WO2023033551A1 - mRNA 캡 유사체와 및 이의 용도 - Google Patents

mRNA 캡 유사체와 및 이의 용도 Download PDF

Info

Publication number
WO2023033551A1
WO2023033551A1 PCT/KR2022/013062 KR2022013062W WO2023033551A1 WO 2023033551 A1 WO2023033551 A1 WO 2023033551A1 KR 2022013062 W KR2022013062 W KR 2022013062W WO 2023033551 A1 WO2023033551 A1 WO 2023033551A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
mrna
salt
monopivaloyl
Prior art date
Application number
PCT/KR2022/013062
Other languages
English (en)
French (fr)
Inventor
최보성
김나리
노진미
정용규
민수현
Original Assignee
한미정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미정밀화학 주식회사 filed Critical 한미정밀화학 주식회사
Priority to CA3230030A priority Critical patent/CA3230030A1/en
Priority to AU2022338639A priority patent/AU2022338639A1/en
Publication of WO2023033551A1 publication Critical patent/WO2023033551A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a cap analog and a protein expression method using the same, and more specifically, to a cap analog, a 5' capped mRNA containing the cap analog, and a pharmaceutical composition for expressing a desired peptide or protein containing the 5' capped mRNA. , and a method for producing a desired peptide or protein using the 5' capped mRNA.
  • mRNA messenger RNA
  • the synthesized mRNA is transported out of the nucleus and undergoes a translation process in which a specific protein is synthesized through ribosomes in the cytoplasm.
  • the 5' capping structure (referred to as a 5' cap 0 mRNA structure) can protect the 5' end of mRNA from biodegradation by 5' exonuclease, and affects the movement of mRNA from the nucleus to the cytoplasm.
  • the 5' capping structure is recognized by eukaryotic translation initiation factor 4E (eIF4E) and plays an important role in protein expression by forming a translation initiation complex.
  • eIF4E eukaryotic translation initiation factor 4E
  • the 2' hydroxyl group of the first nucleotide in which 7-methylguanosine is linked through a 5'-triphosphate chain must have a methylated structure (Cap1 mRNA).
  • MDA5 intracellular sensor protein
  • recognizing the Cap0 structure recognizes the 2' hydroxyl group when exogenous mRNA of the Cap0 structure is introduced into the body, resulting in an immune inflammatory response. , which impairs the binding of mRNA to elF4E, thereby inhibiting protein expression.
  • exogenous Cap1 mRNA in which the 2' OH is methylated does not induce an immune response because it is not recognized by MDA5 even when introduced into the body, and thus it is suitable for clinical use because it can induce relatively high protein expression.
  • an enzyme capable of methylating the 2' hydroxyl group of the nucleotide such as vaccinia mRNA (nucleoside-2'-O) methyltransferase, must be additionally treated.
  • This traditional capping method has disadvantages in that the manufacturing cost is high due to the unit price of the enzyme, the number of treatments, and the like, and it is difficult to control the enzyme reaction.
  • the co-transcriptional capping method refers to a method of synthesizing mRNA constituting the 5' end of the cap analog by simultaneously introducing a chemically synthesized cap analog during in vitro mRNA synthesis.
  • the co-transcriptional capping method starts with the first generation dimeric cap analog mCAP ( 7m G (5 ' ) ppp (5 ' ) G) and then the third generation Trilink's trinucleotide cap analogue Cleancap® ( 7m G (3 ' OMe) pppN (2'OMe) pN) (U.S. Patent No.
  • mCAP has a lower production cost compared to the traditional capping method, but is limited to the 5' cap 0 mRNA structure and competes with guanosine triphosphate (GTP) when mCAP forms base pairing with the DNA template. It does have the downside of working. In order to perform base pairing on the DNA template more favorably than GTP, it is necessary to add 4 to 10 times the amount of GTP used, which increases the production cost. In addition to this, mCAP in the form of dinucleotides sometimes undergoes reverse coupling, resulting in bidirectional transcription initiation, resulting in a decrease in the efficiency of forward mRNA synthesis in vitro.
  • GTP guanosine triphosphate
  • ARCA anti-reverse cap analog
  • US Patent 7,074,596 ARCA has a 7m G (3'OMe) pppG or 7m G (2' OMe) pppG structure in which either the 2' or 3' hydroxyl group of 7-methylguanosine is substituted with a methoxy group in 7m GpppG, a dimer.
  • ARCA As a dimeric cap analog, it completely blocks reverse transcription initiation by preventing reverse binding of the cap analog RNA 9:1108-1122 (2003).
  • 7m G (3'OMe) pppA (2'OMe) pG it is a trinucleotide cap in which the 3' hydroxyl group of 7-methylguanosine is methylated. It showed better performance than 7m GpppA (2'OMe) pG, which is a roxyl cap.
  • BNT162b2 A commercially available mRNA vaccine based on the above-described Cleancap structure ( 7m G (3'OMe) pppA (2'OMe) pG) is Pfizer/BioNTech's BNT162b2.
  • BNT162b2 was developed to respond to an infectious disease caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), an RNA virus that caused a global pandemic.
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus type 2
  • BNT162b2 which is manufactured with Cleancap as a key raw material, suffered from a raw material supply shortage at one time because it was difficult to meet the demand to respond to the worldwide Covid-19 pandemic. Rapid and economical production and supply of raw materials are required for mass production of mRNA vaccines that can respond appropriately to RNA virus infectious diseases with high transmissibility. Additional research and development must be done.
  • G is guanosine
  • 7m G is 7-methylguanosine
  • N is any one of adenosine, cytidine, guanosine, or uridine
  • Me means methyl
  • Im means imidazolide.
  • pN (2'OMe) pN which is a reactant used in the final manufacturing process
  • the main factors that increase the production cost and synthesis period in the entire manufacturing process when mass-producing the cap analogues of Trilink are the purification steps using ion exchange chromatography (mainly DEAE resin) that must be performed between steps of the manufacturing process.
  • ion exchange chromatography mainly DEAE resin
  • a large amount of buffer solution mainly TEAB (triethylammonium bicarbonate) buffer
  • TEAB triethylammonium bicarbonate
  • Flash chromatography or Dowex 1 ⁇ 2 ion exchange chromatography should be performed at each step, and the yield of each step is low, making it difficult to mass-produce and increasing the production cost.
  • Recently, research and development have been conducted to increase the synthesis efficiency of 3'-methoxy guanosine, but the process step is lengthened or it is still difficult to isolate a monoether substance substituted with 3' methoxy. This is a major factor in increasing the cost of raw materials for the synthesis of cap analogues.
  • Patent Document 1 US 7,074,596
  • Patent Document 2 US 10,913,768
  • Non-Patent Document 1 RNA 9: 1108-1122 (2003)
  • One aspect is to provide a cap analog that can increase the efficiency of in vitro synthesis of 5'-capped mRNA molecules, increase the protein expression efficiency of capped mRNA, and enable economical production of the cap analog itself.
  • Another aspect is to provide an intermediate manufacturing method for preparing the cap analogue.
  • Another aspect is to provide mRNA 5' capped with the cap analog.
  • Another aspect is to provide a method for producing mRNA using the cap analog.
  • Another aspect is to provide a composition or kit for preparing 5' capped mRNA, including the cap analog.
  • Another aspect is to provide a pharmaceutical composition for expressing a desired peptide or protein, including the cap analog.
  • Another aspect is to provide a cell containing an mRNA 5' capped with the cap analogue.
  • Another aspect is to provide a cell containing a protein or peptide translated from mRNA 5' capped with the cap analogue.
  • One aspect provides a compound of Formula 1 or a pharmaceutically acceptable salt thereof:
  • n 0, 1, or 2;
  • R 3 is a methoxy group
  • Z and Z' are each independently a natural nitrogen base.
  • Another aspect provides an aqueous composition
  • aqueous composition comprising the compounds of Formulas 1a and 1b below in a molar ratio of 0.65 ⁇ 0.05:1:
  • each M of M 3 does not exist independently of each other, or is a monovalent cation selected from the group consisting of Na + , Li + , NH 4 + and K + , or Mg 2+ , Zn 2+ , and Ca 2 A divalent cation selected from the group consisting of + , wherein M 3 is selected such that the compound is electrically neutral.
  • Another aspect provides a cap analog comprising the compound of Formula 1.
  • Another aspect provides an mRNA 5' capped with the cap analog.
  • Another aspect provides a method for preparing mRNA, comprising including the cap analog during synthesis of mRNA.
  • composition or kit for preparing 5' capped mRNA including the cap analog.
  • Another aspect provides a pharmaceutical composition for expressing a desired peptide or protein, comprising an mRNA 5' capped with the cap analog and a pharmaceutically acceptable carrier.
  • Another aspect provides a cell containing an mRNA 5' capped with the cap analog.
  • Another aspect provides a cell containing a protein or peptide translated from mRNA 5' capped with the cap analog.
  • R means C 1 ⁇ C 6 alkyl or C 1 ⁇ C 6 alkoxy
  • Cap analogs according to one aspect do not need to selectively introduce a protecting group only at a specific position, such as Trilink's trinucleotide cap analog ( 7m G (3'OMe) pppA (2'OMe) pG), Since there is no need to purify the introduced compound, expensive starting materials such as 3'-methoxy guanosine are not required, and the manufacturing process can be simplified, the efficiency and economy of synthesis are high. While being improved, it has the advantage of enabling a superior level of expression efficiency of the capped mRNA when capping the mRNA.
  • Trilink's trinucleotide cap analog 7m G (3'OMe) pppA (2'OMe) pG
  • the cap analog has excellent advantages in terms of function and production cost, and thus, the mRNA containing the cap analog of the present disclosure can be very useful for treating or preventing diseases of mammals including humans.
  • Example 1 is a graph showing 1 H NMR measurement results after preparing an intermediate compound (Example 8) according to one embodiment of the present invention.
  • Example 2 is a graph showing 1 H NMR measurement results after preparing an intermediate compound (Example 9) according to one embodiment of the present invention.
  • FIG. 3 is a graph showing 1 H NMR measurement results after preparing a compound (compound of Example 16) according to one embodiment of the present invention.
  • IVT in vitro transcription
  • Figure 5 shows the translation activity of mRNA produced by IVT reaction of each compound (compound of Example 15 or 16) or 7m G (3' OMe) pppA (2' OMe) pG according to one embodiment of the present invention.
  • the result measured by transfecting the mRNA into the HeLa cell line is expressed as the amount of luciferase expression.
  • Figure 6 shows the translational activity of mRNA produced by IVT reaction of each compound (compound of Example 15 or 16) or 7m G (3' OMe) pppA (2' OMe) pG according to one embodiment of the present invention.
  • the result measured at 24 hours after transfecting the mRNA into the HeLa cell line is shown as the amount of luciferase expression.
  • complementarity refers to the standard Watson/Crick base pairing rules.
  • sequence “5'-A-G-T-C-3'” is complementary to the sequence "3'-T-C-A-G-5'".
  • Complementarity need not be perfect; A duplicate may contain mismatched base pairs, degenerate, or unmatched nucleotides.
  • the skilled person can empirically consider numerous variables including, for example, the length of the oligonucleotide, the base composition and sequence of the oligonucleotide, the incidence of mismatched base pairs, the ionic strength, the components of the hybridization buffer, and the reaction conditions to double double the number of variables. body stability can be determined.
  • Complementarity can be "complete” or “total” if both nucleotide bases of the two nucleic acid strands are matched according to the recognized base pairing rules, and only some of the nucleotide bases of the cap analogue and the DNA target form a recognized base pair. It can be “partial” if it matches according to a rule, or it can be “absent” if neither of the nucleotide bases of the two nucleic acid strands match according to recognized base pairing rules.
  • nitrogen base includes all naturally occurring nitrogen bases.
  • the base rings most commonly found in naturally occurring nitrogenous bases are the purine and pyrimidine rings.
  • Naturally occurring purine rings include, for example, adenine, guanine, and N6-methyladenine.
  • Naturally occurring pyrimidine rings include, for example, cytosine, thymine, 5-methylcytosine, and uracil.
  • Naturally occurring nucleosides are, for example, adenosine, guanosine, cytidine, thymidine, uridine, inosine, 7-methylguanosine or ribo, 2'-O-methyl or 2'- of uridine.
  • Deoxyribo derivatives include, but are not limited to.
  • C 1-n alkyl refers to a hydrocarbon radical chain of 1 to n carbons, linear or branched, saturated. Specific examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, n-hexyl, and the like.
  • C 1-n alkoxy refers to a hydrocarbon radical chain of 1 to n saturated carbons, linear or branched, bonded to oxygen. Specific examples include, but are not limited to, methoxy, ethoxy, propoxy, isobutoxy, n-butoxy, sec-butoxy, t-butoxy, pentoxy, hexoxy, and the like.
  • in situ method means that the obtained product is subjected to the next step of the reaction in the original container as it is without an additional purification process.
  • One aspect relates to a compound having the structure of Formula 1:
  • n 0, 1, or 2;
  • R 3 is a methoxy group
  • Z and Z' are each independently a natural nitrogen base.
  • the pharmaceutically acceptable salt refers to a salt commonly used in the pharmaceutical field, and may specifically be a base addition salt.
  • the salt includes, for example, a monovalent metal salt, a divalent metal salt, an amine salt, or an amino acid salt.
  • the monovalent metal salts include Na, Li, or K salts
  • the divalent metal salts include Ca, Zn, or Mg salts
  • the amine salts include trimethylamine, triethylamine, ammonia, pyridine, or picoline. salts, and the like
  • the amino acid salts include, but are not limited to, arginine, lysine, or histidine salts.
  • the pharmaceutically acceptable salt may be in the form of a salt that enables the compound of Formula 1 to form a stable, electrically neutral form in an aqueous liquid phase.
  • the compound of Formula 1 or a pharmaceutically acceptable salt thereof may be, for example, a compound of Formula 1A below:
  • n 0, 1, or 2;
  • X 1 , X 2 , X 3 , and X 4 do not exist independently of each other, or are monovalent cations, divalent cations, or a combination thereof, wherein X 1 , X 2 , X 3 , and X 4 is A compound of Formula 1A is selected to be electrically neutral;
  • R 3 is a methoxy group
  • Z and Z' are each independently a natural nitrogen base.
  • the monovalent cation is selected from the group consisting of Na + , Li + , NH 4 + and K +
  • the divalent cation is selected from the group consisting of Mg 2+ , Zn 2+ and Ca 2+ do.
  • R' is a compound that is C 2 -C 6 alkyl or C 2 -C 6 alkoxy.
  • R' is methyl, ethyl, isopropyl, isopropoxy, t-butyl, or t-butoxy.
  • Z and Z' in Formula 1 are each independently a natural purine or pyrimidine base moiety. More specifically, Z and Z' may each independently be selected from the group consisting of guanine, adenine, cytosine, thymine, and uracil. In one embodiment, Z and Z' are adenine and guanine, respectively.
  • the structural isomers present at the 2' or 3' position of guanosine form a mixture in dynamic equilibrium with each other.
  • the ratio of each regioisomer in dynamic equilibrium is It may vary depending on the structure, and may also vary depending on the surrounding environment (eg, temperature, pH).
  • the compound of Formula 1 is a compound selected from the group consisting of the compounds listed in Table 1 below or a pharmaceutically acceptable salt thereof:
  • G is guanosine
  • 7m G is 7-methylguanosine
  • A is adenosine
  • Me is methyl.
  • Another aspect provides an aqueous composition
  • aqueous composition comprising the compounds of Formulas 1a and 1b below in a molar ratio of 0.65 ⁇ 0.05:1:
  • each M of M 3 does not exist independently of each other, or is a monovalent cation selected from the group consisting of Na + , Li + , NH 4 + and K + , or Mg 2+ , Zn 2+ , and Ca 2 A divalent cation selected from the group consisting of + , wherein M 3 is selected such that the compound is electrically neutral.
  • M 3 may indicate that all three Ms may be NH 4 + , one M of M 3 is Ca 2+ , one M is K + , and one M is absent.
  • each M of M 3 is Na + .
  • the pH of the aqueous composition is between 1.0 and 8.0.
  • the compounds of Formulas 1a and 1b may be present as a mixture in a molar ratio of 0.65 ⁇ 0.05:1 in an aqueous composition at, for example, 25° C. ⁇ 5, pH 1.0 to 8.0.
  • the compound of Formula 1 may be prepared, for example, according to the methods exemplified in the Examples below. A person skilled in the art may prepare the compound by modifying the reaction conditions, reaction sequence, and reaction compound by appropriately modifying the methods exemplified in the following examples.
  • G is guanosine
  • 7m G is 7-methylguanosine
  • N is any one of guanine, adenine, cytosine, or uracil
  • R' is C 1 -C 6 alkyl or C 1 -C 6 alkoxy
  • Im is an imidazolide.
  • R means C 1 ⁇ C 6 alkyl or C 1 ⁇ C 6 alkoxy
  • the alkali condition may be specifically pH 9.5 to 11.5, and may be formed using, for example, sodium hydroxide.
  • the pH 1.5 to 4.5 which is a weakly acidic condition, may be formed using, for example, acetic acid.
  • R means C 1 ⁇ C 6 alkyl or C 1 ⁇ C 6 alkoxy
  • imidazole, triphenylphosphine, 2,2-dipyridyl disulfide, and triethylamine may be reacted together as an activating reagent to help imidazole coupling.
  • Reaction Scheme 3 can be briefly represented by the following abbreviation.
  • G is guanosine
  • 7m is 7-methylguanosine
  • Me is methyl
  • Im is imidazolide.
  • the compound of Formula 1 can be prepared by a total of 4 steps, purification can be performed after each step, and then the next step can be performed. Thus, 4 purification steps are required. This means that the number of purifications is reduced by one time compared to the conventional preparation method of TriLink's commercially available cap analog requiring five intermediate purification processes. Therefore, the compound of Formula 1 can be produced more economically because the number of processes and purification times are reduced compared to the conventionally known methods for preparing cap analogues.
  • the purification method may be performed independently for each step through ion chromatography, reverse phase chromatography, and the like.
  • the purification method is reverse phase chromatography.
  • the most expensive part of the pure raw material cost for the preparation of cap analogues is the starting material 3' -O-methylguanosine nucleoside (G (3' OMe) ) is the unit price of the raw material, which requires a difficult process of selectively inducing methylation of only the 3' hydroxyl among the three hydroxyl groups of guanosine nucleoside, and selective purification of only the 3' monoesterification product. Because it has to go through a purification process.
  • the compound of Chemical Formula 1 may be prepared using inexpensive guanosine monophosphate as a starting material.
  • the mRNA capped with the compound of Formula 1 in the form of a monoester has a higher protein expression efficiency than conventional Trilink's trinucleotide 3'-methoxy cap analogue ( 7m G (3'OMe) pppA (2'OMe) pG). Even if it is higher than the case, it is possible to ultimately reduce the cost required for protein synthesis.
  • the compound of Formula 1 in the form of a diester in which both 2'-OH and 3'-OH, which are other embodiments of the compound of Formula 1, are esterified, and the desired product is a diesterate It has the advantage that it can be produced without monoesterification at a selective position and separation and purification of the monoesterified product.
  • 3' -O-methylguanosine nucleoside a starting material for the production of conventional cap analogs
  • guanosine monophosphate a starting material for the production of cap analogs of the present invention.
  • the compound of Formula 1 can be produced with significantly higher economic efficiency than conventional cap analog compounds.
  • the cap analog of the compound of Formula 1 can be economically prepared in terms of time and cost through a reduction in the number of synthetic steps and purification compared to the conventional cap analog of trinucleotide manufactured by Trilink.
  • the purification process may be performed with a reversed-phase column, and since a reversed-phase column is more efficient than a conventional ion exchange column, the reversed-phase column purification process may further contribute to the economics of the method for preparing the compound of Formula 1.
  • the total number of purifications can be reduced by one in the entire process.
  • the conventional cap analog synthesis method requires the product in each step to undergo ion exchange column purification, whereas the synthesis method for the compound of Formula 1 of the present application produces 1 per column volume compared to the same volume of ion exchange column. Purification is possible only with a reversed-phase column with about 10 times higher injection amount of the object to be purified. Therefore, the preparation method of the compound of Formula 1 can reduce the cost of raw materials for purification of triethylamine, resin, etc. used for the buffer by about 60 to 80%.
  • the compound of Formula 1 can be used as a cap analogue for 5' capping of mRNA during in vitro mRNA synthesis. That is, during the in vitro mRNA synthesis, the compound of Formula 1 as a cap analog may be simultaneously introduced to synthesize an mRNA composed of a cap analog at the 5' end.
  • Another aspect provides a cap analog comprising the compound of Formula 1.
  • the cap analog may be the compound of Formula 1 itself, or may further include a hybridization sequence that may be complementary to a sequence on a DNA template at an initiation site in addition to the compound of Formula 1.
  • the length of the hybridization sequence of cap analogs for use in the methods and compositions provided herein depends on several factors, including the identity of the template nucleotide sequence and the temperature at which such primers hybridize to the DNA template or are used during in vitro transcription.
  • the desired length of a hybridized nucleotide sequence of a cap analog for use in transcription can be readily determined by routine experimentation by one skilled in the art.
  • the length of hybridization nucleotides can be determined based on the desired hybridization specificity or selectivity.
  • the cap analog is about 3 to about 9 nucleotides in length (including cap), more specifically about 3 to about 7 nucleotides, and even more specifically about 3 to about 5 nucleotides in length. In one embodiment the cap analog is 3 nucleotides in length.
  • the length of the hybridization sequence within the cap analog may be equal to or shorter than the overall length of the cap analog.
  • 5' capped mRNA can be prepared.
  • one specific aspect provides a method for producing 5' capped mRNA, comprising including during the synthesis of mRNA a cap analog comprising the compound of Formula 1.
  • composition or kit for preparing 5' capped mRNA including a cap analogue containing the compound of Formula 1.
  • cap analogue comprising the compound of formula 1 for the synthesis of mRNA.
  • an mRNA 5' capped with a cap analog comprising the compound of Formula 1 is provided.
  • a method for preparing 5' capped mRNA using a cap analogue including the compound of Formula 1 may be performed according to any method known in the art.
  • the 5' capped mRNA can be prepared by a co-transcriptional capping method, which is an mRNA synthesis method in which a cap analog constitutes the 5' end by simultaneously introducing a chemically synthesized cap analog during in vitro mRNA synthesis.
  • a co-transcriptional capping method which is an mRNA synthesis method in which a cap analog constitutes the 5' end by simultaneously introducing a chemically synthesized cap analog during in vitro mRNA synthesis.
  • the step of introducing the cap analog, which is a compound of Formula 1 into a mixture containing RNA polymerase under conditions in which transcription is effected by RNA polymerase of a polynucleotide template; and incubating the mixture for a time sufficient to permit transfer of the template.
  • the cap analog comprising the compound of formula 1 according to the above aspect increases the efficiency of transcription of mRNA in vitro compared to the efficacy of initiation using standard GTP, ATP, CTP or UTP, and then capping the transcribed capping in the translation process It can increase the efficiency of protein expression of mRNA. Due to the enhancement of the transcription efficiency, the synthesis of mRNA is, for example, about 10%, about 20%, about 40%, about 60%, about 80%, about 90%, about It may be increased by 100%, about 150%, about 200% or about 500%.
  • the cap analog containing the compound of Formula 1 according to the above aspect is a conventional Trilink trinucleotide 3'-methoxy cap analog ( 7m G (3'OMe) pppA (2 'OMe) can be increased to higher levels than pG). More specifically, a cap analog in which only one of the 2' or 3' OH residues of the compound of Formula 1 is monoesterified is a conventional trinucleotide 3'-methoxy cap analog from Trilink ( 7m G (3'OMe ) pppA (2'OMe) pG) can increase the protein expression level of the 5' capped mRNA molecule to a significantly higher level (see Experimental Example 2).
  • the cap analog containing the compound of Formula 1 has a protein expression efficiency equal to or higher than that of the 3rd generation cap analog, and the number of manufacturing and purification processes of the cap analog itself can be reduced and the purification efficiency can be increased. It has the advantage of lowering the manufacturing cost.
  • the method for producing 5' capped mRNA may further add at least one modified NTP to the transcription reaction. Modification of the at least one modified NTP does not substantially impair RNA polymerase mediated synthesis of mRNA.
  • the modified NTP may include, for example, one or more modified nucleoside bases, one or more modified sugars, or one or more modified 5'-triphosphates. This modified NTP can be incorporated onto the 3'-end of the cap analog, which supports further extension of the primer without blocking transcription.
  • the modifying group of the modified NTP may be a detectable label or a detectable marker. Thus, after transcription, prepared mRNA containing a detectable label or marker can be identified by size, mass, color and/or affinity capture.
  • the detectable label or marker is a fluorescent dye;
  • the affinity capture label is biotin.
  • one or more components of the transcriptional response can be labeled with a detectable label or marker.
  • a detectable label or marker can be identified by, for example, size, mass, affinity capture or color.
  • the detectable label is a fluorescent dye;
  • the affinity capture label is biotin.
  • the kit or composition for preparing the 5' capped mRNA may contain any transcription reagent (eg, FLuc mRNA) for the synthesis of normal mRNA. More specifically, the kit comprises a cap analogue; containers marked for transcription; instructions for performing mRNA synthesis; one or more reagents selected from the group consisting of one or more unmodified NTPs, one or more modified NTPs (e.g., methylpseudouridine 5'-triphosphate), RNA polymerase, other enzymes, reaction buffers, magnesium, and DNA templates may contain.
  • any transcription reagent eg, FLuc mRNA
  • the kit comprises a cap analogue; containers marked for transcription; instructions for performing mRNA synthesis; one or more reagents selected from the group consisting of one or more unmodified NTPs, one or more modified NTPs (e.g., methylpseudouridine 5'-triphosphate), RNA polymerase, other enzymes, reaction buffers, magnesium
  • a 5' capped mRNA prepared using a cap analog includes the cap analog in its structure, and can be used to express a protein in vivo by administering the 5' capped mRNA to a living body.
  • another aspect provides a method for expressing a desired peptide or protein in vivo by administering an mRNA 5' capped with the cap analog in vivo.
  • compositions for expressing a desired peptide or protein comprising an mRNA 5' capped with the cap analog and a pharmaceutically acceptable carrier.
  • a desired effect of treating or preventing a disease can be obtained in vivo. Therefore, it can be used for the treatment or prevention of any disease that can be treated or prevented according to the expression of the peptide or protein.
  • Diseases that can be treated or prevented by the expression of a specific peptide or protein are known, and the pharmaceutical composition can be used to prevent or treat a desired disease by inducing the expression of the peptide or protein.
  • another aspect provides a pharmaceutical use for using the mRNA 5' capped with the cap analog for the prevention or treatment of any disease that is effective by in vivo expression of a peptide or protein.
  • the pharmaceutical composition and treatment or prevention method may be used for gene replacement therapy, genome editing, cancer immunotherapy, or treatment or prevention using a vaccine.
  • the pharmaceutical composition is an mRNA vaccine.
  • the pharmaceutical composition may be formulated for administration by injection, or by any other suitable route known to those skilled in the art for treating or preventing a particular condition.
  • Injectable compositions include, for example, sterile physiological saline as a pharmaceutically acceptable carrier.
  • Injectable compositions may also be formulated as suspensions in lipids or phospholipids, liposomal suspensions, or aqueous emulsions. Methods of formulating the pharmaceutical composition are well known to those skilled in the art.
  • the pharmaceutical composition may contain mRNA containing the cap analog as an active ingredient at a concentration of about 0.01% to 1%.
  • concentration may vary depending on the frequency of administration, dosage, administration method, and the like.
  • the pharmaceutical composition may be administered to a mammal, specifically a human, and the dosage may vary depending on the subject's health condition, severity of disease, weight, age, race, etc. An expert can determine the appropriate dosage.
  • the dosage for humans is in the range of 0.0001 to 100 mg/day, more specifically in the range of about 0.1 to 50 mg/day.
  • the mRNA capped 5' with the cap analog according to the above aspect can be introduced into cells in vivo or in vitro to express proteins or peptides.
  • Another aspect provides a cell containing an mRNA 5' capped with a cap analog according to the first aspect.
  • Another aspect provides a cell containing a protein or peptide translated from an mRNA 5' capped with a cap analog according to the first aspect.
  • TEP triethyl phosphate
  • the reaction solution was separated using a C18 column (50 x 250 mm) and azeotroped with 50 mL of methanol 4 times to obtain 3.79 g of the triethylammonium salt of the target compound (yield: 60.0%) (4).
  • reaction solution was added to a solution of 2.45 g (20 mmol) of sodium perchlorate dissolved in 430 mL of acetone, cooled to 4 ° C, and the resulting crystals were filtered, washed with cold acetone, and vacuum dried.
  • Dried im-pG (2',3' Pivaloyl) was added to 30 mL of dimethylformamide, 1.36 g (10 mmol) of zinc chloride, and 5.98 g (30 mmol) of triethylammonium phosphate were added, followed by 3 to 16 hours at room temperature. Stir.
  • reaction solution was extracted three times with 150 mL of dichloromethane to remove unreacted dimethyl sulfate, and then the aqueous layer was adjusted to pH 5.5 and 500 mL of distilled water was added thereto.
  • the reaction solution was separated from pp7mG (2', 3' Pivaloyl) using a C18 column (50 x 250 mm), distilled and vacuum dried to obtain 1.74 g of triethylammonium salt (yield: 80%) (6).
  • the reaction solution was added to a solution of 847 mg (6.92 mmol) of sodium perchlorate dissolved in 175 mL of acetone, cooled to 4 ° C, and the resulting crystals were filtered, washed with cold acetone, and vacuum dried to obtain 967 mg of the target compound (yield: 80.0%). ) was obtained (7).
  • Example 8 Preparation of 7-methyl-2' or 3'-monopivaloyl-guanosine monophosphate (p7mG (2' or 3' monopivaloyl)) (8)
  • guanosine monophosphate was used as starting material without further treatment. 5 g (11.8 mmol) of guanosine monophosphate was dissolved in 50 ml of distilled water and titrated to pH 9.5 using 1M sodium hydroxide. 8.79 g (47.2 mmol) of pivalic anhydride was added at room temperature and stirred at room temperature. It was reacted for 4 to 12 hours while maintaining pH 9.5 to 9.6 using 1M sodium hydroxide at room temperature. After completion of the reaction, 50% acetic acid was added to adjust the pH to 4.5, and 14.9 g (118 mmol) of dimethyl sulfate was slowly added over 30 minutes, followed by stirring for 4 hours.
  • reaction solution was maintained at 4.0 ⁇ 0.5 using 1M sodium hydroxide.
  • the reaction solution was extracted three times with 150 mL of dichloromethane to remove unreacted dimethyl sulfate, and the aqueous layer was titrated to pH 5.5.
  • 5'-O-DMT-N6-benzoyl-2' -methoxy-adenosine amidite it was obtained commercially and used as a starting material without additional treatment. 1.43 g (3.28 mmol) of N2-isobutyryl-2',3'-diacetoxy-guanosine (11) and 3.78 g of 5'-O-DMT-N6-benzoyl-2'-methoxy-adenosine amidite (4.26 mmol) was dissolved in 28.4 mL of 1H-tetrazole (0.45 M acetonitrile solution, 12.79 mmol) and stirred at room temperature for 1 hour.
  • 0.55 g of magnesium chloride was added to 27.5 mL of dimethylformamide and dissolved. 0.69 g (0.99 mmol) of Im-pp 7m G (2', 3' Pivaloyl) (7) and 0.5 g (0.55 mmol) of pA (2' OMe) pG (14) were added to the reaction solution and stirred at room temperature for 24 hours. did After the reaction was completed, 275 mL of 25 mM ethylenediaminetetraacetic acid aqueous solution was added dropwise to terminate the reaction, cooled to room temperature, and then neutralized with 1M sodium bicarbonate aqueous solution. The reaction solution was purified using a C18 column (50 x 250 mm) and vacuum dried after distillation.
  • the transcription reaction mixture was prepared by adding polymerase, 2 KU/ml RNase inhibitory protein, 20 U/ml inorganic pyrophosphatase, 40 mM Tris HCl (pH 8.0), 50 mM magnesium chloride, and 10 mM dithiothreitol.
  • transcription reaction using 7m G (3'OMe) pppA (2'OMe) pG (Cleancap AG (3' OMe) (trilink catalog N-7413) instead of the compound of Example 15 or 16)
  • the transcription reaction mixture was reacted for 2 to 3 hours at 37° C.
  • 2KU/mL DNase I was added to the reaction mixture to terminate the reaction, and the reaction was performed at 37° C. for 15 to 30 minutes.
  • the mRNA after the reaction was purified using RNeasy maxi kit (Qiagen catalog # 75162) or by reverse-phase high-performance liquid chromatography according to the manufacturer's instructions.
  • the total amount of mRNA synthesized using different cap analogues was divided by the input L-DNA content to calculate the total amount of mRNA.
  • the IVT yield value according to was quantified. Specifically, the IVT yield value of 100 means that 1 ⁇ g L-DNA synthesized 100 ⁇ g mRNA. This can be calculated by the following [Equation 1].
  • the IVT yield value [Equation 1] by the example compound is divided by the yield value of 7m G (3' OMe) pppA (2' OMe) pG [Equation 1] and then multiplied by 100 to obtain 7m G (3' OMe) pppA
  • the IVT yield by the compound of Example 15 or 16 compared to (2' OMe) pG was expressed as a percentage (%) [see Equation 2].
  • IVT yield value total amount of synthesized mRNA / amount of L-DNA input
  • IVT yield (%) (IVT yield value by each example compound [Equation 1] / 7m G (3' OMe) pppA (2' OMe) IVT yield value by pG [Equation 1]) x 100
  • IVT yield values by each Example and 7m G (3' OMe) pppA (2' OMe) pG were independently repeated three times, and significance was verified through One-way ANOVA and Tukey's hoc tests. The result is shown in FIG. 4 . It was confirmed that the compounds of Examples 15 and 16 of the present invention were synthesized in almost the same yield as the IVT yield of 7m G (3' OMe) pppA (2' OMe) pG, a conventional 3rd generation cap analogue.
  • the translation activity of the mRNA produced by the IVT reaction of each of Example 15, Example 16, and 7m G (3' OMe) pppA (2' OMe) pG was evaluated by transfecting the corresponding mRNA into a HeLa cell line. did Before transfection, all mRNAs synthesized by the IVT reaction were subjected to a poly(A) tailing process.
  • HeLa cells were cultured in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin at 37° C. in an atmosphere of 5% CO 2 . After plating 1 ⁇ 10 4 HeLa cells per well, the next day the cells were transfected with 100 ng of mRNA per well using the transfection reagent ( messengergerMAX lipofectamine; Invitrogen catalog # LMRNA003): recommended by the transfection reagent manufacturer.
  • the transfection reagent messengerMAX lipofectamine; Invitrogen catalog # LMRNA003
  • transfection reagent 0.3 ⁇ L of transfection reagent was diluted in 5 ⁇ L of complex medium (Opti-MEM; Life technologies) in tube A and incubated for 10 minutes at room temperature, and in tube B, 200 ng of mRNA prepared in 10 ⁇ L of Opti-MEM was prepared by dilution. The solutions in tube A and tube B were mixed and incubated for 5 minutes at room temperature. Then, cells were transfected using the incubated mixed solution.
  • complex medium Opti-MEM; Life technologies
  • Renilla-Glo TM Luciferase Assay kit Promega catalog #E2710
  • medium of transfected cells was After removal, 50 ⁇ l of phosphate buffer (PBS) was added. Thereafter, 50 ⁇ l of Renilla-GloTM Luciferase Assay reagent was added, mixed, and incubated for 10 minutes, and then luciferase activity was detected using a Varioskan LUX Multimode Microplate Reader (Thermo Fisher) (FIG. 5). All luciferase activity measurement tests were independently performed three times, and significance was verified through One-way ANOVA and Tukey's hoc tests.
  • the mRNA capped with the compound (16) of Example 16 of the present invention has a higher luciferase level than mRNA capped with conventional 7m G (3' OMe) pppA (2' OMe) pG from 6 to 24 hours after transfection. activity was shown (FIG. 5). In addition, from the result at 24 hours after transfection, it can be inferred that the residual rate of the protein expressed by mRNA capped with compound 16 is higher (FIG. 6).

