, when the wire diameter is 0.5mm, the tensile strength reaches 2300-2550MPa, and when the wire diameter is 1.0mm, the tensile strength reaches 2060-2260MPa. When the wire diameter reaches 1.5mm, the tensile strength reaches 1935-2135MPa.
- the present application provides a method for preparing the stainless steel wire provided in the first aspect, the preparation method comprising the following steps:
- Steps (2)-(4) are repeated once respectively, and the fine-drawn stainless steel wire is obtained after the first step (4), and the deformation amount of the first pass of the fine-drawing in the second step (4) is not more than 15%, the stainless steel wire is obtained after the second step (4).
- the range of solid solution temperature is further restricted compared with other schemes.
- the deformation of the first pass in the second fine drawing of the traditional process is improved, and it is limited to less than 15%. .
- the solid solution temperature is limited to 1000-1120°C, for example, it can be 1000°C, 1030°C, 1050°C, 1070°C, 1090°C, 1100°C or 1120°C, but it is not limited to the listed values, other values within this range The values not listed are also applicable.
- the reduction of the solid solution temperature range is to obtain a suitable grain size and achieve the purpose of fine grain strengthening. For medium temperature use, it requires better room temperature hardness, yield strength, tensile strength, impact toughness and The alloy with fatigue strength adopts a lower solution temperature to ensure a smaller grain size, so that the steel wire after solution heat treatment can obtain fine grains and have higher strength, hardness, plasticity and toughness.
- the deformation amount of the first pass is set to be less than 15%, for example, it can be 14%, 13%, 12%, 11% or 10%, but it is not limited to the listed values, other values within this value range
- the values not listed are also applicable, instead of choosing the deformation amount of each pass to decrease sequentially from the previous deformation amount as in the previous process, the main reason is to quickly cool the surface temperature of the steel wire to below Md30 before entering the second mold, so as to ensure the production More deformed martensite increases strength.
- Md30 refers to the temperature at which 30% of deformation becomes 50% of martensite. The lower the Md30 value, the stronger the ability of the material to resist aging cracking, that is, the less likely it is to crack.
- the metal will harden after being drawn, so that it cannot continue to be drawn. Therefore, after each drawing process, a solid solution process is required to soften the drawn metal and continue to the next drawing, and the pass is deformed.
- the amount of deformation and the total drawing deformation between two annealings are limited by the lattice parameters of the metal itself.
- the deformation of each pass is also called the section reduction rate or area reduction rate.
- the calculation formula is:
- Pass deformation (%) (cross-sectional area before deformation-cross-sectional area after deformation)/cross-sectional area after deformation; if the value is less than zero, take the absolute value.
- the pretreatment in step (1) includes drying after film treatment to obtain pretreated stainless steel wire.
- the film treatment includes immersing the raw material of the stainless steel wire rod in a film treatment liquid to react to form a film.
- the concentration of the film treatment solution is 12-18wt%, optionally 14-16wt%, such as 12wt%, 13wt%, 14wt%, 15wt%, 16wt%, 17wt% or 18wt%, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
- the temperature of the film treatment liquid is 70-90°C, optionally 75-85°C, for example, 70°C, 72°C, 75°C, 78°C, 80°C, 82°C, 85°C, 88°C °C or 90 °C, but not limited to the listed values, other unlisted values within this range are also applicable.
- the soaking time is 20-30min, optionally 22-28min, such as 20min, 22min, 23min, 25min, 28min or 30min, but not limited to the listed values, other values within the range Values not listed also apply.
- the drying temperature is 180-230°C, optionally 200-210°C, such as 180°C, 190°C, 200°C, 210°C, 220°C or 230°C, but not limited to Numerical values listed, other unlisted numerical values within the numerical range are also applicable.
- the drying time is 100-150min, optionally 120-130min, for example, it can be 100min, 110min, 120min, 130min, 140min or 150min, but it is not limited to the listed values. Other values not listed also apply.
- the pretreated stainless steel wire in step (1) enters a rough wire drawing device through a pay-off device for rough wire drawing treatment.
- the rough wire drawing device includes a straight wire drawing machine.
- the rough wire drawing device includes a rough wire drawing die box.
- the rough drawing die box is cooled by circulating water during drawing.
- the temperature of the circulating water is 25-35°C, for example, it can be 25°C, 28°C, 30°C, 33°C or 35°C, but it is not limited to the listed values, other values not listed within this range values are also applicable.
- lubricating powder is used in the rough drawing and drawing process.
- the lubricating powder used in the first pass to the penultimate pass in the rough drawing process includes calcium-based lubricating powder.
- the lubricating powder used in the final pass of the rough drawing process includes sodium lubricating powder.
- the cleaning described in step (2) includes placing the coarsely drawn stainless steel wire described in step (1) or the finely drawn stainless steel wire described in step (4) in an electrolysis device, The device is energized, and then the lubricating powder remaining on the surface is rinsed to obtain a clean stainless steel wire.
- the anode material of the electrolysis device is the coarsely drawn stainless steel wire or the finely drawn stainless steel wire.
- the cathode material of the electrolysis device includes a lead plate.
- the electrolyte of the electrolysis device includes dilute sulfuric acid solution.
- the concentration of the dilute sulfuric acid solution is 150-300g/L, optionally 200-250g/L, such as 150g/L, 180g/L, 200g/L, 220g/L, 250g/L, 280g/L or 300g/L, but not limited to the listed values, other unlisted values within this range are also applicable.
- the rinsing solution for rinsing includes water.
- the clean stainless steel wire in step (3) enters a solid solution device through a passive pay-off device for solution treatment.
- the solid solution device includes a tubular continuous annealing furnace.
- the protective gas for the solid solution treatment is ammonia decomposition gas.
- the solid solution temperature can further be 1000-1070°C, for example, it can be 1000°C, 1010°C, 1020°C, 1030°C, 1040°C, 1050°C, 1060°C or 1070°C, but it is not limited to the above Numerical values listed, other unlisted numerical values within the numerical range are also applicable.
- the temperature of the water-cooled water is 10-50°C, optionally 20-40°C, such as 10°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C or 50°C, but not limited to the listed values, other unlisted values within this range are also applicable.
- the quenched stainless steel wire in step (4) enters the fine-drawing device through the wire-releasing device, and performs fine-drawing treatment.
- the fine wire drawing device includes a straight wire drawing machine.
- the fine-drawing device includes a fine-drawing die box.
- the fine-drawing die box is cooled by circulating water during drawing.
- the temperature of the circulating water is 25-35°C, for example, it can be 25°C, 28°C, 30°C, 33°C or 35°C, but it is not limited to the listed values, other values not listed within this range values are also applicable.
- the rough drawing in step (1) and the deformation amount of the first pass in the fine drawing in the first step (4) are independently ⁇ 30%, for example, it can be 30% , 33%, 35%, 37%, 40%, 42% or 45%, etc., but not limited to the listed values, other unlisted values within the range of values are also applicable.
- the rough drawing in the step (1) and the deformation amount of the middle pass in the fine drawing in the first step (4) are each independently 16-30%, such as 16%, 21%, 24%, 27% or 30%, but not limited to the listed values, other unlisted values within this range are also applicable.
- the deformation amount of each pass is gradually decreased compared with the deformation amount of the previous pass.
- the rough drawing in step (1) and the final pass deformation in the fine drawing in the first step (4) are each independently 14-16%, such as 14%, 14.5%, 15%, 15.5% or 16%, but not limited to the listed values, other unlisted values within this range are also applicable.
- the amount of deformation in the middle pass of the fine drawing is 17-25%, for example, it can be 17%, 18%, 19%, 20%, 21%, 22% , 23%, 24% or 25%, but not limited to the listed values, other unlisted values within this range are also applicable.
- the amount of deformation in the final pass of fine drawing is 14-16%, for example, it can be 14%, 14.5%, 15%, 15.5% or 16%, but not Not limited to the listed values, other unlisted values within the range of values are also applicable.
- the deformation amount of the first pass is less than 15%, but it is optional to start from the second pass, and the deformation amount of each subsequent pass is still in accordance with the deformation amount of the previous pass, which is still decreasing step by pass. It is carried out regularly, which helps to reduce the uneven deformation in the drawing of the stainless steel wire, and reduce the residual stress of the stainless steel wire after drawing, so as to better improve the drawing quality and increase the drawing efficiency.
