WO2023035322A1 - 多阶衍射透镜的消色差方法及消色差多阶衍射透镜 - Google Patents

多阶衍射透镜的消色差方法及消色差多阶衍射透镜 Download PDF

Info

Publication number
WO2023035322A1
WO2023035322A1 PCT/CN2021/119737 CN2021119737W WO2023035322A1 WO 2023035322 A1 WO2023035322 A1 WO 2023035322A1 CN 2021119737 W CN2021119737 W CN 2021119737W WO 2023035322 A1 WO2023035322 A1 WO 2023035322A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive lens
order diffractive
achromatic
lens
gray scale
Prior art date
Application number
PCT/CN2021/119737
Other languages
English (en)
French (fr)
Inventor
李涛
肖行健
祝世宁
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to KR1020227025896A priority Critical patent/KR102685840B1/ko
Publication of WO2023035322A1 publication Critical patent/WO2023035322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings

Definitions

  • the invention relates to an achromatic method for a multi-order diffractive lens and an achromatic multi-order diffractive lens.
  • obtaining wide-spectrum achromatic imaging is one of the important goals of optical imaging.
  • compound lenses composed of a variety of different materials are usually used to eliminate the refractive chromatic aberration caused by material dispersion, so as to achieve clear imaging in the entire spectrum, or to combine multiple refractive lenses into a lens group to achieve accurate imaging. Suppression of chromatic aberration.
  • Achromatic compound lenses composed of a variety of different materials are currently roughly divided into three categories: achromat lenses, apochromat lenses, and superachromat lenses; among them, achromat lenses use at least two materials to eliminate two wavelengths ( Red light and blue light) chromatic aberration; apochromatic lenses use at least three materials to eliminate chromatic aberration at three wavelengths; superachromatic lenses use at least four materials to eliminate chromatic aberration at four wavelengths. Since the achromatic performance of this type of lens needs to be improved by increasing the types of materials, compared with ordinary lenses, it is larger in size, requires high processing precision, and is expensive to manufacture.
  • Refractive lenses with different materials and different curvatures have different dispersion laws, and achromatic aberration can also be achieved by combining multiple refractive lenses into a lens group.
  • This solution doubles the volume and cost of the entire system.
  • the alignment between lenses is also a process that requires very high precision, which increases the difficulty of manufacturing and greatly limits the promotion and application of achromatic imaging devices.
  • the purpose of the present invention is to provide an achromatic method for a multi-order diffractive lens, which can clearly image images in a wide spectral range, and an achromatic multi-order diffractive lens.
  • the achromatic method of the multi-order diffractive lens according to the present invention is characterized in that it comprises the following steps:
  • step (3) smoothing the m ' obtained in step (2), removing the unit structure with a large aspect ratio in m ', and obtaining the smoothed gray scale distribution m ";
  • m i is the gray level of the i-th ring height
  • N is the ring number of the multi-order diffractive lens
  • M is the maximum value of the gray level
  • the achromatic multi-order diffractive lens of the present invention is composed of ring structures with different heights, and the maximum aspect ratio of the unit structure of the gray scale distribution of each ring height does not exceed 2:1.
  • Described step (2) is:
  • step (2) Using the solution obtained in step (2) as an initial value, using the pattern search method to calculate the quasi-global optimal solution m' of the constrained optimization problem in step (1).
  • the step (4) uses the steepest descent method to perform gradient descent processing on the m" obtained in the step (3).