Abstract

일 양상은 화학식 1의 화합물, 이의 제조 중간체의 제조방법, 이를 포함하는 캡 유사체, 그 캡 유사체로 5' 캡핑된 mRNA, 그 캡 유사체를 이용한 mRNA 제조방법, 그 캡 유사체를 mRNA 제조에 사용하기 위한 용도, 및 그 캡 유사체로 5' 캡핑된 mRNA를 포함하는 목적하는 펩티드 또는 단백질 발현을 위한 약학 조성물 등에 관한 것이다.

Description

mRNA 캡 유사체와 및 이의 용도
본 발명은 캡 유사체 및 이를 이용한 단백질 발현 방법에 관한 것으로서, 보다 구체적으로는 캡 유사체, 이를 포함하는 5' 캡핑된 mRNA, 상기 5' 캡핑된 mRNA를 포함하는 목적하는 펩티드 또는 단백질 발현을 위한 약학 조성물, 및 상기 5' 캡핑된 mRNA를 사용하여 목적하는 펩타이드 또는 단백질을 생산하는 방법 등에 관한 것이다.
DNA 유전정보로부터 기능적으로 중요한 특정 단백질을 발현시키기 위해서는 핵에서 DNA 주형 가닥을 바탕으로 상보적인 서열을 가진 메신저 RNA(mRNA)가 합성되는 전사(transcription) 과정이 필요하다. 이렇게 합성된 mRNA는 핵 밖으로 수송되어 세포질에서 리보솜을 통해 특정 단백질을 합성하게 되는 번역(translation) 과정을 거치게 된다.
이러한, mRNA는 코딩 단백질을 효율적으로 번역하기 위해 전사 후 성숙화 과정(maturation process)을 거치게 된다. 이러한 과정 중, 삼인산기를 통한 결합으로 mRNA분자의 5' -말단에 7-메틸구아노신(7mG)이 그 5' - 말단을 통해서 연결되는 과정을 5' 캡핑 과정(5' capping process) 이라고 한다. 상기 5' 캡핑 구조(5' 캡 0 mRNA 구조 라고 부른다)는 mRNA의 5' 말단을 5' 엑소뉴클레아제에 의한 생분해로부터 보호할 수 있으며, mRNA가 핵에서 세포질로 이동하는데 영향을 끼친다. 특히, 5' 캡핑 구조는 진핵생물 번역개시인자 4E(eIF4E)에 의해 인지되어, 번역 개시 복합체를 형성함으로서 단백질을 발현시키는데 중요한 역할을 한다.
이러한 캡핑된 mRNA를 임상에 적용하기 위해서는 7-메틸구아노신이 5' -트리포스페이트 사슬을 통해 연결된 첫번째 뉴클레오타이드의 2' 히드록실기가 메틸화된 구조(Cap1 mRNA)를 갖추어야 한다. 상기 메틸화가 이루어지지 않은 Cap0 구조를 적용할 경우, Cap0 구조를 인지하는 MDA5(세포 내 sensor 단백질)는 Cap0 구조인 외인성(exogenous) mRNA가 체내에 도입 시 2' 히드록실기를 인식하여 면역 염증반응을 유도하며, 이로 인해 elF4E에 대한 mRNA의 결합을 손상시켜 단백질 발현을 저해한다. 반면 2' OH가 메틸화된 외인성 Cap1 mRNA는 체내 도입되더라도 MDA5에 의한 인식이 이루어지지 않기 때문에 면역반응을 유도하지 않으며, 따라서 상대적으로 높은 단백질 발현을 유도할 수 있기 때문에 임상에 적합하다.
최근에는 앞서 설명한 활성 mRNA의 5' 말단의 구조적 특징을 바탕으로 시험관내 mRNA 합성 연구가 활발히 진행되고 있으며, 특히 5' 캡핑 방법 역시 지속적으로 개발되고 있다. 시험관내 mRNA 합성에서, 5' 캡핑은 크게는 두 가지 방식으로 나뉜다. 전통적인 캡핑 방식(Conventional capping method)으로 시험관내 전사 후 5' 캡핑에 관여하는 효소 즉, "캡핑 효소"라 불리는 혼합물을 처리함으로서 5' 말단이 7-메틸구아노신으로 캡핑된 구조(cap 0)를 얻는 방식이다. 여기에 cap1 혹은 cap2 mRNA 구조를 만들기 위해서 백시니아 mRNA(뉴클레오시드-2'-O) 메틸트랜스퍼라제와 같은 뉴클레오타이드의 2' 히드록실기를 메틸화를 시킬 수 있는 효소를 추가적으로 처리해 주어야 한다. 이러한 전통적인 캡핑 방식은 효소 단가, 처리 횟수 등으로 인해 제조 비용이 비싸며, 효소 반응 제어가 어려운 단점이 있다.
이러한 전통적인 캡핑 방식의 단점들을 극복하고자 공동전사캡핑 방법(Co-transcriptional capping method)이 연구되고 있다. 공동전사캡핑 방법 이란 시험관내 mRNA 합성 시 화학적으로 합성된 캡 유사체(cap analog) 를 동시에 도입하여 캡 유사체가 5' 말단을 구성하는 mRNA를 합성하는 방식을 말한다. 공동전사캡핑 방법은 1세대인 이량체 캡 유사체 mCAP(7mG(5' )ppp(5' )G) 에서 시작해서 3세대로 불리는 트라이링크 사의 트리뉴클레오타이드 캡 유사체인 Cleancap®(7mG(3'OMe)pppN(2'OMe)pN)(미국 특허 번호 10,913,768)까지 각 세대가 가진 단점을 보강하고 진보성을 가지며 진화해 왔다. mCAP의 경우 전통적인 캡핑 방식에 비해 낮은 생산 단가를 가지지만, 5' cap 0 mRNA 구조에 국한되며, DNA 주형에 mCAP이 염기 짝짓기(base pairing)를 형성할 시 구아노신 트리포스페이트(GTP)와 경쟁적으로 작용한다는 단점을 가지고 있다. GTP보다 우세하게 DNA 주형에 염기 짝짓기를 하기 위해서는 GTP 사용량의 4배에서 10배에 달하는 양을 넣어 주어야 하기 때문에 생산단가를 증가시키는 요인이 된다. 이 뿐만 아니라, 디뉴클레오타이드 형태인 mCAP은 역결합이 발생하기도 하여 양방향 전사 개시가 발생하여, 시험관내 정방향 mRNA 합성 효율을 떨어뜨리는 문제점이 발생하였다.
이러한 역방향 전사 개시 문제점을 해결하고자, 2세대 캡 유사체인 Anti-reverse cap analog(일명 ARCA라고 부른다)가 개발되었다(미국 특허 7,074,596). ARCA는 이량체인 7mGpppG에서 7-메틸구아노신의 2' 혹은 3' 히드록실기 어느 한 쪽을 메톡시기로 치환한 7mG(3'OMe)pppG 혹은 7mG(2' OMe)pppG 구조를 하고 있는 이량체 캡 유사체로서, 캡 유사체의 역결합을 방지하여 역방향 전사 개시를 완전히 막는다RNA 9:1108-1122 (2003). 또한 2' 혹은 3' 히드록실기 어느 하나에 화학적 변형을 준 상기 ARCA는, 2' 와 3' 가 모두 히드록실기인 캡 유사체보다 단백질 발현 효율이 증가하는 것으로 확인되었다. 2' 히드록실기와 3' 히드록실기의 화학적 변형은 위치에 상관 없이 동등한 수준의 단백질 발현 효율을 보여 주었다. 하지만, 2세대 캡 유사체는 GTP와 경쟁적 염기 짝짓기 문제를 해결하지 못했다. 역방향으로 생성되는 mRNA를 억제하였으나, pppG 5' 말단을 가지는 mRNA 불순물 (Uncapped mRNA라고 한다)의 생성 혹은 GTP 대비 과량의 캡 유사체를 투입해야 되는 문제점이 여전히 남아 있었다. 또한, ARCA를 이용한 시험관 내 mRNA 합성은 cap 1 구조를 합성할 수 없어 선천성 면역 반응을 유도하는 단점을 가지고 있다.
트라이링크 사에서 개발한 3세대 캡 유사체인 Cleancap®의 경우, 트리뉴클레오타이드 이상의 구조이고, Cap1 구조(7mGpppN(2'OMe)pN)를 효소를 이용하지 않고 시험관 내 합성이 가능하다. 또한, GTP에 비해 염기가 하나 이상 더 많이 존재하기 때문에 전사 개시 시에 DNA 주형 가닥과 더 강하게 수소 결합하여 염기 짝짓기를 할 수 있으므로 시험관 내 mRNA 합성 시 캡 유사체 투입량을 줄일 수 있다. 현재 상용화된 Cleancap®인 7mG(3'OMe)pppA(2'OMe)pG의 경우 7-메틸구아노신의 3' 히드록실기를 메틸화한 트리뉴클레오타이드 캡이며, 단백질 발현 효율이 2' , 3' 히드록실 캡인 7mGpppA(2'OMe)pG 보다 향상된 성능을 보여 주었다.
상기 설명한 Cleancap 구조(7mG(3'OMe)pppA(2'OMe)pG)를 기반으로 상용화된 mRNA 백신은 화이자/바이오앤텍의 BNT162b2가 있다. BNT162b2는 전세계적으로 대유행을 일으킨 RNA 바이러스인 제2형 중증 급성 호흡기 증후군 코로나바이러스(SARS-CoV-2)에 의한 감염병 대응을 위해 개발되었다. Cleancap 을 핵심 원료로 제조되는 BNT162b2는 전세계적 Covid-19 대유행에 대응하기 위한 수요를 감당하기 어려워 한때 원료 공급 부족 사태를 겪기도 하였다. 전파력이 높은 RNA 바이러스 감염병에 적절한 대응이 가능한 mRNA 백신의 대량생산을 위해서는 원료의 신속하고 경제성 있는 생산 및 공급이 필요하며, 그 중에서도 가장 높은 생산 비용을 차지하는 캡 유사체의 효율적인 제조와 신속한 공급을 위한 다양한 연구 개발이 추가적으로 이루어져야 한다.
현재 상용화된 트라이링크사 트리뉴클레오타이드 캡 유사체의 제조 공정을 살펴보면, 하기와 같이 크게 6개의 단계로 나뉘어져 있다(미국 특허 10,913,768).
[반응식 1-1]
Figure PCTKR2022013062-appb-img-000001
상기 반응식 1-1에서, 상기 G는 구아노신, 7mG는 7-메틸구아노신, N은 아데노신, 사이티딘, 구아노신, 유리딘 중 어느 하나인 것, p는 -P(=O)O2-, Me는 메틸, Im은 이미다졸라이드를 의미한다. 더욱이, 세부적으로 볼 때, 최종 제조 공정에 사용되는 반응물인 pN(2'OMe)pN을 합성하는 단계까지 포함한다면 최소 10단계 이상의 긴 공정을 거쳐야 한다.
특히 이러한 트라이링크사의 캡 유사체 대량 생산 시 전체 제조 공정에서 생산 비용과 합성 기간을 증가시키는 주 요인은 제조 공정의 단계들 사이에 수행되어야 하는 이온 교환 크로마토그래피(주로 DEAE 레진) 이용한 정제 단계들이다. 각 제조 단계 별로 그 중간체를 정제한 후, 유기용매 중에서 다음 단계 공정을 진행하기 위해 컬럼 정제에 사용된 대량의 완충 용액(주로 TEAB(triethylammonium bicarbonate) 버퍼)을 증류해 주어야 한다. 전체 제조 공정에서 pG(3' OMe), ppG(3' OMe), pp7mG(3' Ome), pN(2' OMe)pN, 7mG(3' OMe)pppN(2' OMe)pN의 생성 단계마다 정제를 하여야 하므로, 총 5회의 이온 교환 컬럼 정제가 필요하다. 특히, G(3' OMe)의 제조를 위해서는 구아노신 뉴클레오사이드가 가진 3개의 히드록실기 중 3'-OH에만 선택적으로 모노에테르화할 필요가 있으며, 또한 생성물 중에서 3'-모노에테르화 생성물만을 정제할 필요가 있어, 출발물질인 pG(3' OMe)의 제조 원가가 높다는 문제가 있다. 이러한 긴 공정, 컬럼 정제, 및 완충 용액의 증류 과정은 캡 유사체의 제조에 필요한 시간 및 비용을 증가시켜 경제성을 낮춘다.
이와 더불어, ARCA와 트라이링크 사 캡 유사체의 제조를 위한 출발물질인 3' -메톡시 구아노신 (G(3' OMe))을 준비하기 위해서는 2' 과 3' 히드록실기에 메틸화 반응을 유도하여 3' 메톡시로 치환된 모노에테르 물질만을 단리하여야만 얻을 수 있는 물질이다. 그 한 예로, ARCA 발명에서 기재된 3' -메톡시 구아노신의 제조 공정을 살펴보면, 하기와 같이 3 단계로 나뉘어져 있다 (RNA 9:1108-1122 (2003)).
[반응식 1-2]
Figure PCTKR2022013062-appb-img-000002
상기 매 단계마다 플래쉬 크로마토그래피 내지는 Dowex 1 Х 2 이온교환 크로마토그래피를 진행하여야 하며, 각 단계의 수율이 낮아, 대량 생산이 어려우며, 생산단가가 높아지는 요인이 된다. 최근에는 이 3' -메톡시 구아노신 합성 효율을 증가시키기 위한 연구개발이 이루어지고 있으나, 공정 단계가 길어지거나 여전히 3' 메톡시로 치환된 모노에테르 물질을 단리하는데 어려움을 겪고 있다. 이는 캡 유사체 합성을 위한 원재료비를 높이는 주 요인이 된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) US 7,074,596
(특허문헌 2) US 10,913,768
[비특허문헌]
(비특허문헌 1) RNA 9:1108-1122 (2003)
일 양상은, 5' -캡핑된 mRNA 분자의 시험관내 합성 효율을 높을 수 있고, 캡핑된 mRNA의 단백질 발현 효율을 높일 수 있을 뿐만 아니라, 캡 유사체 자체의 경제적 생산이 가능한 캡 유사체를 제공하는 것이다.
다른 일 양상은 상기 캡 유사체 제조를 위한 중간체 제조 방법을 제공하는 것이다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA를 제공하는 것이다.
또 다른 일 양상은, 상기 캡 유사체를 이용하여 mRNA를 제조하는 방법을 제공하는 것이다.
또 다른 일 양상은, 상기 캡 유사체를 포함하는, 5' 캡핑된 mRNA 제조용 조성물 또는 키트를 제공하는 것이다.
또 다른 일 양상은, 상기 캡 유사체를 포함하는, 목적하는 펩티드 또는 단백질 발현을 위한 약학 조성물을 제공하는 것이다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA를 함유하는 세포를 제공하는 것이다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA로부터 번역된 단백질 또는 펩티드를 함유하는 세포를 제공하는 것이다.
일 양상은 하기 화학식 1의 화합물 또는 이의 약학적으로 허용 가능한 염을 제공한다:
[화학식 1]
Figure PCTKR2022013062-appb-img-000003
여기서
n = 0, 1, 또는 2이고;
R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이고, 단, R1 및 R2 중 적어도 하나는 C(=O)-R' 이고, 여기에서 R' 은 C1~C6알킬 또는 C1~C6알콕시이고;
R3은 메톡시기 이고;
Z 및 Z' 는 각각 독립적으로 천연 질소 염기이다.
다른 일 양상은 하기 화학식 1a 및 화학식 1b의 화합물을 0.65±0.05 : 1의 몰 비로 포함하는 수성 조성물을 제공한다:
[화학식 1a]
Figure PCTKR2022013062-appb-img-000004
[화학식 1b]
Figure PCTKR2022013062-appb-img-000005
여기에서, M3 중 각각의 M은 서로 독립적으로 존재하지 않거나, Na+, Li+, NH4 + 및 K+로 구성된 군에서 선택된 1가 양이온, 또는 Mg2+, Zn2+, 및 Ca2+로 구성된 군에서 선택된 2가 양이온으로서, 이 때 M3은 상기 화합물이 전기적 중성이 되도록 선택된다.
또 다른 일 양상은, 상기 화학식 1의 화합물을 포함하는 캡 유사체를 제공한다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA를 제공한다.
또 다른 일 양상은, 상기 캡 유사체를 mRNA의 합성 동안 포함시키는 것을 포함하는, mRNA의 제조방법을 제공한다.
또 다른 일 양상은, 상기 캡 유사체를 포함하는, 5' 캡핑된 mRNA 제조용 조성물 또는 키트를 제공한다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA 및 약학적으로 허용되는 담체를 포함하는, 목적하는 펩티드 또는 단백질 발현을 위한 약학 조성물을 제공한다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA를 포함하는 세포를 제공한다.
또 다른 일 양상은, 상기 캡 유사체로 5' 캡핑된 mRNA로부터 번역된 단백질 또는 펩티드를 함유하는 세포를 제공한다.
또 다른 일 양상은,
하기 화학식 2의 화합물 또는 그 염을 수상(水相)의 알칼리 조건에서 하기 화학식 3의 화합물과 반응시켜 하기 화학식 4의 화합물 또는 그의 염을 제조하는 단계; 및
화학식 4의 화합물 또는 그의 염을 인 시츄 방식으로 pH 1.5 ~ 4.5 조건에서 화학식 5의 화합물과 반응하는 단계를 포함하는,
하기 화학식 6의 화합물 또는 그의 염의 제조방법을 제공한다:
[화학식 2]
Figure PCTKR2022013062-appb-img-000006
[화학식 3]
Figure PCTKR2022013062-appb-img-000007
[화학식 4]
Figure PCTKR2022013062-appb-img-000008
[화학식 5]
Figure PCTKR2022013062-appb-img-000009
[화학식 6]
Figure PCTKR2022013062-appb-img-000010
상기 화학식에서, R은 C1~C6알킬 또는 C1~C6알콕시를 의미하며, R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이며, 단, R1 및 R2 중 어느 하나는 H이며 나머지는 C(=O)-R이다.
일 양상에 따른 캡 유사체는, 트라이링크 사의 트리뉴클레오타이드 캡 유사체 (7mG(3'OMe)pppA(2'OMe)pG)와 같이, 특정 위치에만 선택적으로 보호기를 도입할 필요가 없고, 그 선택적으로 도입된 화합물을 정제할 할 필요가 없고, 3' -메톡시구아노신(3' -methoxy guanosine)과 같은 고가의 출발 물질을 요하지 않으며, 제조 공정도 간략하게 할 수 있기 때문에 합성의 효율성과 경제성이 향상되면서도, mRNA를 캡핑 시 우수한 수준의 캡핑 mRNA의 발현 효율을 가능하게 수 있는 장점을 지닌다.
