WO2023033631A1 - Pharmaceutical composition comprising brucine for prevention or treatment of neurologic disorder or psychiatric disorder - Google Patents

Pharmaceutical composition comprising brucine for prevention or treatment of neurologic disorder or psychiatric disorder Download PDF

Info

Publication number
WO2023033631A1
WO2023033631A1 PCT/KR2022/013390 KR2022013390W WO2023033631A1 WO 2023033631 A1 WO2023033631 A1 WO 2023033631A1 KR 2022013390 W KR2022013390 W KR 2022013390W WO 2023033631 A1 WO2023033631 A1 WO 2023033631A1
Authority
WO
WIPO (PCT)
Prior art keywords
brucine
eef2
neurological
formula
mice
Prior art date
Application number
PCT/KR2022/013390
Other languages
French (fr)
Korean (ko)
Inventor
김명환
송우석
윤상호
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2023033631A1 publication Critical patent/WO2023033631A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/475Quinolines; Isoquinolines having an indole ring, e.g. yohimbine, reserpine, strychnine, vinblastine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/116Heterocyclic compounds
    • A23K20/132Heterocyclic compounds containing only one nitrogen as hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds

Definitions

  • the present invention relates to a pharmaceutical composition for the prevention or treatment of neurological or mental disorders comprising brucine as an active ingredient.
  • Excitatory synaptic transmission is caused by the opening of AMPA receptors (AMPAR) and NMDA receptors (NMDAR) in post-synaptic neurons in response to glutamate released from presynaptic terminals, resulting in excitatory postsynaptic currents ( It induces depolarization in neurons through the generation of excitatory post-synaptic current (EPSC).
  • AMPA receptors AMPA receptors
  • NBDAR NMDA receptors
  • GABA gamma-aminobutyric acid
  • GABAR GABA receptor
  • GlyR GABA receptor
  • IRC inhibitory post-synaptic current
  • PTSD post-stress disorder
  • epilepsy pain
  • drug addiction schizophrenia
  • schizophrenia obsessive-compulsive disorder
  • motor dysfunction motor dysfunction
  • degenerative brain disease degenerative brain disease
  • brucine reduces nerve activity in the central nervous system and can delay and suppress epilepsy caused by convulsant pentylenetetrazol. found In addition, the present invention was completed by finding that a low concentration of brucine can suppress the hyperactivity of mice induced by genetic transformation or MK-801 injection.
  • the present invention is to provide a pharmaceutical composition for preventing or treating neurological or psychiatric diseases comprising brucine as an active ingredient.
  • the present invention is to provide a method for treating a neurological or mental disease comprising administering brucine in a therapeutically effective amount to a subject.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of neurological or psychiatric disorders comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the neurological disease consists of brain tumor, cerebral infarction, hypertensive cerebral hemorrhage, cerebral contusion, cerebral arteriovenous malformation, brain abscess, encephalitis, hydrocephalus, epilepsy, concussion, cerebral palsy, dementia, spinal cord tumor, spinal arteriovenous malformation, spinal cord infarction, pain, headache and migraine. It may be selected from the group.
  • the mental disorders include hyperactivity, attention deficit disorder, autism, post-traumatic stress disorder (PTSD), intellectual disability, dementia, drug addiction, schizophrenia, obsessive-compulsive disorder, grandiose delusion, personality disorder, neurosis, alcoholism, enuresis, manic depression, and motor function It may be selected from the group consisting of disabilities.
  • the pharmaceutical composition may further include at least one of a pharmaceutically acceptable carrier, excipient, and diluent.
  • the present invention provides a food composition for preventing or improving neurological or psychiatric disorders, comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the food may be a health functional food.
  • the present invention provides an animal feed composition for preventing or improving neurological or psychiatric disorders, comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a method for treating a neurological or psychiatric disorder comprising administering a therapeutically effective amount of the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof to a subject.
  • Brucin according to the present invention reduces neural circuit activity in the central nervous system, especially when used at a low concentration, and has an effect of suppressing hyperactivity induced by genetic transformation or MK-801 as well as reducing epilepsy in animals. there is.
  • brucine according to the present invention does not affect the general activity of animals and does not cause paralysis or convulsions. This means that brucine reduces nerve activity below a certain concentration that inhibits glycine receptors. Therefore, low-concentration brucine can be effectively used for the prevention or treatment of any neurological or psychiatric disease accompanied by excessive nerve activity.
  • Figure 1 is a diagram showing that brucine of 1 mg / kg reduces the neural activity of the mouse forebrain (forebrain).
  • Figure 1A shows the expression of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tubulin in the forebrain one hour after intraperitoneal injection of 1 mg/kg brucine into mice. ting was investigated.
  • Figure 2 is a diagram showing that brucine of 1 mg / kg reduces the neural activity of the mouse hippocampus (hippocampus).
  • Figure 2A shows phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tu
  • the expression of Blin was investigated by Western blotting.
  • Figure 3 is a synaptic agent (pircrotoxin, NBQX, muscimol) is a diagram showing that 1 mg / kg of brucine induces a decrease in nerve activity through comparison with the pattern of changing the p-eEF2 / eEF2 ratio.
  • Figure 3A shows the effect of brucine on the forebrain p-eEF2 /eEF2 obtained in Figures 1A and 1B by muscimol (1.5 mg/kg, intraperitoneal injection), picrotoxin (2 mg/kg, intraperitoneal injection) , and NBQX (10 mg/kg, intraperitoneal injection).
  • Muscimol decreases neuronal activity by enhancing inhibitory synaptic conduction, and picrotoxin increases neuronal activity by inhibiting synaptic conduction.
  • NBQX reduces neuronal activity through inhibition of excitatory synaptic conduction.
  • 1 mg/kg of brucine on forebrain p-eEF2/eEF2 showed an effect similar to that of muscimol or NBQX, indicating a decrease in neural activity.
  • FIG. 4 is data confirming the degree of phosphorylation of eEF2 in the hippocampus according to the intraperitoneally injected brucin concentration.
  • Figure 4A shows the expression levels of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2) and total eEF2 by preparing hippocampal homogenates 1 hour after intraperitoneal injection of brucine at various concentrations into mice.
  • FIG. 5 is a diagram showing that 1 mg/kg (intraperitoneal injection) of brucine does not induce paralysis, convulsions, intoxication, or activity changes in normal mice.
  • Figure 5A is the result of measuring the movement of the mouse in the open field (open field) for 30 minutes after 30 minutes after intraperitoneal injection of brucine (1 mg / kg).
  • Figure 5B shows the total distance traveled for the entire 30 minutes.
  • FIG. 6 is a diagram showing that 1 mg/kg of brucine delays and inhibits epileptic induction by pentylenetetrazol (PTZ).
  • PTZ pentylenetetrazol
  • Figure 6A shows the time from PTZ administration to the appearance of the first convulsions or seizures.
  • Figure 6B shows that the degree of epilepsy induced by PTZ was reduced by pretreatment with brucine when the degree of epilepsy was measured through the Lacine scale.
  • FIG. 7 is a diagram showing that 1 to 5 mg/kg of brucine reduces the activity of aminopeptidase p1 deficient (Xpnpep1 KO) mice showing hyperactivity.
  • Brucin or saline was intraperitoneally injected 1 hour before open field test (OFT), and OFT was measured for 30 minutes.
  • Figure 7A shows the distance traveled by Xpnpep1 KO mice (KO +Bru) injected with 1 mg/kg of brucine during the open field test (OFT).
  • Normal (WT) mice and saline (Sal)-injected Xpnpep1 KO mice (KO + Sal) were used as controls.
  • Figure 7B is a schematic diagram of the average distance moved by animals for each group in the OFT for a total of 30 minutes, showing that the distance moved by Xpnpep1 KO mice was reduced by 1 mg/kg of brucine.
  • 7C and 7D are experimental results confirming through OFT that the activity of Xpnpep1 KO is reduced by intraperitoneal injection of 2 mg/kg brucin.
  • 8 is a diagram confirming that 1 mg/kg of brucine suppresses hyperactivity induced by MK-801.
  • 8A is a schematic diagram showing an embodiment. After intraperitoneal injection of saline or brucine to normal mice, MK-801 was intraperitoneally injected (0.2 mg/kg) 30 minutes later, and open field test (OFT) was performed 20 minutes later.
  • 8B shows a group injected with saline twice (sal-sal), a group injected with saline and then injected with MK-801 to induce hyperactivity (Sal-MK), and pretreated with brucine (1 mg/kg). The movement trajectory of the mice of the group intraperitoneally injected with MK-801 (Bru-MK) during the OFT is shown.
  • 8C shows the moving distance of each group of mice over time during the OFT.
  • 8D compares the moving distances of mice for each group during the entire 40-minute OFT.
  • MK-801 injection induces hyperactivity in mice, and brucine at 1 mg/kg suppresses MK-801-induced hyperactivity.
  • Ten mice were used for each group.
  • 9 shows that 0.2 ⁇ M of brucine reduces the excitability of mouse hippocampal CA1 neurons.
  • 9A shows a current protocol injected to observe changes in excitability while recording cell membrane voltage through the whole-cell patch clamp technique.
  • Figure 9B was compared by measuring the action potential (AP) and membrane voltage changes before and after treatment with brucine, which are shown by the current injection shown in FIG. 9A.
  • 9C shows that brucine at 0.2 ⁇ M reduced the number of action potentials generated by current injection.
  • n 8 cells.
  • FIG. 10 is a diagram confirming that the number of action voltages induced by the same current (150 pA) injection in hippocampal CA1 pyramidal neurons is reduced by brucin.
  • Figure 10A shows the number of action potentials displayed by current injection over time, showing that the number decreased by brucine (0.2 ⁇ M).
  • Figure 10b compares the number of action potentials generated by current injection before and after brucine treatment.
  • t(8) 6.714
  • p 0.000150***
  • 10C to 10E are comparisons of resting membrane potential (RMP), input resistance, and sag ratio before and after brucine treatment. 0.2 ⁇ M of brucine increased RMP (Fig.
  • 11 is a diagram showing that brucine does not affect the current induced by glycine.
  • 11A to 11E show the presence or absence of an inhibitory effect according to the concentration of brucine on the current induced by 0.5 mM glycine.
  • Mouse hippocampal brain slices were prepared and current was measured in CA1 cone cells with the membrane voltage fixed at 0 mV through whole-cell patch clamp. After measuring the baseline current for 10 minutes, glycine was treated for the entire 20 minutes, and the latter 10 minutes were treated with glycine and brucine at a predetermined concentration.
  • 12 shows that 200 nM of brucine promotes excitatory synaptic degradation induced by carbachol (CCh).
  • 12B shows the fEPSPs before and after CCh treatment in each condition.
  • compositions for preventing or treating neurological or psychiatric disorders comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the compound represented by Formula 1 is brucine, which is a substance frequently found in Strychnos nux-vomica trees and has a molecular weight of 394.47 g/mol.
  • the pharmaceutically acceptable salt includes all kinds of salts commonly used in the technical field of the present invention, and may be, for example, sulfate (SO 4 ).
  • the present invention includes not only the compound represented by Formula 1 and pharmaceutically acceptable salts thereof, but also solvates, optical isomers, hydrates, and the like prepared therefrom.
  • the neurological disease is a brain tumor, cerebral infarction, hypertensive cerebral hemorrhage, cerebral contusion, cerebral arteriovenous malformation, brain abscess, encephalitis, hydrocephalus, epilepsy, concussion, cerebral palsy, dementia, spinal cord tumor, spinal arteriovenous malformation or spinal cord infarction, in addition to synaptic dysfunction or synaptic It can also be used for other neurological diseases related to plasticity.
  • the mental disorders include anxiety, depression, hyperactivity, attention deficit, autism, post-traumatic stress disorder (PTSD), intellectual disability, dementia, degenerative brain disease, drug addiction, schizophrenia, obsessive-compulsive disorder, megalomania, personality disorder, neurosis, alcohol Addiction, enuresis, manic depression or motor dysfunction, and other neurological diseases associated with excessive increased nerve activity can also be used.
  • the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof of the present invention may exhibit medically useful effects such as prevention, improvement, and treatment of diseases, which are described herein, practice
  • a pharmaceutical composition comprising the same as an active ingredient can be provided.
  • the content of the active ingredient, the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof, may be appropriately adjusted according to the use mode and method of the pharmaceutical composition of the present invention according to the choice of those skilled in the art.
  • the pharmaceutical composition contains the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof in an amount of 0.01 to 50% by weight, preferably 0.1 to 25% by weight, based on the total weight of the total composition. , More preferably, it may be included in an amount of 0.1 to 10% by weight.
  • the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof may be included alone in the pharmaceutical composition, or may be included together with other pharmaceutically acceptable carriers, excipients, diluents or auxiliary ingredients.
  • Examples of the pharmaceutically acceptable carrier, excipient or diluent include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, propylhydroxybenzoate, talc, magnesium stearate and mineral oil , dextrin, calcium carbonate, propylene glycol, liquid paraffin, and at least one selected from the group consisting of physiological saline, but is not limited thereto, and all conventional carriers, excipients, or diluents may be used.
  • the pharmaceutical composition may include conventional fillers, extenders, binders, disintegrants, anti-agglomerates, lubricants, wetting agents, pH adjusters, nutrients, vitamins, electrolytes, alginic acid and its salts, pectic acid and its salts, protective chlorides, Glycerin, flavors, emulsifiers or preservatives may be further included.
  • the pharmaceutical composition may be used as a combination therapy applied at the same time or at the same time, including one or more other therapeutic agents known to be effective for the treatment or prevention of neurological or psychiatric diseases, in addition to the active ingredient, and this sequence is One of ordinary skill in the art can readily determine.
  • the method of administering the pharmaceutical composition can be either oral or parenteral, and examples include intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, intranasal administration, intrapulmonary administration, and intrarectal administration. It can be administered through several routes, including The composition can be administered by any device capable of transporting an active agent to a target cell.
  • the formulation of the composition may vary depending on the method of use, and is formulated using a method well known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. It can be.
  • solid preparations for oral administration include tablets (TABLETS), pills, soft or hard capsules (CAPSULES), pills (PILLS), powders (POWDERS) and granules (GRANULES), etc.
  • these preparations include one or more Excipients, for example, may be prepared by mixing starch, calcium carbonate, sucrose or lactose, gelatin, and the like.
  • lubricants such as magnesium stearate and talc may also be used.
  • Liquid formulations for oral use include suspensions, solutions for oral use, emulsions, and syrups.
  • various excipients such as wetting agents, Sweetening agents, flavoring agents, preservatives, and the like may be included.
  • Forms for parenteral administration include creams, lotions, ointments, PLASTERS, LIQUIDS AND SOULTIONS, aerosols, FRUIDEXTRACTS, and elixirs. It may be in the form of (ELIXIR), INFUSIONS, SACHET, PATCH, or INJECTIONS, and may be in the form of an isotonic aqueous solution or suspension preferably in the case of an injectable formulation. .
  • the pharmaceutical composition may further contain adjuvants such as sterilizers, preservatives, stabilizers, hydration agents or emulsification accelerators, salts and/or buffers for osmotic pressure control, and other therapeutically useful substances, and may be conventionally mixed or granulated. It can be formulated according to the coating or coating method, and in addition, it can be formulated using an appropriate method known in the art.
  • adjuvants such as sterilizers, preservatives, stabilizers, hydration agents or emulsification accelerators, salts and/or buffers for osmotic pressure control, and other therapeutically useful substances, and may be conventionally mixed or granulated. It can be formulated according to the coating or coating method, and in addition, it can be formulated using an appropriate method known in the art.
  • the dosage of the pharmaceutical composition may be determined in consideration of the administration method, the age and sex of the user, the severity of the patient, the condition, the absorption of the active ingredient in the body, the inactivity rate, and the drugs used in combination, once or several times. It can be administered in divided doses.
  • brew is used as an active ingredient of the pharmaceutical composition to prevent paralysis and convulsions in animals and to treat, alleviate or prevent neurological or mental diseases caused by lowering the nerve activity of the central nervous system. God may be included, preferably in a low concentration.
  • the low concentration of brucine is less than 15 mg/kg body weight, preferably 0.2 to 10 mg/kg body weight, and even more preferably 0.5 to 5 mg/kg body weight on a daily basis to mammals including humans. It may mean administration by oral or parenteral route in an amount, once a day or in divided doses.
  • the concentration of brucine in the central nervous system or cerebrospinal fluid is preferably 10 to 400 nM, more preferably It may be included in the composition and administered at a level reaching 50 to 300 nM, more preferably 100 to 200 nM.
  • the brucine of the present invention When the brucine of the present invention is included in the above dosage or concentration, it reduces excitatory synaptic conduction without affecting the current generation induced by glycine, thereby preventing synaptic excitation-inhibition imbalance or abnormal neuronal activity accompanied by hyperactivity. It can be usefully used for the prevention or treatment of any neurological or psychiatric disease.
  • the present invention provides a method for treating a neurological or psychiatric disease, comprising administering a therapeutically effective amount of the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof to a subject.
  • the treatment method may further include a step of identifying a patient in need of prevention or treatment of the neurological or psychiatric disorder prior to the administration step.
  • the "therapeutically effective amount” refers to an amount of an active ingredient effective for preventing or treating a neurological or psychiatric disease
  • the therapeutically effective amount refers to the type of disease, the severity of the disease, the amount of the active ingredient contained in the composition, and Adjusted according to various factors including the type and content of other components, type of dosage form and patient's age, weight, general health condition, gender and diet, administration time, route of administration and blood clearance of the composition, duration of treatment, drugs used concurrently It may be, but preferably, as described above, to prevent paralysis and convulsions in animals, and to reduce the nerve activity of the central nervous system to treat, alleviate or prevent neurological or mental diseases caused by the active ingredient. As such, brucine may be included in a low concentration.
  • the low concentration of brucine is less than 15 mg/kg body weight, preferably 0.2 to 10 mg/kg body weight, and even more preferably 0.5 to 5 mg/kg body weight per day to mammals, including humans. It may mean administration by oral or parenteral route in an amount, once a day or in divided doses.
  • the “subject” may refer to mammals such as humans or non-human primates, mice, dogs, cats, horses, and cows, but is not limited thereto.
  • a food composition for preventing or improving neurological or psychiatric disorders comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the food composition is meant to include all forms of functional food, nutritional supplements, health food, food additives, or feed. , humans or animals, including livestock, are intended as food. Food compositions of this type can be prepared in various forms according to conventional methods known in the art.
  • Food compositions of this type can be prepared in various forms according to conventional methods known in the art.
  • General foods include, but are not limited to, beverages (including alcoholic beverages), fruits and their processed foods (e.g. canned fruits, bottled products, jams, marmalades, etc.), fish, meat and their processed foods (e.g. ham, sausages) Corned beef, etc.), breads and noodles (e.g. udon, buckwheat noodles, ramen, spagate, macaroni, etc.), fruit juice, various drinks, cookies, taffy, dairy products (e.g.
  • the compound represented by Formula 1 of the present invention can be prepared by adding the compound represented by Formula 1 of the present invention or a pharmaceutically acceptable salt thereof.
  • nutritional supplements are not limited thereto, but may be prepared by adding the compound of Formula 1 of the present invention to capsules, tablets, pills, etc.
  • health functional foods are not limited thereto, but, for example, the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof of the present invention can be prepared in the form of tea, juice and drink for drinking (health drink) It can be consumed by liquefying, granulating, encapsulating, and powdering.
  • the health food of the present invention contains various nutrients, vitamins, electrolytes, flavors, colorants, pectic acid, salts of pectic acid, alginic acid, salts of alginic acid, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, It may contain alcohol or a carbonating agent, and the like.
  • the health food of the present invention may contain fruit flesh for producing natural fruit juice, fruit juice beverage, or vegetable beverage. These components may be used independently or in combination. The ratio of these additives is not very important, but is generally selected in the range of 0.01 to 10 parts by weight per 100 parts by weight of the composition of the present invention.
  • an animal feed composition for preventing or improving neurological or psychiatric disorders comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the term 'feed' refers to any natural or artificial diet, one-meal meal, etc., or a component of the one-meal meal, for eating, ingesting, and digesting by animals, or suitable therefor, for neurological or mental disorders according to the present invention.
  • a feed containing a composition for the prevention or improvement of as an active ingredient can be prepared in various types of feed known in the art, preferably a concentrated feed, roughage and / or may include a special feed, but is not limited thereto.
  • the term 'feed additive' is a substance added to feed for various purposes, such as supplementation of nutrients and prevention of weight loss, enhancement of digestibility of fiber in feed, improvement of oil quality, prevention of reproductive disorders and improvement of conception rate, and prevention of high-temperature stress in summer.
  • the feed additive of the present invention corresponds to supplementary feed under the Feed Control Act, and includes mineral preparations such as sodium bicarbonate, bentonite, magnesium oxide, and complex minerals, mineral preparations that are trace minerals such as zinc, copper, cobalt, and selenium, and kerotene.
  • vitamins such as vitamins A, D, E, nicotinic acid, and vitamin B complex
  • protective amino acids such as methionine and lysine
  • protected fatty acids such as calcium salts of fatty acids
  • probiotics lactic acid bacteria
  • yeast cultures live bacteria such as mold fermented products
  • Yeast agents and the like may be further included.
  • Concentrated feed includes seed fruits including grains such as wheat, oats, and corn, bran including rice bran, wheat bran, and barley bran as by-products obtained after refining grains, soybeans, fluids, sesame seeds, linseed, and coco palm oil.
  • Fish soluble which is a condensed fresh liquid obtained from fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal soluble), meat meal, blood meal, feather meal, skim milk powder, cheese from milk, dried whey, which is the balance when casein is produced from skim milk, animal feed such as dried whey, yeast, chlorella, and seaweed. Not limited to this.
  • Silage which is a stored feed filled and fermented with lactic acid, grass, hay dried by cutting grass, straw of breeding crops, and leaves of leguminous plants, but are not limited thereto.
  • Special feeds include mineral feeds such as oyster shells and rock salt, urea feeds such as urea or its derivative, diureide isobutane, and supplements for ingredients that are likely to be insufficient when only natural feed ingredients are mixed, or formulated feeds to improve the storability of feeds.
  • feed additives and dietary supplements which are substances added in small amounts, but are not limited thereto.
  • the feed additive for preventing or improving the neurological or mental disease according to the present invention is a compound represented by Formula 1 of the present invention or a pharmaceutically acceptable It can be prepared by adding salt.
  • a composition for regulating excitatory synaptic conduction comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient is provided.
  • brucine of the present invention can reduce nerve activity when administered at a low concentration, it can be used in a composition for controlling intrinsic excitability modification or synaptic excitation-inhibition imbalance.
  • NBQX, picrotoxin, AP-5, and bicuculline were purchased from Tocris Cookson (Bristol, UK), and brucine and all other reagents and chemicals were purchased from Sigma-Aldrich (MO, USA).
  • Electrophysiology and Western blot experiments used animals of 5 to 7 weeks of age, and behavior experiments of 9 to 10 weeks of age. Animals were maintained in an environment with a 12/12-h day/night cycle, with daylight at 07:00. Three to five animals per cage were housed and provided with freely available food and water under specific pathogen-free (SPF) conditions. The animal maintenance and all experimental procedures were performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Seoul National University.
  • IACUC Institutional Animal Care and Use Committee
  • Cold dissection buffer sucrose 230 mM; NaHCO 3 25 mM; KCl 2.5 mM; NaH 2 PO 4 1.25 mM; D-glucose 10 mM; Na-ascorbate 1.3 mM; MgCl 2 3 mM; CaCl 2 0.5 mM, 95% to O 2 /5% CO 2 pH 7.4 using a vibrating cutter (Vibratome, Leica, Germany) to prepare hippocampal slices (400 ⁇ m thick).
  • Sections were prepared in normal artificial cerebrospinal fluid (ACSF: NaCl 125 mM; NaHCO 3 25 mM; KCl 2.5 mM; NaH 2 PO 4 1.25 mM; D-glucose 10 mM; MgCl 2 1.3 mM; CaCl 2 2.5 mM, 95% O 2 /5 as % CO 2 pH 7.4 and 36 °C) for 1 hour, then maintained at room temperature (23-25 °C) to record.
  • ACSF normal artificial cerebrospinal fluid
  • fEPSPs field excitatory postsynaptic potentials
  • SC-CA1 synapses hippocampal slices were placed in a recording chamber and perfused with continuously oxygenated ACSF.
  • ACSF was maintained at a temperature of 29 to 30 ° C using a perfusion heater (SH-27B, Warner Instruments, CT, USA).
  • Synaptic responses were induced by stimulation with a glass pipette (0.3-0.5 Mohm) every 20 seconds (0.05 Hz), and synaptic responses were recorded with ACSF-filled glass pipettes (3-4 Mohm). Stimulus intensities were adjusted to generate synaptic responses that were approximately one third of maximal. Sections showing unstable (10%) baseline scores were excluded.
  • Carbachol (CCh) was treated for 15 minutes after recording a stable baseline fEPSP for 15 minutes, followed by washing with ACSF without CCh for 20 minutes.
  • Brucine is treated at least 10 min before recording of fEPSP and is included in all ACSF perfused during recording. After preparing a stock solution of 10 mM for CCh and 1 mM for Brucine, the experiment was conducted in such a way that the final concentrations were diluted in ACSF to 2 ⁇ M (CCh) and 200 nM (brucine), respectively, and flowed through hippocampal slices.
  • the cell membrane potential was maintained at 0 mV through a membrane voltage clamping technique, and 130 mM Cs-gluconate, 10 mM TEA-Cl, 10 mM CsCl, Patch pipette with a solution containing 8 mM NaCl, 10 mM HEPES, 0.5 mM QX-314-Cl, 2 mM Mg-ATP, 0.3 mM Na-GTP and 10 mM EGTA, adjusted to pH 7.25 and 290 mOsm/kg (3-4 Mohm) was used to record the current.
  • GABA A receptor (GABA AR ) antagonist bicuculline (10 ⁇ M) and NMDA receptor blocker AP-5 (50 ⁇ M) were added to ACSF.
  • Glycine was diluted in artificial cerebrospinal fluid after preparing a stock solution (100 mM), and flowed into hippocampal slices to a concentration of 0.5 mM.
  • Brucine was tested at concentrations of 5 ⁇ M, 1 ⁇ M, 200 nM, 100 nM, and 50 nM by treating for 10 minutes after 10 minutes, when the current induced by 500 ⁇ M glycine was stably recorded. .
  • HRP hoseradish peroxide
  • mice 9-10 week old mice were placed in an acrylic box (40 x 40 x 40 cm) for 30 to 40 minutes and their movements were video-recorded. The recorded video was analyzed for movement and distance of each mouse using Ethovision XT software.
  • Brucin (experimental group) and saline (control group) were intraperitoneally injected 30 minutes before the test, and after the injection, they waited in the cage for 30 minutes and then moved to the open field. The presence or absence of epilepsy or convulsions was observed during the cage waiting period and the open field test period.
  • MK-801 To observe the action of brucine on hyperactivity induced by MK-801, saline or brucine was treated 50 minutes before the open field test, and MK-801 was treated 20 minutes before the open field test.
  • brucine was intraperitoneally injected into mice at a concentration of 1 mg/kg (intraperitoneal injection), and the control group was injected with saline, a solvent in which brucine was dissolved. After 1 hour in both groups, pentylenetetrazol (PTZ) was intraperitoneally injected (40 mg/kg). After that, the mouse condition was video-recorded for 1 hour.
  • the degree of epilepsy was analyzed by applying Racine's scale (Ihara et al., 2016), and the behavioral characteristics at each score are as follows:
  • Score 0 no observed behavioral change
  • score 1 Sudden motion arrest, motionless gaze
  • score 2 head nod
  • score 3 intermittent forelimb cramps with lordosis
  • score 4 intermittent forelimb cramps with standing and falling
  • score 5 generalized tonic-clonic seizures, jumping, death.
  • Example 1 Comparison of neural activity in mouse forebrain according to brucine treatment
  • FIG. 1 It is shown in FIG. 1 that 1 mg/kg of brucine induces a decrease in neural activity in the mouse forebrain.
  • Figure 1A shows the expression of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tubulin in the forebrain one hour after intraperitoneal injection of 1 mg/kg brucine into mice. ting was investigated.
  • Example 2 Changes in mouse hippocampus (hippocampus) nerve activity according to brucin treatment at 1 mg/kg
  • Figure 2 It is shown in Figure 2 that the neural activity of the mouse hippocampus (hippocampus) decreased by 1 mg / kg of brucine.
  • Figure 2A shows phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tu
  • the expression of Blin was investigated by Western blotting.
  • FIG. 3 shows the effects of brucine on the forebrain p-eEF2 /eEF2 obtained in FIGS. 1C and 1D with muscimol (1.5 mg/kg, intraperitoneal injection) and picrotoxin (2 mg/kg, intraperitoneal injection). , and NBQX (10 mg/kg, intraperitoneal injection).
  • Muscimol decreases neuronal activity by enhancing inhibitory synaptic conduction, and picrotoxin increases neuronal activity by inhibiting synaptic conduction.
  • NBQX reduces neuronal activity through inhibition of excitatory synaptic conduction.
  • 1 mg/kg of brucine on forebrain p-eEF2/eEF2 showed an effect similar to that of muscimol or NBQX, indicating a decrease in neural activity.
  • FIG. 4 shows the expression levels of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2) and total eEF2 by preparing hippocampal homogenates 1 hour after intraperitoneal injection of brucine at various concentrations into mice.
  • FIG. 5 is the result of measuring the movement of the mouse in the open field (open field) for 30 minutes after 30 minutes after intraperitoneal injection of brucine (1 mg / kg).
  • n 10 mice
  • brucine 10 mice
  • Figure 5B shows the total distance traveled for the entire 30 minutes.
  • FIG. 7 shows the results of hyperactive aminopeptidase p1 deficient mice.
  • Brucin or saline was intraperitoneally injected 1 hour before open field test (OFT), and OFT was measured for 30 minutes.
  • Figure 7A shows the distance traveled by Xpnpep1 KO mice (KO +Bru) injected with 1 mg/kg of brucine during the open field test (OFT).
  • Normal (WT) mice and saline (Sal)-injected Xpnpep1 KO mice (KO + Sal) were used as controls.
  • Figure 7A is a schematic diagram of the average distance moved by animals for each group in the OFT for a total of 30 minutes, showing that the distance moved by Xpnpep1 KO mice was reduced by 1 mg/kg of brucine.
  • 7C and 7D are experimental results confirming through OFT that the activity of Xpnpep1 KO is reduced by intraperitoneal injection of 2 mg/kg brucin.
  • FIG. 8A is a schematic diagram showing an embodiment. After intraperitoneal injection of saline or brucine to normal mice, MK-801 was intraperitoneally injected (0.2 mg/kg) 30 minutes later, and open field test (OFT) was performed 20 minutes later. 8B shows a group injected with saline twice (sal-sal), a group injected with saline and then injected with MK-801 to induce hyperactivity (Sal-MK), and pretreated with brucine (1 mg/kg).
  • mice of the group intraperitoneally injected with MK-801 (Bru-MK) during the OFT is shown.
  • 8C shows the moving distance of each group of mice over time during the OFT.
  • 8D compares the moving distances of mice for each group during the entire 40-minute OFT.
  • MK-801 injection induces hyperactivity in mice, and brucine at 1 mg/kg suppresses MK-801-induced hyperactivity.
  • Ten mice were used for each group.
  • FIG. 9 shows a current protocol injected to observe changes in excitability while recording cell membrane voltage through the whole-cell patch clamp technique.
  • Figure 9B was compared by measuring the action potential (AP) and membrane voltage changes before and after treatment with brucine, which are shown by the current injection shown in FIG. 9A.
  • FIG. 10 shows the number of action potentials displayed by current injection over time, showing that the number decreased by brucine (0.2 ⁇ M).
  • 10C to 10E are comparisons of resting membrane potential (RMP), input resistance, and sag ratio before and after brucine treatment. 0.2 ⁇ M of brucine increased RMP (Fig.
  • FIG. 11 11A to 11E show the presence or absence of an inhibitory effect according to the concentration of brucine on the current induced by 0.5 mM glycine.
  • Mouse hippocampal brain slices were prepared and current was measured in CA1 cone cells with the membrane voltage fixed at 0 mV through whole-cell patch clamp. After measuring the baseline current for 10 minutes, glycine was treated for the entire 20 minutes, and the latter 10 minutes were treated with glycine and brucine at a predetermined concentration.
  • 12B shows the fEPSPs before and after CCh treatment in each condition.