- Rough drawing Soak the raw material of stainless steel wire in 70-90°C, 15-21wt% film treatment solution and react for 20-30min. After the film is formed, dry it at 180-230°C for 100-150min to obtain pretreatment Stainless steel wire, the pretreated stainless steel wire enters a straight-in wire drawing machine through a pay-off device for rough drawing and drawing, the deformation of the first pass is ⁇ 30%, and the deformation of the intermediate pass is 16-30%. The amount of deformation decreases gradually compared with that of the previous pass, and the deformation amount of the last pass is 14-16%.
- the rough drawing die box is cooled by circulating water at 25-35°C, from the first pass to the penultimate pass Calcium-based lubricating powder is used for the first pass, and sodium-based lubricating powder is used for the last pass;
- step (2) the coarsely drawn stainless steel wire described in step (1) or the finely drawn stainless steel wire described in step (4) is used as the anode, the lead plate is used as the cathode, and the dilute sulfuric acid solution of 150-300g/L is used as the electrolyte for energized cleaning , and then rinse the lubricating powder remaining on the surface with water to obtain a clean stainless steel wire;
- Solid solution The clean stainless steel wire enters the tubular continuous annealing furnace through a passive pay-off device, and performs solid solution treatment at a solid solution temperature of 1000-1120 ° C.
- the protective gas is ammonia decomposition gas, and then 10-50 ° C. water cooling;
- step (2)-(4) each once successively, wherein, in the first step (4), the amount of deformation of the first pass ⁇ 30%, the amount of deformation of the middle pass is 16-30%, each pass The amount of deformation of the second pass is progressively smaller than that of the previous pass, and the amount of deformation of the last pass is 14-16%.
- the finely drawn stainless steel wire is obtained, and the first pass in the second step (4) The amount of deformation ⁇ 15%, the amount of deformation in the middle pass is 17-25%, the amount of deformation in the last pass is 14-16%, and the stainless steel wire obtained after the second step (4) is packaged to obtain the stainless steel wire Silk.
- the present application provides a stainless steel wire spring, which includes the stainless steel wire provided in the first aspect.
- the stainless steel wire provided by this application increases the N element by controlling the content of each element of the stainless steel wire raw material, and controls the ratio of C, Ni, Cr elements and N elements to improve the corrosion resistance and strength of the wire product;
- the preparation method of the stainless steel wire provided by this application reasonably limits the range of solution temperature, so that the steel wire after solution heat treatment obtains fine grains, has higher strength, hardness, plasticity and toughness, and the wire diameter is 0.5 mm, the tensile strength under optional conditions is >2300MPa, the number of one-way torsion is ⁇ 15, and the corrosion resistance is good;
- the deformation amount of the first pass is set to be below 15% in the second fine drawing, so that the surface temperature of the steel wire is rapidly cooled to below Md30 before entering the second die, so as to ensure production More deformed martensite improves the strength of the product wire.
- the specification is below 2mm and the strength reaches SWPA level.
- Fig. 1 is a flow chart of a method for preparing stainless steel wire provided in a specific embodiment of the present application.
- the application provides a stainless steel wire
- the chemical composition of the stainless steel wire includes: C: 0.03%-0.08%, Ni: 6.50%-7.50%, Cr: 16.50%- 17.50%, N: 0.15-0.17%, Si ⁇ 1.00%, Mn ⁇ 2.00%, P ⁇ 0.025% and S ⁇ 0.025%, and the remaining components are Fe and unavoidable impurities.
- the present application provides a kind of preparation method of described stainless steel wire, as shown in Figure 1, described preparation method specifically comprises the following steps:
- Rough drawing Soak the stainless steel wire material in 80°C, 12-18wt% 0445 film agent produced by Jinan Jinhailong Chemical Co., Ltd. and react for 25 minutes. After forming a film, dry it at 200°C for 120 minutes to obtain pretreatment Stainless steel wire, the pretreated stainless steel wire enters a straight-in wire drawing machine through a pay-off device for rough drawing and drawing, the deformation of the first pass is ⁇ 30%, and the deformation of the intermediate pass is 16-30%. The amount of deformation decreases gradually compared with the deformation amount of the previous pass, and the deformation amount of the last pass is 14-16%.
- the WS50 calcium-based lubricating powder produced by Terunsi Co., Ltd. is used in the final pass of CH85 sodium-based lubricating powder produced by Terunsi Co.;
- Solid solution the clean stainless steel wire enters a tubular continuous annealing furnace through a passive pay-off device, and is subjected to solid solution treatment at a solid solution temperature of 1000-1120° C., and the protective gas is ammonia decomposition gas, followed by water cooling at 30° C.;
- step (2)-(4) each once successively, wherein, in the first step (4), the amount of deformation of the first pass ⁇ 30%, the amount of deformation of the middle pass is 16-30%, each pass The amount of deformation of the second pass is progressively smaller than that of the previous pass, and the amount of deformation of the last pass is 14-16%.
- the finely drawn stainless steel wire is obtained, and the first pass in the second step (4) The amount of deformation ⁇ 15%, the amount of deformation in the middle pass is 17-25%, the amount of deformation in the last pass is 14-16%, and the stainless steel wire obtained after the second step (4) is packaged to obtain the stainless steel wire Silk.
- Each embodiment provides a kind of stainless steel wire respectively, and each embodiment adopts the preparation method of the above-mentioned stainless steel wire of the embodiment of the present application to make, but the chemical composition of the stainless steel wire raw material between each embodiment, the difference between the drawing process The process parameters are different.
- the present embodiment provides a kind of preparation method of described stainless steel wire, and method specifically comprises the following steps:
- Rough drawing Soak the stainless steel wire material in 70°C, 15wt% 0445 film agent produced by Jinan Jinhailong Chemical Co., Ltd. for 30 minutes, and after forming a film, dry it at 180°C for 150 minutes to obtain pretreated stainless steel wire , the pretreated stainless steel wire enters the straight wire drawing machine through the pay-off device for rough drawing and drawing treatment, the deformation of the first pass is ⁇ 30%, the deformation of the middle pass is 16-30%, and the deformation of each pass is The deformation of the last pass decreases gradually, and the deformation of the last pass is 14-16%.
- the WS50 calcium-based lubricating powder produced by Silk Company, and the CH85 sodium-based lubricating powder produced by Terunsi Company are used in the final pass;
- Solid solution the clean stainless steel wire enters a tubular continuous annealing furnace through a passive pay-off device, and is subjected to solid solution treatment at a solid solution temperature of 1000-1120° C., and the protective gas is ammonia decomposition gas, followed by water cooling at 50° C.;
- step (2)-(4) each once successively, wherein, in the first step (4), the amount of deformation of the first pass ⁇ 30%, the amount of deformation of the middle pass is 16-30%, each pass The amount of deformation of the second pass is progressively smaller than that of the previous pass, and the amount of deformation of the last pass is 14-16%.
- the finely drawn stainless steel wire is obtained, and the first pass in the second step (4) The amount of deformation ⁇ 15%, the amount of deformation in the middle pass is 17-25%, the amount of deformation in the last pass is 14-16%, and the stainless steel wire obtained after the second step (4) is packaged to obtain the stainless steel wire Silk.
- the present embodiment provides a kind of preparation method of described stainless steel wire, and method specifically comprises the following steps:
- Rough drawing Soak the stainless steel wire material in 90°C, 18wt% 0445 film agent produced by Jinan Jinhailong Chemical Co., Ltd. for 20 minutes, and after forming a film, dry it at 230°C for 100 minutes to obtain pretreated stainless steel wire , the pretreated stainless steel wire enters the straight wire drawing machine through the pay-off device for rough drawing and drawing treatment, the deformation of the first pass is ⁇ 30%, the deformation of the middle pass is 16-30%, and the deformation of each pass is The deformation of the last pass decreases gradually, and the deformation of the last pass is 14-16%.