이처럼, 상기 캡 유사체는 기능 및 생산비용 측면에서 우수한 장점을 가지고 있어, 본 개시의 캡 유사체를 포함하는 mRNA는 인간을 포함한 포유류의 질병을 치료 또는 예방에 매우 유용하게 사용될 수 있다.
도 1은 본 발명의 일 구체예에 따른 중간체 화합물(실시예 8)을 제조 후 1H NMR 측정 결과를 나타낸 그래프이다.
도 2은 본 발명의 일 구체예에 따른 중간체 화합물(실시예 9)을 제조 후 1H NMR 측정 결과를 나타낸 그래프이다.
도 3은 본 발명의 일 구체예에 따른 화합물(실시예 16의 화합물)을 제조 후 1H NMR 측정 결과를 나타낸 그래프이다.
도 4는 본 발명의 일 구체예에 따른 화합물(실시예 15 또는 16의 화합물) 또는 7mG(3' OMe)pppA(2' OMe)pG 을 캡 유사체로서 사용하여 시험관 내 전사(IVT) 수율 측정 후 7mG(3' OMe)pppA(2' OMe)pG 대비 실시예 15 또는 16의 화합물의 상대적인 IVT 수율(%)을 나타낸 그래프이다.
도 5는 본 발명의 일 구체예에 따른 화합물(실시예 15 또는 16의 화합물) 또는 7mG(3' OMe)pppA(2' OMe)pG 각각의 IVT 반응에 의해 생성된 mRNA의 번역 활성을 해당 mRNA를 헬라 세포주에 형질감염시켜 측정한 결과를 루시페라제 발현양으로서 나타낸 것이다.
도 6은 본 발명의 일 구체예에 따른 화합물(실시예 15 또는 16의 화합물) 또는 7mG(3' OMe)pppA(2' OMe)pG 각각의 IVT 반응에 의해 생성된 mRNA의 번역 활성을 해당 mRNA를 헬라 세포주에 형질감염시킨 후 24 시간째 결과 측정한 결과를 루시페라제 발현양으로서 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명에서 사용되는 모든 기술 용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 또한, 본 명세서에 기재된 수치는 명시하지 않아도 "약"의 의미를 포함하는 것으로 간주한다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 전체가 본 명세서에 참고로 통합된다.
용어의 정의
본원에서 사용된 하기 용어는 다른 언급이 없으면, 하기 정의한 바와 같은 의미로 사용된다.
캡 유사체와 DNA 주형의 복합체의 맥락에서, 본원에 사용된 바와 같은 용어 "상보적" 또는 "상보성"은 표준 왓슨/크릭(Watson/Crick) 염기 쌍 형성 규칙을 지칭한다. 예를 들어, 서열 "5'-A-G-T-C-3'"은 서열 "3'-T-C-A-G-5'"에 대해 상보적이다. 상보성은 완벽할 필요가 없으며; 이중체(duplicate)는 미스 매치된 염기 쌍, 변성, 또는 비 매치된 뉴클레오티드를 함유할 수 있다. 통상의 기술자는, 예를 들어 올리고뉴클레오티드의 길이, 올리고뉴클레오티드의 염기 조성 및 서열, 미스 매치된 염기 쌍의 발생률, 이온 강도, 혼성화 완충제의 성분, 및 반응 조건을 포함한 수많은 변수를 실험적으로 고려하여 이중체 안정성을 결정할 수 있다.
상보성은 2개의 핵산 가닥의 뉴클레오티드 염기 모두가 공인된 염기 쌍 형성 규칙에 따라서 매칭되는 경우에 "완전" 또는 "전체"일 수 있고, 캡 유사체와 DNA 표적의 뉴클레오티드 염기 중 일부만이 공인된 염기 쌍 형성 규칙에 따라서 매칭되는 경우에 "부분"일 수 있거나 또는 2개의 핵산 가닥의 뉴클레오티드 염기 중 어느 것도 공인된 염기 쌍 형성 규칙에 따라서 매칭되지 않는 경우에 "부재"일 수 있다.
본원에 사용된 바와 같은 용어 "질소 염기"는 천연적으로 발생하는 모든 질소 염기를 포함한다. 천연적으로 발생하는 질소 염기에서 가장 흔히 발견되는 염기 고리는 퓨린 및 피리미딘 고리이다. 천연적으로 발생하는 퓨린 고리는, 예를 들어, 아데닌, 구아닌, 및 N6-메틸아데닌을 포함한다. 천연적으로 발생하는 피리미딘 고리는, 예를 들어, 시토신, 티민, 5-메틸시토신, 우라실을 포함한다. 천연적으로 발생하는 뉴클레오시드는, 예를 들어, 아데노신, 구아노신, 시티딘, 티미딘, 우리딘, 이노신, 7-메틸구아노신 또는 우리딘의 리보, 2'-O-메틸 또는 2'-데옥시리보 유도체를 포함하나 이에 한정되는 것은 아니다.
용어 "C1-n알킬"은 선형 또는 분지형의 포화된 탄소 1 내지 n 개의 탄화수소 라디칼 사슬을 의미한다. 구체적인 예로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, t-부틸, n-펜틸, 이소펜틸, n-헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
용어 "C1-n알콕시"는 산소와 결합된 선형 또는 분지형의 포화된 탄소 1 내지 n 개의 탄화수소 라디칼 사슬을 의미한다. 구체적인 예로는 메톡시, 에톡시, 프로폭시, 이소부톡시, n-부톡시, sec-부톡시, t-부톡시, 펜톡시, 헥속시 등을 들 수 있으나, 이에 한정되지는 않는다.
물질의 합성 과정에서 "인 시츄(In situ) 방식"이란, 얻어진 생성물을 추가의 정제과정 없이 그대로 원래의 용기 내에서 다음 단계의 반응을 수행하는 것을 의미한다.
일 양상은, 하기 화학식 1의 구조를 갖는 화합물에 관한 것이다:
[화학식 1]
Figure PCTKR2022013062-appb-img-000011
여기서
n = 0, 1, 또는 2이고;
R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R'이고, 단, R1 및 R2 중 적어도 하나는 C(=O)-R' 이고, 여기에서 R' 은 C1-C6알킬 또는 C1-C6알콕시이고;
R3는 메톡시기 이고;
Z 및 Z' 는 각각 독립적으로 천연 질소 염기이다.
상기 약학적으로 허용 가능한 염은 의약분야에서 통상적으로 사용되는 염을 의미하며, 구체적으로 염기 부가염일 수 있다. 상기 염에는 예를 들어, 1가 금속염, 2가 금속염, 아민염, 또는 아미노산염 등이 있다. 상기 1가 금속염에는 Na, Li, 또는 K 염 등이 있으며, 상기 2가 금속염에는 Ca, Zn, 또는 Mg 염 등이 있으며, 상기 아민염에는 트리메틸아민, 트리에틸아민, 암모니아, 피리딘, 또는 피콜린 염 등이 있으며, 상기 아미노산염에는 아르기닌, 라이신, 또는 히스티딘 염 등이 있으나, 이에 제한되는 것은 아니다.
상기 약학적으로 허용 가능한 염은 화학식 1의 화합물이 수성 액상에서 전기적 중성인 안정한 형태를 이룰 수 있도록 하는 염의 형태일 수 있다.
상기 화학식 1의 화합물 또는 이의 약학적으로 허용 가능한 염은 예를 들어 하기 화학식 1A의 화합물일 수 있다:
[화학식 1A]
Figure PCTKR2022013062-appb-img-000012
여기서,
n = 0, 1, 또는 2이고;
X1, X2, X3, 및 X4은 각각 독립적으로 존재하지 않거나, 1가 양이온, 2가 양이온, 또는 이들의 조합으로서, 이 때 X1, X2, X3, X4 화학식 1A의 화합물이 전기적 중성이 되도록 선택되고;
R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이고, 단, R1 및 R2 중 적어도 하나는 C(=O)-R' 이며, 여기에서 R' 은 C1~C6알킬 또는 C1~C6알콕시이고
R3은 메톡시기이고;
Z 및 Z' 는 각각 독립적으로 천연 질소 염기이다.
일 구체예에서, 상기 1가 양이온은 Na+, Li+, NH4 + 및 K+로 구성된 군에서 선택되고, 상기 2가 양이온은 Mg2+, Zn2+ 및 Ca2+로 구성된 군에서 선택된다.
일 구체예에서, 상기 R' 은 C2-C6알킬 또는 C2-C6알콕시인 화합물이다.
일 구체예에서, 상기 R' 은 메틸, 에틸, 이소프로필, 이소프로폭시, t-부틸, 또는 t-부톡시 이다.
일 구체예에서, 상기 화학식 1에서 Z 및 Z' 은 각각 독립적으로 천연의 퓨린 또는 피리미딘 염기 모이어티 형태이다. 보다 구체적으로, 상기 Z 및 Z' 은 각각 독립적으로 구아닌, 아데닌, 시토신, 티민, 및 우라실로 이루어진 군으로부터 선택될 수 있다. 일 구체예에서 상기 Z 및 Z' 은 각각 아데닌 및 구아닌이다.
일 구체예에서, 상기 화학식 1에서 R1 및 R2 중 하나만 C(=O)-R' 을 가질 경우, 구아노신의 2' 혹은 3' 위치에 존재하는 구조이성질체가 서로 동적 평형을 이루는 혼합물의 형태로 존재할 수 있다. 동적 평형을 이루는 각 구조이성질체의 비율(즉, 2' 위치에 -OC(=O)R' 이 존재하는 이성질체: 3' 위치에 -OC(=O)R' 이 존재하는 이성질체)은 구체적인 화합물의 구조에 따라 달라질 수 있고, 또한 주위 환경(예: 온도, pH)에 따라 달라질 수 있다.
일 구체예에서, 상기 화학식 1의 화합물은 하기 표 1에 열거된 화합물로 이루어진 군에서 선택된 화합물 또는 이의 약학적으로 허용 가능한 염이다:
Figure PCTKR2022013062-appb-img-000013
Figure PCTKR2022013062-appb-img-000014
Figure PCTKR2022013062-appb-img-000015
Figure PCTKR2022013062-appb-img-000016
상기 화합물명에서, 상기 G는 구아노신, 7mG는 7-메틸구아노신, A는 아데노신, p는 -P(=O)(OH)O-, Me는 메틸을 의미한다.
다른 일 양상은 하기 화학식 1a 및 화학식 1b의 화합물을 0.65±0.05 : 1의 몰 비로 포함하는 수성 조성물을 제공한다:
[화학식 1a]
Figure PCTKR2022013062-appb-img-000017
[화학식 1b]
Figure PCTKR2022013062-appb-img-000018
여기에서, M3 중 각각의 M은 서로 독립적으로 존재하지 않거나, Na+, Li+, NH4 + 및 K+로 구성된 군에서 선택된 1가 양이온, 또는 Mg2+, Zn2+, 및 Ca2+로 구성된 군에서 선택된 2가 양이온으로서, 이 때 M3은 상기 화합물이 전기적 중성이 되도록 선택된다. 예컨대, M3는 세 M이 모두 NH4 +일 수도 있고, M3 중 하나의 M은 Ca2+, 하나의 M은 K+, 하나의 M은 부존재하는 경우를 가리킬 수도 있다. 일 구체예에서, 상기 M3 중 각각 M은 모두 Na+ 이다.
일 구체예에서, 상기 수성 조성물의 pH는 1.0 내지 8.0 이다.
상기 화학식 1a 및 화학식 1b의 화합물은, 예를 들어 25℃±5, pH 1.0 ~ 8.0 의 수성 조성물 중에서, 0.65±0.05:1의 몰 비의 혼합물로서 존재할 수 있다.
상기 화학식 1의 화합물은 예를 들어 하기 실시예에서 예시된 방법에 따라 제조될 수 있다. 통상의 기술자는, 하기 실시예의 예시된 방법을 적절히 변형하여 반응 조건, 반응 순서, 반응 화합물을 변형시켜 상기 화합물을 제조할 수도 있다.
상기 화학식 1의 화합물의 실시예에 예시된 제조방법은 간략하게 하기 약어로 표시할 수 있다.
[반응식 2]
Figure PCTKR2022013062-appb-img-000019
상기 반응식 2에서, 상기 G는 구아노신, 7mG는 7-메틸구아노신, N은 구아닌, 아데닌, 시토신, 우라실 중 어느 하나이고, p는 -P(=O)O2-, R' 은 C1~C6알킬 또는 C1~C6알콕시이고, Im은 이미다졸라이드이다. 상기 화학식 1의 화합물의 제조방법에서, 중간체 p7mG(2' and/or 3'OC(=O)R') pp7mG(2' and/or 3'OC(=O)R') 의 합성은 각각 인 시츄에서 이루어질 수 있다.
상기 중간체 p7mG(2' and/or 3'OC(=O)R') 중 모노 에스테르인 중간체 p7mG(2' or 3'OC(=O)R') 의 제조방법으로서, 일 구체예는
하기 화학식 2의 화합물 또는 그 염을 수상의 알칼리 조건에서 하기 화학식 3의 화합물과 반응시켜 하기 화학식 4의 화합물 또는 그의 염을 제조하는 단계; 및
화학식 4의 화합물 또는 그의 염을 인 시츄 방식으로 pH 1.5 ~ 4.5 조건에서 화학식 5의 화합물과 반응하는 단계를 포함하는
하기 화학식 6의 화합물(p7mG(2' or 3'OC(=O)R')에 해당) 또는 그의 염의 제조방법을 제공한다:
[화학식 2]
Figure PCTKR2022013062-appb-img-000020
[화학식 3]
Figure PCTKR2022013062-appb-img-000021
[화학식 4]
Figure PCTKR2022013062-appb-img-000022
[화학식 5]
Figure PCTKR2022013062-appb-img-000023
[화학식 6]
Figure PCTKR2022013062-appb-img-000024
상기 화학식에서, R은 C1~C6알킬 또는 C1~C6알콕시를 의미하며, R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이며, 단, R1 및 R2 중 어느 하나는 H이며 나머지는 C(=O)-R이다.
한 실시 형태에서 상기 알칼리 조건은 구체적으로 pH 9.5 ~ 11.5일 수 있으며, 예를 들어 수산화나트륨을 이용하여 형성될 수 있다. 한 실시 형태에서 약산성 조건인 상기 pH 1.5 ~ 4.5는 예를 들어 아세트산을 이용하여 형성될 수 있다.
상기 중간체 pp7mG(2' and/or 3'OC(=O)R') 중 모노 에스테르인 중간체 pp7mG(2' or 3'OC(=O)R') 의 제조방법으로서, 일 구체예는
상기 화학식 6의 화합물 또는 그의 염을 이미다졸과 반응시켜 하기 화학식 7의 화합물 또는 그의 염을 제조하는 단계; 및
화학식 7의 화합물 또는 그의 염을 인 시츄 방식으로 염화아연 및 트리에틸암모늄 인산염과 반응시키는 단계를 포함하는,
하기 화학식 8의 화합물(pp7mG(2' or 3'OC(=O)R') 에 해당) 또는 그의 염의 제조방법을 제공한다:
[화학식 7]
Figure PCTKR2022013062-appb-img-000025
[화학식 8]
Figure PCTKR2022013062-appb-img-000026
상기 화학식에서, R은 C1~C6알킬 또는 C1~C6알콕시를 의미하며, R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R이며, 단, R1 및 R2 중 어느 하나는 H이며 나머지는 C(=O)-R이다.
상기 화학식 7의 화합물 또는 그의 염을 제조하는 단계에서는 이미다졸과 함께 트리페닐포스핀, 2,2-디피리딜 디설파이드, 및 트리에틸아민이 이미다졸 커플링을 돕는 활성화 시약으로서 함께 반응될 수 있다.
상기 화학식 1의 화합물의 일 구체예는, 대표적으로 하기 반응식 3에 나타낸 방법에 따라 제조될 수 있다.
[반응식 3]
Figure PCTKR2022013062-appb-img-000027
상기 반응식 3에서 "2' isomer" 는 3' 위치의 피발로일기가 3' 위치 대신 2' 위치에 존재하는 2' 구조 이성질체를 의미하며, "+2' isomer" 는 2' 구조 이성질체가 함께 존재하는 혼합물임을 의미한다.
상기 반응식 3의 예시적인 구체적인 제조방법의 상세는 하기 실시예에 설명되어 있다.
상기 반응식 3은 간략하게 하기 약어로 표시할 수 있다.
[반응식 3]
Figure PCTKR2022013062-appb-img-000028
여기서, 상기 G는 구아노신, 7mG는 7-메틸구아노신, A는 아데노신 p는 -P(=O)(OH)O-, Me는 메틸, Im은 이미다졸라이드를 의미한다.
상기 반응식 2 및 3에 표시된 제조방법은 구아노신의 모노에스테르화(또는 디에스테르화)와 7-메틸화 과정을 인 시츄 방식으로 진행하여 p7mG(2' and/or 3'OC(=O)R')을 제조하고, 7-메틸구아노신 이인산염(pp7mG(2' and/or 3'OC(=O)R')) 제조 공정 역시 이미다졸라이드화와 이인산화를 인 시츄 방식으로 단축하여, 7-메틸구아노신 이인산염(pp7mG(2' and/or 3'OC(=O)R'))까지의 합성 단계를 종래의 트라이링크 사의 트리뉴클레오타이드 캡 유사체 제법(하기 [반응식 1-1]의 방법)에 비해 2 단계 단축할 수 있다.
즉, 화학식 1의 화합물을 총 4 단계에 의해 제조할 수 있으며, 각 단계 후에 정제를 수행한 다음, 그 다음 단계를 수행할 수 있다. 따라서, 4 회의 정제 과정이 필요하다. 이는 종래 TriLink사의 상용화된 캡 유사체의 제법이 5회의 중간체 정제 과정이 필요한 것에 비해 정제 횟수가 1회 감소된 것이다. 따라서, 화학식 1의 화합물은 종래 공지된 캡 유사체 제조방법에 비해 공정의 횟수 및 정제의 횟수가 줄어들어 보다 경제적으로 제조할 수 있다.
상기 정제 방법은 각 단계별로 독립적으로 이온 크로마토그래피, 역상 크로마토그래피 등을 통해 이루어질 수 있다. 일 구체예에서, 상기 정제 방법은 역상 크로마토그래피이다.