Abstract

The present invention relates to a composition comprising brucine as an active ingredient for prevention or treatment of neurologic disorder or psychiatric disorder. Particularly at low concentrations, brucine according to the present invention exhibits the effect of reducing nerve activity in the central nervous system and inhibiting and delaying the development of epilepsy in animals. In addition, brucine also reduced the activity of hyperactive mice and has the effect of reducing drug-induced hyperactivity. A low concentration of brucine decreased the frequency of action potential generation in hippocampal CA1 neurons. This neuronal activity modulating effect can be effectively used to prevent or treat all neurological disorders or psychiatric disorders accompanied by synaptic excitation-inhibition imbalance or abnormal neuronal hyperactivity.

Description

브루신을 포함하는 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물A pharmaceutical composition for preventing or treating neurological or psychiatric disorders containing brucine
본 발명은 브루신을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for the prevention or treatment of neurological or mental disorders comprising brucine as an active ingredient.
중추신경계에서 신경세포 간 신경전달은 흥분성 및 억제성 시냅스 전도를 통해 이루어진다. 흥분성 시냅스 전도(excitatory synaptic transmission)는 시냅스 전 말단(presynaptic terminal)에서 방출된 글루탐산(glutamate)에 반응하여 시냅스 후 신경세포의 AMPA 수용체(AMPAR) 및 NMDA 수용체(NMDAR)가 개방됨으로써 흥분성 후시냅스 전류(excitatory post-synaptic current, EPSC) 발생을 통해 신경세포에 탈분극을 유도한다. 억제성 시냅스(inhibitory synapse)는 시냅스 전 말단에서 감마-아미노부티르산(gamma-aminobutyric acid, GABA) 또는 글리신(glycine)이 방출되며, 이들이 각각 GABA 수용체 (GABAR)와 glycine 수용체 (GlyR)에 결합하여 수용체 채널을 개방함으로써 억제성 후시냅스 전류(inhibitory post-synaptic current, IPSC)를 유발한다. GABAR 와 GlyR는 리간드 개폐성 이온통로(ligand gated ion channel)이며, 수용체를 통해 음이온을 투과함으로써 세포막 전위를 과분극시킨다.Neurotransmission between neurons in the central nervous system is accomplished through excitatory and inhibitory synaptic conduction. Excitatory synaptic transmission is caused by the opening of AMPA receptors (AMPAR) and NMDA receptors (NMDAR) in post-synaptic neurons in response to glutamate released from presynaptic terminals, resulting in excitatory postsynaptic currents ( It induces depolarization in neurons through the generation of excitatory post-synaptic current (EPSC). In the inhibitory synapse, gamma-aminobutyric acid (GABA) or glycine is released from the presynaptic terminal, which bind to the GABA receptor (GABAR) and glycine receptor (GlyR), respectively, Opening the channel triggers an inhibitory post-synaptic current (IPSC). GABAR and GlyR are ligand gated ion channels, and they hyperpolarize cell membrane potential by permeating anions through the receptor.
신경세포의 내재적 흥분성(intrinsic excitability)과 흥분성 및 억제성 시냅스 전도는 중추신경계의 신경회로 활성을 조절하는데, 시냅스 흥분/억제 불균형에 따른 신경회로 활성변형은 과잉행동, 불안, 주의력 결핍, 자폐, 외상 후 스트레스 장애(PTSD), 지능 장애, 간질, 통증, 약물 중독, 조현병, 강박증, 운동기능 장애, 퇴행성 뇌질환 등 다양한 신경질환 또는 정신질환의 원인이 된다.Intrinsic excitability of neurons and excitatory and inhibitory synaptic conduction regulate neural circuit activity in the central nervous system. Modification of neural circuit activity due to synaptic excitation/inhibition imbalance results in hyperactivity, anxiety, attention deficit, autism, and trauma. It causes various neurological or mental diseases such as post-stress disorder (PTSD), intellectual disability, epilepsy, pain, drug addiction, schizophrenia, obsessive-compulsive disorder, motor dysfunction, and degenerative brain disease.
이와 같은 문제를 해결하기 위해 이온통로에 작용하여 신경세포의 내재적 흥분성을 조절하거나 흥분성 및 억제성 시냅스 전도를 변형하여 신경회로의 활성 회복을 유도할 수 있으며, 특히 억제성 시냅스 전도 항진을 통한 신경활성 저하시키는 중추신경계 작용제의 개발이 필요한 실정이다.In order to solve this problem, it is possible to regulate the intrinsic excitability of nerve cells by acting on ion channels or to modify excitatory and inhibitory synaptic conduction to induce activity recovery of neural circuits. There is a need for the development of a central nervous system agent that lowers it.
본 발명자들은 상기 과제를 해결하기 위하여 연구한 결과, 브루신이 중추신경계의 신경활성을 저하시키며, 경련유발제(convulsant)인 펜틸렌테트라졸(pnetylenetetrazol)에 의해 유발되는 간질을 지연 및 억제할 수 있다는 점을 발견하였다. 또한 유전자 형질전환이나 MK-801 주사에 의해 유도된 마우스의 과잉행동을 저농도의 브루신이 억제할 수 있다는 점을 발견하여 본 발명을 완성하였다.As a result of research to solve the above problems, the present inventors have found that brucine reduces nerve activity in the central nervous system and can delay and suppress epilepsy caused by convulsant pentylenetetrazol. found In addition, the present invention was completed by finding that a low concentration of brucine can suppress the hyperactivity of mice induced by genetic transformation or MK-801 injection.
이에, 본 발명은 브루신을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Accordingly, the present invention is to provide a pharmaceutical composition for preventing or treating neurological or psychiatric diseases comprising brucine as an active ingredient.
또한, 본 발명은 브루신을 대상체에게 치료학적 유효량으로 투여하는 단계를 포함하는 신경질환 또는 정신질환의 치료방법을 제공하는 것이다.In addition, the present invention is to provide a method for treating a neurological or mental disease comprising administering brucine in a therapeutically effective amount to a subject.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem (s), and another problem (s) not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물을 제공한다.In order to solve the above problems, the present invention provides a pharmaceutical composition for the prevention or treatment of neurological or psychiatric disorders comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2022013390-appb-img-000001
Figure PCTKR2022013390-appb-img-000001
상기 신경질환은 뇌종양, 뇌경색, 고혈압성뇌출혈, 뇌좌상, 뇌동정맥기형, 뇌농양, 뇌염, 수두증, 간질, 뇌진탕, 뇌성마비, 치매, 척수종양, 척수동정맥기형, 척수경색, 통증, 두통 및 편두통으로 이루어진 군에서 선택되는 것일 수 있다.The neurological disease consists of brain tumor, cerebral infarction, hypertensive cerebral hemorrhage, cerebral contusion, cerebral arteriovenous malformation, brain abscess, encephalitis, hydrocephalus, epilepsy, concussion, cerebral palsy, dementia, spinal cord tumor, spinal arteriovenous malformation, spinal cord infarction, pain, headache and migraine. It may be selected from the group.
상기 정신질환은 과잉행동, 주의력 결핍, 자폐, 외상 후 스트레스 장애(PTSD), 지능 장애, 치매, 약물 중독, 조현병, 강박증, 과대망상, 성격장애, 신경증, 알코올중독, 야뇨증, 조울병 및 운동기능 장애로 이루어진 군에서 선택되는 것일 수 있다.The mental disorders include hyperactivity, attention deficit disorder, autism, post-traumatic stress disorder (PTSD), intellectual disability, dementia, drug addiction, schizophrenia, obsessive-compulsive disorder, grandiose delusion, personality disorder, neurosis, alcoholism, enuresis, manic depression, and motor function It may be selected from the group consisting of disabilities.
상기 약학적 조성물은 약학적으로 허용가능한 담체, 부형제 및 희석제 중 하나 이상을 더 포함하는 것일 수 있다.The pharmaceutical composition may further include at least one of a pharmaceutically acceptable carrier, excipient, and diluent.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 개선용 식품 조성물을 제공된다.In addition, the present invention provides a food composition for preventing or improving neurological or psychiatric disorders, comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
상기 식품은 건강기능식품일 수 있다.The food may be a health functional food.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 개선용 동물 사료 조성물을 제공된다.In addition, the present invention provides an animal feed composition for preventing or improving neurological or psychiatric disorders, comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 대상체에게 치료학적 유효량으로 투여하는 단계를 포함하는 신경질환 또는 정신질환의 치료방법을 제공한다.In addition, the present invention provides a method for treating a neurological or psychiatric disorder comprising administering a therapeutically effective amount of the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof to a subject.
본 발명에 따른 브루신은 특히 저농도로 사용하는 경우에 중추신경계에서 신경회로 활성을 저하시키며, 동물의 간질을 감소시킬 뿐만 아니라, 유전자 형질전환이나 MK-801에 의해 유도되는 과잉행동을 억제하는 효과가 있다. Brucin according to the present invention reduces neural circuit activity in the central nervous system, especially when used at a low concentration, and has an effect of suppressing hyperactivity induced by genetic transformation or MK-801 as well as reducing epilepsy in animals. there is.
또한, 본 발명에 따른 브루신은 동물의 일반적인 활동도에는 영향을 주지 않으며, 마비나 경련을 유발하지 않는다. 이는 글리신수용체를 억제하는 특정 농도 이하에서는 브루신이 신경활성을 저하시킴을 의미한다. 따라서 과도한 신경 활성이 동반되는 모든 신경질환 또는 정신질환의 예방 또는 치료에 저농도의 브루신이 효과적으로 사용될 수 있다.In addition, brucine according to the present invention does not affect the general activity of animals and does not cause paralysis or convulsions. This means that brucine reduces nerve activity below a certain concentration that inhibits glycine receptors. Therefore, low-concentration brucine can be effectively used for the prevention or treatment of any neurological or psychiatric disease accompanied by excessive nerve activity.
도 1은 1 mg/kg의 브루신이 마우스 전뇌(forebrain)의 신경활성을 저하시킨다는 것을 나타내는 도이다. 구체적으로, 도 1A는 1 mg/kg의 브루신을 마우스에 복강주사하고 나서 한 시간 후 전뇌에서 인산화된 eEF2 (phosphorylated eEF2, p-eEF2)와 전체 eEF2, 그리고 알파-튜블린의 발현에 대해 웨스턴블로팅으로 조사한 것이다. 도 1B는 도 1A 실험 결과를 정량적으로 분석한 것으로 1 mg/kg의 브루신에 의해 eEF2의 인산화가 증가함(왼쪽)을 나타낸다(N = 6 mice). 그러나 전체 eEF2의 단백질 수준에는 차이가 없으며(중간), eEF2 중 인산화된 비율(p-eEF2 / eEF2)이 증가(오른쪽)함을 보여준다(p-eEF2, t(10)= -12.083, p = 2.738 × 10-7; eEF2, t(10) = 0.055, p = 0.957; p-eEF2 / eEF2, t(10) = -8.44, p = 7.30 × 10-8; Student's t-test). Figure 1 is a diagram showing that brucine of 1 mg / kg reduces the neural activity of the mouse forebrain (forebrain). Specifically, Figure 1A shows the expression of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tubulin in the forebrain one hour after intraperitoneal injection of 1 mg/kg brucine into mice. ting was investigated. FIG. 1B is a quantitative analysis of the experimental results of FIG. 1A and shows that phosphorylation of eEF2 is increased (left) by 1 mg/kg of brucine (N = 6 mice). However, there is no difference in the protein level of total eEF2 (middle), and the phosphorylated ratio (p-eEF2 / eEF2) of eEF2 increases (right) (p-eEF2, t (10) = -12.083, p = 2.738 × 10 −7 ; eEF2, t (10) = 0.055, p = 0.957; p−eEF2/eEF2, t (10) = −8.44, p = 7.30 × 10 −8 ; Student's t -test).
도 2는 1 mg/kg의 브루신이 마우스 해마(hippocampus)의 신경활성을 저하시키는 것을 나타내는 도이다. 구체적으로, 도 2A는 1 mg/kg의 브루신을 마우스에 복강주사하고 나서 한 시간 후 해마 균질액(homogenate)를 제작하여 인산화된 eEF2 (phosphorylated eEF2, p-eEF2)와 전체 eEF2, 그리고 알파-튜블린의 발현에 대해 웨스턴블로팅으로 조사한 것이다. 도 2B는 도 2A 실험 결과를 정량적으로 분석한 것으로 1 mg/kg의 브루신에 의해 eEF2의 인산화가 증가함(왼쪽)을 나타낸다. 그러나 전체 eEF2의 단백질 수준에는 차이가 없으며(중간), eEF2 중 인산화된 비율(p-eEF2 / eEF2)이 증가(오른쪽)함을 보여준다(N = 6 mice. p-eEF2, U = 0, W = 21, p = 0.004, Mann-Whitney test; eEF2, t(10) = -0.273, p = 0.790, Student's t-test; p-eEF2 / eEF2, t(10) = -4.55, p = 0.0011, Student's t-test). Figure 2 is a diagram showing that brucine of 1 mg / kg reduces the neural activity of the mouse hippocampus (hippocampus). Specifically, Figure 2A shows phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tu The expression of Blin was investigated by Western blotting. Figure 2B is a quantitative analysis of the experimental results of Figure 2A, showing that phosphorylation of eEF2 is increased by brucine at 1 mg/kg (left). However, there is no difference in the protein level of total eEF2 (middle), and the ratio of phosphorylated eEF2 (p-eEF2 / eEF2) increases (right) (N = 6 mice. p-eEF2, U = 0, W = 21, p = 0.004, Mann-Whitney test; eEF2, t (10) = -0.273, p = 0.790, Student's t -test; p-eEF2/eEF2, t (10) = -4.55, p = 0.0011, Student's t-test -test).
도 3은 시냅스 작용약물(pircrotoxin, NBQX, muscimol)이 p-eEF2/eEF2 ratio를 변화시키는 양상과 비교를 통해 1 mg/kg의 브루신이 신경활성 감소를 유발함을 보여주는 도이다. 구체적으로, 도 3A는 도 1A와 도 1B에서 확보한 전뇌 (forebrain) p-eEF2 /eEF2에 대한 브루신의 효과를 muscimol (1.5 mg/kg, 복강주입), picrotoxin (2 mg/kg, 복강주입), 및 NBQX (10 mg/kg, 복강주입)와 비교하였다. muscimol은 억제성 시냅스 전도 항진을 통해 신경활성을 저하하고, picrotoxin은 억제성 시냅스 전도 저하를 통해 신경활성을 증가시킨다. NBQX는 흥분성 시냅스 전도 억제를 통해 신경활성을 저하시킨다. 전뇌 p-eEF2 /eEF2에 대해 1 mg/kg의 브루신은 muscimol이나 NBQX와 유사한 효과를 보이며, 이는 신경활성의 저하를 의미한다. 괄호 안의 숫자(1)는 복강주입한 브루신의 투여량(mg/kg)을 의미한다(N = 6 mice (그룹 당). Muscimol, t(10) = -24.11, p = 3.42 × 10-10; NBQX, t(10) = -3.65, p = 0.0045; Brucine, t(10) = -8.44, p = 7.30 × 10-6; Student’s t-test. Picrotoxin, U = 3.0, Z = -2.40, and p = 0.016 by Mann-Whitney test). 도 3B는 해마 균질액에서 p-eEF2 /eEF2 값을 측정하여 해마 신경활성에 대한 브루신의 작용을 muscimol, picrotoxin, 및 NBQX와 비교한 것이다. 전뇌와 동일하게 해마에서도 1 mg/kg의 브루신은 p-eEF2의 인산화에 대해 muscimol이나 NBQX와 유사한 효과를 보였다(N = 6 mice, 그룹 당). Muscimol, U = 0.0, Z = -2.88, and p = 0.004; Picrotoxin, U = 1.0, Z = -2.72, and p = 0.006; Mann-Whitney test. NBQX, t(10) = -5.89, p = 1.52 × 10-4; Brucine, t(10) = -4.55, p = 0.0011; Student’s t-test. 각 시료는 약물을 복강주입 1시간 후 제작하였다).Figure 3 is a synaptic agent (pircrotoxin, NBQX, muscimol) is a diagram showing that 1 mg / kg of brucine induces a decrease in nerve activity through comparison with the pattern of changing the p-eEF2 / eEF2 ratio. Specifically, Figure 3A shows the effect of brucine on the forebrain p-eEF2 /eEF2 obtained in Figures 1A and 1B by muscimol (1.5 mg/kg, intraperitoneal injection), picrotoxin (2 mg/kg, intraperitoneal injection) , and NBQX (10 mg/kg, intraperitoneal injection). Muscimol decreases neuronal activity by enhancing inhibitory synaptic conduction, and picrotoxin increases neuronal activity by inhibiting synaptic conduction. NBQX reduces neuronal activity through inhibition of excitatory synaptic conduction. 1 mg/kg of brucine on forebrain p-eEF2/eEF2 showed an effect similar to that of muscimol or NBQX, indicating a decrease in neural activity. The number (1) in parentheses means the dose (mg/kg) of intraperitoneally injected brucine (N = 6 mice (per group). Muscimol, t (10) = -24.11, p = 3.42 × 10 -10 ; NBQX, t (10) = -3.65, p = 0.0045; Brucine, t (10) = -8.44, p = 7.30 × 10 -6 ;Student's t -test. = 0.016 by Mann-Whitney test). Figure 3B compares the action of brucin with muscimol, picrotoxin, and NBQX on hippocampal neural activity by measuring p-eEF2 /eEF2 values in hippocampal homogenate. Similarly to the forebrain, 1 mg/kg brucine in the hippocampus showed similar effects to muscimol or NBQX on phosphorylation of p-eEF2 (N = 6 mice, per group). Muscimol, U = 0.0, Z = -2.88, and p = 0.004; Picrotoxin, U = 1.0, Z = -2.72, and p = 0.006; Mann-Whitney test. NBQX, t (10) = -5.89, p = 1.52 × 10 -4 ; Brucine, t (10) = -4.55, p = 0.0011; Student's t -test. Each sample was prepared 1 hour after intraperitoneal injection of the drug).
도 4는 복강 주입한 브루신 농도에 따른 해마 eEF2의 인산화 정도를 확인한 데이터이다. 도 4A는 다양한 농도의 브루신을 마우스에 복강주사하고 나서 1시간 후 해마 균질액(homogenate)를 제작하여 인산화된 eEF2 (phosphorylated eEF2, p-eEF2)와 전체 eEF2의 발현 수준을 조사한 것이다. 도 4B는 p-eEF2/eEF2 의 비율을 정량한 것으로, 각 실험군 별로 6마리의 마우스가 사용되었으며, 식염수(saline)를 주사한 대조군에 대한 상대적인 값을 나타내었다(0.2 mg/kg, t(10) = -1.741, p = 0.112, Student's t-test; 0.5 mg/kg, t(10) = -5.652, p = 0.000212, Student's t-test; 1 mg/kg, U = 36, Z = 2.882, p = 0.002165, Mann-Whitney U test; 2 mg/kg, t(10) = -3.020, p = 0.013, Student's t-test; 5 mg/kg, t(10) = -6.594, p = 0.000061, Student's t-test).4 is data confirming the degree of phosphorylation of eEF2 in the hippocampus according to the intraperitoneally injected brucin concentration. Figure 4A shows the expression levels of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2) and total eEF2 by preparing hippocampal homogenates 1 hour after intraperitoneal injection of brucine at various concentrations into mice. Figure 4B quantifies the ratio of p-eEF2 / eEF2, 6 mice were used for each experimental group, and the relative value for the control group injected with saline (0.2 mg / kg, t (10 ) = -1.741, p = 0.112, Student's t-test; 0.5 mg/kg, t(10) = -5.652, p = 0.000212, Student's t-test; 1 mg/kg, U = 36, Z = 2.882, p = 0.002165, Mann-Whitney U test; 2 mg/kg, t(10) = -3.020, p = 0.013, Student's t-test; 5 mg/kg, t(10) = -6.594, p = 0.000061, Student's t-test -test).
도 5는 1 mg/kg(복강주입)의 브루신이 정상마우스에는 마비나 경련, 중독(intoxication) 또는 활동도 변화를 유발하지 않음을 나타내는 도이다. 도 5A는 브루신 복강주입(1 mg/kg) 후 30분 이후부터 개방장(open field)에서 마우스의 움직임을 30분 동안 측정한 결과이다. 식염수(n = 10 mice)와 브루신(n = 10 mice)을 투여한 마우스가 움직인 거리를 5분 간격으로 표시하였을 때, 두 그룹 간에 차이가 없음을 보여준다. F(1,18) = 0.003, p = 0.956 (two-way repeated measures ANOVA). 도 5B는 전체 30분 동안 움직인 거리의 총합을 나타낸다. t(18) = -0.056, p = 0.239 (Student's t-test). 도 5C는 개방장 테스트 기간 (30 min) 동안 마우스들이 개방장의 중심부에서 보낸 시간을 측정하여 불안 수준을 분석한 결과이다. U = 36, W = 91, p = 0.29 (Mann-Whitney U test).5 is a diagram showing that 1 mg/kg (intraperitoneal injection) of brucine does not induce paralysis, convulsions, intoxication, or activity changes in normal mice. Figure 5A is the result of measuring the movement of the mouse in the open field (open field) for 30 minutes after 30 minutes after intraperitoneal injection of brucine (1 mg / kg). When the distance moved by mice administered with saline (n = 10 mice) and brucine (n = 10 mice) was displayed at 5-minute intervals, there was no difference between the two groups. F(1,18) = 0.003, p = 0.956 (two-way repeated measures ANOVA). Figure 5B shows the total distance traveled for the entire 30 minutes. t(18) = -0.056, p = 0.239 (Student's t-test). 5C shows the result of analyzing the level of anxiety by measuring the time the mice spent in the center of the open field during the open field test period (30 min). U = 36, W = 91, p = 0.29 (Mann-Whitney U test).