  • the present invention has the following advantages: (1) the focus intensity is used as the achromatic optimization target, and the calculation complexity is low and the time consumption is short; (2) by combining the global optimization algorithm and the local optimization algorithm, the relative Compared with only using the global optimization algorithm, the optimization speed is faster, the lens performance is improved, and high-quality achromatic imaging in a wide spectral range is realized; (3) the large-size wide-spectrum achromatic planar lens design is realized, and the traditional achromatic The system is compressed into a flat lens, which greatly reduces the volume and cost of the achromatic imaging system; (4) smoothing the structure height distribution greatly reduces the difficulty of processing, making the processing of multi-order diffractive lenses with large thickness become feasible;
  • Fig. 1 is a schematic diagram of the initialization gray scale distribution m0 of the present invention.
  • Fig. 2 is a schematic diagram of the gray scale number distribution m' of the multi-order diffractive lens after the search process of the present invention
  • Fig. 3 is a schematic diagram of the gray scale distribution of the heights from the 1341st ring to the 1400th ring in Fig. 2;
  • Figure 5 is a schematic diagram of the gray scale distribution m"' of the achromatic multi-order diffractive lens
  • Fig. 6 is a schematic diagram of the gray scale distribution of the heights from the 1341st ring to the 1400th ring in Fig. 5;
  • Figure 7 is a schematic diagram of the initial multi-order diffractive lens of the present invention.
  • FIG. 8 is a schematic diagram of a multi-order diffractive lens after search processing in the present invention.
  • Fig. 9 is a schematic diagram of the smoothed multi-order diffractive lens of the present invention.
  • Fig. 10 is a schematic diagram of the achromatic multi-order diffractive lens of the present invention.
  • Fig. 11 is a diagram of focusing experiment results of the achromatic multi-order diffractive lens of the present invention.
  • Fig. 12 is a white light imaging experiment result diagram of the achromatic multi-order diffractive lens of the present invention.
  • Figure (a) is the result of white light imaging on the resolution plate by the achromatic multi-order diffractive lens
  • Figure (b) is the imaging result of Siemens star white light by achromatic multi-order diffraction lens.
  • the achromatic method of the multi-order diffractive lens of the present invention comprises the following steps:
  • the multi-order diffractive lens is composed of a series of annular structures with different heights, and the phase of the lens can be expressed as:
  • ⁇ (r) represents the phase at the radial coordinate r
  • is the wavelength
  • n( ⁇ ) is the refractive index at the corresponding wavelength
  • h(r) is the height of the structure at r.
  • the width of each ring is a fixed value, which can be represented by ⁇ r, and the number of rings forming the lens is N.
  • the height h is also a discrete distribution, and the height of each step is ⁇ h
  • m is the gray-scale distribution of the multi-order diffractive lens
  • m i is called the gray scale number of the i-th ring height
  • its value is between 1 and M
  • M is the maximum order of the gray scale number
  • the height h at the i-th ring ( i ⁇ r) can be expressed as m i ⁇ h.
  • I(m, ⁇ ) is the light field intensity converging at the focal point after the light of wavelength ⁇ passes through the lens with the gray order distribution of m.
  • the maxmin optimization method is used to ensure the consistency of the focused light field at each wavelength. sex.
  • the computational complexity means that the number of multiplications that need to be calculated is O(N), and if other objective functions are used, for example, the overall light field intensity of the focal plane is used as the objective function, the computational complexity is O (N 2 ), so the focal intensity I takes less time as an objective function.
  • the initial multi-order diffractive lens in this embodiment contains a total of 2560 rings, and the maximum number of gray scales is 192. Therefore, to realize the achromatic design of the above-mentioned multi-order diffractive lens, it is equivalent to solving the following constrained optimization problem:
