WO2023033180A1 - R-enantiomer of azole derivative, agricultural or horticultural chemical agent, and industrial material protective agent - Google Patents

R-enantiomer of azole derivative, agricultural or horticultural chemical agent, and industrial material protective agent Download PDF

Info

Publication number
WO2023033180A1
WO2023033180A1 PCT/JP2022/033347 JP2022033347W WO2023033180A1 WO 2023033180 A1 WO2023033180 A1 WO 2023033180A1 JP 2022033347 W JP2022033347 W JP 2022033347W WO 2023033180 A1 WO2023033180 A1 WO 2023033180A1
Authority
WO
WIPO (PCT)
Prior art keywords
enantiomer
azole derivative
inhibitors
agricultural
group
Prior art date
Application number
PCT/JP2022/033347
Other languages
French (fr)
Japanese (ja)
Inventor
隆介 萩原
竜行 越山
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2023033180A1 publication Critical patent/WO2023033180A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/50Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids the nitrogen atom being doubly bound to the carbon skeleton
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to the R-enantiomer of an azole derivative or a mixture of the R-enantiomer and the S-enantiomer.
  • an agricultural and horticultural fungicide and an industrial material protective agent containing the azole derivative and an active ingredient other than the azole derivative as active ingredients
  • a plant disease control agent containing the azole derivative or the agricultural and horticultural fungicide as an active ingredient containing the azole derivative or the agricultural and horticultural fungicide as an active ingredient.
  • a plant disease control method using the same and a plant disease control product containing a plurality of active ingredients separately.
  • Azole-based fungicides are known as agricultural and horticultural agents that exhibit high control effects.
  • the present invention has been made in view of the above problems, and its object is to provide a compound that meets the above demands.
  • the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative represented by the following general formula (I) exhibits excellent activity.
  • the present inventors have found that the present invention has been completed.
  • the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one aspect of the present invention is the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the compound represented by the following general formula (I):
  • * represents a chiral center
  • R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group;
  • R 1 and R 2 may be combined to form a ring
  • Z is a phenyl group or a 5- or 6-membered heteroaromatic ring containing 1, 2, 3 or 4 heteroatoms selected from O, N and S
  • R 3 is halogen, hydroxy, amino, nit
  • the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one aspect of the present invention has an excellent bactericidal action against many fungi that cause plant diseases. Therefore, a drug containing as an active ingredient the R-enantiomer of the azole derivative of the present invention or a mixture of the R-enantiomer and the S-enantiomer exhibits a high control effect against a wide range of plant diseases.
  • FIG. 2 is an ORTEP diagram of the R-enantiomer of azole derivative (I-7) by X-ray crystallography.
  • R-enantiomer of azole derivative or mixture of R-enantiomer and S-enantiomer The R-enantiomer of the azole derivative of this embodiment or the mixture of the R-enantiomer and the S-enantiomer is the R-enantiomer or R It is a mixture of the -enantiomer and the S-enantiomer. Further, in the following description, the mixture of the R-enantiomer and S-enantiomer of the azole derivative (I) of this embodiment may be simply referred to as the mixed enantiomer of the azole derivative (I). In general formula (I), * represents a chiral center.
  • the azole derivative (I) of this embodiment contains a carbon atom serving as a chiral center, it can exist in the form of an optically pure enantiomer or a mixture of the R-enantiomer and the S-enantiomer (mixed enantiomers). is.
  • Mixed enantiomers may contain both the R-enantiomer and the S-enantiomer. The mixing ratio of the R-enantiomer and the S-enantiomer can be appropriately adjusted so that the desired activity can be exhibited.
  • the mixed enantiomers are preferably racemic (ie, the molar ratio of the R-enantiomer to the S-enantiomer in the mixed enantiomers is 1:1) or an R-enantiomer-rich mixture.
  • R-enantiomer rich is meant that the amount of the R-enantiomer in the mixed enantiomers is greater than the S-enantiomer.
  • the content ratio (molar ratio) of the R-enantiomer is greater than 1, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more. , 7 or more, 8 or more, 9 or more, or 10 or more.
  • R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group .
  • C 1 -C 6 -Alkyl radicals are straight-chain or branched alkyl radicals having 1 to 6 carbon atoms.
  • Linear or branched alkyl groups having 1 to 6 carbon atoms are, for example, methyl group, ethyl group, 1-methylethyl group, 1,1-dimethylethyl group, propyl group and 1-methylpropyl group.
  • 2-methylpropyl group 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 3,3 -dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, pentyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl and 4-methylpentyl groups.
  • C 3 -C 8 -Cycloalkyl groups are cyclic alkyl groups having 3 to 8 carbon atoms and include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl groups. .
  • C 3 -C 8 -Cycloalkyl-C 1 -C 4 -Alkyl radicals are cyclic cycloalkyl radicals having 3 to 8 carbon atoms to linear or branched alkyl radicals having 1 to 4 carbon atoms. Indicates that they are bound. For example, cyclopropylmethyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-cyclopropylethyl group, 1-cyclopropylethyl group, 2-cyclohexylethyl group, 3-cyclopropylpropyl group, 2-cyclo Propylpropyl and 4-cyclopropylbutyl groups are included.
  • R 1 and R 2 may be bonded together to form a ring together with the carbon atom to which R 1 and R 2 are bonded.
  • Z is a phenyl group or a 5- or 6-membered aromatic heterocyclic ring containing 1, 2, 3 or 4 heteroatoms.
  • heteroatoms are atoms selected from O, N and S.
  • the heteroaromatic ring contains multiple heteroatoms, the multiple heteroatoms may be the same atoms or different atoms.
  • Z is preferably a phenyl group or a 5- or 6-membered aromatic heterocyclic ring containing 1 to 3 heteroatoms selected from N and S, more preferably a phenyl group.
  • Examples of 5- or 6-membered aromatic heterocyclic groups include furyl, pyrazolyl, thienyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, and isothiazolyl.
  • n R 3 are bound to Z at arbitrary positions. where n is 0, 1, 2, 3, 4 or 5.
  • R 3 is halogen, hydroxy, amino, nitrile, nitro, pentafluorosulfanyl, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy or It is a C 1 -C 4 -haloalkoxy group.
  • R3 may be the same or different.
  • C 1 -C 4 -Alkyl radicals are straight-chain or branched alkyl radicals having 1 to 4 carbon atoms; mentioned.
  • a C 1 -C 4 -haloalkyl group is a group in which one or more halogen atoms are substituted at the substitutable positions of the aforementioned C 1 -C 4 -alkyl groups. When two or more halogen groups are substituted, the halogen groups may be the same or different.
  • Halogen groups include chlorine, bromine, iodine or fluorine groups.
  • C 1 -C 4 -Haloalkyl groups include, for example, chloromethyl, 2-chloroethyl, 2,3-dichloropropyl, bromomethyl, chlorodifluoromethyl, trifluoromethyl and 3,3,3-tri A fluoropropyl group is mentioned.
  • C 1 -C 4 -Alkoxy is a straight-chain or branched alkoxy group having 1 to 4 carbon atoms, for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy and 1,1-dimethylethoxy groups are included.
  • a C 1 -C 4 -haloalkoxy group is a group in which the aforementioned C 1 -C 4 -alkoxy group is substituted with one or more halogen groups at substitutable positions. When two or more halogen groups are substituted, the halogen groups may be the same or different.
  • the bonding position of R 3 is not limited, but is preferably 2-, 3- or 4-position relative to the ether bond of general formula (I), more preferably 4-position.
  • n 0, 1, 2, 3, 4 or 5 when at least one of R 1 and R 2 is not hydrogen, n is 1, 2, 3 when both R 1 and R 2 are hydrogen , 4 or 5.
  • R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group, C 3 -C 8 -cycloalkyl-C 1 -C 4 -alkyl groups or R-enantiomers or mixtures of azole derivatives (I) in which R 1 and R 2 are joined to form a cycloalkyl group enantiomers.
  • a further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I) includes the R-enantiomer or mixed enantiomer of azole derivative (I) in which m is 1.
  • a further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I) includes the R-enantiomer or mixed enantiomer of azole derivative (I) wherein Z is a phenyl group.
  • R 1 and R 2 are each independently hydrogen or a C 1 -C 6 -alkyl group, or R 1 and R 2 are combined to form a cycloalkyl group, the R-enantiomer or mixed enantiomers of the azole derivative (I).
  • R 1 and R 2 are each independently hydrogen or a C 1 -C 6 -alkyl group, or R 1 and R 2 are combined to form a cycloalkyl group, and the R-enantiomer or mixed enantiomers of the azole derivative (I) in which m is 1 can be mentioned.
  • R 1 and R 2 are each independently hydrogen or a C 1 -C 6 -alkyl group, or R 1 and R 2 is bonded to form a cycloalkyl group, m is 1, and R 3 is a halogen, a C 1 -C 4 -haloalkyl group or a C 1 -C 4 -haloalkoxy group.
  • R-enantiomers or mixed enantiomers are included.
  • the carbon atom marked with * is chiral from the viewpoint of superior antibacterial activity against fungi that cause plant disease compared to the racemate. Centered R-enantiomers are included.
  • Particularly preferred azole derivatives (I) are listed in Table 1 below.
  • R 1 , R 2 and m in Table 1 below correspond to R 1 , R 2 and m in Formula (I) above, respectively, and Z—(R 3 ) n in Table 1 is Z in Formula (I) above. and (R 3 ) n .
  • the azole derivatives in Table 1 below may be R-enantiomers or mixtures of R-enantiomers and S-enantiomers.
  • the compound represented by number I-17 forms a cyclopropane ring with R 1 , R 2 and the carbon atoms to which R 1 and R 2 are bonded.
  • Agriculturally or industrially acceptable salts of the R-enantiomer or mixed enantiomers of the azole derivative (I) are, in particular, those of cations and anions that do not adversely affect the action of the R-enantiomer or mixed enantiomers of the azole derivative (I). It includes salts or acid addition salts of these acids. Suitable cations are in particular ions of alkali metals (preferably sodium and potassium), alkaline earth metals (preferably calcium, magnesium and barium), transition metals (preferably manganese, copper, zinc and iron).
  • Suitable cations are also ammonium ions (preferably diisopropylammonium , tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium), and also phosphonium ions, sulfonium ions (preferably tri(C 1 -C 4 -alkyl)sulfonium) and sulfoxonium ions (preferably tri(C 1 —C 4 -alkyl)sulfoxonium).
  • ammonium ions preferably diisopropylammonium , tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium
  • phosphonium ions preferably tri(C 1 -C 4 -alkyl)sulfonium
  • sulfonium ions preferably tri(C 1 -C 4 -alkyl)sulfonium
  • sulfoxonium ions preferably tri(C 1 —C 4 -
  • Anions of useful acid addition salts are mainly chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, bicarbonate ions, carbonate, sulfonate, aromatic sulfonate, hexafluorosilicate, hexafluorophosphate, benzoate and anions of C 1 -C 4 -alkanoic acids.
  • Anions of useful acid addition salts are preferably formate, acetate, propionate and butyrate.
  • Some examples of agriculturally or industrially acceptable salts of azole derivative (I) are shown in Table 2 below.
  • R 1 , R 2 and m in Table 2 below correspond to R 1 , R 2 and m in Formula (I) above, respectively, and Z—(R 3 ) n in Table 2 is Z in Formula (I) above. and (R 3 ) n .
  • the agriculturally or industrially acceptable salt of the azole derivative (I) in Table 2 below may also be an agriculturally or industrially acceptable salt of the R-enantiomer. It can also be an agriculturally or industrially acceptable salt of a mixture of
  • Azole derivative (I) can be produced by any of the following methods. Note that the azole derivative produced by each production method described below is a racemate.
  • R 1 , R 2 , R 3 , Z, m and n in the scheme below correspond to R 1 , R 2 , R 3 , Z, m and n in the general formula (I) above, respectively.
  • a compound represented by formula (x) (where x is a number) is simply referred to as compound (x).
  • reagents, bases, solvents, etc., and various conditions such as temperature to be subjected to the reaction are within the range that can be appropriately set by those skilled in the art based on common general technical knowledge. is.
  • Azole derivative production method 1 When R 1 and R 2 are the same group other than hydrogen, the azole derivative (I) can be produced from compounds obtained by known techniques according to Synthesis Scheme 1 below.
  • Step 1 Compound (2) is obtained by alkylating the ketone ⁇ -position of compound (1).
  • Alkylation may be carried out by a reaction using an alkylating reagent such as alkyl iodide.
  • an alkylating reagent such as alkyl iodide.
  • One example is a method of using an alkyl iodide as an alkylating reagent, sodium hydride as a base, and N,N-dimethylformamide as a solvent, and carrying out the reaction at room temperature, but is not limited thereto.
  • Step 2 Compound (3) is obtained by replacing halogen X of compound (2) with a phenol substituted or unsubstituted with one or more R 3 or an aromatic heterocycle having a hydroxy group.
  • Substitution with an aromatic heterocyclic ring having a phenol or hydroxy group may react differently depending on the type of X.
  • X is F or Cl
  • substitution in S N Ar reactions is possible.
  • One example is a method in which X is F, potassium carbonate is used as a base, N,N-dimethylformamide is used as a solvent, and the reaction is carried out at 120° C., but the method is not limited thereto.
  • Ullmann condensation reaction is not limited to a reaction at a high temperature (eg, 195° C.), and a ligand may be used and the reaction may be performed under a relatively low temperature (eg, 135° C.) heating condition.
  • copper (I) iodide as a copper catalyst
  • tris(2,4-pentanedionato)iron (III) as a ligand
  • potassium carbonate as a base
  • N,N-dimethyl as a solvent
  • formamide is used and the reaction is performed under heating conditions of 135° C. in an oil bath.
  • Step 3 Compound (3) is converted to oxirane by Corey-Chaykovsky reaction, followed by azole conversion to obtain azole derivative (I).
  • Oxiration and azole formation may be carried out stepwise as separate reactions, but in the present embodiment they are carried out in one pot.
  • the number of steps can be reduced.
  • the target azole derivative (I) is obtained by reacting compound (3) in the presence of 1,2,4-triazole or its alkali metal salt and sulfur ylide in a solvent.
  • compound (3) and 1,2,4-triazole or an alkali metal salt thereof are mixed in a solvent.
  • the intermediate oxirane produced in the reaction system is sequentially azoleized to obtain the desired azole derivative (I).
  • solvents examples include polar solvents having an amide bond such as N-methylpyrrolidone, N,N-dimethylacetamide and N,N-dimethylformamide, mixed solvents of the polar solvents and alcohol, or dimethylsulfoxide. Moreover, tert-butanol can be mentioned as the alcohol in the mixed solvent.
  • sulfur ylides include sulfonium methylides such as dimethylsulfonium methylide and sulfoxonium methylides such as dimethylsulfoxonium methylide.
  • the sulfonium methylides or sulfoxonium methylides used are sulfonium salts (e.g., trimethylsulfonium iodide and trimethylsulfonium bromide) or sulfoxonium salts (e.g., trimethylsulfoxonium iodide and trimethylsulfoxonium iodide) in solvents. It can be produced by reacting a ylide reagent such as nium bromide (TMSOB) with a base.
  • TMSOB nium bromide
  • bases examples include metal hydrides such as sodium hydride, alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide and potassium tert-butoxide. Alkali metal salts of 1,2,4-triazoles may also be used.
  • reaction (3) and 1,2,4-triazole sodium salt are mixed in N-methylpyrrolidone at 80° C.
  • a method in which TMSOB and sodium tert-butoxide as a base are added in portions may be mentioned, but is not limited thereto.
  • TMSI trimethylsulfonium iodide
  • sodium hydride sodium hydride
  • dimethylsulfoxide as the solvent.
  • a method of reacting with Further, in the subsequent azolization, a method of reacting at 80° C. using 1,2,4-triazole, diazabicycloundecene (DBU) as a base, and dimethylsulfoxide as a solvent can be mentioned.
  • Method 1′ for producing an azole derivative When X is Cl, I or Br, instead of steps 2 and 3, the azole derivative (I) can be obtained as shown in Synthetic Scheme 1' below. Specifically, the azole derivative (I) can be obtained by introducing an azole into the compound (2) to obtain the compound (4), and then synthesizing an ether skeleton by Ullmann condensation reaction after the introduction of the azole. .
  • Step 2' Compound (4) is obtained by introducing an azole into compound (2). Azolation of compound (2) may be carried out in the same manner as in step 3 above.
  • One example is the one-pot reaction method described in step 3 above.
  • Step 3′ Synthesizing an ether skeleton from compound (4) by Ullmann condensation reaction using an aromatic heterocycle having a phenol or hydroxy group substituted with one or more R 3 or unsubstituted, Azole derivative (I) is obtained.
  • the Ullmann condensation reaction here is not limited to a reaction at a high temperature (eg, 195° C.), and a ligand may be used to react at a relatively low temperature (eg, 135° C.).
  • a ligand may be used to react at a relatively low temperature (eg, 135° C.).
  • copper (I) iodide as a copper catalyst
  • tris(2,4-pentanedionato)iron (III) as a ligand
  • potassium carbonate as a base
  • N,N-dimethylformamide as a solvent
  • Step 1 by Ullmann reaction or S N Ar reaction, the halogen X of compound (1) is substituted with a substituted or unsubstituted phenol or an aromatic heterocyclic ring having a hydroxy group, thereby converting compound (1) to compound (5).
  • the S N Ar reaction under relatively mild conditions is suitable.
  • X is F
  • potassium carbonate is used as a base
  • N,N-dimethylformamide is used as a solvent
  • the reaction is carried out at 120° C., but the method is not limited thereto.
  • Step 2 Compound (6) is obtained by carbonizing compound (5) in the form of ⁇ -ketoester. This protects one of the substitution positions and also activates the methylene for nucleophilic substitution reactions.
  • Examples of the method for increasing carbon include a method of reacting a dialkyl carbonate represented by ROCOOR (R is an alkyl group, and two Rs may be the same or different) as a reaction reagent and solvent by heating under reflux.
  • ROCOOR is an alkyl group, and two Rs may be the same or different
  • a disubstituted compound may also be produced, making it difficult to selectively synthesize a monosubstituted compound.
  • One example is a method of using dimethyl carbonate as a reaction reagent and solvent, sodium hydride as a base, adding a small amount of methanol, and reacting by heating under reflux, but the method is not limited to this.
  • Step 3 Compound (7) is obtained by alkylating the active methine of compound (6).
  • Alkylation may be carried out by a reaction using an alkylating reagent such as alkyl iodide.
  • an alkylating reagent such as alkyl iodide.
  • One example is a method of using isopropyl iodide as an alkylating reagent, sodium hydride as a base, and N,N-dimethylformamide as a solvent, and performing the reaction at 80° C., but is not limited thereto.
  • Step 4 Compound (8) is obtained by hydrolyzing and decarboxylating the ester of compound (7).
  • An example is a method of using a 30% aqueous sodium hydroxide solution as a base and tetrahydrofuran as a solvent, and the reaction is carried out by heating under reflux, but the method is not limited to this.
  • Step 5 An olefin compound (9) is obtained from a ketone compound (8) by Wittig reaction.
  • steps 2, 3 and 4 may be omitted and compound (5) may be directly olefinized.
  • Methyltriphenylphosphonium bromide etc. are mentioned as an ylide reagent used as phosphorus ylide.
  • a more specific example is a method of using methyltriphenylphosphonium bromide as the ylide reagent, potassium tert-butoxide as the base, and tetrahydrofuran as the solvent, and carrying out the reaction at room temperature, but is not limited thereto.
  • Step 6 The compound (9) is oxidized in the presence of a catalytic amount of osmium tetroxide and a reoxidant to synthesize the vic-diol compound (10).
  • a catalytic amount of osmium tetroxide is oxidized in the presence of a catalytic amount of osmium tetroxide and a reoxidant to synthesize the vic-diol compound (10).
  • One example is a method of using a catalytic amount of osmium tetroxide, using N-methylmorpholine oxide as a reoxidizing agent, and a mixture of water and acetone as a solvent, and carrying out the reaction at room temperature, but is limited to this. isn't it.
  • Azole derivative (I) may be obtained by oxiranating compound (9).
  • Step 7 A compound (11) is obtained by introducing a sulfonyl group as a leaving group into the primary hydroxy group of the compound (10).
  • a substituted sulfonyl chloride represented by R 4 SO 2 Cl is used to introduce a leaving group.
  • R 4 represents an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydrogen atom, a phenyl group or a naphthyl group.
  • R 4 is preferably a 4-methylphenyl group.
  • One example is a method of using p-toluenesulfonyl chloride as a leaving group-introducing reagent, pyridine as a base, and chloroform as a solvent, and carrying out the reaction at 0° C., but is not limited thereto.
  • Azole derivative (I) is obtained by azoleizing compound (11) using an alkali metal salt of 1,2,4-triazole.
  • One example is a method of using 1,2,4-triazole sodium salt as an azole-forming reagent and N-methylpyrrolidone as a solvent, and reacting at 120° C., but the method is not limited to this.
  • the ketone ⁇ -position of compound (8) may be alkylated to introduce R 1 different from R 2 .
  • Alkylation may be carried out by a reaction using an alkylating reagent such as alkyl iodide.
  • an alkylating reagent such as alkyl iodide.
  • One example is a method of using an alkyl iodide as an alkylating reagent, sodium hydride as a base, and N,N-dimethylformamide as a solvent, and carrying out the reaction at room temperature, but is not limited thereto.
  • azole derivative (I) can be obtained as shown in Synthesis Scheme 2' below. Specifically, the azole derivative (I) can be obtained by finally substituting the halogen X of the compound (24) with a substituted or unsubstituted phenol or an aromatic heterocycle having a hydroxy group by Ullmann condensation reaction. can. (Synthetic scheme 2')
  • Step 1 Compound (12) is obtained by introducing methylene into the ketone ⁇ -position of compound (1).
  • the method for introducing methylene can be carried out, for example, by referring to the method described in Non-Patent Document: Org. Syn. Coll., vol.7 (1990) p332.
  • One example is, but not limited to, a method of reacting paraformaldehyde and N-methylanilinium trifluoroacetate in tetrahydrofuran by heating under reflux.
  • Step 2 The exomethylene at the ketone ⁇ -position of compound (12) is reacted with a sulfur ylide in the Corey-Chaycovsky reaction to introduce a cyclopropane ring to obtain compound (13). It is generally believed that Michael addition occurs when a sulfoxonium ylide is used, but oxiration occurs when a sulfonium ylide is used. Therefore, it is preferable to use a sulfoxonium salt as the ylide reagent.
  • One example is a method of using trimethylsulfoxonium iodide as the ylide reagent, using sodium hydride as the base and dimethylsulfoxide as the solvent, and performing the reaction at room temperature, but is not limited thereto.
  • Step 3 Compound (14) is obtained by substituting halogen X of compound (13) with a substituted or unsubstituted phenol or an aromatic heterocycle having a hydroxy group. Specifically, it is the same as the method for synthesizing compound (3) in step 2 of Synthesis Scheme 1 described above.
  • Step 4 Compound (14) is converted to oxirane by Corey-Chaykovsky reaction, followed by azole conversion to obtain azole derivative (I). Specifically, it is the same as the method for synthesizing the azole derivative (I) in step 3 of Synthesis Scheme 1 described above.
  • Step 1 Compound (2) is obtained by alkylating the ketone ⁇ -position of compound (1). Specifically, it is the same as the method for synthesizing compound (2) in step 1 of Synthetic Scheme 1 described above.
  • Step 2 Compound (15) is synthesized by S N Ar reaction between compound (2) and benzyl alcohol having a substituent R.
  • X is preferably F, which has high reactivity.
  • An example is, but not limited to, a method in which X is F, potassium tert-butoxide is used as a base, and N,N-dimethylformamide is used as a solvent, and the reaction is carried out at room temperature.
  • R includes, but is not limited to, hydrogen, halogen and methoxy group.
  • Step 3 Compound (16) is synthesized by converting compound (15) into oxirane by the Corey-Chaykovsky reaction, followed by azole conversion. Specifically, it is the same as the method for synthesizing the azole derivative (I) in step 3 of Synthesis Scheme 1 described above.
  • Step 4 Compound (17) is synthesized by catalytically reducing compound (16) in a hydrogen atmosphere using a palladium-based catalyst.
  • a palladium-based catalyst is a method of using palladium carbon as a catalyst and ethanol as a solvent in a hydrogen atmosphere at room temperature, but the method is not limited to this.
  • Azole derivative (I) is synthesized by reacting compound (17) as a nucleophilic agent with a halogen-containing heterocycle.
  • a halogen-containing heterocycle Preferably the S N Ar reaction is used.
  • the halogen of the heterocycle is preferably F or Cl, more preferably F.
  • One example is a method of reacting at 60° C. using pyridine in which at least one hydrogen atom is substituted with a fluorine atom as the halogen-containing heterocyclic ring, cesium carbonate as the base, and N,N-dimethylformamide as the solvent. , but not limited to.
  • the R-enantiomer and S-enantiomer of azole derivative (I) can be produced by fractionating the racemate of azole derivative (I) using any of the methods shown below.
  • the fractionation methods described below are known, and reagents, bases, solvents, etc., and various conditions such as temperature used for fractionation are within the range that can be appropriately set by those skilled in the art based on common general technical knowledge. be.
  • a mixture of the R-enantiomer and S-enantiomer of azole derivative (I) can be produced by mixing the R-enantiomer and S-enantiomer fractionated by the above method at any mixing ratio.
  • the mixing ratio of the R-enantiomer and the S-enantiomer can be appropriately adjusted so that the desired activity can be exhibited.
  • An example of the mixing ratio conforms to the above explanation, so the explanation will not be repeated.
  • Plant disease control effect The agricultural and horticultural fungicide in the present embodiment exhibits a control effect against a wide range of plant diseases.
  • Examples of applicable diseases include the following.
  • the parentheses after each disease indicate the main pathogen causing the disease.
  • Soybean rust Phakopsora pachyrhizi, Phakopsora meibomiae
  • soybean brown spot Zymoseptoria glycines
  • soybean purpura Cercoora kikuchii
  • soybean brown spot Alternaria sp.
  • soybean anthracnose Collectotrichum truncatum, Colletotrichum glysines
  • soybean Cercocpora sojina Rhizoctonia solani, Rhizoctonia solani, Diaporthe phaseolorum, Phytophthora sojae, Fusarium avenaceum , Fusarium oxysporum), soybean wilt (Verticillium dahliae), soybean powdery mildew (Erysiphe glycines), soybean brown spot (Corynespora cassiicola), soybean brown spot (Myco
  • oilseed rape such as Fusarium virguliforme
  • Kidney bean anthracnose Coldletotrichum lindemuthianum
  • Phoma stem canker/stem canker in oilseed rape Leptosphaeria maculans, Leptosphaeria biglobosa
  • Light leaf spot Pyrenopeziza brassicae
  • clubroot of oilseed rape Plasmodiophora brassicae
  • Verticillium wilt in oilseed rape Verticillium longisporum
  • Blackspot of oilseed rape Alternaria spp.
  • rice blast Pyricularia oryzae
  • rice leaf blight Co chliobolus miyabeanus
  • rice bacterial leaf blight Xanthomonas oryzae pv.
  • turfgrass pink snow rot (Microdochium nivale), turfgrass snow rot brown sclerotia (Typhula incarnata), turfgrass snow rot black sclerotia (Typhula ishikariensis), turfgrass curvularia leaf blight (Curvularia sp.) , Binucleate Rhizoctonia, Gaeumannomyces sp., Phialophora sp., Ustilago maydis, Colletotrichum graminicola, Kabatiella zeae, Maize Gray Spot (Cercospora zeae-maydis), Corn Sooty Spot (Setosphaeria turcica), Maize Northern Spot (Bipolaris zeicola), Maize Spot (Physoderma maydis), Maize Rust (Puccinia spp.), Corn Leaf Blight Bipolaris maydis, Phyllosticta maydis, Fusarium
  • the agricultural and horticultural fungicide according to the present embodiment can also be suitably applied to diseases caused by pathogenic bacteria that are less sensitive to existing sterol biosynthesis inhibitors than wild-type.
  • the term "sterol biosynthesis inhibitor” is classified as “cell membrane sterol biosynthesis (G)" in the mechanism of action classification of fungicides (2021 edition) by FRAC (Fungicide Resistance Action Committee). It means a substance that has bactericidal activity by inhibiting sterol biosynthesis in the cell membrane of pathogenic filamentous fungi.
  • existing sterol biosynthesis inhibitors means known sterol biosynthesis inhibitors for which the presence of drug-resistant bacteria has been confirmed at the time of filing of the present application.
  • Such existing sterol biosynthesis inhibitors are preferably DMI fungicides (FRAC code: 3) which are inhibitors of demethylase (CYP51) at the C14 position in sterol biosynthesis, ⁇ 14 in sterol biosynthesis Amines (FRAC code: 5) that are inhibitors of reductase and ⁇ 8 ⁇ 7 -isomerase, and KRI fungicides that are inhibitors of 3-keto reductase in C4 demethylation of sterol biosynthesis. (FRAC code: 17), more preferably a DMI fungicide for which the development of resistant bacteria has been confirmed in a plurality of pathogenic bacteria. Specific examples of existing sterol biosynthesis inhibitors are described below.
  • a pathogen that is less sensitive to existing sterol biosynthesis inhibitors compared to wild-type refers to at least one existing sterol biosynthesis inhibitor compared to wild-type pathogens It refers to pathogens with low susceptibility.
  • pathogenic bacteria are at least selected from the group consisting of mutations in genes encoding target proteins that serve as sites of action of sterol biosynthesis inhibitors, overexpression of the target proteins, and development of drug efflux pumps in cell membranes.
  • One factor is pathogens that have acquired low sensitivity to existing inhibitors of sterol biosynthesis.
  • this embodiment is the same as the plant disease that exhibits a control effect by the agricultural and horticultural fungicide in , so the description thereof will not be repeated.
  • the agricultural and horticultural fungicide in this embodiment can be used for all plants, and examples of applicable plants include the following: rice, wheat, barley, rye, oat, triticale (triticale), corn. , sorghum (sorghum), sugarcane, turfgrass, bentgrass, bermudagrass, fescue and ryegrass, etc., legumes such as soybean, peanut, kidney bean, pea, adzuki bean and alfalfa, convolvulaceae such as sweet potato, hot pepper, Solanaceae such as bell peppers, tomatoes, eggplants, potatoes and tobacco; Polygonaceae such as buckwheat; Asteraceae such as sunflowers; Araliaceae such as ginseng; , Chenopodiaceae such as sugar beet, Malvaceae such as cotton, Rubiaceae such as coffee, Rubiaceae such as cacao, Theaceae such as tea, Cucurbitaceae such as watermelon, melon,
  • Examples of applicable plants also include wild plants, plant cultivars, plants and plant cultivars obtained by conventional biological breeding such as crossbreeding or protoplasmic fusion, and transgenic plants and plant cultivars obtained by genetic engineering. be able to.
  • Genetically modified plants and plant cultivars include, for example, herbicide-tolerant crops, pest-resistant crops incorporating an insecticidal protein-producing gene, disease-tolerant crops incorporating a disease-resistance inducer-producing gene, taste-enhancing crops, and yield-enhancing crops. Crops, storability-improved crops, yield-improved crops, and the like can be mentioned.
  • Genetically modified plant cultivars that have been approved in each country include those accumulated in the database of the International Agri-Bio Agency (ISAAA).
  • AgriSure, AgriSure 3000GT, AgriSure 3122 E-Z Refuge, AgriSure 3122 Refuge Renew AgriSure Artesian 3030A, AgriSure Artesian 3011A, AgriSure Duracade, AgriSure Duracade 5222 E-Z Refuge, AgriSure GT, AgriSure SCB/LL, AgriSure GT AgriSure Viptera 3110, AgriSure Viptera 3111, AgriSure Viptera 3220 E-Z Refuge, AgriSure Viptera 3220 Refuge Renew, BiteGard, Bollgard, Bollgard II, Bollgard II/Roundup Ready, Bollgard 3 XtendFlex Cotton, Bollgard Bound.
  • the agricultural and horticultural fungicide in the present embodiment may contain, as active ingredients, the R-enantiomer or mixed enantiomer of the azole derivative (I) and other active ingredients. Therefore, examples of agricultural and horticultural fungicides include (a) those prepared by including the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, and (b) azole derivative (I) A first preparative agent containing the R-enantiomer or mixed enantiomers of and, independently of this, a second preparative agent containing other active ingredients are mixed just before use. .
  • the form (a) will be referred to as a "formulation-incorporating agricultural and horticultural fungicide", and the form (b) will be referred to as a "tank mix type agricultural and horticultural fungicide”.
  • the agricultural and horticultural fungicide in this embodiment contains the R-enantiomer or mixed enantiomer of the azole derivative (I) and other active ingredients as active ingredients. Therefore, the objective is to provide an agricultural and horticultural fungicide capable of obtaining a synergistic effect between the azole derivative and other active ingredients, exhibiting a high control effect and reducing the dosage as compared with the case where each is used alone. can be done.
  • the agricultural and horticultural fungicide in this embodiment can contribute to Goal 2 "Sustainable agriculture” and Goal 15 "Protect greenery” of the Sustainable Development Goals (SDGs) led by the United Nations. It becomes possible.
  • the agricultural and horticultural fungicide of the present embodiment it is possible to contribute to efficiency improvement of agriculture and to turn agriculture into a growth industry.
  • (2-1) Formulation-incorporating agricultural and horticultural fungicide
  • the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) in the formulation-incorporating agricultural and horticultural fungicide is, for example, 0.1 to 95% by weight, It is preferably 0.5 to 90% by weight, more preferably 2 to 80% by weight.
  • the content of the R-enantiomer or the mixed enantiomer of the azole derivative (I) in the spray liquid when actually sprayed is not particularly limited as long as the desired activity can be exhibited.
  • the R-enantiomer or mixed enantiomer of the azole derivative (I) contained as an active ingredient in the formulation-incorporated agricultural and horticultural fungicide may be a single compound, or two or more compounds may be mixed. good.
  • all types of azole derivative (I) contained are R-enantiomers
  • the ratio between the R-enantiomer and the S-enantiomer finally contained in the formulation-incorporating agricultural and horticultural fungicide can be appropriately set. Since the mixing ratio conforms to the explanation so far, the explanation thereof will not be repeated.
  • a mixture of the R-enantiomer of the azole derivative (I) and other active ingredients and the S-enantiomer of the azole derivative (I) are incorporated into the formulation.
  • type agricultural and horticultural fungicides Such formulation-incorporating agricultural and horticultural fungicides are compared to a mixture of the R-enantiomer of the azole derivative (I) and other active ingredients, or the S-enantiomer of the azole derivative (I) alone. A high control effect can be obtained.
  • the content of other active ingredients in the formulation-incorporated agricultural and horticultural fungicide is, for example, 0.1 to 95% by weight, preferably 0.5 to 90% by weight, and 2 to 80% by weight. is more preferred.
  • the content of other active ingredients in the spray liquid when actually sprayed is not particularly limited as long as the desired effect can be obtained.
  • Formulation-incorporating agricultural and horticultural fungicides include, in addition to the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, solid carriers, liquid carriers (diluents), surfactants, or other Formulation auxiliaries may be included.
  • (2-2) Tank mix type agricultural and horticultural fungicide
  • the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) and the content of other active ingredients in the tank mix type agricultural and horticultural fungicide are It may be the same as each content in the built-in agricultural and horticultural fungicide.
  • the first preparation agent containing the R-enantiomer or the mixed enantiomer of the azole derivative (I) for preparing the tank-mix agricultural and horticultural fungicide is the formulation except that it does not contain other active ingredients. It can be in the same aspect as the built-in agricultural and horticultural fungicide.