도 6은 1 mg/kg의 브루신이 펜틸렌테트라졸(pentylenetetrazol, PTZ)에 의한 간질 유발을 지연하고 또한 억제함을 나타내는 도이다. 복강주사를 통해 PTZ를 주입(40 mg/kg)하기 1시간 전 대조군(n = 10 mice)은 식염수(saline)를 주입하였고, 실험군(n = 10 mice)은 1 mg/kg의 브루신을 주입하였다. 도 6A는 PTZ 투여 후 첫 번째 경련 또는 발작이 나타나기까지 걸린 시간을 나타낸다. U = 23, Z = 78, P = 0.041, Mann-Whitney test. 도 6B는 Lacine scale을 통해 간질의 정도를 측정하였을 때 brucine 전처리에 의해 PTZ에 의해 유도되는 간질이 정도가 감소함을 보여준다. U = 31.5, Z = 86.5, P = 0.045, Mann-Whitney test.6 is a diagram showing that 1 mg/kg of brucine delays and inhibits epileptic induction by pentylenetetrazol (PTZ). 1 hour before PTZ injection (40 mg/kg) via intraperitoneal injection, the control group (n = 10 mice) was injected with saline, and the experimental group (n = 10 mice) was injected with 1 mg/kg of brucine. . Figure 6A shows the time from PTZ administration to the appearance of the first convulsions or seizures. U = 23, Z = 78, P = 0.041, Mann-Whitney test. Figure 6B shows that the degree of epilepsy induced by PTZ was reduced by pretreatment with brucine when the degree of epilepsy was measured through the Lacine scale. U = 31.5, Z = 86.5, P = 0.045, Mann-Whitney test.
도 7은 1 내지 5 mg/kg의 브루신이 과잉행동을 보이는 aminopeptidase p1 결핍(Xpnpep1 KO) 마우스의 활동도를 저하시킴을 나타내는 도이다. 개방장테스트 (open field test, OFT) 1시간 전 브루신 또는 식염수를 복강주사하였고, OFT는 30 분 간 측정하였다. 도 7A는 브루신 1 mg/kg을 주사한 Xpnpep1 KO 마우스 (KO +Bru)가 개방장테스트 (OFT) 동안 움직인 거리를 보여준다. 대조군으로 정상(WT) 마우스와 식염수(Sal)를 주입한 Xpnpep1 KO 마우스(KO + Sal)를 사용하였다. 도 7B는 전체 30분 간의 OFT에서 각 그룹 별로 동물이 움직인 평균거리를 도식화한 것으로, 1 mg/kg의 브루신에 의해 Xpnpep1 KO 마우스가 움직인 거리가 감소함을 보여준다. WT vs KO-Sal, p = 0.00000083278***; WT vs KO-Bru, p = 0.000579***; KO-Sal vs KO-Bru, p = 0.004843**; One-way ANOVA with Tukey HSD. 도 7C와 7D는 2 mg/kg의 브루신 복강주사에 의해 Xpnpep1 KO의 활동도가 감소함을 OFT를 통해 확인한 실험결과이다. WT-Sal vs WT-Bru, p = 0.932; WT-Sal vs KO-Sal, p = 0.00000014335***; WT-Sal vs KO-Bru, p = 0.000063***; WT-Bru vs KO-Sal, p = 0.00000011539***; WT-Bru vs KO-Bru, p = 0.000036***; KO-Sal vs KO-Bru, p = 0.004806**; One-way ANOVA with Tukey HSD. 도 7E와 7F는 Xpnpep1 KO 마우스의 과잉행동이 브루신 5 mg/kg 복강주사에 의해 감소함을 나타낸다. WT-Sal vs WT-Bru, p = 0.769; WT-Sal vs KO-Sal, p = 0.000000035974***; WT-Sal vs KO-Bru, p = 0.000014***; WT-Bru vs KO-Sal, p = 0.00000028049***; WT-Bru vs KO-Bru, p = 0.000143***; KO-Sal vs KO-Bru, p = 0.031532*; One-way ANOVA with Tukey HSD. 도 7B, 7D, 7F에서 괄호 안의 숫자는 그룹 별로 사용된 마우스를 나타낸다.7 is a diagram showing that 1 to 5 mg/kg of brucine reduces the activity of aminopeptidase p1 deficient (Xpnpep1 KO) mice showing hyperactivity. Brucin or saline was intraperitoneally injected 1 hour before open field test (OFT), and OFT was measured for 30 minutes. Figure 7A shows the distance traveled by Xpnpep1 KO mice (KO +Bru) injected with 1 mg/kg of brucine during the open field test (OFT). Normal (WT) mice and saline (Sal)-injected Xpnpep1 KO mice (KO + Sal) were used as controls. Figure 7B is a schematic diagram of the average distance moved by animals for each group in the OFT for a total of 30 minutes, showing that the distance moved by Xpnpep1 KO mice was reduced by 1 mg/kg of brucine. WT vs KO-Sal, p = 0.00000083278***; WT vs KO-Bru, p = 0.000579***; KO-Sal vs KO-Bru, p = 0.004843**; One-way ANOVA with Tukey HSD. 7C and 7D are experimental results confirming through OFT that the activity of Xpnpep1 KO is reduced by intraperitoneal injection of 2 mg/kg brucin. WT-Sal vs WT-Bru, p = 0.932; WT-Sal vs KO-Sal, p = 0.00000014335***; WT-Sal vs KO-Bru, p = 0.000063***; WT-Bru vs KO-Sal, p = 0.00000011539***; WT-Bru vs KO-Bru, p = 0.000036***; KO-Sal vs KO-Bru, p = 0.004806**; One-way ANOVA with Tukey HSD. 7E and 7F show that the hyperactivity of Xpnpep1 KO mice was reduced by intraperitoneal injection of 5 mg/kg brucin. WT-Sal vs WT-Bru, p = 0.769; WT-Sal vs KO-Sal, p = 0.000000035974***; WT-Sal vs KO-Bru, p = 0.000014***; WT-Bru vs KO-Sal, p = 0.00000028049***; WT-Bru vs KO-Bru, p = 0.000143***; KO-Sal vs KO-Bru, p = 0.031532*; One-way ANOVA with Tukey HSD. Numbers in parentheses in FIGS. 7B, 7D, and 7F indicate the mice used for each group.
도 8은 1 mg/kg의 브루신이 MK-801에 의해 유도된 과잉행동을 억제함을 확인한 도이다. 도 8A는 실시예를 나타낸 모식도이다. 정상쥐에 식염수 또는 브루신을 복강주사하고 나서 30분 후 MK-801을 복강주사 (0.2 mg/kg)하였고, 20 분 후 개방장테스트 (OFT)를 실시하였다. 도 8B는 식염수를 2번 주사한 그룹 (sal-sal), 식염수를 주사한 후 MK-801를 주사하여 과잉행동을 유발한 그룹 (Sal-MK), 브루신(1 mg/kg)을 전처리 한 후 MK-801을 복강주사한 그룹 (Bru-MK)의 마우스가 OFT 동안 움직인 궤적을 보여준다. 도 8C는 OFT 동안 각 그룹 별 마우스가 움직인 거리를 시간에 따라 표시하였다. 도 8D는 전체 40분간의 OFT 동안 각 그룹 별 마우스가 움직인 거리를 비교하였다. MK-801 주입은 마우스에 과잉행동을 유발하며, 1 mg/kg의 브루신은 MK-801에 의한 과잉행동을 억제함을 보여준다. 각 그룹 별로 10마리의 마우스를 사용하였다. Sal-Sal vs Sal-MK, p=0.000000034113***; Sal-Sal vs Bru-MK, p=0.000028***; Sal-MK vs Bru-MK, p=0.030648*; One-way ANOVA with Tukey HSD.8 is a diagram confirming that 1 mg/kg of brucine suppresses hyperactivity induced by MK-801. 8A is a schematic diagram showing an embodiment. After intraperitoneal injection of saline or brucine to normal mice, MK-801 was intraperitoneally injected (0.2 mg/kg) 30 minutes later, and open field test (OFT) was performed 20 minutes later. 8B shows a group injected with saline twice (sal-sal), a group injected with saline and then injected with MK-801 to induce hyperactivity (Sal-MK), and pretreated with brucine (1 mg/kg). The movement trajectory of the mice of the group intraperitoneally injected with MK-801 (Bru-MK) during the OFT is shown. 8C shows the moving distance of each group of mice over time during the OFT. 8D compares the moving distances of mice for each group during the entire 40-minute OFT. MK-801 injection induces hyperactivity in mice, and brucine at 1 mg/kg suppresses MK-801-induced hyperactivity. Ten mice were used for each group. Sal-Sal vs Sal-MK, p=0.000000034113***; Sal-Sal vs Bru-MK, p=0.000028***; Sal-MK vs Bru-MK, p=0.030648*; One-way ANOVA with Tukey HSD.
도 9는 0.2 μM의 브루신이 마우스 해마 CA1 신경세포의 흥분성을 저하시킴을 보여준다. 도 9A는 whole-cell patch clamp 기법을 통해 세포막 전압을 기록하는 동안 흥분성 변화를 관찰하기 위해 주입한 전류 프로토콜을 나타낸다. 도 9B는 도 9A에 나타낸 전류 주입에 의해 나타나는 활동전압(action potential, AP)과 막전압 변화를 브루신 처리 전후에서 측정하여 비교하였다. 도 9C는 0.2 μM의 브루신이 전류주입에 의해 발생하는 활동전압의 숫자를 감소시킴을 보여준다. n = 8 cells. 100 pA, t(7) = 0.731, p = 0.488; 200 pA, t(7)=1.578, p = 0.159; 300 pA, t(7) = 3.123, p=0.168*; 400 pA, t(7) = 7.398, p = 0.000150***; 500 pA, t(7) = 6.689, p = 0.000280***; paired t-test.9 shows that 0.2 μM of brucine reduces the excitability of mouse hippocampal CA1 neurons. 9A shows a current protocol injected to observe changes in excitability while recording cell membrane voltage through the whole-cell patch clamp technique. Figure 9B was compared by measuring the action potential (AP) and membrane voltage changes before and after treatment with brucine, which are shown by the current injection shown in FIG. 9A. 9C shows that brucine at 0.2 μM reduced the number of action potentials generated by current injection. n = 8 cells. 100 pA, t(7) = 0.731, p = 0.488; 200 pA, t(7)=1.578, p = 0.159; 300 pA, t(7) = 3.123, p = 0.168*; 400 pA, t(7) = 7.398, p = 0.000150***; 500 pA, t(7) = 6.689, p = 0.000280***; Paired t-test.
도 10은 해마 CA1 pyramidal neuron에서 동일한 전류 (150 pA) 주입에 의해 유발되는 활동전압의 숫자가 브루신에 의해 감소함을 확인한 도이다. 도 10A는 전류 주입에 의해 나타나는 활동전압 숫자를 시간에 따라 표시한 것으로, 브루신 (0.2 μM)에 의해 그 숫자가 감소함을 보여준다. 도 10b는 브루신 처리 전과 후에 전류 주입에 의해 발생하는 활동전압의 숫자를 비교하였다. t(8) = 6.714, p = 0.000150***, paired t-test. 도 10C 내지 도 10E는 브루신 처리 전후 휴지막전위 (resting membrane potential, RMP)와 입력저항 (input resistance), 그리고 새그비(sag ratio)를 비교한 것이다. 0.2 μM의 브루신은 RMP (도 10C, t(9) = -1.055, p = 0.319, paired t-test), input resistance (도 10D, t(9) = 0.973, p = 0.356, paired t-test), 그리고 sag ratio (도 10E, t(9) = -0.822, p = 0.432, paired t-test)에는 영향을 주지 않았다. A-E) n = 9 cells. 10 is a diagram confirming that the number of action voltages induced by the same current (150 pA) injection in hippocampal CA1 pyramidal neurons is reduced by brucin. Figure 10A shows the number of action potentials displayed by current injection over time, showing that the number decreased by brucine (0.2 μM). Figure 10b compares the number of action potentials generated by current injection before and after brucine treatment. t(8) = 6.714, p = 0.000150***, paired t-test. 10C to 10E are comparisons of resting membrane potential (RMP), input resistance, and sag ratio before and after brucine treatment. 0.2 μM of brucine increased RMP (Fig. 10C, t(9) = -1.055, p = 0.319, paired t-test), input resistance (Fig. 10D, t(9) = 0.973, p = 0.356, paired t-test) , and did not affect the sag ratio (Fig. 10E, t(9) = -0.822, p = 0.432, paired t-test). A-E) n = 9 cells.
도 11은 브루신이 글리신(glycine)에 의해 유도되는 전류에 영향을 주지 않음을 나타낸 도이다. 도 11A 내지 도 11E는 0.5 mM 글리신에 의해 유도되는 전류에 대해 브루신의 농도에 따른 억제효과 유무를 보여준다. 마우스 해마 뇌절편(brain slice)을 제작하여 CA1 추체세포에서 whole-cell patch clamp를 통해 막전압을 0 mV에 고정한 상태에서 전류를 측정하였다. 기준 (baseline) 전류를 10분 간 측정 후 글리신을 전체 20분 동안 처리하였으며, 후반 10분은 글리신과 정해진 농도의 브루신을 함께 처리하였다. 측정기간 동안 세포 외액(artificial cerebrospinal fluid, ACSF)에는 bicuculline (10 μM)과 AV-5 (50 μM)을 첨가하여 GABA수용체와 NMDA 수용체를 통한 전류 발생을 억제하였다. 도 11F는 1 μM 이상의 브루신은 글리신에 의해 유발되는 전류를 억제하며, 200 nM 이하의 브루신은 글리신에 의해 유발되는 전류에 영향이 없음을 보여준다. 괄호 안의 숫자는 데이터 숫자를 의미한다. n.s., not significant, p = 0.085, t(3) = 2.53; ***p = 0.000994, t(6) = 6.88; *p = 0.0164, t(4) = 3.979; Paired t-test.11 is a diagram showing that brucine does not affect the current induced by glycine. 11A to 11E show the presence or absence of an inhibitory effect according to the concentration of brucine on the current induced by 0.5 mM glycine. Mouse hippocampal brain slices were prepared and current was measured in CA1 cone cells with the membrane voltage fixed at 0 mV through whole-cell patch clamp. After measuring the baseline current for 10 minutes, glycine was treated for the entire 20 minutes, and the latter 10 minutes were treated with glycine and brucine at a predetermined concentration. During the measurement period, bicuculline (10 μM) and AV-5 (50 μM) were added to the artificial cerebrospinal fluid (ACSF) to suppress current generation through GABA receptors and NMDA receptors. Figure 11F shows that brucine at 1 μM or more inhibited the glycine-induced current, and brucine at 200 nM or less had no effect on the glycine-induced current. Numbers in parentheses indicate data numbers. ns, not significant, p = 0.085, t (3) = 2.53; ***p = 0.000994, t (6) = 6.88; *p = 0.0164, t (4) = 3.979; Paired t -test.
도 12는 200 nM의 브루신이 카바콜(carbachol, CCh)에 의해 유도되는 흥분성 시냅스 저하를 촉진함을 나타낸다. 도 12A는 마우스 뇌절편을 제작하여 해마 Schaffer collateral-CA1 시냅스에서 필드 흥분성 후시냅스 전위 (field excitatory postsynaptic potential, fEPSP)를 측정한 것으로, 브루신이 없는 상태(vehicle, n = 5)와 있는 상태(brucine, n = 6)에서 CCh를 뇌절편에 처리하였을 때 fEPSP가 감소하는 정도를 나타낸다. 도 12B는 각 조건에서 CCh 처리 전후에 나타나는 fEPSP를 보여준다. 도 12C는 브루신이 없는 상태(vehicle)와 있는 상태(brucine)에서 CCh에 의해 유발되는 시냅스전도 저하(CCh)를 비교하였고, 이후 CCh를 제거하였을 때 회복되는 정도(washout)를 비교한 것이다. CCh: t(9) = 3.635, p = 0.0054; washout: t(9) = 0.904, p = 0.389; Student’s t-test.12 shows that 200 nM of brucine promotes excitatory synaptic degradation induced by carbachol (CCh). 12A is a measurement of field excitatory postsynaptic potential (fEPSP) at the hippocampus Schaffer collateral-CA1 synapse by making mouse brain slices, in a state without brucine (vehicle, n = 5) and in the state (brucine , n = 6) shows the degree of reduction in fEPSP when CCh was treated in brain slices. 12B shows the fEPSPs before and after CCh treatment in each condition. 12C compares synaptic conduction degradation (CCh) induced by CCh in the absence (vehicle) and presence (brucine) of brucine, and then compares the degree of recovery (washout) when CCh is removed. CCh: t (9) = 3.635, p = 0.0054; washout: t (9) = 0.904, p = 0.389; Student's t -test.
이하에서, 본 발명을 보다 상세하게 설명한다. In the following, the present invention is described in more detail.
이하 설명은 발명의 이해를 돕기 위해서 제시하는 것이며, 본 발명이 이하 설명의 내용으로 제한되지 않는다.The following description is presented to aid understanding of the invention, and the present invention is not limited to the contents of the description below.
본 발명의 일 측면에서,In one aspect of the invention,
하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물 제공된다.Provided is a pharmaceutical composition for preventing or treating neurological or psychiatric disorders, comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
[화학식 1][Formula 1]
Figure PCTKR2022013390-appb-img-000002
Figure PCTKR2022013390-appb-img-000002
상기 화학식 1로 표시되는 화합물은 브루신(brucine)이며, 마전자(Strychnos nux-vomica)나무에서 자주 발견되는 물질로 분자량은 394.47 g/mol 이다.The compound represented by Formula 1 is brucine, which is a substance frequently found in Strychnos nux-vomica trees and has a molecular weight of 394.47 g/mol.
상기 약학적으로 허용가능한 염은 본 발명의 기술분야에서 통상적으로 사용되는 염의 종류를 모두 포함하며, 예컨대, 황산염(sulfae, SO4)일 수 있다.The pharmaceutically acceptable salt includes all kinds of salts commonly used in the technical field of the present invention, and may be, for example, sulfate (SO 4 ).
나아가, 본 발명은 상기 화학식 1로 표시되는 화합물 및 이의 약학적으로 허용가능한 염뿐만 아니라, 이로부터 제조될 수 있는 용매화물, 광학 이성질체, 수화물 등을 모두 포함한다.Furthermore, the present invention includes not only the compound represented by Formula 1 and pharmaceutically acceptable salts thereof, but also solvates, optical isomers, hydrates, and the like prepared therefrom.
상기 신경질환은 뇌종양, 뇌경색, 고혈압성뇌출혈, 뇌좌상, 뇌동정맥기형, 뇌농양, 뇌염, 수두증, 간질, 뇌진탕, 뇌성마비, 치매, 척수종양, 척수동정맥기형 또는 척수경색이며, 이외에 시냅스 기능 이상이나 시냅스 가소성과 관련한 다른 신경질환에도 사용될 수 있다.The neurological disease is a brain tumor, cerebral infarction, hypertensive cerebral hemorrhage, cerebral contusion, cerebral arteriovenous malformation, brain abscess, encephalitis, hydrocephalus, epilepsy, concussion, cerebral palsy, dementia, spinal cord tumor, spinal arteriovenous malformation or spinal cord infarction, in addition to synaptic dysfunction or synaptic It can also be used for other neurological diseases related to plasticity.
상기 정신질환은 불안, 우울병, 과잉행동, 주의력 결핍, 자폐, 외상 후 스트레스 장애(PTSD), 지능 장애, 치매, 퇴행성 뇌질환, 약물 중독, 조현병, 강박증, 과대망상, 성격장애, 신경증, 알코올중독, 야뇨증, 조울병 또는 운동기능 장애이며, 이외에 과도한 신경활성 증가와 관련한 다른 신경질환에도 사용될 수 있다.The mental disorders include anxiety, depression, hyperactivity, attention deficit, autism, post-traumatic stress disorder (PTSD), intellectual disability, dementia, degenerative brain disease, drug addiction, schizophrenia, obsessive-compulsive disorder, megalomania, personality disorder, neurosis, alcohol Addiction, enuresis, manic depression or motor dysfunction, and other neurological diseases associated with excessive increased nerve activity can also be used.
상기 신경질환 또는 정신질환에 있어서, 본 발명의 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염은 질환의 예방, 개선, 치료 등의 의학적으로 유용한 효과를 나타낼 수 있으며, 이는 본원 명세서, 실시예 및 실험예에 의하여 뒷받침되는 바, 이를 유효성분으로 포함하는 약학적 조성물이 제공될 수 있는 것이다. In the neurological or psychiatric disease, the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof of the present invention may exhibit medically useful effects such as prevention, improvement, and treatment of diseases, which are described herein, practice As supported by the examples and experimental examples, a pharmaceutical composition comprising the same as an active ingredient can be provided.
한편, 본 발명의 약학적 조성물의 사용태양 및 사용방법에 따라 유효성분인 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염의 함량은 당업자의 선택에 따라 적절히 조절하여 사용될 수 있다.Meanwhile, the content of the active ingredient, the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof, may be appropriately adjusted according to the use mode and method of the pharmaceutical composition of the present invention according to the choice of those skilled in the art.
본 발명의 일 구체예에서, 상기 약학적 조성물은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 전체 조성물의 총 중량에 대하여 0.01 내지 50 중량%, 바람직하게는 0.1 내지 25 중량%, 더 바람직하게는 0.1 내지 10 중량%의 양으로 포함할 수 있다.In one embodiment of the present invention, the pharmaceutical composition contains the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof in an amount of 0.01 to 50% by weight, preferably 0.1 to 25% by weight, based on the total weight of the total composition. , More preferably, it may be included in an amount of 0.1 to 10% by weight.
상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염은 상기 약학적 조성물 내에 단독으로 포함될 수 있으며, 또는 그 외 약학적으로 허용 가능한 담체, 부형제, 희석제 또는 부성분과 함께 포함될 수도 있다.The compound represented by Formula 1 or a pharmaceutically acceptable salt thereof may be included alone in the pharmaceutical composition, or may be included together with other pharmaceutically acceptable carriers, excipients, diluents or auxiliary ingredients.
상기 약학적으로 허용되는 담체, 부형제 또는 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 덱스트린, 칼슘카보네이트, 프로필렌글리콜, 리퀴드 파라핀 및 생리식염수로 이루어진 군에서 선택된 1종 이상을 들 수 있으나, 이에 한정되는 것은 아니며 통상의 담체, 부형제 또는 희석제 모두 사용 가능하다. 또한, 상기 약학적 조성물은 통상의 충진제, 증량제, 결합제, 붕해제, 항응집제, 윤활제, 습윤제, pH 조절제, 영양제, 비타민, 전해질, 알긴산 및 그의 염, 펙트산 및 그의 염, 보호성 콜로라이드, 글리세린, 향료, 유화제 또는 방부제 등을 추가로 포함할 수 있다.Examples of the pharmaceutically acceptable carrier, excipient or diluent include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, propylhydroxybenzoate, talc, magnesium stearate and mineral oil , dextrin, calcium carbonate, propylene glycol, liquid paraffin, and at least one selected from the group consisting of physiological saline, but is not limited thereto, and all conventional carriers, excipients, or diluents may be used. In addition, the pharmaceutical composition may include conventional fillers, extenders, binders, disintegrants, anti-agglomerates, lubricants, wetting agents, pH adjusters, nutrients, vitamins, electrolytes, alginic acid and its salts, pectic acid and its salts, protective chlorides, Glycerin, flavors, emulsifiers or preservatives may be further included.
또한, 상기 약학적 조성물은 상기 유효성분 이외에도 신경질환 또는 정신질환의 치료 또는 예방에 유효한 것으로 공지된 1종 이상의 다른 치료제를 포함하여 동시 또는 이시에 적용되는 병용 요법으로 사용할 수 있으며, 이러한 순서는 해당 분야의 통상의 기술자가 용이하게 결정할 수 있다.In addition, the pharmaceutical composition may be used as a combination therapy applied at the same time or at the same time, including one or more other therapeutic agents known to be effective for the treatment or prevention of neurological or psychiatric diseases, in addition to the active ingredient, and this sequence is One of ordinary skill in the art can readily determine.
상기 약학적 조성물의 투여방법은 경구 또는 비경구 모두 가능하며, 일예로는 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 비내 투여, 폐내 투여, 직장내 투여를 포함한 여러 경로를 통해 투여될 수 있다. 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.The method of administering the pharmaceutical composition can be either oral or parenteral, and examples include intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, intranasal administration, intrapulmonary administration, and intrarectal administration. It can be administered through several routes, including The composition can be administered by any device capable of transporting an active agent to a target cell.