  • the optimization design scheme is divided into three parts: search, smoothing and gradient descent.
  • the result obtained by binary genetic algorithm optimization is used as the initial value, and the Hooke-Jeeves algorithm is used for further optimization to calculate the quasi-global optimal solution, which is the gray-scale distribution m′ after search processing.
  • the schematic diagram of the distribution m' is shown in Figure 2, and the gray scale distribution of the 1341st ring to the 1400th ring in Figure 3, the rectangular protrusions in Figure 3 are called the unit structure, and the lens corresponding to this distribution realizes the 400-1100nm band elimination Chromatic aberration function, that is, the light in the 400-1100nm band will be focused to the same position after passing through the lens with distribution m'.
  • the gray scale distribution m' of the multi-order diffractive lens has a large aspect ratio (>2:1).
  • m' needs to be smoothed to remove the large aspect ratio in the distribution. Structure.
  • the specific process can be expressed by the following formula:
  • m′′ is the smoothed gray scale distribution
  • ⁇ (m′) and ⁇ (m′′) are the aspect ratio of the unit structure in the m′ and m′′ distributions respectively, that is, the ratio of the height to the width of the unit structure
  • ⁇ 0 is a reference value
  • 2 is taken here
  • is a constant, generally 5 to 10.
  • the distribution m′ with a large aspect ratio The structure becomes a structure with a small aspect ratio, while the structure with a small aspect ratio remains almost unchanged, so the obtained gray scale distribution is m′′;
  • the schematic diagram of the smoothed gray scale distribution m′′ is as follows As shown in Fig. 4, there is no structure with an aspect ratio > 2:1 in the smoothed gray scale distribution m", which greatly reduces the processing difficulty.
  • step (22) Since step (22) will cause the optimization objective function value to decline, it is processed by gradient descent, thereby further improving the optimization objective function value while maintaining a lower overall aspect ratio; the steepest descent method is adopted in this embodiment, and this step can be Expressed as:
  • m′′' is the gray scale distribution after gradient descent processing, that is, the gray scale distribution of the achromatic multi-order diffractive lens.
  • the achromatic multi-order diffractive lens is prepared according to the above method.
  • the initial multi-order diffractive lens before optimization is shown in Figure 7, and the multi-order diffractive lens after search processing is shown in Figure 8; the smoothed multi-order diffractive lens is shown as As shown in FIG. 9 ; the multi-order diffractive lens after gradient descent processing, that is, the achromatic multi-order diffractive lens of the present invention is shown in FIG. 10 .
  • the achromatic multi-order diffractive lens of the present invention has a diameter of 1.024 cm, contains 2560 rings in total, a maximum height of 15 ⁇ m, and a maximum height order of 192. Its gray scale distribution is shown in Figure 5, where the aspect ratio of the unit structure is The maximum value does not exceed 2:1, the focal length of the lens is 5cm, and the achromatic wave band is 400nm-1100nm.
  • Figure 11 shows the results of the focusing experiment, and the lights of different wavelength bands are all focused on the same position on the optical axis;
  • the experimental results of resolution plate and Siemens star white light imaging show that there is no obvious chromatic aberration in the achromatic multi-order diffractive lens of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种多阶衍射透镜的消色差方法,首先根据初始多阶衍射透镜的环数和灰度阶数,设计光经过多阶衍射透镜后在焦点的光场强度的约束优化问题,使每一个波长处的聚焦光场一致,结合全局优化算法和搜索算法计算约束优化问题的准全局最优解,然后进行平滑处理和梯度下降处理,得到实现消色差的多阶衍射透镜;消色差多阶衍射透镜每一环高度的灰度阶数分布的单元结构深宽比最大值不超过2:1。实现了大尺寸宽光谱消色差平面透镜参数设计,将传统的消色差系统压缩为一个平面透镜,极大地降低了消色差成像系统的体积和成本,减小加工难度,提升了透镜性能,实现了宽光谱范围内的高质量消色差成像。