  • the second preparation agent containing other active ingredients which is used for preparing the tank-mix type agricultural and horticultural fungicide, does not contain the R-enantiomer or mixed enantiomers of the azole derivative (I). Except for this, it can be the same aspect as the formulation-integrated agricultural and horticultural fungicide.
  • the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) in the first pharmaceutical preparation and the content of other active ingredients in the second pharmaceutical preparation are finally determined by the tank mix type agricultural and horticultural It is sufficient that the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) and the content of other active ingredients in the fungicide can be achieved.
  • the tank-mix type agricultural and horticultural fungicide contains, in addition to the R-enantiomer or mixed enantiomer of the azole derivative (I) and other active ingredients, a solid carrier, a liquid carrier (diluent), a surfactant, or other Formulation auxiliaries may be included.
  • the mixing ratio of the first preparation agent and the second preparation agent in the tank mix type agricultural and horticultural fungicide can be appropriately determined according to the composition and purpose of each preparation agent.
  • a first agent for preparation containing the R-enantiomer or mixed enantiomer of the azole derivative (I) and a second agent for preparation containing other active ingredients are prepared separately. and mixing them to prepare agricultural and horticultural fungicides. Therefore, plant disease control products containing separately the R-enantiomer or mixed enantiomers of azole derivative (I) and other active ingredients as combination preparations for mixed use in plant disease control are also of the present invention. included in the category.
  • Agricultural and horticultural agents are prepared by mixing the R-enantiomer or mixed enantiomer of the active ingredient azole derivative (I) and other active ingredients with carriers, surfactants and other formulation auxiliaries.
  • Carriers used as formulation adjuvants include solid carriers and liquid carriers.
  • Solid carriers are used as powder carriers, granular carriers, and the like.
  • Examples of solid carriers include clay, talc, diatomaceous earth, zeolite (zeolite), montmorillonite, bentonite, kaolinite, kaolin, pyrophyllite, pyrophyllite, acid clay, activated clay, attapulgite, attapulgus clay, limestone, calcite.
  • minerals such as marble, vermiculite, perlite, pumice, silica, silica sand, sericite and porcelain stone; synthetic organic substances such as urea; calcium carbonate, sodium carbonate, magnesium carbonate, sodium sulfate, ammonium sulfate, potassium chloride, slaked lime and salts such as baking soda; amorphous silica (white carbon, fumed silica, etc.) and synthetic inorganic substances such as titanium dioxide; , sawdust, wheat bran, soybean flour, powdered cellulose, starch, dextrin and sugars (lactose, sucrose, etc.); Gels (agar, etc.), various polymer carriers such as chlorinated polyethylene, chlorinated polypropylene, polyvinyl acetate, polyvinyl chloride, ethylene/vinyl acetate copolymers and urea/aldevide resins can be used.
  • synthetic organic substances such as urea
  • liquid carriers examples include aliphatic solvents such as paraffins (normal paraffin, isoparaffin, naphthene); aromatic solvents such as xylene, alkylbenzene, alkylnaphthalene and solvent naphtha; mixed solvents such as kerosene; machine oils such as aliphatic hydrocarbons; alcohols such as methanol, ethanol, isopropanol, butanol and cyclohexanol; polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, polyethylene glycol and polypropylene glycol Polyhydric alcohol derivatives such as propylene glycol ether; Ketones such as acetone, acetophenone, cyclohexanone, methylcyclohexanone and ⁇ -butyrolactone; Fatty acid methyl ester (coconut fatty acid methyl ester), ethylhexyl lactate
  • Surfactants used as formulation aids include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, fluorosurfactants and biosurfactants. etc.
  • nonionic surfactants include sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene resin acid esters, polyoxyethylene fatty acid diesters, polyoxyethylene alkyl Ether, polyoxyethylene alkylphenyl ether, polyoxyethylene dialkylphenyl ether, polyoxyethylene alkylphenyl ether formalin condensate, polyoxyethylene/polyoxypropylene block polymer, alkylpolyoxyethylene/polyoxypropylene block polymer ether, alkylphenyl Polyoxyethylene/polyoxypropylene block polymer ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, polyoxyethylene fatty acid bis
  • anionic surfactants include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene benzyl (or styryl) phenyl (or phenylphenyl) ether sulfates and polyoxyethylene/poly Sulfates such as oxypropylene block polymer sulfate; paraffin (alkane) sulfonate, ⁇ -olefin sulfonate, dialkyl sulfosuccinate, alkylbenzene sulfonate, mono- or dialkylnaphthalene sulfonate, naphthalene sulfonate/formalin condensate, alkyldiphenyl ether disulfonate, lignin sulfonate, sulfonates such as polyoxyethylene alkylphenyl ether sulfonates and
  • cationic surfactants include salts of amines such as alkylamines and alkylpentamethylpropylenediamine; salts of ammoniums such as nium and benzethonium (octylphenoxyethoxyethyldimethylbenzylammonium);
  • amphoteric surfactants include dialkyldiaminoethyl betaine, alkyldimethylbenzyl betaine, and lecithin (phosphatidylcholine, phosphatidylethanolamine, etc.).
  • silicone-based surfactants examples include trisiloxane ethoxylate.
  • fluorine surfactants include perfluoroalkylcarboxylates, perfluoroalkylsulfonates, and perfluoroalkyltrimethylammonium salts.
  • biosurfactants include sophorolipids, rhamnolipids, trehalose lipids, mannosylalditol lipids, cellobiose lipids, glucose lipids, oligosaccharide fatty acid esters, spiculesporic acid, corynomycolic acid, agaritic acid, surfactin, cerauethin, viscosine, licensin, Arthrofactin, Emulzan and Arasan and the like can be mentioned.
  • formulation adjuvants include inorganic salts (sodium, potassium, etc.) used as pH adjusters; water-soluble salts such as common salt; Vinyl polymers, acrylic polymers, polyvinyl alcohol, starch derivatives, water-soluble polymers (polysaccharides, etc.), alginic acid and salts thereof, etc.; metal stearates used as disintegrating dispersants, sodium tripolyphosphate, sodium hexametaphosphate, etc.; preservatives Benzoic acid and its salts, sorbic acid and its salts, propionic acid and its salts, p-hydroxybenzoic acid, methyl p-hydroxybenzoate, 1,2-benzthiazolin-3-one, etc.
  • inorganic salts sodium, potassium, etc.
  • water-soluble salts such as common salt
  • Vinyl polymers acrylic polymers, polyvinyl alcohol, starch derivatives, water-soluble polymers (polysaccharides, etc.), alginic acid and salts thereof, etc
  • agents used as agents; Sodium polyphosphate, sodium polyacrylate, sodium ligninsulfonate, sodium citrate, gluconic acid/sodium glucoheptanoate, ethylenediaminetetraacetic acid and its disodium salt or ammonium salt, etc.; pigments and dyes used as coloring agents etc.; fluorine-based defoaming agents, silicone-based defoaming agents, ethylene oxide/propylene oxide copolymers, etc. used as anti-foaming agents; phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants used as antioxidants Inhibitors, phosphoric acid-based antioxidants, etc.; salicylic acid-based UV absorbers, benzophenone-based UV absorbers, etc. used as UV absorbers; quicklime, magnesium oxide, etc. used as drying agents; agents and the like.
  • Some formulations are used as they are, and some are diluted with a diluent such as water to a predetermined concentration.
  • a diluent such as water
  • the concentration of the total amount of active ingredients is desirably in the range of 0.001 to 1.0%.
  • the total usage amount of the active ingredient which is a combination of the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, is 20 to 5000 g per 1 ha of agricultural and horticultural land such as fields, rice fields, orchards and greenhouses. , more preferably 50 to 2000 g. Since the concentrations and amounts used vary depending on the dosage form, time of use, method of use, place of use, target crops, etc., it is possible to increase or decrease without adhering to the above ranges.
  • active ingredients contained together with the R-enantiomer or mixed enantiomer of the azole derivative (I) include fungicides, insecticides, acaricides, nematicides, and plant growth regulators.
  • the known active ingredients included can be mentioned. Among these, known active ingredients contained in fungicides, insecticides, and plant growth regulators are preferred.
  • Active ingredients suitable for Bactericidal use include, for example, nucleic acid synthesis and metabolism inhibitors, bactericidal agents acting on the cytoskeleton and motor proteins, respiratory inhibitors, amino acid/protein synthesis inhibitor, signaling inhibitor, lipid biosynthesis or transport/cell membrane structure or function inhibitor, cell membrane sterol biosynthesis inhibitor, cell wall biosynthesis inhibitor, melanin biosynthesis inhibitor, host plant resistance inducer , multi-site fungicides and biopesticides/pesticides of biological origin with multiple mechanisms of action.
  • Nucleic acid synthesis and metabolism inhibitors include benalaxyl, benalaxyl M or chiralaxyl, furalaxyl, metalaxyl, metalaxyl M or mefenoxam, ofrace, oxadixyl, bupirimate, dimethylmol, ethylimol, hydroxyisoxazole, octylinone and oxolinic acid.
  • the nucleic acid synthesis metabolism inhibitor can be at least one selected from these.
  • Bactericides that act on the cytoskeleton and motor proteins include benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate, thiophanate-methyl, diethofencarb, ethaboxam, pencycuron, zoxamide, fluopicolide, fluopimomide, fenamacril, metrafenone, and pyriophenone.
  • the bactericidal agent that acts on the cytoskeleton and motor proteins can be at least one selected from these.
  • Respiratory inhibitors include diflumetrim, fenazaquin, tolfenpyrad, benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuran, fluveneteram, fluindapyr, fluopyram, flutolanil, fluxapyroxad, furametpyr, impylfluxam, isofetamide , isoflucipram, isopyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, pydiflumetofen, pyrapropoin, pyraziflumide, sedaxane, thifluzamide, azoxystrobin, cumoxystrobin, dimoxystrobin, enestrobin, enoxastrobin , famoxadone, fenamidone, phenaminestrobin, fluphenoxystrobin, fluoxastrobin, cresoxime methyl
  • Amino acid and protein biosynthesis inhibitors include cyprodinil, mepanipyrim, pyrimethanil, blasticidin S, kasugamycin, streptomycin, oxytetracycline, and the like, and can be at least one selected from these.
  • Signal transduction inhibitors include proquinazid, quinoxifene, fludioxonil, clozolinate, dimethaclone, fenpicronil, iprodione, procymidone, vinclozoline, and the like, and may be at least one selected from these.
  • Lipid biosynthesis or transport/cell membrane structure or function inhibitors include edifenphos (EDDP), iprobenfos (IBP), isoprothiolane, pyrazophos, biphenyl, chloroneb, dichlorane (CNA), etridiazole, quintozene (PCNB), technazene (TCNB) , tolclofos-methyl, iodocarb, propamocarb, prothiocarb, extract of Gosseikajeupte (tea tree), vegetable oil mixture (eugenol, geraniol, thymol), natamycin (pimaricin), fluoxapiproline and oxathiapiproline.
  • the lipid biosynthesis or transport/cell membrane structure or function inhibitor may be at least one selected from these.
  • Cell membrane sterol biosynthesis inhibitors include azaconazole, bitertanol, bromconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, etaconazole, fenbuconazole, fluoxythioconazole, fluquinconazole, flusilazole, flutria hall, hexaconazole, imazalil, imibenconazole, ipconazole, ipfentrifluconazole, mefentrifluconazole, metconazole, microbutanil, oxpoconazole, pefurazoate, penconazole, prochloraz, propiconazole, prothioconazole, simeconazole, tebuconazole , tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole, fenarimol, nuarimol,
  • Cell wall biosynthesis inhibitors include polyoxin, bentiavalicarb (bentiavalicarb isopropyl), dimethomorph, flumorph, iprovalicarb, mandipropamide, pirimorph, and valifenalate.
  • the cell wall biosynthesis inhibitor can be at least one selected from these.
  • Melanin biosynthesis inhibitors include fthalide, pyroquilone, tricyclazole, carpropamide, diclocimet, fenoxanyl and tolprocarb.
  • the melanin biosynthesis inhibitor can be at least one selected from these.
  • host plant resistance inducers examples include acibenzolar-S-methyl, probenazole, thiazinyl, isotianil, laminarin, Oitadori extract, Bacillus mycoides isolate J, cell wall of Saccharomyces cerevisiae strain LAS117, fosetyl (fosetyl-aluminum, fosetyl potassium, fosetyl sodium), phosphoric acid, phosphates and diclobentiazox.
  • the host plant resistance inducer may be at least one selected from these.
  • Multi-point fungicides include farbum, mancozeb, maneb, metiram, propineb, thiuram, thiazole zinc, zineb, ziram, ambam, anilazine, dithianone, diclofluanide, tolylfluanide, guazatine, iminoctadine acetate, iminoctadine albecil copper or various copper salts (e.g.
  • the multi-site disinfectant can be at least one selected from these.
  • Biological pesticides/organism-derived pesticides having multiple mechanisms of action include Bacillus subtilis AFS032321 strain, Bacillus amyloliquefaciens strain QST713, Bacillus amyloliquefaciens strain FZB24, Bacillus amyloliquefaciens strain MBI600, Bacillus amyloliquefaciens strain MBI600, Amyloliquefaciens D747 strain, Bacillus amyloliquefaciens F727 strain, Chronostakis rosea CR-7 strain, Gliocladium catenaratum J1446 strain, Pseudomonas chlorophaphis AFS009 strain, Streptomyces griseovirides K61 strain, Strept Mrs.
  • the biopesticide/pesticide of biological origin with multiple mechanisms of action can be at least one selected from these.
  • fungicidal compounds include chloroinconazide, cyflufenamide, cymoxanil, diclomedine, dipimethitrone, dodine, fenitropane, ferimzone, fursulfamide, flutianil, harpine, inorganic salts (bicarbonates (sodium bicarbonate, potassium bicarbonate), potassium carbonate), ipflufenoquine, quinoprole, natural origin, machine oil, organic oil, picarbutrazox, pyridacromethyl, quinofumeline, tebufuroquine, teclofthalam (bactericide), triazoxide, validamycin, aminopyrifene and shiitake mushroom A mycelium extract etc. are mentioned.
  • Other antiseptic compounds may be at least one selected from these.
  • Active ingredients suitable for use as insecticides, acaricides and nematicides include, for example, acetylcholinesterase (AChE) inhibitors , GABAergic chloride ion channel blockers, sodium channel modulators, nicotinic acetylcholine receptor (nAChR) competitive modulators, nicotinic acetylcholine receptor (nAChR) allosteric modulators, glutamatergic chloride channel (GluCl) allosteric modulators, larvae Juvenile hormone analogues, other non-specific (multisite) inhibitors, chordotonal TRPV channel modulators, mite growth inhibitors acting on CHS1, microbial-derived insect midgut lining disrupters, mitochondrial ATP synthase inhibitors, Oxidative phosphorylation uncoupler that disrupts the proton gradient, nicotinic acetylcholine receptor
  • Acetylcholinesterase (AChE) inhibitors include alanicarb, aldicarb, bendiocarb, benfuracarb, butocaboxime, butoxycarboxime, NAC (carbaryl), carbofuran, carbosulfan, ethiofencarb, BPMC (phenocarb), phenothiocarb, formetanate, Furatiocarb, MIPC (isoprocarb), methiocarb, methomyl, MTMC (metolcarb), oxamyl, pirimicarb, PHC (propoxur), thiodicarb, thiophanox, triazamate, trimetacarb, XMC, MPMC (xylylcarb), acephate, azamethifos, azinphosethyl, azinphosmethyl, Cadusaphos, chloretoxyphos, CVP (chlorfenvinphos), chlormephos, chlor
  • GABAergic chloride ion channel blockers include chlordane, benzoepine (endosulfan), dienochlor, ethiprole, fipronil, pyriprole and nicoflurrole.
  • Sodium channel modulators include acrinathrin, allethrin (allethrin, d-cis-trans-, d-trans-isomer), bifenthrin, bioallethrin (biorethrin, S-cyclopentenyl-isomer), bioresmethrin, chloroprathrin, Chlorphenthone, cycloprothrin, cyfluthrin (cyfluthrin, ⁇ -isomer), cyhalothrin (cyhalothrin, ⁇ -, ⁇ -isomer), cypermethrin (cypermethrin, ⁇ -, ⁇ -, ⁇ -, ⁇ -isomer ), cyphenothrin [(1R)-trans isomer], deltamethrin, dimefluthrin, empenthrin [(EZ)-(1R)-isomer], esfenvalerate, et
  • Nicotinic acetylcholine receptor (nAChR) competitive modulators include acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam, nicotine sulfate (nicotine), sulfoxaflor, flupyradifron, dichloromesothiaz and triflumezopyrim. .
  • Nicotinic acetylcholine receptor (nAChR) allosteric modulators include spinetoram, spinosad, flupyrimine and GS-omega/kappa HXTX-Hv1a peptide.
  • Glutamatergic chloride channel (GluCl) allosteric modulators include abamectin, emamectin benzoate, lepimectin and milbemectin.
  • Juvenile hormone mimics include hydroprene, kinoprene, methoprene, fenoxycarb and pyriproxyfen.
  • Non-specific (multi-site) inhibitors include methyl bromide (methyl bromide), other alkyl halides, chloropicrin, sodium aluminum fluoride, sulfuryl fluoride, borax, boric acid, disodium octaborate salts, metaborate sodium salt, tartar emetic, dazomet, carbam (metam ammonium salt), metam sodium salt (carbam sodium salt), methyl isothiocyanate (methyl isothiocyanate), and the like.
  • String tone organ TRPV channel modulators include pymetrozine, pyrifluquinazone and aphidopyropene.
  • Mite growth inhibitors that act on CHS1 include clofentezine, diflovidazine, hexythiazox and etoxazole.
  • Bacillus thuringiensis subsp. israelensis Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. Kurstaki, Bacillus thuringiensis subsp. tenebrionis, proteins contained in B.t. crops (Cry1Ab, Cry1Ac, Cry1Fa, Cry1A.105, Cry2Ab, Vip3A, mCry3A, Cry3Bb, Cry34Ab1/Cry35Ab1) and Bacillus sphaericus.
  • Mitochondrial ATP synthase inhibitors include diafenthiuron, azocyclotin, tricyclohexyltin hydroxide (cyhexatin), fenbutatin oxide, BPPS (propargite) and tetradifon.
  • Oxidative phosphorylation uncouplers that disrupt the proton gradient include chlorfenapyr, DNOC and sulfluramide.
  • Nicotinic acetylcholine receptor (nAChR) channel blockers include bensultap, cartap hydrochloride, thiocyclam, thiosultap sodium salt and monosultap.
  • Chitin biosynthesis inhibitors that act on CHS1 include bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • Buprofezin and the like are examples of chitin biosynthesis inhibitors (type 1).
  • Moulting inhibitors include cyromazine and the like.
  • Moulting hormone (ecdysone) receptor agonists include chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
  • octopamine receptor agonists examples include amitraz.
  • Mitochondrial electron transport chain complex III inhibitors include hydramethylnon, acequinosyl, fluacrypyrim and bifenazate.
  • Mitochondrial electron transport chain complex I inhibitors include fenazaquin, fenpyroximate, pyridaben, pyrimidifen, tebufenpyrad, tolfenpyrad and delis (rotenone).
  • Voltage-gated sodium channel blockers include indoxacarb and metaflumizone.
  • Acetyl-CoA carboxylase inhibitors include spirodiclofen, spiromesifen, spiropidione and spirotetramat.
  • Mitochondrial electron transport system complex IV inhibitors include aluminum phosphide, calcium phosphide, hydrogen phosphide, zinc phosphide, hydrocyanic acid (calcium cyanide/sodium cyanide) and potassium cyanide.
  • Mitochondrial electron transport chain complex II inhibitors include cyenopyrafen, cietopirafen, cyflumetofen, piflubumide and cyclobutrifluram.
  • Ryanodine receptor modulators include chlorantraniliprole, cyantraniliprole, cyclaniliprole, flubendiamide, tetraniliprole, tetrachlorantraniliprole, cyhalodiamide and ciprofuranilide.
  • String tone organ modulators include flonicamid and the like.
  • GABAergic chloride ion channel allosteric modulators include brofuranilide, fluxametamide and isocycloseram.
  • Baculoviruses include codling moth Cydia pomonella GV, codling moth Thaumatotibia leucotreta GV, velvet bean beetle Anticarsis gemmatalis MNPV and Helicoverpa armigera NPV.
  • insecticides include azadirachtins, benzomates (benzoximates), phenisobromorates (bromopropylates), quinoxalines (quinomethionates), quercene (dicofol), lime-sulfur mixtures.
  • Suitable active ingredients for plant growth regulator applications include, for example, aminoethoxyvinylglycine, chlormecort, chlorpropham, cyclanilide, dikeglac, daminozit, ethephon, flurprimidol, flumetralin, forchlorfenurone, gibberellin, maleic acid hydrazide salt, mepiquat chloride, methylcyclopropene, benzylaminopurine, paclobutrazole, prohexadione, thidiazuron, tributylphosphorotrithioate, trinexapac-ethyl, Uniconazole, sodium 1-naphthaleneacetate, 1-naphthylacetamide, 1-methylcyclopropene, 4-CPA (4-chlorophenoxyacetic acid), MCPB (ethyl 2-methyl-4-chlorophenoxybutyrate), isoprothiolane, itaconic
  • the plant disease control agent in this embodiment is the R-enantiomer or mixed enantiomer of the azole derivative (I) of this embodiment, or an agriculturally or industrially acceptable salt thereof, or the agricultural and horticultural fungicide of this embodiment.
  • the plant disease control agent in this aspect is for foliage treatment or non-foliage treatment.
  • the foliage treatment includes foliage spraying.
  • Non-foliage treatments include seed treatments, irrigation treatments, and water surface treatments, including treatments for bulbs and tubers.
  • the plant disease control agent of this embodiment may contain a component other than the R-enantiomer or mixed enantiomer of the azole derivative (I), or an agriculturally or industrially acceptable salt thereof, or an agricultural or horticultural fungicide. good.
  • Such components include formulation aids. Since the formulation adjuvant is as described above, the description thereof will not be repeated.
  • the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) contained in the plant disease control agent, or an agriculturally or industrially acceptable salt thereof, or the content of the agricultural and horticultural fungicide may be adjusted depending on the purpose. It can be determined as appropriate.
  • the agricultural and horticultural agent in this embodiment can be used, for example, in agricultural or non-agricultural lands such as fields, paddy fields, lawns and orchards.
  • the agricultural and horticultural chemical in the present embodiment can be applied not only by foliage treatment such as foliage spraying, but also by non-foliage treatment such as seed treatment, irrigation treatment and water surface treatment, including treatment of bulbs and tubers. Therefore, the method for controlling plant diseases in the present embodiment is a method including a procedure of foliage treatment or non-foliage treatment using the agricultural and horticultural agent described above.
  • the method for controlling plant diseases in this embodiment is a method for protecting target plants from damage caused by the plant diseases described above.
  • the method for controlling plant diseases in this embodiment is a method for protecting target plants from damage caused by the plant diseases described above.
  • labor can be reduced compared with the case where foliage processing is performed.
  • the drug is attached to the seeds by mixing and stirring the wettable powder, powder, etc. with the seeds, or by immersing the seeds in a diluted wettable powder, etc. Also included are seed coating treatments.
  • the amount of the active ingredient used for seed treatment is, for example, 0.01 to 10000 g, preferably 0.1 to 1000 g, per 100 kg of seed. Seeds treated with agricultural and horticultural chemicals may be used in the same manner as ordinary seeds.
  • irrigation is carried out by applying granules, etc. to the planting hole or its surroundings when transplanting seedlings, or applying granules, wettable powders, etc. to the soil around seeds or plants.
  • the amount of the active ingredient used in irrigation treatment is, for example, 0.01 to 10,000 g, preferably 0.1 to 1,000 g per 1 m 2 of agricultural land.
  • the amount of the active ingredient used for water surface treatment is, for example, 0.1 to 10000 g, preferably 1 to 1000 g, per paddy field 10a.
  • the amount of the active ingredient used for foliar application is, for example, 20 to 5000 g, more preferably 50 to 2000 g, per 1 ha of agricultural and horticultural land such as fields, rice fields, orchards and greenhouses.
  • concentration and amount used vary depending on the dosage form, timing of use, method of use, place of use, target crops, etc., it is possible to increase or decrease without sticking to the above range.
  • Aspergillus sp. Trichoderma sp., Penicillium sp., Geotrichum sp., Chaetomium sp., Cadphora, which are paper and pulp degrading microorganisms (including slime-forming bacteria) (Cadophora sp.), Ceratostomella sp., Cladosporium sp., Corticium sp., Lentinus sp., Lenzites sp., Phoma sp.
  • Polysticus sp. Pullularia sp., Stereum sp., Trichosporium sp., Aerobacter sp., Bacillus sp., Desulfovibrio (Desulfovibrio sp.), Pseudomonas sp., Flavobacterium sp., Micrococcus sp., Aspergillus sp.), Penicillium sp., Chaetomium ( Chaetomium sp.), Myrothecium sp., Curvularia sp., Gliomastix sp., Memnoniella sp., Sarcopodium sp., Stschybotrys sp.
  • Pullularia sp. Trichosporon sp., Tricothecium sp., rubber and plastic degrading microorganisms Aspergillus sp., Penicillium sp., Rhizopus sp. ), Trichoderma sp., Chaetomium sp., Myrothecium sp., Streptomyces sp., Pseudomonas sp., Bacillus sp., Micrococcus sp.), Serratia sp., Margarinomyces sp., Monascus sp., Aspergillus sp., Penicillium sp.
  • Cladosporium sp. Aureobasidium sp., Gliocladium sp., Botryodiplodia sp., Macrosporium sp., Monilia sp. ), Phoma sp., Pullularia sp., Sporotrichum sp., Trichoderma (Tric hoderma sp.), bacillus sp., Proteus sp., Pseudomonas sp., Serratia sp.
  • An industrial material protecting agent containing the R-enantiomer or mixed enantiomer of azole derivative (I) or an industrially acceptable salt thereof as an active ingredient is the R-enantiomer or mixed enantiomer of azole derivative (I) or Various ingredients may be included in addition to the industrially acceptable salts thereof.
  • the industrial material protective agent containing the R-enantiomer or mixed enantiomer of azole derivative (I) or industrially acceptable salt thereof as an active ingredient is dissolved or dispersed in a suitable liquid carrier, or mixed with a solid carrier.
  • the industrial material protective agent containing the R-enantiomer or mixed enantiomer of the azole derivative (I) or an industrially acceptable salt thereof as an active ingredient may further include an emulsifier, a dispersant, a spreading agent and a penetrating agent, if necessary. , wetting agents or stabilizers.
  • an emulsifier emulsifier
  • a dispersant emulsifier
  • a spreading agent e.g., a penetrating agent
  • wetting agents or stabilizers emulsifier
  • a dispersant emulsifier
  • a dispersant e.g., a dispersant
  • a spreading agent e.g., a spreading agent
  • a penetrating agent if necessary. , wetting agents or stabilizers.
  • wetting agents or stabilizers emulsifier
  • a spreading agent e.g.
  • the liquid carrier is not particularly limited as long as it does not react with the active ingredient.
  • liquid carriers include water, alcohols (e.g., methyl alcohol, ethyl alcohol, ethylene glycol, cellosolve, etc.), ketones (e.g., acetone, methyl ethyl ketone, etc.), ethers (e.g., dimethyl ether, diethyl ether, dioxane, tetrahydrofuran).
  • aromatic hydrocarbons e.g., benzene, toluene, xylene, methylnaphthalene, etc.
  • aliphatic hydrocarbons e.g., gasoline, kerosene, kerosene, machine oil, fuel oil, etc.
  • acid amides e.g., dimethylformamide , N-methylpyrrolidone, etc.
  • halogenated hydrocarbons e.g., chloroform, carbon tetrachloride, etc.
  • esters e.g., ethyl acetate, fatty acid glycerol esters, etc.
  • nitriles e.g., acetonitrile, etc.
  • dimethyl sulfoxide etc. can be mentioned.
  • fine powders or granules such as kaolin clay, bentonite, acid clay, pyrophyllite, talc, diatomaceous earth, calcite, urea and ammonium sulfate can be used.
  • emulsifiers and dispersants examples include soaps, surfactants such as alkylsulfonic acids, alkylarylsulfonic acids, dialkylsulfosuccinic acids, quaternary ammonium salts, oxyalkylamines, fatty acid esters, polyalkylene oxides and anhydrosorbitols. can be used.
  • the content ratio varies depending on the dosage form and purpose of use, but the total amount of the formulation 0.1 to 99.9% by weight with respect to In actual use, the treatment concentration is usually 0.005 to 5% by weight, preferably 0.01 to 1% by weight. preferably.
  • the R-enantiomer or mixed enantiomers of azole derivative (I) or industrially acceptable salts thereof exhibit excellent effects of protecting industrial materials from a wide range of harmful microorganisms that attack them. That is, the industrial material protective agent containing the R-enantiomer or mixed enantiomer of the azole derivative (I) or an industrially acceptable salt thereof as an active ingredient has low toxicity to humans and animals, is excellent in handling safety, and does not attack industrial materials. It can show excellent effect of protecting materials from a wide range of harmful microorganisms. Therefore, the industrial material protective agent in this embodiment can contribute to Goal 12 of the Sustainable Development Goals (SDGs), "responsible consumption and production".
  • SDGs Sustainable Development Goals
  • the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one embodiment of the present invention is the R-enantiomer or the R-enantiomer of the compound represented by the following general formula (I) and S - mixtures with enantiomers, or agriculturally or industrially acceptable salts thereof.
  • R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group; ; R 1 and R 2 may be combined to form a ring;
  • Z is a phenyl group or a 5- or 6-membered heteroaromatic ring containing 1, 2, 3 or 4 heteroatoms selected from O, N and S;
  • R 3 is halogen, hydroxy, amino, nitrile, nitro, pentafluorosulfanyl, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy or a C 1 -C 4 -haloalkoxy group;
  • R 3 is bonded to n arbitrary substitution positions of Z; n is 0, 1, 2, 3, 4
  • the agricultural and horticultural fungicide or the industrial material protective agent according to the present invention includes the R-enantiomer of the azole derivative of claim 1 as one of the active ingredients, or a mixture of the R-enantiomer and the S-enantiomer, or an agricultural chemical thereof. It is characterized by containing a commercially or industrially acceptable salt and further containing other active ingredients.
  • the other active ingredients include (i) a nucleic acid synthesis and metabolism inhibitor, a fungicide acting on the cytoskeleton and motor protein, a respiratory inhibitor, Amino acid/protein biosynthesis inhibitors, signal transduction inhibitors, lipid biosynthesis or transport/cell membrane structure or function inhibitors, cell membrane sterol biosynthesis inhibitors, cell wall biosynthesis inhibitors, melanin biosynthesis inhibitors, host plant an active ingredient of a fungicide selected from resistance inducers and multisite fungicides, (ii) nicotinic acetylcholine receptor antagonistic modulators, sodium channel modulators, ryanodine receptor modulators, acetylcholinesterase inhibitors, oxidative phosphorylation It preferably contains at least one selected from an active ingredient of an insecticide selected from an uncoupler and a mitochondrial electron transport chain complex I inhibitor, and (iii) an active ingredient of a plant growth regulator.
  • the plant disease control agent according to the present invention is the R-enantiomer of the above-mentioned azole derivative, or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof, or the above-mentioned agricultural and horticultural
  • the plant disease control method according to the present invention has a configuration including a step of performing foliage treatment or non-foliage treatment using the plant disease control agent described above.
  • the plant disease control product according to the present invention is a plant disease control product for preparing the above agricultural and horticultural fungicide, which is a combination preparation for mixing and using, the above azole derivative or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof, and the above-described other active ingredients separately.
  • a racemate of the following azole derivative (I) was synthesized according to the method described in Patent Document 1.
  • Azole derivative I-7 1-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-chlorophenoxy)-2,2-dimethyl-2,3-dihydro-1H- Indene-1-olazole derivative I-11: 1-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-fluorophenoxy)-2,2-dimethyl-2,3 -dihydro-1H-indene-1-olazole derivative I-13: 1-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-trifluoromethoxyphenoxy)-2, 2-dimethyl-2,3-dihydro-1H-inden-1-ol
  • the (-)-enantiomer of the azole derivative I-7 was the R-configuration. Crystallographic data for a single crystal of the R-(-)-enantiomer of azole derivative I-7 are shown in Table 3. FIG. 1 shows the results of X-ray crystal structure analysis. FIG. 1 is an ORTEP diagram showing the molecular structure of the R-( ⁇ )-enantiomer of the azole derivative I-7 by X-ray crystallography.
  • wettable powders and emulsions were formulated as follows.
  • Formulation example 1 wettable powder
  • Azole derivative racemate or each enantiomer 20.0 parts
  • Sodium salt of alkylnaphthalenesulfonic acid formalin condensate 5 parts
  • White carbon 3 parts Clay 69.8 parts were pulverized and mixed. used as a hydrating agent.
  • Formulation Example 2 (Emulsion) Azole derivative racemate or each enantiomer 4.0 parts polyoxyalkylene allyl phenyl ether metal alkylbenzene sulfonate xylene mixture 10.0 parts 1-butyl-2-pyrrolidone 30.1 parts N,N-dimethyloctanamide 30.1 parts of N,N-dimethyldecanamide mixture and 25.8 parts of solvent naphtha were uniformly mixed and dissolved to prepare an emulsion.
  • Strains A to G of wheat leaf blight fungi were prepared as pathogens that are less sensitive to existing sterol biosynthesis inhibitors than wild type. These strains have mutations at specific amino acid positions in the wild-type CYP51 protein, making them less sensitive to existing sterol biosynthesis inhibitors compared to the wild-type. The position and type of mutation for each strain are shown in Table 4 below. In the table, "Del" means deletion mutation. In addition, the amino acid sequence of the wild-type CYP51 protein is easily obtained from public databases such as the M.
  • Mefentrifluconazole (compound described in WO2020/078942): 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4- Triazol-1-yl)propan-2-ol
  • Metconazole (1RS,5RS; 1RS,5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4- triazol-1-ylmethyl)cyclopentanol
  • ⁇ Antibacterial activity test against plant pathogens The antibacterial activity of the synthesized azole derivative racemate or each enantiomer against various phytopathogenic filamentous fungi was tested by a petri dish test.
  • PDA medium potato-dextrose-agar medium
  • the test compound was dissolved in dimethyl sulfoxide to a predetermined drug concentration, and 1% (V/V) was added to the PDA medium. added.
  • the PDA medium was thoroughly mixed so that the drug concentration in the medium was uniform, and the medium was poured into a petri dish to prepare a plate medium containing various test compounds.
  • the fungal flora of various plant pathogenic bacteria previously cultured on PDA medium was punched out with a cork borer with a diameter of 4 mm, and inoculated onto the above-mentioned drug-containing plate medium. After culturing at a temperature for a given period of time according to Table 5, the diameter of the bacterial colony on the drug-treated plate was measured. The mycelial elongation inhibition rate (%) was calculated by the following formula in comparison with the bacterial lawn diameter on an untreated plate containing no test compound.
  • Table 6 shows the results. The rate of inhibition of mycelial growth when the R-enantiomer of the azole derivative I-7 was used against various plant pathogenic fungi was higher than the rate of inhibition of mycelial growth when the racemate of the azole derivative I-7 was used. These results indicated that the R-enantiomer of the azole derivative I-7 was superior in antibacterial properties to the racemate of the azole derivative I-7.
  • Test Example 3 Antibacterial activity test when using a mixture of three agents
  • the antibacterial activity against various plant pathogenic fungi is obtained by the method described above for a three-drug mixture obtained by mixing the R-enantiomer of the azole derivative I-7 and other active ingredients with the S-enantiomer of the azole derivative I-7. did the test.
  • mixed enantiomer indicates the total amount of R-enantiomer and S-enantiomer of azole derivative I-7 contained in the triple mixture.
  • the molar ratio of R-enantiomer to S-enantiomer in the mixed enantiomers is 1:1.
  • Test Example 4 Antibacterial activity test against sterol biosynthesis inhibitor low-susceptibility strains A to G of wheat leaf blight fungus
  • the racemate of the azole derivative I-7, the R-enantiomer, or the control compound were tested for antibacterial activity against wheat leaf blight strains AG by the method described above.
  • the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one aspect of the present invention, or an agriculturally or industrially acceptable salt thereof, is used as an agricultural or horticultural fungicide or industrial material protection agent. It can be suitably used as an active ingredient of a drug.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention provides a plant disease control agent that has low toxicity to human and animals and excellent handling safety, and that exhibits an excellent controlling effect on a wide range of plant diseases and exhibits a high antimicrobial activity against plant disease-causing microbes. The present invention pertains to an R-enantiomer or a mixture of a S-enantiomer and the R-enantiomer of a compound represented by general formula (I), or an agriculturally or industrially acceptable salt thereof.