또한, 종래의 2세대 또는 3세대 캡 유사체의 경우, 캡 유사체 제조에 관한 순수 원료비 중에서 가장 많은 비용을 차지하는 부분은 출발물질인 3' -O-메틸구아노신 뉴클레오사이드(G(3' OMe)) 원료의 단가인데, 이는 구아노신 뉴클레오사이드가 가진 3개의 히드록실 그룹 중 3' 히드록실만 선택적으로 메틸화를 유도해야 하는 어려운 공정 과정을 거쳐야 하고, 3' 모노에스테르화 생성물만을 선택적으로 정제하여야 하는 정제 과정을 거쳐야 하기 때문이다. 이에 반해, 상기 화학식 1의 화합물은 단가가 저렴한 구아노신 모노포스페이트를 출발 물질로 사용하여 제조될 수 있다. 구체적으로 설명하면, 2' 혹은 3' 위치에 -OC(=O)R' 을 하나만 갖는 모노에스테르 형태를 갖는 일 구체예에 따른 상기 화학식 1의 화합물의 경우는, 구아노신 모노포스페이트의 2' 혹은 3' 의 히드록시기를 자발적으로 -OC(=O)R' 으로 치환하는 반응을 도입하여 2' 혹은 3' 어느 한쪽으로만 반응이 진행되도록 하여 제조될 수 있다. 즉, 3' 에 선택적으로 반응이 진행되도록 노력할 필요가 없다. 더욱이, 2' 혹은 3' 위치에 -OC(=O)R' 을 하나만 갖는 모노에스테르 형태는 화학식 1의 화합물은 -OC(=O)R' 이 2' 혹은 3' 위치에 존재하는 구조이성질체가 서로 동적 평형을 갖는 혼합물의 형태를 유지하게 된다. 따라서, 어느 한 구조 이성질체만을 정제할 필요도 없다. 다시 말하면, 특정 위치의 히드록실만 선택적으로 에스테르화 하는 어려운 공정 과정을 거칠 필요도 없고, 그 특정 모노에스테르화 생성물만을 선택적으로 정제하여야 하는 정제 과정도 필요 없다. 결과적으로, 낮은 단가의 출발물질을 사용하여 목적하는 화학식 1의 화합물을 제조할 수 있으므로, 제조 비용을 현저히 절감시킬 수 있다.
또한, 상기 모노에스테르 형태의 화학식 1의 화합물로 캡핑된 mRNA는 단백질 발현 효율이 종래 Trilink사의 트리뉴클레오타이드 3' -메톡시 캡 유사체 (7mG(3'OMe)pppA(2'OMe)pG)로 캡핑될 경우 보다 높다는 점에서도, 종국적으로 단백질 합성에 필요한 비용을 절감시킬 수 있다.
상기 모노에스테르 형태의 화학식 1 화합물 이외에 화학식 1의 화합물의 다른 실시 형태인 2'-OH와 3'-OH 모두가 에스테르화된 디에스테르 형태의 화학식 1의 화합물 또한, 목적 생성물이 디에스테르화물이므로, 선택적인 위치에서의 모노에스테르화 및 그 모노에스테르화물의 분리 정제 없이 제조될 수 있다는 이점이 있다.
결국, 종래 캡 유사체의 제조를 위한 출발물질인 3' -O-메틸구아노신 뉴클레오사이드는 본원발명의 캡 유사체의 제조를 위한 출발물질인 구아노신 모노포스페이트에 비해 kg당 가격이 380배 정도 높은 것을 감안하면, 화학식 1의 화합물은 종래 캡 유사체 화합물에 비해 현저히 높은 경제성으로 제조될 수 있다.
앞서 설명한 바와 같이, 화학식 1의 화합물인 캡 유사체는 종래 트라이링크 사의 트리뉴클레오타이드 캡 유사체에 비해, 합성 단계 및 정제 횟수의 감소를 통해 시간 및 비용 측면에서 경제적으로 제조할 수 있다. 또한, 상기 정제 과정은 역상 컬럼으로 수행될 수 있으며, 역상 컬럼은 종래 이온교환 컬럼에 비해 효율적이기 때문에, 역상 컬럼 정제과정 또한 상기 화학식 1의 화합물의 제법의 경제성에 더욱 기여할 수 있다. 추가적으로, 보다 구체적으로 설명하면 다음과 같다.
상기 화학식 1의 화합물의 제조 방법의 일 구체예에서는, 원료가 저렴하고 수급이 쉬운 구아노신 일인산 나트륨염을 출발물질로 사용하여, 구아노신의 모노에스테르화와 7-메틸화 과정을 인 시츄 방식으로 진행하여 p7mG(2' or 3'monopivalic)을 얻고, 7-메틸구아노신 이인산염(pp7mG(2' or 3'monopivalic)) 제조 공정 역시 이미다졸라이드화와 이인산화를 인 시츄로 단축하여, 7-메틸구아노신 이인산염(pp7mG(2' or 3'monopivalic))까지의 합성 단계를 종래의 트라이링크 사의 트리뉴클레오타이드 캡 유사체 제법(하기 [반응식 1-1]의 방법)에 비해 2 단계 단축할 수 있다.
[반응식 1-1]
Figure PCTKR2022013062-appb-img-000029
또한, 트라이링크 사의 트리뉴클레오타이드 캡 유사체 7mG(3' OMe)pppN(2' OMe)pN 의 제조방법은 상기 반응식 1-1에서 총 5 회의 이온교환 컬럼 정제를 거쳐야 하는 반면 (정제 대상: pG(3' OMe), ppG(3' OMe), pp7mG(3' Ome), pN(2' OMe)pN, 7mG(3' OMe)pppN(2' OMe)pN) (US 10,913,768 참조), 상기 화학식 1의 화합물은 상기 반응식 2에서 (정제 대상: p7mG(2' and/or 3' C(=O)O-R' ), pp7mG(2' and/or 3' C(=O)O-R' ), pN(2' OMe)pN, 7mG(2' and/or 3' C(=O)O-R' )pppN(2' OMe)pN) 총 4 회의 역상 컬럼 정제를 거쳐 제조할 수 있다. 즉, 전체 공정에서 총 정제 횟수가 1회 감소될 수 있다. 또한, 종래의 캡 유사체 합성법은 각 단계에서의 생성물을 이온 교환 컬럼 정제를 거쳐야하는 반면, 본원의 화학식 1의 화합물의 합성법은 각 단계에서의 생성물을 동일 부피의 이온 교환 컬럼에 비해 컬럼 볼륨 당 1회 정제 대상물의 주입량이 10배 정도 높은 역상 컬럼만으로 정제가 가능하다. 따라서, 화학식 1의 화합물의 제법은 버퍼에 사용되는 트리에틸아민, 레진 등의 정제를 위한 원료 비용을 60 ~ 80% 정도 절감 할 수 있다. 이는 상기 화학식 1의 화합물의 제법에서는 7-메틸구아노신의 극성도가 높은 2' 혹은 3' 히드록실기를 비극성도가 높은 알킬에스테르기 또는 알콕시에스테르로 치환하여 반응이 이루어지고, 이로 인해 각 단계별 생성물의 비극성도가 증가되어, 종래 캡 유사체의 제조 단계별 생성물을 이온화정도에 따라 이온컬럼에서 분리가 되어야 했던 공정 대신 역상 컬럼에서 비극성도에 의한 분리가 가능하게 되었기 때문이다.
상기 화학식 1의 화합물은, 시험관 내 mRNA 합성 시 mRNA의 5' 캡핑을 위한 캡 유사체로서 사용될 수 있다. 즉, 시험관내 mRNA 합성 시 캡 유사체로서 화학식 1의 화합물을 동시에 도입하여 5' 말단이 캡 유사체로 구성된 mRNA를 합성할 수 있다.
다른 일 양상은, 상기 화학식 1의 화합물을 포함하는 캡 유사체를 제공한다.
구체적으로, 상기 캡 유사체는 상기 화학식 1의 화합물 자체일 수도 있고, 상기 화학식 1의 화합물에 더하여, 개시 부위에서 DNA 주형 상의 서열에 대해 상보적일 수 있는 혼성화 서열을 추가로 포함할 수 있다. 본원에 제공된 방법 및 조성물에 사용하기 위한 캡 유사체의 혼성화 서열의 길이는 주형 뉴클레오티드 서열의 실체, 및 이러한 프라이머가 DNA 주형과 혼성화되거나 또는 시험관내 전사 동안 사용되는 온도를 포함한 몇 가지 요인에 좌우된다. 전사에 사용하기 위한 캡 유사체의 혼성화 뉴클레오티드 서열의 목적하는 길이는 당해 기술분야의 통상의 기술자가 통상적인 실험에 의해 용이하게 결정될 수 있다. 예를 들어, 혼성화 뉴클레오티드의 길이는 목적하는 혼성화 특이성 또는 선택성에 근거하여 결정될 수 있다.
일 구체예에서, 캡 유사체의 뉴클레오티드 길이(캡 포함)는 약 3 내지 약 9개이고, 더 구체적으로는 약 3 내지 약 7개이고, 더욱 더 구체적으로는 약 3 내지 약 5개 이다. 일 구체예에서 상기 캡 유사체의 뉴클레오티드 길이는 3개이다. 캡 유사체 내의 혼성화 서열의 길이는 캡 유사체의 전체 길이와 동일하거나 또는 그보다 더 짧을 수 있다.
상기 캡 유사체를 이용하여, 5' 캡핑된 mRNA를 제조할 수 있다.
따라서, 일 특정 양상은 상기 화학식 1의 화합물을 포함하는 캡 유사체를 mRNA의 합성 동안 포함시키는 것을 포함하는, 5' 캡핑된 mRNA의 제조방법을 제공한다.
또한, 일 특정 양상은 상기 화학식 1의 화합물을 포함하는 캡 유사체를 포함하는, 5' 캡핑된 mRNA 제조용 조성물 또는 키트를 제공한다.
또한, 일 특정 양상은 상기 화학식 1의 화합물을 포함하는 캡 유사체를 mRNA의 합성에 사용하기 위한 용도를 제공한다.
또한, 일 특정 양상은, 상기 화학식 1의 화합물을 포함하는 캡 유사체로 5' 캡핑된 mRNA을 제공한다.
상기 화학식 1의 화합물을 포함하는 캡 유사체를 사용하여 5' 캡핑된 mRNA를 제조하는 방법은 당해 기술분야에 공지된 임의의 방법에 따라 수행할 수 있다.
일 구체예에서, 5' 캡핑된 mRNA는 시험관 내 mRNA 합성 시 화학적으로 합성된 캡 유사체를 동시에 도입하여 캡 유사체가 5' 말단을 구성하는 mRNA 합성방법인 공동 전사 캡핑방법에 의해 제조될 수 있다. 구체적으로는, 화학식 1의 화합물인 캡 유사체를 폴리뉴클레오티드 주형의 RNA 폴리머라제에 의해 전사가 이루어지는 조건 하에서 RNA 폴리머라제를 포함하는 혼합물 내로 도입하는 단계; 및 그 혼합물을 상기 주형의 전사를 허용하는데 충분한 시간 동안 인큐베이션하는 단계를 포함할 수 있다.
상기 일 양상에 따른 화학식 1의 화합물을 포함하는 캡 유사체는 표준 GTP, ATP, CTP 또는 UTP를 이용하는 개시의 효능과 비교해서 시험관내 mRNA의 전사의 효율을 증가시키고, 그 후 번역과정에서 전사된 캡핑된 mRNA의 단백질 발현 효율을 증가시킬 수 있다. 상기 전사 효율의 증강으로 인해, 통상적인 방법으로 mRNA를 합성하는 것에 비해 mRNA의 합성이 예를 들어 약 10%, 약 20%, 약 40%, 약 60%, 약 80%, 약 90%, 약 100%, 약 150%, 약 200% 또는 약 500%만큼 증가될 수 있다.
상기 일 양상에 따른 화학식 1의 화합물을 포함하는 캡 유사체는 5' 캡핑된 mRNA 분자의 단백질 발현량을 종래의 Trilink사의 트리뉴클레오타이드 3' -메톡시 캡 유사체 (7mG(3'OMe)pppA(2'OMe)pG) 보다 높은 수준으로 증가시킬 수 있다. 더욱 구체적으로는, 화학식 1의 화합물 중 2' 혹은 3' 의 OH 잔기 중 어느 한쪽만이 모노에스테르화된 캡 유사체가 종래의 Trilink사의 트리뉴클레오타이드 3' -메톡시 캡 유사체 (7mG(3'OMe)pppA(2'OMe)pG)에 비해 5' 캡핑된 mRNA 분자의 단백질 발현량을 현저히 더 높은 수준으로 증가시킬 수 있다(실험예 2 참조).
따라서, 일 양상에 따른 화학식 1의 화합물을 포함하는 캡 유사체는 3세대 캡 유사체와 동등 혹은 그 이상의 단백질 발현 효율을 가지며, 캡 유사체 자체의 제조 공정 및 정제 공정의 수를 줄이고, 정제 효율을 높일 수 있어 제조 단가를 낮출 수 있는 장점을 갖는다.
일 구체예에서, 5' 캡핑된 mRNA를 제조하는 방법은 변형된 적어도 하나 이상의 NTP를 전사 반응에 추가로 부가할 수 있다. 상기 적어도 하나의 변형된 NTP의 변형은 mRNA의 RNA 폴리머라제 매개된 합성을 실질적으로 손상시키지 않는다. 상기 변형된 NTP는, 예를 들어, 하나 이상의 변형된 뉴클레오시드 염기, 하나 이상의 변형된 당, 하나 이상의 변형된 5'-트리포스페이트를 포함할 수 있다. 이와 같이 변형된 NTP는 캡 유사체의 3'-말단 상으로 혼입될 수 있고, 이는 전사를 차단하지 않고 프라이머의 추가의 신장을 지원해 준다. 상기 변형된 NTP의 변형 기는 검출가능한 표지 또는 검출가능한 마커일 수 있다. 따라서, 전사 후, 검출가능한 표지 또는 마커를 함유하는 제조된 mRNA는 크기, 질량, 색상 및/또는 친화성 포획에 의해 확인될 수 있다. 일 구체예에서, 상기 검출가능한 표지 또는 마커는 형광 염료이고; 친화성 포획 표지는 비오틴이다.
일 구체예에서, 전사 반응의 하나 이상의 구성 요소 (캡 유사체 및/또는 NTP)는 검출가능한 표지 또는 마커로 표지시킬 수 있다. 따라서, 전사 후, mRNA 분자는, 예를 들어, 크기, 질량, 친화성 포획 또는 색상에 의해 확인될 수 있다. 예를 들어, 상기 검출가능한 표지는 형광 염료이고; 친화성 포획 표지는 비오틴이다.
상기 5' 캡핑된 mRNA 제조용 키트 또는 조성물은, 통상의 mRNA의 합성을 위한 모든 전사 시약 (예를 들어, FLuc mRNA)을 함유할 수 있다. 보다 구체적으로, 상기 키트는 캡 유사체; 전사용으로 표시된 용기; mRNA 합성을 수행하기 위한 설명서; 하나 이상의 비변형된 NTP, 하나 이상의 변형된 NTP (예를 들어, 메틸슈도우리딘 5'-트리포스페이트), RNA 폴리머라제, 다른 효소, 반응 완충제, 마그네슘 및 DNA 주형으로 이루어진 군으로부터 선택된 하나 이상의 시약을 함유할 수 있다.
일 양상에 따른 캡 유사체를 이용하여 제조된 5' 캡핑된 mRNA는, 그 구조 내에 상기 캡 유사체를 포함하며, 상기 5' 캡핑된 mRNA를 생체에 투여하여 생체 내에서 단백질을 발현시키는데 사용될 수 있다.
따라서, 또 다른 일 양상은 상기 캡 유사체로 5' 캡핑된 mRNA를 생체 내에 투여하여 생체 내에서 목적하는 펩티드 또는 단백질 발현하는 방법을 제공한다.
또한, 다른 일 양상은 상기 캡 유사체로 5' 캡핑된 mRNA 및 약학적으로 허용되는 담체를 포함하는, 목적하는 펩티드 또는 단백질 발현을 위한 약학 조성물을 제공한다.
상기 목적하는 펩티드 또는 단백질의 종류에 따라, 생체 내에서 목적하는 질병 치료 또는 예방 효과를 획득할 수 있다. 따라서, 펩티드 또는 단백질의 발현에 따른 치료 또는 예방 가능한 임의의 질병의 치료 또는 예방에 사용될 수 있다. 특정 펩티드 또는 단백질의 종류의 발현에 의해 치료 또는 예방 가능한 질병이 공지되어 있으며, 상기 약학 조성물을 이용하여, 상기 펩티드 또는 단백질의 발현을 유발하여 목적하는 질병의 예방 또는 치료에 사용될 수 있다.
또한, 다른 일 양상은 상기 캡 유사체로 5' 캡핑된 mRNA를, 펩티드 또는 단백질의 생체 내 발현에 의해 효과가 있는 임의의 질병의 예방 또는 치료에 사용하기 위한 의약 용도를 제공한다.
상기 약학 조성물 및 치료 또는 예방 방법은 유전자 대체 치료(gene replacement therapy), 게놈 편집(genome editing), 면역항암요법(cancer immunotherapy), 또는 백신을 이용한 치료 또는 예방 등에 사용될 수 있다. 일 구체예에서, 상기 약학 조성물은 mRNA 백신이다.
상기 약학 조성물은 주사에 의한 투여, 또는 특정한 병태를 치료 또는 예방하기 위해 관련 기술분야의 통상의 기술자에게 공지된 다른 적절한 경로에 의한 투여용으로 제형화될 수 있다. 주사가능한 조성물은 약학적으로 허용되는 담체로서 예컨대 멸균 생리 식염수를 포함한다. 주사 가능한 조성물은 또한, 지질 또는 인지질 중의 현탁제, 리포솜 현탁제, 또는 수성 에멀션으로서 제형화될 수 있다. 상기 약학 조성물을 제형화하는 방법은 당해 기술분야에서 통상의 지식을 가진 자에게 널리 공지되어 있다.
일 구체예에서, 상기 약학 조성물은 활성성분인 상기 캡 유사체를 포함하는 mRNA를 약 0.01% 내지 1%의 농도로 함유할 수 있다. 상기 농도는 투여 빈도, 투여 용량, 투여 방법 등에 따라 달라질 수 있다.
일 구체예에서, 상기 약학 조성물은 포유류, 구체적으로는 인간에게 투여할 수 있으며, 그 투여량은 개체의 건강 상태, 질병의 중증도, 체중, 연령, 인종 등에 따라 달라질 수 있으며, 당해 기술 분야에의 전문가가 적절한 투여량을 결정할 수 있다. 일 구체예에서, 인간에 대한 투여량은 0.0001 내지 100 mg/일의 범위 내이고, 보다 구체적으로는 약 0.1 내지 50 mg/일의 범위 내이다.
상기 일 양상에 따른 캡 유사체로 5' 캡핑된 mRNA는 생체 내에서 혹은 in vitro에서 세포에 도입되어 단백질 또는 펩티드를 발현할 수 있다.
따라서, 다른 일 양상은 상기 일 양상에 따른 캡 유사체로 5' 캡핑된 mRNA를 함유하는 세포를 제공한다.
또 다른 일 양상은 상기 일 양상에 따른 캡 유사체로 5' 캡핑된 mRNA 로부터 번역된 단백질 또는 펩티드를 함유하는 세포를 제공한다.
상기 mRNA를 이용하여 생체 내에서 혹은 생체 외에서 세포 중에서 단백질 펩티드를 발현시키는 방법은 당해 기술분야에 공지되어 있으며, 이러한 종래 통상적인 방법에 따라 적절히 세포 중에서 단백질 또는 펩티드를 발현시킬 수 있다.
[실시예]
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
약어의 설명
이하 사용되는 약어는 다음과 같다.
TBSCl: 염화 삼급-부틸디메틸실릴
DMAP: 4-디메틸아미노피리딘
DMSO: 디메틸설폭사이드
TFA: 트리플루오로아세트산
DCM: 디클로로메탄
TEP: 트리에틸포스페이트
DPS: 2,2' -디피리딜 디설파이드
PPh3: 트리페닐포스핀
DMF: 디메틸포름아미드
DMS: 디메틸설페이트
PW: 순수
EDTA: 에틸렌디아민테트라아세트산
THF: 테트라하이드로퓨란
ACN: 아세토니트릴
TEA: 트리에틸아민
TCA: 트리클로로아세트산
IVT: 시험관 내 전사
실시예 1 내지 7: 7-메틸-2' ,3' -피발로일-구아노신 5' -이인산염 이미다졸라이드 (im-pp7mG(2' ,3' Pivaloyl)) (7) 제조
Figure PCTKR2022013062-appb-img-000030
실시예 1: 5' -O-tert-부틸디메틸실릴-구아노신 (1)의 제조