Description

多阶衍射透镜的消色差方法及消色差多阶衍射透镜 技术领域
本发明涉及一种多阶衍射透镜的消色差方法及消色差多阶衍射透镜。
背景技术
在光学成像领域,获得宽光谱消色差成像是光学成像的重要目标之一。在传统的成像系统中,通常是利用多种不同材料组成的复合透镜来消除材料色散产生的折射色差,以此实现整个光谱内的清晰成像,或是将多个折射透镜组成透镜组,实现对色差的抑制。
采用多种不同材料组成的消色差复合透镜,目前大致分为三类:消色差透镜,复消色差透镜,超消色差透镜;其中消色差透镜采用至少两种材料,能够消除两个波长处(红光和蓝光)的色差;复消色差透镜采用至少三种材料,消除三个波长处的色差;超消色差透镜采用至少四种材料,消除四个波长处的色差。由于这类透镜的消色差性能需要通过增加材料种类来提升,相比于普通透镜,其体积更大,且加工精度要求高,制作昂贵。
利用不同材料和不同曲率的折射透镜色散规律不同,通过将多个折射透镜组合成一个透镜组也能实现消色差。这种方案成倍地增加了整个系统的体积和成本,同时透镜之间的对准也是一个精度要求非常高的过程,增加了制造的难度,极大地限制了消色差成像装置的推广和应用。
发明内容
发明目的:本发明的目的是提供一种的多阶衍射透镜的消色差方法,对宽光谱范围内清晰成像,以及消色差多阶衍射透镜。
技术方案:本发明所述的多阶衍射透镜的消色差方法,其特征在于,包括如下步骤:
(1)根据初始多阶衍射透镜的环数和灰度阶数,设计光经过多阶衍射透镜后在焦点的光场强度I(m,λ)的约束优化问题,使每一个波长处的聚焦光场一致,其中m为多阶衍射透镜的灰度阶数分布,λ为光的波长;
(2)结合全局优化算法和搜索算法计算所述的约束优化问题的准全局最优解m′;
(3)对步骤(2)得到的m′进行平滑处理,去除m′中深宽比较大的单元结构,得到平滑处理后的灰度阶数分布m″;
(4)对步骤(3)得到的m″进行梯度下降处理,得到消色差的多阶衍射透镜的灰度阶数分布m″′。
进一步地,所述约束优化问题的公式为:
Figure PCTCN2021119737-appb-000001
s.t 1≤m i≤M
i=1,2…N
其中m i为第i环高度的灰度阶数,N为多阶衍射透镜的环数,M为灰度阶数的最大值。
本发明的消色差多阶衍射透镜,由高度不同的环状结构组成,每一环高度的灰度阶数分布的单元结构深宽比最大值不超过2:1。
所述步骤(2)为:
(21)对所述初始多阶衍射透镜的灰度阶数分布进行二值化处理;
(22)利用二元遗传算法计算所述步骤(1)中约束优化问题的解;
(23)将步骤(2)中得到的解作为初始值,利用模式搜索法计算所述步骤(1)中约束优化问题的准全局最优解m′。
所述步骤(4)采用最速下降法对步骤(3)得到的m″进行梯度下降处理。
有益效果:本发明与现有技术相比的优点在于:(1)以焦点强度作为消色差优化目标,计算复杂度低、耗时短;(2)通过结合全局优化算法与局部优化算法,相比仅采用全局优化算法,优化速度更快,提升了透镜性能,实现了宽光谱范围内的高质量消色差成像;(3)实现了大尺寸宽光谱消色差平面透镜设计,将传统的消色差系统压缩为一个平面透镜,极大地降低了消色差成像系统的体积和成本;(4)对结构高度分布进行平滑处理,大大降低了加工难度,使得具有较大厚度的多阶衍射透镜加工变得可行;
附图说明
图1为本发明的初始化灰度阶数分布m 0的示意图;
图2为本发明的搜索处理后的多阶衍射透镜的灰度阶数分布m′的示意图;
图3为图2中第1341环至第1400环高度的灰度阶数分布的示意图;
图4为平滑处理后的多阶衍射透镜的灰度阶数分布m″的示意图;
图5为消色差的多阶衍射透镜的灰度阶数分布m″′的示意图;
图6为图5中第1341环至第1400环高度的灰度阶数分布的示意图;
图7为本发明的初始多阶衍射透镜示意图;
图8为本发明的搜索处理后的多阶衍射透镜示意图;
图9为本发明的平滑处理后的多阶衍射透镜示意图;
图10为本发明消色差多阶衍射透镜示意图;
图11为本发明的消色差多阶衍射透镜的聚焦实验结果图;
图12为本发明的消色差多阶衍射透镜的白光成像实验结果图;
其中图(a)为消色差多阶衍射透镜对分辨率板白光成像结果;
图(b)为消色差多阶衍射透镜对西门子星白光成像结果。
具体实施方式
本发明的多阶衍射透镜的消色差方法包括如下步骤:
(1)设计多阶衍射透镜的消色差优化目标
多阶衍射透镜由一系列高度不同的环状结构组成,透镜的相位可以表示为:
Figure PCTCN2021119737-appb-000002
其中φ(r)表示径向坐标r处的相位,λ为波长,n(λ)为对应波长处的折射率,h(r)为r处结构高度。