Description

アゾール誘導体のR-エナンチオマー、農園芸用薬剤および工業用材料保護剤R-enantiomer of azole derivative, agricultural and horticultural agent and industrial material protection agent
 本発明は、アゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物に関する。また、有効成分として、該アゾール誘導体とアゾール誘導体以外の有効成分とを含む農園芸用殺菌剤及び工業用材料保護剤、該アゾール誘導体または該農園芸用殺菌剤を有効成分として含む植物病害防除剤およびこれを用いた植物病害防除方法、ならびに複数の有効成分を別々に含む植物病害防除用製品に関する。 The present invention relates to the R-enantiomer of an azole derivative or a mixture of the R-enantiomer and the S-enantiomer. In addition, an agricultural and horticultural fungicide and an industrial material protective agent containing the azole derivative and an active ingredient other than the azole derivative as active ingredients, and a plant disease control agent containing the azole derivative or the agricultural and horticultural fungicide as an active ingredient. and a plant disease control method using the same, and a plant disease control product containing a plurality of active ingredients separately.
 従来、人畜に対する毒性が低く取扱い安全性に優れ、かつ広範な植物病害に対して高い防除効果を示す農園芸用薬剤が求められている。高い防除効果を示す農園芸用薬剤として、アゾール系殺菌剤が知られている。 Conventionally, there has been a demand for agricultural and horticultural agents that have low toxicity to humans and animals, are excellent in handling safety, and exhibit high control effects against a wide range of plant diseases. Azole-based fungicides are known as agricultural and horticultural agents that exhibit high control effects.
PCT/JP2021/008690PCT/JP2021/008690
 人畜に対する毒性が低く取扱い安全性に優れ、かつ広範な植物病害に対して優れた防除効果及び植物病菌に対する高い抗菌性を示す植物病害防除剤が求められている。 There is a demand for a plant disease control agent that exhibits low toxicity to humans and animals, excellent handling safety, excellent control effect against a wide range of plant diseases, and high antibacterial properties against plant pathogens.
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、上記の要望に応える化合物を提供することにある。 Accordingly, the present invention has been made in view of the above problems, and its object is to provide a compound that meets the above demands.
 上記の課題を解決するために、本発明者らが鋭意検討した結果、下記一般式(I)で示されるアゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物が優れた活性を有することを見出し、本発明を完成させるに至った。 As a result of intensive studies by the present inventors in order to solve the above problems, the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative represented by the following general formula (I) exhibits excellent activity. The present inventors have found that the present invention has been completed.
 本発明の一態様に係るアゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物は、下記一般式(I)で示される化合物のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩である:
Figure JPOXMLDOC01-appb-C000002
 [式(I)中、
 *は、キラル中心を表し;
 RおよびRは、それぞれ独立に水素、C-C-アルキル基、C-C-シクロアルキル基またはC-C-シクロアルキル-C-C-アルキル基であり;
 RとRとは、互いに結合して環を形成していてもよく;
 Zは、フェニル基、またはO、NおよびSから選択されるヘテロ原子を1、2、3もしくは4つ含む5員または6員の芳香族複素環であり;
 Rは、ハロゲン、ヒドロキシ基、アミノ基、ニトリル基、ニトロ基、ペンタフルオロスルファニル基、C-C-アルキル基、C-C-ハロアルキル基、C-C-アルコキシ基またはC-C-ハロアルコキシ基であり;
 RはZの任意の置換位置にn個結合しており;
 RおよびRの少なくとも一方が水素ではない場合、nは0、1、2、3、4または5であり、RおよびRの両方が水素である場合、nは1、2、3、4または5であり;
 mは1または2である。]。
The R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one aspect of the present invention is the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the compound represented by the following general formula (I): A mixture, or an agriculturally or industrially acceptable salt thereof:
Figure JPOXMLDOC01-appb-C000002
[in the formula (I),
* represents a chiral center;
R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group; ;
R 1 and R 2 may be combined to form a ring;
Z is a phenyl group or a 5- or 6-membered heteroaromatic ring containing 1, 2, 3 or 4 heteroatoms selected from O, N and S;
R 3 is halogen, hydroxy, amino, nitrile, nitro, pentafluorosulfanyl, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy or a C 1 -C 4 -haloalkoxy group;
R 3 is bonded to n arbitrary substitution positions of Z;
n is 0, 1, 2, 3, 4 or 5 when at least one of R 1 and R 2 is not hydrogen, n is 1, 2, 3 when both R 1 and R 2 are hydrogen , 4 or 5;
m is 1 or 2; ].
 本発明の一態様に係るアゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物は、植物に病害を引き起こす多くの菌に対して優れた殺菌作用を有する。したがって、本発明に係るアゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物を有効成分として含む薬剤は、広範な植物病害に対して高い防除効果を発揮する。 The R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one aspect of the present invention has an excellent bactericidal action against many fungi that cause plant diseases. Therefore, a drug containing as an active ingredient the R-enantiomer of the azole derivative of the present invention or a mixture of the R-enantiomer and the S-enantiomer exhibits a high control effect against a wide range of plant diseases.
X線結晶構造解析によるアゾール誘導体(I-7)のR-エナンチオマーのORTEP図である。FIG. 2 is an ORTEP diagram of the R-enantiomer of azole derivative (I-7) by X-ray crystallography.
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 A preferred embodiment for carrying out the present invention will be described below. It should be noted that the embodiments described below are examples of representative embodiments of the present invention, and the scope of the present invention should not be construed narrowly.
 〔1.アゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物〕
 本態様のアゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物は、下記一般式(I)で示されるアゾール誘導体(以下、アゾール誘導体(I)と称する)のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物である。また、以下の説明において、本態様のアゾール誘導体(I)のR-エナンチオマーとS-エナンチオマーとの混合物を、単にアゾール誘導体(I)の混合エナンチオマーと称することもある。
Figure JPOXMLDOC01-appb-C000003
 一般式(I)中、*は、キラル中心を表す。
[1. R-enantiomer of azole derivative or mixture of R-enantiomer and S-enantiomer]
The R-enantiomer of the azole derivative of this embodiment or the mixture of the R-enantiomer and the S-enantiomer is the R-enantiomer or R It is a mixture of the -enantiomer and the S-enantiomer. Further, in the following description, the mixture of the R-enantiomer and S-enantiomer of the azole derivative (I) of this embodiment may be simply referred to as the mixed enantiomer of the azole derivative (I).
Figure JPOXMLDOC01-appb-C000003
In general formula (I), * represents a chiral center.
 本態様のアゾール誘導体(I)はキラル中心となる炭素原子を含有するため、光学的に純粋なエナンチオマー、またはR-エナンチオマーとS-エナンチオマーとの混合物(混合エナンチオマー)の形態として存在することが可能である。混合エナンチオマーは、R-エナンチオマーおよびS-エナンチオマーの両方が含まれていればよい。R-エナンチオマーとS-エナンチオマーの混合比は、所望の活性を発揮できる量に適宜調整することが可能である。混合エナンチオマーは、ラセミ体(すなわち、混合エナンチオマー中のR-エナンチオマーとS-エナンチオマーのモル比が、1:1)またはR-エナンチオマーリッチな混合物であることが好ましい。R-エナンチオマーリッチとは、混合エナンチオマー中のR-エナンチオマーの量が、S-エナンチオマーよりも多いことが意図される。例えば、混合エナンチオマー中のS-エナンチオマーの含有量を1としたときのR-エナンチオマーの含有量比(モル比)が、1よりも大きい、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、または10以上である。 Since the azole derivative (I) of this embodiment contains a carbon atom serving as a chiral center, it can exist in the form of an optically pure enantiomer or a mixture of the R-enantiomer and the S-enantiomer (mixed enantiomers). is. Mixed enantiomers may contain both the R-enantiomer and the S-enantiomer. The mixing ratio of the R-enantiomer and the S-enantiomer can be appropriately adjusted so that the desired activity can be exhibited. The mixed enantiomers are preferably racemic (ie, the molar ratio of the R-enantiomer to the S-enantiomer in the mixed enantiomers is 1:1) or an R-enantiomer-rich mixture. By R-enantiomer rich is meant that the amount of the R-enantiomer in the mixed enantiomers is greater than the S-enantiomer. For example, when the content of the S-enantiomer in the mixed enantiomer is 1, the content ratio (molar ratio) of the R-enantiomer is greater than 1, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more. , 7 or more, 8 or more, 9 or more, or 10 or more.
 RおよびRは、それぞれ独立に水素、C-C-アルキル基、C-C-シクロアルキル基またはC-C-シクロアルキル-C-C-アルキル基である。 R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group .
 C-C-アルキル基は、炭素原子数が1~6個である直鎖または分岐鎖状アルキル基である。炭素原子数が1~6個である直鎖または分岐鎖状アルキル基は、例えば、メチル基、エチル基、1-メチルエチル基、1,1-ジメチルエチル基、プロピル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基、ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブチル基、1,1-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、ペンチル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基および4-メチルペンチル基が挙げられる。 C 1 -C 6 -Alkyl radicals are straight-chain or branched alkyl radicals having 1 to 6 carbon atoms. Linear or branched alkyl groups having 1 to 6 carbon atoms are, for example, methyl group, ethyl group, 1-methylethyl group, 1,1-dimethylethyl group, propyl group and 1-methylpropyl group. , 2-methylpropyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 3,3 -dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, pentyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl and 4-methylpentyl groups.
 C-C-シクロアルキル基は、炭素原子数3~8個の環状のアルキルであり、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基が挙げられる。 C 3 -C 8 -Cycloalkyl groups are cyclic alkyl groups having 3 to 8 carbon atoms and include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl groups. .
 C-C-シクロアルキル-C-C-アルキル基は、炭素原子数3~8個の環状のシクロアルキル基が直鎖または分岐鎖状の炭素数1~4個のアルキル基に結合していることを示す。例えば、シクロプロピルメチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、2-シクロプロピルエチル基、1-シクロプロピルエチル基、2-シクロヘキシルエチル基、3-シクロプロピルプロピル基、2-シクロプロピルプロピル基および4-シクロプロピルブチル基が挙げられる。 C 3 -C 8 -Cycloalkyl-C 1 -C 4 -Alkyl radicals are cyclic cycloalkyl radicals having 3 to 8 carbon atoms to linear or branched alkyl radicals having 1 to 4 carbon atoms. Indicates that they are bound. For example, cyclopropylmethyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-cyclopropylethyl group, 1-cyclopropylethyl group, 2-cyclohexylethyl group, 3-cyclopropylpropyl group, 2-cyclo Propylpropyl and 4-cyclopropylbutyl groups are included.
 RとRとは、互いに結合して、RおよびRが結合している炭素原子とともに環を形成していてもよい。 R 1 and R 2 may be bonded together to form a ring together with the carbon atom to which R 1 and R 2 are bonded.
 Zは、フェニル基、またはヘテロ原子を1、2、3もしくは4つ含む5員または6員の芳香族複素環である。ここでヘテロ原子は、O、NおよびSから選択される原子である。芳香族複素環が複数のヘテロ原子を含む場合、複数あるヘテロ原子は互いに同じ原子でもよく、異なる原子でもよい。Zは、好ましくは、フェニル基、またはNおよびSから選択されるヘテロ原子を1~3つ含む5員または6員の芳香族複素環であり、さらに好ましくは、フェニル基である。 Z is a phenyl group or a 5- or 6-membered aromatic heterocyclic ring containing 1, 2, 3 or 4 heteroatoms. Here heteroatoms are atoms selected from O, N and S. When the heteroaromatic ring contains multiple heteroatoms, the multiple heteroatoms may be the same atoms or different atoms. Z is preferably a phenyl group or a 5- or 6-membered aromatic heterocyclic ring containing 1 to 3 heteroatoms selected from N and S, more preferably a phenyl group.
 5員または6員の芳香族複素環基としては、例えば、フリル基、ピラゾリル基、チエニル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、ピロリル基、イミダゾリル基、ピラゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基およびトリアジニル基が挙げられる。 Examples of 5- or 6-membered aromatic heterocyclic groups include furyl, pyrazolyl, thienyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, and isothiazolyl. oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl and triazinyl groups.
 Zには、任意の位置でRがn個結合している。ここで、nは0、1、2、3、4または5である。Rは、ハロゲン、ヒドロキシ基、アミノ基、ニトリル基、ニトロ基、ペンタフルオロスルファニル基、C-C-アルキル基、C-C-ハロアルキル基、C-C-アルコキシ基またはC-C-ハロアルコキシ基である。nが2以上の場合は、Rは同一または異なってもよい。 n R 3 are bound to Z at arbitrary positions. where n is 0, 1, 2, 3, 4 or 5. R 3 is halogen, hydroxy, amino, nitrile, nitro, pentafluorosulfanyl, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy or It is a C 1 -C 4 -haloalkoxy group. When n is 2 or more, R3 may be the same or different.
 C-C-アルキル基は、炭素原子数が1~4個である直鎖または分岐鎖状アルキル基であり、上述のC-C-アルキル基における炭素数が4以下の基が挙げられる。 C 1 -C 4 -Alkyl radicals are straight-chain or branched alkyl radicals having 1 to 4 carbon atoms; mentioned.
 C-C-ハロアルキル基は、上述のC-C-アルキル基の置換し得る位置に1または2以上のハロゲン原子が置換されている基である。置換されるハロゲン基が2以上の場合は、ハロゲン基は同一または異なってもよい。ハロゲン基としては塩素基、臭素基、ヨウ素基またはフッ素基が挙げられる。C-C-ハロアルキル基としては、例えば、クロロメチル基、2-クロロエチル基、2,3-ジクロロプロピル基、ブロモメチル基、クロロジフルオロメチル基、トリフルオロメチル基および3,3,3-トリフルオロプロピル基が挙げられる。 A C 1 -C 4 -haloalkyl group is a group in which one or more halogen atoms are substituted at the substitutable positions of the aforementioned C 1 -C 4 -alkyl groups. When two or more halogen groups are substituted, the halogen groups may be the same or different. Halogen groups include chlorine, bromine, iodine or fluorine groups. C 1 -C 4 -Haloalkyl groups include, for example, chloromethyl, 2-chloroethyl, 2,3-dichloropropyl, bromomethyl, chlorodifluoromethyl, trifluoromethyl and 3,3,3-tri A fluoropropyl group is mentioned.
 C-C-アルコキシ基は、炭素原子数1~4個の直鎖または分岐鎖状のアルコキシ基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、1-メチルエトキシ基、ブトキシ基、1-メチルプロポキシ基および1,1-ジメチルエトキシ基が挙げられる。 C 1 -C 4 -Alkoxy is a straight-chain or branched alkoxy group having 1 to 4 carbon atoms, for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy and 1,1-dimethylethoxy groups are included.
 C-C-ハロアルコキシ基は、上述のC-C-アルコキシ基の置換し得る位置に1または2以上のハロゲン基が置換されている基である。置換されるハロゲン基が2以上の場合は、ハロゲン基は同一または異なってもよい。 A C 1 -C 4 -haloalkoxy group is a group in which the aforementioned C 1 -C 4 -alkoxy group is substituted with one or more halogen groups at substitutable positions. When two or more halogen groups are substituted, the halogen groups may be the same or different.
 Rの結合位置に制限はないが、好ましくは、一般式(I)のエーテル結合に対して2位、3位、または4位であり、さらに好ましくは、4位である。 The bonding position of R 3 is not limited, but is preferably 2-, 3- or 4-position relative to the ether bond of general formula (I), more preferably 4-position.
 RおよびRの少なくとも一方が水素ではない場合、nは0、1、2、3、4または5であり、RおよびRの両方が水素である場合、nは1、2、3、4または5である。 n is 0, 1, 2, 3, 4 or 5 when at least one of R 1 and R 2 is not hydrogen, n is 1, 2, 3 when both R 1 and R 2 are hydrogen , 4 or 5.
 mは1または2である。すなわち、m=1の場合、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーはインダン骨格を有し、m=2の場合、テトラリン骨格を有することになる。好ましくは、m=1である。 m is 1 or 2. That is, when m=1, the R-enantiomer or mixed enantiomer of the azole derivative (I) has an indane skeleton, and when m=2, it has a tetralin skeleton. Preferably m=1.
 アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの好ましい一態様としては、RおよびRが、それぞれ独立に水素、C-C-アルキル基、C-C-シクロアルキル基、C-C-シクロアルキル-C-C-アルキル基であるか、またはRとRとが結合してシクロアルキル基となっているアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーが挙げられる。アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーのさらに好ましい一態様としては、さらにmが1であるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーが挙げられる。アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーのさらに好ましい一態様としては、さらにZがフェニル基であるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーが挙げられる。 In a preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I), R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group, C 3 -C 8 -cycloalkyl-C 1 -C 4 -alkyl groups or R-enantiomers or mixtures of azole derivatives (I) in which R 1 and R 2 are joined to form a cycloalkyl group enantiomers. A further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I) includes the R-enantiomer or mixed enantiomer of azole derivative (I) in which m is 1. A further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I) includes the R-enantiomer or mixed enantiomer of azole derivative (I) wherein Z is a phenyl group.
 アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーのさらに好ましい一態様としては、RおよびRが、それぞれ独立に水素もしくはC-C-アルキル基であるか、またはRとRとが結合してシクロアルキル基となっているアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーが挙げられる。アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーのさらに好ましい一態様としては、RおよびRが、それぞれ独立に水素もしくはC-C-アルキル基であるか、またはRとRとが結合してシクロアルキル基となっており、mが1であるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーが挙げられる。アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーのさらに好ましい一態様としては、RおよびRが、それぞれ独立に水素もしくはC-C-アルキル基であるか、またはRとRとが結合してシクロアルキル基となっており、mが1であり、Rがハロゲン、C-C-ハロアルキル基またはC-C-ハロアルコキシ基であるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーが挙げられる。 In a further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I), R 1 and R 2 are each independently hydrogen or a C 1 -C 6 -alkyl group, or R 1 and R 2 are combined to form a cycloalkyl group, the R-enantiomer or mixed enantiomers of the azole derivative (I). In a further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I), R 1 and R 2 are each independently hydrogen or a C 1 -C 6 -alkyl group, or R 1 and R 2 are combined to form a cycloalkyl group, and the R-enantiomer or mixed enantiomers of the azole derivative (I) in which m is 1 can be mentioned. In a further preferred embodiment of the R-enantiomer or mixed enantiomer of azole derivative (I), R 1 and R 2 are each independently hydrogen or a C 1 -C 6 -alkyl group, or R 1 and R 2 is bonded to form a cycloalkyl group, m is 1, and R 3 is a halogen, a C 1 -C 4 -haloalkyl group or a C 1 -C 4 -haloalkoxy group. R-enantiomers or mixed enantiomers are included.
 アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの特に好ましい一態様としては、ラセミ体と比較して植物に病害を引き起こす菌に対する抗菌活性が優れている観点から、*を付した炭素原子をキラル中心としたR-エナンチオマーが挙げられる。 As a particularly preferred embodiment of the R-enantiomer or mixed enantiomer of the azole derivative (I), the carbon atom marked with * is chiral from the viewpoint of superior antibacterial activity against fungi that cause plant disease compared to the racemate. Centered R-enantiomers are included.
 特に好ましいアゾール誘導体(I)の例として挙げられるアゾール誘導体を下記表1に列挙した。下記表1のR、Rおよびmは、それぞれ上記式(I)のR、Rおよびmに対応し、表1のZ-(Rは、上記式(I)のZと(Rとで表される構造部分に対応する。なお、下記表1のアゾール誘導体は、R-エナンチオマーでもあり得、R-エナンチオマーとS-エナンチオマーとの混合物でもあり得る。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Particularly preferred azole derivatives (I) are listed in Table 1 below. R 1 , R 2 and m in Table 1 below correspond to R 1 , R 2 and m in Formula (I) above, respectively, and Z—(R 3 ) n in Table 1 is Z in Formula (I) above. and (R 3 ) n . The azole derivatives in Table 1 below may be R-enantiomers or mixtures of R-enantiomers and S-enantiomers.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
 なお、番号I-17に示す化合物は、R、RおよびRとRとが結合している炭素原子によってシクロプロパン環を形成しているものである。 The compound represented by number I-17 forms a cyclopropane ring with R 1 , R 2 and the carbon atoms to which R 1 and R 2 are bonded.
 アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの農学的もしくは工業的に許容可能な塩は、特に、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの作用に悪影響を及ぼさないカチオンおよびアニオンの塩またはこれらの酸の酸付加塩を包含する。好適なカチオンは特に、アルカリ金属(好ましくはナトリウムおよびカリウム)、アルカリ土類金属(好ましくはカルシウム、マグネシウム及びバリウム)、遷移金属(好ましくはマンガン、銅、亜鉛および鉄)のイオンである。また、好適なカチオンは、所望の場合には1~4個のC-C-アルキル置換基および/または1個のフェニル置換基もしくはベンジル置換基を有し得るアンモニウムイオン(好ましくはジイソプロピルアンモニウム、テトラメチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム)であり、さらにはホスホニウムイオン、スルホニウムイオン(好ましくはトリ(C-C-アルキル)スルホニウム)、およびスルホキソニウムイオン(好ましくはトリ(C-C-アルキル)スルホキソニウム)でもある。 Agriculturally or industrially acceptable salts of the R-enantiomer or mixed enantiomers of the azole derivative (I) are, in particular, those of cations and anions that do not adversely affect the action of the R-enantiomer or mixed enantiomers of the azole derivative (I). It includes salts or acid addition salts of these acids. Suitable cations are in particular ions of alkali metals (preferably sodium and potassium), alkaline earth metals (preferably calcium, magnesium and barium), transition metals (preferably manganese, copper, zinc and iron). Suitable cations are also ammonium ions ( preferably diisopropylammonium , tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium), and also phosphonium ions, sulfonium ions (preferably tri(C 1 -C 4 -alkyl)sulfonium) and sulfoxonium ions (preferably tri(C 1 —C 4 -alkyl)sulfoxonium).
 有用な酸付加塩のアニオンは、主に、塩化物イオン、臭化物イオン、フッ化物イオン、硫酸水素イオン、硫酸イオン、リン酸二水素イオン、リン酸水素イオン、リン酸イオン、硝酸イオン、重炭酸イオン、炭酸イオン、スルホン酸塩、芳香族スルホン酸塩、ヘキサフルオロケイ酸イオン、ヘキサフルオロリン酸イオン、安息香酸イオン、ならびにC-C-アルカン酸のアニオンである。有用な酸付加塩のアニオンは、好ましくはギ酸イオン、酢酸イオン、プロピオン酸イオンおよび酪酸イオンである。これらは、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーを、対応するアニオンの酸(好ましくは塩酸、臭化水素酸、硫酸、リン酸、硝酸またはp-トルエンスルホン酸)と反応させることにより形成することができる。 Anions of useful acid addition salts are mainly chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, bicarbonate ions, carbonate, sulfonate, aromatic sulfonate, hexafluorosilicate, hexafluorophosphate, benzoate and anions of C 1 -C 4 -alkanoic acids. Anions of useful acid addition salts are preferably formate, acetate, propionate and butyrate. These are obtained by reacting the R-enantiomer or mixed enantiomers of the azole derivative (I) with an acid of the corresponding anion (preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid or p-toluenesulfonic acid). can be formed.
 アゾール誘導体(I)の農学的または工業的に許容可能な塩のいくつかの例を下記表2に示す。下記表2のR、Rおよびmは、それぞれ上記式(I)のR、Rおよびmに対応し、表2のZ-(Rは、上記式(I)のZと(Rとで表される構造部分に対応する。なお、下記表2のアゾール誘導体(I)の農学的または工業的に許容可能な塩は、R-エナンチオマーの農学的または工業的に許容可能な塩でもあり得、R-エナンチオマーとS-エナンチオマーとの混合物の農学的または工業的に許容可能な塩でもあり得る。
Figure JPOXMLDOC01-appb-T000006
Some examples of agriculturally or industrially acceptable salts of azole derivative (I) are shown in Table 2 below. R 1 , R 2 and m in Table 2 below correspond to R 1 , R 2 and m in Formula (I) above, respectively, and Z—(R 3 ) n in Table 2 is Z in Formula (I) above. and (R 3 ) n . The agriculturally or industrially acceptable salt of the azole derivative (I) in Table 2 below may also be an agriculturally or industrially acceptable salt of the R-enantiomer. It can also be an agriculturally or industrially acceptable salt of a mixture of
Figure JPOXMLDOC01-appb-T000006
 〔2.アゾール誘導体の製造方法〕
 アゾール誘導体(I)は、以下に示すいずれかの方法によって製造することができる。なお、以下に説明する各製造方法によって製造されるアゾール誘導体は、ラセミ体である。
[2. Method for producing an azole derivative]
Azole derivative (I) can be produced by any of the following methods. Note that the azole derivative produced by each production method described below is a racemate.
 下記スキーム中のR、R、R、Z、mおよびnは、それぞれ上記一般式(I)のR、R、R、Z、mおよびnに対応する。また、式(x)(xは数字)で表される化合物を単に化合物(x)と記載する。なお、公知の反応機構を用いているステップの反応において、反応に供される試薬、塩基および溶媒等、ならびに温度等の各種条件は、技術常識に基づいて当業者が適宜設定し得る範囲のものである。 R 1 , R 2 , R 3 , Z, m and n in the scheme below correspond to R 1 , R 2 , R 3 , Z, m and n in the general formula (I) above, respectively. A compound represented by formula (x) (where x is a number) is simply referred to as compound (x). In the reaction of the step using a known reaction mechanism, reagents, bases, solvents, etc., and various conditions such as temperature to be subjected to the reaction are within the range that can be appropriately set by those skilled in the art based on common general technical knowledge. is.
 (1)アゾール誘導体の製造方法1
 RおよびRが水素以外の同一の基である場合、下記合成スキーム1に従って、公知の技術により得られる化合物からアゾール誘導体(I)を製造することができる。
Figure JPOXMLDOC01-appb-C000007
(1) Azole derivative production method 1
When R 1 and R 2 are the same group other than hydrogen, the azole derivative (I) can be produced from compounds obtained by known techniques according to Synthesis Scheme 1 below.
Figure JPOXMLDOC01-appb-C000007
 (step1)化合物(1)のケトンα位をアルキル化することにより、化合物(2)を得る。アルキル化は、ヨウ化アルキル等のアルキル化試薬を用いた反応により行えばよい。一例としては、アルキル化試薬としてヨウ化アルキル、塩基として水素化ナトリウム、溶媒としてN,N-ジメチルホルムアミドを用い、室温で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 1) Compound (2) is obtained by alkylating the ketone α-position of compound (1). Alkylation may be carried out by a reaction using an alkylating reagent such as alkyl iodide. One example is a method of using an alkyl iodide as an alkylating reagent, sodium hydride as a base, and N,N-dimethylformamide as a solvent, and carrying out the reaction at room temperature, but is not limited thereto.
 (step2)化合物(2)のハロゲンXを、1以上のRで置換されているもしくは非置換のフェノールまたはヒドロキシ基を有する芳香族複素環と置換することにより、化合物(3)を得る。フェノールまたはヒドロキシ基を有する芳香族複素環との置換は、Xの種類により反応が異なり得る。例えば、XがFまたはClの場合には、SAr反応での置換が可能である。一例としては、XをFとし、塩基として炭酸カリウム、溶媒としてN,N-ジメチルホルムアミドを用い、120℃で反応させる方法が挙げられるが、これに限定されるものではない。また、XがCl、BrまたはIの場合には、銅触媒を用いたUllmann縮合反応での置換が可能である。なお、Ullmann縮合反応は、高温(例えば195℃)での反応に限らず、配位子を用いて、比較的低温(例えば135℃)の加熱条件で反応させてもよい。一例としては、XをBrとし、銅触媒としてヨウ化銅(I)、塩基として炭酸セシウム、溶媒としてN-メチルピロリドンを用い、マイクロウェーブ反応装置により195℃で反応させる方法が挙げられるが、これに限定されるものではない。また別の例としては、銅触媒としてヨウ化銅(I)、配位子としてトリス(2,4-ペンタンジオナト)鉄(III)を加え、塩基として炭酸カリウム、溶媒としてN,N-ジメチルホルムアミドを用い、オイルバスにより135℃加熱条件で反応させる方法が挙げられる。 (Step 2) Compound (3) is obtained by replacing halogen X of compound (2) with a phenol substituted or unsubstituted with one or more R 3 or an aromatic heterocycle having a hydroxy group. Substitution with an aromatic heterocyclic ring having a phenol or hydroxy group may react differently depending on the type of X. For example, when X is F or Cl, substitution in S N Ar reactions is possible. One example is a method in which X is F, potassium carbonate is used as a base, N,N-dimethylformamide is used as a solvent, and the reaction is carried out at 120° C., but the method is not limited thereto. Alternatively, when X is Cl, Br or I, substitution is possible in a copper-catalyzed Ullmann condensation reaction. The Ullmann condensation reaction is not limited to a reaction at a high temperature (eg, 195° C.), and a ligand may be used and the reaction may be performed under a relatively low temperature (eg, 135° C.) heating condition. One example is a method in which X is Br, copper (I) iodide is used as a copper catalyst, cesium carbonate is used as a base, and N-methylpyrrolidone is used as a solvent, and the reaction is carried out at 195° C. in a microwave reactor. is not limited to As another example, copper (I) iodide as a copper catalyst, tris(2,4-pentanedionato)iron (III) as a ligand, potassium carbonate as a base, and N,N-dimethyl as a solvent are added. For example, formamide is used and the reaction is performed under heating conditions of 135° C. in an oil bath.
 (step3)化合物(3)をCorey-Chaykovsky反応によりオキシラン化し、続けてアゾール化することにより、アゾール誘導体(I)を得る。オキシラン化とアゾール化とは別の反応として段階的に行ってもよいが、本実施形態ではワンポットで行っている。オキシラン化およびアゾール化の反応をワンポットで行うことにより、工程数を削減することができる。ワンポットで反応を行う場合、溶媒中、化合物(3)を、1,2,4-トリアゾールまたはそのアルカリ金属塩および硫黄イリドの共存下で反応させることにより目的のアゾール誘導体(I)が得られる。具体的には、化合物(3)と1,2,4-トリアゾールまたはそのアルカリ金属塩とを溶媒中で混合する。その後、ここにイリド試薬および塩基を間欠的に添加することにより、反応系中で生じた中間体オキシランを順次アゾール化して、目的のアゾール誘導体(I)を得ることができる。 (Step 3) Compound (3) is converted to oxirane by Corey-Chaykovsky reaction, followed by azole conversion to obtain azole derivative (I). Oxiration and azole formation may be carried out stepwise as separate reactions, but in the present embodiment they are carried out in one pot. By carrying out the oxiration and azole-forming reactions in one pot, the number of steps can be reduced. When the reaction is carried out in one pot, the target azole derivative (I) is obtained by reacting compound (3) in the presence of 1,2,4-triazole or its alkali metal salt and sulfur ylide in a solvent. Specifically, compound (3) and 1,2,4-triazole or an alkali metal salt thereof are mixed in a solvent. Thereafter, by intermittently adding an ylide reagent and a base, the intermediate oxirane produced in the reaction system is sequentially azoleized to obtain the desired azole derivative (I).
 溶媒としては、N-メチルピロリドン、N,N-ジメチルアセトアミドおよびN,N-ジメチルホルムアミド等のアミド結合を持つ極性溶媒、当該極性溶媒とアルコールとの混合溶媒、またはジメチルスルホキシドを挙げることができる。また、混合溶媒におけるアルコールとしては、tert-ブタノールを挙げることができる。 Examples of solvents include polar solvents having an amide bond such as N-methylpyrrolidone, N,N-dimethylacetamide and N,N-dimethylformamide, mixed solvents of the polar solvents and alcohol, or dimethylsulfoxide. Moreover, tert-butanol can be mentioned as the alcohol in the mixed solvent.
 硫黄イリドとしては、ジメチルスルホニウムメチリド等のスルホニウムメチリド類およびジメチルスルホキソニウムメチリド等のスルホキソニウムメチリド類を挙げることができる。用いられるスルホニウムメチリド類またはスルホキソニウムメチリド類は、溶媒中、スルホニウム塩(例えば、トリメチルスルホニウムヨージドおよびトリメチルスルホニウムブロミド等)またはスルホキソニウム塩(例えばトリメチルスルホキソニウムヨージドおよびトリメチルスルホキソニウムブロミド(TMSOB)等)等のイリド試薬と、塩基とを反応させることにより生成させることができる。塩基としては、例えば、水素化ナトリウム等の金属水素化合物、またはナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシドおよびカリウムtert-ブトキシド等のアルカリ金属のアルコキシド等を用いることができる。また、1,2,4-トリアゾールのアルカリ金属塩を使用してもよい。 Examples of sulfur ylides include sulfonium methylides such as dimethylsulfonium methylide and sulfoxonium methylides such as dimethylsulfoxonium methylide. The sulfonium methylides or sulfoxonium methylides used are sulfonium salts (e.g., trimethylsulfonium iodide and trimethylsulfonium bromide) or sulfoxonium salts (e.g., trimethylsulfoxonium iodide and trimethylsulfoxonium iodide) in solvents. It can be produced by reacting a ylide reagent such as nium bromide (TMSOB) with a base. Examples of bases that can be used include metal hydrides such as sodium hydride, alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide and potassium tert-butoxide. Alkali metal salts of 1,2,4-triazoles may also be used.
 オキシラン化およびアゾール化の反応をワンポットで行う反応の一例としては、化合物(3)および1,2,4-トリアゾールナトリウム塩をN-メチルピロリドン中において、80℃で混合し、ここにイリド試薬としてTMSOB、塩基としてナトリウムtert-ブトキシドをそれぞれ分割添加する方法が挙げられるが、これに限定されるものではない。 As an example of a reaction in which the oxiration and azole formation reactions are carried out in one pot, compound (3) and 1,2,4-triazole sodium salt are mixed in N-methylpyrrolidone at 80° C., and A method in which TMSOB and sodium tert-butoxide as a base are added in portions may be mentioned, but is not limited thereto.
 一方、オキシラン化とアゾール化とを段階的に行う反応方法の一例としては、オキシラン化においては、イリド試薬としてトリメチルスルホニウムヨージド(TMSI)、塩基として水素化ナトリウム、溶媒としてジメチルスルホキシドを用い、室温で反応させる方法が挙げられる。また、その後のアゾール化においては、1,2,4-トリアゾール、塩基としてジアザビシクロウンデセン(DBU)、および溶媒としてジメチルスルホキシドを用い、80℃で反応させる方法が挙げられる。 On the other hand, as an example of a reaction method in which oxiration and azole formation are performed stepwise, in the oxiration, trimethylsulfonium iodide (TMSI) is used as the ylide reagent, sodium hydride as the base, and dimethylsulfoxide as the solvent. A method of reacting with Further, in the subsequent azolization, a method of reacting at 80° C. using 1,2,4-triazole, diazabicycloundecene (DBU) as a base, and dimethylsulfoxide as a solvent can be mentioned.
 (1’)アゾール誘導体の製造方法1’
 XがCl、IまたはBrの場合、step2および3に代えて、下記合成スキーム1’に示すようにアゾール誘導体(I)を得ることができる。具体的には、化合物(2)に対してアゾールを導入して化合物(4)を得て、アゾール導入後にUllmann縮合反応によってエーテル骨格を合成することで、アゾール誘導体(I)を得ることができる。
Figure JPOXMLDOC01-appb-C000008
(1′) Method 1′ for producing an azole derivative
When X is Cl, I or Br, instead of steps 2 and 3, the azole derivative (I) can be obtained as shown in Synthetic Scheme 1' below. Specifically, the azole derivative (I) can be obtained by introducing an azole into the compound (2) to obtain the compound (4), and then synthesizing an ether skeleton by Ullmann condensation reaction after the introduction of the azole. .
Figure JPOXMLDOC01-appb-C000008
 (step2’)化合物(2)にアゾールを導入することにより、化合物(4)を得る。化合物(2)のアゾール化は、上述のstep3に同様の方法で行えばよい。一例としては、上述のstep3に記載のワンポットで反応させる方法が挙げられる。 (Step 2') Compound (4) is obtained by introducing an azole into compound (2). Azolation of compound (2) may be carried out in the same manner as in step 3 above. One example is the one-pot reaction method described in step 3 above.
 (step3’)1以上のRで置換されている、または非置換のフェノールまたはヒドロキシ基を有する芳香族複素環を用いて、化合物(4)からUllmann縮合反応でエーテル骨格を合成することで、アゾール誘導体(I)を得る。ここでのUllmann縮合反応においても、高温(例えば195℃)での反応に限らず、配位子を用いて、比較的低温(例えば135℃)の加熱条件で反応させてもよい。一例としては、銅触媒としてヨウ化銅(I)、配位子としてトリス(2,4-ペンタンジオナト)鉄(III)を加え、塩基として炭酸カリウム、溶媒としてN,N-ジメチルホルムアミドを用い、オイルバスにより135℃で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 3′) Synthesizing an ether skeleton from compound (4) by Ullmann condensation reaction using an aromatic heterocycle having a phenol or hydroxy group substituted with one or more R 3 or unsubstituted, Azole derivative (I) is obtained. The Ullmann condensation reaction here is not limited to a reaction at a high temperature (eg, 195° C.), and a ligand may be used to react at a relatively low temperature (eg, 135° C.). For example, copper (I) iodide as a copper catalyst, tris(2,4-pentanedionato)iron (III) as a ligand, potassium carbonate as a base, and N,N-dimethylformamide as a solvent are used. and a method of reacting at 135° C. in an oil bath, but not limited thereto.
 (2)アゾール誘導体の製造方法2
 RまたはRのいずれかがHである場合、下記合成スキーム2に従って、公知の技術により得られる化合物からアゾール誘導体(I)を製造することができる。下記合成スキーム2および2’ではR=Hとして例示する。また、RとRとが互いにアルキル基であって、互いに相違する場合、下記合成スキーム2により得られる化合物(8)からアゾール誘導体(I)を製造することができる。
Figure JPOXMLDOC01-appb-C000009
(2) Azole derivative production method 2
When either R 1 or R 2 is H, the azole derivative (I) can be prepared according to the synthesis scheme 2 below from compounds obtained by known techniques. Synthetic schemes 2 and 2′ below are exemplified as R 1 =H. Moreover, when R 1 and R 2 are alkyl groups and are different from each other, the azole derivative (I) can be produced from the compound (8) obtained by the synthesis scheme 2 below.
Figure JPOXMLDOC01-appb-C000009