또한, 상기 조성물의 제형은 사용방법에 따라 달라질 수 있으며, 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 본 발명이 속하는 기술분야에 잘 알려진 방법을 사용하여 제형화될 수 있다. 일반적으로는, 경구 투여를 위한 고형제제에는 정제(TABLETS), 알약, 연질 또는 경질 캅셀제(CAPSULES), 환제(PILLS), 산제(POWDERS) 및 과립제(GRANULES) 등이 포함되고, 이러한 제제는 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제(SUSTESIONS), 내용액제, 유제(EMULSIONS) 및 시럽제(SYRUPS) 등이 해당되는데, 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제 예를 들면, 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 형태는 크림(CREAM), 로션제(LOTIONS), 연고제(ONITMENTS), 경고제(PLASTERS), 액제(LIQUIDS AND SOULTIONS), 에어로솔제(AEROSOLS), 유동엑스제(FRUIDEXTRACTS), 엘릭서(ELIXIR), 침제(INFUSIONS), 향낭(SACHET), 패취제(PATCH) 또는 주사제(INJECTIONS) 등의 형태일 수 있으며, 주사용 제형이 될 경우 바람직하게는 등장성 수용액 또는 현탁액의 형태가 될 수 있다.In addition, the formulation of the composition may vary depending on the method of use, and is formulated using a method well known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. It can be. In general, solid preparations for oral administration include tablets (TABLETS), pills, soft or hard capsules (CAPSULES), pills (PILLS), powders (POWDERS) and granules (GRANULES), etc., and these preparations include one or more Excipients, for example, may be prepared by mixing starch, calcium carbonate, sucrose or lactose, gelatin, and the like. In addition to simple excipients, lubricants such as magnesium stearate and talc may also be used. Liquid formulations for oral use include suspensions, solutions for oral use, emulsions, and syrups. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, Sweetening agents, flavoring agents, preservatives, and the like may be included. Forms for parenteral administration include creams, lotions, ointments, PLASTERS, LIQUIDS AND SOULTIONS, aerosols, FRUIDEXTRACTS, and elixirs. It may be in the form of (ELIXIR), INFUSIONS, SACHET, PATCH, or INJECTIONS, and may be in the form of an isotonic aqueous solution or suspension preferably in the case of an injectable formulation. .
상기 약학적 조성물은 멸균제, 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제와, 기타 치료학적으로 유용한 물질을 더 함유할 수 있으며, 통상적인 혼합, 과립화 또는 코팅방법에 따라 제제화 할 수 있으며, 이외에도 당해 기술 분야의 공지된 적절한 방법을 사용하여 제형화 할 수 있다.The pharmaceutical composition may further contain adjuvants such as sterilizers, preservatives, stabilizers, hydration agents or emulsification accelerators, salts and/or buffers for osmotic pressure control, and other therapeutically useful substances, and may be conventionally mixed or granulated. It can be formulated according to the coating or coating method, and in addition, it can be formulated using an appropriate method known in the art.
또한, 상기 약학적 조성물의 투여량은 투여방법, 복용자의 연령, 성별, 환자의 중증도, 상태, 체내에서 활성 성분의 흡수도, 불활성율 및 병용되는 약물을 고려하여 결정할 수 있으며, 1회 또는 수회로 나누어 투여할 수 있다. 구체적으로, 본 발명에서는 동물에 마비와 경련을 유발하는 것을 방지하고, 중추신경계의 신경활성을 저하시켜 이로 인한 신경질환 또는 정신질환을 치료, 완화 또는 예방하기 위해 상기 약학적 조성물의 유효성분으로서 브루신을 포함할 수 있고, 바람직하게는 저농도로 포함할 수 있다. 보다 더 구체적으로, 상기 저농도의 브루신은 사람을 비롯한 포유류에게 1일 기준으로 15 ㎎/㎏ 체중 미만, 바람직하게는 0.2 내지 10 ㎎/㎏ 체중, 보다 더 바람직하게는 0.5 내지 5 ㎎/㎏ 체중 의 양으로, 1일 1회 또는 분할하여 경구 또는 비경구 경로로 투여되는 것을 의미할 수 있다. 또한 상기 브루신은 본 발명의 신경질환 또는 정신질환의 예방, 개선 또는 치료효과를 나타내기 위한 목적으로 조성물에 포함되는 경우, 중추신경계 또는 뇌척수액에서 브루신 농도가 바람직하게는 10 내지 400 nM, 더욱 바람직하게는 50 내지 300 nM, 더더욱 바람직하게는 100 내지 200 nM에 도달하는 수준으로 조성물에 포함되어 투여 될 수 있다. In addition, the dosage of the pharmaceutical composition may be determined in consideration of the administration method, the age and sex of the user, the severity of the patient, the condition, the absorption of the active ingredient in the body, the inactivity rate, and the drugs used in combination, once or several times. It can be administered in divided doses. Specifically, in the present invention, brew is used as an active ingredient of the pharmaceutical composition to prevent paralysis and convulsions in animals and to treat, alleviate or prevent neurological or mental diseases caused by lowering the nerve activity of the central nervous system. God may be included, preferably in a low concentration. More specifically, the low concentration of brucine is less than 15 mg/kg body weight, preferably 0.2 to 10 mg/kg body weight, and even more preferably 0.5 to 5 mg/kg body weight on a daily basis to mammals including humans. It may mean administration by oral or parenteral route in an amount, once a day or in divided doses. In addition, when the brucine is included in the composition for the purpose of preventing, ameliorating, or exhibiting therapeutic effects on neurological or mental disorders of the present invention, the concentration of brucine in the central nervous system or cerebrospinal fluid is preferably 10 to 400 nM, more preferably It may be included in the composition and administered at a level reaching 50 to 300 nM, more preferably 100 to 200 nM.
본 발명의 브루신이 상기와 같은 투여량 또는 농도로 포함되는 경우, 글리신에 의해 유발되는 전류 발생에는 영향을 미치지 않으면서, 흥분성 시냅스 전도를 감소시켜 시냅스 흥분-억제 불균형이나 비정상적인 신경활성 항진이 동반되는 모든 신경질환 또는 정신질환의 예방 또는 치료에 유용하게 활용될 수 있다. When the brucine of the present invention is included in the above dosage or concentration, it reduces excitatory synaptic conduction without affecting the current generation induced by glycine, thereby preventing synaptic excitation-inhibition imbalance or abnormal neuronal activity accompanied by hyperactivity. It can be usefully used for the prevention or treatment of any neurological or psychiatric disease.
한편, 본 발명에서는 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 대상체에게 치료학적 유효량으로 투여하는 단계를 포함하는 신경질환 또는 정신질환의 치료방법을 제공한다.Meanwhile, the present invention provides a method for treating a neurological or psychiatric disease, comprising administering a therapeutically effective amount of the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof to a subject.
바람직하게 상기 치료방법은 상기 투여 단계 이전에 상기 신경질환 또는 정신질환의 예방 또는 치료를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다.Preferably, the treatment method may further include a step of identifying a patient in need of prevention or treatment of the neurological or psychiatric disorder prior to the administration step.
상기 "치료학적 유효량"은 신경질환 또는 정신질환의 예방 또는 치료에 효과적인, 포유류에 대한 유효 성분의 양을 의미하며, 상기 치료학적 유효량은 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 혈중 청소율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있으나, 바람직하게는 상술한 바와 같이, 동물에 마비와 경련을 유발하는 것을 방지하고, 중추신경계의 신경활성을 저하시켜 이로 인한 신경질환 또는 정신질환을 치료, 완화 또는 예방하기 위해 상기 유효 성분으로서 브루신을 저농도로 포함할 수 있다. 보다 더 구체적으로, 상기 저농도의 브루신은 사람을 비롯한 포유류에게 1일 기준으로 15 ㎎/㎏ 체중 미만, 바람직하게는 0.2 내지 10㎎/㎏ 체중, 보다 더 바람직하게는 0.5 내지 5 ㎎/㎏ 체중 의 양으로, 1일 1회 또는 분할하여 경구 또는 비경구 경로로 투여되는 것을 의미할 수 있다.The "therapeutically effective amount" refers to an amount of an active ingredient effective for preventing or treating a neurological or psychiatric disease, and the therapeutically effective amount refers to the type of disease, the severity of the disease, the amount of the active ingredient contained in the composition, and Adjusted according to various factors including the type and content of other components, type of dosage form and patient's age, weight, general health condition, gender and diet, administration time, route of administration and blood clearance of the composition, duration of treatment, drugs used concurrently It may be, but preferably, as described above, to prevent paralysis and convulsions in animals, and to reduce the nerve activity of the central nervous system to treat, alleviate or prevent neurological or mental diseases caused by the active ingredient. As such, brucine may be included in a low concentration. More specifically, the low concentration of brucine is less than 15 mg/kg body weight, preferably 0.2 to 10 mg/kg body weight, and even more preferably 0.5 to 5 mg/kg body weight per day to mammals, including humans. It may mean administration by oral or parenteral route in an amount, once a day or in divided doses.
상기 "대상체"는 인간 또는 비-인간인 영장류, 생쥐(mouse), 개, 고양이, 말, 소 등의 포유류를 의미할 수 있으나, 이에 한정되는 것은 아니다.The “subject” may refer to mammals such as humans or non-human primates, mice, dogs, cats, horses, and cows, but is not limited thereto.
또한 본 발명의 다른 측면에서,Also, in another aspect of the present invention,
상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 개선용 식품 조성물이 제공된다.Provided is a food composition for preventing or improving neurological or psychiatric disorders, comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
본 발명의 일 구체예에서, 상기 식품 조성물은 기능성 식품(functional food), 영양 보조제(nutritional supplement), 건강식품(health food), 식품 첨가제(food additives) 또는 사료 등의 모든 형태를 포함하는 의미이며, 인간 또는 가축을 비롯한 동물을 취식대상으로 한다. 상기 유형의 식품 조성물은 당 업계에 공지된 통상적인 방법에 따라 다양한 형태로 제조할 수 있다.In one embodiment of the present invention, the food composition is meant to include all forms of functional food, nutritional supplements, health food, food additives, or feed. , humans or animals, including livestock, are intended as food. Food compositions of this type can be prepared in various forms according to conventional methods known in the art.
상기 유형의 식품 조성물은 당업계에 공지된 통상적인 방법에 따라 다양한 형태로 제조할 수 있다. 일반 식품으로는 이에 한정되지 않지만 음료(알콜성 음료 포함), 과실 및 그의 가공식품(예: 과일통조림, 병조림, 잼, 마아말레이드 등), 어류, 육류 및 그 가공식품(예: 햄, 소시지 콘비이프 등), 빵류 및 면류(예: 우동, 메밀국수, 라면, 스파게이트, 마카로니 등), 과즙, 각종 드링크, 쿠키, 엿, 유제품(예: 버터, 치이즈 등), 식용식물 유지, 마아가린, 식물성 단백질, 레토르트 식품, 냉동식품, 각종 조미료(예: 된장, 간장, 소스 등) 등에 본 발명의 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 첨가하여 제조할 수 있다. 또한, 영양보조제로는 이에 한정되지 않지만 캡슐, 타블렛, 환 등에 본 발명 화학식 1의 화합물을 첨가하여 제조할 수 있다. 또한, 건강기능식품으로는 이에 한정되지 않지만 예를 들면, 본 발명의 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 차, 쥬스 및 드링크의 형태로 제조하여 음용(건강음료)할 수 있도록 액상화, 과립화, 캡슐화 및 분말화하여 섭취할 수 있다. Food compositions of this type can be prepared in various forms according to conventional methods known in the art. General foods include, but are not limited to, beverages (including alcoholic beverages), fruits and their processed foods (e.g. canned fruits, bottled products, jams, marmalades, etc.), fish, meat and their processed foods (e.g. ham, sausages) Corned beef, etc.), breads and noodles (e.g. udon, buckwheat noodles, ramen, spagate, macaroni, etc.), fruit juice, various drinks, cookies, taffy, dairy products (e.g. butter, cheese, etc.), edible vegetable oil, margarine , Vegetable protein, retort food, frozen food, various seasonings (eg, soybean paste, soy sauce, sauce, etc.) can be prepared by adding the compound represented by Formula 1 of the present invention or a pharmaceutically acceptable salt thereof. In addition, nutritional supplements are not limited thereto, but may be prepared by adding the compound of Formula 1 of the present invention to capsules, tablets, pills, etc. In addition, health functional foods are not limited thereto, but, for example, the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof of the present invention can be prepared in the form of tea, juice and drink for drinking (health drink) It can be consumed by liquefying, granulating, encapsulating, and powdering.
본 발명의 건강식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산, 펙트산의 염, 알긴산, 알긴산의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올 또는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 건강식품은 천연 과일주스, 과일주스 음료, 또는 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 혼합하여 사용할 수 있다. 이러한 첨가제의 비율은 크게 중요하진 않지만 본 발명의 조성물 100 중량부당 0.01 ~ 10 중량부의 범위에서 선택되는 것이 일반적이다.The health food of the present invention contains various nutrients, vitamins, electrolytes, flavors, colorants, pectic acid, salts of pectic acid, alginic acid, salts of alginic acid, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, It may contain alcohol or a carbonating agent, and the like. In addition, the health food of the present invention may contain fruit flesh for producing natural fruit juice, fruit juice beverage, or vegetable beverage. These components may be used independently or in combination. The ratio of these additives is not very important, but is generally selected in the range of 0.01 to 10 parts by weight per 100 parts by weight of the composition of the present invention.
또한 본 발명의 다른 측면에서,Also, in another aspect of the present invention,
상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 개선용 동물 사료 조성물이 제공된다.Provided is an animal feed composition for preventing or improving neurological or psychiatric disorders, comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
본 발명에서 용어 '사료'는, 동물이 먹고, 섭취하며, 소화시키기 위한 또는 이에 적당한 임의의 천연 또는 인공 규정식, 한끼식 등 또는 상기 한끼식의 성분으로, 본 발명에 따른 신경질환 또는 정신질환의 예방 또는 개선용 조성물을 유효성분으로 포함하는 사료는 당업계에 공지된 다양한 형태의 사료로 제조가능하며, 바람직하게는 농후 사료, 조사료 및/또는 특수사료가 포함될 수 있으나, 이로 한정되지 않는다.In the present invention, the term 'feed' refers to any natural or artificial diet, one-meal meal, etc., or a component of the one-meal meal, for eating, ingesting, and digesting by animals, or suitable therefor, for neurological or mental disorders according to the present invention. A feed containing a composition for the prevention or improvement of as an active ingredient can be prepared in various types of feed known in the art, preferably a concentrated feed, roughage and / or may include a special feed, but is not limited thereto.
본 발명에서 용어, '사료첨가제'는 영양소 보충 및 체중감소 예방, 사료 내 섬유소의 소화 이용성 증진, 유질개선, 번식장애 예방 및 수태율 향상, 하절기 고온 스트레스 예방 등 다양한 효과를 목적으로 사료에 첨가하는 물질을 포함한다. 본 발명의 사료첨가제는 사료관리법상의 보조사료에 해당하며, 탄산수소나트륨, 벤토나이트(bentonite), 산화마그네슘, 복합광물질 등의 광물질제제, 아연, 구리, 코발트, 셀레늄 등의 미량 광물질인 미네랄제제, 케로틴, 비타민 A D, E, 니코틴산, 비타민 B 복합체 등의 비타민제, 메티오닌, 라이신 등의 보호아미노산제, 지방산 칼슘염 등의 보호지방산제, 생균제(유산균제), 효모배양물, 곰팡이 발효물 등의 생균, 효모제 등이 추가로 포함될 수 있다.In the present invention, the term 'feed additive' is a substance added to feed for various purposes, such as supplementation of nutrients and prevention of weight loss, enhancement of digestibility of fiber in feed, improvement of oil quality, prevention of reproductive disorders and improvement of conception rate, and prevention of high-temperature stress in summer. includes The feed additive of the present invention corresponds to supplementary feed under the Feed Control Act, and includes mineral preparations such as sodium bicarbonate, bentonite, magnesium oxide, and complex minerals, mineral preparations that are trace minerals such as zinc, copper, cobalt, and selenium, and kerotene. , vitamins such as vitamins A, D, E, nicotinic acid, and vitamin B complex, protective amino acids such as methionine and lysine, protected fatty acids such as calcium salts of fatty acids, probiotics (lactic acid bacteria), yeast cultures, live bacteria such as mold fermented products, Yeast agents and the like may be further included.
농후사료에는 밀, 귀리, 옥수수 등의 곡류를 포함하는 종자열매류, 곡물을 정제하고 얻는 부산물로서 쌀겨, 밀기울, 보릿겨 등을 포함하는 겨류, 콩, 유체, 깨, 아마인, 코코야자 등을 채유하고 얻는 부산물인 깻묵류와 고구마, 감자 등에서 녹말을 뺀 나머지인 녹말찌꺼기의 주성분인 잔존녹말질류 등의 찌꺼기류, 어분, 물고기찌꺼기, 어류에서 얻은 신선한 액상물을 농축시킨 것인 피시솔루블(fish soluble), 육분(肉粉), 혈분, 우모분, 탈지분유, 우유에서 치즈, 탈지유에서 카제인을 제조할 때의 잔액인 훼이(whey)를 건조한 건조훼이 등의 동물질사료, 효모, 클로렐라, 해조류가 있으나 이에 제한되지 않는다.Concentrated feed includes seed fruits including grains such as wheat, oats, and corn, bran including rice bran, wheat bran, and barley bran as by-products obtained after refining grains, soybeans, fluids, sesame seeds, linseed, and coco palm oil. Fish soluble, which is a condensed fresh liquid obtained from fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal, fish meal soluble), meat meal, blood meal, feather meal, skim milk powder, cheese from milk, dried whey, which is the balance when casein is produced from skim milk, animal feed such as dried whey, yeast, chlorella, and seaweed. Not limited to this.
조사료에는 야초, 목초, 풋베기 등의 생초(生草)사료, 사료용 순무, 사료용 비트, 순무의 일종인 루터베어거 등의 뿌리채소류, 생초, 풋베기작물, 곡실(穀實) 등을 사일로에 채워 놓고 젖산발효시킨 저장사료인 사일리지(silage), 야초, 목초를 베어 건조시킨 건초, 종축용(種畜用) 작물의 짚, 콩과 식물의 나뭇잎이 있으며, 이에 제한되지 않는다. 특수사료에는 굴껍데기, 암염 등의 미네랄 사료, 요소나 그 유도체인 디우레이드이소부탄 등의 요소사료, 천연사료원료만을 배합했을 때 부족하기 쉬운 성분을 보충하거나, 사료의 저장성을 높이기 위해서 배합사료에 미량으로 첨가하는 물질인 사료첨가물, 식이보조제가 있으나 이에 제한되지 않는다.Forage, raw grass feed such as wild grass, grass, and green cutting, turnip for feed, beet for feed, root vegetables such as Lutherbearer, a kind of turnip, raw grass, green crops, grain, etc. are put into silos. Silage (silage), which is a stored feed filled and fermented with lactic acid, grass, hay dried by cutting grass, straw of breeding crops, and leaves of leguminous plants, but are not limited thereto. Special feeds include mineral feeds such as oyster shells and rock salt, urea feeds such as urea or its derivative, diureide isobutane, and supplements for ingredients that are likely to be insufficient when only natural feed ingredients are mixed, or formulated feeds to improve the storability of feeds. There are feed additives and dietary supplements, which are substances added in small amounts, but are not limited thereto.
본 발명에 따른 상기 신경질환 또는 정신질환의 예방 또는 개선용 사료 첨가제는 당업계에 공지된 다양한 사료 제조방법에 따라 적절한 유효 농도 범위에서 본 발명의 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 첨가하여 제조 가능하다.The feed additive for preventing or improving the neurological or mental disease according to the present invention is a compound represented by Formula 1 of the present invention or a pharmaceutically acceptable It can be prepared by adding salt.
또한 본 발명의 다른 측면에서,Also, in another aspect of the present invention,
상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 흥분성 시냅스 전도 조절용 조성물을 제공한다.A composition for regulating excitatory synaptic conduction comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient is provided.
본 발명의 브루신은 저농도로 투여시 신경활성을 저하시킬 수 있으므로 내재적 흥분성 변형이나 및 시냅스 흥분-억제 불균형(synaptic excitation-inhibition imbalance) 조절용 조성물에 사용될 수 있다.Since brucine of the present invention can reduce nerve activity when administered at a low concentration, it can be used in a composition for controlling intrinsic excitability modification or synaptic excitation-inhibition imbalance.