本实施例中,每一环的宽度为固定值,可以用Δr表示,组成透镜的环数为N。由于实际加工需要采用灰度激光光刻工艺,因此高度h也是一个离散分布,每一阶高度为Δh,m为多阶衍射透镜的灰度阶数分布,m={m i},i=1,2,3……N,m i称为第i环高度的灰度阶数,其值在1到M之间,M为灰度阶数的最大阶,这样第i环处的高度h(iΔr)可以表示为m iΔh。引入环数目和灰度阶数之后,优化目标表示如下:
Figure PCTCN2021119737-appb-000003
s.t 1≤m i≤M
i=1,2…N
其中I(m,λ)为波长λ的光经过灰度阶数分布为m的透镜后,在焦点处会聚的光场强度,采用了maxmin优化手段来保证每一个波长处的聚焦光场的一致性。采用焦点强度I作为目标函数,计算复杂度即需要计算的乘法数目为O(N),而如果采用其他目标函数,比如说将焦面的光场强度整体作为目标函数,则计算复杂度为O(N 2),因此焦点强度I作为目标函数耗时更短。本实施例中的初始多阶衍射透镜一共包含2560环,灰度阶数最大为192阶。因此,要实现上述多阶衍射透镜的消色差设计,等价于求解以下约束优化问题:
Figure PCTCN2021119737-appb-000004
s.t 1≤m i≤192
i=1,2…2560
(2)求解多阶衍射透镜的约束优化问题
为了求解上述约束优化问题,优化设计方案分为三个部分:搜索、平滑和梯度下降。
(21)搜索处理
结合全局优化算法和搜索算法实现在较短时间内得到一个准全局最优解,如果仅采用全局优化算法,则搜索速度会慢一个到两个量级,且搜索速度比随着结构尺寸增大而 增大。本实施例中使用二元遗传算法和Hooke-Jeeves算法(模式搜索法)。具体流程如下:给定初始多阶衍射透镜的初始化灰度阶数分布m 0,m 0为一个随机向量,长度为2560,每一分量取值为1~192,初始化灰度阶数分布m 0的示意图如图1所示。然后将其二值化,作为二元遗传算法优化的初始种群,并采用二元遗传算法进行优化。之后将二元遗传算法优化得到的结果作初始值,采用Hooke-Jeeves算法进行进一步优化,计算准全局最优解,即为搜索处理后灰度阶数分布m′搜索处理后的灰度阶数分布m′的示意图如图2所示,图3第1341环至第1400环的灰度阶数分布,图3中的矩形突起称为单元结构,该分布对应的透镜实现了400-1100nm波段消色差功能,即400-1100nm波段的光经过分布为m′的透镜后将会聚焦到同一个位置。
(22)平滑处理
经过搜索处理后多阶衍射透镜的灰度阶数分布m′具有较大的深宽比(>2:1),为了满足加工要求,需要对m′进行平滑处理,去除分布中深宽比较大的结构。具体过程可以用下式表示:
Figure PCTCN2021119737-appb-000005
其中m″为平滑处理后的灰度阶数分布,α(m′)和α(m″)分别为m′和m″分布中单元结构的深宽比,即单元结构的高度与宽度之比,α 0为参考值,在这里取2,β为常数,一般取5~10。当输入的α(m′)大于α 0时,上式输出的α(m″)会显著小于α(m′);而当输入的α(m′)小于α 0时,上式输出的α(m″)几乎等于α(m′)。因此,通过上式可以将分布m′中大深宽比的结构变为小深宽比的结构,而小深宽比的结构则几乎保持不变,这样得到的灰度阶数分布即为m″;平滑处理后的灰度阶数分布m″的示意图如图4所示,经平滑处理的灰度阶数分布m″中则不存在深宽比>2:1的结构,这使得加工难度大大降低。
(23)梯度下降处理
由于步骤(22)会造成优化目标函数值下降,因此采用梯度下降进行处理,从而进一步提升优化目标函数值,同时保持整体较低的深宽比;本实施例中采用最速下降法,这一步可以表示为:
Figure PCTCN2021119737-appb-000006
其中m″′为梯度下降处理后的灰度阶数分布,即消色差的多阶衍射透镜的灰度阶数分布,其示意图如图5所示,图6所示为第1341环至第1400环的灰度阶数分布;f为目标函数,在这个问题中f=min λI(m″,λ),γ为一个常数,表示下降步长,由于优化目标为求最大值,因此γ取正数。
根据上述方法制备消色差多阶衍射透镜,优化处理前的初始多阶衍射透镜如图7所示,搜索处理后的多阶衍射透镜如图8所示;平滑处理后的的多阶衍射透镜如图9所示;梯度下降处理后的多阶衍射透镜,即本发明的消色差多阶衍射透镜如图10所示。本发明的消色差多阶衍射透镜直径为1.024cm,一共包含2560环,最大高度为15μm,高度阶数最大为192阶,其灰度阶数分布如图5所示,其中单元结构深宽比最大值不超过2:1,透镜焦距为5cm,消色差波段为400nm-1100nm。
通过聚焦实验和成像实验可以验证消色差多阶衍射透镜的消色差性能,图11为聚焦实验结果,不同波段的光均聚焦在光轴上同一位置;图12(a)~(b)为对分辨率板和西门子星白光成像实验结果,表明本发明的消色差多阶衍射透镜并不存在明显的色差。