 (step1)Ullmann反応またはSAr反応により、化合物(1)のハロゲンXを、置換もしくは非置換のフェノールまたはヒドロキシ基を有する芳香族複素環と置換することで、化合物(1)から化合物(5)を得る。なお、化合物(1)のようにケトンα位に水素が存在する場合、塩基性高温条件下ではケトンα位を起点とした副反応が優先する可能性がある。従ってこのような場合には、比較的温和な条件であるSAr反応が好適である。一例としては、XをFとし、塩基として炭酸カリウム、溶媒としてN,N-ジメチルホルムアミドを用い、120℃で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 1) by Ullmann reaction or S N Ar reaction, the halogen X of compound (1) is substituted with a substituted or unsubstituted phenol or an aromatic heterocyclic ring having a hydroxy group, thereby converting compound (1) to compound (5). ). When hydrogen is present at the α-position of the ketone as in compound (1), side reactions starting from the α-position of the ketone may take precedence under basic high-temperature conditions. Therefore, in such a case, the S N Ar reaction under relatively mild conditions is suitable. One example is a method in which X is F, potassium carbonate is used as a base, N,N-dimethylformamide is used as a solvent, and the reaction is carried out at 120° C., but the method is not limited thereto.
 (step2)化合物(5)をβケトエステルの形で増炭することにより、化合物(6)を得る。これにより置換位置の一つを保護し、またメチレンが求核置換反応に対して活性化される。増炭の方法は、例えば、反応試薬兼溶媒としてROCOORで示される炭酸ジアルキル(Rはアルキル基であり、2つあるRは同一でも異なってもよい)を加熱還流により反応させる方法が挙げられる。なお、化合物(5)を直接アルキル化すると、二置換体も生じ得るために、一置換体を選択的に合成することが難しくなる。一例としては、反応試薬兼溶媒として炭酸ジメチル、塩基として水素化ナトリウムを用い、少量のメタノールを加えて加熱還流により反応させる方法が挙げられるが、これに限定されるものではない。 (Step 2) Compound (6) is obtained by carbonizing compound (5) in the form of β-ketoester. This protects one of the substitution positions and also activates the methylene for nucleophilic substitution reactions. Examples of the method for increasing carbon include a method of reacting a dialkyl carbonate represented by ROCOOR (R is an alkyl group, and two Rs may be the same or different) as a reaction reagent and solvent by heating under reflux. In addition, if the compound (5) is directly alkylated, a disubstituted compound may also be produced, making it difficult to selectively synthesize a monosubstituted compound. One example is a method of using dimethyl carbonate as a reaction reagent and solvent, sodium hydride as a base, adding a small amount of methanol, and reacting by heating under reflux, but the method is not limited to this.
 (step3)化合物(6)の活性メチンをアルキル化することにより、化合物(7)を得る。アルキル化は、ヨウ化アルキル等のアルキル化試薬を用いた反応により行えばよい。一例として、アルキル化試薬としてヨウ化イソプロピル、塩基として水素化ナトリウム、溶媒としてN,N-ジメチルホルムアミドを用い、80℃で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 3) Compound (7) is obtained by alkylating the active methine of compound (6). Alkylation may be carried out by a reaction using an alkylating reagent such as alkyl iodide. One example is a method of using isopropyl iodide as an alkylating reagent, sodium hydride as a base, and N,N-dimethylformamide as a solvent, and performing the reaction at 80° C., but is not limited thereto.
 (step4)化合物(7)のエステルを加水分解脱炭酸することにより、化合物(8)を得る。一例として、塩基として30%水酸化ナトリウム水溶液、溶媒としてテトラヒドロフランを用い、加熱還流により反応させる方法が挙げられるが、これに限定されるものではない。 (Step 4) Compound (8) is obtained by hydrolyzing and decarboxylating the ester of compound (7). An example is a method of using a 30% aqueous sodium hydroxide solution as a base and tetrahydrofuran as a solvent, and the reaction is carried out by heating under reflux, but the method is not limited to this.
 (step5)Wittig反応により、ケトンである化合物(8)からオレフィンである化合物(9)を得る。なお、RおよびRともにHである場合には、step2、3および4を省略し、化合物(5)を直接オレフィン化すればよい。リンイリドとなるイリド試薬としては、メチルトリフェニルホスホニウムブロミド等が挙げられる。より具体的な一例として、イリド試薬としてメチルトリフェニルホスホニウムブロミド、塩基としてカリウムtert-ブトキシド、溶媒としてテトラヒドロフランを用い、室温で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 5) An olefin compound (9) is obtained from a ketone compound (8) by Wittig reaction. When both R 1 and R 2 are H, steps 2, 3 and 4 may be omitted and compound (5) may be directly olefinized. Methyltriphenylphosphonium bromide etc. are mentioned as an ylide reagent used as phosphorus ylide. A more specific example is a method of using methyltriphenylphosphonium bromide as the ylide reagent, potassium tert-butoxide as the base, and tetrahydrofuran as the solvent, and carrying out the reaction at room temperature, but is not limited thereto.
 (step6)触媒量の四酸化オスミウムと再酸化剤との共存下で、化合物(9)を酸化することにより、vic-ジオールである化合物(10)を合成する。一例として、触媒量の四酸化オスミウムを用い、再酸化剤としてN-メチルモルホリンオキシド、溶媒として水とアセトンとの混合液を用い、室温で反応させる方法が挙げられるが、これに限定されるものではない。なお、化合物(9)をオキシラン化することにより、アゾール誘導体(I)を得てもよい。 (Step 6) The compound (9) is oxidized in the presence of a catalytic amount of osmium tetroxide and a reoxidant to synthesize the vic-diol compound (10). One example is a method of using a catalytic amount of osmium tetroxide, using N-methylmorpholine oxide as a reoxidizing agent, and a mixture of water and acetone as a solvent, and carrying out the reaction at room temperature, but is limited to this. isn't it. Azole derivative (I) may be obtained by oxiranating compound (9).
 (step7)化合物(10)の一級のヒドロキシ基に、脱離基としてスルホニル基を導入することにより、化合物(11)を得る。脱離基の導入には、RSOClで示される置換スルホニルクロリドが用いられる。ここで、Rは、水素原子が置換されていてもよい炭素数1~3のアルキル基、フェニル基またはナフチル基を表している。Rは好ましくは4-メチルフェニル基である。一例では、脱離基導入試薬としてp-トルエンスルホニルクロリド、塩基としてピリジン、溶媒としてクロロホルムを用い、0℃で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 7) A compound (11) is obtained by introducing a sulfonyl group as a leaving group into the primary hydroxy group of the compound (10). A substituted sulfonyl chloride represented by R 4 SO 2 Cl is used to introduce a leaving group. Here, R 4 represents an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydrogen atom, a phenyl group or a naphthyl group. R 4 is preferably a 4-methylphenyl group. One example is a method of using p-toluenesulfonyl chloride as a leaving group-introducing reagent, pyridine as a base, and chloroform as a solvent, and carrying out the reaction at 0° C., but is not limited thereto.
 (step8)1,2,4-トリアゾールのアルカリ金属塩を用いて化合物(11)をアゾール化することにより、アゾール誘導体(I)を得る。一例として、アゾール化試薬として1,2,4-トリアゾールナトリウム塩、溶媒としてN-メチルピロリドンを用い、120℃で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 8) Azole derivative (I) is obtained by azoleizing compound (11) using an alkali metal salt of 1,2,4-triazole. One example is a method of using 1,2,4-triazole sodium salt as an azole-forming reagent and N-methylpyrrolidone as a solvent, and reacting at 120° C., but the method is not limited to this.
 RとRとが互いにアルキル基であって、互いに相違する場合、化合物(8)のケトンα位をアルキル化し、Rと異なるRを導入すればよい。アルキル化は、ヨウ化アルキル等のアルキル化試薬を用いた反応により行えばよい。一例としては、アルキル化試薬としてヨウ化アルキル、塩基として水素化ナトリウム、溶媒としてN,N-ジメチルホルムアミドを用い、室温で反応させる方法が挙げられるが、これに限定されるものではない。アルキル化の後にstep5からstep8を行うことにより、RとRとが互いにアルキル基であって、互いに相違するアゾール誘導体(I)を得ることができる。 When R 1 and R 2 are alkyl groups and are different from each other, the ketone α-position of compound (8) may be alkylated to introduce R 1 different from R 2 . Alkylation may be carried out by a reaction using an alkylating reagent such as alkyl iodide. One example is a method of using an alkyl iodide as an alkylating reagent, sodium hydride as a base, and N,N-dimethylformamide as a solvent, and carrying out the reaction at room temperature, but is not limited thereto. By performing step 5 to step 8 after alkylation, it is possible to obtain azole derivative (I) which is different from each other in which R 1 and R 2 are alkyl groups.
 (2’)アゾール誘導体の製造方法2’
 XがCl、IまたはBrの場合、step1に代えて、下記合成スキーム2’に示すようにアゾール誘導体(I)を得ることができる。具体的には、最後にUllmann縮合反応により化合物(24)のハロゲンXを、置換もしくは非置換のフェノールまたはヒドロキシ基を有する芳香族複素環と置換することで、アゾール誘導体(I)を得ることができる。(合成スキーム2’)
Figure JPOXMLDOC01-appb-C000010
(2′) Method 2′ for producing an azole derivative
When X is Cl, I or Br, instead of step 1, azole derivative (I) can be obtained as shown in Synthesis Scheme 2' below. Specifically, the azole derivative (I) can be obtained by finally substituting the halogen X of the compound (24) with a substituted or unsubstituted phenol or an aromatic heterocycle having a hydroxy group by Ullmann condensation reaction. can. (Synthetic scheme 2')
Figure JPOXMLDOC01-appb-C000010
 (3)アゾール誘導体の製造方法3
 RとRとが結合し、RおよびRが結合している炭素原子とともにシクロプロパン環を形成している場合、下記合成スキーム3に従って、公知の技術により得られる化合物からアゾール誘導体(I)を製造することができる。
Figure JPOXMLDOC01-appb-C000011
(3) Azole derivative production method 3
When R 1 and R 2 are bonded to form a cyclopropane ring together with the carbon atoms to which R 1 and R 2 are bonded, azole derivatives ( I) can be produced.
Figure JPOXMLDOC01-appb-C000011
 (step1)化合物(1)のケトンα位にメチレンを導入することにより、化合物(12)を得る。メチレンの導入方法は、例えば、非特許文献:Org. Syn. Coll., vol.7 (1990) p332に記載の方法を参照して実施することができる。一例としては、パラホルムアルデヒドとN-メチルアニリニウムトリフルオロアセタートとをテトラヒドロフラン中加熱還流により反応させる方法が挙げられるが、これに限定されるものではない。 (Step 1) Compound (12) is obtained by introducing methylene into the ketone α-position of compound (1). The method for introducing methylene can be carried out, for example, by referring to the method described in Non-Patent Document: Org. Syn. Coll., vol.7 (1990) p332. One example is, but not limited to, a method of reacting paraformaldehyde and N-methylanilinium trifluoroacetate in tetrahydrofuran by heating under reflux.
 (step2)化合物(12)のケトンα位のエキソメチレンにCorey-Chaycovsky反応で硫黄イリドを作用させることにより、シクロプロパン環を導入し、化合物(13)を得る。一般的にスルホキソニウムイリドを作用させるとMichael付加が起こるが、スルホニウムイリドを用いるとオキシラン化が起こるとされている。そのため、イリド試薬は、スルホキソニウム塩を用いることが好ましい。一例としては、イリド試薬としてトリメチルスルホキソニウムヨージドを用い、塩基として水素化ナトリウム、溶媒としてジメチルスルホキシドを用いて、室温で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 2) The exomethylene at the ketone α-position of compound (12) is reacted with a sulfur ylide in the Corey-Chaycovsky reaction to introduce a cyclopropane ring to obtain compound (13). It is generally believed that Michael addition occurs when a sulfoxonium ylide is used, but oxiration occurs when a sulfonium ylide is used. Therefore, it is preferable to use a sulfoxonium salt as the ylide reagent. One example is a method of using trimethylsulfoxonium iodide as the ylide reagent, using sodium hydride as the base and dimethylsulfoxide as the solvent, and performing the reaction at room temperature, but is not limited thereto.
 (step3)化合物(13)のハロゲンXを置換もしくは非置換のフェノールまたはヒドロキシ基を有する芳香族複素環と置換することにより、化合物(14)を得る。具体的には、上述の合成スキーム1でのstep2における化合物(3)の合成手法と同じである。 (Step 3) Compound (14) is obtained by substituting halogen X of compound (13) with a substituted or unsubstituted phenol or an aromatic heterocycle having a hydroxy group. Specifically, it is the same as the method for synthesizing compound (3) in step 2 of Synthesis Scheme 1 described above.
 (step4)化合物(14)をCorey-Chaykovsky反応によりオキシラン化し、続けてアゾール化することにより、アゾール誘導体(I)を得る。具体的には、上述の合成スキーム1でのstep3におけるアゾール誘導体(I)の合成手法と同じである。 (Step 4) Compound (14) is converted to oxirane by Corey-Chaykovsky reaction, followed by azole conversion to obtain azole derivative (I). Specifically, it is the same as the method for synthesizing the azole derivative (I) in step 3 of Synthesis Scheme 1 described above.
 (4)アゾール誘導体の製造方法4
 Zが芳香族複素環である場合、下記合成スキーム4に従って、公知の技術により得られる化合物からアゾール誘導体(I)を製造することができる。
Figure JPOXMLDOC01-appb-C000012
(4) Azole derivative production method 4
When Z is an aromatic heterocycle, the azole derivative (I) can be produced from compounds obtained by known techniques according to Synthetic Scheme 4 below.
Figure JPOXMLDOC01-appb-C000012
 (step1)化合物(1)のケトンα位をアルキル化することにより、化合物(2)を得る。具体的には、上述の合成スキーム1でのstep1における化合物(2)の合成手法と同じである。 (Step 1) Compound (2) is obtained by alkylating the ketone α-position of compound (1). Specifically, it is the same as the method for synthesizing compound (2) in step 1 of Synthetic Scheme 1 described above.
 (step2)化合物(2)と置換基Rを有するベンジルアルコールとのSAr反応により、化合物(15)を合成する。この場合、Xとしては、反応性の高いFが好適である。一例としては、XをFとし、塩基としてカリウムtert-ブトキシド、溶媒としてN,N-ジメチルホルムアミドを用い、室温で反応させる方法が挙げられるが、これに限定されるものではない。なお、Rは水素、ハロゲンおよびメトキシ基が挙げられるが、これに限定されるものではない。 (Step 2) Compound (15) is synthesized by S N Ar reaction between compound (2) and benzyl alcohol having a substituent R. In this case, X is preferably F, which has high reactivity. An example is, but not limited to, a method in which X is F, potassium tert-butoxide is used as a base, and N,N-dimethylformamide is used as a solvent, and the reaction is carried out at room temperature. In addition, R includes, but is not limited to, hydrogen, halogen and methoxy group.
 (step3)化合物(15)をCorey-Chaykovsky反応によりオキシラン化し、続けてアゾール化することにより、化合物(16)を合成する。具体的には、上述の合成スキーム1でのstep3におけるアゾール誘導体(I)の合成手法と同じである。 (Step 3) Compound (16) is synthesized by converting compound (15) into oxirane by the Corey-Chaykovsky reaction, followed by azole conversion. Specifically, it is the same as the method for synthesizing the azole derivative (I) in step 3 of Synthesis Scheme 1 described above.
 (step4)パラジウム系触媒を用いて、水素雰囲気下で化合物(16)を接触還元することにより、化合物(17)を合成する。一例としては、水素雰囲気下、触媒としてパラジウム炭素、溶媒としてエタノールを用い、室温で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 4) Compound (17) is synthesized by catalytically reducing compound (16) in a hydrogen atmosphere using a palladium-based catalyst. One example is a method of using palladium carbon as a catalyst and ethanol as a solvent in a hydrogen atmosphere at room temperature, but the method is not limited to this.
 (step5)化合物(17)を求核剤として、ハロゲンを有する複素環と反応させることにより、アゾール誘導体(I)を合成する。好適にはSAr反応が用いられる。SAr反応を用いる場合には、複素環が有するハロゲンとしてはFまたはClが好ましく、Fがより好適である。一例としては、ハロゲンを有する複素環として少なくとも一つの水素原子がフッ素原子で置換されたピリジン、塩基として炭酸セシウム、溶媒としてN,N-ジメチルホルムアミドを用い、60℃で反応させる方法が挙げられるが、これに限定されるものではない。 (Step 5) Azole derivative (I) is synthesized by reacting compound (17) as a nucleophilic agent with a halogen-containing heterocycle. Preferably the S N Ar reaction is used. When using the S N Ar reaction, the halogen of the heterocycle is preferably F or Cl, more preferably F. One example is a method of reacting at 60° C. using pyridine in which at least one hydrogen atom is substituted with a fluorine atom as the halogen-containing heterocyclic ring, cesium carbonate as the base, and N,N-dimethylformamide as the solvent. , but not limited to.
 〔3.アゾール誘導体のエナンチオマーの製造方法〕
 アゾール誘導体(I)のR-エナンチオマーおよびS-エナンチオマーは、以下に示すいずれかの方法を用いて、アゾール誘導体(I)のラセミ体から分画することにより製造することができる。なお、以下に示す分画方法は公知であり、分画に供される試薬、塩基および溶媒等、ならびに温度等の各種条件は、技術常識に基づいて当業者が適宜設定し得る範囲のものである。
[3. Method for Producing Enantiomers of Azole Derivatives]
The R-enantiomer and S-enantiomer of azole derivative (I) can be produced by fractionating the racemate of azole derivative (I) using any of the methods shown below. The fractionation methods described below are known, and reagents, bases, solvents, etc., and various conditions such as temperature used for fractionation are within the range that can be appropriately set by those skilled in the art based on common general technical knowledge. be.
 分画方法としては、例えば、〔2.アゾール誘導体の製造方法〕により得られたアゾール誘導体(I)のラセミ体を、アミローストリス(3,5-ジメチルフェニルカルバメート)がシリカゲル担体に固定化された分取カラムをつないだ高速液体クロマトグラフィー(HPLC)に供し、各エナンチオマーを得る方法が挙げられるが、これに限定されるものでない。 As a fractionation method, for example, [2. Azole derivative production method]] was subjected to high-performance liquid chromatography ( HPLC) to obtain each enantiomer, but is not limited thereto.
 アゾール誘導体(I)のR-エナンチオマーとS-エナンチオマーとの混合物は、上記の方法によって分画したR-エナンチオマーおよびS-エナンチオマーを、任意の混合比で混合することによって製造することができる。R-エナンチオマーとS-エナンチオマーの混合比は、所望の活性を発揮できる量に適宜調整することが可能である。混合比率の一例は、これまでの説明に準ずるため、その説明を繰り返さない。 A mixture of the R-enantiomer and S-enantiomer of azole derivative (I) can be produced by mixing the R-enantiomer and S-enantiomer fractionated by the above method at any mixing ratio. The mixing ratio of the R-enantiomer and the S-enantiomer can be appropriately adjusted so that the desired activity can be exhibited. An example of the mixing ratio conforms to the above explanation, so the explanation will not be repeated.
 〔4.農園芸用殺菌剤〕
 本態様のアゾール誘導体(I)のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物は、イミダゾリル基又は1,2,4-トリアゾリル基を有するので、無機酸及び有機酸の酸付加塩、又は金属錯体を形成する。したがって、酸付加塩及び金属錯体の一部として、他の有効成分とともに農園芸用殺菌剤の有効成分として使用することができる。
[4. Agricultural and horticultural fungicide]
Since the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative (I) of this embodiment has an imidazolyl group or a 1,2,4-triazolyl group, acid addition salts of inorganic acids and organic acids, Or form a metal complex. Therefore, it can be used as an active ingredient of agricultural and horticultural fungicides together with other active ingredients as part of acid addition salts and metal complexes.
 (1)植物病害防除効果
 本実施形態における農園芸用殺菌剤は、広汎な植物病害に対する防除効果を呈する。
(1) Plant disease control effect The agricultural and horticultural fungicide in the present embodiment exhibits a control effect against a wide range of plant diseases.
 適用病害の例として以下を挙げることができる。なお、各病害の後ろの括弧内は、当該病害を引き起こす主な病原菌を示している。ダイズさび病(Phakopsora pachyrhizi、Phakopsora meibomiae)、ダイズ褐紋病(Zymoseptoria glycines)、ダイズ紫斑病(Cercoora kikuchii)、ダイズ褐点病(Alternaria sp.)、ダイズ炭疽病(Collectotrichum truncatum、Colletotrichum glysines)、ダイズ斑点病(Cercocpora sojina)、ダイズのリゾクトニア根腐病(Rhizoctonia solani)、ダイズ葉腐病(Rhizoctonia solani)、ダイズ黒点病(Diaporthe phaseolorum)、ダイズ茎疫病(Phytophthora sojae)、ダイズ赤かび病(Fusarium avenaceum、Fusarium oxysporum)、ダイズ萎凋病(Verticillium dahliae)、ダイズうどんこ病(Erysiphe glycines)、ダイズ褐色輪紋病(Corynespora cassiicola)、ダイズ褐斑病(Mycosphaerella sojae)、ダイズ黒根腐病(Calonectria ilicicola)、ダイズ炭腐病(Macrophomina phaseolina)、ダイズ黒根病(Thielaviopsis sp.)、ダイズ輪紋病(Ascochyta phaseolorum)、ダイズ黒とう病(Elsinoe glycines)、ダイズ急性枯死症(Fusarium virguliforme等のFusarium sp.)、インゲンマメ炭疽病(Colletotrichum lindemuthianum)、ナタネのPhoma stem canker/stem canker(Leptosphaeria maculans、Leptosphaeria biglobosa)、ナタネのLight leaf spot(Pyrenopeziza brassicae)、ナタネ根こぶ病(Plasmodiophora brassicae)、ナタネのバーティシリウム萎凋病(Verticillium longisporum)、ナタネのBlackspot(Alternaria spp.)、イネいもち病(Pyricularia oryzae)、イネごま葉枯病(Cochliobolus miyabeanus)、イネ白葉枯病(Xanthomonas oryzae pv. oryzae)、イネ紋枯病(Rhizoctonia solani)、イネ小黒菌核病(Helminthosporium sigmoideun)、イネばか苗病(Fusarium fujikuroi)、イネ苗立枯病(Pythium spp.)、イネ立枯病(Gaeumannomyces graminis)、オオムギうどんこ病(Erysiphe graminis f. sp.hordei)、オオムギ黒さび病(Puccinia graminis)、オオムギ黄さび病(Puccinia striiformis)、オオムギ小さび病(Puccinia hordei)、オオムギ斑葉病(Pyrenophora graminea)、オオムギ雲形病(Rhynchosporium secalis)、オオムギ裸黒穂病(Ustilago nuda)、オオムギ網斑病(Pyrenophora teres)、オオムギ赤かび病(Fusarium graminearum、Microdochium nivale)、コムギうどんこ病(Erysiphe graminis f. sp.tritici)、コムギ赤さび病(Puccinia recondita)、コムギ黄さび病(Puccinia striiformis)、コムギ眼紋病(Oculimacula yallundae)、コムギ赤かび病(Fusarium graminearum、Microdochium nivale)、コムギふ枯病(Phaeosphaeria nodorum)、コムギ葉枯病(Zymoseptoria tritici)、コムギ紅色雪腐病(Microdochium nivale)、コムギ褐色雪腐病(Pythium iwayamai、Pythium paddicum及びPythium spp.)、コムギ立枯病(Gaeumannomyces graminis)、コムギ黒点病(Epicoccum spp.)、コムギ黄斑病(Pyrenophora tritici-repentis)、コムギ雪腐褐色小粒菌核病(Typhula incarnata)、コムギ雪腐黒色小粒菌核病(Typhula ishikariensis)、コムギ雪腐大粒菌核病(Sclerotinia borealis)、ムギ類ラムラリア斑点病(Ramularia collo-cygni)、シバダラースポット病(Sclerotinia homoeocarpa)、シバラージパッチ病(Rhizoctonia solani)、シバブラウンパッチ病(Rhizoctonia solani)、シバ炭疽病(Colletotrichum graminicola)、シバのGray leaf Spot(Pyricularia grisea)、シバのネクロティックリングスポット病(Ophiosphaerella korrae)、シバのRed thread(Laetisaria fuciformis)、シバさび病(Puccinia zoysiae)、シバのサマーパッチ病(Magnaporthe poae)、シバのテイクオールパッチ(Gaeumannomyces graminis)、シバのブラウンリングパッチ(Waitea circinata)、シバフェアリーリング病(Agaricus spp.、Calvatia cyathiformis、Chlorophyllum molybdites、Clitocybe spp.、Lepiota spp.、Lepista subnuda、Lycoperdon spp.、Marasmius oreades、Scleroderma spp.、Tricholoma spp.等)、シバ紅色雪腐病(Microdochium nivale)、シバ雪腐褐色小粒菌核病(Typhula incarnata)、シバ雪腐黒色小粒菌核病(Typhula ishikariensis)、シバカーブラリア葉枯病(Curvularia sp.)、シバ疑似葉腐病(binucleate Rhizoctonia)、シバ立枯病(Gaeumannomyces sp., Phialophora sp.)、トウモロコシ黒穂病(Ustilago maydis)、トウモロコシ炭疽病(Colletotrichum graminicola)、トウモロコシ褐斑病(Kabatiella zeae)、トウモロコシ灰色斑点病(Cercospora zeae-maydis)、トウモロコシすす紋病(Setosphaeria turcica)、トウモロコシ北方斑点病(Bipolaris zeicola)、トウモロコシ斑点病(Physoderma maydis)、トウモロコシさび病(Puccinia spp.)、トウモロコシごま葉枯病(Bipolaris maydis)、トウモロコシ黄色ごま葉枯病(Phyllosticta maydis)、トウモロコシ赤かび病(Fusarium asiaticum、Fusarium fujikuroi、Fusarium proliferatum、Fusarium concentricum Fusarium graminearum、Fusarium verticillioides)、トウモロコシのPhaeosphaeria leaf spot(Phaeosphaeria maydis)、トウモロコシのDiplodia ear rot(Stenocarpella maydis、Stenocarpella macrospora)、サトウキビさび病(Puccinia spp.)、ウリ類うどんこ病(Podosphaera xanthii)、ウリ類炭疸病(Colletotrichum orbiculare、Glomerella cingurata)、ウリ類褐斑病(Corynespora cassiicola)、ウリ類べと病(Pseudoperonospora cubensis)、キュウリ灰色疫病(Phytophthora capsici)、キュウリつる割病(Fusarium oxysporum f. sp. cucumerinum)、スイカつる割病(Fusarium oxysporum f. sp. niveum)、リンゴうどんこ病(Podosphaera leucotricha)、リンゴ黒星病(Venturia inaequalis)、リンゴモリニア病(Monilinia mali)、リンゴ斑点落葉病(Alternaria alternata apple pathotype)、リンゴ腐乱病(Valsa ceratosperma)、ナシ黒斑病(Alternaria alternata Japanese pear pathotype)、ナシうどんこ病(Phyllactinia pyri)、ナシ赤星病(Gymnosporangium asiaticum)、ナシ黒星病(Venturia nashicola)、イチゴうどんこ病(Podosphaera aphanis)、核果類果樹の灰星病(Monilinia fructicola)、カンキツ青かび病(Penicillium italicum)、カンキツ緑かび病(Penicillium digitatum)、ブドウうどんこ病(Uncinula necator)、ブドウべと病(Plasmopara viticola)、ブドウ晩腐病(Glomerella cingulata、Colletotoricum acutatum)、ブドウのさび病(Phakopsora ampelopsidis)、ブドウ黒とう病(Elsinoe ampelina)、バナナ黒シガトカ病(Mycosphaerella fijiensis)、バナナ黄シガトカ病(Mycosphaerella musicola)、トマトうどんこ病(Erysiphe cichoracearum)、トマト輪紋病(Alternaria solani)、トマト葉かび病(Passalora fulva)、トマトすすかび病(Pseudocercospora fuligena)、トマト白星病(Septoria lycopersici)、トマト炭疽病(Colletotrichum coccodes)、ナスうどんこ病(Erysiphe cichoracearum)、ジャカイモの夏疫病(Alternaria solani)、ジャカイモ炭疽病(Colletotrichum coccodes)、ジャカイモうどんこ病(Erysiphe cichoracearum、Leveillula taurica)、ジャカイモ疫病(Phytophthora infestans)、タバコうどんこ病(Erysiphe cichoracearum)、タバコ赤星病(Alternaria longipes)、テンサイ褐斑病(Cercospora beticola)、テンサイうどんこ病(Erysiphe betae)、テンサイ葉腐病(Rhizoctonia solani)、テンサイ根腐病(Thanatephorus cucumeris)、テンサイ黒根病(Aphanomyces cochlioides)、ダイコン萎黄病(Fusarium oxysporum f. sp. raphani)、チャ炭疽病(Discula theae-sinensis)、チャもち病(Exobasidium vexans)、チャ褐色円星病(Pseudocercospora ocellata、Cercospora chaae)、チャ輪紋病(Pestalotiopsis longiseta、Pestalotiopsis theae)、チャ網もち病(Exobasidium reticulatum)、ワタ黒斑病(Alternaria spp.)、ワタ炭疽病(Glomerella spp.)、ワタ輪紋病(Ascochyta gossypii)、ワタさび病(Puccinia spp.、Phakopsora gossypii)、ワタのCercospora blight and leaf spot(Cercospora spp.)、ワタのDiplopia boll rot(Diplopia spp.)、ワタのHard lock(Fusarium spp.)、ワタのPhoma blight(Phoma spp.)、ワタのStemphyllium leaf spot(Stemphyllium spp.)、ラッカセイ黒渋病(Cercosporidium personatum)、ラッカセイ褐斑病(Cercospora arachidicola)、ラッカセイ白絹病(Sclerotium rolfsii)、ラッカセイさび病(Puccinia arachidis)、種々の作物をおかす灰色かび病(Botrytis cinerea)、ピシウム属菌の病害(Pythium spp.)、半身萎凋病(Verticillium sp.)及び菌核病(Sclerotinia sclerotiorum)等。また、Aspergillus属、Cochliobolus属、Corticium属、Diplodia属、Penicillium属、Fusarium属、Gibberella属、Mucor属、Phoma属、Phomopsis属、Pyrenophora属、Pythium属、Rhizoctonia属、Rhizopus属、Thielaviopsis属、Tilletia属、Trichoderma属、及びUstilago属等の病原菌によって引き起こされる各種植物の種子伝染性病害又は生育初期の病害。 Examples of applicable diseases include the following. The parentheses after each disease indicate the main pathogen causing the disease. Soybean rust (Phakopsora pachyrhizi, Phakopsora meibomiae), soybean brown spot (Zymoseptoria glycines), soybean purpura (Cercoora kikuchii), soybean brown spot (Alternaria sp.), soybean anthracnose (Collectotrichum truncatum, Colletotrichum glysines), soybean Cercocpora sojina, Rhizoctonia solani, Rhizoctonia solani, Diaporthe phaseolorum, Phytophthora sojae, Fusarium avenaceum , Fusarium oxysporum), soybean wilt (Verticillium dahliae), soybean powdery mildew (Erysiphe glycines), soybean brown spot (Corynespora cassiicola), soybean brown spot (Mycosphaerella sojae), soybean black root rot (Calonectria ilicicola), Macrophomina phaseolina, Thielaviopsis sp., Ascochyta phaseolorum, Elsinoe glycines, Acute soybean blight (Fusarium sp. such as Fusarium virguliforme), Kidney bean anthracnose (Colletotrichum lindemuthianum), Phoma stem canker/stem canker in oilseed rape (Leptosphaeria maculans, Leptosphaeria biglobosa), Light leaf spot (Pyrenopeziza brassicae) in oilseed rape, clubroot of oilseed rape (Plasmodiophora brassicae), Verticillium wilt in oilseed rape (Verticillium longisporum), Blackspot of oilseed rape (Alternaria spp.), rice blast (Pyricularia oryzae), rice leaf blight (Co chliobolus miyabeanus), rice bacterial leaf blight (Xanthomonas oryzae pv. Pythium spp.), rice wilt (Gaeumannomyces graminis), barley powdery mildew (Erysiphe graminis f. sp. hordei), Puccinia graminis, Puccinia striiformis, Puccinia hordei, Pyrenophora graminea, Rhynchosporium secalis, Barley bare smut Ustilago nuda, Pyrenophora teres, Fusarium graminearum, Microdochium nivale, Erysiphe graminis f. sp.tritici, Puccinia recondita, wheat Yellow rust (Puccinia striiformis), wheat eye spot (Oculimacula yallundae), wheat head blight (Fusarium graminearum, Microdochium nivale), wheat blight (Phaeosphaeria nodorum), wheat leaf blight (Zymoseptoria tritici), wheat scarlet Rot (Microdochium nivale), wheat brown snow rot (Pythium iwayamai, Pythium paddicum and Pythium spp.), wheat wilt (Gaeumannomyces graminis), wheat black spot (Epicoccum spp.), wheat yellow spot (Pyrenophora tritici-repentis) ), snow rot of wheat (Typhula incarnata), snow rot of wheat (Typhula ishikariensis), snow rot of wheat (Sclerotinia borealis), wheat rot (Ramularia collo-cygni) ), Sclerotinia homoeocarpa, Rhizoctonia solani, Rhizoctonia solani, Colletotrichum graminicola, Gray leaf spot (Pyricularia grisea), Necrotic tickling spot disease ( Ophiosphaerella korrae), Sheba Red thread (Laetisaria fuciformis), Sheba Rust (Puccinia zoysiae), Sheba Summer Patch (Magnaporthe poae), Sheba Takeall Patch (Gaeumannomyces graminis), Sheba Brown Ring Patch (Waitea circinata) , Agaricus spp. , Calvatia cyathiformis, Chlorophyllum molybdites, Clitocybe spp. , Lepiota spp. , Lepista subnuda, Lycoperdon spp. , Marasmius oreades, Scleroderma spp. , Tricholoma spp. etc.), turfgrass pink snow rot (Microdochium nivale), turfgrass snow rot brown sclerotia (Typhula incarnata), turfgrass snow rot black sclerotia (Typhula ishikariensis), turfgrass curvularia leaf blight (Curvularia sp.) , Binucleate Rhizoctonia, Gaeumannomyces sp., Phialophora sp., Ustilago maydis, Colletotrichum graminicola, Kabatiella zeae, Maize Gray Spot (Cercospora zeae-maydis), Corn Sooty Spot (Setosphaeria turcica), Maize Northern Spot (Bipolaris zeicola), Maize Spot (Physoderma maydis), Maize Rust (Puccinia spp.), Corn Leaf Blight Bipolaris maydis, Phyllosticta maydis, Fusarium asiaticum, Fusarium fujikuroi, Fusarium proliferatum, Fusarium concentricum Fusarium graminearum, Fusarium verticillioides, Phaeosphaeria leaf spot of maize (Phaeosphaeria maydis), Corn Diplodia ear rot (Stenocarpella maydis, Stenocarpella macrospora), sugar cane rust (Puccinia spp.), Cucurbit powdery mildew (Podosphaera xanthii), Cucurbit anthracnose (Colletotrichum orbiculare, Glomerella cingurata), Cucurbit brown spot ( Corynespora cassiicola), gourd downy mildew (Pseudoperonospora cubensis), cucumber gray plague (Phytophthora capsici), cucumber wilt (Fusarium oxysporum f. sp. cucumerinum), Fusarium oxysporum f. sp. niveum, Podosphaera leucotricha, Venturia inaequalis, Monilinia mali, Leaf spot disease Alternaria alternata apple pathotype, Valsa ceratosperma, Alternaria alternata Japanese pear pathotype, Phyllactinia pyri, Gymnosporangium asiaticum, Venturia nasicola ), Podosphaera aphanis, Monilinia fructicola of stone fruit trees, Penicillium italicum, Penicillium digitatum, Uncinula necator, Grape powdery mildew Downy mildew (Plasmopara viticola), Grape late rot (Glomerella cingulata, Colletotoricum acutatum), Grape rust (Phakopsora ampelopsidis), Grape black rot (Elsinoe ampelina), Banana black sigatoka (Mycosphaerella fijiensis), Banana yellow sigatoka Mycosphaerella musicola, Erysiphe cichoracearum, Alternaria solani, Passalora fulva, Pseudocercospora fuligena, Septoria lycopersici, Tomato anthracnose (Colletotrichum coccodes), eggplant powdery mildew (Erysiphe cichoracearum), potato summer blight (Alternaria solani), potato anthracnose (Colletotrichum) coccodes), Erysiphe cichoracearum, Leveillula taurica, Phytophthora infestans, Erysiphe cichoracearum, Alternaria longipes, Cercospora beticola, Sugar beet udon Erysiphe betae, Rhizoctonia solani, Thanatephorus cucumeris, Aphanomyces cochlioides, Fusarium oxysporum f. sp. Discula theae-sinensis, Exobasidium vexans, Pseudocercospora ocellata, Cercospora chaae, Pestalotiopsis longiseta, Pestalotiopsis theae, Exobasidium reticulatum, cotton black Alternaria spp., Glomerella spp., Ascochyta gossypii, Puccinia spp., Phakopsora gossypii, Cercospora blight and leaf spot of cotton (Cercospora spp.) , Cotton Diplopia boll rot (Diplopia spp.), Cotton Hardlock (Fusarium spp.), Cotton Phoma blight (Phoma spp.), Cotton Stemphyllium leaf spot (Stemphyllium spp.), Peanut black stain (Cercosporidium personatum) ), Cercospora arachidicola, Sclerotium rolfsii, Puccinia arachidis, Botrytis cine that affects various crops rea), Pythium spp., Verticillium sp., Sclerotinia sclerotiorum, and the like. Aspergillus, Cochliobolus, Corticium, Diplodia, Penicillium, Fusarium, Gibberella, Mucor, Phoma, Phomopsis, Pyrenophora, Pythium, Rhizoctonia, Rhizopus, Thielaviopsis, Tilletia, Seed-borne diseases or early growth diseases of various plants caused by pathogens such as Trichoderma and Ustilago.
 本実施形態に係る農園芸用殺菌剤を対象植物に適用することによって、上述した植物病害によるダメージから対象植物を保護することもできる。 By applying the agricultural and horticultural fungicide according to this embodiment to target plants, it is possible to protect the target plants from damage caused by the plant diseases described above.
 本実施形態に係る農園芸用殺菌剤は、野生型と比較して既存のステロール生合成阻害剤に対して低感受性である病原菌による病害に対しても好適に適用することができる。なお、本願明細書において、「ステロール生合成阻害剤」とは、FRAC(Fungicide Resistance Action Committee)による殺菌剤の作用機構分類(2021年版)において、「細胞膜のステロール生合成(G)」に分類される殺菌剤であり、病原糸状菌の細胞膜におけるステロールの生合成を阻害することによって殺菌活性を有する物質を意味する。また、本願明細書において、「既存のステロール生合成阻害剤」とは、本願出願時において、薬剤抵抗性菌の存在が確認されている公知のステロール生合成阻害剤を意味する。 The agricultural and horticultural fungicide according to the present embodiment can also be suitably applied to diseases caused by pathogenic bacteria that are less sensitive to existing sterol biosynthesis inhibitors than wild-type. In the present specification, the term "sterol biosynthesis inhibitor" is classified as "cell membrane sterol biosynthesis (G)" in the mechanism of action classification of fungicides (2021 edition) by FRAC (Fungicide Resistance Action Committee). It means a substance that has bactericidal activity by inhibiting sterol biosynthesis in the cell membrane of pathogenic filamentous fungi. In the present specification, the term "existing sterol biosynthesis inhibitors" means known sterol biosynthesis inhibitors for which the presence of drug-resistant bacteria has been confirmed at the time of filing of the present application.
 このような既存のステロール生合成阻害剤は、好ましくは、ステロール生合成におけるC14位の脱メチル化酵素(CYP51)の阻害剤であるDMI殺菌剤(FRACコード:3)、ステロール生合成におけるΔ14還元酵素及びΔ→Δ-イソメラーゼの阻害剤であるアミン類(FRACコード:5)、並びに、ステロール生合成系のC4位脱メチル化における3-ケト還元酵素の阻害剤であるKRI殺菌剤(FRACコード:17)であり、より好ましくは、複数の病原菌において耐性菌の発生が確認されているDMI殺菌剤である。既存のステロール生合成阻害剤の具体例は後述する。 Such existing sterol biosynthesis inhibitors are preferably DMI fungicides (FRAC code: 3) which are inhibitors of demethylase (CYP51) at the C14 position in sterol biosynthesis, Δ 14 in sterol biosynthesis Amines (FRAC code: 5) that are inhibitors of reductase and Δ 8 →Δ 7 -isomerase, and KRI fungicides that are inhibitors of 3-keto reductase in C4 demethylation of sterol biosynthesis. (FRAC code: 17), more preferably a DMI fungicide for which the development of resistant bacteria has been confirmed in a plurality of pathogenic bacteria. Specific examples of existing sterol biosynthesis inhibitors are described below.
 本願明細書において、「野生型と比較して既存のステロール生合成阻害剤に対して低感受性である病原菌」とは、野生型病原菌に比較して、少なくとも1つの既存のステロール生合成阻害剤に対する感受性が低い病原菌を意味する。このような病原菌としては、ステロール生合成阻害剤の作用点となる標的タンパク質をコードする遺伝子の変異、当該標的タンパク質の過剰発現、及び、細胞膜における薬剤排出ポンプの発達からなる群より選択される少なくとも1つの要因により、既存のステロール生合成阻害剤に対する低感受性を獲得した病原菌が挙げられる。 As used herein, "a pathogen that is less sensitive to existing sterol biosynthesis inhibitors compared to wild-type" refers to at least one existing sterol biosynthesis inhibitor compared to wild-type pathogens It refers to pathogens with low susceptibility. Such pathogenic bacteria are at least selected from the group consisting of mutations in genes encoding target proteins that serve as sites of action of sterol biosynthesis inhibitors, overexpression of the target proteins, and development of drug efflux pumps in cell membranes. One factor is pathogens that have acquired low sensitivity to existing inhibitors of sterol biosynthesis.
 本実施形態に係る農園芸用殺菌剤の適用病害であって、野生型と比較して既存のステロール生合成阻害剤に対して低感受性である病原菌による病害は、具体的には、本実施形態における農園芸用殺菌剤によって防除効果を呈する植物病害と同じであるため、その説明を繰り返さない。 Diseases to which the agricultural and horticultural fungicide according to this embodiment is applied, and diseases caused by pathogenic bacteria that are less sensitive to existing sterol biosynthesis inhibitors than wild type, specifically, this embodiment is the same as the plant disease that exhibits a control effect by the agricultural and horticultural fungicide in , so the description thereof will not be repeated.