- the WS50 calcium-based lubricating powder produced by Silk Company, and the CH85 sodium-based lubricating powder produced by Terunsi Company are used in the final pass;
- Solid solution the clean stainless steel wire enters a tubular continuous annealing furnace through a passive pay-off device, and is subjected to solid solution treatment at a solid solution temperature of 1000-1120° C., and the protective gas is ammonia decomposition gas, followed by water cooling at 10° C.;
- step (2)-(4) each once successively, wherein, in the first step (4), the amount of deformation of the first pass ⁇ 30%, the amount of deformation of the middle pass is 16-30%, each pass The amount of deformation of the second pass is progressively smaller than that of the previous pass, and the amount of deformation of the last pass is 14-16%.
- the finely drawn stainless steel wire is obtained, and the first pass in the second step (4) The amount of deformation ⁇ 15%, the amount of deformation in the middle pass is 17-25%, the amount of deformation in the last pass is 14-16%, and the stainless steel wire obtained after the second step (4) is packaged to obtain the stainless steel wire Silk.
- the preparation method of the stainless steel wire provided in the specific embodiment is basically the same, the only difference is that the deformation amount of the first pass of the rough drawing and the two fine drawing is independently 30-35%, and the deformation amount of each pass in the middle pass is 30-35%.
- the deformation of the last pass is gradually reduced, the deformation of the last pass is 14-16% independently, the upper limit of the total area reduction rate of drawing is 90%, and the two solid solution temperatures are 1000 ° C ⁇ 1120 ° C, and the comparative example 1 is obtained wire in.
- Each comparative example provides a kind of stainless steel wire respectively, and each comparative example adopts the same method as the preparation method of the stainless steel wire in the embodiment of the present application to make, the difference is: the chemical composition of the stainless steel wire raw material, drawing treatment The process parameters are different.
- Example 1 0.5 2476 16 better Example 2 0.5 2511 15 better Example 3 0.5 2539 16 better Example 4 0.5 2298 9 better Example 5 1.0 2158 13 better Example 6 1.5 2058 16 better Example 7 0.5 2547 17 better Example 8 0.5 2419 18 better Comparative example 1 0.5 1961 6 generally
- Comparative example 2 0.5 2346 8 not good Comparative example 3 0.5 2346 6 better Comparative example 4 0.5 2143 8 better Comparative example 5 0.5 2461 7 better Comparative example 6 0.5 2298 8 better
- the stainless steel wire provided by the application and the preparation method, by adjusting the solid solution temperature and the pass deformation in the original process of comparative example 1, the wire
- the tensile strength of stainless steel wire with a diameter of 0.5mm is ⁇ 2298MPa, and the number of unidirectional twists is ⁇ 9.
- the strength of stainless steel wire with a diameter of 0.5mm can reach SWPA level, that is, the tensile strength is 2300-2550MPa, and the one-way Torsion times ⁇ 15, good corrosion resistance;
- the deformation amount of each subsequent pass decreases gradually compared with the deformation amount of the previous pass, and the tensile strength of the obtained product does not reach the SWPA level, and the number of one-way reversals is less than 10, which proves the correctness of the deformation amount and change law of the pass.
- Restrictions are indispensable;
- Example 1-2 controls the N element content to be 0.16%, and the tensile strength of the obtained stainless steel wire is >2450MPa, and the number of unidirectional twists >15 times, Corrosion resistance is better, the N element content is 0.02% in the comparative example 2, the corrosion resistance is not good, the N element content is 0.2% in the comparative example 2,, the stainless steel wire tensile strength obtained in the comparative example 3 comparative example 2-3 Lower than that of Example 1-2, the number of one-way torsion ⁇ 10, which proves that the control of element content in this application is beneficial to improve corrosion resistance, strength and plasticity;