구아노신 20 g(70.6mmol)을 디메틸설폭사이드 200ml에 용해한 후 질소 하에서 트리에틸아민 21.6 g(155.4mmol), tert-부틸디메틸실릴 클로라이드 21.2 g(141.2mmol), 디메틸아미노피리딘 860 mg(7mmol)을 첨가하였다. 실온에서 24시간 교반한 후 0 ~ 5℃의 증류수에 서서히 적가하여 생성된 침전물을 여과하였다. 여과된 침전물을 플래쉬 컬럼 크로마토그래피를 이용하여 정제하여 목적 화합물 24.4 g(87%)(1)을 얻었다.
1H NMR (400 MHz, CD3OD, 25℃): δ= 7.96 (s, 1H), 5.89 (d, 1H), 4.47 (t, 1H), 4.33 (t, 1H), 4.08 (m, 1H), 3.94 ~ 3.87 (m, 2H), 0.94 (m, 9H), 0.12 (m, 6H).
실시예 2: 2' ,3' -피발로일-5' -O-tert-부틸디메틸실릴-구아노신 (2)의 제조
5' -O-tert-부틸디메틸실릴-구아노신 10 g(25.2mmol)(1)을 무수 피리딘 100ml에 녹이고 피발릭 무수화물 23.4 g(125.6mmol)을 첨가하여 실온에서 교반하였다. 반응 완결 후 에틸 아세테이트 500 ml를 투입하고 포화 중조 수용액 400 ml, 20% 구연산 400 ml로 세척한 후 황산 마그네슘으로 건조하고 감압 증류하였다. 플래쉬 컬럼 크로마토그래피를 이용하여 목적 화합물 10.26 g(72%)(2)을 얻었다.
1H NMR (400 MHz, DMSO-d6, 25℃): δ= 10.70 (s, 1H), 7.83 (d, 1H), 6.51 (br, 2H), 5.93 (d, 1H), 5.69 (m, 1H), 5.40 (m, 1H), 4.21 (m, 1H), 3.86 (m, 2H), 1.20 (s, 9H), 1.04 (s, 9H), 0.88 (s, 9H), 0.08 (s, 6H).
실시예 3: 2' ,3' -피발로일-구아노신 (3)의 제조
2' ,3' -피발로일-5' -O-tert-부틸디메틸실릴-구아노신 10 g (17.6mmol) (2)을 디클로로메탄 300mL에 녹이고 증류수 8ml와 트리플루오로아세트산 70ml를 차례로 첨가하였다. 30분 교반한 후 2N 수산화 나트륨으로 중화하였다. 유기층과 수층을 분리하여 수층을 디클로로메탄 300ml로 추출하고 유기층을 모아 포화 중조 수용액과 염수로 세척한 후 황산 마그네슘으로 건조하고 감압증류하였다. 플래쉬 컬럼 크로마토그래피를 이용하여 목적 화합물 5.16 g(64.7%)(3)을 얻었다.
1H NMR (400 MHz, DMSO-d6, 25℃): δ= 10.69 (s, 1H), 7.97 (d, 1H), 6.49 (br, 2H), 5.92 (d, 1H), 5.72 (dd, 1H), 5.45 (t, 1H), 5.40 (dd, 1H), 4.16 (m, 1H), 3.67 (m, 2H), 1.21 (m, 9H), 1.05 (m, 9H).
실시예 4: 2' ,3' -피발로일-구아노신 5' -모노포스페이트 (pG(2' ,3' Pivaloyl))(4)의 제조
2' ,3' -피발로일-구아노신 4.51 g (10 mmol) (3)을 트리에틸 포스페이트 40 mL에 투입하고 60-70 ℃에서 용해하였다. 반응액을 0 ℃로 냉각하고 옥시 염화인 2.8 mL (30 mmol)를 첨가한 후 실온으로 승온하여 질소 하에서 3시간 교반하였다. 1M 트리에틸암모늄 바이카보네이트 버퍼 100 mL (pH 8.5)를 서서히 적가하여 8시간 교반한 후 증류수 1 L를 투입하였다. 반응액을 C18 컬럼 (50 x 250 mm)을 이용하여 분리하고 메탄올 50 mL로 4회 공비하여 목적 화합물의 트리에틸암모늄 염 3.79 g (수율 60.0 %) (4)을 얻었다.
1H NMR (400 MHz, DMSO-d6, 25℃): δ= 10.72 (s, 1H), 8.03 (s, 1H), 6.68 (br, 2H), 5.94 (d, 1H), 5.83 (m, 1H), 5.46 (m, 1H), 4.28 (m, 1H), 4.00 (m, 2H), 1.21 (m, TEA overlapped, 9H), 1.03 (m, 9H). LC-MS (ESI, m/z) = 532.17 [M + H+]
실시예 5: 2' ,3' -피발로일-구아노신 5' -디포스페이트 이인산염 (ppG(2' ,3' Pivaloyl)) (5)의 제조
pG(2' ,3' Pivaloyl) 트리에틸암모늄 염 3.16 g (5.0 mmol)(4)을 디메틸포름아미드 250 mL에 투입한 후 이미다졸 3.40 g (50 mmol), 트리페닐포스핀 6.56 g (25 mmol), 2,2' -디피리딜 디설파이드 5.51 g (25 mmol), 트리에틸아민 0.51 g (5.0 mmol)을 첨가하여 5시간 교반하였다. 과염소산나트륨 2.45 g (20 mmol)를 아세톤 430 mL에 녹인 용액에 반응액을 투입하여 4 ℃로 냉각한 다음 생성된 결정을 여과하고 차가운 아세톤으로 세척한 후 진공 건조 하였다. 건조된 im-pG(2' ,3' Pivaloyl)를 디메틸포름아미드 30 mL에 투입하고 염화 아연 1.36 g (10 mmol), 트리에틸암모늄 포스페이트 5.98 g (30 mmol) 투입한 후 실온에서 3 ~ 16시간 교반하였다. 반응 완결 후 반응액에 증류수 870 mL, 에틸렌디아민테트라아세트산 9.79 g (33.5 mmol) 혼합액을 투입한 후 20분간 교반하였다. 반응액을 1M 중조 수용액을 이용하여 pH 6 ~ 7로 중화시킨 후 반응액을 C18 컬럼 (50 x 250 mm)을 이용하여 분리하고 메탄올 35 mL로 4회 공비하여 목적 화합물의 트리에틸암모늄 염 2.44 g (수율 60.0%) (5) 을 얻었다.
1H NMR (400 MHz, D2O, 25℃): δ= 7.99 (s, 1H), 6.00 (d, 1H), 5.71 (m, 1H), 5.52 (m, 1H), 4.49 (m, 1H), 4.16 (m, 2H), 1.11 (m, TEA overlapped, 9H), 0.95 (m, 9H). 31P NMR (162 MHz, D2O, 25℃): δ= -8.38 (d, 1P), -10.69 (d, 1P).
실시예 6: 7-메틸-2' ,3' -피발로일-구아노신 5' -이인산염 (pp7mG(2' ,3' Pivaloyl)) (6)의 제조
ppG(2' ,3' Pivaloyl) 트리에틸암모늄 염 2.44 g(3.0 mmol) (5) 을 증류수 50mL에 용해하고 빙초산을 이용하여 반응액의 pH를 4.0으로 맞추었다. 반응액에 디메틸설페이트 10mL (105.45 mmol)를 30분에 걸쳐 서서히 첨가한 후 4시간 교반하였다. 이때 반응액의 pH는 0.1 N 수산화나트륨을 이용하여 4.0±0.5로 유지하였다. 반응액을 디클로로메탄 150 mL로 3회 추출하여 미반응 디메틸설페이트를 제거한 후 수층을 pH 5.5로 맞추고 증류수 500 mL를 투입하였다. 반응액을 C18 컬럼 (50 x 250 mm)을 이용하여 pp7mG(2' ,3' Pivaloyl)를 분리하고 증류, 진공 건조하여 트리에틸암모늄염 1.74 g (수율 80%) (6) 을 얻었다.
1H NMR (400 MHz, D2O, 25℃): δ= 9.35 (s, 1H), 6.30 (d, 1H), 5.71 (m, 1H), 5.58 (m, 1H), 4.69 (m, 1H), 4.32 ~ 4.15 (m, 2H), 4.11 (s, 3H), 1.25(m, 9H), 1.19 (m, 9H). LC-MS (ESI, m/z) = 624.14 [M - H]-
실시예 7: 7-메틸-2' ,3' -피발로일-구아노신 5' -이인산염 이미다졸라이드 (im-pp7mG(2' ,3' Pivaloyl)) (7)제조
pp7mG(2' ,3' Pivaloyl) 트리에틸암모늄 염 1.26 g (1.73mmol) (6)을 디메틸포름아미드 25 mL에 용해하고 이미다졸 941.63 mg (13.83 mmol), 2,2' -디피리딜 디설파이드 1.14 g (5.19 mmol), 트리에틸아민 0.482 mL (3.46 mmol), 트리페닐포스핀 1.36 g (5.19 mmol)을 투입한 다음 6 ~ 8시간 교반하였다. 과염소산나트륨 847 mg (6.92 mmol)을 아세톤 175 mL에 녹인 용액에 반응액을 투입하여 4 ℃로 냉각한 다음 생성된 결정을 여과하고 차가운 아세톤으로 세척한 후 진공 건조하여 목적 화합물 967 mg (수율 80.0 %)을 얻었다 (7).
실시예 8 내지 10: 7-메틸-3' -피발로일-구아노신 5' -이인산염 이미다졸라이드 (im-pp 7m G(2' or 3' monopivaloyl)) (10) 제조
Figure PCTKR2022013062-appb-img-000031
실시예 8: 7-메틸-2' or 3' -모노피발로일-구아노신 일인산염 (p7mG(2' or 3' monopivaloyl)) (8)의 제조
상업적으로 입수한 구아노신 모노포스페이트를 추가처리 없이 시작물질로 사용하였다. 구아노신 모노포스페이트 5 g (11.8 mmol)을 증류수 50ml에 녹이고 1M 수산화나트륨을 이용하여 pH 9.5로 적정하였다. 상온에서 피발릭 무수화물 8.79 g (47.2 mmol)을 첨가하여 실온에서 교반하였다. 상온에서 1M 수산화나트륨을 이용하여 pH 9.5 ~ 9.6을 유지하며 4 ~ 12시간 동안 반응하였다. 반응 완결 후 50% 아세트산을 투입하여 pH를 4.5으로 적정 후 디메틸설페이트 14.9 g (118 mmol)를 30분에 걸쳐 서서히 첨가한 후 4시간 교반하였다. 이때 반응액의 pH는 1M 수산화나트륨을 이용하여 4.0±0.5로 유지하였다. 반응액을 디클로로메탄 150 mL로 3회 추출하여 미반응 디메틸설페이트를 제거한 후 수층을 pH 5.5로 적정하였다. 반응액을 C18 컬럼 (50 x 250 mm)을 이용하여 표제의 반응 생성물(몰 비로 2' -모노피발로일 화합물:3' -모노피발로일 화합물 = 0.6±0.05:1인 혼합물 (도 1))를 분리하고 증류, 진공 건조하여 트리에틸암모늄염 3.4 g (수율 43%) (8) 을 얻었다.
1H NMR (400 MHz, D2O, 25℃): δ= 6.17 (m, 0.6H, from 2' -monopivaloyl compound), 6.08 (m, 1H, from 3' -monopivaloyl compound), 5.50 (m, 0.6H, 2' H from 2' -monopivaloyl compound), 5.33 (m, 1H, 3' H from 3' -monopivaloyl compound), 4.89 (m, 1H, from 3' -monopivaloyl compound), 4.65 (m, 0.6H, from 2' -monopivaloyl compound), 4.51 (m, 1H, from 3' -monopivaloyl compound), 4.39 (m, 0.6H, from 2' -monopivaloyl compound), 3.96 ~ 4.15 (m, 8H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 3.13 (q, 9.6H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 1.18 ~ 1.24 (m, 28.8H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped). 31P NMR (162 MHz, D2O, 25℃): δ= 3.75 ~ 3.83 (s, 1.6 P, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped).
실시예 9: 7-메틸-2' or 3' -모노피발로일-구아노신 5' - 이인산염 (pp 7m G(2' or 3' monopivaloyl)) (9)의 제조
p7mG(2' or 3' monopivaloyl) 트리에틸암모늄 염 3.4 g (5.07 mmol)(8)을 디메틸포름아미드 75 mL에 투입한 후 이미다졸 2.07 g (30.4 mmol), 트리페닐포스핀 3.99 g (15.2 mmol), 2,2' -디피리딜 디설파이드 3.35 g (15.2 mmol), 트리에틸아민 0.51 g (5.07 mmol)을 첨가하여 1 ~ 12시간 교반하였다. 그 후, 염화 아연 2.07 g (15.2 mmol), 트리에틸암모늄 인산염 6.06 g (30.4 mmol) 투입한 후 실온에서 3 ~ 16시간 교반하였다. 반응 완결 후 반응액에 증류수 0.94 L, 에틸렌디아민테트라아세트산 9.93 g (34 mmol) 혼합액을 투입한 후 20분간 교반하였다. 반응액을 1M 중조 수용액을 이용하여 pH 6 ~ 7로 중화시킨 후 반응액을 C18 컬럼 (50 x 250 mm)을 이용하여 분리하고 메탄올 35 mL로 4회 공비하여 표제의 반응 생성물(몰 비로 2' -모노피발로일 화합물:3' -모노피발로일 화합물 = 0.7±0.05:1인 혼합물 (도 2))의 트리에틸암모늄 염 3.02 g (수율 80 %) (9) 을 얻었다.
1H NMR (400 MHz, D2O, 25℃): δ= 6.18 (m, 0.7H, 2' H from 2' -monopivaloyl compound), 6.10 (m, 1H, from 3' -monopivaloyl compound), 5.57 (m, 0.7H, 2' H from 2' -monopivaloyl compound), 5.37 (m, 1H, 2' H from 3' -monopivaloyl compound), 4.94 (m, 1H, from 3' -monopivaloyl compound), 4.72 (m, 0.7H, from 2' -monopivaloyl compound), 4.57 (m, 1H, from 3' -monopivaloyl compound), 4.41 (m, 0.7H, from 2' -monopivaloyl compound), 4.14 ~ 4.37 (m, 3.4H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 4.10 (m, 5.1H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 3.13 ~ 3.19 (m, 15.3H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 1.21 ~ 1.26 (m, 38.3H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped). 31P NMR (162 MHz, D2O, 25℃): δ= -8.71 ~ -9.08 (m, 1.7P, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), -10.42 ~ -10.63 (m, 1.7P, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped).
실시예 10: 7-메틸-3' -피발로일-구아노신 5' -이인산염 이미다졸라이드 (im-pp 7m G(2' or 3' monopivaloyl)) (10) 제조
pp7mG(2' or 3' monopivaloyl) 트리에틸암모늄 염 1.29 g (1.73mmol) (9)을 디메틸포름아미드 22 mL에 용해하고 이미다졸 707 mg (10.38 mmol), 2,2' -디피리딜 디설파이드 1.14 g (5.19 mmol)을 첨가하였다. 반응액에 트리에틸아민 175 mg (1.73 mmol), 트리페닐포스핀 1.36 g (5.19 mmol)을 투입한 다음 1 ~ 12시간 교반하였다. 반응 완결 후, 과염소산나트륨 847 mg (6.92 mmol)을 아세톤 175 mL에 녹인 용액에 반응액을 투입하여 4 ℃로 냉각한 다음 생성된 결정을 여과하고 차가운 아세톤으로 세척한 후 진공 건조하여 목적 화합물 796 mg (수율 75.0 %)을 얻었다 (10).
실시예 11 내지 14: pA (2' OMe) pG (14)의 제조
Figure PCTKR2022013062-appb-img-000032
실시예 11: N2-이소부티릴-2' ,3' -디아세톡시-구아노신 (11)의 제조
N2-이소부티릴-5' -O-디엠티 구아노신 2.4 g (3.66 mmol)을 디클로로메탄 12 ml에 녹인 후 피리딘 1.47 ml (18.3 mmol), 무수아세트산 1.78 ml (18.3 mmol)을 투입하여 실온에서 5시간 동안 교반 하였다. 반응액에 에틸아세테이트 24 ml를 가하여 추출 후 중조 포화 수용액 14.4 ml, 20% 시트르산 수용액 14.4 ml, 증류수 14.4 ml에서 세척하였다. 유기층을 황산나트륨으로 건조 후 감압 증류한 잔사를 하루 동안 질소 건조 하였다. 건조물에 3% 트리클로로아세트산 수용액 36 ml를 첨가하여 실온에서 3시간 동안 반응 후 메탄올 24 ml를 가하여 추가로 2시간 30분 동안 교반 하였다. 반응액을 감압 증류하여 디클로로메탄 36 ml, 증류수 18 ml를 가한 후 중조 포화 수용액을 투입하여 중화 하였다. 유기층을 분리한 뒤 황산나트륨으로 건조 후 감압 증류하였다. 감압 증류한 잔사를 에틸아세테이트 12 ml에 녹인 후 실온에서 헥센 108 ml에 서서히 첨가하여 결정화 하였다. 생성된 결정을 여과하고 헥센 12 ml에 3회 반복 세척한 후 진공 건조하여 목적 화합물 (11) 1.43 g (수율 89.6 %)을 얻었다. LC-MS (ESI, m/z) = 438.16 [M + H+]