Claims (7)

  1. 一种多阶衍射透镜的消色差方法,其特征在于,包括如下步骤:
    (1)根据初始多阶衍射透镜的环数和灰度阶数,设计光经过多阶衍射透镜后在焦点的光场强度I(m,λ)的约束优化问题,使每一个波长处的聚焦光场一致,其中m为多阶衍射透镜的灰度阶数分布,λ为光的波长;
    (2)结合全局优化算法和搜索算法计算所述的约束优化问题的准全局最优解m′;
    (3)对步骤(2)得到的m′进行平滑处理,去除m′中深宽比较大的单元结构,得到平滑处理后的灰度阶数分布m″;
    (4)对步骤(3)得到的m″进行梯度下降处理,得到消色差的多阶衍射透镜的灰度阶数分布m″′。
  2. 根据权利要求1所述的多阶衍射透镜的消色差方法,其特征在于,所述步骤(1)的约束优化问题采用maxmin优化手段。
  3. 根据权利要求1所述的多阶衍射透镜的消色差方法,其特征在于,所述步骤(1)的约束优化问题的公式为:
    Figure PCTCN2021119737-appb-100001
    s.t 1≤m i≤M
    i=1,2…N
    其中m i为第i环高度的灰度阶数,N为多阶衍射透镜的环数,M为灰度阶数的最大值。
  4. 根据权利要求1所述的多阶衍射透镜的消色差方法,其特征在于,所述步骤(3)中平滑处理后的灰度阶数分布m″的深宽比α(m″)的计算公式如下:
    Figure PCTCN2021119737-appb-100002
    其中β为常数,5≤β≤10,α 0为m′的深宽比α(m′)的参考值。
  5. 根据权利要求1所述的多阶衍射透镜的消色差方法,其特征在于,所述步骤(2)为:
    (21)对所述初始多阶衍射透镜的灰度阶数分布进行二值化处理;
    (22)利用二元遗传算法计算所述步骤(1)中约束优化问题的解;
    (23)将步骤(2)中得到的解作为初始值,利用模式搜索法计算所述步骤(1)中约束优化问题的准全局最优解m′。
  6. 根据权利要求1所述的多阶衍射透镜的消色差方法,其特征在于,所述步骤(4)采用最速下降法对步骤(3)得到的m″进行梯度下降处理。
  7. 一种利用权利要求1-6任一项所述方法制备的消色差多阶衍射透镜,其特征在于,由高度不同的环状结构组成,每一环高度的灰度阶数分布的单元结构深宽比最大值不超过2:1。
PCT/CN2021/119737 2021-09-07 2021-09-23 多阶衍射透镜的消色差方法及消色差多阶衍射透镜 WO2023035322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227025896A KR102685840B1 (ko) 2021-09-07 2021-09-23 다차 회절 렌즈의 색지움 방법 및 색지움 다차 회절 렌즈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111043831.3A CN113866979B (zh) 2021-09-07 2021-09-07 多阶衍射透镜的消色差方法及消色差多阶衍射透镜
CN202111043831.3 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035322A1 true WO2023035322A1 (zh) 2023-03-16