- Example 1 and Example 3 are 1035°C and 1070°C respectively, the tensile strength is >2450MPa, and the number of unidirectional twists is >15 Second, the corrosion resistance is better, while the solution temperature of Comparative Example 5 is 980 °C, the tensile strength reaches SWPA level but the number of unidirectional torsion is ⁇ 10, and the solution temperature of Comparative Example 6 is 1150 °C, and the tensile strength does not reach SWPA level , and the number of one-way twists is also ⁇ 10, which proves that controlling the solution temperature can help improve the strength and plasticity of the wire;
- the stainless steel wire preparation method provided by the present application can produce stainless steel wire rods with a diameter of less than 2mm, and the tensile strength has reached SWPA level, and the number of unidirectional twists > 10 times , good corrosion resistance.
- the stainless steel wire produced by the preparation method provided in this application can reach SWPA grade under optional conditions, and when the wire diameter is 0.5mm, the tensile strength is > 2300 MPa, the number of unidirectional torsion is ⁇ 15, and the corrosion resistance is good. , On the basis of the original process, by improving the element content, pass deformation and solid solution temperature, a product with excellent properties is obtained, the process is simple, and it is suitable for industrial production.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metal Extraction Processes (AREA)
Abstract
本申请提供了一种不锈钢丝及其制备方法和不锈钢弹簧,所述不锈钢丝的化学成分按质量百分数计包括:C:0.03%-0.08%、Ni:6.50%-7.50%、Cr:16.50%-17.50%、N:0.15-0.17%。
Description
本申请属于高温线材加工技术领域,涉及一种不锈钢丝及其制备方法和不锈钢弹簧。
琴钢丝是经铅浴淬火后冷拉而成的一种高强度弹簧材料,具有非常高的强度极限和弹性极限,是广泛应用的小弹簧材料。琴钢丝的质量、性能要求严格,按用途可分为制造动载弹簧、高应力机械弹簧及阀门弹簧所用。琴钢丝生产工艺一般分为粗拉、退火(固溶处理)、细拉三部分,每次拉拔后经固溶处理后再次拉拔,最终拉拔至所需的规格,同时根据成品的性能调整最终拉拔时的变形量。碳钢类材料在生产琴钢丝时,拉制成品前的热处理一般采用电接触加热的索氏体化处理,以保证钢丝通条性能均匀并提高加热速度、缩短加热时间,减少因加热而产生的氧化铁皮和脱碳层,热处理后采用盐酸酸洗,以加快酸洗速度和使钢丝表面具有良好的表面质量。酸洗后对不镀层的钢丝可采用磷化涂层处理,对镀层钢丝则采用黄化或硼砂处理。与不锈钢材料相比,碳钢在制作琴钢丝时工艺繁琐,且为了保证耐腐蚀性能,一般表面都会进行表面处理,如镀锌,镀镍等,使用不锈钢材料加工钢丝具有强度高,塑性好,无需镀层即耐腐蚀的优势。
CN112391577A公开了一种赝奥氏体不锈弹簧钢丝及其性能调控方法,成分(wt%)为:C:0.05~0.08,Si:0.3~0.8,Mn:1.0~1.5,P:<0.035,S:<0.030,Ni:7.00~11.00,Cr:16.0~19.0,Ti:0.1~0.3,其余为Fe,其中Ti,N,C的化学成分摩尔比值满足nTi/nN+C小于1,通过调控Ti含量既能固定碳和细化品粒 又能提高不锈钢丝抗晶间腐蚀能力。本申请采用调整综合成分和大变形量(>30%)来调控马氏体开始转变温度,在室温附近使奥氏体基体上能弥散分布极少量马氏体,该调控方法在细化晶粒的同时获得弥散分布极少量马氏体组织,提高了奥氏体不锈弹簧钢丝强度和耐晶间腐蚀性能力。该方法通过改变原料组成得到了耐腐蚀的弹簧钢丝材料,但是对产品钢丝的耐受度改变不大。
CN112593170A公开了一种GH4169高温合金丝材冷变形后的热处理方法,属于高温合金丝材制备技术领域,提供一种实现冷拉变形量及热处理工艺的最佳控制的,针对GH4169高温合金丝材的冷变形后的中间热处理方法:具体为将所得到的冷拉态丝材进行固溶热处理,在1000℃~1020℃进行5~20min保温;然后以20℃/min的冷却速率降温至960℃,保温60min:最后充入氩气进行气冷;并且在进行固溶热处理过程中真空度<10Pa。所述方法实现了冷拉状态丝材,根据冷拉变形量及对应热处理温度的最佳控制,从而获得理想的再结晶晶粒和析出相组织,该方法生产出的产品精度、耐受性较高,但是该方法的工艺条件严格,生产成本高,仅适用于高价值、用量较小的材料中。
CN112658048A公开了一种尺寸精度高,表面质量好、性能优越、组织均匀的弹簧丝用CH4169高温合金丝材的冷加工方法,包括如下步骤:a、将GH4169热轧棒材置于电阻炉中进行固溶处理;b、进行酸洗,去除表面氧化层,然后取出用水冲洗后干燥:c、进行旋锻拉拔;d、材料置于电阻炉中进行退火热处理:e、置于酸液中浸泡进行酸洗,去除表面氧化层:f、将步骤e中处理后的材料再重复步骤c至步骤e共计1至3次,然后进行旋锻拉拔作为终变形;g、重复步骤d和步骤e,再进行张力矫直,并最终得到GH4169高温合金弹簧丝。该发明的步骤较为复杂,工艺条件严格,且酸洗步骤效率较低,污染较大。
因此需要提出一种耐腐蚀性好、强度高的弹簧用不锈钢丝,以及步骤简洁的不锈钢丝制备方法。
发明内容
针对现有技术存在的不锈钢丝产品以及用所述不锈钢丝制备的不锈钢弹簧性能需要进一步提升的问题,以及生产工艺流程复杂,工艺条件严格等缺陷,本申请提出了一种不锈钢丝及其制备方法和不锈钢弹簧,通过控制原料元素含量、固溶温度以及改进道次变形量,稳定生产线径0.5mm、强度达到SWPA级的低应力雾面不锈钢丝及用该不锈钢丝制备的弹簧。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供了一种不锈钢丝,基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:C:0.03%-0.08%、Ni:6.50%-7.50%、Cr:16.50%-17.50%、N:0.15-0.17%、Si≤1.00%、Mn≤2.00%、P≤0.025%和S≤0.025%,其余组分为Fe以及不可避免的杂质。
本申请提供的不锈钢丝,在元素含量上相比以往工艺方案增加了N元素含量,并调整了C、Ni、Cr与N的配比,控制杂质元素Si、Mn、P、S含量,遵循Ni当量Ni(ep)=Ni+0.12Mn-0.0086Mn
2+30C+18N+0.44Cu大于11,点蚀当量PREN=Cr+3.3Mo+30N-Mn大于20,公式中各元素代表元素百分比含量,增大了线材的耐腐蚀性和强度。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:C:0.03%-0.08%,例如可以是0.03%、0.04%、0.05%、0.06%、0.07%或0.08%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:Ni:6.50%-7.50%,例如可以是6.50%、6.75%、7.00%、7.25%或7.50%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:Cr:16.50%-17.50%,例如可以是16.50%、16.75%、17.00%、17.25%或17.50%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:N:0.15-0.17%,例如可以是0.15%、0.155%、0.16%、0.165%或0.17%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:Si≤1.00%,例如可以是1.00%、0.95%、0.90%、0.85%或0.80%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:Mn≤2.00%,例如可以是2.00%、1.95%、1.90%、1.85%、1.80%、1.75%、1.70%、1.65%或1.60%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:P≤0.025%,例如可以是0.025%、0.0225%、0.020%、0.0175%或0.0150%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百 分数计包括:S≤0.025%,例如可以是0.025%、0.0225%、0.020%、0.0175%或0.0150%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请的一种可选的技术方案,其中,基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按照质量百分数计包括:C:0.03%-0.05%、Ni:6.50%-7.00%、Cr:16.50%-17.00%和N:0.16-0.17%。