 本実施形態における農園芸用殺菌剤は、全ての植物に利用することができるが、適用植物の例として以下を挙げることができる;イネ、コムギ、オオムギ、ライムギ、エンバク、ライコムギ(トリチケール)、トウモロコシ、モロコシ(ソルガム)、サトウキビ、シバ、ベントグラス、バミューダグラス、フェスク及びライグラス等のイネ科類、ダイズ、ラッカセイ、インゲンマメ、エンドウ、アズキ及びアルファルファ等のマメ科類、サツマイモ等のヒルガオ科類、トウガラシ、ピーマン、トマト、ナス、ジャガイモ及びタバコ等のナス科類、ソバ等のタデ科類、ヒマワリ等のキク科類、チョウセンニンジン等のウコギ科類、ナタネ、ハクサイ、カブ、キャベツ及びダイコン等のアブラナ科類、テンサイ等のアカザ科類、ワタ等のアオイ科類、コーヒーノキ等のアカネ科類、カカオ等のアオギリ科類、チャ等のツバキ科類、スイカ、メロン、キュウリ及びカボチャ等のウリ科類、タマネギ、ネギ及びニンニク等のユリ科類、イチゴ、リンゴ、アーモンド、アンズ、ウメ、オウトウ、スモモ、モモ及びナシ等のバラ科類、ニンジン等のセリ科類、サトイモ等のサトイモ科類、マンゴー等のウルシ科類、パイナップル等のパイナップル科類、パパイア等のパパイア科類、カキ等のカキノキ科類、ブルーベリー等のツツジ科類、ペカン等のクルミ科類、バナナ等のバショウ科類、オリーブ等のモクセイ科類、ココヤシ及びナツメヤシ等のヤシ科類、みかん、オレンジ、グレープフルーツ及びレモン等のミカン科類、ブドウ等のブドウ科類、草花(Flowers and ornamental plants)、果樹以外の樹並びにその他の観賞用植物。また、適用植物の例として、野生植物、植物栽培品種、異種交配もしくは原形質融合等の従来の生物育種によって得られる植物及び植物栽培品種並びに遺伝子操作によって得られる遺伝子組み換え植物及び植物栽培品種を挙げることができる。遺伝子組み換え植物及び植物栽培品種としては、例えば、除草剤耐性作物、殺虫性タンパク産生遺伝子を組み込んだ害虫耐性作物、病害に対する抵抗性誘導物質産生遺伝子を組み込んだ病害耐性作物、食味向上作物、収量向上作物、保存性向上作物及び収量向上作物等を挙げることができる。各国で認可を受けた遺伝子組み換え植物栽培品種としては、国際アグリバイオ事業団(ISAAA)のデータベースに蓄積されているものを挙げることができる。具体的には、AgriSure、AgriSure 3000GT、AgriSure 3122 E-Z Refuge、AgriSure 3122 Refuge Renew、AgriSure Artesian 3030A、AgriSure Artesian 3011A、AgriSure Duracade、AgriSure Duracade 5222 E-Z Refuge、AgriSure GT、AgriSure GT/CB/LL、AgriSure RW、AgriSure Viptera 3110、AgriSure Viptera 3111、AgriSure Viptera 3220 E-Z Refuge、AgriSure Viptera 3220 Refuge Renew、BiteGard、Bollgard、Bollgard II、Bollgard II/Roundup Ready、Bollgard 3 XtendFlex Cotton、Bollgard Cotton、Bollgard/Roundup Ready Cotton、B.t.、B. t/BXN Cotton、B.t. Maize、BtXtra、BXN、BXN Canola、BXN Cotton、Clearfield、DroughtGard、Enlist、Enlist Cotton、Enlist WideStrike 3 Cotton、Genuity、Genuity Bollgard II XtendFlex、Genuity Intacta RR2 Pro、Genuity SmartStax、Genuity SmartStax RIB Complete、Genuity VT Double Pro、Genuity VT Double Pro RIB Complete、Genuity VT Triple Pro、Genuity VT Triple Pro RIB Complete、GlyTol、GlyTol Cotton、Herculex、Herculex 1、Herculex RW、Herculex XTRA、IMI、IMI Canola、InVigor、KnockOut、Liberty Link、Liberty Link Conola、Liberty Link cotton、NatureGard、Newleaf、Nucotn、Optimum、Optimum AcreMax、Optimum AcreMax I、Optimum AcreMax-R、Optimum AcreMax RW、Optimum AcreMax RW-R、Optimum AcreMax Xtra-R、Optimum AcreMax Xtreme-R、Optimum AcreMax Xtreme、Optimum Intrasect、Optimum Intrasect Xtra、Optimum Intrasect Xtreme、Optimum Leptra、Optimum TRIsect、Poast Compatible、Powercore、Powercore Corn、Powercore Corn Refuge Advanced、Protecta、Roundup Ready、Roundup Ready 2、Roundup Ready Conola、Roundup Ready Cotton、Roundup Ready/YieldGard、RR Flex/Bollgard II、SCS、SmartStax、SmartStax Refuge Advanced、StarLink、Twinlink、VipCot、VipCot Cotton、WideStrike、WideStrike 3、Xtend、YieldGard、YieldGard Corn Borner、YieldGard Rootworm、YieldGard Plus及びYieldGard VT Triple等の登録商標を含むものを挙げることができる。 The agricultural and horticultural fungicide in this embodiment can be used for all plants, and examples of applicable plants include the following: rice, wheat, barley, rye, oat, triticale (triticale), corn. , sorghum (sorghum), sugarcane, turfgrass, bentgrass, bermudagrass, fescue and ryegrass, etc., legumes such as soybean, peanut, kidney bean, pea, adzuki bean and alfalfa, convolvulaceae such as sweet potato, hot pepper, Solanaceae such as bell peppers, tomatoes, eggplants, potatoes and tobacco; Polygonaceae such as buckwheat; Asteraceae such as sunflowers; Araliaceae such as ginseng; , Chenopodiaceae such as sugar beet, Malvaceae such as cotton, Rubiaceae such as coffee, Rubiaceae such as cacao, Theaceae such as tea, Cucurbitaceae such as watermelon, melon, cucumber and pumpkin, Liliaceae such as onions, leeks and garlic; Rosaceae such as strawberries, apples, almonds, apricots, plums, cherry blossoms, plums, peaches and pears; Apiaceae such as carrots; Araceae such as taro; Anacardiaceae, pineapples and other pineapples, papayas and other papayae, persimmons and other persimmons, blueberries and other ericaceae, pecans and other walnuts, bananas and other musaceae, olives and other Oleaceae, Palms such as coconut palms and dates, Rutaceae such as tangerines, oranges, grapefruits and lemons, Grapes such as grapes, Flowers and ornamental plants, trees other than fruit trees, and other ornamental plants plant. Examples of applicable plants also include wild plants, plant cultivars, plants and plant cultivars obtained by conventional biological breeding such as crossbreeding or protoplasmic fusion, and transgenic plants and plant cultivars obtained by genetic engineering. be able to. Genetically modified plants and plant cultivars include, for example, herbicide-tolerant crops, pest-resistant crops incorporating an insecticidal protein-producing gene, disease-tolerant crops incorporating a disease-resistance inducer-producing gene, taste-enhancing crops, and yield-enhancing crops. Crops, storability-improved crops, yield-improved crops, and the like can be mentioned. Genetically modified plant cultivars that have been approved in each country include those accumulated in the database of the International Agri-Bio Agency (ISAAA). Specifically, AgriSure, AgriSure 3000GT, AgriSure 3122 E-Z Refuge, AgriSure 3122 Refuge Renew, AgriSure Artesian 3030A, AgriSure Artesian 3011A, AgriSure Duracade, AgriSure Duracade 5222 E-Z Refuge, AgriSure GT, AgriSure SCB/LL, AgriSure GT AgriSure Viptera 3110, AgriSure Viptera 3111, AgriSure Viptera 3220 E-Z Refuge, AgriSure Viptera 3220 Refuge Renew, BiteGard, Bollgard, Bollgard II, Bollgard II/Roundup Ready, Bollgard 3 XtendFlex Cotton, Bollgard Bound. . t/BXN Cotton, B.t. Maize, BtXtra, BXN, BXN Canola, BXN Cotton, Clearfield, DroughtGard, Enlist, Enlist Cotton, Enlist WideStrike 3 Cotton, Genuity, Genuity Bollgard II XtendFlex, Genuity Intacta RR2 Pro, Genuity SmartStax, Genuity SmartStax RIB Complete, Genuity VT Double Pro, Genuity VT Double Pro RIB Complete, Genuity VT Triple Pro, Genuity VT Triple Pro RIB Complete, GlyTol, GlyTol Cotton, Herculex, Herculex 1, Herculex RW, Herculex XTRA, IMI, IMI Canola, InVigor, KnockOut, Liberty Link, Liberty Link Conola, Liberty Link cotton, NatureGard, Newleaf, N ucotn, Optimum, Optimum AcreMax, Optimum AcreMax I, Optimum AcreMax-R, Optimum AcreMax RW, Optimum AcreMax RW-R, Optimum AcreMax Xtra-R, Optimum AcreMax Xtreme-R, Optimum AcreMax Xtreme, Optimum Intrasect, Optimum Intrasect Xtra, Optimum Intrasect Xtreme, Optimum Leptra, Optimum TRIsect, Poast Compatible, Powercore, Powercore Corn, Powercore Corn Refuge Advanced, Protecta, Roundup Ready, Roundup Ready 2, Roundup Ready Conola, Roundup Ready Cotton, Roundup Ready/YieldGard, RR Flex/Bollgard II, SCS, SmartStax, SmartStax Refuge Advanced, StarLink, Twinlink, VipCot, VipCot Cotton, WideStrike, WideStrike 3, Xtend, YieldGard, YieldGard Corn Borner, YieldGard Rootworm, YieldGard Plus and YieldGard VT Triple, to name a few. can.
 (2)製剤
 本実施形態における農園芸用殺菌剤は、有効成分として、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーと他の有効成分とを含んでいればよい。そのため、農園芸用殺菌剤の例として、(a)アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーと、他の有効成分とを含めて調製されたもののほか、(b)アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーを含有する第1の調製用薬剤と、これとは独立な、他の有効成分を含有する第2の調製用薬剤とを、使用の直前に混合したものが挙げられる。以下、(a)の形態を「製剤組み込み型農園芸用殺菌剤」と称し、(b)の形態を「タンクミックス型農園芸用殺菌剤」と称する。このように、本実施形態における農園芸用殺菌剤は、有効成分として、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーと他の有効成分とを含む。したがって、アゾール誘導体と他の有効成分との相乗効果が得られ、それぞれ単独で使用した場合と比較して、高い防除効果を奏し、且つ投下薬量を低減できる農園芸用殺菌剤を提供することができる。
(2) Formulation The agricultural and horticultural fungicide in the present embodiment may contain, as active ingredients, the R-enantiomer or mixed enantiomer of the azole derivative (I) and other active ingredients. Therefore, examples of agricultural and horticultural fungicides include (a) those prepared by including the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, and (b) azole derivative (I) A first preparative agent containing the R-enantiomer or mixed enantiomers of and, independently of this, a second preparative agent containing other active ingredients are mixed just before use. . Hereinafter, the form (a) will be referred to as a "formulation-incorporating agricultural and horticultural fungicide", and the form (b) will be referred to as a "tank mix type agricultural and horticultural fungicide". Thus, the agricultural and horticultural fungicide in this embodiment contains the R-enantiomer or mixed enantiomer of the azole derivative (I) and other active ingredients as active ingredients. Therefore, the objective is to provide an agricultural and horticultural fungicide capable of obtaining a synergistic effect between the azole derivative and other active ingredients, exhibiting a high control effect and reducing the dosage as compared with the case where each is used alone. can be done.
 また、このような構成によれば、農園用殺菌剤の投下薬量を低減できることにより、標的外生物への毒性及び環境への負荷を軽減することができる。そのため、本実施形態における農園芸用殺菌剤は、国連が主導する持続可能な開発目標(SDGs)の目標2「持続可能な農業」及び目標15「緑の豊かさを守る」に貢献することが可能となる。また、本実施形態における農園芸用殺菌剤によれば、農業の効率化に貢献し農業の成長産業化に寄与することができる。そのため、持続可能な開発目標(SDGs)の目標8「産業の発展と雇用の創出」に貢献することが可能となる。また、本実施形態における農園芸用殺菌剤によれば、農作物のカビ毒リスクを低減することができる。そのため、持続可能な開発目標(SDGs)の目標3「全ての人に健康を」に貢献することが可能となる。 In addition, according to such a configuration, it is possible to reduce the toxicity to non-target organisms and the load on the environment by reducing the dosage of the fungicide for farms. Therefore, the agricultural and horticultural fungicide in this embodiment can contribute to Goal 2 "Sustainable agriculture" and Goal 15 "Protect greenery" of the Sustainable Development Goals (SDGs) led by the United Nations. It becomes possible. Moreover, according to the agricultural and horticultural fungicide of the present embodiment, it is possible to contribute to efficiency improvement of agriculture and to turn agriculture into a growth industry. Therefore, it will be possible to contribute to Goal 8 of the Sustainable Development Goals (SDGs), "industrial development and job creation." Moreover, according to the agricultural and horticultural fungicide of the present embodiment, the risk of mycotoxins in agricultural products can be reduced. Therefore, it is possible to contribute to Goal 3 of the Sustainable Development Goals (SDGs), "Good Health for All."
 (2-1)製剤組み込み型農園芸用殺菌剤
 製剤組み込み型農園芸用殺菌剤におけるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの含有量は、例えば0.1~95重量%であり、0.5~90重量%であることが好ましく、2~80重量%であることがより好ましい。なお、実際に散布される際の散布液中アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの含有量は、所望の活性を発揮できる量であれば特に限定されるものではない。
(2-1) Formulation-incorporating agricultural and horticultural fungicide The content of the R-enantiomer or mixed enantiomer of the azole derivative (I) in the formulation-incorporating agricultural and horticultural fungicide is, for example, 0.1 to 95% by weight, It is preferably 0.5 to 90% by weight, more preferably 2 to 80% by weight. The content of the R-enantiomer or the mixed enantiomer of the azole derivative (I) in the spray liquid when actually sprayed is not particularly limited as long as the desired activity can be exhibited.
 製剤組み込み型農園芸用殺菌剤に有効成分として含まれるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーは、単一の化合物であってもよいし、2種類以上の化合物が混合されていてもよい。また、製剤組み込み型農園芸用殺菌剤に有効成分として含まれる1種類以上のアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーは、含まれるすべての種類のアゾール誘導体(I)がR-エナンチオマーであってもよく、アゾール誘導体(I)の種類によってR-エナンチオマーとS-エナンチオマーとが混在していてもよい。最終的に製剤組み込み型農園芸用殺菌剤に含まれるR-エナンチオマーとS-エナンチオマーとの比率は、適宜設定することができる。混合比率は、これまでの説明に準ずるため、その説明を繰り返さない。 The R-enantiomer or mixed enantiomer of the azole derivative (I) contained as an active ingredient in the formulation-incorporated agricultural and horticultural fungicide may be a single compound, or two or more compounds may be mixed. good. In addition, in the R-enantiomer or mixed enantiomer of one or more types of azole derivative (I) contained as an active ingredient in the formulation-incorporated agricultural and horticultural fungicide, all types of azole derivative (I) contained are R-enantiomers There may be a mixture of the R-enantiomer and the S-enantiomer depending on the type of the azole derivative (I). The ratio between the R-enantiomer and the S-enantiomer finally contained in the formulation-incorporating agricultural and horticultural fungicide can be appropriately set. Since the mixing ratio conforms to the explanation so far, the explanation thereof will not be repeated.
 製剤組み込み型農園芸用殺菌剤の好ましい一態様としては、アゾール誘導体(I)のR-エナンチオマーと他の有効成分との混合剤に、さらにアゾール誘導体(I)のS-エナンチオマーを添加した製剤組み込み型農園芸用殺菌剤が挙げられる。このような製剤組み込み型農園芸用殺菌剤は、アゾール誘導体(I)のR-エナンチオマーと他の有効成分との混合剤、又はアゾール誘導体(I)のS-エナンチオマーを単独散布した場合と比較して高い防除効果が得られる。 As a preferred embodiment of the formulation-incorporating agricultural and horticultural fungicide, a mixture of the R-enantiomer of the azole derivative (I) and other active ingredients and the S-enantiomer of the azole derivative (I) are incorporated into the formulation. type agricultural and horticultural fungicides. Such formulation-incorporating agricultural and horticultural fungicides are compared to a mixture of the R-enantiomer of the azole derivative (I) and other active ingredients, or the S-enantiomer of the azole derivative (I) alone. A high control effect can be obtained.
 製剤組み込み型農園芸用殺菌剤における他の有効成分の含有量は、例えば0.1~95重量%であり、0.5~90重量%であることが好ましく、2~80重量%であることがより好ましい。なお、実際に散布される際の散布液中における他の有効成分の含有量は、所望の効果が得られる量であれば特に限定されるものではない。製剤組み込み型農園芸用殺菌剤は、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーおよび他の有効成分の他に、後述する固体担体、液体担体(希釈剤)、界面活性剤、またはその他の製剤補助剤を含み得る。 The content of other active ingredients in the formulation-incorporated agricultural and horticultural fungicide is, for example, 0.1 to 95% by weight, preferably 0.5 to 90% by weight, and 2 to 80% by weight. is more preferred. The content of other active ingredients in the spray liquid when actually sprayed is not particularly limited as long as the desired effect can be obtained. Formulation-incorporating agricultural and horticultural fungicides include, in addition to the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, solid carriers, liquid carriers (diluents), surfactants, or other Formulation auxiliaries may be included.
 (2-2)タンクミックス型農園芸用殺菌剤
 タンクミックス型農園芸用殺菌剤におけるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの含有量および他の有効成分の含有量は、上述の製剤組み込み型農園芸用殺菌剤における各含有量と同様であり得る。タンクミックス型農園芸用殺菌剤を調製するための、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーを含有する第1の調製用薬剤は、他の有効成分を含んでいない点を除き、製剤組み込み型農園芸用殺菌剤同様の態様であり得る。また、タンクミックス型農園芸用殺菌剤を調製するために用いられる、他の有効成分を含有する第2の調製用薬剤は、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーを含んでいない点を除き、製剤組み込み型農園芸用殺菌剤同様の態様であり得る。第1の調製用薬剤におけるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの含有量、及び第2の調製用薬剤における他の有効成分の含有量は、最終的に、タンクミックス型農園芸用殺菌剤におけるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーの含有量および他の有効成分の含有量を実現できるものであればよい。
(2-2) Tank mix type agricultural and horticultural fungicide The content of the R-enantiomer or mixed enantiomer of the azole derivative (I) and the content of other active ingredients in the tank mix type agricultural and horticultural fungicide are It may be the same as each content in the built-in agricultural and horticultural fungicide. The first preparation agent containing the R-enantiomer or the mixed enantiomer of the azole derivative (I) for preparing the tank-mix agricultural and horticultural fungicide is the formulation except that it does not contain other active ingredients. It can be in the same aspect as the built-in agricultural and horticultural fungicide. In addition, the second preparation agent containing other active ingredients, which is used for preparing the tank-mix type agricultural and horticultural fungicide, does not contain the R-enantiomer or mixed enantiomers of the azole derivative (I). Except for this, it can be the same aspect as the formulation-integrated agricultural and horticultural fungicide. The content of the R-enantiomer or mixed enantiomer of the azole derivative (I) in the first pharmaceutical preparation and the content of other active ingredients in the second pharmaceutical preparation are finally determined by the tank mix type agricultural and horticultural It is sufficient that the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) and the content of other active ingredients in the fungicide can be achieved.
 タンクミックス型農園芸用殺菌剤は、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーおよび他の有効成分の他に、後述する固体担体、液体担体(希釈剤)、界面活性剤、またはその他の製剤補助剤を含み得る。 The tank-mix type agricultural and horticultural fungicide contains, in addition to the R-enantiomer or mixed enantiomer of the azole derivative (I) and other active ingredients, a solid carrier, a liquid carrier (diluent), a surfactant, or other Formulation auxiliaries may be included.
 タンクミックス型農園芸用殺菌剤における第1の調製用薬剤と第2の調製用薬剤との混合比率は、各調製用薬剤の組成および目的に応じて適宜決定することができる。 The mixing ratio of the first preparation agent and the second preparation agent in the tank mix type agricultural and horticultural fungicide can be appropriately determined according to the composition and purpose of each preparation agent.
 なお、タンクミックス型農園芸用薬剤では、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーを含む第1の調製用薬剤および他の有効成分を含む第2の調製用薬剤のそれぞれを別々に準備し、それらを混合することにより、農園芸用殺菌剤を調製している。したがって、植物病害防除において混合して使用するための組み合わせ調製物として、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーと他の有効成分とを別々に含む、植物病害防除用製品も本発明の範疇に含まれる。 In addition, in the tank-mix type agricultural and horticultural agent, a first agent for preparation containing the R-enantiomer or mixed enantiomer of the azole derivative (I) and a second agent for preparation containing other active ingredients are prepared separately. and mixing them to prepare agricultural and horticultural fungicides. Therefore, plant disease control products containing separately the R-enantiomer or mixed enantiomers of azole derivative (I) and other active ingredients as combination preparations for mixed use in plant disease control are also of the present invention. included in the category.
 (2-3)製剤補助剤
 農園芸用薬剤は、有効成分であるアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマー及び他の有効成分を担体、界面活性剤及びその他の製剤補助剤等と混合して粉剤、粒剤、粉粒剤、水和剤、水溶剤、乳剤、液剤、油剤、エアゾル、マイクロカプセル剤、ペースト剤、塗布剤、くん煙剤、くん蒸剤及び微量散布剤等の種々の形態に製剤して使用する。
(2-3) Formulation Auxiliary Agricultural and horticultural agents are prepared by mixing the R-enantiomer or mixed enantiomer of the active ingredient azole derivative (I) and other active ingredients with carriers, surfactants and other formulation auxiliaries. Various powders, granules, powder granules, wettable powders, water solutions, emulsions, liquids, oils, aerosols, microcapsules, pastes, coating agents, fumigants, fumigants, and microspray agents. It is formulated into a form and used.
 製剤補助剤として使用する担体としては、固体担体及び液体担体等が挙げられる。固体担体は、粉末担体及び粒状担体等として用いられる。固体担体としては、例えば、クレー、タルク、珪藻土、ゼオライト(沸石)、モンモリロナイト、ベントナイト、カオリナイト、カオリン、パイロフィライト、ろう石、酸性白土、活性白土、アタパルジャイト、アタパルガスクレー、石灰石、方解石、大理石、バーミキュライト、パーライト、軽石、珪石、珪砂、絹雲母(セリサイト)及び陶石等の鉱物;尿素等の合成有機物;炭酸カルシウム、炭酸ナトリウム、炭酸マグネシウム、硫酸ナトリウム、硫酸アンモニウム、塩化カリウム、消石灰及び重曹等の塩類;非晶質シリカ(ホワイトカーボン、ヒュームドシリカ等)及び二酸化チタン等の合成無機物;木質粉、トウモロコシ茎(穂軸)、クルミ殻(堅果外皮)、果実核、モミガラ、ヤシガラ、オガクズ、ふすま、大豆粉、粉末セルロース、デンプン、デキストリン及び糖類(乳糖、ショ糖等)等の植物性担体;架橋リグニン、カチオンゲル、加熱又は多価金属塩でゲル化するゼラチン、水溶性高分子ゲル(寒天等)、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ酢酸ビニル、ポリ塩化ビニル、エチレン/酢酸ビニル共重合体及び尿素/アルデビド樹脂等の種々の高分子担体等を挙げることができる。 Carriers used as formulation adjuvants include solid carriers and liquid carriers. Solid carriers are used as powder carriers, granular carriers, and the like. Examples of solid carriers include clay, talc, diatomaceous earth, zeolite (zeolite), montmorillonite, bentonite, kaolinite, kaolin, pyrophyllite, pyrophyllite, acid clay, activated clay, attapulgite, attapulgus clay, limestone, calcite. , minerals such as marble, vermiculite, perlite, pumice, silica, silica sand, sericite and porcelain stone; synthetic organic substances such as urea; calcium carbonate, sodium carbonate, magnesium carbonate, sodium sulfate, ammonium sulfate, potassium chloride, slaked lime and salts such as baking soda; amorphous silica (white carbon, fumed silica, etc.) and synthetic inorganic substances such as titanium dioxide; , sawdust, wheat bran, soybean flour, powdered cellulose, starch, dextrin and sugars (lactose, sucrose, etc.); Gels (agar, etc.), various polymer carriers such as chlorinated polyethylene, chlorinated polypropylene, polyvinyl acetate, polyvinyl chloride, ethylene/vinyl acetate copolymers and urea/aldevide resins can be used.
 液体担体としては、例えば、パラフィン類(ノルマルパラフィン、イソパラフィン、ナフテン)等の脂肪族溶剤;キシレン、アルキルベンゼン、アルキルナフタレン及びソルベントナフサ等の芳香族溶剤;灯油(ケロシン)等の混合溶剤;精製高沸点脂肪族炭化水素等のマシン油;メタノール、エタノール、イソプロパノール、ブタノール及びシクロヘキサノール等のアルコール類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ヘキシレングリコール、ポリエチレングリコール及びポリプロピレングリコール等の多価アルコール類;プロピレン系グリコールエーテル等の多価アルコール誘導体類;アセトン、アセトフェノン、シクロヘキサノン、メチルシクロヘキサノン及びγ-ブチロラクトン等のケトン類;脂肪酸メチルエステル(ヤシ油脂肪酸メチルエステル)、乳酸エチルヘキシル、炭酸プロピレン及び二塩基酸メチルエステル(コハク酸ジメチルエステル、グルタミン酸ジメチルエステル、アジピン酸ジメチルエステル)等のエステル類;N-アルキルピロリドン類及びアセトニトリル等の含窒素溶剤;ジメチルスルホキシド等の含硫黄溶剤;ヤシ油、大豆油及び菜種油等の油脂類;ジメチルホルムアミド、N,N-ジメチルオクタンアミド、N,N-ジメチルデカンアミド、5-(ジメチルアミノ)-2-メチル-5-オキソ-吉草酸メチルエステル及びN-アシルモルホリン系溶剤(CAS No.887947-29-7等)等のアミド系溶剤;水等を挙げることができる。 Examples of liquid carriers include aliphatic solvents such as paraffins (normal paraffin, isoparaffin, naphthene); aromatic solvents such as xylene, alkylbenzene, alkylnaphthalene and solvent naphtha; mixed solvents such as kerosene; machine oils such as aliphatic hydrocarbons; alcohols such as methanol, ethanol, isopropanol, butanol and cyclohexanol; polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, polyethylene glycol and polypropylene glycol Polyhydric alcohol derivatives such as propylene glycol ether; Ketones such as acetone, acetophenone, cyclohexanone, methylcyclohexanone and γ-butyrolactone; Fatty acid methyl ester (coconut fatty acid methyl ester), ethylhexyl lactate, propylene carbonate and dibasic esters such as acid methyl esters (dimethyl succinate, dimethyl glutamic acid, dimethyl adipate); nitrogen-containing solvents such as N-alkylpyrrolidones and acetonitrile; sulfur-containing solvents such as dimethyl sulfoxide; coconut oil, soybean oil and Fats and oils such as rapeseed oil; dimethylformamide, N,N-dimethyloctanamide, N,N-dimethyldecanamide, 5-(dimethylamino)-2-methyl-5-oxo-valeric acid methyl ester and N-acylmorpholine Amide-based solvents such as solvents (CAS No. 887947-29-7, etc.);
 製剤補助剤として使用する界面活性剤としては、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤及びバイオサーファクタント等が挙げられる。非イオン性界面活性剤としては、例えば、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン樹脂酸エステル、ポリオキシエチレン脂肪酸ジエステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンジアルキルフェニルエーテル、ポリオキシエチレンアルキルフェニルエーテルホルマリン縮合物、ポリオキシエチレン/ポリオキシプロピレンブロックポリマー、アルキルポリオキシエチレン/ポリオキシプロピレンブロックポリマーエーテル、アルキルフェニルポリオキシエチレン/ポリオキシプロピレンブロックポリマーエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン脂肪酸ビスフェニルエーテル、ポリオキシエチレンベンジルフェニル(又はフェニルフェニル)エーテル、ポリオキシエチレンスチリルフェニル(又はフェニルフェニル)エーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油及びアルキルグリコシド等が挙げられる。 Surfactants used as formulation aids include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, fluorosurfactants and biosurfactants. etc. Examples of nonionic surfactants include sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene resin acid esters, polyoxyethylene fatty acid diesters, polyoxyethylene alkyl Ether, polyoxyethylene alkylphenyl ether, polyoxyethylene dialkylphenyl ether, polyoxyethylene alkylphenyl ether formalin condensate, polyoxyethylene/polyoxypropylene block polymer, alkylpolyoxyethylene/polyoxypropylene block polymer ether, alkylphenyl Polyoxyethylene/polyoxypropylene block polymer ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, polyoxyethylene fatty acid bisphenyl ether, polyoxyethylene benzylphenyl (or phenylphenyl) ether, polyoxyethylene styrylphenyl (or phenylphenyl) ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil and alkyl glycosides.
 アニオン性界面活性剤としては、例えば、アルキルサルフェート、ポリオキシエチレンアルキルエーテルサルフェート、ポリオキシエチレンアルキルフェニルエーテルサルフェート、ポリオキシエチレンベンジル(又はスチリル)フェニル(又はフェニルフェニル)エーテルサルフェート及びポリオキシエチレン/ポリオキシプロピレンブロックポリマーサルフェート等のサルフェート類;パラフィン(アルカン)スルホネート、α-オレフィンスルホネート、ジアルキルスルホサクシネート、アルキルベンゼンスルホネート、モノ又はジアルキルナフタレンスルホネート、ナフタレンスルホネート・ホルマリン縮合物、アルキルジフェニルエーテルジスルホネート、リグニンスルホネート、ポリオキシエチレンアルキルフェニルエーテルスルホネート及びポリオキシエチレンアルキルエーテルスルホコハク酸ハーフエステル等のスルホネート類;脂肪酸、樹脂酸、ポリカルボン酸、アルキルエーテルカルボキシレート、アルケニルコハク酸、N-アシルアミノ酸及びナフテン酸等のカルボキシラート類;ポリオキシエチレンアルキルエーテルホスフェート、ポリオキシエチレンモノ又はジアルキルフェニルエーテルホスフェート、ポリオキシエチレンベンジル(又はスチリル)フェニル(またはフェニルフェニル)エーテルホスフェート、ポリオキシエチレン/ポリオキシプロピレンブロックポリマーホスフェート及びアルキルホスフェート等のホスフェール類等が挙げられる。 Examples of anionic surfactants include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene benzyl (or styryl) phenyl (or phenylphenyl) ether sulfates and polyoxyethylene/poly Sulfates such as oxypropylene block polymer sulfate; paraffin (alkane) sulfonate, α-olefin sulfonate, dialkyl sulfosuccinate, alkylbenzene sulfonate, mono- or dialkylnaphthalene sulfonate, naphthalene sulfonate/formalin condensate, alkyldiphenyl ether disulfonate, lignin sulfonate, sulfonates such as polyoxyethylene alkylphenyl ether sulfonates and polyoxyethylene alkyl ether sulfosuccinic acid half esters; Laths; polyoxyethylene alkyl ether phosphate, polyoxyethylene mono- or dialkylphenyl ether phosphate, polyoxyethylene benzyl (or styryl) phenyl (or phenylphenyl) ether phosphate, polyoxyethylene/polyoxypropylene block polymer phosphate and alkyl phosphate and phosphates such as
 カチオン性界面活性剤としては、例えば、アルキルアミン及びアルキルペンタメチルプロピレンジアミン等のアミン類の塩;アルキルトリメチルアンモニウム、メチルポリオキシエチレンアルキルアンモニウム、アルキルピリジニウム、モノ又はジアルキルメチル化アンモニウム、アルキルジメチルベンザルコニウム及びベンゼトニウム(オクチルフェノキシエトキシエチルジメチルベンジルアンモニウム)等のアンモニウム類の塩類等が挙げられる。 Examples of cationic surfactants include salts of amines such as alkylamines and alkylpentamethylpropylenediamine; salts of ammoniums such as nium and benzethonium (octylphenoxyethoxyethyldimethylbenzylammonium);
 両性界面活性剤としては、例えば、ジアルキルジアミノエチルベタイン、アルキルジメチルベンジルベタイン及びレシチン(ホスファチジルコリン、ホスファチジルエタノールアミン等)等が挙げられる。 Examples of amphoteric surfactants include dialkyldiaminoethyl betaine, alkyldimethylbenzyl betaine, and lecithin (phosphatidylcholine, phosphatidylethanolamine, etc.).
 シリコーン系界面活性剤としては、例えば、トリシロキサンエトキシレート等が挙げられる。 Examples of silicone-based surfactants include trisiloxane ethoxylate.
 フッ素界面活性剤としては、例えば、ペルフルオロアルキルカルボン酸塩、ペルフルオロアルキルスルホン酸塩及びペルフルオロアルキルトリメチルアンモニウム塩等挙げられる。 Examples of fluorine surfactants include perfluoroalkylcarboxylates, perfluoroalkylsulfonates, and perfluoroalkyltrimethylammonium salts.
 バイオサーファクタントとしては、例えば、ソホロリピッド、ラムノリピッド、トレハロースリピッド、マンノシルアルジトールリピッド、セロビオースリピッド、グルコースリピッド、オリゴ糖脂肪酸エステル、スピクルスポール酸、コリノミコール酸、アガリチン酸、サーファクチン、セラウエッチン、ビスコシン、ライケンシン、アルスロファクチン、エマルザン及びアラサン等を挙げることができる。 Examples of biosurfactants include sophorolipids, rhamnolipids, trehalose lipids, mannosylalditol lipids, cellobiose lipids, glucose lipids, oligosaccharide fatty acid esters, spiculesporic acid, corynomycolic acid, agaritic acid, surfactin, cerauethin, viscosine, licensin, Arthrofactin, Emulzan and Arasan and the like can be mentioned.
 その他の製剤用補助剤としては、pH調節剤として用いられる無機塩類(ナトリウム、カリウム等)等;食塩等の水溶性の塩類;増粘剤として用いられるキサタンガム、グアーガム、カルボキシメチルセルロース、ポリビニルピロリドン、カルボキシビニルポリマー、アクリル系ポリマー、ポリビニルアルコール、デンプン誘導体、水溶性高分子(多糖類等)、アルギン酸及びその塩等;崩壊分散剤として用いられるステアリン酸金属塩、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ等;防腐剤として用いられる安息香酸及びその塩、ソルビン酸及びその塩、プロピオン酸及びその塩、p-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸メチル、1,2-ベンツチアゾリン-3-オン等;補足剤として用いられるポリリン酸ナトリウム、ポリアクリル酸ナトリウム、リグニンスルホン酸ナトリウム、クエン酸ナトリウム、グルコン酸/グルコヘプタン酸ナトリウム、エチレンジアミンン四酢酸及びそのジナトリウム塩またはアンモニウム塩等;着色剤として用いられる顔料、染料等;消泡剤として用いられるフッ素系消泡剤、シリコーン系消泡剤、エチレンオキシド/プロピレンオキシド共重合体等;酸化防止剤として用いられるフェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン酸系酸化防止剤等;紫外線吸収剤として用いられるサルチル酸系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤等;乾燥剤として用いられる生石灰、酸化マグネシウム等;その他、展着剤及び薬害軽減剤等が挙げられる。 Other formulation adjuvants include inorganic salts (sodium, potassium, etc.) used as pH adjusters; water-soluble salts such as common salt; Vinyl polymers, acrylic polymers, polyvinyl alcohol, starch derivatives, water-soluble polymers (polysaccharides, etc.), alginic acid and salts thereof, etc.; metal stearates used as disintegrating dispersants, sodium tripolyphosphate, sodium hexametaphosphate, etc.; preservatives Benzoic acid and its salts, sorbic acid and its salts, propionic acid and its salts, p-hydroxybenzoic acid, methyl p-hydroxybenzoate, 1,2-benzthiazolin-3-one, etc. used as agents; Sodium polyphosphate, sodium polyacrylate, sodium ligninsulfonate, sodium citrate, gluconic acid/sodium glucoheptanoate, ethylenediaminetetraacetic acid and its disodium salt or ammonium salt, etc.; pigments and dyes used as coloring agents etc.; fluorine-based defoaming agents, silicone-based defoaming agents, ethylene oxide/propylene oxide copolymers, etc. used as anti-foaming agents; phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants used as antioxidants Inhibitors, phosphoric acid-based antioxidants, etc.; salicylic acid-based UV absorbers, benzophenone-based UV absorbers, etc. used as UV absorbers; quicklime, magnesium oxide, etc. used as drying agents; agents and the like.
 製剤には、そのまま使用するものと、水等の希釈剤で所定濃度に希釈して使用するものとがある。希釈して使用するときのアゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーと他の有効成分とを合わせた有効成分総量の濃度は0.001~1.0%の範囲が望ましい。 Some formulations are used as they are, and some are diluted with a diluent such as water to a predetermined concentration. When used after dilution, the concentration of the total amount of active ingredients, which is the sum of the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, is desirably in the range of 0.001 to 1.0%.
 また、アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーと他の有効成分とを合わせた有効成分の総使用量は、畑、田、果樹園及び温室等の農園芸地1haあたり、20~5000g、より好ましくは50~2000gである。これらの使用濃度及び使用量は剤形、使用時期、使用方法、使用場所及び対象作物等によっても異なるため、上記の範囲にこだわることなく増減することが可能である。 In addition, the total usage amount of the active ingredient, which is a combination of the R-enantiomer or mixed enantiomer of azole derivative (I) and other active ingredients, is 20 to 5000 g per 1 ha of agricultural and horticultural land such as fields, rice fields, orchards and greenhouses. , more preferably 50 to 2000 g. Since the concentrations and amounts used vary depending on the dosage form, time of use, method of use, place of use, target crops, etc., it is possible to increase or decrease without adhering to the above ranges.
 (3)他の有効成分
 アゾール誘導体(I)のR-エナンチオマーまたは混合エナンチオマーとともに含まれる他の有効成分としては、殺菌剤、殺虫剤、殺ダニ剤、殺線虫剤、及び植物成長調整剤に含まれる既知の有効成分を挙げることができる。これらの中でも、殺菌剤、殺虫剤、及び植物成長調整剤に含まれる既知の有効成分が好ましい。
(3) Other Active Ingredients Other active ingredients contained together with the R-enantiomer or mixed enantiomer of the azole derivative (I) include fungicides, insecticides, acaricides, nematicides, and plant growth regulators. The known active ingredients included can be mentioned. Among these, known active ingredients contained in fungicides, insecticides, and plant growth regulators are preferred.
 (3-1)殺菌剤用途の有効成分
 殺菌剤用途に好適な有効な成分としては、例えば、核酸合成代謝阻害剤、細胞骨格とモータータンパク質に作用する殺菌剤、呼吸阻害剤、アミノ酸・タンパク質生合成阻害剤、シグナル伝達阻害剤、脂質生合成又は輸送/細胞膜の構造又は機能阻害剤、細胞膜のステロール生合成阻害剤、細胞壁生合成阻害剤、メラニン生合成阻害剤、宿主植物の抵抗性誘導剤、多作用点殺菌剤及び複数の作用機構を有する生物農薬/生物由来の農薬等が挙げられる。
(3-1) Active Ingredients for Bactericidal Use Active ingredients suitable for bactericidal use include, for example, nucleic acid synthesis and metabolism inhibitors, bactericidal agents acting on the cytoskeleton and motor proteins, respiratory inhibitors, amino acid/protein synthesis inhibitor, signaling inhibitor, lipid biosynthesis or transport/cell membrane structure or function inhibitor, cell membrane sterol biosynthesis inhibitor, cell wall biosynthesis inhibitor, melanin biosynthesis inhibitor, host plant resistance inducer , multi-site fungicides and biopesticides/pesticides of biological origin with multiple mechanisms of action.
 核酸合成代謝阻害剤としては、ベナラキシル、ベナラキシルMまたはキララキシル、フララキシル、メタラキシル、メタラキシルMまたはメフェノキサム、オフラセ、オキサジキシル、ブピリメート、ジメチリモール、エチリモール、ヒドロキシイソキサゾール、オクチリノン及びオキソリニック酸等が挙げられる。核酸合成代謝阻害剤は、これらから選択される少なくとも1つであり得る。 Nucleic acid synthesis and metabolism inhibitors include benalaxyl, benalaxyl M or chiralaxyl, furalaxyl, metalaxyl, metalaxyl M or mefenoxam, ofrace, oxadixyl, bupirimate, dimethylmol, ethylimol, hydroxyisoxazole, octylinone and oxolinic acid. The nucleic acid synthesis metabolism inhibitor can be at least one selected from these.