실시예 12: (N2-이소부티릴-2' ,3' -디아세톡시-구아노신일)-N6-벤조일-2' -메톡시-아데노신일 시아노에틸 인산 에스테르 (12)의 제조
5' -O-디엠티-N6-벤조일-2' -메톡시-아데노신 아미디트 경우 상업적으로 입수하여 추가 처리 없이 시작물질로 사용하였다. N2-이소부티릴-2' ,3' -디아세톡시-구아노신 (11) 1.43 g (3.28 mmol)과 5' -O-디엠티-N6-벤조일-2' -메톡시-아데노신 아미디트 3.78 g (4.26 mmol)을 1H-테트라졸 28.4 mL (0.45 M 아세토나이트릴 용액, 12.79 mmol)에 용해하고 실온에서 1시간 교반 하였다. 아이오딘 544 mg (2.15 mmol)을 테트라하이드로퓨란:증류수:피리딘 혼합액 (v:v:v, 7:2:1) 56.7 ml에 녹인 후 그 용액을 반응액에 투입하고 45분 동안 교반 하였다. 반응액에 10% 티오황산나트륨 수용액 7.2 ml를 첨가한 후, 디클로로메탄 43 ml, 증류수 14.3 ml를 가한 후 유기층을 분리하였다. 분리된 유기층을 황산나트륨으로 건조하고 감압 증류한 다음 하루 동안 질소 건조하였다. 건조물에 3% 트리클로로아세트산 수용액 21.5 ml를 첨가하여 실온에서 3시간 동안 반응 후 메탄올 14.3 ml를 가하여 추가로 2시간 30분 동안 교반 하였다. 반응액을 감압 증류하여 디클로로메탄 21.5 ml, 증류수 10.7 ml를 가한 후 중조 포화 수용액을 투입하여 중화 하였다. 분리한 유기층을 증류수에 세척한 후 황산나트륨으로 건조하여 감압 증류하였다. 감압 증류한 잔사를 디클로로메탄 28.6 ml에 녹인 후 실온에서 메틸 삼차 부틸 에테르 86 ml에 서서히 첨가하여 결정화 하였다. 생성된 결정을 여과하고 하루 동안 진공 건조하여 목적 화합물 (12) 2.7 g (수율 87.8 %)을 얻었다. LC-MS (ESI, m/z) = 938.28 [M + H+]
실시예 13: p(OCE) 2 A bz (2'OMe)p(OCE)G ib (2' ,3' OAc) (13)의 제조
(N2-이소부티릴-2' ,3' -디아세톡시-구아노신일)-N6-벤조일-2' -메톡시-아데노신일 시아노에틸 인산 에스테르 (12) 2 g (2.13mmol), 비스(2-시아노에틸)-N,N-디이소프로필포스포아미디트 1.11 ml (4.26 mmol)을 1H-테트라졸 9.47 mL (0.45 M 아세토나이트릴 용액, 4.26 mmol)에 용해하고 실온에서 30분 동안 교반 하였다. 아이오딘 811 mg (3.2 mmol)을 테트라하이드로퓨란:증류수:피리딘 혼합액 (v:v:v, 7:2:1) 30 ml에 녹인 후 그 용액을 반응액에 투입하고 30분 동안 교반 하였다. 반응액에 10% 티오황산나트륨 수용액 20 ml를 첨가한 후, 디클로로메탄 100 ml, 증류수 40 ml를 가한 후 유기층을 분리하였다. 분리된 유기층을 황산나트륨으로 건조하고 감압 증류 하였다. 감압 증류한 농축액을 디클로로메탄 27 ml를 가하여 녹인 후 실온에서 메틸 삼차 부틸 에테르 133 ml에 서서히 첨가하여 결정화 하였다. 생성된 결정을 여과하고 하루 동안 진공 건조하여 목적 화합물 (N2-이소부티릴-2' ,3' -디아세톡시-구아노신일)-N6-벤조일-2' -메톡시-5' -디시아노에틸포스포릴- 아데노신일 시아노에틸 인산 에스테르 (13) 2.2 g (수율 92.2 %)을 얻었다. LC-MS (ESI, m/z) = 1124.30 [M + H+]
실시예 14: pA (2'OMe) pG (14)의 제조
p(OCE)2Abz(2' OMe)p(OCE)Gib(2' ,3' OAc) (13) 2 g (1.78 mmol)을 메탄올 44 mL와 진한 암모니아 44 mL의 혼합액에 투입한 후 50 ~ 55℃에서 24시간 동안 교반 하였다. 반응이 완결되면 용매를 감압 증류하고 농축물에 메탄올 20 mL를 투입하여 3회 증류하였다. 농축액은 다시 증류수에 용해 후 DEAE Sepharose 컬럼 과 역상 크로마토그래피를 이용하여 정제하여 목적 화합물의 트리에틸암모늄 염 (14) 1.13 g (수율 70 %)을 얻었다.
1H NMR (400 MHz, D2O, 25℃): δ= 8.44 (s, 1H), 8.12 (s, 1H), 7.90 (s, 1H), 6.07 (m, 1H), 5.80 (m, 1H), 4.46 ~ 4.01 (m, 8H), 3.45 (m, 3H) LC-MS (ESI, m/z) = 707.13 [M + H+]
실시예 15: 7m G (2' ,3' Pivaloyl) pppA (2' OMe) pG (15)의 제조
Figure PCTKR2022013062-appb-img-000033
디메틸포름아미드 27.5 mL에 염화마그네슙 0.55 g을 첨가하여 용해 하였다. 반응액에 Im-pp7mG(2', 3' Pivaloyl) (7) 0.69g (0.99 mmol) 및 pA(2' OMe)pG (14) 0.5 g (0.55 mmol)를 투입하여 실온에서 24시간 교반 하였다. 반응이 완결된 후 25 mM 에틸렌디아민테트라아세트산 수용액 275 mL를 적가하여 반응을 종결하고 실온으로 냉각한 후 1M 중조 수용액으로 중화하였다. 반응액을 C18 컬럼 (50 x 250 mm)을 이용하여 정제하고 증류 후 진공 건조하였다. 건조된 고체를 2.5 ml 증류수에 녹인 후 과염소산나트륨 299 mg (2.44 mmol)를 아세톤 15 mL에 녹인 용액에 투입하여 4 ℃로 냉각한 다음 생성된 결정을 여과하고 차가운 아세톤으로 세척한 후 진공 건조하여 목적 화합물의 나트륨 염 (15) 0.46 g (수율 60.0 %)을 얻었다.
1H NMR (400 MHz, D2O, 25℃): δ= 8.20 (s, 1H), 7.91 (s, 1H), 7.75 (s, 1H), 5.75 ~ 5.72 (m, 2H), 5.65 (m, 1H), 5.33 (m, 1H), 5.24 (m, 1H), 4.60 (m, 1H), 4.29 ~ 3.96 (m, 12H), 3.91 (m, 3H), 3.26 (m, 3H), 1.02 (s, 9H), 0.90 (s, 9H); 31P NMR (162 MHz, D2O, 25℃): δ= -0.32 (s, 1P), -11.01 ~ -11.22 (dd, 2P), -22.26 (t, 1P). LC-MS (ESI, m/z) = 1314.27 [M + H+].
실시예 16: 7m G (2' or 3'monopivaloyl) pppA (2' OMe) pG (16)의 제조
Figure PCTKR2022013062-appb-img-000034
실시예 15와 동일한 방법으로 실시하되, 상기 실시예 15의 Im-pp7mG(2' ,3' Pivaloyl) (7) 대신 출발 물질로 실시예 10의 Im-pp7mG(2' or 3' monopivaloyl) 0.61g (0.99 mmol) (10)을 사용하여 반응하고, C18 컬럼 (50 x 250 mm)을 이용하여 분리 정제 및 증류 후 염 변경하여, 표제의 반응 생성물 (몰 비로 2' -모노피발로일 화합물:3' -모노피발로일 화합물 = 0.65±0.05:1인 혼합물 ( 25℃±5, pH 1.0 ~ 8.0의 수중 조건) (도 3 참조)) (16) 0.5g (수율 70%)을 제조하였다.
1H NMR (400 MHz, D2O, 25℃): δ= 8.30 (d, 1.65H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 8.00 (d, 1.65H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 7.85 (d, 1.65H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 5.88 ~ 5.73 (m, 4.95H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 5.30 (m, 0.65H, 2' H from 2' - monopivaloyl compound), 5.19 (m, 1H, 2' H from 3' -monopivaloyl compound), 4.86 (m, 1H, from 3' -monopivaloyl compound), 4.73 (m, 0.65H, from 2' -pivaloyl compound), 4.60 (t, 1H, 3' -pivaloyl compound), 4.53 (t, 0.65H, from 2' -pivaloyl compound), 4.43 ~ 4.13 (m, 19.80H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 4.00 (d, 4.95H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 3.37 (d, 4.95H, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), 1.16 (s, 9H, from 3' -monopivaloyl compound), 1.10 (s, 5.85H, from 2' -monopivaloyl compound); 31P NMR (162 MHz, D2O, 25℃): δ= -0.35 (s, 1.65P, 2' -monopivaloyl and 3' -monopivaloyl compounds, overlapped), -10.85 (dd, 3.3P, 2' -monopivaloyl and 3' - monopivaloyl compounds, overlapped), -22.31 (t, 1.65P, 2' -monopivaloyl and 3' -monopivaloyl compound, overlapped). LC-MS (ESI, m/z) = 1230.22 [M + H+].
실험예 1: 공동전사캡핑을 통한 루시페라제 mRNA의 시험관 내 전사
상기 실시예 15 및 16에서 제조된 화합물을 이용한 mRNA 합성 반응을 위해 Transcription buffer를 사용하였으며, 상기 버퍼의 조성은 Tris-Cl buffer: spermidine:Triton X = 4:2:1 부피비와 같다. 상기 버퍼 중에 50 ㎍/ml 루시페라제 DNA 전사 주형, 10 mM ATP, 10 mM CTP, 10 mM UTP, 2mM GTP, 및 8 mM 실시예 15 또는 실시예 16에서 제조된 화합물, 300 KU/ml T7 RNA 중합효소, 2 KU/ml RNase 저해 단백질, 20 U/ml 무기 피로포스파타아제, 40 mM Tris·HCl(pH 8.0), 50 mM 염화마그네슘, 및 10 mM 디티오트레이톨을 부가하여 전사 반응 혼합물을 제조하였다. 또한, 양의 대조군으로서 실시예 15 또는 16의 화합물 대신, 7mG(3'OMe)pppA(2'OMe)pG (Cleancap AG(3' OMe) (트라이링크 카탈로그 N-7413)을 사용하여 전사 반응 혼합물을 제조하였다. 상기 전사 반응 혼합물을 37 ℃에서 2 ~ 3 시간 동안 반응하였다. 그 후, 반응 종결을 위해 반응물에 2KU/mL DNase I 을 첨가시키고, 37 ℃에서 15 ~ 30분 동안 반응하였다. 반응이 종결된 mRNA를 제조업체의 지시에 따라서 RNeasy 맥시 키트 (퀴아젠 카탈로그 # 75162)를 사용하거나 또는 역상 고성능액체 크로마토그래피에 의해 정제하였다. 정제된 mRNA 샘플은 Fluorometer 장비를 이용하여 농도를 구하고, 농도와 반응부피를 곱하여 mRNA 총량을 산출하였다. 그 후, mRNA 시험관 내 전사 (IVT) 수율을 도출하기 위하여, 각각 서로 다른 캡 유사체를 이용하여 합성된 mRNA 총량을 투입한 L-DNA 함량으로 나누어 캡 유사체에 따른 IVT 수율값을 정량화 하였다. 구체적으로 말하면, IVT 수율값 100 이라 함은 1 ㎍ L-DNA로 100 ㎍ mRNA가 합성되었음을 의미한다. 이는 하기의 [수학식 1]로 산출될 수 있다. 그 후, 대표적인 3세대 캡유사체인 7mG(3' OMe)pppA(2' OMe)pG (Cleancap AG(3' OMe))에 의한 IVT 수율값 [수학식1]을 100%로 지정하였으며, 각 실시예 화합물에 의한 IVT 수율값[수학식1]을 7mG(3' OMe)pppA(2' OMe)pG의 수율값[수학식1]으로 나눈 후 100을 곱해주어 7mG(3' OMe)pppA(2' OMe)pG 대비 실시예 15 또는 16의 화합물에 의한 IVT 수율을 백분율화 (%) 하였다 [수학식 2 참조].
[수학식 1]
IVT 수율값 = 합성된 mRNA 총량 / 투입된 L-DNA 양
[수학식 2]
IVT 수율 (%) = (각 실시예 화합물에 의한 IVT 수율값 [수학식 1] / 7mG(3' OMe)pppA(2' OMe)pG에 의한 IVT 수율값 [수학식 1]) x 100
각 실시예 및 7mG(3' OMe)pppA(2' OMe)pG 에 의한 IVT 수율값을 독립적으로 3회 반복 진행 하였으며, One-way ANOVA와 Tukey' s hoc tests를 통해 유의성을 검증하였다. 그 결과는 도 4 와 같다. 본 발명의 실시예 15번과 16번 화합물은 종래의 3세대 캡 유사체인 7mG(3' OMe)pppA(2' OMe)pG의 IVT 수율과 거의 동일한 수율로 합성됨을 확인하였다.
실험예 2: 헬라 세포에서의 루시페라제 mRNA의 번역
실시예 15, 실시예 16, 및 7mG(3' OMe)pppA(2' OMe)pG 각각의 IVT 반응에 의해 생성된 mRNA의 번역 활성은 헬라 세포주 (HeLa cell)에 해당 mRNA를 형질감염시켜 평가하였다. 형질감염 전 IVT 반응으로 합성된 모든 mRNA는 poly (A) tailing 공정을 수행 하였다. 구체적으로 설명하면, DNase 1를 첨가하여 mRNA 합성 반응이 종결된 IVT mRNA를 IVT mRNA:10x poly (A) 폴리머라제 반응 버퍼:10mM ATP 용액:poly (A) 폴리머라제 효소(4KU/ml):뉴클레아제-프리 워터 = 20:10:10:2:58 비율(부피/부피)로 혼합 후 37℃에서 30분 ~ 1시간 동안 반응 후 반응 종결을 위해 4℃에 인큐베이션 하였다. 반응이 종결된 mRNA를 제조업체의 지시에 따라서 RNeasy 맥시 키트 (퀴아젠 카탈로그 # 75162)를 사용하거나 또는 역상 고성능액체 크로마토그래피에 의해 정제하여 형진전환에 사용하였다. 헬라 세포를 5% CO2의 대기 하에 37 ℃에서 10% FBS, 1% 페니실린/스트렙토마이신으로 보충시킨 DMEM에서 배양하였다. 각 웰 당 1Х104개의 헬라 세포를 플레이팅한 후 다음날 세포들을 각 웰당 100 ng의 mRNA로 형질감염 시약(messengerMAX lipofectamine; 인비트로젠 카탈로그 # LMRNA003)을 사용하여 형질감염 시켰다: 형질감염 시약 제조업자의 권장 사항에 따라, 튜브 A에 복합배지(Opti-MEM; Life technologies) 5 μL에 형질감염 시약 0.3 μL을 희석하여 실온에서 10분 동안 인큐베이션하고, 튜브 B에는 Opti-MEM 10 μL에 제조된 mRNA 200 ng을 희석하여 준비하였다. 튜브 A와 튜브 B의 용액을 혼합한 후 실온에서 5분 동안 인큐베이션시켰다. 그 후, 인큐베이션된 혼합 용액을 사용하여 세포를 형질감염 시켰다. 형질감염 6, 12, 24 시간 후에 세포를 수거하여 제조업체의 권장 사항에 따라서 Renilla-GloTM Luciferase Assay 키트 (프로메가 카탈로그 #E2710)를 사용하여 루시페라제 활성을 측정하였다: 형질감염된 세포의 배지를 제거한 후 50㎕ 인산완충액 (PBS)을 투입하였다. 그 후, 50㎕의 Renilla-Glo™ Luciferase Assay 시약을 넣고 혼합하여 10분간 인큐베이션 후 Varioskan LUX Multimode Microplate Reader (써모피셔)를 이용하여 루시페라제 활성을 검출 하였다 (도 5). 모든 루시페라제 활성 측정 시험은 각각 독립적으로 3 반복 진행 하였으며, One-way ANOVA와 Tukey's hoc tests를 통해 유의성을 검증하였다.
본 발명의 실시예 16의 화합물(16)로 캡핑된 mRNA는 형질감염 이후 6시간부터 24시간까지 종래의 7mG(3' OMe)pppA(2' OMe)pG로 캡핑된 mRNA에 보다 높은 루시퍼라제 활성을 보여주었다(도 5). 또한, 형질감염 후 24시간째 결과에서 16번 화합물로 캡핑된 mRNA에 의해 발현된 단백질 잔존율이 더 높음을 유추할 수 있다 (도 6).
도 5 및 도 6의 결과에 따르면, 본 발명의 일 구체예에 따른 메틸구아노신의 2' 혹은 3' 히드록실기의 비선택적 모노에스테르로의 변경은 종래의 캡유사체 구조에서는 기대하지 못했던 현저한 단백질 발현 효율을 보여 주었다. 이는 구아노신의 2' 혹은 3' 의 히드록실기 중 어느 하나를 선택적으로 변경하지 않고, 2' 혹은 3' 의 히드록실기 중 어느 하나를 비선택적으로, 즉 자발적으로 치환하는 반응을 도입하여, 모노에스터 형태로 제조하고, 그 모노에스테화물이 2' 혹은 3' 구조이성질체 간의 동적 평형을 유지하는 특성을 캡 유사체 화합물에 도입한 결과라고 보여진다.