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:C:0.03%-0.05%,例如可以是0.03%、0.04%或0.05%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:Ni:6.50%-7.00%,例如可以是6.50%、6.75%或7.00%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:Cr:16.50%-17.00%,例如可以是16.50%、16.75%或17.00%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:N:0.16-0.17%,例如可以是0.16%、0.165%或0.17%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述不锈钢丝的线径为2mm以下,可选为0.5mm以下,例如可以是1.8mm、1.7mm、1.75mm、1.6mm、1.5mm、1.25mm、1.0mm、0.75mm、0.5mm,或0.4mm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请提供的不锈钢丝产品,规格为2mm以下同时强度达到SWPA级,即线径为0.5mm的同时,抗拉强度达到2300-2550MPa,线径为1.0mm时,抗拉强度达到2060-2260MPa,线径达到1.5mm时,抗拉强度达到1935-2135MPa。
第二方面,本申请提供了一种第一方面提供的不锈钢丝的制备方法,所述制备方法包括以下步骤:
(1)粗拉:预处理后得到的预处理不锈钢丝进行粗拉拉丝处理,得到粗拉不锈钢丝;
(2)清洗:清洗步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝的表面,得到清洁不细钢丝;
(3)固溶:所述清洁不锈钢丝在固溶温度为1000~1120℃下进行固溶处理,随后水冷,得到淬火不锈钢丝;
(4)细拉:所述淬火不锈钢丝进行细拉拉丝处理;
(5)依次重复步骤(2)-(4)各一次,第一次的步骤(4)后得到细拉不锈钢丝,第二次的步骤(4)中细拉的首道次变形量不大于15%,第二次的步骤(4)后得到所述不锈钢丝。
所述制备方法中相比以往,对固溶温度的范围做了相比其他方案的进一步限制,同时,改进了传统工艺第二次细拉中首道次变形量,将其限制在15%以下。
所述固溶温度限定为1000~1120℃,例如可以是1000℃、1030℃、1050℃、1070℃、1090℃、1100℃或1120℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,固溶温度范围的缩减是为了获得适宜的晶粒度,达到细晶强化的目的,对于中温使用并要求较好的室温硬度、屈服强度、拉伸 强度、冲击韧性和疲劳强度的合金,采用较低的固溶温度,保证较小的晶粒度,使固溶热处理后的钢丝获得细晶粒,拥有更高的强度、硬度、塑性和韧性。
第二次细拉中首道次变形量设置为15%以下,例如可以是14%、13%、12%、11%或10%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,而不是与以往工艺一样选择道次变形量较上一次的变形量依次递减,主要是为了使钢丝表面温度在进入第二道模具前快速降温到Md30之下,确保产生更多的形变马氏体,提高强度。不锈钢丝加工过程中,由于变形的原因产生马氏体相,晶格的畸变使氢在晶界处富集,强度下降,在应力的作用下产生开裂,用Md30来衡量。Md30是指变形量30%生成50%马氏体时的温度。Md30值越低,该种材料耐时效开裂的能力越强,即越不容易开裂。
金属在拉拔后会产生硬化现象,从而无法继续进行拉拔,因此每道次拉拔工艺后都要配合固溶工艺,使拉拔后的金属软化继续下一道次的拉拔,道次变形量和两次退火间的总拉拔形变量受到金属自身晶格参数的限制,道次变形量又称断面缩减率或减面率,计算公式为:
道次变形量(%)=(变形前横截面积-变形后横截面积)/变形后横截面积;如果该值小于零则取绝对值。
作为本申请的一种可选的技术方案,步骤(1)中所述预处理包括皮膜处理后烘干,得到预处理不锈钢丝。
可选地,所述皮膜处理包括将不锈钢线材原料浸泡在皮膜处理液中反应,生成皮膜。
可选地,所述皮膜处理液的浓度为12-18wt%,可选为14-16wt%,例如可以是12wt%、13wt%、14wt%、15wt%、16wt%、17wt%或18wt%,但并不仅限于 所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述皮膜处理液的温度为70-90℃,可选为75-85℃,例如可以是70℃、72℃、75℃、78℃、80℃、82℃、85℃、88℃或90℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述浸泡的时间为20-30min,可选为22-28min,例如可以是20min、22min、23min、25min、28min或30min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述烘干的温度为180-230℃,可选为200-210℃,例如可以是180℃、190℃、200℃、210℃、220℃或230℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述烘干的时间为100-150min,可选为120-130min,例如可以是100min、110min、120min、130min、140min或150min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)中所述预处理不锈钢丝经放线装置进入粗拉拉丝装置中,进行粗拉拉丝处理。
可选地,所述粗拉拉丝装置包括直进式拉丝机。
可选地,所述粗拉拉丝装置包括粗抽拉丝模盒。
可选地,所述粗拉拉丝模盒在拉丝时,通循环水冷却。
可选地,所述循环水的温度为25-35℃,例如可以是25℃、28℃、30℃、33℃或35℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述粗拉拉丝处理时采用润滑粉。
可选地,所述粗拉拉丝处理中第一道次至倒数第二道次采用的润滑粉包括钙系润滑粉。
可选地,所述粗拉拉丝处理中末道次采用的润滑粉包括钠系润滑粉。
作为本申请的一种可选的技术方案,步骤(2)中所述清洗包括将步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝置于电解装置,对电解装置进行通电,随后漂洗表面残留的润滑粉,得到清洁不锈钢丝。
可选地,所述电解装置的阳极材料为所述粗拉不锈钢丝或所述细拉不锈钢丝。
可选地,所述电解装置的阴极材料包括铅板。
可选地,所述电解装置的电解液包括稀硫酸溶液。
可选地,所述稀硫酸溶液的浓度为150-300g/L,可选为200-250g/L,例如可以是150g/L、180g/L、200g/L、220g/L、250g/L、280g/L或300g/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述漂洗的漂洗液包括水。
作为本申请的一种可选的技术方案,步骤(3)中所述清洁不锈钢丝通过被动放线装置进入固溶装置进行固溶处理。
可选地,所述固溶装置包括管式连续退火炉。
可选地,所述固溶处理的保护气为氨分解气。
可选地,所述固溶温度进一步可选为1000-1070℃,例如可以是1000℃、1010℃、1020℃、1030℃、1040℃、1050℃、1060℃或1070℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述水冷的水温为10-50℃,可选为20-40℃,例如可以是10℃、 10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃或50℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请的一种可选的技术方案,步骤(4)中所述淬火不锈钢丝经放线装置进入细拉拉丝装置中,进行细拉拉丝处理。
可选地,所述细拉拉丝装置包括直进式拉丝机。
可选地,所述细拉拉丝装置包括细拉拉丝模盒。
可选地,所述细拉拉丝模盒在拉丝时,通循环水冷却。
可选地,所述循环水的温度为25-35℃,例如可以是25℃、28℃、30℃、33℃或35℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请的一种可选的技术方案,步骤(1)中粗拉和第一次的步骤(4)中细拉中首道次的变形量各自独立地≥30%,例如可以是30%、33%、35%、37%、40%、42%或45%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述步骤(1)中粗拉和第一次的步骤(4)中细拉中中间道次的变形量各自独立地为16-30%,例如可以是16%、21%、24%、27%或30%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述步骤(1)中粗拉和第一次的步骤(4)中细拉,每道次的变形量较上一道次的变形量递减。
可选地,所述步骤(1)中粗拉和第一次的步骤(4)中细拉中末道次的变形量各自独立地为14-16%,例如可以是14%、14.5%、15%、15.5%或16%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述第二次的步骤(4)中细拉中中间道次的变形量为17-25%,例如可以是17%、18%、19%、20%、21%、22%、23%、24%或25%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述第二次的步骤(4)中细拉中末道次的变形量为14-16%,例如可以是14%、14.5%、15%、15.5%或16%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第二次细拉中,第一道次变形量为15%以下,但可选从第二道次开始,后续的各道次变形量对比上一道次的变形量,仍按照逐道次递减的规律进行,这样有助于减少不锈钢线材拉拔中的不均匀变形,降低拉拔后不锈钢线材的残余应力,从而更好地改善拉拔质量、提高拉拔效率。