 細胞骨格とモータータンパク質に作用する殺菌剤としては、ベノミル、カルベンダジム、フベリダゾール、チアベンダゾール、チオファネート、チオファネートメチル、ジエトフェンカルブ、エタボキサム、ペンシクロン、ゾキサミド、フルオピコリド、フルオピモミド、フェナマクリル、メトラフェノン及びピリオフェノン等が挙げられる。細胞骨格とモータータンパク質に作用する殺菌剤は、これらから選択される少なくとも1つであり得る。 Bactericides that act on the cytoskeleton and motor proteins include benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate, thiophanate-methyl, diethofencarb, ethaboxam, pencycuron, zoxamide, fluopicolide, fluopimomide, fenamacril, metrafenone, and pyriophenone. The bactericidal agent that acts on the cytoskeleton and motor proteins can be at least one selected from these.
 呼吸阻害剤としては、ジフルメトリム、フェナザキン、トルフェンピラド、ベノダニル、ベンゾビンジフルピル、ビキサフェン、ボスカリド、カルボキシン、フェンフラン、フルベネテラム、フルインダピル、フルオピラム、フルトラニル、フルキサピロキサド、フラメトピル、インピルフルキサム、イソフェタミド、イソフルシプラム、イソピラザム、メプロニル、オキシカルボキシン、ペンフルフェン、ペンチオピラド、ピジフルメトフェン、ピラプロポイン、ピラジフルミド、セダキサン、チフルザミド、アゾキシストロビン、クモキシストロビン、ジモキシストロビン、エネストロビン、エノキサストロビン、ファモキサドン、フェンアミドン、フェナミンストロビン、フルフェノキシストロビン、フルオキサストロビン、クレソキシムメチル、マンデストロビン、メトミノストロビン、メチルテトラプロール、オリサストロビン、ピコキシストロビン、ピラクロストロビン、ピラメトストロビン、ピラオキシストロビン、ピリベンカルブ、トリクロピリカルブ、トリフロキシストロビン、アミスルブロム、シアゾファミド、フェンピコキサミド、フロリルピコキサミド、ビナパクリル、ジノカップ、フルアジナム、メプチルジノカップ、酢酸トリフェニルスズ、塩化トリフェニルスズ、水酸化トリフェニルスズ、シルチオファム及びアメトクトラジン等が挙げられる。呼吸阻害剤は、これらから選択される少なくとも1つであり得る。 Respiratory inhibitors include diflumetrim, fenazaquin, tolfenpyrad, benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuran, fluveneteram, fluindapyr, fluopyram, flutolanil, fluxapyroxad, furametpyr, impylfluxam, isofetamide , isoflucipram, isopyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, pydiflumetofen, pyrapropoin, pyraziflumide, sedaxane, thifluzamide, azoxystrobin, cumoxystrobin, dimoxystrobin, enestrobin, enoxastrobin , famoxadone, fenamidone, phenaminestrobin, fluphenoxystrobin, fluoxastrobin, cresoxime methyl, mandestrobin, metminostrobin, methyltetraprole, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyra Oxystrobin, pyribencarb, triclopiricarb, trifloxystrobin, amisulbrom, cyazofamid, fenpicoxamide, florylpicoxamide, binapacryl, dinocap, fluazinam, meptyldinocap, triphenyltin acetate, triphenyltin chloride , triphenyltin hydroxide, silthiofam and amethoctrazine. The respiratory inhibitor can be at least one selected from these.
 アミノ酸及びタンパク質生合成阻害剤としては、シプロジニル、メパニピリム、ピリメタニル、ブラストサイジンS、カスガマイシン、ストレプトマイシン及びオキシテトラサイクリン等が挙げられ、これらから選択される少なくとも1つであり得る。 Amino acid and protein biosynthesis inhibitors include cyprodinil, mepanipyrim, pyrimethanil, blasticidin S, kasugamycin, streptomycin, oxytetracycline, and the like, and can be at least one selected from these.
 シグナル伝達阻害剤としては、プロキナジド、キノキシフェン、フルジオキソニル、クロゾリネート、ジメタクロン、フェンピクロニル、イプロジオン、プロシミドン及びビンクロゾリン等が挙げられ、これらから選択される少なくとも1つであり得る。 Signal transduction inhibitors include proquinazid, quinoxifene, fludioxonil, clozolinate, dimethaclone, fenpicronil, iprodione, procymidone, vinclozoline, and the like, and may be at least one selected from these.
 脂質生合成又は輸送/細胞膜の構造又は機能阻害剤としては、エジフェンホス(EDDP)、イプロベンホス(IBP)、イソプロチオラン、ピラゾホス、ビフェニル、クロロネブ、ジクロラン(CNA)、エトリジアゾール、キントゼン(PCNB)、テクナゼン(TCNB)、トルクロホスメチル、ヨードカルブ、プロパモカルブ、プロチオカルブ、ゴセイカユプテ(ティーツリー)の抽出物、植物油類混合物(オイゲノール、ゲラニオール、チモール)、ナタマイシン(ピマリシン)、フルオキサピプロリン及びオキサチアピプロリン等が挙げられる。脂質生合成又は輸送/細胞膜の構造又は機能阻害剤は、これらから選択される少なくとも1つであり得る。 Lipid biosynthesis or transport/cell membrane structure or function inhibitors include edifenphos (EDDP), iprobenfos (IBP), isoprothiolane, pyrazophos, biphenyl, chloroneb, dichlorane (CNA), etridiazole, quintozene (PCNB), technazene (TCNB) , tolclofos-methyl, iodocarb, propamocarb, prothiocarb, extract of Gosseikajeupte (tea tree), vegetable oil mixture (eugenol, geraniol, thymol), natamycin (pimaricin), fluoxapiproline and oxathiapiproline. The lipid biosynthesis or transport/cell membrane structure or function inhibitor may be at least one selected from these.
 細胞膜のステロール生合成阻害剤としては、アザコナゾール、ビテルタノール、ブロムコナゾール、シプロコナゾール、ジフェノコナゾール、ジニコナゾール、エポキシコナゾール、エタコナゾール、フェンブコナゾール、フルオキシチオコナゾール、フルキンコナゾール、フルシラゾール、フルトリアホール、ヘキサコナゾール、イマザリル、イミベンコナゾール、イプコナゾール、イプフェントリフルコナゾール、メフェントリフルコナゾール、メトコナゾール、ミクロブタニル、オキスポコナゾール、ペフラゾエート、ペンコナゾール、プロクロラズ、プロピコナゾール、プロチオコナゾール、シメコナゾール、テブコナゾール、テトラコナゾール、トリアジメホン、トリアジメノール、トリフルミゾール、トリチコナゾール、フェナリモル、ヌアリモール、ピリフェノックス、ピリソキサゾール、トリホリン、メチル(2RS)-2-[2-クロロ-4-(4-クロロフェノキシ)フェニル]-2-ヒドロキシ-3-(1H-1,2,4-トリアゾール-1-イル)プロパノアート、1-((1H-1,2,4-トリアゾール-1-イル)メチル)-5-(4-クロロベンジル)-2-(クロロメチル)-2-メチルシクロペンタン-1-オール、メチル2-((1H-1,2,4-トリアゾール-1-イル)メチル)-3-(4-クロロベンジル)-2-ヒドロキシ-1-メチルシクロペンタン-1-カルボキシレート、アルジモルフ、ドデモルフ、フェンプロピモルフ、トリデモルフ、フェンプロピジン、ピペラリン、スピロキサミン、フェンヘキサミド、フェンピラザミン、ピリブチカルブ、ナフチフィン及びテルビナフィン等が挙げられる。細胞膜のステロール生合成阻害剤は、これらから選択される少なくとも1つであり得る。 Cell membrane sterol biosynthesis inhibitors include azaconazole, bitertanol, bromconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, etaconazole, fenbuconazole, fluoxythioconazole, fluquinconazole, flusilazole, flutria hall, hexaconazole, imazalil, imibenconazole, ipconazole, ipfentrifluconazole, mefentrifluconazole, metconazole, microbutanil, oxpoconazole, pefurazoate, penconazole, prochloraz, propiconazole, prothioconazole, simeconazole, tebuconazole , tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole, fenarimol, nuarimol, pyrifenox, pyrisoxazole, trifoline, methyl(2RS)-2-[2-chloro-4-(4-chlorophenoxy ) phenyl]-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propanoate, 1-((1H-1,2,4-triazol-1-yl)methyl)-5- (4-chlorobenzyl)-2-(chloromethyl)-2-methylcyclopentan-1-ol, methyl 2-((1H-1,2,4-triazol-1-yl)methyl)-3-(4 -chlorobenzyl)-2-hydroxy-1-methylcyclopentane-1-carboxylate, aldimorph, dodemorph, fenpropimorph, tridemorph, fenpropidine, piperaline, spiroxamine, phenhexamide, fenpyrazamine, pirbuticarb, naftifine and terbinafine, etc. is mentioned. The cell membrane sterol biosynthesis inhibitor can be at least one selected from these.
 細胞壁生合成阻害剤としては、ポリオキシン、ベンチアバリカルブ(ベンチアバリカルブイソプロピル)、ジメトモルフ、フルモルフ、イプロバリカルブ、マンジプロパミド、ピリモルフ及びバリフェナレート等が挙げられる。細胞壁生合成阻害剤は、これらから選択される少なくとも1つであり得る。 Cell wall biosynthesis inhibitors include polyoxin, bentiavalicarb (bentiavalicarb isopropyl), dimethomorph, flumorph, iprovalicarb, mandipropamide, pirimorph, and valifenalate. The cell wall biosynthesis inhibitor can be at least one selected from these.
 メラニン生合成阻害剤としては、フサライド、ピロキロン、トリシクラゾール、カルプロパミド、ジクロシメット、フェノキサニル及びトルプロカルブ等が挙げられる。メラニン生合成阻害剤は、これらから選択される少なくとも1つであり得る。 Melanin biosynthesis inhibitors include fthalide, pyroquilone, tricyclazole, carpropamide, diclocimet, fenoxanyl and tolprocarb. The melanin biosynthesis inhibitor can be at least one selected from these.
 宿主植物の抵抗性誘導剤としては、アシベンゾラルSメチル、プロベナゾール、チアジニル、イソチアニル、ラミナリン、オオイタドリ抽出液、バチルス・マイコイデス分離株J、サッカロミセス・セレビシアLAS117株の細胞壁、ホセチル(ホセチル‐アルミニウム、ホセチルカリウム、ホセチルナトリウム)、リン酸、リン酸塩及びジクロベンチアゾクス等が挙げられる。宿主植物の抵抗性誘導剤は、これらから選択される少なくとも1つであり得る。 Examples of host plant resistance inducers include acibenzolar-S-methyl, probenazole, thiazinyl, isotianil, laminarin, Oitadori extract, Bacillus mycoides isolate J, cell wall of Saccharomyces cerevisiae strain LAS117, fosetyl (fosetyl-aluminum, fosetyl potassium, fosetyl sodium), phosphoric acid, phosphates and diclobentiazox. The host plant resistance inducer may be at least one selected from these.
 多作用点殺菌剤としては、ファーバム、マンゼブ、マンネブ、メチラム、プロピネブ、チウラム、チアゾール亜鉛、ジネブ、ジラム、アンバム、アニラジン、ジチアノン、ジクロフルアニド、トリルフルアニド、グアザチン、イミノクタジン酢酸塩、イミノクタジンアルベシル酸塩、銅または種々の銅塩(例えば塩基性塩化銅、水酸化第二銅、塩基性硫酸銅、硫酸銅、有機銅(オキシン銅)、ノニルフェノールスルホン酸銅、DBEDC等)、硫黄、キャプタン、カプタホール、ホルペット、TPN(クロロタロニル)、キノキサリン系(キノメチオナート)、フルオルイミド及びメタスルホカルブ等が挙げられる。多作用点殺菌剤は、これらから選択される少なくとも1つであり得る。 Multi-point fungicides include farbum, mancozeb, maneb, metiram, propineb, thiuram, thiazole zinc, zineb, ziram, ambam, anilazine, dithianone, diclofluanide, tolylfluanide, guazatine, iminoctadine acetate, iminoctadine albecil copper or various copper salts (e.g. basic copper chloride, cupric hydroxide, basic copper sulfate, copper sulfate, organic copper (oxine copper), copper nonylphenol sulfonate, DBEDC, etc.), sulfur, captan, captafol, folpet, TPN (chlorothalonyl), quinoxaline (quinomethionate), fluorimide and metasulfocarb, and the like. The multi-site disinfectant can be at least one selected from these.
 複数の作用機構を有する生物農薬/生物由来の農薬として、バチルス・ズブチリスAFS032321株、バチルス・アミロリクエファシエンスQST713株、バチルス・アミロリクエファシエンスFZB24株、バチルス・アミロリクエファシエンスMBI600株、バチルス・アミロリクエファシエンスD747株、バチルス・アミロリクエファシエンスF727株、クロノスタキス・ロゼアCR-7株、グリオクラディウム・カテナラタムJ1446株、シュードモナス・クロロファフィスAFS009株、ストレプトミセス・グリセオビリデスK61株、ストレプトミセス・リディクスWYEC108株、トリコデルマ・アトロビリデIー1237株、トリコデルマ・アトロビリデLU132株、トリコデルマ・アトロビリデSC1株、トリコデルマ・アスペレルムT34株、スウェイングレア・グルティノーサからの抽出物及びハウチワマメ苗木の子葉からの抽出物等が挙げられる。複数の作用機構を有する生物農薬/生物由来の農薬は、これらから選択される少なくとも1つであり得る。 Biological pesticides/organism-derived pesticides having multiple mechanisms of action include Bacillus subtilis AFS032321 strain, Bacillus amyloliquefaciens strain QST713, Bacillus amyloliquefaciens strain FZB24, Bacillus amyloliquefaciens strain MBI600, Bacillus amyloliquefaciens strain MBI600, Amyloliquefaciens D747 strain, Bacillus amyloliquefaciens F727 strain, Chronostakis rosea CR-7 strain, Gliocladium catenaratum J1446 strain, Pseudomonas chlorophaphis AFS009 strain, Streptomyces griseovirides K61 strain, Strept Mrs. ridicus WYEC108 strain, Trichoderma atroviride I-1237 strain, Trichoderma atroviride LU132 strain, Trichoderma atroviride SC1 strain, Trichoderma aspererum strain T34, extracts from Swaingrea glutinosa, extracts from cotyledons of lupine seedlings, etc. is mentioned. The biopesticide/pesticide of biological origin with multiple mechanisms of action can be at least one selected from these.
 その他の殺菌剤用途の化合物として、クロロインコナジド、シフルフェナミド、シモキサニル、ジクロメジン、ジピメチトロン、ドジン、フェニトロパン、フェリムゾン、フルスルファミド、フルチアニル、ハルピン、無機塩類(炭酸水素塩(炭酸水素ナトリウム、炭酸水素カリウム)、炭酸カリウム)、イプフルフェノキン、キノプロール、天然物起源、マシン油、有機油、ピカルブトラゾクス、ピリダクロメチル、キノフメリン、テブフロキン、テクロフタラム(殺細菌剤)、トリアゾキシド、バリダマイシン、アミノピリフェン及びシイタケ菌糸体抽出物等が挙げられる。その他の殺菌剤用途の化合物は、これらから選択される少なくとも1つであり得る。 Other fungicidal compounds include chloroinconazide, cyflufenamide, cymoxanil, diclomedine, dipimethitrone, dodine, fenitropane, ferimzone, fursulfamide, flutianil, harpine, inorganic salts (bicarbonates (sodium bicarbonate, potassium bicarbonate), potassium carbonate), ipflufenoquine, quinoprole, natural origin, machine oil, organic oil, picarbutrazox, pyridacromethyl, quinofumeline, tebufuroquine, teclofthalam (bactericide), triazoxide, validamycin, aminopyrifene and shiitake mushroom A mycelium extract etc. are mentioned. Other antiseptic compounds may be at least one selected from these.
 (3-2)殺虫剤、殺ダニ剤および殺線虫剤用途の有効成分
 殺虫剤、殺ダニ剤及び殺線虫剤用途に好適な有効な成分としては、例えば、アセチルコリンエステラーゼ(AChE)阻害剤、GABA作動性塩化物イオンチャネルブロッカー、ナトリウムチャネルモジュレーター、ニコチン性アセチルコリン受容体(nAChR)競合的モジュレーター、ニコチン性アセチルコリン受容体(nAChR)アロステリックモジュレーター、グルタミン酸作動性塩素イオンチャネル(GluCl) アロステリックモジュレーター、幼若ホルモン類似剤、その他の非特異的(マルチサイト)阻害剤、弦音器官TRPVチャネルモジュレーター、CHS1に作用するダニ類成長阻害剤、微生物由来昆虫中腸内膜破壊剤、ミトコンドリアATP合成酵素阻害剤、プロトン勾配を攪乱する酸化的リン酸化脱共役剤、ニコチン性アセチルコリン受容体(nAChR)チャネルブロッカー、CHS1に作用するキチン生合成阻害剤、キチン生合成阻害剤(タイプ1)、脱皮阻害剤(ハエ目昆虫)、脱皮ホルモン(エクダイソン)受容体アゴニスト、オクトパミン受容体アゴニスト、ミトコンドリア電子伝達系複合体III阻害剤、ミトコンドリア電子伝達系複合体I阻害剤(METI)、電位依存性ナトリウムチャネルブロッカー、アセチルCoAカルボキシラーゼ阻害剤、ミトコンドリア電子伝達系複合体IV阻害剤、ミトコンドリア電子伝達系複合体II阻害剤、リアノジン受容体モジュレーター、弦音器官モジュレーター、GABA作動性塩化物イオンチャネルアロステリックモジュレーター及びバキュロウイルス等が挙げられる。
(3-2) Active Ingredients for Use as Insecticides, Acaricides and Nematicides Active ingredients suitable for use as insecticides, acaricides and nematicides include, for example, acetylcholinesterase (AChE) inhibitors , GABAergic chloride ion channel blockers, sodium channel modulators, nicotinic acetylcholine receptor (nAChR) competitive modulators, nicotinic acetylcholine receptor (nAChR) allosteric modulators, glutamatergic chloride channel (GluCl) allosteric modulators, larvae Juvenile hormone analogues, other non-specific (multisite) inhibitors, chordotonal TRPV channel modulators, mite growth inhibitors acting on CHS1, microbial-derived insect midgut lining disrupters, mitochondrial ATP synthase inhibitors, Oxidative phosphorylation uncoupler that disrupts the proton gradient, nicotinic acetylcholine receptor (nAChR) channel blocker, chitin biosynthesis inhibitor acting on CHS1, chitin biosynthesis inhibitor (type 1), molting inhibitor (Diptera) insect), molting hormone (ecdysone) receptor agonist, octopamine receptor agonist, mitochondrial electron transport complex III inhibitor, mitochondrial electron transport complex I inhibitor (METI), voltage-dependent sodium channel blocker, acetyl-CoA carboxylase inhibitors, mitochondrial electron transport system complex IV inhibitors, mitochondrial electron transport system complex II inhibitors, ryanodine receptor modulators, chordotonal organ modulators, GABAergic chloride ion channel allosteric modulators, baculovirus and the like.
 アセチルコリンエステラーゼ(AChE)阻害剤としては、アラニカルブ、アルジカルブ、ベンダイオカルブ、ベンフラカルブ、ブトカルボキシム、ブトキシカルボキシム、NAC(カルバリル)、カルボフラン、カルボスルファン、エチオフェンカルブ、BPMC(フェノブカルブ)、フェノチオカルブ、ホルメタネート、フラチオカルブ、MIPC(イソプロカルブ)、メチオカルブ、メソミル、MTMC(メトルカルブ)、オキサミル、ピリミカーブ、PHC(プロポキスル)、チオジカルブ、チオファノックス、トリアザメート、トリメタカルブ、XMC、MPMC(キシリルカルブ)、アセフェート、アザメチホス、アジンホスエチル、アジンホスメチル、カズサホス、クロレトキシホス、CVP(クロルフェンビンホス)、クロルメホス、クロルピリホス、クロルピリホスメチル、クマホス、CYAP(シアノホス)、ジメトン-S-メチル、ダイアジノン、DDVP(ジクロルボス)、ジクロトホス、ジメトエート、ジメチルビンホス、エチルチオメトン(ジスルホトン)、EPN、エチオン、エトプロホス、ファンフル、フェナミホス、MEP(フェニトロチオン)、MPP(フェンチオン)、ホスチアゼート、ヘプテノホス、イミシアホス、イソフェンホス、イソプロピル O-(メトキシアミノチオホスホリル)サリチラート、イソキサチオン、マラソン(マラチオン)、メカルバム、メタミドホス、DMTP(メチダチオン)、メビンホス、モノクロトホス、BRP(ナレッド)、オメトエート、オキシジメトンメチル、パラチオン、メチルパラチオン(パラチオンメチル)、PAP(フェントエート)、ホレート、ホサロン、PMP(ホスメット)、ホスファミドン、ホキシム、ピリミホスメチル、プロフェノホス、プロペタムホス、プロチオホス、ピラクロホス、ピリダフェンチオン、キナルホス、スルホテップ、テブピリムホス、テメホス、テルブホス、CVMP(テトラクロルビンホス)、チオメトン、トリアゾホス、DEP(トリクロルホン)及びバミドチオン等が挙げられる。 Acetylcholinesterase (AChE) inhibitors include alanicarb, aldicarb, bendiocarb, benfuracarb, butocaboxime, butoxycarboxime, NAC (carbaryl), carbofuran, carbosulfan, ethiofencarb, BPMC (phenocarb), phenothiocarb, formetanate, Furatiocarb, MIPC (isoprocarb), methiocarb, methomyl, MTMC (metolcarb), oxamyl, pirimicarb, PHC (propoxur), thiodicarb, thiophanox, triazamate, trimetacarb, XMC, MPMC (xylylcarb), acephate, azamethifos, azinphosethyl, azinphosmethyl, Cadusaphos, chloretoxyphos, CVP (chlorfenvinphos), chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, CYAP (cyanophos), dimethone-S-methyl, diazinon, DDVP (dichlorvos), dicrotophos, dimethoate, dimethylvinphos, ethylthiomethone (disulfotone) ), EPN, Ethion, Ethoprophos, Fanfur, Fenamiphos, MEP (Fenitrothion), MPP (Fenthion), Hostiazate, Heptenophos, Imisiaphos, Isofenphos, Isopropyl O-(methoxyaminothiophosphoryl) salicylate, Isoxathion, Marathon (malathion), Mecarbam , methamidophos, DMTP (methidathion), mevinphos, monocrotophos, BRP (naled), omethoate, oxydimethone methyl, parathion, methyl parathion (parathion methyl), PAP (phenthoate), folate, fosarone, PMP (phosmet), phosphamidone, phoxime, pyrimiphos-methyl, propenophos, propetamphos, prothiophos, pyraclophos, pyridafenthion, quinalphos, sulfotep, tebpilimphos, temefos, terbufos, CVMP (tetrachlorbinphos), thiometone, triazophos, DEP (trichlorfon) and vamidothione.
 GABA作動性塩化物イオンチャネルブロッカーとしては、クロルデン、ベンゾエピン(エンドスルファン)、ジエノクロル、エチプロール、フィプロニル、ピリプロ―ル及びニコフルプロール等が挙げられる。 GABAergic chloride ion channel blockers include chlordane, benzoepine (endosulfan), dienochlor, ethiprole, fipronil, pyriprole and nicoflurrole.
 ナトリウムチャネルモジュレーターとしては、アクリナトリン、アレスリン(アレスリン、d-シス-トランス-、d-トランス-異性体)、ビフェントリン、ビオアレスリン(ビオアレスリン、S-シクロペンテニル-異性体)、ビオレスメトリン、クロロプラレスリン、クロルフェンソン、シクロプロトリン、シフルトリン(シフルトリン、β-異性体)、シハロトリン(シハロトリン、λ-、γ-異性体)、シペルメトリン(シペルメトリン、α-、β-、θ-、ζ-異性体)、シフェノトリン[(1R)-トランス異性体]、デルタメトリン、ジメフルトリン、エンペントリン[(EZ)-(1R)-異性体]、エスフェンバレレート、エトフェンプロックス、フェンプロパトリン、フェンバレレート、フルブロシトリネート、フルシトリネート、フルメトリン、フルバリネート(τ-フルバリネート)、ハルフェンプロックス、イミプロトリン、カデスリン、メトフルトリン、モンフルオロトリン、イプシロンメトフルトリン、イプシロンモンフルオロトリン、ペルメトリン、フェノトリン[(1R)-トランス異性体]、プラレトリン、プロフルトリン、ピレトリン、レスメトリン、シラフルオフェン、テフルトリン、フタルスリン(テトラメスリン)、テトラメスリン[(1R)-異性体]、トラロメトリン、トランスフルトリン、DDT、メトキシクロル、アルドリン、ディルドリン及びリンダン(リンデン)等が挙げられる。 Sodium channel modulators include acrinathrin, allethrin (allethrin, d-cis-trans-, d-trans-isomer), bifenthrin, bioallethrin (biorethrin, S-cyclopentenyl-isomer), bioresmethrin, chloroprathrin, Chlorphenthone, cycloprothrin, cyfluthrin (cyfluthrin, β-isomer), cyhalothrin (cyhalothrin, λ-, γ-isomer), cypermethrin (cypermethrin, α-, β-, θ-, ζ-isomer ), cyphenothrin [(1R)-trans isomer], deltamethrin, dimefluthrin, empenthrin [(EZ)-(1R)-isomer], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flubrocitrin flucythrin, flumethrin, fluvalinate (τ-fluvalinate), halfenprox, imiprothrin, cadethrin, metofruthrin, monfluorothrin, epsilon metofluthrin, epsilon monfluorothrin, permethrin, phenothrin [(1R)-trans isomer], prallethrin, profluthrin, pyrethrin, resmethrin, silafluofen, tefluthrin, phthalthrin (tetramethrin), tetramethrin [(1R)-isomer], tralomethrin, transfluthrin, DDT, methoxychlor, aldrin, dieldrin and lindane (lindane), etc. is mentioned.
 ニコチン性アセチルコリン受容体(nAChR)競合的モジュレーターとしては、アセタミプリド、クロチアニジン、ジノテフラン、イミダクロプリド、ニテンピラム、チアクロプリド、チアメトキサム、硫酸ニコチン(ニコチン)、スルホキサフロル、フルピラジフロン、ジクロロメゾチアズ及びトリフルメゾピリム等が挙げられる。 Nicotinic acetylcholine receptor (nAChR) competitive modulators include acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam, nicotine sulfate (nicotine), sulfoxaflor, flupyradifron, dichloromesothiaz and triflumezopyrim. .
 ニコチン性アセチルコリン受容体(nAChR)アロステリックモジュレーターとしては、スピネトラム、スピノサド、フルピリミン及びGS-オメガ/カッパHXTX-Hv1aペプチド等が挙げられる。 Nicotinic acetylcholine receptor (nAChR) allosteric modulators include spinetoram, spinosad, flupyrimine and GS-omega/kappa HXTX-Hv1a peptide.
 グルタミン酸作動性塩素イオンチャネル(GluCl) アロステリックモジュレーターとしては、アバメクチン、エマメクチン安息香酸塩、レピメクチン及びミルベメクチン等が挙げられる。 Glutamatergic chloride channel (GluCl) allosteric modulators include abamectin, emamectin benzoate, lepimectin and milbemectin.
 幼若ホルモン類似剤としては、ヒドロプレン、キノプレン、メトプレン、フェノキシカルブ及びピリプロキシフェン等が挙げられる。 Juvenile hormone mimics include hydroprene, kinoprene, methoprene, fenoxycarb and pyriproxyfen.
 その他の非特異的(マルチサイト)阻害剤としては、臭化メチル(メチルブロマイド)、その他のハロゲン化アルキル類、クロルピクリン、弗化アルミニウムナトリウム、フッ化スルフリル、ホウ砂、ホウ酸、オクタホウ酸ニナトリウム塩、メタホウ酸ナトリウム塩、吐酒石、ダゾメット、カーバム(メタムアンモニウム塩)、メタムナトリウム塩(カーバムナトリウム塩)及びメチルイソチオシアネート(イソチオシアン酸メチル)等が挙げられる。 Other non-specific (multi-site) inhibitors include methyl bromide (methyl bromide), other alkyl halides, chloropicrin, sodium aluminum fluoride, sulfuryl fluoride, borax, boric acid, disodium octaborate salts, metaborate sodium salt, tartar emetic, dazomet, carbam (metam ammonium salt), metam sodium salt (carbam sodium salt), methyl isothiocyanate (methyl isothiocyanate), and the like.
 弦音器官TRPVチャネルモジュレーターとしては、ピメトロジン、ピリフルキナゾン及びアフィドピロペン等が挙げられる。 String tone organ TRPV channel modulators include pymetrozine, pyrifluquinazone and aphidopyropene.
 CHS1に作用するダニ類成長阻害剤としては、クロフェンテジン、ジフロビダジン、ヘキシチアゾクス及びエトキサゾール等が挙げられる。 Mite growth inhibitors that act on CHS1 include clofentezine, diflovidazine, hexythiazox and etoxazole.
 微生物由来昆虫中腸内膜破壊剤としては、Bacillus thuringiensis subsp. israelensis、Bacillus thuringiensis subsp. aizawai、Bacillus thuringiensis subsp. kurstaki、Bacillus thuringiensis subsp. tenebrionis、B.t.作物に含まれるタンパク質(Cry1Ab、Cry1Ac、Cry1Fa、Cry1A.105、Cry2Ab、Vip3A、mCry3A、Cry3Bb、Cry34Ab1/Cry35Ab1)及びBacillus sphaericus等が挙げられる。 As a microorganism-derived insect midgut lining-disrupting agent, Bacillus thuringiensis subsp. israelensis, Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. Kurstaki, Bacillus thuringiensis subsp. tenebrionis, proteins contained in B.t. crops (Cry1Ab, Cry1Ac, Cry1Fa, Cry1A.105, Cry2Ab, Vip3A, mCry3A, Cry3Bb, Cry34Ab1/Cry35Ab1) and Bacillus sphaericus.
 ミトコンドリアATP合成酵素阻害剤としては、ジアフェンチウロン、アゾシクロチン、水酸化トリシクロヘキシルスズ(シヘキサチン)、酸化フェンブタスズ、BPPS(プロパルギット)及びテトラジホン等が挙げられる。 Mitochondrial ATP synthase inhibitors include diafenthiuron, azocyclotin, tricyclohexyltin hydroxide (cyhexatin), fenbutatin oxide, BPPS (propargite) and tetradifon.
 プロトン勾配を攪乱する酸化的リン酸化脱共役剤としては、クロルフェナピル、DNOC及びスルフルラミド等が挙げられる。 Oxidative phosphorylation uncouplers that disrupt the proton gradient include chlorfenapyr, DNOC and sulfluramide.
 ニコチン性アセチルコリン受容体(nAChR)チャネルブロッカーとしては、ベンスルタップ、カルタップ塩酸塩、チオシクラム、チオスルタップナトリウム塩及びモノスルタップ等が挙げられる。 Nicotinic acetylcholine receptor (nAChR) channel blockers include bensultap, cartap hydrochloride, thiocyclam, thiosultap sodium salt and monosultap.
 CHS1に作用するキチン生合成阻害剤としては、ビストリフルロン、クロルフルアズロン、ジフルベンズロン、フルシクロクスロン、フルフェノクスロン、ヘキサフルムロン、ルフェヌロン、ノバルロン、ノビフルムロン、テフルベンズロン及びトリフルムロン等が挙げられる。 Chitin biosynthesis inhibitors that act on CHS1 include bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
 キチン生合成阻害剤(タイプ1)としては、ブプロフェジン等が挙げられる。 Buprofezin and the like are examples of chitin biosynthesis inhibitors (type 1).
 脱皮阻害剤(ハエ目昆虫)としては、シロマジン等が挙げられる。 Moulting inhibitors (Diptera insects) include cyromazine and the like.
 脱皮ホルモン(エクダイソン)受容体アゴニストとしては、クロマフェノジド、ハロフェノジド、メトキシフェノジド及びテブフェノジド等が挙げられる。 Moulting hormone (ecdysone) receptor agonists include chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
 オクトパミン受容体アゴニストとしては、アミトラズ等が挙げられる。 Examples of octopamine receptor agonists include amitraz.
 ミトコンドリア電子伝達系複合体III阻害剤としては、ヒドラメチルノン、アセキノシル、フルアクリピリム及びビフェナゼート等が挙げられる。 Mitochondrial electron transport chain complex III inhibitors include hydramethylnon, acequinosyl, fluacrypyrim and bifenazate.
 ミトコンドリア電子伝達系複合体I阻害剤(METI)としては、フェナザキン、フェンピロキシメート、ピリダベン、ピリミジフェン、テブフェンピラド、トルフェンピラド及びデリス(ロテノン)等が挙げられる。 Mitochondrial electron transport chain complex I inhibitors (METI) include fenazaquin, fenpyroximate, pyridaben, pyrimidifen, tebufenpyrad, tolfenpyrad and delis (rotenone).
 電位依存性ナトリウムチャネルブロッカーとしては、インドキサカルブ及びメタフルミゾン等が挙げられる。 Voltage-gated sodium channel blockers include indoxacarb and metaflumizone.
 アセチルCoAカルボキシラーゼ阻害剤としては、スピロジクロフェン、スピロメシフェン、スピロピジオン及びスピロテトラマト等が挙げられる。 Acetyl-CoA carboxylase inhibitors include spirodiclofen, spiromesifen, spiropidione and spirotetramat.
 ミトコンドリア電子伝達系複合IV阻害剤としては、リン化アルミニウム、リン化カルシウム、リン化水素、リン化亜鉛、青酸(シアン化カルシウム・シアン化ナトリウム)及びシアン化カリウム等が挙げられる。 Mitochondrial electron transport system complex IV inhibitors include aluminum phosphide, calcium phosphide, hydrogen phosphide, zinc phosphide, hydrocyanic acid (calcium cyanide/sodium cyanide) and potassium cyanide.
 ミトコンドリア電子伝達系複合II阻害剤としては、シエノピラフェン、シエトピラフェン、シフルメトフェン、ピフルブミド及びシクロブトリフルラム等が挙げられる。 Mitochondrial electron transport chain complex II inhibitors include cyenopyrafen, cietopirafen, cyflumetofen, piflubumide and cyclobutrifluram.
 リアノジン受容体モジュレーターとしては、クロラントラニリプロール、シアントラニリプロール、シクラニリプロール、フルベンジアミド、テトラニリプロール、テトラクロラントラニリプロール、シハロジアミド及びシプロフラニリド等が挙げられる。 Ryanodine receptor modulators include chlorantraniliprole, cyantraniliprole, cyclaniliprole, flubendiamide, tetraniliprole, tetrachlorantraniliprole, cyhalodiamide and ciprofuranilide.
 弦音器官モジュレーターとしては、フロニカミド等が挙げられる。 String tone organ modulators include flonicamid and the like.
 GABA作動性塩化物イオンチャネルアロステリックモジュレーターとしては、ブロフラニリド、フルキサメタミド及びイソシクロセラム等が挙げられる。 GABAergic chloride ion channel allosteric modulators include brofuranilide, fluxametamide and isocycloseram.
 バキュロウイルスとしては、コドリンガCydia pomonella GV、コドリンガモドキThaumatotibia leucotreta GV、ビロードマメケムシAnticarsis gemmatalis MNPV及びオオタバコガHelicoverpa armigera NPV等が挙げられる。 Baculoviruses include codling moth Cydia pomonella GV, codling moth Thaumatotibia leucotreta GV, velvet bean beetle Anticarsis gemmatalis MNPV and Helicoverpa armigera NPV.
 その他の殺虫剤、殺ダニ剤及び殺線虫剤としては、アザジラクチン、ベンゾメート(ベンゾキシメート)、フェニソブロモレート(ブロモプロピレート)、キノキサリン系(キノメチオナート)、ケルセン(ジコホル)、石灰硫黄合剤、マンゼブ、ピリダリル、硫黄、アシノナピル、アミドフルメト、ベンズピリモキサン、フルアザインドリジン、フルエンスルホン、フルヘキサホン、フルペンチオフェノックス、フロメトキン、メタアルデヒド、チクロピラゾフロル、ジンプロピリダズ、バークホルデリア属菌、ボルバキア・ピピエンティス(Zap)、アリタソウ抽出物、グリセリンまたはプロパンジオールを持った脂肪酸モノエステル、ニームオイル、マシン油、ナタネ油、調合油、デンプン、還元澱粉糖化物、オレイン酸ナトリウム、リン酸第二鉄、ネマデクチン、ボーベリア・バシアーナ株、メタリジウム・アニソプリア株(F52)、ペシロマイセス・フモソロセウス・アポプカ株(97)、珪藻土、DCIP(ジクロロジイソプロピルエーテル)、D-D(1,3ジクロロプロペン)、塩酸レバミゾール、酒石酸モランテル及びチオキサザフェン等が挙げられる。 Other insecticides, acaricides and nematicides include azadirachtins, benzomates (benzoximates), phenisobromorates (bromopropylates), quinoxalines (quinomethionates), quercene (dicofol), lime-sulfur mixtures. , mancozeb, pyridalyl, sulfur, acinonapyr, amidoflumet, benzpyrimoxane, fluazaindolizine, fluenesulfone, fluhexafone, flupentiophenox, flometoquine, metaldehyde, cyclopyrazofurol, zinpropyridaz, Burkholderia sp., Wolbachia Pipientis (Zap), Aritasou extract, fatty acid monoester with glycerin or propanediol, neem oil, machine oil, rapeseed oil, formulated oil, starch, reduced starch saccharate, sodium oleate, ferric phosphate, Nemadectin, Beauveria bassiana strain, Metarhidium anisopria strain (F52), Pecilomyces fumosoroseus apopka strain (97), diatomaceous earth, DCIP (dichlorodiisopropyl ether), DD (1,3 dichloropropene), levamisole hydrochloride, morantel tartrate and thioxazaphene.
 (3-3)植物成長調整剤用途の有効成分
 植物成長調整剤用途に最適な有効成分としては、例えばアミノエトキシビニルグリシン、クロルメコート、クロルプロファム、シクラニリド、ジケグラック、ダミノジット、エテホン、フルルプリミドール、フルメトラリン、ホルクロルフェニュロン、ジベレリン、マレイン酸ヒドラジド塩、メピコートクロリド、メチルシクロプロペン、ベンジルアミノプリン、パクロブトラゾール、プロヘキサジオン、チジアズロン、トリブチルホスホロトリチオエート、トリネキサパックエチル、ウニコナゾール、1-ナフタレン酢酸ナトリウム、1-ナフチルアセトアミド、1-メチルシクロプロペン、4ーCPA(4-クロロフェノキシ酢酸)、MCPB(2-メチル-4-クロロフェノキシ酪酸エチル)、イソプロチオラン、イタコン酸、インドール酪酸、エチクロゼート、ギ酸カルシウム、クロルメコート、コリン、シアナミド、ジクロルプロップ、ジベレリン、ダミノジッド、デシルアルコール、トリオレイン酸ソルビタン、ニコスルフロン、ピラフルフェンエチル、ブトルアリン、プロヒドロジャスモン及びペンディメタリン等が挙げられる。
(3-3) Active Ingredients for Plant Growth Regulator Applications Suitable active ingredients for plant growth regulator applications include, for example, aminoethoxyvinylglycine, chlormecort, chlorpropham, cyclanilide, dikeglac, daminozit, ethephon, flurprimidol, flumetralin, forchlorfenurone, gibberellin, maleic acid hydrazide salt, mepiquat chloride, methylcyclopropene, benzylaminopurine, paclobutrazole, prohexadione, thidiazuron, tributylphosphorotrithioate, trinexapac-ethyl, Uniconazole, sodium 1-naphthaleneacetate, 1-naphthylacetamide, 1-methylcyclopropene, 4-CPA (4-chlorophenoxyacetic acid), MCPB (ethyl 2-methyl-4-chlorophenoxybutyrate), isoprothiolane, itaconic acid, indole butyric acid, eticlozate, calcium formate, chlormequat, choline, cyanamide, dichlorprop, gibberellin, daminozide, decyl alcohol, sorbitan trioleate, nicosulfuron, pyraflufenethyl, butruarin, prohydrojasmon and pendimethalin, etc. .
 〔5.植物病害防除剤〕
 本実施形態おける植物病害防除剤は、本態様のアゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマー、またはその農学的もしくは工業的に許容可能な塩、あるいは本態様の農園芸用殺菌剤を有効成分として含有した、茎葉処理用又は非茎葉処理用の植物病害防除剤である。本態様のアゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマー、またはその農学的もしくは工業的に許容可能な塩は、これまでの説明に準ずるため、その説明を繰り返さない。本態様の農園芸用殺菌剤もまた、これまでの説明に準ずるため、その説明を繰り返さない。
[5. Plant disease control agent]
The plant disease control agent in this embodiment is the R-enantiomer or mixed enantiomer of the azole derivative (I) of this embodiment, or an agriculturally or industrially acceptable salt thereof, or the agricultural and horticultural fungicide of this embodiment. A foliage treatment or non-foliage treatment plant disease control agent contained as a component. Since the R-enantiomer or mixed enantiomer of the azole derivative (I) of this embodiment, or its agriculturally or industrially acceptable salt conforms to the previous explanation, the explanation thereof will not be repeated. Since the agricultural and horticultural fungicide of this aspect also conforms to the above explanation, the explanation thereof will not be repeated.
 本態様における植物病害防除剤は、茎葉処理用又は非茎葉処理用である。茎葉処理として、茎葉散布が挙げられる。また、非茎葉処理として、球根及び塊茎などへの処理も含めた種子処理、潅注処理、及び水面処理などが挙げられる。 The plant disease control agent in this aspect is for foliage treatment or non-foliage treatment. The foliage treatment includes foliage spraying. Non-foliage treatments include seed treatments, irrigation treatments, and water surface treatments, including treatments for bulbs and tubers.
 本態様の植物病害防除剤は、アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマー、またはその農学的もしくは工業的に許容可能な塩、あるいは農園芸用殺菌剤以外の構成成分を含んでいてもよい。そのような構成成分として、製剤補助剤が挙げられる。製剤補助剤については上述したとおりであるのでその説明を繰り返さない。また、植物病害防除剤に含まれるアゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマー、またはその農学的もしくは工業的に許容可能な塩、あるいは農園芸用殺菌剤の含有量は、目的に応じて適宜決定することができる。 The plant disease control agent of this embodiment may contain a component other than the R-enantiomer or mixed enantiomer of the azole derivative (I), or an agriculturally or industrially acceptable salt thereof, or an agricultural or horticultural fungicide. good. Such components include formulation aids. Since the formulation adjuvant is as described above, the description thereof will not be repeated. In addition, the content of the R-enantiomer or mixed enantiomer of the azole derivative (I) contained in the plant disease control agent, or an agriculturally or industrially acceptable salt thereof, or the content of the agricultural and horticultural fungicide may be adjusted depending on the purpose. It can be determined as appropriate.
 〔6.植物病害防除方法〕
 本実施形態における農園芸用薬剤は、例えば、畑、水田、芝生及び果樹園等の農耕地または非農耕地において使用することができる。また、本実施形態における農園芸用薬剤は、茎葉散布といった茎葉処理に加えて、球根及び塊茎等への処理も含めた種子処理、潅注処理及び水面処理等の非茎葉処理によっても施用できる。したがって、本実施形態における植物病害防除方法は、上述の農園芸用薬剤を用いて茎葉処理または非茎葉処理を行う手順を含む方法である。本実施形態に係る農園芸用殺菌剤を対象植物に適用することによって、上述した植物病害によるダメージから対象植物を保護することもできる。したがって、本実施形態における植物病害防除方法は、上述した植物病害によるダメージから対象植物を保護する方法であるとも言える。なお、非茎葉処理を行う場合には、茎葉処理を行う場合に比べて、労力を低減させることができる。
[6. Plant disease control method]
The agricultural and horticultural agent in this embodiment can be used, for example, in agricultural or non-agricultural lands such as fields, paddy fields, lawns and orchards. In addition, the agricultural and horticultural chemical in the present embodiment can be applied not only by foliage treatment such as foliage spraying, but also by non-foliage treatment such as seed treatment, irrigation treatment and water surface treatment, including treatment of bulbs and tubers. Therefore, the method for controlling plant diseases in the present embodiment is a method including a procedure of foliage treatment or non-foliage treatment using the agricultural and horticultural agent described above. By applying the agricultural and horticultural fungicide according to this embodiment to target plants, it is also possible to protect the target plants from damage caused by the plant diseases described above. Therefore, it can be said that the method for controlling plant diseases in this embodiment is a method for protecting target plants from damage caused by the plant diseases described above. In addition, when performing non-foliage processing, labor can be reduced compared with the case where foliage processing is performed.
 種子処理による施用では、水和剤及び粉剤等を種子と混合し攪拌することにより、あるいは希釈した水和剤等に種子を浸漬することにより、薬剤を種子に付着させる。また、種子コーティング処理も含まれる。種子処理の場合の有効成分の使用量は、種子100kgに対して例えば0.01~10000gであり、好ましくは0.1~1000gである。農園芸用薬剤で処理した種子については、通常の種子と同様に利用すればよい。 In the application by seed treatment, the drug is attached to the seeds by mixing and stirring the wettable powder, powder, etc. with the seeds, or by immersing the seeds in a diluted wettable powder, etc. Also included are seed coating treatments. The amount of the active ingredient used for seed treatment is, for example, 0.01 to 10000 g, preferably 0.1 to 1000 g, per 100 kg of seed. Seeds treated with agricultural and horticultural chemicals may be used in the same manner as ordinary seeds.
 潅注処理による施用は、苗の移植時等に植穴またはその周辺に粒剤等を処理したり、種子または植物体の周囲の土壌に粒剤及び水和剤等を処理したりすることによって行う。潅注処理の場合の有効成分の使用量は、農園芸地1mあたり例えば0.01~10000gであり、好ましくは0.1~1000gである。 Application by irrigation is carried out by applying granules, etc. to the planting hole or its surroundings when transplanting seedlings, or applying granules, wettable powders, etc. to the soil around seeds or plants. . The amount of the active ingredient used in irrigation treatment is, for example, 0.01 to 10,000 g, preferably 0.1 to 1,000 g per 1 m 2 of agricultural land.
 水面処理による施用は、水田の田面水に粒剤等を処理することによって行う。水面処理の場合の有効成分の使用量は、水田10aあたり例えば0.1~10000gであり、好ましくは1~1000gである。 Application by water surface treatment is performed by treating paddy field water with granules, etc. The amount of the active ingredient used for water surface treatment is, for example, 0.1 to 10000 g, preferably 1 to 1000 g, per paddy field 10a.
 茎葉散布に用いる場合の有効成分の使用量は、畑、田、果樹園及び温室等の農園芸地1haあたり例えば20~5000g、より好ましくは50~2000gである。 The amount of the active ingredient used for foliar application is, for example, 20 to 5000 g, more preferably 50 to 2000 g, per 1 ha of agricultural and horticultural land such as fields, rice fields, orchards and greenhouses.
 なお、使用濃度及び使用量は、剤形、使用時期、使用方法、使用場所及び対象作物等によっても異なるため、上記の範囲にこだわることなく増減することが可能である。 In addition, since the concentration and amount used vary depending on the dosage form, timing of use, method of use, place of use, target crops, etc., it is possible to increase or decrease without sticking to the above range.