Claims (15)

  1. 하기 화학식 1의 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1]
    Figure PCTKR2022013062-appb-img-000035
    여기서,
    n = 0, 1, 또는 2이고;
    R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이고, 단, R1 및 R2 중 적어도 하나는 C(=O)-R' 이며, 여기에서 R' 은 C1~C6알킬 또는 C1~C6알콕시이고;
    R3은 메톡시기이고;
    Z 및 Z' 는 각각 독립적으로 천연 질소 염기이다.
  2. 청구항 1에 있어서, 상기 화합물은 하기 화학식 1A의 구조를 갖는 화합물:
    [화학식 1A]
    Figure PCTKR2022013062-appb-img-000036
    여기서,
    n = 0, 1, 또는 2이고;
    X1, X2, X3, 및 X4은 각각 독립적으로 존재하지 않거나, 1가 양이온, 2가 양이온, 또는 이들의 조합으로서, 이 때 X1, X2, X3, X4 화학식 1A의 화합물이 전기적 중성이 되도록 선택되고;
    R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이고, 단, R1 및 R2 중 적어도 하나는 C(=O)-R' 이며, 여기에서 R' 은 C1~C6알킬 또는 C1~C6알콕시이고;
    R3은 메톡시기이고;
    Z 및 Z' 는 각각 독립적으로 천연 질소 염기이다.
  3. 청구항 2에 있어서, R' 은 C2~C6알킬 또는 C2~C6알콕시인 것인 화합물.
  4. 청구항 2에 있어서, 상기 1가 양이온은 Na, Li, NH4 + 및 K로 구성된 군에서 선택되고, 상기 2가 양이온은 Mg2+, Zn2+ 및 Ca2+로 구성된 군에서 선택되는 것인 화합물.
  5. 청구항 2에 있어서, Z, Z' 는 각각 독립적으로 구아닌, 아데닌, 시토신, 및 우라실로 이루어진 군으로부터 선택되는 것인 화합물.
  6. 청구항 1에 있어서, 하기 화학식의 화합물로 이루어진 군에서 선택된 화합물 또는 이의 약학적으로 허용 가능한 염:
    Figure PCTKR2022013062-appb-img-000037
    Figure PCTKR2022013062-appb-img-000038
    Figure PCTKR2022013062-appb-img-000039
    Figure PCTKR2022013062-appb-img-000040
    Figure PCTKR2022013062-appb-img-000041
    Figure PCTKR2022013062-appb-img-000042
    Figure PCTKR2022013062-appb-img-000043
    Figure PCTKR2022013062-appb-img-000044
    Figure PCTKR2022013062-appb-img-000045
    Figure PCTKR2022013062-appb-img-000046
    Figure PCTKR2022013062-appb-img-000047
    Figure PCTKR2022013062-appb-img-000048
  7. 하기 화학식 1a 및 화학식 1b의 화합물을 0.65±0.05 : 1의 몰 비로 포함하는 수성 조성물:
    [화학식 1a]
    Figure PCTKR2022013062-appb-img-000049
    [화학식 1b]
    Figure PCTKR2022013062-appb-img-000050
    여기에서, M3 중 각각의 M은 서로 독립적으로 존재하지 않거나, Na+, Li+, NH4 + 및 K+로 구성된 군에서 선택된 1가 양이온, 또는 Mg2+, Zn2+, 및 Ca2+로 구성된 군에서 선택된 2가 양이온으로서, 이 때 M3은 상기 화합물이 전기적 중성이 되도록 선택된다.
  8. 청구항 7에 있어서, 상기 M3 중 각각의 M은 모두 Na+ 인 것인 수성 조성물.
  9. 청구항 7에 있어서, 상기 수성 조성물의 pH는 1.0 내지 8.0 인 것인 수성 조성물.
  10. 청구항 1 내지 9 중 어느 한 항에 정의된 화합물을 포함하는, 캡 유사체.
  11. 청구항 10에 따른 캡 유사체로 5' 캡핑된 mRNA.
  12. 청구항 10에 따른 캡 유사체를 포함하는, 5' 캡핑된 mRNA 제조용 조성물 또는 키트.
  13. 청구항 10에 따른 캡 유사체로 5' 캡핑된 mRNA 및 약학적으로 허용되는 담체를 포함하는, 목적하는 펩티드 또는 단백질 발현을 위한 약학 조성물.
  14. 하기 화학식 2의 화합물 또는 그 염을 수상의 알칼리 조건에서 하기 화학식 3의 화합물과 반응시켜 하기 화학식 4의 화합물 또는 그의 염을 제조하는 단계; 및
    화학식 4의 화합물 또는 그의 염을 인 시츄 방식으로 pH 1.5 ~ 4.5 조건에서 화학식 5의 화합물과 반응시키는 단계를 포함하는,
    하기 화학식 6의 화합물 또는 그의 염의 제조방법:
    [화학식 2]
    Figure PCTKR2022013062-appb-img-000051
    [화학식 3]
    Figure PCTKR2022013062-appb-img-000052
    [화학식 4]
    Figure PCTKR2022013062-appb-img-000053
    [화학식 5]
    Figure PCTKR2022013062-appb-img-000054
    [화학식 6]
    Figure PCTKR2022013062-appb-img-000055
    상기 화학식에서, R은 C1~C6알킬 또는 C1~C6알콕시를 의미하며, R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R' 이며, 단, R1 및 R2 중 어느 하나는 H이며 나머지는 C(=O)-R이다.
  15. 화학식 6의 화합물 또는 그의 염을 이미다졸과 반응시켜 하기 화학식 7의 화합물 또는 그 염을 제조하는 단계; 및
    화학식 7의 화합물 또는 그의 염을 인 시츄 방식으로 염화아연 및 트리에틸암모늄 인산염과 반응시키는 단계를 포함하는,
    하기 화학식 8의 화합물 또는 그의 염의 제조방법:
    [화학식 6]
    Figure PCTKR2022013062-appb-img-000056
    [화학식 7]
    Figure PCTKR2022013062-appb-img-000057
    [화학식 8]
    Figure PCTKR2022013062-appb-img-000058
    상기 화학식에서, R은 C1~C6알킬 또는 C1~C6알콕시를 의미하며, R1 및 R2는 각각 독립적으로 H 또는 C(=O)-R이며, 단, R1 및 R2 중 어느 하나는 H이며 나머지는 C(=O)-R이다.
PCT/KR2022/013062 2021-08-31 2022-08-31 mRNA 캡 유사체와 및 이의 용도 WO2023033551A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3230030A CA3230030A1 (en) 2021-08-31 2022-08-31 Mrna cap analogue and use thereof
AU2022338639A AU2022338639A1 (en) 2021-08-31 2022-08-31 Mrna cap analogue and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210115942 2021-08-31
KR10-2021-0115942 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023033551A1 true WO2023033551A1 (ko) 2023-03-09