作为本申请的一种可选的技术方案,包括以下步骤:
(1)粗拉:将不锈钢线材原料浸泡在70-90℃,15-21wt%的皮膜处理液中反应20-30min,生成皮膜后,在180-230℃下烘干100-150min,得到预处理不锈钢丝,所述预处理不锈钢丝经放线装置进入直进式拉丝机中进行粗拉拉丝处理,首道次变形量≥30%,中间道次的变形量为16-30%,每道次变形量较上一道次的变形量递减,末道次的变形量为14-16%,拉丝时,粗拉拉丝模盒通25-35℃的循环水冷却,第一道次至倒数第二道次采用钙系润滑粉,末道次采用钠系润滑粉;
(2)清洗:以步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝为阳极,铅板为阴极,150-300g/L的稀硫酸溶液为电解液进行通电清洗,随后用水漂洗表面残留的润滑粉,得到清洁不锈钢丝;
(3)固溶:所述清洁不锈钢丝通过被动放线装置进入管式连续退火炉,在 固溶温度为1000~1120℃下进行固溶处理,保护气为氨分解气,随后10-50℃水冷;
(4)细拉:所述淬火不锈钢丝经放线装置进入直进式拉丝机中,进行细拉拉丝处理,拉丝时,细拉拉丝模盒通25-35℃的循环水冷却;
(5)依次重复步骤(2)-(4)各一次,其中,第一次步骤(4)中首道次的变形量≥30%,中间道次的变形量为16-30%,每道次的变形量较上一道次的变形量递减,末道次的变形量为14-16%,第一次步骤(4)后得到细拉不锈钢丝,第二次步骤(4)中首道次的变形量≤15%,中间道次的变形量为17-25%,末道次的变形量为14-16%,第二次步骤(4)后得到的不锈钢丝进行包装,得到所述不锈钢丝。
第三方面,本申请提供了一种不锈钢丝弹簧,所述不锈钢丝弹簧包括由第一方面提供的不锈钢丝。
与现有技术相比,本申请的有益效果为:
(1)本申请提供的不锈钢丝通过控制不锈钢线材原料的各元素含量,增加N元素,并控制C、Ni、Cr元素与N元素的配比,以提高线材产品的耐腐蚀性以及强度;
(2)本申请提供的不锈钢丝的制备方法对固溶温度的范围进行合理限制,使固溶热处理后的钢丝获得细晶粒,拥有更高的强度、硬度、塑性和韧性,线径为0.5mm时,可选条件下抗拉强度>2300MPa,单向扭转次数≥15,耐腐蚀性能较好;
(3)本申请提供的不锈钢丝的制备方法在第二次细拉中首道次变形量设置为15%以下,使钢丝表面温度在进入第二道模具前快速降温到Md30之下,确 保产生更多的形变马氏体,提高产品线材强度,规格为2mm以下同时强度达到SWPA级。
图1为本申请具体实施方式提供的不锈钢丝的制备方法的流程图。
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
需要理解的是,在本申请的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
在一个具体实施方式中,本申请提供了一种不锈钢丝,所述不锈钢丝的化学成分按质量百分数计包括:C:0.03%-0.08%、Ni:6.50%-7.50%、Cr:16.50%-17.50%、N:0.15-0.17%、Si≤1.00%、Mn≤2.00%、P≤0.025%和S≤0.025%,其余组分为Fe以及不可避免的杂质。
在另一个具体实施方式中,本申请提供了一种所述的不锈钢丝的制备方法,如图1所示,所述制备方法具体包括以下步骤:
(1)粗拉:将不锈钢线材原料浸泡在80℃,12-18wt%的济南金海龙化工有限公司生产的0445皮膜剂中反应25min,生成皮膜后,在200℃下烘干120min,得到预处理不锈钢丝,所述预处理不锈钢丝经放线装置进入直进式拉丝机中进行粗拉拉丝处理,首道次变形量≥30%,中间道次的变形量为16-30%,每道次变形量较上一道次的变形量递减,末道次的变形量为14-16%,拉丝时,粗拉拉丝模盒通30℃的循环水冷却,第一道次至倒数第二道次采用特润丝公司生产的WS50钙系润滑粉,末道次采用特润丝公司生产的CH85钠系润滑粉;
(2)清洗:以步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝为阳极,铅板为阴极,250g/L的稀硫酸溶液为电解液进行通电清洗,随后用水漂洗表面残留的润滑粉,得到清洁不锈钢丝;
(3)固溶:所述清洁不锈钢丝通过被动放线装置进入管式连续退火炉,在固溶温度为1000~1120℃下进行固溶处理,保护气为氨分解气,随后30℃水冷;
(4)细拉:所述淬火不锈钢丝经放线装置进入直进式拉丝机中,进行细拉拉丝处理,拉丝时,细拉拉丝模盒通30℃的循环水冷却;
(5)依次重复步骤(2)-(4)各一次,其中,第一次步骤(4)中首道次 的变形量≥30%,中间道次的变形量为16-30%,每道次的变形量较上一道次的变形量递减,末道次的变形量为14-16%,第一次步骤(4)后得到细拉不锈钢丝,第二次步骤(4)中首道次的变形量≤15%,中间道次的变形量为17-25%,末道次的变形量为14-16%,第二次步骤(4)后得到的不锈钢丝进行包装,得到所述不锈钢丝。
需明确的是,采用了本申请实施例提供的工艺或进行了常规数据的替换或变化均落在本申请的保护范围和公开范围之内。
实施例1-6
每个实施例分别提供一种不锈钢丝,每个实施例采用本申请实施例上述的不锈钢丝的制备方法制得,但各个实施例之间的不锈钢线材原料的化学成分组成、拉拔处理时的工艺参数不同。
实施例7
本实施例提供了一种所述的不锈钢丝的制备方法,方法具体包括以下步骤:
(1)粗拉:将不锈钢线材原料浸泡在70℃,15wt%的济南金海龙化工有限公司生产的0445皮膜剂中反应30min,生成皮膜后,在180℃下烘干150min,得到预处理不锈钢丝,所述预处理不锈钢丝经放线装置进入直进式拉丝机中进行粗拉拉丝处理,首道次变形量≥30%,中间道次的变形量为16-30%,每道次变形量较上一道次的变形量递减,末道次的变形量为14-16%,拉丝时,粗拉拉丝模盒通25℃的循环水冷却,第一道次至倒数第二道次采用特润丝公司生产的WS50钙系润滑粉,末道次采用特润丝公司生产的CH85钠系润滑粉;
(2)清洗:以步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝为阳极,铅板为阴极,300g/L的稀硫酸溶液为电解液进行通电清洗,随后用水 漂洗表面残留的润滑粉,得到清洁不锈钢丝;
(3)固溶:所述清洁不锈钢丝通过被动放线装置进入管式连续退火炉,在固溶温度为1000~1120℃下进行固溶处理,保护气为氨分解气,随后50℃水冷;
(4)细拉:所述淬火不锈钢丝经放线装置进入直进式拉丝机中,进行细拉拉丝处理,拉丝时,细拉拉丝模盒通25℃的循环水冷却;
(5)依次重复步骤(2)-(4)各一次,其中,第一次步骤(4)中首道次的变形量≥30%,中间道次的变形量为16-30%,每道次的变形量较上一道次的变形量递减,末道次的变形量为14-16%,第一次步骤(4)后得到细拉不锈钢丝,第二次步骤(4)中首道次的变形量≤15%,中间道次的变形量为17-25%,末道次的变形量为14-16%,第二次步骤(4)后得到的不锈钢丝进行包装,得到所述不锈钢丝。
实施例8
本实施例提供了一种所述的不锈钢丝的制备方法,方法具体包括以下步骤:
(1)粗拉:将不锈钢线材原料浸泡在90℃,18wt%的济南金海龙化工有限公司生产的0445皮膜剂中反应20min,生成皮膜后,在230℃下烘干100min,得到预处理不锈钢丝,所述预处理不锈钢丝经放线装置进入直进式拉丝机中进行粗拉拉丝处理,首道次变形量≥30%,中间道次的变形量为16-30%,每道次变形量较上一道次的变形量递减,末道次的变形量为14-16%,拉丝时,粗拉拉丝模盒通35℃的循环水冷却,第一道次至倒数第二道次采用特润丝公司生产的WS50钙系润滑粉,末道次采用特润丝公司生产的CH85钠系润滑粉;
(2)清洗:以步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝为阳极,铅板为阴极,250g/L的稀硫酸溶液为电解液进行通电清洗,随后用水 漂洗表面残留的润滑粉,得到清洁不锈钢丝;
(3)固溶:所述清洁不锈钢丝通过被动放线装置进入管式连续退火炉,在固溶温度为1000~1120℃下进行固溶处理,保护气为氨分解气,随后10℃水冷;
(4)细拉:所述淬火不锈钢丝经放线装置进入直进式拉丝机中,进行细拉拉丝处理,拉丝时,细拉拉丝模盒通35℃的循环水冷却;
(5)依次重复步骤(2)-(4)各一次,其中,第一次步骤(4)中首道次的变形量≥30%,中间道次的变形量为16-30%,每道次的变形量较上一道次的变形量递减,末道次的变形量为14-16%,第一次步骤(4)后得到细拉不锈钢丝,第二次步骤(4)中首道次的变形量≤15%,中间道次的变形量为17-25%,末道次的变形量为14-16%,第二次步骤(4)后得到的不锈钢丝进行包装,得到所述不锈钢丝。
对比例1
与具体实施方式中提供的不锈钢丝的制备方法基本相同,区别仅在于,粗拉和两次细拉的首道次变形量各自独立地为30-35%,中间道次每道次的变形量较上一道次的变形量递减,末道次变形量各自独立地为14-16%,拉拔总减面率上限为90%,两次固溶温度为1000℃~1120℃,得到对比例1中的钢丝。对比例2-6
每个对比例分别提供一种不锈钢丝,每个对比例采用与本申请实施例中不锈钢丝的制备方法基本相同的方法制得,不同之处在于:不锈钢线材原料的化学成分组成、拉拔处理时的工艺参数不同。
上述不同实施例与对比例的不同规格的盘条化学成分组成、工艺参数如下表1-表2所示,其中不锈钢线材原料的化学成分组成如表1所示,不锈钢丝加 工工艺参数如表2所述。
表1
元素含量 | C | Ni | Cr | N | Si | Mn | P | S | Fe |
实施例1 | 0.04 | 6.75 | 16.75 | 0.16 | 0.40 | 1.7 | 0.022 | 0.023 | 73.755 |