중복된 기재를 피하기 위해서, 별도의 언급이 없는 한, 상기 약학적 조성물 부분에서 기술한 본 발명 각 구성에 대한 정의 및 설명은 식품 조성물, 사료 조성물 및 흥분성 시냅스 전도 조절용 조성물에 그대로 준용된다.In order to avoid redundant description, unless otherwise stated, the definitions and descriptions of each component of the present invention described in the pharmaceutical composition section are applied mutatis mutandis to food compositions, feed compositions, and excitatory synaptic conductance regulating compositions.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. However, since various changes can be made to the embodiments, the scope of the patent application is not limited or limited by these embodiments. It should be understood that all changes, equivalents or substitutes to the embodiments are included within the scope of rights.
<준비예><Preparation example>
준비예 1. 약물의 준비Preparation Example 1. Preparation of drug
NBQX, picrotoxin, AP-5, bicuculline은 Tocris Cookson(Bristol, UK)로부터 구입하였으며, 브루신(brucine) 및 다른 모든 반응제와 화학 물질은 Sigma-Aldrich(MO, USA)로부터 구입하였다.NBQX, picrotoxin, AP-5, and bicuculline were purchased from Tocris Cookson (Bristol, UK), and brucine and all other reagents and chemicals were purchased from Sigma-Aldrich (MO, USA).
준비예 2. 동물의 준비Preparation Example 2. Animal preparation
모든 실험은 C57BL/6N 수컷(male) 마우스를 사용하였다. 전기생리학 및 웨스턴블롯 실험은 5 내지 7주 연령, 행동실험은 9-10주의 동물을 이용하였다. 동물들은 12/12-h 낮/밤이 순환하고, 07:00에 낮이 되는 환경에서 유지되었다. 한 케이지 당 3 내지 5마리의 동물이 수용되었으며, 특정 병원성 미생물이 없는(SPF) 조건에서 자유롭게 이용 가능한 음식과 물을 제공받았다. 상기 동물 유지 및 모든 실험 과정은 서울대학교 동물실험윤리위원회 (Institutional Animal Care and Use Committee, IACUC) 승인을 받은 프로토콜에 따라 이루어졌다.All experiments were performed using C57BL/6N male mice. Electrophysiology and Western blot experiments used animals of 5 to 7 weeks of age, and behavior experiments of 9 to 10 weeks of age. Animals were maintained in an environment with a 12/12-h day/night cycle, with daylight at 07:00. Three to five animals per cage were housed and provided with freely available food and water under specific pathogen-free (SPF) conditions. The animal maintenance and all experimental procedures were performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Seoul National University.
준비예 3. 절편의 준비Preparation Example 3. Section preparation
차가운 해부 완충액 (수크로오스 230 mM; NaHCO3 25 mM; KCl 2.5 mM; NaH2PO4 1.25 mM; D-글루코스 10 mM; Na-아스코르브산 염 1.3 mM; MgCl2 3 mM; CaCl2 0.5 mM, 95% O2/5% CO2 pH 7.4) 내에서 진동절삭기(Vibratome, Leica, Germany) 이용하여 해마 절편(400μm 두께)을 제작하였다. 절편은 정상적인 인공 뇌척수액(ACSF: NaCl 125 mM; NaHCO3 25 mM; KCl 2.5 mM; NaH2PO4 1.25 mM; D-글루코스 10 mM; MgCl2 1.3 mM; CaCl2 2.5 mM, 95% O2/5% CO2 pH 7.4 및 36℃)에서 1시간 동안 회복되었으며, 그 후 상온(23-25℃)에서 기록까지 유지되었다.Cold dissection buffer (sucrose 230 mM; NaHCO 3 25 mM; KCl 2.5 mM; NaH 2 PO 4 1.25 mM; D-glucose 10 mM; Na-ascorbate 1.3 mM; MgCl 2 3 mM; CaCl 2 0.5 mM, 95% to O 2 /5% CO 2 pH 7.4) using a vibrating cutter (Vibratome, Leica, Germany) to prepare hippocampal slices (400 μm thick). Sections were prepared in normal artificial cerebrospinal fluid (ACSF: NaCl 125 mM; NaHCO 3 25 mM; KCl 2.5 mM; NaH 2 PO 4 1.25 mM; D-glucose 10 mM; MgCl 2 1.3 mM; CaCl 2 2.5 mM, 95% O 2 /5 as % CO 2 pH 7.4 and 36 °C) for 1 hour, then maintained at room temperature (23-25 °C) to record.
<실험예><Experimental example>
실험예 1. 전기생리학적 실험Experimental Example 1. Electrophysiological experiment
모든 전기생리학적 실험은 논문(Song et al., 2017)을 참고하여 용액에 잠긴 채로 기록용 챔버에서 수행되었다. 신호들은 컷-오프 주파수 2.8 kHz에서 MultiClamp 700B amplifier (Molecular Devices, CA, USA)을 사용하여 증폭되었으며, Digidata 1440A interface (Molecular Devices)을 이용하여 10 kHz 샘플링 빈도로 측정하였다. 데이터는 pClamp10.2 (Molecular Devices) 소프트웨어를 이용하여 수집되었으며, Igor Pro (WaveMetrics, OR, USA)를 이용하여 실험실에서 제작한 프로그램으로 분석하였다.All electrophysiological experiments were performed in a recording chamber while immersed in a solution, referring to the paper (Song et al., 2017). Signals were amplified using a MultiClamp 700B amplifier (Molecular Devices, CA, USA) at a cut-off frequency of 2.8 kHz and measured at a sampling frequency of 10 kHz using a Digidata 1440A interface (Molecular Devices). Data were collected using pClamp10.2 (Molecular Devices) software and analyzed with a laboratory-developed program using Igor Pro (WaveMetrics, OR, USA).
해마의 SC-CA1 시냅스에서 필드 흥분성 시냅스 후 전위(fEPSP)를 기록하기 위해, 해마 절편들을 기록 챔버에 놓고 지속적으로 산소를 공급한 ACSF를 관류하였다. ACSF는 관류용 히터(SH-27B, Warner Instruments, CT, USA)를 사용하여 29 내지 30℃도의 온도가 유지되도록 했다. 시냅스 반응은 매 20초마다(0.05Hz)유리 피펫(0.3-0.5Mohm)으로 자극하여 유도했으며, ACSF가 채워진 유리 피펫(3-4Mohm)으로 시냅스 반응을 기록하였다. 자극의 강도는 최대치의 약 1/3의 시냅스 반응을 발생시키도록 조정되었다. 불안정한(10%) 기준선 기록을 보이는 절편은 제외하였다. Carbachol(CCh)은 15분간의 안정적인 baseline fEPSP를 기록한 뒤 15분동안 처리하며, 그 이후 20분동안 CCh가 포함되지 않은 ACSF로 씻어준다. Brucine은 fEPSP의 기록이 시작되기 최소 10분 전부터 처리하며, 기록되는 동안 관류되는 모든 ACSF에 포함된다. CCh는 10 mM, Brucine은 1 mM의 stock solution을 제작한 후 최종 농도가 각각 2 μM (CCh)과 200 nM (brucine)이 되도록 ACSF에 희석하여 해마 절편에 흘려주는 방식으로 실험을 진행하였다.To record field excitatory postsynaptic potentials (fEPSPs) at SC-CA1 synapses in the hippocampus, hippocampal slices were placed in a recording chamber and perfused with continuously oxygenated ACSF. ACSF was maintained at a temperature of 29 to 30 ° C using a perfusion heater (SH-27B, Warner Instruments, CT, USA). Synaptic responses were induced by stimulation with a glass pipette (0.3-0.5 Mohm) every 20 seconds (0.05 Hz), and synaptic responses were recorded with ACSF-filled glass pipettes (3-4 Mohm). Stimulus intensities were adjusted to generate synaptic responses that were approximately one third of maximal. Sections showing unstable (10%) baseline scores were excluded. Carbachol (CCh) was treated for 15 minutes after recording a stable baseline fEPSP for 15 minutes, followed by washing with ACSF without CCh for 20 minutes. Brucine is treated at least 10 min before recording of fEPSP and is included in all ACSF perfused during recording. After preparing a stock solution of 10 mM for CCh and 1 mM for Brucine, the experiment was conducted in such a way that the final concentrations were diluted in ACSF to 2 μM (CCh) and 200 nM (brucine), respectively, and flowed through hippocampal slices.
글리신에 의해 유도되는 전류에 대한 브루신(brucine) 효과를 측정하기 위해, 막전압 고정기법을 통해 세포의 막전위를 0 mV로 유지하였으며, 130 mM Cs-gluconate, 10 mM TEA-Cl, 10 mM CsCl, 8 mM NaCl, 10mM HEPES, 0.5 mM QX-314-Cl, 2 mM Mg-ATP, 0.3 mM Na-GTP 및 10 mM EGTA를 포함하고, pH 7.25 및 290 mOsm/kg로 맞추어진 용액을 포함하는 패치 피펫(3-4Mohm)을 이용하여 전류를 기록하였다. GABAA 수용체(GABAAR) 길항제 bicuculline(10 μM)과 NMDA 수용체 차단제 AP-5 (50 μM)을 ACSF에 첨가하였다. 글리신은 stock solution (100 mM)을 제작한 후 인공뇌척수액에 희석하여 0.5 mM의 농도가 되도록 해마 절편에 흘려주었다. Brucine은 500 μM의 Glycine에 의해 유도되는 전류가 안정적으로 기록되는 시점인 10분 후부터 10분동안 처리하는 방식으로 5 μM, 1 μM, 200 nM, 100 nM, 그리고 50 nM의 농도로 나누어 각각 실험하였다.To measure the effect of brucine on the current induced by glycine, the cell membrane potential was maintained at 0 mV through a membrane voltage clamping technique, and 130 mM Cs-gluconate, 10 mM TEA-Cl, 10 mM CsCl, Patch pipette with a solution containing 8 mM NaCl, 10 mM HEPES, 0.5 mM QX-314-Cl, 2 mM Mg-ATP, 0.3 mM Na-GTP and 10 mM EGTA, adjusted to pH 7.25 and 290 mOsm/kg (3-4 Mohm) was used to record the current. GABA A receptor (GABA AR ) antagonist bicuculline (10 μM) and NMDA receptor blocker AP-5 (50 μM) were added to ACSF. Glycine was diluted in artificial cerebrospinal fluid after preparing a stock solution (100 mM), and flowed into hippocampal slices to a concentration of 0.5 mM. Brucine was tested at concentrations of 5 μM, 1 μM, 200 nM, 100 nM, and 50 nM by treating for 10 minutes after 10 minutes, when the current induced by 500 μM glycine was stably recorded. .
실험예 2. 웨스턴 블로팅(western blotting) 실험Experimental Example 2. Western blotting experiment
웨스턴블로팅 분석을 위하여 준비된 전뇌조직 및 해마조직 샘플은 10 내지 12 μg를 정량하여 Sodium dodecyl sulphate-polyacrylamide 겔에서 전기영동 방법으로 분리하며, Nitrocellulose (NC) membrane 으로 옮긴다. Membrane은 5% skim milk가 포함된 Tris-buffered saline (TBST, 0.1% Tween 20)에서 상온 30분 동안의 blocking 과정을 거친 뒤, anti-eEF2 (Cat. #2332S, Cell Signaling Technology, Danvers, MA, USA), anti-p-eEF2 (Cat #2331S, Cell Signaling Technology), 또는 α-tubulin (Cat. #T5168, Sigma-Aldrich) 항체를 이용하여 1시간 상온에서 처리한다. TBST를 이용하여 10분간 3번 씻어준 뒤, hoseradish peroxide (HRP)가 conjugation 된 2차항체를 이용하여 상온 1시간 처리하고 10분간 3번 씻어준다. enhanced chemiluminescence (GE healthcare, Chalfont St Giles, UK)를 처리한 후 현상액 및 고정액을 이용한 필름현상 방법을 통해 membrane의 목적단백질을 시각화하며, 이는 MetaMorph 소프트웨어(Molecular Devices, San Jose, CA, USA)를 이용하여 정량하여 수치화한다. 웨스턴블로팅 전과정은 최소 3번 반복 실험하였다. For whole brain tissue and hippocampal tissue samples prepared for Western blotting analysis, 10 to 12 μg was quantified, separated by electrophoresis on a sodium dodecyl sulphate-polyacrylamide gel, and transferred to a Nitrocellulose (NC) membrane. Membrane was treated with anti-eEF2 (Cat. #2332S, Cell Signaling Technology, Danvers, MA, USA), anti-p-eEF2 (Cat # 2331S, Cell Signaling Technology), or α-tubulin (Cat. # T5168, Sigma-Aldrich) antibody for 1 hour at room temperature. After washing with TBST 3 times for 10 minutes, use a secondary antibody conjugated with hoseradish peroxide (HRP) for 1 hour at room temperature and wash 3 times for 10 minutes. After processing enhanced chemiluminescence (GE healthcare, Chalfont St Giles, UK), the target protein on the membrane is visualized through a film development method using a developer and a fixative, using MetaMorph software (Molecular Devices, San Jose, CA, USA) to quantify and quantify. The entire Western blotting process was repeated at least three times.
실험예 3. 행동분석Experimental Example 3. Behavior Analysis
개방장 (open field)테스트는 9-10 주령 마우스를 아크릴 상자 (40 x 40x 40 cm)에 30 내지 40분 동안 두고 움직임을 비디오 녹화하였다. 녹화한 비디오는 Ethovision XT 소프트웨어를 사용하여 각 마우스의 움직임과 거리를 분석하였다. 브루신(실험군)과 식염수(대조군)는 테스트 30분 전에 복강주사하였고, 주사 후 30분 간 케이지에서 대기한 후 개방장으로 옮겼다. 케이지 대기 및 개방장테스트 기간 동안 간질 또는 경련의 발생 유무에 대해 관찰하였다. MK-801에 의해 유도된 과잉행동에 대한 브루신의 작용을 관찰하기 위해 식염수 또는 브루신을 개방장 테스트 50분 전에 처리하였고, MK-801은 개방장 테스트 20분 전에 처리하였다. In the open field test, 9-10 week old mice were placed in an acrylic box (40 x 40 x 40 cm) for 30 to 40 minutes and their movements were video-recorded. The recorded video was analyzed for movement and distance of each mouse using Ethovision XT software. Brucin (experimental group) and saline (control group) were intraperitoneally injected 30 minutes before the test, and after the injection, they waited in the cage for 30 minutes and then moved to the open field. The presence or absence of epilepsy or convulsions was observed during the cage waiting period and the open field test period. To observe the action of brucine on hyperactivity induced by MK-801, saline or brucine was treated 50 minutes before the open field test, and MK-801 was treated 20 minutes before the open field test.
브루신에 의한 간질 억제를 확인하기 위하여, 브루신을 1 mg/kg의 농도로 마우스에 복강 주사(intraperitoneal injection)하였고, 대조군은 브루신을 녹인 용매인 saline를 주사하였다. 두 그룹 모두 1시간 후 pentylenetetrazol (PTZ)을 복강주입 (40 mg/kg)하였다. 이후 1시간 동안 마우스 상태를 비디오 녹화를 하였다. 간질의 정도는 Racine’s scale (Ihara et al., 2016)을 적용하여 분석하였으며, 각 단계(score)에서 나타나는 행동적 특성은 다음과 같다: In order to confirm the inhibition of epilepsy by brucine, brucine was intraperitoneally injected into mice at a concentration of 1 mg/kg (intraperitoneal injection), and the control group was injected with saline, a solvent in which brucine was dissolved. After 1 hour in both groups, pentylenetetrazol (PTZ) was intraperitoneally injected (40 mg/kg). After that, the mouse condition was video-recorded for 1 hour. The degree of epilepsy was analyzed by applying Racine's scale (Ihara et al., 2016), and the behavioral characteristics at each score are as follows:
Score 0: 관찰되는 행동변화 없음; score 1: 갑작스런 행동 정지, 움직임이 없는 응시; score 2: 머리를 끄덕임; score 3: 전만자세를 동반하는 간헐성 앞다리 경련; score 4: 기립과 쓰러짐을 동반하는 간헐성 앞다리 경련; score 5: 전신성 긴장-간대 발작, 점핑, 사망. Score 0: no observed behavioral change; score 1: Sudden motion arrest, motionless gaze; score 2: head nod; score 3: intermittent forelimb cramps with lordosis; score 4: intermittent forelimb cramps with standing and falling; score 5: generalized tonic-clonic seizures, jumping, death.
실험예 4. 통계학적 분석Experimental Example 4. Statistical Analysis
모든 결과는 평균 ± SEM으로 표시하였다. Igor Pro (WaveMetrics, OR, USA) 및 SPSS (IBM, NY, USA)를 이용하여 통계 분석을 수행하였으며, 정규성은 Shapiro-Wilk test를 통해 결정하였다. 정규분포 유무에 따라 Student's t-test와 Mann-Whitney test를 사용하여 통계적 유의성을 분석하였다. 분석 그룹이 3가지 이상일 때에는 ANOVA를 사용하였으며, Tukey HSD 테스트를 통해 사후검증하였다.All results are expressed as mean ± SEM. Statistical analysis was performed using Igor Pro (WaveMetrics, OR, USA) and SPSS (IBM, NY, USA), and normality was determined through the Shapiro-Wilk test. Statistical significance was analyzed using Student's t -test and Mann-Whitney test according to the presence or absence of normal distribution. When there were more than 3 analysis groups, ANOVA was used, and post hoc verification was performed using the Tukey HSD test.
<실시예><Example>
실시예 1. 브루신 처리에 따른 마우스 전뇌(forebrain)의 신경활성 비교Example 1. Comparison of neural activity in mouse forebrain according to brucine treatment
1 mg/kg의 브루신이 마우스 전뇌(forebrain)의 신경활성 저하를 유도함을 도 1에 나타내었다. 구체적으로, 도 1A는 1 mg/kg의 브루신을 마우스에 복강주사하고 나서 한 시간 후 전뇌에서 인산화된 eEF2 (phosphorylated eEF2, p-eEF2)와 전체 eEF2, 그리고 알파-튜블린의 발현에 대해 웨스턴블로팅으로 조사한 것이다. 도 1B는 도 1A 실험 결과를 정량적으로 분석한 것으로 1 mg/kg의 브루신에 의해 eEF2의 인산화가 증가함(왼쪽)을 나타낸다(N = 6 mice). 그러나 전체 eEF2의 단백질 수준에는 차이가 없으며(중간), eEF2 중 인산화된 비율(p-eEF2 / eEF2)이 증가(오른쪽)함을 보여준다(p-eEF2, t(10) = -12.083, p = 2.738 × 10-7; eEF2, t(10) = 0.055, p = 0.957; p-eEF2 / eEF2, t(10) = -8.44, p = 7.30 × 10-6; Student's t-test). It is shown in FIG. 1 that 1 mg/kg of brucine induces a decrease in neural activity in the mouse forebrain. Specifically, Figure 1A shows the expression of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tubulin in the forebrain one hour after intraperitoneal injection of 1 mg/kg brucine into mice. ting was investigated. FIG. 1B is a quantitative analysis of the experimental results of FIG. 1A and shows that phosphorylation of eEF2 is increased (left) by 1 mg/kg of brucine (N = 6 mice). However, there is no difference in the protein level of total eEF2 (middle), and the phosphorylated ratio (p-eEF2 / eEF2) of eEF2 increases (right) (p-eEF2, t (10) = -12.083, p = 2.738 × 10 −7 ; eEF2, t (10) = 0.055, p = 0.957; p−eEF2/eEF2, t (10) = −8.44, p = 7.30 × 10 −6 ; Student's t -test).
실시예 2. 1 mg/kg의 브루신 처리에 따른 마우스 해마(hippocampus)의 신경활성 변화Example 2. Changes in mouse hippocampus (hippocampus) nerve activity according to brucin treatment at 1 mg/kg
1 mg/kg의 브루신에 의한 마우스 해마(hippocampus)의 신경활성이 저하되는 것을 도 2에 나타내었다. 구체적으로, 도 2A는 1 mg/kg의 브루신을 마우스에 복강주사하고 나서 한 시간 후 해마 균질액(homogenate)를 제작하여 인산화된 eEF2 (phosphorylated eEF2, p-eEF2)와 전체 eEF2, 그리고 알파-튜블린의 발현에 대해 웨스턴블로팅으로 조사한 것이다. 도 2B는 도 2A 실험 결과를 정량적으로 분석한 것으로 1 mg/kg의 브루신에 의해 eEF2의 인산화가 증가함(왼쪽)을 나타낸다. 그러나 전체 eEF2의 단백질 수준에는 차이가 없으며(중간), eEF2 중 인산화된 비율(p-eEF2 / eEF2)이 증가(오른쪽)함을 보여준다(N = 6 mice. p-eEF2, U = 0, W = 21, p = 0.004, Mann-Whitney test; eEF2, t(10) = -0.273, p = 0.790, Student's t-test; p-eEF2 / eEF2, t(10) = -4.55, p = 0.0011, Student's t-test). It is shown in Figure 2 that the neural activity of the mouse hippocampus (hippocampus) decreased by 1 mg / kg of brucine. Specifically, Figure 2A shows phosphorylated eEF2 (phosphorylated eEF2, p-eEF2), total eEF2, and alpha-tu The expression of Blin was investigated by Western blotting. Figure 2B is a quantitative analysis of the experimental results of Figure 2A, showing that phosphorylation of eEF2 is increased by brucine at 1 mg/kg (left). However, there is no difference in the protein level of total eEF2 (middle), and the ratio of phosphorylated eEF2 (p-eEF2 / eEF2) increases (right) (N = 6 mice. p-eEF2, U = 0, W = 21, p = 0.004, Mann-Whitney test; eEF2, t (10) = -0.273, p = 0.790, Student's t -test; p-eEF2/eEF2, t (10) = -4.55, p = 0.0011, Student's t-test -test).
실시예 3. 시냅스 작용약물(pircrotoxin, NBQX, muscimol)이 p-eEF2/eEF2 ratio를 변화시키는 양상과 비교를 통한 brucine의 효과 검증Example 3. Synaptic drugs (pircrotoxin, NBQX, muscimol) verify the effect of brucine through comparison with the aspect of changing the p-eEF2/eEF2 ratio
다양한 시냅스 작용약물(pircrotoxin, NBQX, muscimol)이 p-eEF2/eEF2 ratio를 변화시키는 양상과 비교를 통해 1 mg/kg의 브루신이 신경활성 감소를 유발하는 것을 도 3에 나타내었다. 구체적으로, 도 3A는 도 1C와 도 1D에서 확보한 전뇌 (forebrain) p-eEF2 /eEF2에 대한 브루신의 효과를 muscimol (1.5 mg/kg, 복강주입), picrotoxin (2 mg/kg, 복강주입), 및 NBQX (10 mg/kg, 복강주입)와 비교하였다. muscimol은 억제성 시냅스 전도 항진을 통해 신경활성을 저하하고, picrotoxin은 억제성 시냅스 전도 저하를 통해 신경활성을 증가시킨다. NBQX는 흥분성 시냅스 전도 억제를 통해 신경활성을 저하시킨다. 전뇌 p-eEF2 /eEF2에 대해 1 mg/kg의 브루신은 muscimol이나 NBQX와 유사한 효과를 보이며, 이는 신경활성의 저하를 의미한다. 괄호 안의 숫자(1)는 복강주입한 브루신의 투여량(mg/kg)을 의미한다(N = 6 mice (그룹 당). Muscimol, t(10) = -24.11, p = 3.42 × 10-10; NBQX, t(10) = -3.65, p = 0.0045; Brucine, t(10) = -8.44, p = 7.30 × 10-6; Student’s t-test. Picrotoxin, U = 3.0, Z = -2.40, and p = 0.016 by Mann-Whitney test). 도 3B는 해마 균질액에서 p-eEF2 /eEF2 값을 측정하여 해마 신경활성에 대한 브루신의 작용을 muscimol, picrotoxin, 및 NBQX와 비교한 것이다. 전뇌와 동일하게 해마에서도 1 mg/kg의 브루신은 p-eEF2의 인산화에 대해 muscimol이나 NBQX와 유사한 효과를 보였다(N = 6 mice (그룹 당). Muscimol, U = 0.0, Z = -2.88, and p = 0.004; Picrotoxin, U = 1.0, Z = -2.72, and p = 0.006; Mann-Whitney test. NBQX, t(10) = -5.89, p = 1.52 × 10-4; Brucine, t(10) = -4.55, p = 0.0011; Student’s t-test. 각 시료는 약물을 복강주입 1시간 후 제작하였다).It is shown in FIG. 3 that 1 mg/kg of brucine induces a decrease in nerve activity through comparison with the pattern in which various synaptic agents (pircrotoxin, NBQX, muscimol) change the p-eEF2/eEF2 ratio. Specifically, FIG. 3A shows the effects of brucine on the forebrain p-eEF2 /eEF2 obtained in FIGS. 1C and 1D with muscimol (1.5 mg/kg, intraperitoneal injection) and picrotoxin (2 mg/kg, intraperitoneal injection). , and NBQX (10 mg/kg, intraperitoneal injection). Muscimol decreases neuronal activity by enhancing inhibitory synaptic conduction, and picrotoxin increases neuronal activity by inhibiting synaptic conduction. NBQX reduces neuronal activity through inhibition of excitatory synaptic conduction. 1 mg/kg of brucine on forebrain p-eEF2/eEF2 showed an effect similar to that of muscimol or NBQX, indicating a decrease in neural activity. The number (1) in parentheses means the dose (mg/kg) of intraperitoneally injected brucine (N = 6 mice (per group). Muscimol, t (10) = -24.11, p = 3.42 × 10 -10 ; NBQX, t (10) = -3.65, p = 0.0045; Brucine, t (10) = -8.44, p = 7.30 × 10 -6 ;Student's t -test. = 0.016 by Mann-Whitney test). Figure 3B compares the action of brucin with muscimol, picrotoxin, and NBQX on hippocampal neural activity by measuring p-eEF2 /eEF2 values in hippocampal homogenate. Similarly to the forebrain, 1 mg/kg brucine in the hippocampus showed similar effects to muscimol and NBQX on phosphorylation of p-eEF2 (N = 6 mice (per group). Muscimol, U = 0.0, Z = -2.88, and p = 0.004;Picrotoxin, U = 1.0, Z = -2.72, and p = 0.006;Mann-Whitney test.NBQX, t (10) = -5.89, p = 1.52 × 10 -4 ;Brucine, t (10) = -4.55, p = 0.0011; Student's t -test. Each sample was prepared 1 hour after intraperitoneal injection of the drug).