 〔7.工業材料保護剤〕
 (1)工業材料保護効果
 アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩は、工業材料を侵す広汎な有害微生物から材料を保護する優れた効果を示すことから工業材料保護剤にも使用し得る。かかる微生物の例としては、以下に示す微生物を挙げることができる。
[7. Industrial material protective agent]
(1) Effect of Protecting Industrial Materials The R-enantiomer or mixed enantiomers of azole derivative (I) or industrially acceptable salts thereof exhibit an excellent effect of protecting industrial materials from a wide range of harmful microorganisms. It can also be used as a protective agent for industrial materials. Examples of such microorganisms include the microorganisms shown below.
 紙・パルプ劣化微生物(スライム形成菌を含む)であるアスペルギルス(Aspergillus sp.)、トリコデルマ(Trichoderma sp.)、ペニシリウム(Penicillium sp.)、ジェオトリカム(Geotrichum sp.)、ケトミウム(Chaetomium sp.)、カドホーラ(Cadophora sp.)、セラトストメラ(Ceratostomella sp.)、クラドスボリウム(Cladosporium sp.)、コーティシウム(Corticium sp.)、レンティヌス(Lentinus sp.)、レンズィテス(Lenzites sp.)、フォーマ(Phoma sp.)、ポリスティクス(Polysticus sp.)、プルラリア(Pullularia sp.)、ステレウム(Stereum sp.)、トリコスポリウム(Trichosporium sp.)、アエロバクタ-(Aerobacter sp.)、バチルス(Bacillus sp.)、デスルホビブリオ(Desulfovibrio sp.)、シュードモナス(Pseudomonas sp.)、フラボバクテリウム(Flavobacterium sp.)、ミクロコツカス(Micrococcus sp.)等、繊維劣化微生物であるアスペルギルスAspergillus sp.)、ペニシリウム(Penicillium sp.)、ケトミウム(Chaetomium sp.)、ミロテシウム(Myrothecium sp.)、カーブラリア(Curvularia sp.)、グリオマスティックス、(Gliomastix sp.)、メンノニエラ(Memnoniella sp.)、サルコポディウム(Sarcopodium sp.)、スタキボトリス(Stschybotrys sp.)、ステムフィリウム(Stemphylium sp.)、ジゴリンクス(Zygorhynchus sp.)、バチルス(bacillus sp.)、スタフィロコッカス(Staphylococcus sp.)等、木材変質菌であるオオウズラタゲ(Tyromyces palustris)、カワラタケ(Coriolus versicolor)、アスペルギルス(Aspergillus sp.)、ペニシリウム(Penicillium sp.)、リゾプス(Rhizopus sp.)、オーレオバシディウム(Aureobasidium sp.)、グリオクラデイウム(Gliocladum sp.)、クラドスポリウム(Cladosporium sp.)、ケトミウム(Chaetomium sp.)、トリコデルマ(Trichoderma sp.)等、皮革劣化微生物であるアスペルギルス(Aspergillussp.)、ペニシリウム(Penicillium sp.)、ケトミウム(Chaetomium sp.)、クラドスポリウム(Cladosporium sp.)、ムコール(Mucor sp.)、パエシロミセス(Paecilomycessp.)、ピロブス(Pilobus sp.)、プルラリア(Pullularia sp.)、トリコスポロン(Trichosporon sp.)、トリコテシウム(Tricothecium sp.)等、ゴム・プラスチック劣化微生物であるアスペルギルス(Aspergillus sp.)、ペニシリウム(Penicillium sp.)、リゾプス(Rhizopus sp.)、トリコデルマ(Trichoderma sp.)、ケトミウム(Chaetomium sp.)、ミロテシウム(Myrothecium sp.)、ストレプトマイセス(Streptomyces sp.)、シュードモナス(Pseudomonas sp.)、バチルス(Bacillus sp.)、ミクロコツカス(Micrococcus sp.)、セラチア(Serratia sp.)、マルガリノマイセス(Margarinomyces sp.)、モナスクス(Monascus sp.)等、塗料劣化微生物であるアスペルギルス(Aspergillus sp.)、ペニシリウム(Penicillium sp.)、クラドスポリウム(Cladosporium sp.)、オーレオバシディウム(Aureobasidium sp.)、グリオクラディウム(Gliocladium sp.)、ボトリオディプロディア(Botryodiplodia sp.)、マクロスポリウム(Macrosporium sp.)、モニリア(Monilia sp.)、フォーマ(Phoma sp.)、プルラリア((Pullularia sp.)、スポロトリカム(Sporotrichum sp.)、トリコデルマ(Trichoderma sp.)、バシルス((bacillus sp.)、プロテウス(Proteus sp.)、シュードモナス(Pseudomonas sp.)、セラチア(Serratia sp.)。 Aspergillus sp., Trichoderma sp., Penicillium sp., Geotrichum sp., Chaetomium sp., Cadphora, which are paper and pulp degrading microorganisms (including slime-forming bacteria) (Cadophora sp.), Ceratostomella sp., Cladosporium sp., Corticium sp., Lentinus sp., Lenzites sp., Phoma sp. , Polysticus sp., Pullularia sp., Stereum sp., Trichosporium sp., Aerobacter sp., Bacillus sp., Desulfovibrio (Desulfovibrio sp.), Pseudomonas sp., Flavobacterium sp., Micrococcus sp., Aspergillus sp.), Penicillium sp., Chaetomium ( Chaetomium sp.), Myrothecium sp., Curvularia sp., Gliomastix sp., Memnoniella sp., Sarcopodium sp., Stschybotrys sp. ), Stemphylium sp., Zygorhynchus sp., Bacillus sp., Staphylococcus sp., etc., wood-altering fungi Tyromyces palustris, Coriolus versicolor ), Aspergillus sp., Penicillium sp., Rhizopus zopus sp.), Aureobasidium sp., Gliocladum sp., Cladosporium sp., Chaetomium sp., Trichoderma sp., leather Aspergillus sp., Penicillium sp., Chaetomium sp., Cladosporium sp., Mucor sp., Paecilomyces p., Pilobus sp. ), Pullularia sp., Trichosporon sp., Tricothecium sp., rubber and plastic degrading microorganisms Aspergillus sp., Penicillium sp., Rhizopus sp. ), Trichoderma sp., Chaetomium sp., Myrothecium sp., Streptomyces sp., Pseudomonas sp., Bacillus sp., Micrococcus sp.), Serratia sp., Margarinomyces sp., Monascus sp., Aspergillus sp., Penicillium sp. Cladosporium sp., Aureobasidium sp., Gliocladium sp., Botryodiplodia sp., Macrosporium sp., Monilia sp. ), Phoma sp., Pullularia sp., Sporotrichum sp., Trichoderma (Tric hoderma sp.), bacillus sp., Proteus sp., Pseudomonas sp., Serratia sp.
 (2)製剤
 アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として含む工業用材料保護剤は、アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩以外にも種々の成分を含んでいてもよい。アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として含む工業用材料保護剤は、適当な液体担体に溶解あるいは分散させるか、または固体担体と混合して使用することができる。アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として含む工業用材料保護剤は、必要に応じて、更に乳化剤、分散剤、展着剤、浸透剤、湿潤剤または安定剤等含んでいてもよい。また、アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として含む工業用材料保護剤の剤型としては、水和剤、粉剤、粒剤、錠剤、ペースト剤、懸濁剤および噴霧材等を挙げることができる。アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として含む工業用材料保護剤は、他の殺菌剤、殺虫剤または劣化防止剤等を含んでいてもよい。
(2) Formulation An industrial material protecting agent containing the R-enantiomer or mixed enantiomer of azole derivative (I) or an industrially acceptable salt thereof as an active ingredient is the R-enantiomer or mixed enantiomer of azole derivative (I) or Various ingredients may be included in addition to the industrially acceptable salts thereof. The industrial material protective agent containing the R-enantiomer or mixed enantiomer of azole derivative (I) or industrially acceptable salt thereof as an active ingredient is dissolved or dispersed in a suitable liquid carrier, or mixed with a solid carrier. can be used The industrial material protective agent containing the R-enantiomer or mixed enantiomer of the azole derivative (I) or an industrially acceptable salt thereof as an active ingredient may further include an emulsifier, a dispersant, a spreading agent and a penetrating agent, if necessary. , wetting agents or stabilizers. In addition, as the dosage form of the industrial material protective agent containing the R-enantiomer or mixed enantiomer of the azole derivative (I) or industrially acceptable salt thereof as an active ingredient, wettable powders, powders, granules, tablets, Pastes, suspensions, sprays and the like can be mentioned. The industrial material protective agent containing the R-enantiomer or mixed enantiomer of the azole derivative (I) or an industrially acceptable salt thereof as an active ingredient may contain other fungicides, insecticides or antidegradants. good.
 液体担体としては、有効成分と反応しないものであれば特に限定されるものではない。液体担体としては、例えば、水、アルコール類(例えば、メチルアルコール、エチルアルコール、エチレングリコール、セロソルブ等)、ケトン類(例えば、アセトン、メチルエチルケトン等)、エーテル類(例えばジメチルエーテル、ジエチルエーテル、ジオキサン、テトラヒドロフラン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、メチルナフタレン等)、脂肪族炭化水素類(例えばガソリン、ケロシン、灯油、機械油、燃料油等)、酸アミド類(例えばジメチルホルムアミド、N-メチルピロリドン等)ハロゲン化炭化水素類(例えば、クロロホルム、四塩化炭素等)、エステル類(例えば、酢酸エチルエステル、脂肪酸のグリセリンエステル等)、ニトリル類(例えば、アセトニトリル等)およびジメチルスルホキシド等を挙げることができる。 The liquid carrier is not particularly limited as long as it does not react with the active ingredient. Examples of liquid carriers include water, alcohols (e.g., methyl alcohol, ethyl alcohol, ethylene glycol, cellosolve, etc.), ketones (e.g., acetone, methyl ethyl ketone, etc.), ethers (e.g., dimethyl ether, diethyl ether, dioxane, tetrahydrofuran). etc.), aromatic hydrocarbons (e.g., benzene, toluene, xylene, methylnaphthalene, etc.), aliphatic hydrocarbons (e.g., gasoline, kerosene, kerosene, machine oil, fuel oil, etc.), acid amides (e.g., dimethylformamide , N-methylpyrrolidone, etc.), halogenated hydrocarbons (e.g., chloroform, carbon tetrachloride, etc.), esters (e.g., ethyl acetate, fatty acid glycerol esters, etc.), nitriles (e.g., acetonitrile, etc.) and dimethyl sulfoxide etc. can be mentioned.
 また、固体担体としては、カオリンクレー、ベントナイト、酸性白土、パイロフィライト、タルク、珪藻土、方解石、尿素および硫酸アンモニウム等の微粉末または粒状物が使用できる。 As solid carriers, fine powders or granules such as kaolin clay, bentonite, acid clay, pyrophyllite, talc, diatomaceous earth, calcite, urea and ammonium sulfate can be used.
 乳化剤、分散剤としては、石鹸類、アルキルスルホン酸、アルキルアリールスルホン酸、ジアルキルスルホコハク酸、第4級アンモニウム塩、オキシアルキルアミン、脂肪酸エステル、ポリアルキレンオキサイド系およびアンヒドロソルビトール系等の界面活性剤が使用できる。 Examples of emulsifiers and dispersants include soaps, surfactants such as alkylsulfonic acids, alkylarylsulfonic acids, dialkylsulfosuccinic acids, quaternary ammonium salts, oxyalkylamines, fatty acid esters, polyalkylene oxides and anhydrosorbitols. can be used.
 アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として製剤中に含有させる場合、その含有割合は、剤型および使用目的によっても異なるが、製剤の全量に対して、0.1~99.9%重量%とすればよい。なお、実際の使用時においては、その処理濃度は、通常0.005~5重量%、好ましくは0.01~1重量%となるように適宜、溶剤、希釈剤および増量剤等を加えて調整するのが好ましい。 When the R-enantiomer or mixed enantiomer of azole derivative (I) or an industrially acceptable salt thereof is contained as an active ingredient in a formulation, the content ratio varies depending on the dosage form and purpose of use, but the total amount of the formulation 0.1 to 99.9% by weight with respect to In actual use, the treatment concentration is usually 0.005 to 5% by weight, preferably 0.01 to 1% by weight. preferably.
 アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩は、工業材料を侵す広汎な有害微生物から材料を保護する優れた効果を示す。すなわち、アゾール誘導体(I)のR-エナンチオマーもしくは混合エナンチオマーまたはその工業的に許容可能な塩を有効成分として含む工業材料保護剤は、人畜に対する毒性が低く取扱い安全性に優れ、かつ工業材料を侵す広汎な有害微生物から材料を保護する優れた効果を示すことができる。そのため、本実施形態における工業材料保護剤は、持続可能な開発目標(SDGs)の目標12「つくる責任 つかう責任」に貢献することが可能となる。 The R-enantiomer or mixed enantiomers of azole derivative (I) or industrially acceptable salts thereof exhibit excellent effects of protecting industrial materials from a wide range of harmful microorganisms that attack them. That is, the industrial material protective agent containing the R-enantiomer or mixed enantiomer of the azole derivative (I) or an industrially acceptable salt thereof as an active ingredient has low toxicity to humans and animals, is excellent in handling safety, and does not attack industrial materials. It can show excellent effect of protecting materials from a wide range of harmful microorganisms. Therefore, the industrial material protective agent in this embodiment can contribute to Goal 12 of the Sustainable Development Goals (SDGs), "responsible consumption and production".
 〔まとめ〕
 以上の通り、本発明の一態様に係るアゾール誘導体のR-エナンチオマーまたはR-エナンチオマーとS-エナンチオマーとの混合物は、下記一般式(I)で示される化合物のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩である。
〔summary〕
As described above, the R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one embodiment of the present invention is the R-enantiomer or the R-enantiomer of the compound represented by the following general formula (I) and S - mixtures with enantiomers, or agriculturally or industrially acceptable salts thereof.
Figure JPOXMLDOC01-appb-C000013
 [式(I)中、
 *は、キラル中心を表し;
 RおよびRは、それぞれ独立に水素、C-C-アルキル基、C-C-シクロアルキル基またはC-C-シクロアルキル-C-C-アルキル基であり;
 RとRとは、互いに結合して環を形成していてもよく;
 Zは、フェニル基、またはO、NおよびSから選択されるヘテロ原子を1、2、3もしくは4つ含む5員または6員の芳香族複素環であり;
 Rは、ハロゲン、ヒドロキシ基、アミノ基、ニトリル基、ニトロ基、ペンタフルオロスルファニル基、C-C-アルキル基、C-C-ハロアルキル基、C-C-アルコキシ基またはC-C-ハロアルコキシ基であり;
 RはZの任意の置換位置にn個結合しており;
 RおよびRの少なくとも一方が水素ではない場合、nは0、1、2、3、4または5であり、RおよびRの両方が水素である場合、nは1、2、3、4または5であり;
 mは1または2である。]
Figure JPOXMLDOC01-appb-C000013
[in the formula (I),
* represents a chiral center;
R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group; ;
R 1 and R 2 may be combined to form a ring;
Z is a phenyl group or a 5- or 6-membered heteroaromatic ring containing 1, 2, 3 or 4 heteroatoms selected from O, N and S;
R 3 is halogen, hydroxy, amino, nitrile, nitro, pentafluorosulfanyl, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy or a C 1 -C 4 -haloalkoxy group;
R 3 is bonded to n arbitrary substitution positions of Z;
n is 0, 1, 2, 3, 4 or 5 when at least one of R 1 and R 2 is not hydrogen, n is 1, 2, 3 when both R 1 and R 2 are hydrogen , 4 or 5;
m is 1 or 2; ]
 また、本発明に係る農園芸用殺菌剤または工業用材料保護剤は、有効成分の1つとして請求項1のアゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩を含み、さらに他の有効成分を含むことを特徴とする。 Further, the agricultural and horticultural fungicide or the industrial material protective agent according to the present invention includes the R-enantiomer of the azole derivative of claim 1 as one of the active ingredients, or a mixture of the R-enantiomer and the S-enantiomer, or an agricultural chemical thereof. It is characterized by containing a commercially or industrially acceptable salt and further containing other active ingredients.
 また、本発明に係る農園芸用殺菌剤または工業用材料保護剤において、上記他の有効成分として、(i)核酸合成代謝阻害剤、細胞骨格とモータータンパク質に作用する殺菌剤、呼吸阻害剤、アミノ酸・タンパク質生合成阻害剤、シグナル伝達阻害剤、脂質生合成又は輸送/細胞膜の構造又は機能阻害剤、細胞膜のステロール生合成阻害剤、細胞壁生合成阻害剤、メラニン生合成阻害剤、宿主植物の抵抗性誘導剤、及び多作用点殺菌剤から選択される殺菌剤の有効成分、(ii)ニコチン性アセチルコリン受容体拮抗モジュレーター、ナトリウムチャネルモジュレーター、リアノジン受容体モジュレーター、アセチルコリンエステラーゼ阻害剤、酸化的リン酸化脱共役剤、及びミトコンドリア電子伝達系複合体I阻害剤から選択される殺虫剤の有効成分、ならびに(iii)植物成長調整剤の有効成分、から選択される少なくとも1つを含むことが好ましい。 In addition, in the agricultural and horticultural fungicide or industrial material protection agent according to the present invention, the other active ingredients include (i) a nucleic acid synthesis and metabolism inhibitor, a fungicide acting on the cytoskeleton and motor protein, a respiratory inhibitor, Amino acid/protein biosynthesis inhibitors, signal transduction inhibitors, lipid biosynthesis or transport/cell membrane structure or function inhibitors, cell membrane sterol biosynthesis inhibitors, cell wall biosynthesis inhibitors, melanin biosynthesis inhibitors, host plant an active ingredient of a fungicide selected from resistance inducers and multisite fungicides, (ii) nicotinic acetylcholine receptor antagonistic modulators, sodium channel modulators, ryanodine receptor modulators, acetylcholinesterase inhibitors, oxidative phosphorylation It preferably contains at least one selected from an active ingredient of an insecticide selected from an uncoupler and a mitochondrial electron transport chain complex I inhibitor, and (iii) an active ingredient of a plant growth regulator.
 また、本発明に係る植物病害防除剤は、上述のアゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩、あるいは上述の農園芸用殺菌剤を有効成分として含有し、茎葉処理用又は非茎葉処理用である、植物病害防除剤である。 In addition, the plant disease control agent according to the present invention is the R-enantiomer of the above-mentioned azole derivative, or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof, or the above-mentioned agricultural and horticultural A plant disease control agent for foliage treatment or non-foliage treatment, containing a fungicide for foliage as an active ingredient.
 また、本発明に係る植物病害防除方法は、上述の植物病害防除剤を用いて茎葉処理又は非茎葉処理を行う工程を含む構成を有する。 In addition, the plant disease control method according to the present invention has a configuration including a step of performing foliage treatment or non-foliage treatment using the plant disease control agent described above.
 また、本発明に係る植物病害防除用製品は、上述の農園芸用殺菌剤を調製するための、植物病害防除用製品であって、混合して使用するための組み合わせ調製物として、上記アゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩と、上記他の有効成分とを別々に含む構成を有する。 Further, the plant disease control product according to the present invention is a plant disease control product for preparing the above agricultural and horticultural fungicide, which is a combination preparation for mixing and using, the above azole derivative or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof, and the above-described other active ingredients separately.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples are shown below to describe the embodiments of the present invention in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible for the details. Furthermore, the present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the claims. It is included in the technical scope of the invention. In addition, all documents described in this specification are incorporated by reference.
 〔アゾール誘導体のラセミ体の合成〕
 特許文献1に記載の方法に準じて、以下のアゾール誘導体(I)のラセミ体を合成した。
アゾール誘導体I-7:1-((1H-1,2,4-トリアゾール-1-イル)メチル)-5-(4-クロロフェノキシ)-2,2-ジメチル-2,3-ジヒドロ-1H-インデン-1-オール
アゾール誘導体I-11:1-((1H-1,2,4-トリアゾール-1-イル)メチル)-5-(4-フルオロフェノキシ)-2,2-ジメチル-2,3-ジヒドロ-1H-インデン-1-オール
アゾール誘導体I-13:1-((1H-1,2,4-トリアゾール-1-イル)メチル)-5-(4-トリフルオロメトキシフェノキシ)-2,2-ジメチル-2,3-ジヒドロ-1H-インデン-1-オール
[Synthesis of Racemic Form of Azole Derivative]
A racemate of the following azole derivative (I) was synthesized according to the method described in Patent Document 1.
Azole derivative I-7: 1-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-chlorophenoxy)-2,2-dimethyl-2,3-dihydro-1H- Indene-1-olazole derivative I-11: 1-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-fluorophenoxy)-2,2-dimethyl-2,3 -dihydro-1H-indene-1-olazole derivative I-13: 1-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-trifluoromethoxyphenoxy)-2, 2-dimethyl-2,3-dihydro-1H-inden-1-ol
 〔アゾール誘導体のエナンチオマーの分画〕
 上記で調製したアゾール誘導体I-7のラセミ体を、アミローストリス(3,5-ジメチルフェニルカルバメート)がシリカゲル担体に固定化された分取カラムをつないだ高速液体クロマトグラフィー(HPLC)に供し、各エナンチオマーの分取分離を行った。具体的な条件は、以下の通りである。
[Fractionation of Enantiomers of Azole Derivatives]
The racemate of the azole derivative I-7 prepared above was subjected to high performance liquid chromatography (HPLC) connected to a preparative column in which amylose tris(3,5-dimethylphenylcarbamate) was immobilized on a silica gel carrier. A preparative separation of the enantiomers was carried out. Specific conditions are as follows.
 (分画条件)
 分取カラム:製品名「CHIRALPAK IA」、ダイセル化学工業社製
 移動相:100% アセトニトリル
 カラム温度:40℃
 検出波長:230nm
 流速:2mL/min
 アプライ量:10μL
(Fraction conditions)
Preparative column: product name “CHIRALPAK IA”, manufactured by Daicel Chemical Industries, Ltd. Mobile phase: 100% acetonitrile Column temperature: 40°C
Detection wavelength: 230 nm
Flow rate: 2mL/min
Amount applied: 10 μL
 前記条件下で分離したところ、溶出時間が異なる2つのピークが検出された。これら2つのピークについて、ピークに由来する化合物の比旋光度を測定した。比旋光度の測定は、P-1020(日本分光社製、Naランプ:589nm)を用いて行った。 When separated under the above conditions, two peaks with different elution times were detected. For these two peaks, the specific rotations of the compounds derived from the peaks were measured. The specific optical rotation was measured using P-1020 (manufactured by JASCO Corporation, Na lamp: 589 nm).
 比旋光度を測定した結果、後に溶出された化合物は左旋性を示した。(-)-エナンチオマーの比旋光度の測定結果は、以下の通りであった:
比旋光度:[α]20D=-72.5°(1.5mLのクロロホルム中2.4mg試料)。
As a result of measuring the specific optical rotation, the compounds eluted later showed levorotatory properties. The measurement results of the specific rotation of the (−)-enantiomer were as follows:
Specific rotation: [α] 20 D=−72.5° (2.4 mg sample in 1.5 mL chloroform).
 〔アゾール誘導体の(-)-エナンチオマーの立体配置の決定〕
 (試料の調製方法)
 上記で分画した(-)-エナンチオマーの固体試料1mgを酢酸エチル1mLに溶解させた。その後静置させて、再結晶化した試料を単結晶X線構造解析に供し、(-)-エナンチオマーの立体配置を決定した。
[Determination of configuration of (−)-enantiomer of azole derivative]
(Sample preparation method)
A 1 mg solid sample of the (−)-enantiomer fractionated above was dissolved in 1 mL of ethyl acetate. After standing, the recrystallized sample was subjected to single crystal X-ray structural analysis to determine the configuration of the (−)-enantiomer.
 (測定条件)
 装置:R-AXIS RAPID II diffractometer(株式会社リガク製)
 X線源:Cu-Kα
 測定温度:93K
 Solve:SHELXT
 Refinement:SHELXL
(Measurement condition)
Equipment: R-AXIS RAPID II diffractometer (manufactured by Rigaku Corporation)
X-ray source: Cu-Kα
Measurement temperature: 93K
Solve: SHELXT
Refinement: SHELXL
 アゾール誘導体I-7の(-)-エナンチオマーは、R体であった。アゾール誘導体I-7のR-(-)-エナンチオマーの単結晶の結晶学的データを表3に示す。また、X線結晶構造解析結果を図1に示す。図1は、X線結晶構造解析によるアゾール誘導体I-7のR-(-)-エナンチオマーの分子構造を示すORTEP図である。
Figure JPOXMLDOC01-appb-T000014
The (-)-enantiomer of the azole derivative I-7 was the R-configuration. Crystallographic data for a single crystal of the R-(-)-enantiomer of azole derivative I-7 are shown in Table 3. FIG. 1 shows the results of X-ray crystal structure analysis. FIG. 1 is an ORTEP diagram showing the molecular structure of the R-(−)-enantiomer of the azole derivative I-7 by X-ray crystallography.
Figure JPOXMLDOC01-appb-T000014
 <製剤例>
 合成したアゾール誘導体のラセミ体及び各エナンチオマーを用いて以下のように水和剤および乳剤を製剤した。
製剤例1(水和剤)
アゾール誘導体のラセミ体または各エナンチオマー      20.0部
ラウリル硫酸ナトリウム                     2部
アルキルナフタレンスルホン酸ホルマリン縮合物のナトリウム塩   5部
ステアリン酸亜鉛                      0.2部
ホワイトカーボン                        3部
クレー                          69.8部
を粉砕混合して水和剤とした。
製剤例2(乳剤)
アゾール誘導体のラセミ体または各エナンチオマー       4.0部
ポリオキシアルキレンアリルフェニルエーテル・アルキルベンゼンスルホン酸
金属塩・キシレン混合物                  10.0部
1-ブチル-2-ピロリドン   30.1部
N,N-ジメチルオクタンアミド・N,N-ジメチルデカンアミド混合物
                             30.1部
ソルベントナフサ                     25.8部
を均一に混合溶解して乳剤とした。
<Formulation example>
Using the synthesized azole derivative racemate and each enantiomer, wettable powders and emulsions were formulated as follows.
Formulation example 1 (wettable powder)
Azole derivative racemate or each enantiomer 20.0 parts Sodium lauryl sulfate 2 parts Sodium salt of alkylnaphthalenesulfonic acid formalin condensate 5 parts Zinc stearate 0.2 parts White carbon 3 parts Clay 69.8 parts were pulverized and mixed. used as a hydrating agent.
Formulation Example 2 (Emulsion)
Azole derivative racemate or each enantiomer 4.0 parts polyoxyalkylene allyl phenyl ether metal alkylbenzene sulfonate xylene mixture 10.0 parts 1-butyl-2-pyrrolidone 30.1 parts N,N-dimethyloctanamide 30.1 parts of N,N-dimethyldecanamide mixture and 25.8 parts of solvent naphtha were uniformly mixed and dissolved to prepare an emulsion.
 <野生型と比較して既存のステロール生合成阻害剤に対して低感受性であるコムギ葉枯病菌>
 野生型と比較して既存のステロール生合成阻害剤に対して低感受性である病原菌として、コムギ葉枯病菌の菌株A~Gを用意した。これらの菌株は、野生型CYP51タンパク質の特定のアミノ酸位置に変異を有することにより、野生型と比較して既存のステロール生合成阻害剤に対して低感受性である。各菌株の変異の位置及び種類を、以下の表4に示す。表中、「Del」は欠損変異を意味している。また、野生型CYP51タンパク質のアミノ酸配列は、M. graminicola genome sequencing project(https://mycocosm.jgi.doe.gov/Mycgr1/Mycgr1.home.html)、GenBank等の公共のデータベースから容易に取得することができ、例えば、「https://mycocosm.jgi.doe.gov/cgi-bin/getDbSeq?db=Mycgr1&searchTabList=protein,proteinHitDesc&hitSeqList=97669」に開示されている。
Figure JPOXMLDOC01-appb-T000015
<Wheat leaf blight fungus with low sensitivity to existing sterol biosynthesis inhibitors compared to wild type>
Strains A to G of wheat leaf blight fungi were prepared as pathogens that are less sensitive to existing sterol biosynthesis inhibitors than wild type. These strains have mutations at specific amino acid positions in the wild-type CYP51 protein, making them less sensitive to existing sterol biosynthesis inhibitors compared to the wild-type. The position and type of mutation for each strain are shown in Table 4 below. In the table, "Del" means deletion mutation. In addition, the amino acid sequence of the wild-type CYP51 protein is easily obtained from public databases such as the M. graminicola genome sequencing project (https://mycocosm.jgi.doe.gov/Mycgr1/Mycgr1.home.html) and GenBank. For example, disclosed at: https://mycocosm.jgi.doe.gov/cgi-bin/getDbSeq?db=Mycgr1&searchTabList=protein,proteinHitDesc&hitSeqList=97669.
Figure JPOXMLDOC01-appb-T000015
 <対照化合物>
 対照化合物として、以下の化合物を用意した。
メフェントリフルコナゾール(国際公開第2020/078942号に記載される化合物):2-[4-(4-クロロフェノキシ)-2-(トリフルオロメチル)フェニル]-1-(1,2,4-トリアゾール-1-イル)プロパン-2-オール
メトコナゾール:(1RS,5RS;1RS,5SR)-5-(4-クロロベンジル)-2,2-ジメチル-1-(1H-1,2,4-トリアゾール-1-イルメチル)シクロペンタノール
<Control compound>
The following compounds were prepared as control compounds.
Mefentrifluconazole (compound described in WO2020/078942): 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4- Triazol-1-yl)propan-2-ol Metconazole: (1RS,5RS; 1RS,5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4- triazol-1-ylmethyl)cyclopentanol
 <植物病原菌に対する抗菌活性試験>
 シャーレ試験により、合成したアゾール誘導体のラセミ体または各エナンチオマーの各種植物病原性糸状菌に対する抗菌性を試験した。
<Antibacterial activity test against plant pathogens>
The antibacterial activity of the synthesized azole derivative racemate or each enantiomer against various phytopathogenic filamentous fungi was tested by a petri dish test.
 オートクレーブ滅菌後、60℃前後まで冷却したPDA培地(ポテト-デキストロース-アガー培地)に、所定の薬剤濃度になるように被検化合物をジメチルスルホキシドに溶解し、PDA培地に1%(V/V)添加した。PDA培地中の薬剤濃度が均一になるようによく混合し、シャーレに培地を流し込み、各種被検化合物を含む平板培地を作製した。 After autoclave sterilization, in PDA medium (potato-dextrose-agar medium) cooled to around 60° C., the test compound was dissolved in dimethyl sulfoxide to a predetermined drug concentration, and 1% (V/V) was added to the PDA medium. added. The PDA medium was thoroughly mixed so that the drug concentration in the medium was uniform, and the medium was poured into a petri dish to prepare a plate medium containing various test compounds.
 一方、予めPDA培地上で培養した各種植物病原菌の菌叢を、直径4mmのコルクボーラーで打ち抜き、上記の薬剤含有平板培地に植菌した。表5に従い所定の期間、温度で培養後、薬剤処理平板上の菌叢直径を測定した。被検化合物を含まない無処理平板上の菌叢直径と比較して、下記式により菌糸伸長抑制率(%)を算出した。 On the other hand, the fungal flora of various plant pathogenic bacteria previously cultured on PDA medium was punched out with a cork borer with a diameter of 4 mm, and inoculated onto the above-mentioned drug-containing plate medium. After culturing at a temperature for a given period of time according to Table 5, the diameter of the bacterial colony on the drug-treated plate was measured. The mycelial elongation inhibition rate (%) was calculated by the following formula in comparison with the bacterial lawn diameter on an untreated plate containing no test compound.
 R=100(dc-dt)/dc
 (式中、R=菌糸伸長抑制率(%)、dc=無処理平板上の菌叢直径、dt=薬剤処理平板上の菌叢直径をそれぞれ示す。)
R=100(dc−dt)/dc
(In the formula, R = hyphal elongation inhibition rate (%), dc = diameter of bacterial lawn on non-treated plate, dt = diameter of bacterial lawn on drug-treated plate, respectively.)
 2種類の化合物を混合使用する場合は、次いで、コルビーの式(下記式)
混合使用時の抑制率(理論値)=α+((100-α)×β)/100
を用いた方法により、2種の化合物の協力効果の判定を行った。なお、前記式中、α及びβは、それぞれの化合物の単独使用時の抑制率を示している。
Figure JPOXMLDOC01-appb-T000016
When two types of compounds are mixed and used, then Colby's formula (the following formula)
Inhibition rate when mixed (theoretical value) = α + ((100-α) × β) / 100
The synergistic effect of the two compounds was determined by the method using . In the above formula, α and β indicate the inhibitory rate when each compound is used alone.
Figure JPOXMLDOC01-appb-T000016
 (試験例1:単剤使用時の抗菌活性試験)
 アゾール誘導体I-7のラセミ体、またはアゾール誘導体I-7のR-(-)-エナンチオマー(以下、単に「アゾール誘導体I-7のR-エナンチオマー」)について、上述の方法によって、各種植物病原菌に対する抗菌活性試験を行った。
(Test Example 1: Antibacterial activity test when using a single agent)
The racemate of the azole derivative I-7 or the R-(-)-enantiomer of the azole derivative I-7 (hereinafter simply "the R-enantiomer of the azole derivative I-7") is treated against various plant pathogenic fungi by the method described above. An antibacterial activity test was performed.
 結果を表6に示す。各種植物病原菌に対して、アゾール誘導体I-7のR-エナンチオマーを使用した場合の菌糸伸長抑制率は、アゾール誘導体I-7のラセミ体を使用した場合の菌糸伸長抑制率よりも高かった。これらの結果から、アゾール誘導体I-7のR-エナンチオマーが、アゾール誘導体I-7のラセミ体よりも抗菌性に優れていることが示された。
Figure JPOXMLDOC01-appb-T000017
Table 6 shows the results. The rate of inhibition of mycelial growth when the R-enantiomer of the azole derivative I-7 was used against various plant pathogenic fungi was higher than the rate of inhibition of mycelial growth when the racemate of the azole derivative I-7 was used. These results indicated that the R-enantiomer of the azole derivative I-7 was superior in antibacterial properties to the racemate of the azole derivative I-7.
Figure JPOXMLDOC01-appb-T000017
 (試験例2:2剤混合使用時の抗菌活性試験)
 アゾール誘導体I-7、I-11もしくはI-13のラセミ体またはI-7のR-エナンチオマーと、他の有効成分(プロチオコナゾール、イソフルシプラム、トリフロキシストロビン、またはフルオキシチオコナゾール)との混合剤について、上述の方法によって、各種植物病原菌に対する抗菌活性試験を行った。
(Test Example 2: Antibacterial activity test when using a mixture of two agents)
The racemate of azole derivative I-7, I-11 or I-13 or the R-enantiomer of I-7 together with another active ingredient (prothioconazole, isoflurcipram, trifloxystrobin or fluoxythioconazole) ) was tested for antibacterial activity against various plant pathogens by the method described above.
 結果を表7~71に示す。アゾール誘導体I-7、I-11またはI-13のラセミ体またはI-7のR-エナンチオマーと、他の有効成分と、を混合して調製した2剤混合剤を使用した場合の菌糸伸長抑制率は、それぞれを単独使用した場合の菌糸伸長抑制率から算出される理論値よりも高かった。これらの結果から、アゾール誘導体I-7、I-11またはI-13のラセミ体またはI-7のR-エナンチオマーと、他の有効成分と、が相乗的な効果を示すことが明らかとなった。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
The results are shown in Tables 7-71. Suppression of mycelial elongation when using a two-drug mixture prepared by mixing the racemate of azole derivative I-7, I-11 or I-13 or the R-enantiomer of I-7 with another active ingredient The rate was higher than the theoretical value calculated from the mycelial elongation inhibition rate when each was used alone. These results reveal that the racemate of azole derivative I-7, I-11 or I-13 or the R-enantiomer of I-7 and other active ingredients exhibit a synergistic effect. .
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
 (試験例3:3剤混合使用時の抗菌活性試験)
 アゾール誘導体I-7のR-エナンチオマーと他の有効成分との混合剤に、さらにアゾール誘導体I-7のS-エナンチオマーを混合した3剤混合剤について、上述の方法によって、各種植物病原菌に対する抗菌活性試験を行った。各表中、混合エナンチオマーは、3剤混合剤に含まれるアゾール誘導体I-7のR-エナンチオマーとS-エナンチオマーとの合計量を示している。混合エナンチオマー中のR-エナンチオマーとS-エナンチオマーのモル比は、1:1である。
(Test Example 3: Antibacterial activity test when using a mixture of three agents)
The antibacterial activity against various plant pathogenic fungi is obtained by the method described above for a three-drug mixture obtained by mixing the R-enantiomer of the azole derivative I-7 and other active ingredients with the S-enantiomer of the azole derivative I-7. did the test. In each table, mixed enantiomer indicates the total amount of R-enantiomer and S-enantiomer of azole derivative I-7 contained in the triple mixture. The molar ratio of R-enantiomer to S-enantiomer in the mixed enantiomers is 1:1.
 結果を表72~95に示す。(a)アゾール誘導体I-7のR-エナンチオマー及び他の有効成分の2剤混合剤に、(b)アゾール誘導体I-7のS-エナンチオマーをさらに混合して調製した3剤混合剤を使用した場合の菌糸伸長抑制率は、(a)または(b)を単独使用した場合の菌糸伸長抑制率から算出される理論値よりも高かった。これらの結果から、(a)アゾール誘導体I-7のR-エナンチオマー及び他の有効成分の2剤混合剤と、(b)アゾール誘導体I-7のS-エナンチオマーと、が相乗的な効果を示すことが明らかとなった。
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
The results are shown in Tables 72-95. A ternary mixture prepared by further mixing (a) the R-enantiomer of the azole derivative I-7 and another active ingredient with the (b) S-enantiomer of the azole derivative I-7 was used. The rate of inhibition of mycelial elongation in this case was higher than the theoretical value calculated from the rate of inhibition of mycelial elongation when (a) or (b) was used alone. From these results, (a) a two-drug mixture of the R-enantiomer of the azole derivative I-7 and another active ingredient and (b) the S-enantiomer of the azole derivative I-7 exhibit a synergistic effect. It became clear.
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
 (試験例4:コムギ葉枯病菌のステロール生合成阻害剤低感受性菌株A~Gに対する抗菌活性試験)
 アゾール誘導体I-7のラセミ体、R-エナンチオマーまたは対照化合物について、上述の方法によって、コムギ葉枯病菌の菌株A~Gに対する抗菌活性試験を行った。
(Test Example 4: Antibacterial activity test against sterol biosynthesis inhibitor low-susceptibility strains A to G of wheat leaf blight fungus)
The racemate of the azole derivative I-7, the R-enantiomer, or the control compound were tested for antibacterial activity against wheat leaf blight strains AG by the method described above.
 結果を表96~98に示す。アゾール誘導体I-7のラセミ体およびR-エナンチオマーは、菌株A~Gに対して、対照化合物(メフェントリフルコナゾール及びフルキンコナゾール)のいずれよりも高い菌糸伸長抑制率を示し、抗菌活性に優れていた。
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
The results are shown in Tables 96-98. The racemate and R-enantiomer of the azole derivative I-7 exhibited a higher mycelial elongation inhibition rate against strains A to G than any of the control compounds (mefentrifluconazole and fluquinconazole), and had excellent antibacterial activity. was
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
 (試験例5:2剤混合使用時の抗菌活性試験)
 アゾール誘導体I-7のラセミ体と、他の有効成分(フルオピラムまたはスピロキサミン)との混合剤について、上述の方法によって、各種植物病原菌に対する抗菌活性試験を行った。
(Test Example 5: Antibacterial activity test when using a mixture of two agents)
A mixture of the racemic azole derivative I-7 and another active ingredient (fluopyram or spiroxamine) was tested for antibacterial activity against various plant pathogens by the method described above.
 結果を表99~111に示す。アゾール誘導体I-7のラセミ体と、他の有効成分と、を混合して調製した2剤混合剤を使用した場合の菌糸伸長抑制率は、それぞれを単独使用した場合の菌糸伸長抑制率から算出される理論値よりも高かった。
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
The results are shown in Tables 99-111. The rate of inhibition of mycelial growth when using a two-drug mixture prepared by mixing the racemate of azole derivative I-7 and other active ingredients is calculated from the rate of inhibition of mycelial growth when each is used alone. higher than the theoretical value given.
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
 本発明の一態様に係るアゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩は、農園芸用の殺菌剤または工業用材料保護剤の有効成分として好適に利用することができる。