Family

ID=78994614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119737 WO2023035322A1 (zh) 2021-09-07 2021-09-23 多阶衍射透镜的消色差方法及消色差多阶衍射透镜

Country Status (3)

Country Link
KR (1) KR102685840B1 (zh)
CN (1) CN113866979B (zh)
WO (1) WO2023035322A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197785A (ja) * 1996-11-15 1998-07-31 Olympus Optical Co Ltd 色消しレンズ
US20040085641A1 (en) * 2001-11-09 2004-05-06 Xradia, Inc. Achromatic fresnel optics based lithography for short wavelength electromagnetic radiations
JP2011215267A (ja) * 2010-03-31 2011-10-27 Nagoya Univ 色消しレンズとその製造方法、および色消しレンズを備えた光学装置
CN109343217A (zh) * 2018-11-13 2019-02-15 南京大学 一种基于超构透镜阵列的消色差光场相机系统及消色差方法
CN110376731A (zh) * 2019-07-13 2019-10-25 南京理工大学 基于多层超构表面的宽带消色差超构透镜组的构建方法
CN113093321A (zh) * 2020-01-09 2021-07-09 苏州大学 一种多台阶衍射透镜及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912770A (en) * 1996-11-15 1999-06-15 Olympus Optical Co., Ltd. Achromatic lens system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197785A (ja) * 1996-11-15 1998-07-31 Olympus Optical Co Ltd 色消しレンズ
US20040085641A1 (en) * 2001-11-09 2004-05-06 Xradia, Inc. Achromatic fresnel optics based lithography for short wavelength electromagnetic radiations
JP2011215267A (ja) * 2010-03-31 2011-10-27 Nagoya Univ 色消しレンズとその製造方法、および色消しレンズを備えた光学装置
CN109343217A (zh) * 2018-11-13 2019-02-15 南京大学 一种基于超构透镜阵列的消色差光场相机系统及消色差方法
CN110376731A (zh) * 2019-07-13 2019-10-25 南京理工大学 基于多层超构表面的宽带消色差超构透镜组的构建方法
CN113093321A (zh) * 2020-01-09 2021-07-09 苏州大学 一种多台阶衍射透镜及其制作方法

Also Published As

Publication number Publication date
KR20230038635A (ko) 2023-03-21
KR102685840B1 (ko) 2024-07-19
CN113866979A (zh) 2021-12-31
CN113866979B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
KR101610975B1 (ko) 단일-렌즈 확장피사계심도 촬상시스템
CN108279485A (zh) 投影镜头
US20210286972A1 (en) Determination method, elimination method and apparatus for electron microscope aberration
CN107831630B (zh) 投影镜头
CN107436485A (zh) 光学成像系统
US11536935B2 (en) Lens system and image pickup apparatus
WO2023035322A1 (zh) 多阶衍射透镜的消色差方法及消色差多阶衍射透镜
CN106932886A (zh) 虹膜镜头
CN106990505A (zh) 成像镜头
CN109143426B (zh) 一种位相编码菲涅尔透镜
JP6586647B2 (ja) ビーム強度変換光学系
JP3833754B2 (ja) 回折型光学素子を有する電子カメラ
RU192789U1 (ru) Четырехлинзовый апохроматический объектив
Fang et al. Extended optimization of chromatic aberrations via a hybrid Taguchi–genetic algorithm for zoom optics with a diffractive optical element
CN208126003U (zh) 投影镜头
CN207148403U (zh) 光学成像系统
CN103105666A (zh) 一种曝光投影物镜
CN114518656A (zh) 一种多波长共焦衍射元件及其设计方法
CN110412743B (zh) 一种镜头
RU2426160C1 (ru) Проекционный объектив
RU188678U1 (ru) Зеркально-линзовый объектив
RU212467U1 (ru) Объектив
RU2377619C1 (ru) Светосильный объектив
CN113419325B (zh) 一种搭配液体镜头的光学成像镜头
Popov et al. The use of a tilted diffractive optical element with an increased depth of field in the problem of accounting and control of railway rolling stock

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21956498

Country of ref document: EP

Kind code of ref document: A1