实施例2 | 0.05 | 7.00 | 17.00 | 0.16 | 0.40 | 1.7 | 0.022 | 0.023 | 73.245 |
实施例3 | 0.04 | 6.75 | 16.75 | 0.16 | 0.40 | 1.7 | 0.022 | 0.023 | 73.755 |
实施例4 | 0.04 | 6.75 | 16.75 | 0.16 | 0.40 | 1.7 | 0.022 | 0.023 | 73.755 |
实施例5 | 0.04 | 6.75 | 16.75 | 0.16 | 0.40 | 1.7 | 0.022 | 0.023 | 73.755 |
实施例6 | 0.04 | 6.75 | 16.75 | 0.16 | 0.40 | 1.7 | 0.022 | 0.023 | 73.755 |
实施例7 | 0.03 | 6.50 | 16.50 | 0.15 | 0.55 | 1.8 | 0.020 | 0.025 | 74.075 |
实施例8 | 0.08 | 7.50 | 17.50 | 0.17 | 0.37 | 1.6 | 0.025 | 0.015 | 72.110 |
对比例1 | 0.07 | 8.08 | 18.13 | 0.10 | 0.37 | 1.2 | 0.020 | 0.015 | 72.015 |
对比例2 | 0.04 | 6.75 | 16.75 | 0.02 | 0.80 | 1.7 | 0.022 | 0.023 | 73.895 |
对比例3 | 0.04 | 6.75 | 16.75 | 0.20 | 0.80 | 1.7 | 0.022 | 0.023 | 73.715 |
对比例4 | 0.04 | 6.75 | 16.75 | 0.16 | 0.80 | 1.7 | 0.022 | 0.023 | 73.755 |
对比例5 | 0.04 | 6.75 | 16.75 | 0.16 | 0.80 | 1.7 | 0.022 | 0.023 | 73.755 |
对比例6 | 0.04 | 6.75 | 16.75 | 0.16 | 0.80 | 1.7 | 0.022 | 0.023 | 73.755 |
表2
以下对不同实施例与对比例的不同规格的不锈钢丝的力学性能、抗腐蚀性能进行检测,检测方法参照GB/T 239.1-2012《金属材料线材第1部分:单向扭转试验方法》,使用单向扭转试验机(型号EJJ-1),且扭转次数在15次以上,反复弯曲次数在10次以上。成品不锈钢丝的性能结果如表3所示。
表3
线径(mm) | 抗拉强度(MPa) | 单向扭转次数 | 耐腐蚀性能 | |
实施例1 | 0.5 | 2476 | 16 | 较好 |
实施例2 | 0.5 | 2511 | 15 | 较好 |
实施例3 | 0.5 | 2539 | 16 | 较好 |
实施例4 | 0.5 | 2298 | 9 | 较好 |
实施例5 | 1.0 | 2158 | 13 | 较好 |
实施例6 | 1.5 | 2058 | 16 | 较好 |
实施例7 | 0.5 | 2547 | 17 | 较好 |
实施例8 | 0.5 | 2419 | 18 | 较好 |
对比例1 | 0.5 | 1961 | 6 | 一般 |
对比例2 | 0.5 | 2346 | 8 | 不好 |
对比例3 | 0.5 | 2346 | 6 | 较好 |
对比例4 | 0.5 | 2143 | 8 | 较好 |
对比例5 | 0.5 | 2461 | 7 | 较好 |
对比例6 | 0.5 | 2298 | 8 | 较好 |
综合表1-3可以看出以下几点:
(1)综合实施例1-4、7-8和对比例1可以看出,本申请提供的不锈钢丝以及制备方法,通过调整对比例1原工艺中的固溶温度以及道次变形量,线径为0.5mm的不锈钢丝的抗拉强度≥2298MPa,单向扭转次数≥9,在可选条件下使得线径为0.5mm的不锈钢丝强度达到SWPA级,即抗拉强度2300-2550MPa,单向扭转次数≥15,耐腐蚀性较好;
(2)结合实施例1、4和对比例4可以看出,本申请提供的方案改进了第二次细拉的首道次变形量,控制在15%以下,从第二道次开始,后续的各道次变形量对比上一道次的变形量,仍按照逐道次递减的规律进行;实施例4第二次细拉的首道次变形量12%,小于15%,且从第一道次就开始逐道次递减,得到的产品抗拉强度达不到SWPA级,单向逆转次数<10,对比例4第二次细拉的首道次变形量为25%,大于15%,从第二道次开始,后续的各道次变形量对比上一道次的变形量递减,得到的产品抗拉强度达不到SWPA级,单向逆转次数<10,证明道次变形量和变化规律的限制缺一不可;
(3)结合实施例1-2和对比例2-3可以看出,实施例1-2控制N元素含量为0.16%,得到的不锈钢丝抗拉强度>2450MPa,单向扭转次数>15次,耐腐蚀性较好,对比例2中N元素含量为0.02%,耐腐蚀性不好,对比例2中N元 素含量为0.2%,,对比例3对比例2-3得到的不锈钢丝抗拉强度低于实施例1-2,单向扭转次数<10,证明本申请控制元素含量有利于提高耐腐蚀性、强度和塑性;
(4)结合实施例1、3和对比例5-6可以看出,实施例1和实施例3控制固溶温度分别为1035℃和1070℃,抗拉强度>2450MPa,单向扭转次数>15次,耐腐蚀性较好,,而对比例5固溶温度980℃,抗拉强度达到SWPA级但是单向扭转次数<10,对比例6固溶温度1150℃,抗拉强度达不到SWPA级,单向扭转次数也<10,证明控制固溶温度有助于提高线材强度和塑性;
(5)结合实施例1、5-6可以看出,本申请提供的不锈钢丝制备方法,可以生产线径2mm以下的不锈钢线材,且抗拉强度都达到了SWPA级,单向扭转次数>10次,耐腐蚀性能较好。
综上所述,本申请提供的制备方法生产的不锈钢丝,可选条件下强度达到SWPA级,线径为0.5mm时,抗拉强度>2300MPa,单向扭转次数≥15,耐腐蚀性能较好,在原工艺的基础上通过改进元素含量、道次变形量及固溶温度,得到了性质优良的产品,流程简单,适合工业生产使用。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,而是由权利要求书限定。
Claims (12)
- 一种不锈钢丝,其中,基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按质量百分数计包括:C:0.03%-0.08%、Ni:6.50%-7.50%、Cr:16.50%-17.50%、N:0.15-0.17%、Si≤1.00%、Mn≤2.00%、P≤0.025%和S≤0.025%,其余组分为Fe以及不可避免的杂质。
- 根据权利要1所述的不锈钢丝,其中,基于所述不锈钢丝的总质量为100%计,所述不锈钢丝的化学成分按照质量百分数计包括:C:0.03%-0.05%、Ni:6.50%-7.00%、Cr:16.50%-17.00%和N:0.16-0.17%;
- 根据权利要1或2所述的不锈钢丝,其中,所述不锈钢丝的线径为2mm以下。
- 根据权利要3所述的不锈钢丝,其中,所述不锈钢丝的线径为0.5mm以下。
- 一种根据权利要求1-4中任一项所述的不锈钢丝的制备方法,其中,所述制备方法包括以下步骤:(1)粗拉:预处理后得到的预处理不锈钢丝进行粗拉拉丝处理,得到粗拉不锈钢丝;(2)清洗:清洗步骤(1)所述粗拉不锈钢丝或步骤(4)中细拉不锈钢丝的表面,得到清洁不细钢丝;(3)固溶:所述清洁不锈钢丝在固溶温度为1000~1120℃下进行固溶处理,随后水冷,得到淬火不锈钢丝;(4)细拉:所述淬火不锈钢丝进行细拉拉丝处理;依次重复步骤(2)-(4)各一次,第一次的步骤(4)后得到细拉不锈钢丝,第二次的步骤(4)中细拉的首道次变形量不大于15%,第二次的步骤(4) 后得到所述不锈钢丝。
- 根据权利要求5所述的制备方法,其中,步骤(1)中所述预处理包括皮膜处理后烘干,得到预处理不锈钢丝;可选地,所述皮膜处理包括将不锈钢线材原料浸泡在皮膜处理液中反应,生成皮膜;可选地,所述皮膜处理液的浓度为12-18wt%,可选为14-16wt%;可选地,所述皮膜处理液的温度为70-90℃,可选为75-85℃;可选地,所述浸泡的时间为20-30min,可选为22-28min;可选地,所述烘干的温度为180-230℃,可选为200-210℃;可选地,所述烘干的时间为100-150min,可选为120-130min;可选地,步骤(1)中所述预处理不锈钢丝经放线装置进入粗拉拉丝装置中,进行粗拉拉丝处理;可选地,所述粗拉拉丝装置包括直进式拉丝机;可选地,所述粗拉拉丝装置包括粗抽拉丝模盒;可选地,所述粗拉拉丝模盒在拉丝时,通循环水冷却;可选地,所述循环水的温度为25-35℃;可选地,所述粗拉拉丝处理时采用润滑粉;可选地,所述粗拉拉丝处理中第一道次至倒数第二道次采用的润滑粉包括钙系润滑粉;可选地,所述粗拉拉丝处理中末道次采用的润滑粉包括钠系润滑粉。
- 根据权利要求5或6所述的制备方法,其中,步骤(2)中所述清洗包括将步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝置于电解装置, 对电解装置进行通电,随后漂洗表面残留的润滑粉,得到清洁不锈钢丝;可选地,所述电解装置的阳极材料为所述粗拉不锈钢丝或所述细拉不锈钢丝;可选地,所述电解装置的阴极材料包括铅板;可选地,所述电解装置的电解液包括稀硫酸溶液;可选地,所述稀硫酸溶液的浓度为150-300g/L,可选为200-250g/L;可选地,所述漂洗的漂洗液包括水。
- 根据权利要求5-7任一项所述的制备方法,其中,步骤(3)中所述清洁不锈钢丝通过被动放线装置进入固溶装置进行固溶处理;可选地,所述固溶装置包括管式连续退火炉;可选地,所述固溶处理的保护气为氨分解气;可选地,所述固溶温度进一步可选为1000-1070℃;可选地,所述水冷的水温为10-50℃,可选为20-40℃。
- 根据权利要求5-8任一项所述的制备方法,其中,步骤(4)中所述淬火不锈钢丝经放线装置进入细拉拉丝装置中,进行细拉拉丝处理;可选地,所述细拉拉丝装置包括直进式拉丝机;可选地,所述细拉拉丝装置包括细拉拉丝模盒;可选地,所述细拉拉丝模盒在拉丝时,通循环水冷却;可选地,所述循环水的温度为25-35℃。