실시예 4. 복강 주입한 브루신 농도에 따른 해마 eEF2의 인산화 정도를 확인Example 4. Confirmation of the degree of phosphorylation of eEF2 in the hippocampus according to the intraperitoneally injected brucine concentration
복강 주입한 브루신 농도에 따른 해마 eEF2의 인산화 정도를 확인하고 그 결과를 도 4에 나타내었다. 도 4A는 다양한 농도의 브루신을 마우스에 복강주사하고 나서 1시간 후 해마 균질액(homogenate)를 제작하여 인산화된 eEF2 (phosphorylated eEF2, p-eEF2)와 전체 eEF2의 발현 수준을 조사한 것이다. 도 4B는 p-eEF2/eEF2 의 비율을 정량한 것으로, 각 실험군 별로 6마리의 마우스가 사용되었으며, 식염수(saline)를 주사한 대조군에 대한 상대적인 값을 나타내었다(0.2 mg/kg, t(10) = -1.741, p = 0.112, Student's t-test; 0.5 mg/kg, t(10) = -5.652, p = 0.000212, Student's t-test; 1 mg/kg, U = 36, Z = 2.882, p = 0.002165, Mann-Whitney U test; 2 mg/kg, t(10) = -3.020, p = 0.013, Student's t-test; 5 mg/kg, t(10) = -6.594, p = 0.000061, Student's t-test).The degree of phosphorylation of eEF2 in the hippocampus according to the intraperitoneally injected brucin concentration was confirmed, and the results are shown in FIG. 4 . Figure 4A shows the expression levels of phosphorylated eEF2 (phosphorylated eEF2, p-eEF2) and total eEF2 by preparing hippocampal homogenates 1 hour after intraperitoneal injection of brucine at various concentrations into mice. Figure 4B quantifies the ratio of p-eEF2 / eEF2, 6 mice were used for each experimental group, and the relative value for the control group injected with saline (0.2 mg / kg, t (10 ) = -1.741, p = 0.112, Student's t-test; 0.5 mg/kg, t(10) = -5.652, p = 0.000212, Student's t-test; 1 mg/kg, U = 36, Z = 2.882, p = 0.002165, Mann-Whitney U test; 2 mg/kg, t(10) = -3.020, p = 0.013, Student's t-test; 5 mg/kg, t(10) = -6.594, p = 0.000061, Student's t-test -test).
실시예 5. 1 mg/kg의 브루신이 정상마우스의 마비, 경련, 중독(intoxication) 또는 활동도 변화에 미치는 영향 확인Example 5. Confirmation of the effect of 1 mg/kg of brucine on paralysis, convulsions, intoxication or activity change in normal mice
1 mg/kg(복강주입)의 브루신이 정상마우스에는 마비나 경련, 중독(intoxication) 또는 활동도 변화를 유발하지 않음을 확인하고 그 결과를 도 5에 나타내었다. 도 5A는 브루신 복강주입(1 mg/kg) 후 30분 이후부터 개방장(open field)에서 마우스의 움직임을 30분 동안 측정한 결과이다. 식염수(n = 10 mice)와 브루신(n = 10 mice)을 투여한 마우스가 움직인 거리를 5분 간격으로 표시하였을 때, 두 그룹 간에 차이가 없음을 보여준다. F(1,18) = 0.003, p = 0.956 (two-way repeated measures ANOVA). 도 5B는 전체 30분 동안 움직인 거리의 총합을 나타낸다. t(18) = -0.056, p = 0.239 (Student's t-test). 도 5C는 개방장 테스트 기간 (30 min) 동안 마우스들이 개방장의 중심부에서 보낸 시간을 측정하여 불안 수준을 분석한 결과이다. U = 36, W = 91, p = 0.29 (Mann-Whitney U test).It was confirmed that 1 mg/kg (intraperitoneal injection) of brucine did not induce paralysis, convulsions, intoxication, or activity changes in normal mice, and the results are shown in FIG. 5 . Figure 5A is the result of measuring the movement of the mouse in the open field (open field) for 30 minutes after 30 minutes after intraperitoneal injection of brucine (1 mg / kg). When the distance moved by mice administered with saline (n = 10 mice) and brucine (n = 10 mice) was displayed at 5-minute intervals, there was no difference between the two groups. F(1,18) = 0.003, p = 0.956 (two-way repeated measures ANOVA). Figure 5B shows the total distance traveled for the entire 30 minutes. t(18) = -0.056, p = 0.239 (Student's t-test). 5C shows the result of analyzing the level of anxiety by measuring the time the mice spent in the center of the open field during the open field test period (30 min). U = 36, W = 91, p = 0.29 (Mann-Whitney U test).
실시예 6. 1 mg/kg의 브루신이 펜틸렌테트라졸(pentylenetetrazol, PTZ)에 의한 간질 유발에 미치는 영향 확인Example 6. Confirmation of the effect of 1 mg/kg of brucine on the induction of epilepsy by pentylenetetrazol (PTZ)
1 mg/kg의 브루신이 펜틸렌테트라졸(pentylenetetrazol, PTZ)에 의한 간질 유발을 지연하고 또한 억제함을 확인하고 그 결과를 도 6에 나타내었다. 복강주사를 통해 PTZ를 주입(40 mg/kg)하기 1시간 전 대조군(n = 10 mice)은 식염수(saline)를 주입하였고, 실험군(n = 10 mice)은 1 mg/kg의 브루신을 주입하였다. 도 6A는 PTZ 투여 후 첫 번째 경련 또는 발작이 나타나기까지 걸린 시간을 나타낸다. U = 23, Z = 78, P = 0.041, Mann-Whitney test. 도 6B는 Lacine scale을 통해 간질의 정도를 측정하였을 때 brucine 전처리에 의해 PTZ에 의해 유도되는 간질이 정도가 감소함을 보여준다. U = 31.5, Z = 86.5, P = 0.045, Mann-Whitney test.It was confirmed that 1 mg/kg of brucine delayed and inhibited epilepsy induction by pentylenetetrazol (PTZ), and the results are shown in FIG. 6 . 1 hour before PTZ injection (40 mg/kg) via intraperitoneal injection, the control group (n = 10 mice) was injected with saline, and the experimental group (n = 10 mice) was injected with 1 mg/kg of brucine. . Figure 6A shows the time from PTZ administration to the appearance of the first convulsions or seizures. U = 23, Z = 78, P = 0.041, Mann-Whitney test. Figure 6B shows that the degree of epilepsy induced by PTZ was reduced by pretreatment with brucine when the degree of epilepsy was measured through the Lacine scale. U = 31.5, Z = 86.5, P = 0.045, Mann-Whitney test.
실시예 7. 1 내지 5 mg/kg의 브루신이 aminopeptidase p1 결핍(Xpnpep1 KO) 마우스의 과잉행동에 미치는 영향 확인Example 7. Confirmation of the effect of 1 to 5 mg/kg of brucine on hyperactivity in aminopeptidase p1 deficient (Xpnpep1 KO) mice
1 내지 5 mg/kg의 브루신이 과잉행동을 보이는 aminopeptidase p1 결핍(Xpnpep1 KO) 마우스의 활동도를 저하시킴을 확인하고 그 결과를 도 7에 나타내었다. 개방장테스트 (open field test, OFT) 1시간 전 브루신 또는 식염수를 복강주사하였고, OFT는 30 분 간 측정하였다. 도 7A는 브루신 1 mg/kg을 주사한 Xpnpep1 KO 마우스 (KO +Bru)가 개방장테스트 (OFT) 동안 움직인 거리를 보여준다. 대조군으로 정상(WT) 마우스와 식염수(Sal)를 주입한 Xpnpep1 KO 마우스(KO + Sal)를 사용하였다. 도 7A는 전체 30분 간의 OFT에서 각 그룹 별로 동물이 움직인 평균거리를 도식화한 것으로, 1 mg/kg의 브루신에 의해 Xpnpep1 KO 마우스가 움직인 거리가 감소함을 보여준다. WT vs KO-Sal, p = 0.00000083278***; WT vs KO-Bru, p = 0.000579***; KO-Sal vs KO-Bru, p = 0.004843**; One-way ANOVA with Tukey HSD. 도 7C와 도 7D는 2 mg/kg의 브루신 복강주사에 의해 Xpnpep1 KO의 활동도가 감소함을 OFT를 통해 확인한 실험결과이다. WT-Sal vs WT-Bru, p = 0.932; WT-Sal vs KO-Sal, p = 0.00000014335***; WT-Sal vs KO-Bru, p = 0.000063***; WT-Bru vs KO-Sal, p = 0.00000011539***; WT-Bru vs KO-Bru, p = 0.000036***; KO-Sal vs KO-Bru, p = 0.004806**; One-way ANOVA with Tukey HSD. 도 7E와 도 7F는 Xpnpep1 KO 마우스의 과잉행동이 브루신 5 mg/kg 복강주사에 의해 감소함을 나타낸다. WT-Sal vs WT-Bru, p = 0.769; WT-Sal vs KO-Sal, p = 0.000000035974***; WT-Sal vs KO-Bru, p = 0.000014***; WT-Bru vs KO-Sal, p = 0.00000028049***; WT-Bru vs KO-Bru, p = 0.000143***; KO-Sal vs KO-Bru, p = 0.031532*; One-way ANOVA with Tukey HSD. 도 7B, 도 7D, 도 7F에서 괄호 안의 숫자는 그룹 별로 사용된 마우스를 나타낸다.It was confirmed that 1 to 5 mg/kg of brucine reduced the activity of hyperactive aminopeptidase p1 deficient (Xpnpep1 KO) mice, and the results are shown in FIG. 7 . Brucin or saline was intraperitoneally injected 1 hour before open field test (OFT), and OFT was measured for 30 minutes. Figure 7A shows the distance traveled by Xpnpep1 KO mice (KO +Bru) injected with 1 mg/kg of brucine during the open field test (OFT). Normal (WT) mice and saline (Sal)-injected Xpnpep1 KO mice (KO + Sal) were used as controls. Figure 7A is a schematic diagram of the average distance moved by animals for each group in the OFT for a total of 30 minutes, showing that the distance moved by Xpnpep1 KO mice was reduced by 1 mg/kg of brucine. WT vs KO-Sal, p = 0.00000083278***; WT vs KO-Bru, p = 0.000579***; KO-Sal vs KO-Bru, p = 0.004843**; One-way ANOVA with Tukey HSD. 7C and 7D are experimental results confirming through OFT that the activity of Xpnpep1 KO is reduced by intraperitoneal injection of 2 mg/kg brucin. WT-Sal vs WT-Bru, p = 0.932; WT-Sal vs KO-Sal, p = 0.00000014335***; WT-Sal vs KO-Bru, p = 0.000063***; WT-Bru vs KO-Sal, p = 0.00000011539***; WT-Bru vs KO-Bru, p = 0.000036***; KO-Sal vs KO-Bru, p = 0.004806**; One-way ANOVA with Tukey HSD. 7E and 7F show that the hyperactivity of Xpnpep1 KO mice was reduced by intraperitoneal injection of 5 mg/kg brucin. WT-Sal vs WT-Bru, p = 0.769; WT-Sal vs KO-Sal, p = 0.000000035974***; WT-Sal vs KO-Bru, p = 0.000014***; WT-Bru vs KO-Sal, p = 0.00000028049***; WT-Bru vs KO-Bru, p = 0.000143***; KO-Sal vs KO-Bru, p = 0.031532*; One-way ANOVA with Tukey HSD. Numbers in parentheses in FIGS. 7B, 7D, and 7F indicate mice used for each group.
실시예 8. 1 mg/kg의 브루신이 MK-801에 의해 과잉행동이 유발된 마우스에 미치는 영향 확인Example 8. Confirmation of the effect of 1 mg/kg of brucine on mice hyperactivity induced by MK-801
1 mg/kg의 브루신이 MK-801에 의해 유도된 과잉행동을 억제함을 확인하고 그 결과를 도 8에 나타내었다. 도 8A는 실시예를 나타낸 모식도이다. 정상쥐에 식염수 또는 브루신을 복강주사하고 나서 30분 후 MK-801을 복강주사 (0.2 mg/kg)하였고, 20 분 후 개방장테스트 (OFT)를 실시하였다. 도 8B는 식염수를 2번 주사한 그룹 (sal-sal), 식염수를 주사한 후 MK-801를 주사하여 과잉행동을 유발한 그룹 (Sal-MK), 브루신(1 mg/kg)을 전처리 한 후 MK-801을 복강주사한 그룹 (Bru-MK)의 마우스가 OFT 동안 움직인 궤적을 보여준다. 도 8C는 OFT 동안 각 그룹 별 마우스가 움직인 거리를 시간에 따라 표시하였다. 도 8D는 전체 40분간의 OFT 동안 각 그룹 별 마우스가 움직인 거리를 비교하였다. MK-801 주입은 마우스에 과잉행동을 유발하며, 1 mg/kg의 브루신은 MK-801에 의한 과잉행동을 억제함을 보여준다. 각 그룹 별로 10마리의 마우스를 사용하였다. Sal-Sal vs Sal-MK, p=0.000000034113***; Sal-Sal vs Bru-MK, p=0.000028***; Sal-MK vs Bru-MK, p=0.030648*; One-way ANOVA with Tukey HSD.It was confirmed that 1 mg/kg of brucine inhibited hyperactivity induced by MK-801 and the results are shown in FIG. 8 . 8A is a schematic diagram showing an embodiment. After intraperitoneal injection of saline or brucine to normal mice, MK-801 was intraperitoneally injected (0.2 mg/kg) 30 minutes later, and open field test (OFT) was performed 20 minutes later. 8B shows a group injected with saline twice (sal-sal), a group injected with saline and then injected with MK-801 to induce hyperactivity (Sal-MK), and pretreated with brucine (1 mg/kg). The movement trajectory of the mice of the group intraperitoneally injected with MK-801 (Bru-MK) during the OFT is shown. 8C shows the moving distance of each group of mice over time during the OFT. 8D compares the moving distances of mice for each group during the entire 40-minute OFT. MK-801 injection induces hyperactivity in mice, and brucine at 1 mg/kg suppresses MK-801-induced hyperactivity. Ten mice were used for each group. Sal-Sal vs Sal-MK, p=0.000000034113***; Sal-Sal vs Bru-MK, p=0.000028***; Sal-MK vs Bru-MK, p=0.030648*; One-way ANOVA with Tukey HSD.
실시예 9. 0.2 μM의 브루신이 마우스 해마 CA1 신경세포에 미치는 영향 확인Example 9. Confirmation of the effect of 0.2 μM of brucine on mouse hippocampal CA1 neurons
0.2 μM의 브루신이 마우스 해마 CA1 신경세포의 흥분성을 저하시킴을 확인하고 그 결과를 도 9에나타내었다. 도 9A는 whole-cell patch clamp 기법을 통해 세포막 전압을 기록하는 동안 흥분성 변화를 관찰하기 위해 주입한 전류 프로토콜을 나타낸다. 도 9B는 도 9A에 나타낸 전류 주입에 의해 나타나는 활동전압(action potential, AP)과 막전압 변화를 브루신 처리 전후에서 측정하여 비교하였다. 도 9C는 0.2 μM의 브루신에 의해 전류주입에 의해 발생하는 활동전압의 숫자가 감소함을 보여준다. n = 8 cells. 100 pA, t(7) = 0.731, p = 0.488; 200 pA, t(7)=1.578, p = 0.159; 300 pA, t(7) = 3.123, p=0.168*; 400 pA, t(7) = 7.398, p = 0.000150***; 500 pA, t(7) = 6.689, p = 0.000280***; paired t-test.It was confirmed that 0.2 μM of brucine decreased the excitability of mouse hippocampal CA1 neurons, and the results are shown in FIG. 9 . 9A shows a current protocol injected to observe changes in excitability while recording cell membrane voltage through the whole-cell patch clamp technique. Figure 9B was compared by measuring the action potential (AP) and membrane voltage changes before and after treatment with brucine, which are shown by the current injection shown in FIG. 9A. 9C shows that 0.2 μM of brucine reduces the number of action potentials generated by current injection. n = 8 cells. 100 pA, t(7) = 0.731, p = 0.488; 200 pA, t(7)=1.578, p = 0.159; 300 pA, t(7) = 3.123, p = 0.168*; 400 pA, t(7) = 7.398, p = 0.000150***; 500 pA, t(7) = 6.689, p = 0.000280***; Paired t-test.
실시예 10. 브루신이 해마 CA1 pyramidal neuron에서 유발된 활동전압에 미치는 영향 확인Example 10. Confirmation of the effect of brucine on the action voltage induced in hippocampal CA1 pyramidal neurons
브루신이 해마 CA1 pyramidal neuron에서 동일한 전류 (150 pA) 주입에 의해 유발되는 활동전압의 숫자가 브루신에 의해 감소함을 확인하고 그 결과를 도 10에 나타내었다. 도 10A는 전류 주입에 의해 나타나는 활동전압 숫자를 시간에 따라 표시한 것으로, 브루신 (0.2 μM)에 의해 그 숫자가 감소함을 보여준다. 도 10B는 브루신 처리 전과 후에 전류 주입에 의해 발생하는 활동전압의 숫자를 비교하였다. t(8) = 6.714, p = 0.000150***, paired t-test. 도 10C 내지 도 10E는 브루신 처리 전후 휴지막전위 (resting membrane potential, RMP)와 입력저항 (input resistance), 그리고 새그비(sag ratio)를 비교한 것이다. 0.2 μM의 브루신은 RMP (도 10C, t(9) = -1.055, p = 0.319, paired t-test), input resistance (도 10D, t(9) = 0.973, p = 0.356, paired t-test), 그리고 sag ratio (도 10E, t(9) = -0.822, p = 0.432, paired t-test)에는 영향을 주지 않았다. A-E) n = 9 cells. It was confirmed that the number of action voltages induced by the injection of the same current (150 pA) in CA1 pyramidal neurons of the hippocampus was reduced by brucin, and the results are shown in FIG. 10 . Figure 10A shows the number of action potentials displayed by current injection over time, showing that the number decreased by brucine (0.2 μM). Figure 10B compares the number of action potentials generated by current injection before and after brucine treatment. t(8) = 6.714, p = 0.000150***, paired t-test. 10C to 10E are comparisons of resting membrane potential (RMP), input resistance, and sag ratio before and after brucine treatment. 0.2 μM of brucine increased RMP (Fig. 10C, t(9) = -1.055, p = 0.319, paired t-test), input resistance (Fig. 10D, t(9) = 0.973, p = 0.356, paired t-test) , and did not affect the sag ratio (Fig. 10E, t(9) = -0.822, p = 0.432, paired t-test). A-E) n = 9 cells.
실시예 11. 브루신이 글리신(glycine)에 의해 유도되는 전류에 미치는 영향 확인Example 11. Confirmation of the effect of brucine on the current induced by glycine
브루신이 글리신(glycine)에 의해 유도되는 전류에 영향을 주지 않음을 확인하고 그 결과를 도 11에 나타내었다. 도 11A 내지 도 11E는 0.5 mM 글리신에 의해 유도되는 전류에 대해 브루신의 농도에 따른 억제효과 유무를 보여준다. 마우스 해마 뇌절편(brain slice)을 제작하여 CA1 추체세포에서 whole-cell patch clamp를 통해 막전압을 0 mV에 고정한 상태에서 전류를 측정하였다. 기준 (baseline) 전류를 10분 간 측정 후 글리신을 전체 20분 동안 처리하였으며, 후반 10분은 글리신과 정해진 농도의 브루신을 함께 처리하였다. 측정기간 동안 세포 외액(artificial cerebrospinal fluid, ACSF)에는 bicuculline (10 μM)과 AV-5 (50 μM)을 첨가하여 GABA수용체와 NMDA 수용체를 통한 전류 발생을 억제하였다. 도 11F는 1 μM 이상의 브루신은 글리신에 의해 유발되는 전류를 억제하며, 200 nM 이하의 브루신은 글리신에 의해 유발되는 전류에 영향이 없음을 보여준다. 괄호 안의 숫자는 데이터 숫자를 의미한다. n.s., not significant, p = 0.085, t(3) = 2.53; ***p = 0.000994, t(6) = 6.88; *p = 0.0164, t(4) = 3.979; Paired t-test.It was confirmed that brucine did not affect the current induced by glycine, and the results are shown in FIG. 11 . 11A to 11E show the presence or absence of an inhibitory effect according to the concentration of brucine on the current induced by 0.5 mM glycine. Mouse hippocampal brain slices were prepared and current was measured in CA1 cone cells with the membrane voltage fixed at 0 mV through whole-cell patch clamp. After measuring the baseline current for 10 minutes, glycine was treated for the entire 20 minutes, and the latter 10 minutes were treated with glycine and brucine at a predetermined concentration. During the measurement period, bicuculline (10 μM) and AV-5 (50 μM) were added to the artificial cerebrospinal fluid (ACSF) to suppress current generation through GABA receptors and NMDA receptors. Figure 11F shows that brucine at 1 μM or more inhibited the glycine-induced current, and brucine at 200 nM or less had no effect on the glycine-induced current. Numbers in parentheses indicate data numbers. ns, not significant, p = 0.085, t (3) = 2.53; ***p = 0.000994, t (6) = 6.88; *p = 0.0164, t (4) = 3.979; Paired t -test.
실시예 12. 200 nM의 브루신이 카바콜(carbachol, CCh)에 의해 유도되는 흥분성 시냅스 저하에 미치는 영향 확인 Example 12. Confirmation of the effect of 200 nM of brucine on excitatory synaptic degradation induced by carbachol (CCh)
200 nM의 브루신이 카바콜(carbachol, CCh)에 의해 유도되는 흥분성 시냅스 저하(synaptic depression)를 촉진함을 확인하고 그 결과를 도 12에 나타내었다. 도 12A는 마우스 뇌절편을 제작하여 해마 Schaffer collateral-CA1 시냅스에서 필드 흥분성 후시냅스 전위 (field excitatory postsynaptic potential, fEPSP)를 측정한 것으로, 브루신이 없는 상태(vehicle, n = 5)와 있는 상태(brucine, n = 6)에서 CCh를 뇌절편에 처리하였을 때 fEPSP가 감소하는 정도를 나타낸다. 도 12B는 각 조건에서 CCh 처리 전후에 나타나는 fEPSP를 보여준다. 도 12C는 브루신이 없는 상태(vehicle)와 있는 상태(brucine)에서 CCh에 의해 유발되는 시냅스전도 저하(CCh)를 비교하였고, 이후 CCh를 제거하였을 때 회복되는 정도(washout)를 비교한 것이다. CCh: t(9) = 3.635, p = 0.0054; washout: t(9) = 0.904, p = 0.389; Student’s t-test.It was confirmed that 200 nM of brucine promotes excitatory synaptic depression induced by carbachol (CCh) and the results are shown in FIG. 12 . 12A is a measurement of field excitatory postsynaptic potential (fEPSP) at the hippocampus Schaffer collateral-CA1 synapse by making mouse brain slices, in a state without brucine (vehicle, n = 5) and in the state (brucine , n = 6) shows the degree of reduction in fEPSP when CCh was treated in brain slices. 12B shows the fEPSPs before and after CCh treatment in each condition. 12C compares synaptic conduction degradation (CCh) induced by CCh in the absence (vehicle) and presence (brucine) of brucine, and then compares the degree of recovery (washout) when CCh is removed. CCh: t (9) = 3.635, p = 0.0054; washout: t (9) = 0.904, p = 0.389; Student's t -test.