 
The R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to one aspect of the present invention, or an agriculturally or industrially acceptable salt thereof, is used as an agricultural or horticultural fungicide or industrial material protection agent. It can be suitably used as an active ingredient of a drug.

Claims (6)

  1.  下記一般式(I)で示されるアゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩。
    Figure JPOXMLDOC01-appb-C000001
     [式(I)中、
     *は、キラル中心を表す;
     RおよびRは、それぞれ独立に水素、C-C-アルキル基、C-C-シクロアルキル基またはC-C-シクロアルキル-C-C-アルキル基であり;
     RとRとは、互いに結合して環を形成していてもよく;
     Zは、フェニル基、またはO、NおよびSから選択されるヘテロ原子を1、2、3もしくは4つ含む5員または6員の芳香族複素環であり;
     Rは、ハロゲン、ヒドロキシ基、アミノ基、ニトリル基、ニトロ基、ペンタフルオロスルファニル基、C-C-アルキル基、C-C-ハロアルキル基、C-C-アルコキシ基またはC-C-ハロアルコキシ基であり;
     RはZの任意の置換位置にn個結合しており;
     RおよびRの少なくとも一方が水素ではない場合、nは0、1、2、3、4または5であり、RおよびRの両方が水素である場合、nは1、2、3、4または5であり;
     mは1または2である。]
    The R-enantiomer of an azole derivative represented by the following general formula (I), or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    [in the formula (I),
    * represents a chiral center;
    R 1 and R 2 are each independently hydrogen, a C 1 -C 6 -alkyl group, a C 3 -C 8 -cycloalkyl group or a C 3 -C 8 -cycloalkyl- C 1 -C 4 -alkyl group; ;
    R 1 and R 2 may be combined to form a ring;
    Z is a phenyl group or a 5- or 6-membered heteroaromatic ring containing 1, 2, 3 or 4 heteroatoms selected from O, N and S;
    R 3 is halogen, hydroxy, amino, nitrile, nitro, pentafluorosulfanyl, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy or a C 1 -C 4 -haloalkoxy group;
    R 3 is bonded to n arbitrary substitution positions of Z;
    n is 0, 1, 2, 3, 4 or 5 when at least one of R 1 and R 2 is not hydrogen, n is 1, 2, 3 when both R 1 and R 2 are hydrogen , 4 or 5;
    m is 1 or 2; ]
  2.  有効成分の1つとして請求項1のアゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩を含み、さらに他の有効成分を含むことを特徴とする農園芸用殺菌剤または工業用材料保護剤。 It contains the R-enantiomer of the azole derivative of claim 1 as one of the active ingredients, or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof, and further contains other active ingredients. An agricultural or horticultural fungicide or an industrial material protective agent characterized by:
  3.  上記他の有効成分として、(i)核酸合成代謝阻害剤、細胞骨格とモータータンパク質に作用する殺菌剤、呼吸阻害剤、アミノ酸・タンパク質生合成阻害剤、シグナル伝達阻害剤、脂質生合成又は輸送/細胞膜の構造又は機能阻害剤、細胞膜のステロール生合成阻害剤、細胞壁生合成阻害剤、メラニン生合成阻害剤、宿主植物の抵抗性誘導剤、及び多作用点殺菌剤から選択される殺菌剤の有効成分、(ii)ニコチン性アセチルコリン受容体拮抗モジュレーター、ナトリウムチャネルモジュレーター、リアノジン受容体モジュレーター、アセチルコリンエステラーゼ阻害剤、酸化的リン酸化脱共役剤、及びミトコンドリア電子伝達系複合体I阻害剤から選択される殺虫剤の有効成分、ならびに(iii)植物成長調整剤の有効成分、から選択される少なくとも1つを含む、請求項2に記載の農園芸用殺菌剤または工業用材料保護剤。 Other active ingredients include (i) nucleic acid synthesis and metabolism inhibitors, bactericidal agents that act on the cytoskeleton and motor proteins, respiratory inhibitors, amino acid/protein biosynthesis inhibitors, signal transduction inhibitors, lipid biosynthesis or transport/ Efficacy of a fungicide selected from cell membrane structure or function inhibitors, cell membrane sterol biosynthesis inhibitors, cell wall biosynthesis inhibitors, melanin biosynthesis inhibitors, host plant resistance inducers, and multi-site fungicides component, (ii) an insecticide selected from nicotinic acetylcholine receptor antagonist modulators, sodium channel modulators, ryanodine receptor modulators, acetylcholinesterase inhibitors, oxidative phosphorylation uncouplers, and mitochondrial electron transport chain complex I inhibitors. and (iii) an active ingredient of a plant growth regulator.
  4.  請求項1に記載のアゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩、あるいは請求項2もしくは3に記載の農園芸用殺菌剤を有効成分として含有し、茎葉処理用又は非茎葉処理用である、植物病害防除剤。 The R-enantiomer or the mixture of the R-enantiomer and the S-enantiomer of the azole derivative according to claim 1, or an agriculturally or industrially acceptable salt thereof, or the agricultural and horticultural fungicide according to claim 2 or 3. A plant disease control agent for foliage treatment or non-foliage treatment, containing the agent as an active ingredient.
  5.  請求項4に記載の植物病害防除剤を用いて茎葉処理又は非茎葉処理を行う工程を含むことを特徴とする植物病害防除方法。 A method for controlling plant diseases, comprising the step of performing foliage treatment or non-foliage treatment using the plant disease control agent according to claim 4.
  6.  請求項2または3に記載の農園芸用殺菌剤を調製するための、植物病害防除用製品であって、
     混合して使用するための組み合わせ調製物として、上記アゾール誘導体のR-エナンチオマーもしくはR-エナンチオマーとS-エナンチオマーとの混合物、またはその農学的もしくは工業的に許容可能な塩と、上記他の有効成分とを別々に含むことを特徴とする植物病害防除用製品。
    A plant disease control product for preparing the agricultural and horticultural fungicide according to claim 2 or 3,
    As a combination preparation for mixed use, the R-enantiomer of the above azole derivative or a mixture of the R-enantiomer and the S-enantiomer, or an agriculturally or industrially acceptable salt thereof, and the above other active ingredients. A product for controlling plant diseases, characterized in that it contains and separately.
PCT/JP2022/033347 2021-09-06 2022-09-06 R-enantiomer of azole derivative, agricultural or horticultural chemical agent, and industrial material protective agent WO2023033180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144984 2021-09-06
JP2021144984 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023033180A1 true WO2023033180A1 (en) 2023-03-09

Family

ID=85412497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033347 WO2023033180A1 (en) 2021-09-06 2022-09-06 R-enantiomer of azole derivative, agricultural or horticultural chemical agent, and industrial material protective agent

Country Status (2)

Country Link
AR (1) AR126989A1 (en)
WO (1) WO2023033180A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230771A (en) * 1986-03-12 1987-10-09 ヘキスト アクチェンゲゼルシャフト Aryl-azolylmethyl-benzocycloalkene derivative, its production and its use
JPH1180127A (en) * 1997-09-02 1999-03-26 Kureha Chem Ind Co Ltd Azolymethylbicyclohexanol derivative, its production, and utilization as agrochemical and medicine
JP2008524281A (en) * 2004-12-21 2008-07-10 エフ.ホフマン−ラ ロシュ アーゲー Tetralin and indane derivatives and uses thereof
JP2012501294A (en) * 2008-08-26 2012-01-19 株式会社クレハ 5-Benzyl-4-azolylmethyl-4-spiro [2.4] heptanol derivative, process for producing the same, agricultural and horticultural chemicals and industrial material protective agents
WO2012169516A1 (en) * 2011-06-07 2012-12-13 株式会社クレハ Azole derivative, method for producing same, intermediate compound, and agricultural or horticultural chemical agent and industrial material protecting agent
WO2021177442A1 (en) * 2020-03-06 2021-09-10 株式会社クレハ Azole derivative, method for producing azole derivative, agent for agricultural and horticultural use, and industrial material protection agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230771A (en) * 1986-03-12 1987-10-09 ヘキスト アクチェンゲゼルシャフト Aryl-azolylmethyl-benzocycloalkene derivative, its production and its use
JPH1180127A (en) * 1997-09-02 1999-03-26 Kureha Chem Ind Co Ltd Azolymethylbicyclohexanol derivative, its production, and utilization as agrochemical and medicine
JP2008524281A (en) * 2004-12-21 2008-07-10 エフ.ホフマン−ラ ロシュ アーゲー Tetralin and indane derivatives and uses thereof
JP2012501294A (en) * 2008-08-26 2012-01-19 株式会社クレハ 5-Benzyl-4-azolylmethyl-4-spiro [2.4] heptanol derivative, process for producing the same, agricultural and horticultural chemicals and industrial material protective agents
WO2012169516A1 (en) * 2011-06-07 2012-12-13 株式会社クレハ Azole derivative, method for producing same, intermediate compound, and agricultural or horticultural chemical agent and industrial material protecting agent
WO2021177442A1 (en) * 2020-03-06 2021-09-10 株式会社クレハ Azole derivative, method for producing azole derivative, agent for agricultural and horticultural use, and industrial material protection agent

Also Published As

Publication number Publication date
AR126989A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR102148124B1 (en) Azole derivatives, intermediate compounds, and methods for preparing azole derivatives, as well as agricultural and horticultural drugs and protective agents for industrial materials
JP6942284B2 (en) Agricultural and horticultural fungicides, plant disease control methods and plant disease control products
JP7150213B2 (en) Azole derivative, method for producing azole derivative, and agricultural and horticultural agent
WO2021230382A1 (en) (-)-enantiomer of triazole derivative, agricultural or horticultural chemical, and industrial material protectant
JP2019031463A (en) Azole derivative and utilization thereof as agricultural and horticultural agent
WO2023033180A1 (en) R-enantiomer of azole derivative, agricultural or horticultural chemical agent, and industrial material protective agent
JP2021080280A (en) Agricultural and horticultural disease control agent and plant disease control method
CN113840533A (en) Active compound combinations
JP2020186178A (en) Agent for agricultural and horticultural use, plant disease control method, and plant disease control product
JP2019151601A (en) Agent for agricultural and horticultural use, plant disease control method, and plant disease control product
JP2021014437A (en) Azole derivatives, and agricultural and horticultural chemicals and industrial material protecting agents
JP2020180055A (en) Azole derivatives, and agricultural and horticultural chemicals and industrial material protecting agents
CN115135150A (en) Pesticide granule composition for rice seedling raising box with reduced phytotoxicity
JP2019026567A (en) Agricultural and horticultural agent, plant disease control method, and plant disease controlling article
NZ762344B2 (en) Azole derivative, intermediate compound, method for producing azole derivative, agricultural or horticultural chemical agent, and protective agent for industrial material
EA041705B1 (en) AGRICULTURAL OR HORTICULTURAL FUNGICIDE, PLANT DISEASE CONTROL METHOD AND PLANT DISEASE CONTROL PRODUCT
BR112020002160B1 (en) AZOLE DERIVATIVE, INTERMEDIATE COMPOUND, METHOD FOR PRODUCTION OF AZOLE DERIVATIVE, AGRICULTURAL OR HORTICULTURAL CHEMICAL AGENT AND PROTECTIVE AGENT FOR INDUSTRIAL MATERIAL, METHOD FOR CONTROLLING A DISEASE IN A PLANT, COATED SEED AND USE OF THE COMPOUND

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864762

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864762

Country of ref document: EP

Kind code of ref document: A1