- 根据权利要求5-9任一项所述的制备方法,其中,步骤(1)中粗拉和第一次的步骤(4)中细拉中首道次的变形量各自独立地≥30%;可选地,所述步骤(1)中粗拉和第一次的步骤(4)中细拉中中间道次的 变形量各自独立地为16-30%;可选地,所述步骤(1)中粗拉和第一次的步骤(4)中细拉,每道次的变形量较上一道次的变形量递减;可选地,所述步骤(1)中粗拉和第一次的步骤(4)中细拉中末道次的变形量各自独立地为14-16%;可选地,所述第二次的步骤(4)中细拉中中间道次的变形量为17-25%;可选地,所述第二次的步骤(4)中细拉中末道次的变形量为14-16%。
- 根据权利要求5-10任一项所述的制备方法,其中,包括以下步骤:(1)粗拉:将不锈钢线材原料浸泡在70-90℃,12-18wt%的皮膜处理液中反应20-30min,生成皮膜后,在180-230℃下烘干100-150min,得到预处理不锈钢丝,所述预处理不锈钢丝经放线装置进入直进式拉丝机中进行粗拉拉丝处理,首道次变形量≥30%,中间道次的变形量为16-30%,每道次变形量较上一道次的变形量递减,末道次的变形量为14-16%,拉丝时,粗拉拉丝模盒通25-35℃的循环水冷却,第一道次至倒数第二道次采用钙系润滑粉,末道次采用钠系润滑粉;(2)清洗:以步骤(1)所述粗拉不锈钢丝或步骤(4)所述细拉不锈钢丝为阳极,铅板为阴极,150-300g/L的稀硫酸溶液为电解液进行通电清洗,随后用水漂洗表面残留的润滑粉,得到清洁不锈钢丝;(3)固溶:所述清洁不锈钢丝通过被动放线装置进入管式连续退火炉,在固溶温度为1000~1120℃下进行固溶处理,保护气为氨分解气,随后10-50℃水冷;(4)细拉:所述淬火不锈钢丝经放线装置进入直进式拉丝机中,进行细拉 拉丝处理,拉丝时,细拉拉丝模盒通25-35℃的循环水冷却;依次重复步骤(2)-(4)各一次,其中,第一次步骤(4)中首道次的变形量≥30%,中间道次的变形量为16-30%,每道次的变形量较上一道次的变形量递减,末道次的变形量为14-16%,第一次步骤(4)后得到细拉不锈钢丝,第二次步骤(4)中首道次的变形量≤15%,中间道次的变形量为17-25%,末道次的变形量为14-16%,第二次步骤(4)后得到的不锈钢丝进行包装,得到所述不锈钢丝。
- 一种不锈钢丝弹簧,其中,所述不锈钢丝弹簧包括权利要求1-4中任一项所述的不锈钢丝。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111067255.6 | 2021-09-13 | ||
CN202111067255.6A CN113789481B (zh) | 2021-09-13 | 2021-09-13 | 一种不锈钢丝及其制备方法和不锈钢弹簧 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023035444A1 true WO2023035444A1 (zh) | 2023-03-16 |
Family
ID=78879957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/136501 WO2023035444A1 (zh) | 2021-09-13 | 2021-12-08 | 一种不锈钢丝及其制备方法和不锈钢弹簧 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113789481B (zh) |
WO (1) | WO2023035444A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115747615A (zh) * | 2022-11-22 | 2023-03-07 | 江阴法尔胜泓昇不锈钢制品有限公司 | 一种1Cr18Ni9Ti高强度高塑性冷镦线的制备方法及钢丝 |
CN115710678A (zh) * | 2022-11-22 | 2023-02-24 | 江阴法尔胜泓昇不锈钢制品有限公司 | 一种17-7ph不锈钢弹簧钢丝的制备方法及钢丝 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108754333A (zh) * | 2013-02-28 | 2018-11-06 | 日新制钢株式会社 | 奥氏体系不锈钢板及使用其的高弹性极限非磁性钢材的制造方法 |
CN111021116A (zh) * | 2019-12-27 | 2020-04-17 | 江阴法尔胜泓昇不锈钢制品有限公司 | 一种编织网用耐腐蚀不锈钢丝绳生产工艺 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5098217B2 (ja) * | 2005-09-28 | 2012-12-12 | 新日鐵住金株式会社 | 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接継手並びにその製造方法 |
CN101429630B (zh) * | 2007-06-12 | 2010-09-15 | 江阴康瑞不锈钢制品有限公司 | 新型奥氏体冷镦不锈钢及其钢丝的制造方法 |
US20140060428A1 (en) * | 2011-03-01 | 2014-03-06 | Nippon Steel & Sumitomo Metal Corporation | Metal plate for laser processing and method for producing stainless steel plate for laser processing |
CN104438391B (zh) * | 2014-11-26 | 2016-11-02 | 山东腾达不锈钢制品有限公司 | 一种不锈钢自动焊丝表面处理工艺及其装置 |
SE541925C2 (en) * | 2018-04-26 | 2020-01-07 | Suzuki Garphyttan Ab | A stainless steel |
-
2021
- 2021-09-13 CN CN202111067255.6A patent/CN113789481B/zh active Active
- 2021-12-08 WO PCT/CN2021/136501 patent/WO2023035444A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108754333A (zh) * | 2013-02-28 | 2018-11-06 | 日新制钢株式会社 | 奥氏体系不锈钢板及使用其的高弹性极限非磁性钢材的制造方法 |
CN111021116A (zh) * | 2019-12-27 | 2020-04-17 | 江阴法尔胜泓昇不锈钢制品有限公司 | 一种编织网用耐腐蚀不锈钢丝绳生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN113789481A (zh) | 2021-12-14 |
CN113789481B (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023035444A1 (zh) | 一种不锈钢丝及其制备方法和不锈钢弹簧 | |
TWI390052B (zh) | 高強度罐用鋼板及其製造方法 | |
WO2018095085A1 (zh) | 耐海洋大气、海水飞溅腐蚀的 210mm 厚易焊接 F690 钢板 | |
CN107227427A (zh) | Φ7.0mm2000MPa级镀锌钢丝及其制造方法 | |
CN110205446A (zh) | 一种g520马氏体沉淀硬化不锈钢热处理方法 | |
CN103639231B (zh) | 一种铬钼低合金镀锌钢绞线的制造方法 | |
JP7475374B2 (ja) | 伸線加工性及び衝撃靭性に優れた非調質線材及びその製造方法 | |
CN104630614B (zh) | 一种改善超低碳铝镇静钢镀锌产品成形性能的方法 | |
CN115233100B (zh) | 一种海洋工程用镀锌钢丝绳的生产工艺 | |
CN107267799B (zh) | 一种铬锆铜合金材料及其制备方法 | |
CN114107834B (zh) | 一种高强铁镍钼合金丝材及其低成本制备方法 | |
CN110257720A (zh) | 一种免退火不锈钢板材的生产工艺 | |
CN113789430B (zh) | 一种提高05Cr17Ni4Cu4Nb钢力学性能的热处理方法 | |
CN105543715A (zh) | 一种高强度耐蚀高氮钢紧固件及其制造工艺 | |
CN102162071A (zh) | 轧管用限动芯棒钢材料及其制造方法 | |
JP2019014965A (ja) | ゴルフクラブヘッド用合金及びそれを用いたゴルフクラブヘッドの製造方法 | |
WO2022199113A1 (zh) | 一种非调质钢耐候高强度螺栓及其制造方法 | |
CN110306128B (zh) | 一种不锈钢材料和使用该材料的加热管及其应用 | |
CN114381588B (zh) | 一种高强度、耐腐蚀和抗疲劳纳米/超细晶304不锈钢加工方法 | |
CN116024503B (zh) | 一种具有高强度的节镍型双相不锈钢丝及其制备方法 | |
CN115747615A (zh) | 一种1Cr18Ni9Ti高强度高塑性冷镦线的制备方法及钢丝 | |
CN114990292B (zh) | 一种用于热作模具钢的热处理方法 | |
JP2003105495A (ja) | 変形能に優れた線状または棒状鋼、および機械部品 | |
CN117867406A (zh) | 一种不锈钢线材、加工工艺及其应用 | |
KR940007370B1 (ko) | 내식성이 우수한 전봉강관의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21956613 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21956613 Country of ref document: EP Kind code of ref document: A1 |