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물:A pharmaceutical composition for the prevention or treatment of neurological or psychiatric disorders comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2022013390-appb-img-000003
    Figure PCTKR2022013390-appb-img-000003
  2. 제1항에 있어서,According to claim 1,
    상기 신경질환은 뇌종양, 뇌경색, 고혈압성뇌출혈, 뇌좌상, 뇌동정맥기형, 뇌농양, 뇌염, 수두증, 간질, 뇌진탕, 뇌성마비, 치매, 척수종양, 척수동정맥기형, 척수경색, 통증, 두통 및 편두통으로 이루어진 군에서 선택되는 것인 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물.The neurological disease consists of brain tumor, cerebral infarction, hypertensive cerebral hemorrhage, cerebral contusion, cerebral arteriovenous malformation, brain abscess, encephalitis, hydrocephalus, epilepsy, concussion, cerebral palsy, dementia, spinal cord tumor, spinal arteriovenous malformation, spinal cord infarction, pain, headache and migraine. A pharmaceutical composition for the prevention or treatment of neurological or psychiatric disorders that is selected from the group.
  3. 제1항에 있어서, According to claim 1,
    상기 정신질환은 과잉행동, 주의력 결핍, 자폐, 외상 후 스트레스 장애(PTSD), 지능 장애, 치매, 약물 중독, 조현병, 강박증, 과대망상, 성격장애, 신경증, 알코올중독, 야뇨증, 조울병 및 운동기능 장애로 이루어진 군에서 선택되는 것인 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물.The mental disorders include hyperactivity, attention deficit disorder, autism, post-traumatic stress disorder (PTSD), intellectual disability, dementia, drug addiction, schizophrenia, obsessive-compulsive disorder, grandiose delusion, personality disorder, neurosis, alcoholism, enuresis, manic depression, and motor function A pharmaceutical composition for the prevention or treatment of neurological or mental disorders, which is selected from the group consisting of disorders.
  4. 제1항에 있어서, According to claim 1,
    상기 약학적 조성물은 약학적으로 허용가능한 담체, 부형제 및 희석제 중 하나 이상을 더 포함하는 것인 신경질환 또는 정신질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition is a pharmaceutical composition for the prevention or treatment of neurological or psychiatric disorders further comprising at least one of a pharmaceutically acceptable carrier, excipient and diluent.
  5. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 개선용 식품 조성물:A food composition for preventing or improving neurological or psychiatric disorders, comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2022013390-appb-img-000004
    Figure PCTKR2022013390-appb-img-000004
  6. 제5항에 있어서,According to claim 5,
    상기 식품은 건강기능식품인, 식품 조성물.The food is a health functional food, food composition.
  7. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 신경질환 또는 정신질환의 예방 또는 개선용 동물 사료 조성물:An animal feed composition for preventing or improving neurological or psychiatric disorders comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient:
    [화학식 1][Formula 1]
    Figure PCTKR2022013390-appb-img-000005
    Figure PCTKR2022013390-appb-img-000005
  8. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 대상체에게 치료학적 유효량으로 투여하는 단계를 포함하는 신경질환 또는 정신질환의 치료방법:A method for treating a neurological or psychiatric disorder comprising administering a therapeutically effective amount of a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof to a subject:
    [화학식 1][Formula 1]
    Figure PCTKR2022013390-appb-img-000006
    Figure PCTKR2022013390-appb-img-000006
PCT/KR2022/013390 2021-09-06 2022-09-06 Pharmaceutical composition comprising brucine for prevention or treatment of neurologic disorder or psychiatric disorder WO2023033631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0118576 2021-09-06
KR20210118576 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023033631A1 true WO2023033631A1 (en) 2023-03-09