Family

ID=85411417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013062 WO2023033551A1 (ko) 2021-08-31 2022-08-31 mRNA 캡 유사체와 및 이의 용도

Country Status (4)

Country Link
KR (1) KR20230032999A (ko)
AU (1) AU2022338639A1 (ko)
CA (1) CA3230030A1 (ko)
WO (1) WO2023033551A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051696A1 (zh) * 2022-09-05 2024-03-14 广州市恒诺康医药科技有限公司 用于rna加帽的化合物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194759A1 (en) * 2002-03-25 2003-10-16 Edward Darzynkiewiz Synthesis and use of anti-reverse mRBA cap analogues
US20090324708A1 (en) * 2006-11-06 2009-12-31 Universidad Nacional De Quilmes Compound having inhibitory activity on a rho-gtpase cell protein, a process for obtaining the same, pharmaceutical compositions comprising thereof and a method for the treatment of rho-gtpase cell protein-mediated condition
KR20180050409A (ko) * 2015-09-21 2018-05-14 트리링크 바이오테크놀로지즈, 인크. 5'-캡핑된 rna를 합성하기 위한 조성물 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194759A1 (en) * 2002-03-25 2003-10-16 Edward Darzynkiewiz Synthesis and use of anti-reverse mRBA cap analogues
US7074596B2 (en) 2002-03-25 2006-07-11 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Synthesis and use of anti-reverse mRNA cap analogues
US20090324708A1 (en) * 2006-11-06 2009-12-31 Universidad Nacional De Quilmes Compound having inhibitory activity on a rho-gtpase cell protein, a process for obtaining the same, pharmaceutical compositions comprising thereof and a method for the treatment of rho-gtpase cell protein-mediated condition
KR20180050409A (ko) * 2015-09-21 2018-05-14 트리링크 바이오테크놀로지즈, 인크. 5'-캡핑된 rna를 합성하기 위한 조성물 및 방법
US10913768B2 (en) 2015-09-21 2021-02-09 Trilink Biotechnologies, Inc. Compositions and methods for synthesizing 5′-capped RNAs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KORE ANILKUMAR, BUGARIN ALEJANDRO, SHANMUGASUNDARAM MUTHIAN: "Design and facile synthesis of new dinucleotide cap analog containing both 2` and 3'-OH modification on m7guanosine moiety", NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, TAYLOR & FRANCIS, US, vol. 34, no. 9, 1 September 2015 (2015-09-01), US , pages 611 - 619, XP009543953, ISSN: 1525-7770, DOI: 10.1080/15257770.2015.1041643 *
TRAPERO ANA; PACITTO ANGELA; CHAN DANIEL SHIU-HIN; ABELL CHRIS; BLUNDELL TOM L.; ASCHER DAVID B.; COYNE ANTHONY G.: "Covalent inactivation of Mycobacterium thermoresistibile inosine-5′-monophosphate dehydrogenase (IMPDH)", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 30, no. 2, 9 November 2019 (2019-11-09), Amsterdam NL , XP086033939, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2019.126792 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051696A1 (zh) * 2022-09-05 2024-03-14 广州市恒诺康医药科技有限公司 用于rna加帽的化合物及其应用

Also Published As

Publication number Publication date
CA3230030A1 (en) 2023-03-09
KR20230032999A (ko) 2023-03-07
AU2022338639A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2022086140A1 (ko) 5'-캡핑된 rna 합성용 올리고뉴클레오티드
Mansuri et al. Preparation of 1-(2, 3-dideoxy-. beta.-D-glycero-pent-2-enofuranosyl) thymine (d4T) and 2', 3'-dideoxyadenosine (ddA): general methods for the synthesis of 2', 3'-olefinic and 2', 3'-dideoxy nucleoside analogs active against HIV
EP0329348B1 (en) 2',3'-Dideoxy-2',2'-difluoronucleosides
WO2021040356A1 (en) C-nucleosides, c-nucleotides and their analogs, equivalents and prodrugs thereof for ectonucleotidase inhibition
WO2018182341A1 (ko) 피롤로벤조디아제핀 이량체 전구체 및 이의 리간드-링커 접합체 화합물
WO2014107024A1 (ko) 항체-링커-약물 결합체, 그의 제조방법 및 그를 포함하는 항암제 조성물
WO2023033551A1 (ko) mRNA 캡 유사체와 및 이의 용도
EP1163250A2 (en) Improved synthesis of [2.2.1]bicyclo nucleosides
IL99451A (en) Method for linking nucleosides by the siloxane bridge in the presence of a spatially inhibited base catalyst
WO2010072831A1 (en) Sulfurizing reagents and their use for oligonucleotides synthesis
WO2018080127A1 (ko) 아데노신 유도체를 포함하는 비알콜성 지방간염, 간섬유증 및 간경변증 예방 및 치료용 약학적 조성물
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
KR100329525B1 (ko) 2',3'-디데히드로-3'-데옥시티미딘(d4t)의대단위제조를위한5-메틸우리딘공정
WO2020149553A1 (ko) 아릴 또는 헤테로아릴 유도체, 및 이를 유효성분으로 포함하는 키나아제 관련 질환 치료용 약학적 조성물
Wagner et al. A simple procedure for the preparation of protected 2′-O-methyl or 2′-O-ethyl ribonucleoside-3′-O-phosphoramidites
WO2022035303A1 (en) Novel dioxoloisoquinolinone derivatives and use thereof
WO2020141923A9 (ko) 안전성이 향상된 피롤로벤조디아제핀 이량체 화합물 및 이의 용도
WO2023191342A1 (ko) mRNA 캡 유사체 및 이의 용도
WO2019031804A9 (ko) 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터
WO2017164616A1 (en) Methods for preparing 3'-amino-2',3'-dideoxyguanosine by using nucleoside phosphorylases derived from bacillus and adenosine deaminase derived from lactococcus
WO2021201352A1 (ko) 신규한 벤지미다졸 유도체, 이의 제조방법 및 이의 항암제 용도
Pochet et al. Enzymatic synthesis of 1-(2-deoxy-β-D-ribofuranosyl) imidazole-4-carboxamide, a simplified DNA building block
WO2018079951A2 (ko) 새로운 레졸신아렌 기반의 양친매성 화합물 및 이의 활용
WO2013015661A2 (en) Novel prodrugs of 5-(2,4-dihydroxy-5-isopropylphenyl)-n-ethyl-4-(5-methyl1-1,2,4-oxadiazol-3-yl)isoxazole-3-carboxamide
WO2021246846A1 (ko) 신규한 몰포리노 올리고뉴클레오티드 유도체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022338639

Country of ref document: AU

Ref document number: AU2022338639

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022338639

Country of ref document: AU

Date of ref document: 20220831

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3230030

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024003914

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2024102878

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2022865053

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022865053

Country of ref document: EP

Effective date: 20240402