Family

ID=85411403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013390 WO2023033631A1 (en) 2021-09-06 2022-09-06 Pharmaceutical composition comprising brucine for prevention or treatment of neurologic disorder or psychiatric disorder

Country Status (2)

Country Link
KR (1) KR20230036054A (en)
WO (1) WO2023033631A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292685A (en) * 1994-07-27 1996-03-06 Sankyo Co Allosteric effectors at muscarinic receptors
KR20040062982A (en) * 2001-12-05 2004-07-09 시티앙 장 Transdermal drug delivery system of strychnine, brucine, securinine and their salts
WO2004073639A2 (en) * 2003-02-19 2004-09-02 Merck & Co. Inc. Treatment of psychosis with a muscarinic m1 receptor ectopic activator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292685A (en) * 1994-07-27 1996-03-06 Sankyo Co Allosteric effectors at muscarinic receptors
KR20040062982A (en) * 2001-12-05 2004-07-09 시티앙 장 Transdermal drug delivery system of strychnine, brucine, securinine and their salts
WO2004073639A2 (en) * 2003-02-19 2004-09-02 Merck & Co. Inc. Treatment of psychosis with a muscarinic m1 receptor ectopic activator

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOU YA; QIENI XIANGMAO; LI NING; BAI JINRONG; LI RUI; GONGBAO DONGZHI; LIANG YUSHENG; FAN FANGFANG; WENCHENG DANGZHI; WANG ZHANG; : "Longzhibu disease and its therapeutic effects by traditional Tibetan medicine: Ershi-wei Chenxiang pills", JOURNAL OF ETHNOPHARMACOLOGY, ELSEVIER IRELAND LTD, IE, vol. 249, 24 November 2019 (2019-11-24), IE , XP085975323, ISSN: 0378-8741, DOI: 10.1016/j.jep.2019.112426 *
MAJI AMAL K., BANERJI PRATIM: "Strychnos nux-vomica: a poisonous plant with various aspects of therapeutic significance", JOURNAL OF BASIC AND CLINICAL PHARMACY, vol. 8, 1 January 2017 (2017-01-01), pages S087 - S103, XP093042398 *
YOON SANG HO, SONG WOO SEOK, OH SUNG PYO, KIM YOUNG SOOK, KIM MYOUNG-HWAN: "The phosphorylation status of eukaryotic elongation factor-2 indicates neural activity in the brain", MOLECULAR BRAIN, BIOMED CENTRAL LTD, LONDON UK, vol. 14, no. 1, 1 December 2021 (2021-12-01), London UK , pages 142 - 5, XP093041606, ISSN: 1756-6606, DOI: 10.1186/s13041-021-00852-0 *
YU G ET AL.: "Brucine alleviates neuropathic pain in mice via reducing the current of the sodium channel", JOURNAL OF ETHNOPHARMACOLOGY, ELSEVIER IRELAND LTD, IE, 1 January 2019 (2019-01-01), IE , pages 56 - 63, XP018534811, ISSN: 0378-8741 *

Also Published As

Publication number Publication date
KR20230036054A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US9694041B2 (en) Milk yield and/or milk quality improving agent, perinatal disease preventive or therapeutic agent, and reproductivity improving agent for ruminant
AU2019264860B2 (en) Sugar cane extracts for use in animal feeds
KR20240018537A (en) Composition for preventing and treating a pancreatic cancer comprising extracts of Sappan Lignum
WO2023033631A1 (en) Pharmaceutical composition comprising brucine for prevention or treatment of neurologic disorder or psychiatric disorder
KR101578498B1 (en) Nerve regeneration agent
WO2019212300A1 (en) Composition comprising aster koraiensis nakai extract or fraction thereof as effective ingredient for prevention or treatment of parkinson&#39;s disease
Cappai et al. The metabolic profile of Asinara (albino) and Sardo donkeys (pigmented)(Equus asinus L., 1758) points to unequivocal breed assignment of individuals
WO2023096087A1 (en) Composition for prevention, mitigation or treatment of degenerative brain disease, containing cycloastragenol as active ingredient
JP6000206B2 (en) Antiallergic oral composition
KR20220147536A (en) Food Composition and Pharmaceutical Composition for preventing or improving sarcopenia comprising low-molecular collagen as an active ingredient
KR20170013793A (en) The composition containing ginsenoside F1 for removing amyloid plaques
KR102421601B1 (en) Composition for Preventing or Treating Neurodegenerative Diseases
Liangkai et al. Dietary silymarin ameliorating reproductive and lactation performance of sows via regulating body antioxidant and metabolism
KR102022118B1 (en) Serine derivative compound for the prevention or treatment of centralnervous system diseases
WO2020218148A1 (en) Lipid peroxide production inhibitor
WO2022231309A1 (en) Food composition and pharmaceutical composition for preventing or alleviating sarcopenia, containing low-molecular-weight collagen as active ingredient
JP6113325B2 (en) Antiallergic oral composition
WO2024090980A1 (en) Composition for improving bone function comprising sericin and use thereof
KR102488267B1 (en) Composition for growth promoting comprising non-toxic-sulfur an active ingredient
KR102588274B1 (en) Pharmaceutical composition for preventing or treating epilepsy or seizure-related diseases comprising D-limonene as an active ingredient
KR102514847B1 (en) Composition for preventing or treating cognitive dysfunction or neuroinflammation comprising extracts of centella asiatica, cnidium monnieri, and lycium barbarum linne
KR101187714B1 (en) Novel TRPV3 inhibitor and use thereof
KR102229177B1 (en) Composition for preventing or treating sarcopenia comprising extract of rosemary and soybean
WO2022030719A1 (en) Composition for improving, treating, or preventing muscle disease, or improving muscle function, containing rose hip as acitve ingredient
CN116367826A (en) Transthyretin tetramer stabilizer, transthyretin amyloidosis preventive agent or progression inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE