WO2023033155A1 - 空調制御システム - Google Patents

空調制御システム Download PDF

Info

Publication number
WO2023033155A1
WO2023033155A1 PCT/JP2022/033172 JP2022033172W WO2023033155A1 WO 2023033155 A1 WO2023033155 A1 WO 2023033155A1 JP 2022033172 W JP2022033172 W JP 2022033172W WO 2023033155 A1 WO2023033155 A1 WO 2023033155A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
unit
air
control system
wind speed
Prior art date
Application number
PCT/JP2022/033172
Other languages
English (en)
French (fr)
Inventor
幹夫 賀川
和宏 古庄
茂登 松岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022125604A external-priority patent/JP2023036538A/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280058840.6A priority Critical patent/CN117881934A/zh
Publication of WO2023033155A1 publication Critical patent/WO2023033155A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2010-15192
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2010-15192
  • Patent Document 1 since the operating conditions of the air conditioner are determined based on the existing database, there is a problem that the target space cannot be brought sufficiently close to the desired environmental state.
  • the air conditioning control system of the first aspect air-conditions the target space with an air conditioner.
  • the air conditioning control system includes a generator, a predictor, an evaluator, an extractor, and a controller.
  • the generator generates a plurality of candidates for operating conditions of the air conditioner.
  • a prediction unit predicts the environmental state using the learning model.
  • a learning model predicts the environmental state of the target space based on the operating conditions.
  • the evaluation unit evaluates environmental conditions corresponding to operating conditions.
  • the extraction unit extracts, from among the plurality of operation condition candidates, an operation condition that is evaluated by the evaluation unit and satisfies a predetermined condition.
  • the control unit controls the air conditioner according to the operating conditions extracted by the extraction unit.
  • the air conditioning control system of the first aspect extracts the operating conditions of the air conditioner based on the environmental state of the target space. As a result, the air conditioning control system can determine operating conditions for the air conditioner that bring the target space closer to the desired environmental condition.
  • the air conditioning control system of the second aspect is the air conditioning control system of the first aspect and further includes a learning unit.
  • a learning unit generates a learning model.
  • the air-conditioning control system of the third aspect is the air-conditioning control system of either the first aspect or the second aspect, and further includes a computing unit.
  • the calculation unit receives the operating conditions and performs a CFD (Computational Fluid Dynamics) simulation of the environmental conditions.
  • the learning model takes the operating conditions as input and predicts the environmental state that is the output of the CFD simulation.
  • the air conditioning control system of the third aspect has such a configuration that the operating conditions of the air conditioner are such that the target space approaches the desired environmental state without actually controlling the air conditioner for each operating condition. can be asked for.
  • the air conditioning control system of the fourth aspect is the air conditioning control system of the third aspect
  • the learning model is a model that performs learning using the operating conditions as explanatory variables and the environmental state that is the output of the CFD simulation as the objective variable. be.
  • the air-conditioning control system of the fifth aspect is the air-conditioning control system of either the first aspect or the second aspect, and further includes a computing unit.
  • the calculation unit performs a CFD simulation of environmental conditions with operating conditions as input.
  • the calculation unit calculates a first environmental state and a second environmental state whose simulation accuracy is lower than that of the first environmental state.
  • a learning model predicts a first environmental state with a second environmental state as an input.
  • the air conditioning control system of the fifth aspect performs a CFD simulation of the environmental state with operating conditions as input. From the operating conditions, the climate control system calculates a second environmental state for which the CFD simulation is less accurate. The climate control system predicts a first environmental state from a second environmental state using a learning model. Therefore, the air conditioning control system can reduce the time required for the CFD simulation compared to the case of calculating the first environmental state with high CFD simulation accuracy from the operating conditions. As a result, the air-conditioning control system can obtain operating conditions of the air conditioner that bring the target space closer to the desired environmental state in a realistic time.
  • the air-conditioning control system of the sixth viewpoint is the air-conditioning control system of the fifth viewpoint
  • the learning model is a model that performs learning using the second environmental state as an explanatory variable and the first environmental state as an objective variable.
  • An air-conditioning control system of a seventh aspect is the air-conditioning control system of either the first aspect or the second aspect, wherein the environmental conditions are environmental parameters of a plurality of locations including the first location and the second location in the target space is the value of
  • the air conditioning control system further includes an acquisition unit.
  • the acquisition unit acquires the value of the environmental parameter at the first location by actual measurement.
  • the learning model predicts the value of the environmental parameter at the second location based on the value of the environmental parameter at the first location acquired by the acquiring unit when the air conditioner is controlled according to the operating conditions.
  • the learning model predicts the value of the environmental parameter at the second location based on the measured value of the environmental parameter at the first location.
  • the air-conditioning control system can predict the values of the environmental parameters of the entire location from the measured values of the environmental parameters of some locations.
  • the air-conditioning control system is the air-conditioning control system according to the seventh aspect, wherein the learning model obtains the value of the environmental parameter at the first location obtained by the obtaining unit when the air conditioner is controlled according to the operating conditions.
  • This is a model in which learning is performed using an explanatory variable and the value of the environmental parameter at the second location as an objective variable.
  • the air-conditioning control system of the ninth aspect is the air-conditioning control system of the seventh aspect, further comprising a computing unit.
  • the calculation unit receives the operating conditions and performs a CFD simulation of the values of the environmental parameters at the first and second locations.
  • the learning model acquires the environmental parameter value of the second location based on the value of the environmental parameter of the first location acquired by the acquisition unit and the values of the environmental parameters of the first location and the second location calculated by the computing unit. Predict value.
  • the air conditioning control system of the tenth aspect is the air conditioning control system of the ninth aspect, wherein the learning model uses the value of the environmental parameter at the first location acquired by the acquisition unit as an explanatory variable, and the value of the environmental parameter at the second location.
  • This is a model that was trained using as the objective variable.
  • the value of the environmental parameter of the second location is learned by using the value of the environmental parameter of the first location calculated by the calculation unit as an explanatory variable and the value of the environmental parameter of the first location acquired by the acquisition unit as an objective variable. Prediction is performed by inputting the value of the environmental parameter at the second location calculated by the computing unit into the first learning model.
  • An air-conditioning control system is the air-conditioning control system according to any one of the first aspect to the tenth aspect, wherein the generation unit generates operating condition candidates by reinforcement learning that values the evaluation of the evaluation unit. .
  • the air-conditioning control system of the eleventh aspect provides an air conditioning control system that brings the target space closer to the desired environmental state without relying on the experience of the operator and without generating all operating condition candidates.
  • the operating conditions of the harmonizing device can be determined.
  • the air-conditioning control system of the twelfth aspect is the air-conditioning control system of the eleventh aspect, wherein the generation unit determines the operating condition using a learning model that determines the next operating condition candidate based on the current operating condition. Generate candidates.
  • the air conditioning control system of the twelfth aspect can easily generate operating condition candidates by reinforcement learning using a learning model, even if there are many operating condition elements.
  • the air-conditioning control system of the thirteenth aspect is the air-conditioning control system of any one of the first to twelfth aspects, and the target space includes an aisle between server racks in a data center.
  • the air-conditioning control system of the thirteenth aspect can reduce the power consumption of the servers by bringing the environmental conditions of the aisles between the server racks in the data center closer to the desired environmental conditions.
  • the arrangement determination device of the fourteenth aspect determines the arrangement of the air conditioners in the target space.
  • the placement determination device includes a generation unit, a prediction unit, an evaluation unit, and an extraction unit.
  • the generation unit generates a plurality of candidates for the arrangement condition of the air conditioner.
  • the prediction unit predicts the environmental state using a learning model that predicts the environmental state of the target space based on the placement conditions.
  • the evaluation unit evaluates environmental conditions corresponding to the placement conditions.
  • the extraction unit extracts, from among the plurality of candidates for the placement condition, a placement condition whose evaluation by the evaluation unit satisfies a predetermined condition.
  • the arrangement determination device of the fourteenth aspect extracts arrangement conditions for air conditioners based on the environmental conditions of the target space. As a result, the placement determination device can obtain the placement conditions of the air conditioners that bring the target space closer to the desired environmental state.
  • the placement determination device of the fifteenth aspect is the placement determination device of the fourteenth aspect, further comprising a learning unit.
  • a learning unit generates a learning model.
  • the arrangement determination device is the arrangement determination device according to either the fourteenth aspect or the fifteenth aspect, and further includes a calculation unit.
  • the calculation unit performs CFD simulation of the environmental state with the placement conditions as input.
  • the learning model takes the placement conditions as input and predicts the environmental state, which is the output of the CFD simulation.
  • the arrangement determination apparatus of the sixteenth aspect provides the arrangement conditions of the air conditioners such that the target space approaches the desired environmental state without actually operating the air conditioners for each arrangement condition. can be asked for.
  • the placement determination device of the seventeenth aspect is the placement determination device of either the fourteenth aspect or the fifteenth aspect, and further includes a calculation unit.
  • the calculation unit performs CFD simulation of the environmental state with the placement conditions as input.
  • the calculation unit calculates a first environmental state and a second environmental state whose simulation accuracy is lower than that of the first environmental state.
  • a learning model predicts a first environmental state with a second environmental state as an input.
  • the placement determination device of the seventeenth aspect performs a CFD simulation of the environmental state with the placement conditions as input.
  • the placement determination device calculates a second environmental state with low CFD simulation accuracy from the placement conditions.
  • the placement determination device predicts the first environmental state from the second environmental state using the learning model. Therefore, the placement determination device can reduce the time required for the CFD simulation compared to the case of calculating the first environmental state with high CFD simulation accuracy from the placement conditions.
  • the arrangement determination device can determine the arrangement conditions of the air conditioners in a realistic time so that the target space approaches the desired environmental condition.
  • the placement determination device is the placement determination device according to any one of the fourteenth through seventeenth aspects, wherein the generation unit generates placement condition candidates by reinforcement learning that values the evaluation of the evaluation unit. .
  • the placement determination apparatus of the eighteenth aspect provides an air space that makes the target space approach a desired environmental state without depending on the experience of the operator and without generating all placement condition candidates. Arrangement conditions for the matching device can be obtained.
  • a placement determining device is the placement determining device according to the eighteenth aspect, wherein the generating unit determines placement conditions using a learning model for determining candidates for the next placement condition based on the current placement conditions. Generate candidates.
  • the placement determination device of the nineteenth aspect can easily generate placement condition candidates through reinforcement learning using a learning model, even if there are many placement condition elements.
  • the placement determination device of the twentieth aspect is the placement determination device of any one of the fourteenth to nineteenth aspects, and the target space includes an isle between server racks in a data center.
  • the placement determination device of the twentieth aspect can reduce the power consumption of servers by bringing the environmental state of the aisle between server racks in the data center closer to the desired environmental state.
  • FIG. 1 is a schematic plan view of a data center in the first embodiment
  • FIG. 1 is a schematic cross-sectional view of a data center in the first embodiment
  • FIG. It is a functional block diagram of an air-conditioning control system in a 1st embodiment.
  • 7 is a graph showing the relationship between the number of spatial meshes and the CFD execution time in the first embodiment
  • 4 is a graph showing the accuracy of the NN model in the first embodiment
  • 4 is a heat map showing wind speed distribution in a server room in the first embodiment.
  • 4 is a flow chart of processing for controlling the air conditioner with optimum air conditioning set values in the first embodiment.
  • FIG. 8 is a schematic plan view of a data center in a second embodiment; It is a functional block diagram of an air-conditioning control system in a 2nd embodiment.
  • 9 is a flow chart of processing for controlling an air conditioner with optimum air conditioning set values in a second embodiment.
  • FIG. 11 is a schematic plan view of a data center in a third embodiment;
  • FIG. 11 is a schematic cross-sectional view of a data center in a third embodiment; It is a functional block diagram of the arrangement
  • FIG. 12 is a flowchart of processing for obtaining optimum arrangement conditions in the third embodiment;
  • the first is a method of reducing the power consumption of a server by improving the efficiency of task assignment to the server.
  • the second is optimization of setting values (hereinafter sometimes referred to as air conditioning setting values) of air conditioners that perform air conditioning in the server room of the data center.
  • air conditioning setting values setting values
  • Existing research mainly focuses on optimizing the cooling efficiency of air conditioners. It is said that the power consumption of servers accounts for about 30% of the total power consumption of a data center, and the air conditioning settings have a great effect on the power consumption of servers.
  • the power consumption of the server depends on the rotation speed of the internal fan of the server, and the rotation speed of the internal fan depends on the speed of the supplied air and the ambient temperature.
  • the power consumption of the server greatly depends on the wind speed distribution in the data center as well as the temperature in the data center.
  • the air velocity distribution in the server room is uniform, cold air from the air conditioner can be evenly applied to the servers, and the servers can be efficiently cooled. Therefore, it is important to make the wind speed distribution uniform in the server room in order to reduce the power consumption of the servers.
  • the air conditioning control system 1 mainly includes an air conditioner 10 and an optimization device 20 .
  • the air conditioner 10 and the optimization device 20 are communicably connected by a network NW.
  • the air-conditioning control system 1 uses the optimization device 20 to determine the optimum air-conditioning setting values that bring the target space closer to the desired environmental state. Then, the air-conditioning control system 1 cools (air-conditions) the target space with the air conditioner 10 based on the optimum air-conditioning set value.
  • the target space is the server room SP of the data center DC.
  • FIG. 1 is a schematic plan view of a data center DC.
  • FIG. 2 is a schematic cross-sectional view of the data center DC.
  • the server room SP has a server installation area SP1 and an air conditioner installation area SP2.
  • the server installation area SP1 six server racks RK are arranged in a row (hereinafter, a group of server racks RK may be referred to as a module).
  • a cold aisle CA and a hot aisle HA On either side of the module.
  • Each server rack RK contains 22 servers SV. Therefore, a total of 528 servers SV exist in the server installation area SP1.
  • the environmental conditions of the server room SP are, for example, the wind speed distribution and temperature distribution of the server room SP.
  • the desired environmental state of the server room SP includes a state in which the wind speed distribution in the server room SP is uniform, a state in which the temperature distribution in the server room SP is biased toward a specific location, and the like.
  • the desired environmental state of the server room SP is a state in which the wind speed distribution of the hot aisle HA of the server room SP is uniform.
  • the optimization device 20 obtains the optimum air-conditioning set value that makes the wind speed distribution of the hot aisle HA of the server room SP uniform. Therefore, the optimization device 20 needs to predict the wind speed distribution in the server room SP from the air conditioning set values.
  • the optimization device 20 uses CFD simulation to predict the wind speed distribution in the server room SP from the air conditioning settings.
  • the server room SP is divided into many small spaces (hereinafter sometimes referred to as space meshes), and environmental parameters such as wind speed and temperature are predicted for each space mesh.
  • the environmental parameter is wind speed.
  • the optimization device 20 performs low-precision CFD simulations (with a relatively small number of spatial meshes) (hereinafter sometimes referred to as low-precision CFD). Then, the optimization device 20 converts the results of high-precision CFD simulation (which has a relatively large number of spatial meshes) (hereinafter sometimes referred to as high-precision CFD) from the results of low-precision CFD to regression prediction. do.
  • a neural network model hereinafter sometimes referred to as an NN (Neural Network) model
  • This can reduce the execution time of high-precision CFD.
  • the optimization device 20 uses a reinforcement learning model (hereinafter sometimes referred to as a DRL (Deep Reinforcement Learning) model) in order to reduce the number of CFD simulation executions.
  • the optimization device 20 can find the optimum air conditioning settings in a realistic amount of time without searching for all combinations of air conditioning settings.
  • FIG. 3 is a functional block diagram of the air conditioning control system 1. As shown in FIG. As shown in FIGS. 1 to 3, the air conditioner 10 mainly has indoor units 11 to 13 and an air conditioning controller 19 . In this embodiment, the air conditioner 10 includes an aisle mesh AM and a rack mesh RM as components.
  • the indoor units 11 to 13 are so-called package type devices.
  • the indoor units 11 to 13 are installed on the floor of the air conditioner installation area SP2.
  • Each of the indoor units 11-13 mainly has a compressor, a condenser, an expansion valve, an evaporator, and a fan.
  • the compressor, condenser, expansion valve, and evaporator are connected by a refrigerant circuit.
  • the compressor sucks in low-pressure refrigerant, compresses the refrigerant with a compression mechanism, and discharges the compressed refrigerant.
  • a compression mechanism of the compressor is driven by a compressor motor.
  • the rotation speed of the compressor motor can be controlled by an inverter.
  • the condenser In the condenser, heat is exchanged between the refrigerant flowing inside the condenser and the water cooled by the heat source unit installed on the roof of the data center DC, for example. At this time, the refrigerant flowing inside the condenser becomes a liquid refrigerant due to condensation.
  • the expansion valve adjusts the pressure and flow rate of the refrigerant flowing through the refrigerant circuit.
  • the expansion valve is an electronic expansion valve whose degree of opening can be adjusted.
  • the fan supplies air from the air conditioner installation area SP2 to the evaporator.
  • the fan is driven by a fan motor.
  • the rotation speed of the fan motor can be controlled by an inverter.
  • the indoor units 11 to 13 drive the fans to draw air in the air conditioner installation area SP2 from the upper suction port.
  • the sucked air in the air conditioner installation area SP2 passes through the evaporator.
  • the refrigerant flowing inside the evaporator becomes a gas refrigerant by evaporation.
  • the air that has passed through the evaporator is cooled, and cool air is blown out from the outlets of the indoor units 11-13.
  • the air-conditioning controller 19 controls the operation of various devices that make up the air conditioner 10 .
  • the air conditioning controller 19 has a control computing device and a storage device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic unit reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of various devices that make up the air conditioner 10 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the air conditioning controller 19 is electrically connected to the various devices that make up the air conditioner 10 so as to be able to exchange control signals and information.
  • the air conditioning controller 19 is communicably connected to various sensors provided in the air conditioner 10 .
  • the air conditioning controller 19 exchanges various information including air conditioning setting values and various signals with the control unit 29 of the optimization device 20 via the network NW.
  • the air-conditioning controller 19 receives the optimum air-conditioning set values from the optimization device 20, and controls various devices that make up the air conditioner 10 with the optimum air-conditioning set values.
  • the air-conditioning set values include, for example, blowing air velocity, set temperature, set humidity, etc. of each of the indoor units 11 to 13, transmittance of each of the aisle meshes AM and the rack meshes RM, and the like.
  • the optimization device 20 of this embodiment is a computer installed on the cloud.
  • the optimization device 20 may be installed in the data center DC, for example.
  • the optimization device 20 mainly has a storage section 21 , an input section 22 , a display section 23 , a communication section 24 and a control section 29 .
  • the storage unit 21 is a storage device such as RAM, ROM, and HDD (Hard Disk Drive).
  • the storage unit 21 stores programs executed by the control unit 29, data necessary for executing the programs, and the like.
  • the input unit 22 is a keyboard and a mouse.
  • Various commands and various information to the optimization device 20 such as the initial value of the air conditioning set value to be searched can be input using the input unit 22 .
  • the display unit 23 is a monitor.
  • the display unit 23 can display the results of the CFD simulation and the like.
  • the communication unit 24 is a network interface device for communicating with the air conditioner 10 via the network NW.
  • the control unit 29 is a processor such as a CPU or GPU. In this embodiment, "Intel Core TM i7-8700K 3.7 GHz" is used as the processor.
  • the control unit 29 reads and executes programs stored in the storage unit 21 to realize various functions of the optimization device 20 . Further, the control unit 29 can write the calculation result to the storage unit 21 and read information stored in the storage unit 21 according to the program.
  • the control unit 29 exchanges various information including air conditioning setting values and various signals with the air conditioning controller 19 of the air conditioner 10 via the network NW.
  • the control unit 29 includes, as functional blocks, a calculation unit 31, a first learning unit 32, a prediction unit 33, a generation unit 34, an evaluation unit 35, an extraction unit 36, a second and a learning unit 37 .
  • the calculation unit 31, the first learning unit 32, the prediction unit 33, the generation unit 34, the evaluation unit 35, the extraction unit 36, and the second learning unit 37 are for realizing the DRL models 51 to 53. It is a functional block.
  • the calculation unit 31 receives air conditioning set values (operating conditions) and performs a CFD simulation of the wind speed distribution (environmental state) in the server room SP.
  • the air-conditioning set values in this embodiment have five elements: the blowing air velocity of each of the indoor units 11 to 13, and the transmittance of each of the aisle meshes AM and rack meshes RM.
  • Each element of the air-conditioning set value satisfies the condition of Equation 1 below.
  • S is the air conditioning set value
  • Maisle is the transmittance of the aisle mesh AM
  • M rack is the transmittance of the rack mesh RM
  • P 1 to P 3 are the blowing air speeds of the indoor units 11 to 13, respectively.
  • Flow Designer provided by Advanced Knowledge Laboratory is used as software for performing CFD simulations.
  • the CFD simulation results (wind speed for each spatial mesh) are output to a CSV file or the like.
  • the calculation unit 31 calculates a high-precision wind speed distribution (first environmental state, hereinafter sometimes referred to as a high-precision wind speed distribution), which is the result of high-precision CFD of the server room SP, and a low-precision CFD of the server room SP.
  • a low-precision wind speed distribution (second environmental state, hereinafter sometimes referred to as low-precision wind speed distribution), which is the result of , is calculated.
  • the calculation unit 31 calculates a low-precision wind speed distribution for each air conditioning set value to be searched for, in order to input it to the NN model 41 . Further, in order to pre-learn the NN model 41, the calculation unit 31 calculates a pair of a low-precision wind speed distribution and a high-precision wind speed distribution (a learning data set for the NN model 41) for each of a plurality of air conditioning setting values. .
  • the first learning unit 32 generates the NN model 41 using the learning data set for the NN model 41 calculated by the computing unit 31 . At this time, the first learning unit 32 learns the NN model 41 using the low-precision wind speed distribution as an explanatory variable and the high-precision wind speed distribution as an objective variable.
  • 896 air conditioning setting values satisfying the following Equation 2 are used under the constraint of Equation 1 in order to create a learning data set for the NN model 41.
  • the calculation unit 31 performed three types of low-precision CFD and one type of high-precision CFD shown in Table 1 below for each of these air conditioning set values.
  • FIG. 4 is a graph showing the relationship between the number of space meshes and the CFD simulation execution time (hereinafter sometimes referred to as CFD execution time) for one air conditioning set value. As shown in FIG. 4, as the number of spatial meshes increases, the CFD execution time increases. For example, with 23,750 spatial meshes, the CFD run time is about 20 seconds, and with 1,000,000 spatial meshes, the CFD run time is about 780 seconds.
  • FIG. 5 is a graph showing the accuracy of the NN model 41. As shown in FIG. The accuracy evaluation index is RMSE (Root Mean Square Error).
  • RMSE Root Mean Square Error
  • a solid line graph in FIG. 5 indicates the accuracy of the NN model 41 learned by associating the low-precision wind speed distribution and the high-precision wind speed distribution.
  • the dashed line graph in FIG. 5 indicates the accuracy of the learning model learned by associating the air conditioning set values with the highly accurate wind speed distribution.
  • the RMSE of the solid line graph is approximately 0.009 m/s and the RMSE of the dashed line graph is approximately 0.07 m/s. Therefore, when the number of spatial meshes is 23,750, it can be seen that the NN model 41 has significantly higher accuracy than the learning model that predicts the highly accurate wind speed distribution from the air conditioning set values. Also, it can be seen that the accuracy of the NN model 41 when the number of spatial meshes is 23,750 is almost the same as the accuracy when the number of spatial meshes is 500,000.
  • the time to calculate the high-precision wind speed distribution from the low-precision wind speed distribution by the NN model 41 is about 20 times shorter than the time to calculate the high-precision wind speed distribution from the air conditioning set values by high-precision CFD.
  • the prediction unit 33 uses the NN model 41 generated by the first learning unit 32 to predict the highly accurate wind speed distribution. Specifically, the prediction unit 33 inputs the low-precision wind speed distribution calculated by the calculation unit 31 based on the air conditioning set values to the NN model 41, and predicts the high-precision wind speed distribution.
  • a DRL model is used as a method for searching for the optimum air conditioning set value.
  • the learning model used for selecting the next action in the DRL model is a Dueling Network model (hereinafter sometimes referred to as a DN model).
  • three DRL models 51-53 are used.
  • the number of combinations of air conditioning set values is reduced by stepwise changing the search value range and search width of the air conditioning set values for each of the DRL models 51 to 53 .
  • the number of combinations in each of the DRL models 51 to 53 is suppressed to about one thousand and several hundred, so the number of CFD simulation executions is greatly reduced.
  • Table 2 below shows the search range and search width of the air-conditioning set values in each of the DRL models 51-53.
  • the transmittance of the aisle mesh AM and the rack mesh RM is in units of 1%
  • the blowing wind speed of the indoor units 11 to 13 is in units of 0.1 m / s, and the optimum Air conditioning settings can be determined.
  • Equation 3 The states (air conditioning set values) and actions in the DRL models 51 to 53 are shown in Equation 3 below.
  • S indicates a state
  • a indicates an action
  • Maisle + etc. indicate an action that increases or decreases the corresponding air conditioning set value by the search width.
  • M aisle + in the DRL model 51 means increase M aisle by 10%.
  • the total number of searches for finding the optimum air conditioning set value is 5,000 steps for the entire DRL models 51-53.
  • the generation unit 34 generates candidates for air conditioning setting values to be searched for, using the DRL models 51 to 53 that value (reward) the evaluation by the evaluation unit 35 . Specifically, the generation unit 34 uses the DN models 61 to 63 for determining the next air conditioning set value candidate based on the current air conditioning set value, and selects an air conditioning set value candidate with a high expected reward. Generate. DN models 61-63 are learning models corresponding to DRL models 51-53, respectively.
  • evaluation unit 35 evaluates the highly accurate wind speed distribution corresponding to the air conditioning set values.
  • the evaluation unit 35 first calculates an evaluation value for the air conditioning setting value based on the air conditioning setting value and the high-precision wind speed distribution corresponding to the air conditioning setting value.
  • the evaluation value is defined by Equation 4 below.
  • the evaluation value is the average of the dispersion score, mesh score, and air conditioning score with weights ⁇ , ⁇ , and ⁇ .
  • the dispersion score, the mesh score, and the air conditioning score are each configured to take a value of 0 to 100 (as a result, the evaluation value also takes a value of 0 to 100). The higher the evaluation value, variance score, mesh score, and air conditioning score, the higher the evaluation.
  • the variance score depends on the variance of the set consisting of the wind speed of a specific spatial mesh existing behind each server SV (hot aisle HA side), included in the high-precision wind speed distribution.
  • the variance score is configured such that the smaller the variance, the larger the value.
  • the dispersion score represents the uniformity of the wind speed distribution in the hot aisle HA of the server room SP.
  • the hot aisle HA of the server room SP has a more uniform wind speed distribution as the variance score increases.
  • the mesh score depends on the sum of the transmittance of the aisle mesh AM and the transmittance of the rack mesh RM.
  • the mesh score is configured such that the higher the transmittance of the aisle mesh AM and the transmittance of the rack mesh RM, the larger the value. The higher the mesh score, the more the wind passes through the aisle mesh AM and the rack mesh RM, so the dispersion score decreases.
  • the air conditioning score depends on the sum of the cubes of the blowing wind speeds of the indoor units 11-13.
  • the air conditioning score is configured such that the smaller the exhaust air velocity of the indoor units 11 to 13 (the smaller the power consumption of the air conditioner 10), the larger the value.
  • the air conditioning score is defined in this way because the power consumption of the air conditioner 10 is proportional to the cube of the blowing wind speed.
  • is set to 0.6 (relatively large value), ⁇ to 0.1, and ⁇ to 0.3. .
  • the evaluation unit 35 calculates rewards for the DRL models 51 to 53 as shown in Table 3 below, based on the evaluation value.
  • the DRL models 51-53 are stabilized by comparing the current evaluation value with the average evaluation value of the past 10 steps.
  • the extraction unit 36 selects the optimum air-conditioning setting value with the highest evaluation value of the evaluation unit 35 from among the multiple air-conditioning setting value candidates generated by the generation unit 34, Each DRL model 51-53 is extracted.
  • the control unit 29 finally transmits the optimum air conditioning set values in the DRL model 53 to the air conditioner 10 .
  • the second learning unit 37 uses the above data stocked in the storage unit 21 to learn and update the DN models 61 to 63 as needed.
  • the air conditioning set value is a value that makes the mesh score and the air conditioning score 100.
  • Table 4 below shows the optimal air conditioning set values and their evaluation values extracted from the DRL models 51-53.
  • the DRL models 51 to 53 extract air conditioning set values with relatively high evaluation values.
  • FIG. 6 is a heat map showing the wind speed distribution in the server room SP when the optimum air conditioning set values in the DRL model 53 are set for the air conditioner 10.
  • FIG. 6 As shown in FIG. 6, the wind speed distribution in the hot aisle HA is almost uniform (the degree of shading is the same).
  • Table 5 below shows the number of searches and the number of CFD simulation executions for each of the DRL models 51-53.
  • the step-by-step search by DRL models 51 to 53 was able to significantly reduce the number of CFD simulation executions.
  • the air conditioning set values that appeared for the first time and the corresponding high-precision wind speed distribution were stored in the storage unit 21 .
  • the CFD simulation is not performed, and the corresponding high-precision wind speed distribution is read out from the storage unit 21, thereby increasing the number of simulation executions. reduced.
  • the DRL models 51-53 require 0.3 seconds for each search.
  • the first processing from step S1 to step S8 is processing related to the DRL model 51 .
  • step S ⁇ b>1 the initial values of the air conditioning set values in the DRL model 51 are input to the optimization device 20 .
  • step S2 the air conditioning control system 1 calculates a low-accuracy wind speed distribution from the air conditioning set values.
  • step S3 the air conditioning control system 1 uses the NN model 41 to predict the high-precision wind speed distribution from the low-precision wind speed distribution.
  • step S4 the air conditioning control system 1 calculates an evaluation value and reward for the air conditioning set value from the air conditioning set value and the high-precision wind speed distribution.
  • step S5 the air-conditioning control system 1 uses the DN model 61 to generate air-conditioning setting value candidates with high expected rewards.
  • step S6 the air-conditioning control system 1 determines whether or not the number of searches by the DRL model 51 is equal to or less than a predetermined number (the total number of searches for the DRL model 51 set in advance). do.
  • a predetermined number the total number of searches for the DRL model 51 set in advance.
  • the air conditioning control system 1 calculates a low-accuracy wind speed distribution from the air conditioning set values generated in step S5. In other words, the air conditioning control system 1 repeats steps S2 to S6 until the number of searches by the DRL model 51 exceeds a predetermined number.
  • the air conditioning control system 1 extracts the optimum air conditioning set value with the highest evaluation value from the air conditioning set values searched in the DRL model 51.
  • step S8 the air conditioning control system 1 determines whether or not the processing of all the DRL models 51 to 53 has been completed. At this stage, only the DRL model 51 has been completed, so the process proceeds to step S1.
  • step S1 to step S8 is processing related to the DRL model 52 . Since the process is basically the same as the process from step S1 to step S8 of the first time, only different parts will be described.
  • step S1 the air conditioning control system 1 inputs the optimal air conditioning set values of the DRL model 51 extracted in the first step S7 to the optimization device 20 as the initial values of the air conditioning set values in the DRL model 52.
  • step S5 the air-conditioning control system 1 uses the DN model 62 to generate air-conditioning setting value candidates with high expected rewards.
  • step S6 the air conditioning control system 1 determines whether or not the number of searches by the DRL model 52 is equal to or less than a predetermined number (total number of searches for the DRL model 52 set in advance).
  • step S7 the air conditioning control system 1 extracts the optimum air conditioning set value with the highest evaluation value from the air conditioning set values searched for in the DRL model 52.
  • step S8 the air conditioning control system 1 determines whether or not the processing of all DRL models 51-53 has been completed. At this stage, only the DRL models 51 and 52 have been completed, so the process proceeds to step S1.
  • step S1 to step S8 is processing related to the DRL model 53 . Since the process is basically the same as the process from step S1 to step S8 of the first time, only different parts will be described.
  • step S1 the air conditioning control system 1 inputs the optimal air conditioning set values of the DRL model 52 extracted in the second step S7 to the optimization device 20 as the initial values of the air conditioning set values in the DRL model 53.
  • step S5 the air-conditioning control system 1 uses the DN model 63 to generate air-conditioning setting value candidates with high expected rewards.
  • step S6 the air conditioning control system 1 determines whether or not the number of searches by the DRL model 53 is equal to or less than a predetermined number (total number of searches of the DRL model 53 set in advance).
  • step S7 the air conditioning control system 1 extracts the optimum air conditioning set value with the highest evaluation value from the air conditioning set values searched in the DRL model 53.
  • step S8 the air conditioning control system 1 determines whether or not the processing of all DRL models 51-53 has been completed. At this stage, all the DRL models 51 to 53 have been processed, so the process proceeds to step S9.
  • the air conditioning control system 1 transmits the optimum air conditioning set value of the DRL model 53 extracted in the third step S7 from the optimization device 20 to the air conditioner 10,
  • the air conditioner 10 is controlled by the air conditioning set value.
  • the air conditioning control system 1 learns and updates the DN models 61-63 at any time during the processing of the DRL models 51-53.
  • the operating conditions of the air conditioner are determined based on the existing database, so there is a problem that the target space cannot be brought sufficiently close to the desired environmental state.
  • the conventional technique has a problem that the entire target space cannot be brought sufficiently close to the desired environmental state at the same time.
  • the air-conditioning control system 1 of this embodiment air-conditions the server room SP using the air conditioner 10 .
  • the air conditioning control system 1 includes a generation unit 34 , a first learning unit 32 , a prediction unit 33 , an evaluation unit 35 , an extraction unit 36 and an air conditioning controller 19 .
  • the generator 34 generates a plurality of candidates for the air conditioning set value of the air conditioner 10 .
  • a first learning unit 32 generates an NN model 41 .
  • the prediction unit 33 uses the NN model 41 to predict the wind speed distribution.
  • the NN model 41 predicts the wind speed distribution in the server room SP based on the air conditioning settings.
  • the evaluation unit 35 evaluates the wind speed distribution corresponding to the air conditioning set values.
  • the extracting unit 36 extracts the air conditioning setting value with the highest evaluation by the evaluating unit 35 from among the plurality of air conditioning setting value candidates.
  • the air conditioning controller 19 controls the air conditioner 10 based on the air conditioning set values extracted by the extraction unit 36 .
  • the air conditioning control system 1 extracts air conditioning set values based on the wind speed distribution of the server room SP. As a result, the air-conditioning control system 1 can obtain the optimum air-conditioning set values that bring the server room SP closer to the desired wind speed distribution. In addition, the air conditioning control system 1 can bring the entire server room SP closer to the desired wind speed distribution at the same time.
  • the air-conditioning control system 1 of the present embodiment further includes a computing section 31 .
  • the calculation unit 31 performs a CFD simulation of the wind speed distribution with the air conditioning set values as input.
  • the calculation unit 31 calculates a high-precision wind speed distribution and a low-precision wind speed distribution.
  • the NN model 41 receives the low-precision wind speed distribution and predicts the high-precision wind speed distribution.
  • the NN model 41 is a model that performs learning using the low-precision wind speed distribution as an explanatory variable and the high-precision wind speed distribution as an objective variable.
  • the air conditioning control system 1 performs a CFD simulation of the wind speed distribution in the server room SP using the air conditioning set values as input.
  • the air-conditioning control system 1 calculates a low-precision wind speed distribution from air-conditioning set values.
  • the air conditioning control system 1 uses the NN model 41 to predict a high-precision wind speed distribution from a low-precision wind speed distribution.
  • the air conditioning control system 1 can reduce the time required for the CFD simulation compared to the case of calculating the highly accurate wind speed distribution from the air conditioning set values. As a result, the air-conditioning control system 1 can find the optimum air-conditioning set value that brings the server room SP closer to the desired wind speed distribution in a realistic time.
  • the generator 34 generates air-conditioning setting value candidates by reinforcement learning that values the evaluation of the evaluation unit 35 .
  • the air-conditioning control system 1 can provide the optimum air-conditioning setting value that brings the server room SP closer to the desired wind speed distribution without depending on the experience of the operator and without generating all air-conditioning setting value candidates. can be asked for.
  • the generation unit 34 generates air conditioning set value candidates using DN models 61 to 63 that determine the next air conditioning set value candidates based on the current air conditioning set value. do.
  • the air-conditioning control system 1 can easily generate optimal air-conditioning setting value candidates by using the DRL models 51-53 using the DN models 61-63, even if there are a large number of air-conditioning setting value elements. can.
  • the target space includes an aisle between the server racks RK in the data center DC.
  • the air conditioning control system 1 can reduce the power consumption of the server SV by bringing the wind speed distribution of the cold aisle CA and the hot aisle HA of the server room SP closer to the desired wind speed distribution.
  • the air conditioner 10 air-conditions the server room SP with the floor-mounted and packaged indoor units 11 to 13 .
  • the air conditioner 10 may air-condition the server room SP by a so-called multi-building system or a central air-conditioning system.
  • the indoor units 11 to 13 may be of a ceiling-suspended type or a wall-mounted type.
  • the target space of the air conditioning control system 1 is the server room SP in the data center DC.
  • the target space of the air conditioning control system 1 is not limited to this, and may be a space in a commercial facility, an office space, or the like.
  • the air-conditioning control system 1 calculates a low-precision wind speed distribution from the air-conditioning set values, and inputs the low-precision wind speed distribution to the NN model 41 to predict a high-precision wind speed distribution.
  • the air-conditioning control system 1 may use the learning model 42 that predicts the high-precision wind speed distribution using the air-conditioning set values as input.
  • Learning model 42 is, for example, a neural network.
  • the calculation unit 31 calculates a high-precision wind speed distribution (learning data set of the learning model 42) for each of the plurality of air conditioning setting values.
  • the first learning unit 32 generates the learning model 42 using the learning data set of the learning model 42 calculated by the calculation unit 31 . At this time, the first learning unit 32 learns the learning model 42 using the air conditioning setting value as an explanatory variable and the high-precision wind speed distribution as an objective variable.
  • the prediction unit 33 uses the learning model 42 generated by the first learning unit 32 to predict the highly accurate wind speed distribution. Specifically, the prediction unit 33 inputs the air conditioning set values to the learning model 42 and predicts the highly accurate wind speed distribution.
  • the air-conditioning control system 1 can obtain the optimum air-conditioning set value for each air-conditioning set value so that the server room SP approaches the desired wind speed distribution without actually controlling the air conditioner 10. can.
  • the environmental condition is the wind speed distribution in the server room SP.
  • the evaluation values of the air-conditioning set values are defined so that the corresponding air-conditioning set values are evaluated higher when the wind speed distribution in the server room SP becomes the desired wind speed distribution (Equation 4).
  • the environmental state may be the temperature distribution of the server room SP.
  • the evaluation value of the air conditioning set value is defined so that the evaluation of the corresponding air conditioning set value becomes high when the temperature distribution of the server room SP becomes the desired temperature distribution.
  • the desired temperature distribution is, for example, a uniform temperature distribution or a temperature distribution that eliminates hot spots where the temperature is high in a specific portion.
  • the air conditioning control system 2 mainly includes an air conditioner 10 and an optimization device 120 .
  • the air-conditioning control system 2 uses the optimization device 120 to find the optimum air-conditioning set value that brings the server room SP closer to the desired environmental state.
  • FIG. 8 is a schematic plan view of the data center DC in this embodiment.
  • the difference from the first embodiment is that environment sensors for measuring the surrounding wind speed, temperature, etc. are installed on the back (hot aisle HA side) of some server racks RK.
  • the environment sensor is the wind speed sensor SS1.
  • a virtual wind speed sensor SS2 (hereinafter sometimes referred to as virtual wind speed sensor SS2), which is not actually installed, is placed on the back of the server rack RK where the wind speed sensor SS1 is not installed. is described.
  • the virtual wind sensor SS2 is painted out to distinguish between the wind sensor SS1 and the virtual wind sensor SS2.
  • the environmental state of the server room SP is the wind speed (environmental parameter ).
  • the environmental state of the server room SP is the measured value of the wind speed sensor SS1 and the virtual wind speed sensor SS2.
  • the desired environmental state of the server room SP is a state in which the measured values of the wind speed sensor SS1 and the virtual wind speed sensor SS2 are uniform.
  • the desired environmental state of the server room SP is such that the wind speed distribution in the hot aisle HA is uniform, as in the first embodiment.
  • the air conditioner 10 further includes a wind speed sensor SS1 as a component.
  • the air conditioning controller 19 is communicably connected to the wind speed sensor SS1.
  • the air-conditioning controller 19 can acquire the measured value of the wind speed sensor SS1 by actual measurement (hereinafter, the measured value by actual measurement of the wind speed sensor SS1 may be referred to as the measured sensor value).
  • FIG. 9 is a functional block diagram of the air conditioning control system 2. As shown in FIG. 9 , the optimization device 120 mainly has a storage section 21 , an input section 22 , a display section 23 , a communication section 24 and a control section 129 .
  • the control unit 129 includes, as functional blocks, an acquisition unit 138, a calculation unit 131, a first learning unit 132, a prediction unit 133, a generation unit 34, an evaluation unit 35, and an extraction unit. 36 and a second learning unit 37 .
  • the acquisition unit 138, the calculation unit 131, the first learning unit 132, the prediction unit 133, the generation unit 34, the evaluation unit 35, the extraction unit 36, and the second learning unit 37, the DRL models 51 to It is a functional block for realizing V.53.
  • the acquisition unit 138 acquires measured sensor values via the air conditioning controller 19 .
  • the calculation unit 131 receives the air-conditioning set values and performs a CFD simulation of the measured values of the wind speed sensor SS1 and the virtual wind speed sensor SS2 (hereinafter referred to as the measurement of the wind speed sensor SS1 for which the CFD simulation was performed).
  • the value is sometimes referred to as the CFD sensor value
  • the measured value of the virtual wind sensor SS2 for which the CFD simulation was performed is referred to as the CFD virtual sensor value).
  • the measured values of the wind speed sensor SS1 and the virtual wind speed sensor SS2 for which the CFD simulation was performed are the simulated wind speed values in the spatial mesh corresponding to the installation location of the wind speed sensor SS1 and the virtual wind speed sensor SS2. .
  • the first learning unit 132 generates the learning model 43 .
  • the learning model 43 predicts the measured value of the virtual wind speed sensor SS2 by inputting the actually measured sensor value when the air conditioner 10 is controlled by a certain air conditioning set value.
  • the first learning unit 132 pre-learns the learning model 43 in three stages.
  • the first learning unit 132 prepares a plurality of air conditioning set values.
  • the first learning unit 132 controls the air conditioner 10 by using each of the plurality of prepared air conditioning set values, and acquires the measured sensor value at that time.
  • the first learning unit 132 acquires the CFD sensor value and the CFD virtual sensor value for which the CFD simulation was performed for each of the plurality of prepared air conditioning setting values.
  • the first learning unit 132 learns the learning model 43a by associating the CFD sensor values with the measured sensor values.
  • the first learning unit 132 learns the learning model 43a (first learning model) using the CFD sensor values as explanatory variables and the measured sensor values as objective variables.
  • the first learning unit 132 inputs the CFD virtual sensor values acquired in the first step to the learning model 43a, and predicts the measured value of the virtual wind sensor SS2.
  • the first learning unit 132 learns the learning model 43 by associating the measured sensor values acquired in the first step with the measured values of the virtual wind speed sensor SS2 predicted in the second step. At this time, the first learning unit 132 learns the learning model 43 using the measured sensor value as an explanatory variable and the measured value of the virtual wind sensor SS2 as an objective variable.
  • the learning model 43 is used as a learning model for predicting the measured value of the virtual wind sensor SS2 with the actually measured sensor value as an input.
  • the learning models 43 and 43a are, for example, neural networks.
  • the prediction unit 133 inputs the measured sensor value when the air conditioner 10 is controlled by a certain air conditioning set value to the learning model 43, and predicts the measured value of the virtual wind speed sensor SS2. do.
  • the variance score calculated by the evaluator 35 depends on the variance of the set consisting of the measured sensor values and the measured values of the virtual wind sensor SS2 predicted by the learning model 43 .
  • step S10 the air conditioning control system 2 transmits the air conditioning set values from the optimization device 120 to the air conditioner 10, and controls the air conditioner 10 with the air conditioning set values.
  • step S11 the air conditioning control system 2 acquires the measured sensor value from the wind speed sensor SS1.
  • step S11 the air conditioning control system 2 predicts the measured value of the virtual wind sensor SS2 from the actual sensor value by the learning model 43, as shown in step S12.
  • step S13 the air-conditioning control system 2 calculates the evaluation value of the air-conditioning setting value and reward Calculate
  • the environmental conditions are wind speed values at a plurality of locations in the server room SP, including the installation location of the wind speed sensor SS1 and the installation location of the virtual wind speed sensor SS2.
  • the air conditioning control system 2 further includes an acquisition unit 138 .
  • the acquisition unit 138 acquires the value of the wind speed at the location where the wind speed sensor SS1 is installed by actual measurement.
  • the learning model 43 calculates the wind speed value at the installation location of the virtual wind speed sensor SS2 based on the wind speed value at the installation location of the wind speed sensor SS1 acquired by the acquisition unit 138 when the air conditioner 10 is controlled by the air conditioning set value. to predict.
  • the learning model 43 uses the value of the wind speed at the installation location of the wind speed sensor SS1 acquired by the acquisition unit 138 when the air conditioner 10 is controlled by the air conditioning set value as an explanatory variable, and uses the value of the wind speed at the installation location of the virtual wind speed sensor SS2 as an explanatory variable. This is a model that has been trained using values as objective variables.
  • the learning model 43 predicts the measured value of the virtual wind speed sensor SS2 based on the actually measured sensor value. As a result, the air-conditioning control system 2 can predict the sensor values of all locations from the measured sensor values of some locations.
  • the air-conditioning control system 2 of this embodiment further includes a calculation unit 131 .
  • the calculation unit 131 receives the air conditioning set values and performs a CFD simulation of the wind speed values at the installation location of the wind speed sensor SS1 and the installation location of the virtual wind speed sensor SS2.
  • the learning model 43 is based on the wind speed value of the installation location of the wind speed sensor SS1 acquired by the acquisition unit 138, and the wind speed values of the installation location of the wind speed sensor SS1 and the installation location of the virtual wind speed sensor SS2 calculated by the calculation unit 131. , the value of the wind speed at the location where the virtual wind speed sensor SS2 is installed is predicted.
  • the learning model 43 is a model that performs learning using the wind speed value at the installation location of the wind speed sensor SS1 acquired by the acquisition unit 138 as an explanatory variable and the wind speed value at the installation location of the virtual wind speed sensor SS2 as an objective variable.
  • the value of the wind speed at the location where the virtual wind speed sensor SS2 is installed uses the wind speed value at the location where the wind speed sensor SS1 is installed calculated by the calculation unit 131 as an explanatory variable, and the wind speed value at the location where the wind speed sensor SS1 is installed acquired by the acquisition unit 138.
  • Prediction is performed by inputting the value of the wind speed at the installation location of the virtual wind speed sensor SS2 calculated by the calculation unit 131 to the learning model 43a that has performed learning using the value as the objective variable.
  • the placement determination device 220 determines the placement of the air conditioners 210 in the target space.
  • the placement determination device 220 obtains the optimal placement conditions (hereinafter sometimes referred to as placement conditions) for the air conditioners 210 that bring the target space closer to the desired environmental state.
  • the target space is the server room SP of the data center DC.
  • FIG. 11 is a schematic plan view of the data center DC.
  • FIG. 12 is a schematic cross-sectional view of the data center DC.
  • the server room SP has a server installation area SP1 and an air conditioner installation area SP2.
  • server racks RK are lined up in a row (hereafter, a group of server racks RK may be referred to as a module). On either side of the module is a cold aisle CA and a hot aisle HA. Each server rack RK contains a server SV.
  • the arrangement condition of the air conditioner 210 in this embodiment is the position of each of the indoor units 211 to 213 in the air conditioner installation area SP2 in the X-axis direction.
  • the cool air blown out from the indoor units 211-213 is rectified once in the space in front of the indoor units 211-213.
  • the rectified cool air passes through the aisle mesh AM and the rack mesh RM and is supplied to the server SV.
  • the air heated inside the server SV and discharged from the server SV passes through the ceiling space AC from the hot aisle HA and is sucked into the indoor units 211 to 213 again.
  • the environmental conditions of the server room SP are, for example, the wind speed distribution and temperature distribution of the server room SP.
  • the desired environmental state of the server room SP includes a state in which the wind speed distribution in the server room SP is uniform, a state in which the temperature distribution in the server room SP is biased toward a specific location, and the like.
  • the desired environmental state of the server room SP is a state in which the wind speed distribution of the hot aisle HA of the server room SP is uniform.
  • the placement determination device 220 obtains the optimum placement condition that makes the wind speed distribution of the hot aisle HA of the server room SP uniform. Therefore, the placement determination device 220 needs to predict the wind speed distribution in the server room SP from the placement conditions.
  • the placement determination device 220 uses CFD simulation to predict the wind speed distribution in the server room SP from the placement conditions.
  • the server room SP is divided into many small spaces (hereinafter sometimes referred to as space meshes), and environmental parameters such as wind speed and temperature are predicted for each space mesh.
  • the environmental parameter is wind speed.
  • the placement determination device 220 performs low-precision CFD simulation (with a relatively small number of spatial meshes) (hereinafter sometimes referred to as low-precision CFD). Then, the placement determination device 220 performs regression prediction on the result of high-precision CFD simulation (which may be referred to as high-precision CFD hereinafter) (having a relatively large number of spatial meshes) from the result of low-precision CFD. do.
  • a neural network model hereinafter sometimes referred to as an NN (Neural Network) model
  • NN Neurological Network
  • the placement determination device 220 uses a reinforcement learning model (hereinafter sometimes referred to as a DRL (Deep Reinforcement Learning) model) in order to reduce the number of CFD simulation executions.
  • the placement determination device 220 can find the optimum placement condition in a realistic time without searching for all combinations of placement conditions.
  • Air Conditioner 210 cools (air-conditions) the server room SP.
  • the air conditioner 210 mainly has indoor units 211 to 213 and an air conditioning controller 219 .
  • the indoor units 211 to 213 are so-called package type devices.
  • the indoor units 211 to 213 are installed on the floor of the air conditioner installation area SP2.
  • Each of the indoor units 211-213 mainly has a compressor, a condenser, an expansion valve, an evaporator, and a fan.
  • the compressor, condenser, expansion valve, and evaporator are connected by a refrigerant circuit.
  • the compressor sucks in low-pressure refrigerant, compresses the refrigerant with a compression mechanism, and discharges the compressed refrigerant.
  • a compression mechanism of the compressor is driven by a compressor motor.
  • the rotation speed of the compressor motor can be controlled by an inverter.
  • the condenser In the condenser, heat is exchanged between the refrigerant flowing inside the condenser and the water cooled by the heat source unit installed on the roof of the data center DC, for example. At this time, the refrigerant flowing inside the condenser becomes a liquid refrigerant due to condensation.
  • the expansion valve adjusts the pressure and flow rate of the refrigerant flowing through the refrigerant circuit.
  • the expansion valve is an electronic expansion valve whose degree of opening can be adjusted.
  • the fan supplies air from the air conditioner installation area SP2 to the evaporator.
  • the fan is driven by a fan motor.
  • the rotation speed of the fan motor can be controlled by an inverter.
  • the indoor units 211 to 213 drive the fans to suck in the air in the air conditioner installation area SP2 from the upper suction port.
  • the sucked air in the air conditioner installation area SP2 passes through the evaporator.
  • the refrigerant flowing inside the evaporator becomes a gas refrigerant by evaporation.
  • the air that has passed through the evaporator is cooled, and cool air is blown out from the outlets of the indoor units 211-213.
  • the air conditioning controller 219 controls the operation of various devices that make up the air conditioner 210 .
  • the air conditioning controller 219 has a control computing device and a storage device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of various devices that make up the air conditioner 210 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the air-conditioning controller 219 is electrically connected to various devices that make up the air conditioner 210 so as to be able to exchange control signals and information.
  • the air conditioning controller 219 is communicably connected to various sensors provided in the air conditioner 210 .
  • the air conditioning controller 219 controls various devices that make up the air conditioner 210 according to predetermined air conditioning set values.
  • the air conditioning set values include, for example, the blowing wind speed, set temperature, and set humidity of each of the indoor units 211-213.
  • FIG. 13 is a functional block diagram of the placement determination device 220. As shown in FIG. As shown in FIG. 3 , the placement determination device 220 mainly has a storage section 221 , an input section 222 , a display section 223 and a control section 229 .
  • the storage unit 221 is a storage device such as RAM, ROM, and HDD (Hard Disk Drive).
  • the storage unit 221 stores programs executed by the control unit 229, data necessary for executing the programs, and the like.
  • the input unit 222 is a keyboard and a mouse.
  • Various commands and various types of information to the placement determination device 220 can be input using the input unit 222 .
  • the display unit 223 is a monitor.
  • the display unit 223 can display the results of the CFD simulation and the like.
  • the control unit 229 is a processor such as a CPU or GPU.
  • the control unit 229 reads and executes programs stored in the storage unit 221 to implement various functions of the placement determination device 220 . Further, the control unit 229 can write the calculation result to the storage unit 221 and read the information stored in the storage unit 221 according to the program.
  • the control unit 229 includes, as functional blocks, a calculation unit 231, a first learning unit 232, a prediction unit 233, a generation unit 234, an evaluation unit 235, an extraction unit 236, and a second and a learning unit 237 .
  • the calculation unit 231, the first learning unit 232, the prediction unit 233, the generation unit 234, the evaluation unit 235, the extraction unit 236, and the second learning unit 237 are functional blocks for realizing the DRL model 251. is.
  • the calculation unit 231 inputs the arrangement conditions, the transmittance of each of the aisle meshes AM and the rack meshes RM, and the air conditioning settings, and performs a CFD simulation of the wind speed distribution in the server room SP. I do.
  • the transmittance of each of the aisle meshes AM and the rack meshes RM and the air conditioning set values are fixed at predetermined values. Therefore, the computing unit 231 substantially performs a CFD simulation of the wind speed distribution in the server room SP using the layout conditions as input.
  • the arrangement condition in this embodiment is the position of each of the indoor units 211 to 213 in the X-axis direction.
  • Each element of the arrangement condition satisfies the condition of Expression 6 below.
  • S indicates the arrangement condition
  • X 1 to X 3 indicate the X-axis coordinates of the indoor units 211 to 213
  • L indicates the length of the server room SP in the X-axis direction.
  • the software for performing CFD simulations is, for example, Flow Designer provided by Advanced Knowledge Laboratories.
  • the CFD simulation results (wind speed for each spatial mesh) are output to a CSV file or the like.
  • the calculation unit 231 calculates a high-precision wind speed distribution (hereinafter sometimes referred to as high-precision wind speed distribution) that is the result of high-precision CFD for the server room SP, and a low-precision wind speed distribution that is the result of low-precision CFD for the server room SP.
  • high-precision wind speed distribution a high-precision wind speed distribution
  • low-precision wind speed distribution a low-precision wind speed distribution
  • the calculation unit 231 calculates the low-precision wind speed distribution for each arrangement condition to be searched for, in order to input it to the NN model 241 when searching for the optimum arrangement condition. Further, in order to pre-learn the NN model 241, the calculation unit 231 calculates pairs of low-precision wind speed distributions and high-precision wind speed distributions (training data sets for the NN model 241) for each of a plurality of arrangement conditions.
  • the first learning unit 232 generates the NN model 241 using the learning data set of the NN model 241 calculated by the computing unit 231 . At this time, the first learning unit 232 learns the NN model 241 using the low-precision wind speed distribution as an explanatory variable and the high-precision wind speed distribution as an objective variable.
  • the prediction unit 233 uses the NN model 241 generated by the first learning unit 232 to predict the highly accurate wind speed distribution. Specifically, the prediction unit 233 inputs the low-precision wind speed distribution calculated by the calculation unit 231 based on the arrangement condition to the NN model 241, and predicts the high-precision wind speed distribution.
  • the DRL model 251 is used as a method for searching for the optimum arrangement conditions.
  • the learning model used for selecting the next action in the DRL model 251 is the Dueling Network model 261 (hereinafter sometimes referred to as the DN model 261).
  • Equation 7 The states (placement conditions) and actions in the DRL model 251 are shown in Equation 7 below.
  • S indicates the state
  • a indicates the action
  • X 1 + and the like indicate the action of increasing or decreasing the corresponding arrangement condition by the search width.
  • the generation unit 234 generates candidates for placement conditions to be searched by using the DRL model 251 whose value (reward) is the evaluation of the evaluation unit 235 . Specifically, the generation unit 234 generates candidates for placement conditions with high expected rewards using the DN model 61 that determines candidates for the next placement condition based on the current placement conditions.
  • evaluation unit 235 evaluates the highly accurate wind speed distribution corresponding to the arrangement conditions.
  • the evaluation unit 235 first calculates an evaluation value for the arrangement condition based on the arrangement condition and the high-precision wind speed distribution corresponding to the arrangement condition.
  • the evaluation value is defined, for example, by Equation 8 below.
  • the evaluation value is the average of the dispersion score, mesh score, and air conditioning score with weights ⁇ , ⁇ , and ⁇ .
  • the dispersion score, the mesh score, and the air conditioning score are each configured to take a value of 0 to 100 (as a result, the evaluation value also takes a value of 0 to 100). The higher the evaluation value, variance score, mesh score, and air conditioning score, the higher the evaluation.
  • the variance score depends on the variance of the set consisting of the wind speed of a specific spatial mesh existing behind each server SV (hot aisle HA side), included in the high-precision wind speed distribution.
  • the variance score is configured such that the smaller the variance, the larger the value.
  • the dispersion score represents the uniformity of the wind speed distribution in the hot aisle HA of the server room SP.
  • the hot aisle HA of the server room SP has a more uniform wind speed distribution as the variance score increases.
  • the mesh score depends on the sum of the transmittance of the aisle mesh AM and the transmittance of the rack mesh RM.
  • the mesh score is configured such that the higher the transmittance of the aisle mesh AM and the transmittance of the rack mesh RM, the larger the value. The higher the mesh score, the more the wind passes through the aisle mesh AM and the rack mesh RM, so the dispersion score decreases.
  • the air conditioning score depends on the sum of the cubes of the blowing wind speeds of the indoor units 211-213.
  • the air conditioning score is configured such that the smaller the exhaust air velocity of the indoor units 211 to 213 (the smaller the power consumption of the air conditioner 210), the larger the value.
  • the air conditioning score is defined in this way because the power consumption of the air conditioner 210 is proportional to the cube of the blowing wind speed.
  • is set to 0.6 (relatively large value), ⁇ to 0.1, and ⁇ to 0.3. .
  • the evaluation unit 235 calculates the reward for the DRL model 251 based on the evaluation value, for example, as shown in Table 6 below.
  • the DRL model 251 is stabilized by comparing the current evaluation value with the average evaluation value of the past 10 steps.
  • the extraction unit 236 extracts the optimum arrangement condition with the highest evaluation value of the evaluation unit 235 from among the plurality of arrangement condition candidates generated by the generation unit 234 .
  • Second Learning Unit During the search by the DRL model 251, the second learning unit 237 associates the state with the reward expected when each action is taken from the state. and stocked in the storage unit 221 .
  • the second learning unit 237 uses the above data stocked in the storage unit 221 to learn and update the DN model 261 as needed.
  • step S21 the initial values of the placement conditions are input to the placement determination device 220.
  • the placement determination device 220 calculates the low-precision wind speed distribution from the placement conditions.
  • step S23 the placement determination device 220 predicts the high-precision wind speed distribution from the low-precision wind speed distribution using the NN model 241.
  • the placement determination device 220 calculates an evaluation value and reward for the placement condition from the placement condition and the high-precision wind speed distribution.
  • the placement determination device 220 uses the DN model 261 to generate placement condition candidates with high expected rewards.
  • step S26 the placement determination device 220 determines whether or not the number of searches by the DRL model 251 is equal to or less than a predetermined number of times (previously set total number of searches for the DRL model 251). do.
  • a predetermined number of times previously set total number of searches for the DRL model 251. do.
  • the process proceeds to step S22. If the number of searches by the DRL model 251 is greater than the predetermined number, the process proceeds to step S27.
  • the placement determination device 220 calculates the low-precision wind speed distribution from the placement conditions generated in step S25. In other words, the arrangement determining device 220 repeats steps S22 to S26 until the number of searches by the DRL model 251 exceeds a predetermined number.
  • the placement determination device 220 extracts the optimum placement condition with the highest evaluation value from among the placement conditions searched for in the DRL model 251.
  • the placement determination device 220 learns and updates the DN model 261 at any time during the processing of the DRL model 251 .
  • the placement determination device 220 of this embodiment determines the placement of the air conditioners 210 in the server room SP.
  • the placement determination device 220 includes a generation unit 234 , a first learning unit 232 , a prediction unit 233 , an evaluation unit 235 and an extraction unit 236 .
  • the generation unit 234 generates multiple candidates for the arrangement condition of the air conditioner 210 .
  • a first learning unit 232 generates an NN model 241 .
  • the prediction unit 233 uses the NN model 241 to predict the wind speed distribution.
  • the NN model 241 predicts the wind speed distribution of the server room SP based on the arrangement conditions.
  • the evaluation unit 235 evaluates the wind speed distribution corresponding to the arrangement conditions.
  • the extraction unit 236 extracts a placement condition with the highest evaluation by the evaluation unit 235 from among multiple placement condition candidates.
  • the placement determination device 220 extracts placement conditions based on the wind speed distribution of the server room SP. As a result, the placement determination device 220 can find the optimum placement condition that brings the server room SP closer to the desired wind speed distribution.
  • the placement determination device 220 of this embodiment further includes a calculation unit 231 .
  • the calculation unit 231 performs a CFD simulation of the wind speed distribution with the arrangement conditions as input.
  • the calculation unit 231 calculates a high-precision wind speed distribution and a low-precision wind speed distribution.
  • the NN model 241 receives the low-precision wind speed distribution and predicts the high-precision wind speed distribution.
  • the placement determination device 220 uses the placement conditions as input and performs a CFD simulation of the wind speed distribution in the server room SP.
  • the placement determination device 220 calculates the low-precision wind speed distribution from the placement conditions.
  • the placement determination device 220 predicts a high-precision wind speed distribution from the low-precision wind speed distribution using the NN model 241 .
  • the placement determination device 220 can reduce the time required for the CFD simulation compared to the case of calculating the highly accurate wind speed distribution from the placement conditions. As a result, the placement determination device 220 can obtain optimal placement conditions in a realistic time so that the server room SP approaches the desired wind speed distribution.
  • the generation unit 234 generates placement condition candidates by reinforcement learning that values the evaluation of the evaluation unit 235 .
  • the placement determination device 220 determines the optimum air conditioning set values that bring the server room SP closer to the desired wind speed distribution without relying on the operator's experience and without generating all placement condition candidates. can ask.
  • the generation unit 234 generates placement condition candidates using the DN model 261 that determines the next placement condition candidate based on the current placement condition.
  • the placement determining device 220 can easily generate optimal placement condition candidates by using the DRL model 251 using the DN model 261, even if there are many placement condition elements.
  • the target space includes an isle between the server racks RK in the data center DC.
  • the placement determination device 220 can reduce the power consumption of the servers SV by bringing the wind speed distributions of the cold aisle CA and the hot aisle HA of the server room SP closer to the desired wind speed distribution.
  • the air conditioner 210 air-conditions the server room SP using the floor-mounted and packaged indoor units 11-13.
  • the air conditioner 210 may air-condition the server room SP by a so-called multi-building system or a central air-conditioning system.
  • the indoor units 211 to 213 may be of a ceiling-suspended type or a wall-mounted type.
  • the target space of the placement determining device 220 is the server room SP in the data center DC.
  • the target space of the layout determining device 220 may be a space in a commercial facility, an office space, or the like.
  • the arrangement determination device 220 fixed the orientation of the air outlets of the indoor units 211 to 213 and searched for arrangement conditions in a one-dimensional manner.
  • the placement determination device 220 may search for placement conditions in two dimensions or three dimensions, taking into consideration translational degrees of freedom and rotational degrees of freedom.
  • the placement determination device 220 calculates the low-precision wind speed distribution from the placement conditions and inputs the low-precision wind speed distribution to the NN model 241 to predict the high-precision wind speed distribution.
  • the placement determination device 220 may use a learning model 242 that predicts a highly accurate wind speed distribution with placement conditions as input.
  • Learning model 242 is, for example, a neural network.
  • the computing unit 231 calculates a high-precision wind speed distribution (learning data set of the learning model 242) for each of a plurality of arrangement conditions.
  • the first learning unit 232 generates the learning model 42 using the learning data set of the learning model 242 calculated by the computing unit 231 . At this time, the first learning unit 232 learns the learning model 242 using the arrangement condition as an explanatory variable and the high-precision wind speed distribution as an objective variable.
  • the prediction unit 233 uses the learning model 242 generated by the first learning unit 232 to predict the highly accurate wind speed distribution. Specifically, the prediction unit 233 inputs the arrangement condition to the learning model 242 and predicts the highly accurate wind speed distribution.
  • the placement determination device 220 can find the optimum placement conditions for each placement condition so that the server room SP approaches the desired wind speed distribution without actually operating the air conditioners 210 .
  • Reference Signs List 1 2 air conditioning control system 10 air conditioner 19 air conditioning controller (control unit) 31, 131 calculation section 32, 132 first learning section (learning section) 33, 133 prediction unit 34 generation unit 35 evaluation unit 36 extraction unit 41 NN model (learning model) 42, 43 learning model 43a learning model (first learning model) 61-63 DN model (learning model) 138 Acquisition Unit CA Cold Aisle (Aisle) DC Data Center HA Hot Isle (Isle) RK server rack SP server room (target space)

Abstract

既存のデータベースに基づいて空気調和装置の動作条件を決定するため、対象空間を十分に所望の環境状態に近づけることができない、という課題がある。空調制御システム(1)は、空気調和装置(10)によって対象空間の空調を行う。空調制御システム(1)は、生成部(34)と、予測部(33)と、評価部(35)と、抽出部(36)と、空調コントローラ(19)と、を備える。生成部(34)は、空気調和装置(10)の空調設定値の候補を複数生成する。予測部(33)は、NNモデル(41)を用いて環境状態を予測する。NNモデル(41)は、空調設定値に基づいて対象空間の環境状態を予測する。評価部(35)は、空調設定値に対応する環境状態を評価する。抽出部(36)は、複数の空調設定値の候補の中から、評価部(35)の評価が最も高い空調設定値を抽出する。空調コントローラ(19)は、抽出部(36)が抽出した空調設定値によって空気調和装置(10)を制御する。

Description

空調制御システム
 空調制御システムに関する。
 特許文献1(特開2010-15192号公報)に示されているように、対象空間が所望の環境状態となるように、空気調和装置の最適な動作条件を求める技術がある。
 特許文献1では、既存のデータベースに基づいて空気調和装置の動作条件を決定するため、対象空間を十分に所望の環境状態に近づけることができない、という課題がある。
 第1観点の空調制御システムは、空気調和装置によって対象空間の空調を行う。空調制御システムは、生成部と、予測部と、評価部と、抽出部と、制御部と、を備える。生成部は、空気調和装置の動作条件の候補を複数生成する。予測部は、学習モデルを用いて環境状態を予測する。学習モデルは、動作条件に基づいて対象空間の環境状態を予測する。評価部は、動作条件に対応する環境状態を評価する。抽出部は、複数の動作条件の候補の中から、評価部の評価が所定条件を満たす動作条件を抽出する。制御部は、抽出部が抽出した動作条件によって空気調和装置を制御する。
 第1観点の空調制御システムは、対象空間の環境状態に基づいて、空気調和装置の動作条件を抽出する。その結果、空調制御システムは、対象空間が所望の環境状態に近づくような、空気調和装置の動作条件を求めることができる。
 第2観点の空調制御システムは、第1観点の空調制御システムであって、学習部をさらに備える。学習部は、学習モデルを生成する。
 第3観点の空調制御システムは、第1観点又は第2観点のいずれかの空調制御システムであって、演算部をさらに備える。演算部は、動作条件を入力として、環境状態のCFD(Computational Fluid Dynamics、数値流体力学)シミュレーションを行う。学習モデルは、動作条件を入力として、CFDシミュレーションの出力である環境状態を予測する。
 第3観点の空調制御システムは、このような構成により、動作条件ごとに、実際に空気調和装置を制御しなくても、対象空間が所望の環境状態に近づくような、空気調和装置の動作条件を求めることができる。
 第4観点の空調制御システムは、第3観点の空調制御システムであって、学習モデルは、動作条件を説明変数とし、CFDシミュレーションの出力である環境状態を目的変数として、学習を行ったモデルである。
 第5観点の空調制御システムは、第1観点又は第2観点のいずれかの空調制御システムであって、演算部をさらに備える。演算部は、動作条件を入力として、環境状態のCFDシミュレーションを行う。演算部は、第1環境状態と、第1環境状態よりもシミュレーションの精度が低い第2環境状態と、を算出する。学習モデルは、第2環境状態を入力として、第1環境状態を予測する。
 第5観点の空調制御システムは、動作条件を入力として、環境状態のCFDシミュレーションを行う。空調制御システムは、動作条件から、CFDシミュレーションの精度が低い第2環境状態を算出する。空調制御システムは、学習モデルによって、第2環境状態から、第1環境状態を予測する。そのため、空調制御システムは、動作条件からCFDシミュレーションの精度が高い第1環境状態を算出する場合と比較して、CFDシミュレーションに要する時間を削減することができる。その結果、空調制御システムは、対象空間が所望の環境状態に近づくような、空気調和装置の動作条件を、現実的な時間で求めることができる。
 第6観点の空調制御システムは、第5観点の空調制御システムであって、学習モデルは、第2環境状態を説明変数とし、第1環境状態を目的変数として、学習を行ったモデルである。
 第7観点の空調制御システムは、第1観点又は第2観点のいずれかの空調制御システムであって、環境状態は、対象空間内の第1箇所及び第2箇所を含む複数の箇所の環境パラメータの値である。空調制御システムは、取得部をさらに備える。取得部は、第1箇所の環境パラメータの値を実測により取得する。学習モデルは、動作条件によって空気調和装置が制御されたときの取得部により取得した第1箇所の環境パラメータの値に基づいて、第2箇所の環境パラメータの値を予測する。
 第7観点の空調制御システムでは、学習モデルは、第1箇所の環境パラメータの実測値に基づいて、第2箇所の環境パラメータの値を予測する。その結果、空調制御システムは、一部の箇所の環境パラメータの実測値から、全体の箇所の環境パラメータの値を予測することができる。
 第8観点の空調制御システムは、第7観点の空調制御システムであって、学習モデルは、動作条件によって空気調和装置が制御されたときの取得部により取得した第1箇所の環境パラメータの値を説明変数とし、第2箇所の環境パラメータの値を目的変数として、学習を行ったモデルである。
 第9観点の空調制御システムは、第7観点の空調制御システムであって、演算部をさらに備える。演算部は、動作条件を入力として、第1箇所及び第2箇所の環境パラメータの値のCFDシミュレーションを行う。学習モデルは、取得部により取得した第1箇所の環境パラメータの値と、演算部によって算出された第1箇所及び第2箇所の環境パラメータの値と、に基づいて、第2箇所の環境パラメータの値を予測する。
 第10観点の空調制御システムは、第9観点の空調制御システムであって、学習モデルは、取得部により取得した第1箇所の環境パラメータの値を説明変数とし、第2箇所の環境パラメータの値を目的変数として、学習を行ったモデルである。第2箇所の環境パラメータの値は、演算部によって算出された第1箇所の環境パラメータの値を説明変数とし、取得部により取得した第1箇所の環境パラメータの値を目的変数として、学習を行った第1学習モデルに、演算部によって算出された第2箇所の環境パラメータの値を入力することにより予測する。
 第11観点の空調制御システムは、第1観点から第10観点のいずれかの空調制御システムであって、生成部は、評価部の評価を価値とする強化学習によって、動作条件の候補を生成する。
 第11観点の空調制御システムは、このような構成により、運用者の経験に依らずに、かつすべての動作条件の候補を生成することなく、対象空間が所望の環境状態に近づくような、空気調和装置の動作条件を求めることができる。
 第12観点の空調制御システムは、第11観点の空調制御システムであって、生成部は、現在の動作条件に基づいて、次の動作条件の候補を決定する学習モデルを用いて、動作条件の候補を生成する。
 第12観点の空調制御システムは、学習モデルを用いた強化学習により、動作条件の要素が多数となっても、容易に動作条件の候補を生成することができる。
 第13観点の空調制御システムは、第1観点から第12観点のいずれかの空調制御システムであって、対象空間は、データセンタにおけるサーバラック間のアイルを含む。
 第13観点の空調制御システムは、データセンタにおけるサーバラック間のアイルの環境状態を、所望の環境状態に近づけることにより、サーバの消費電力削減等を実現することができる。
 第14観点の配置決定装置は、対象空間における空気調和装置の配置を決定する。配置決定装置は、生成部と、予測部と、評価部と、抽出部と、を備える。生成部は、空気調和装置の配置条件の候補を複数生成する。予測部は、配置条件に基づいて対象空間の環境状態を予測する学習モデル、を用いて環境状態を予測する。評価部は、配置条件に対応する環境状態を評価する。抽出部は、複数の配置条件の候補の中から、評価部の評価が所定条件を満たす配置条件を抽出する。
 第14観点の配置決定装置は、対象空間の環境状態に基づいて、空気調和装置の配置条件を抽出する。その結果、配置決定装置は、対象空間が所望の環境状態に近づくような、空気調和装置の配置条件を求めることができる。
 第15観点の配置決定装置は、第14観点の配置決定装置であって、学習部をさらに備える。学習部は、学習モデルを生成する。
 第16観点の配置決定装置は、第14観点又は第15観点のいずれかの配置決定装置であって、演算部をさらに備える。演算部は、配置条件を入力として、環境状態のCFDシミュレーションを行う。学習モデルは、配置条件を入力として、CFDシミュレーションの出力である環境状態を予測する。
 第16観点の配置決定装置は、このような構成により、配置条件ごとに、実際に空気調和装置を運転しなくても、対象空間が所望の環境状態に近づくような、空気調和装置の配置条件を求めることができる。
 第17観点の配置決定装置は、第14観点又は第15観点のいずれかの配置決定装置であって、演算部をさらに備える。演算部は、配置条件を入力として、環境状態のCFDシミュレーションを行う。演算部は、第1環境状態と、第1環境状態よりもシミュレーションの精度が低い第2環境状態と、を算出する。学習モデルは、第2環境状態を入力として、第1環境状態を予測する。
 第17観点の配置決定装置は、配置条件を入力として、環境状態のCFDシミュレーションを行う。配置決定装置は、配置条件から、CFDシミュレーションの精度が低い第2環境状態を算出する。配置決定装置は、学習モデルによって、第2環境状態から、第1環境状態を予測する。そのため、配置決定装置は、配置条件からCFDシミュレーションの精度が高い第1環境状態を算出する場合と比較して、CFDシミュレーションに要する時間を削減することができる。その結果、配置決定装置は、対象空間が所望の環境状態に近づくような、空気調和装置の配置条件を、現実的な時間で求めることができる。
 第18観点の配置決定装置は、第14観点から第17観点のいずれかの配置決定装置であって、生成部は、評価部の評価を価値とする強化学習によって、配置条件の候補を生成する。
 第18観点の配置決定装置は、このような構成により、運用者の経験に依らずに、かつすべての配置条件の候補を生成することなく、対象空間が所望の環境状態に近づくような、空気調和装置の配置条件を求めることができる。
 第19観点の配置決定装置は、第18観点の配置決定装置であって、生成部は、現在の配置条件に基づいて、次の配置条件の候補を決定する学習モデルを用いて、配置条件の候補を生成する。
 第19観点の配置決定装置は、学習モデルを用いた強化学習により、配置条件の要素が多数となっても、容易に配置条件の候補を生成することができる。
 第20観点の配置決定装置は、第14観点から第19観点のいずれかの配置決定装置であって、対象空間は、データセンタにおけるサーバラック間のアイルを含む。
 第20観点の配置決定装置は、データセンタにおけるサーバラック間のアイルの環境状態を、所望の環境状態に近づけることにより、サーバの消費電力削減等を実現することができる。
第1実施形態におけるデータセンタの概略平面図である。 第1実施形態におけるデータセンタの概略断面図である。 第1実施形態における空調制御システムの機能ブロック図である。 第1実施形態における空間メッシュ数と、CFD実行時間との関係を示すグラフである。 第1実施形態におけるNNモデルの精度を示すグラフである。 第1実施形態におけるサーバルームの風速分布を示すヒートマップである。 第1実施形態における最適な空調設定値によって空気調和装置を制御する処理のフローチャートである。 第2実施形態におけるデータセンタの概略平面図である。 第2実施形態における空調制御システムの機能ブロック図である。 第2実施形態における最適な空調設定値によって空気調和装置を制御する処理のフローチャートである。 第3実施形態におけるデータセンタの概略平面図である。 第3実施形態におけるデータセンタの概略断面図である。 第3実施形態における配置決定装置の機能ブロック図である。 第3実施形態における最適な配置条件を求める処理のフローチャートである。
 <第1実施形態>
 (1)背景
 近年、自動車、電子機器、及びセンサ等の様々なモノを、インターネットに接続し、情報を送受信するIoT(Internet of Things)が発展している。IoTの発展により、マシン間通信の規模を表すM2M(Machine to Machine)接続数は、今後急増していくと考えられる。実際に、世界でのM2M接続数は2018年から2023年までの間に2.4倍に増加すると予想されている。また、2023年には、M2M接続数が147億となり、人口1人当たり1.8台となる見込みである。M2M接続数の増加に伴い、送受信されるデータ量も増加し、それらのデータを処理するデータセンタの計算リソースの必要量も増加する。その結果、データセンタの規模は拡大し、データセンタにおける消費電力はますます増加すると考えられる。そのため、データセンタにおける消費電力を抑えることが課題となっている。
 一般に、データセンタの消費電力を抑える方法としては、2つの手法が提案されている。1つ目は、サーバへのタスク割り当ての効率化により、サーバの消費電力を小さくする手法である。2つ目は、データセンタのサーバルームの空気調和を行う空気調和装置の設定値(以下、空調設定値と記載することがある。)の最適化である。既存の研究では、主に、空気調和装置の冷却効率の最適化が注目されている。サーバの消費電力は、データセンタの総消費電力の約30%を占めると言われており、空調設定値は、サーバの消費電力に大きな影響を及ぼす。サーバの消費電力は、サーバの内部ファンの回転数に依存し、内部ファンの回転数は、給気風速及び周囲温度に依存する。そのため、サーバの消費電力は、データセンタ内の温度に加え、データセンタ内の風速分布にも大きく依存している。一般に、サーバルームの風速分布が均一であれば、空気調和装置からの冷風をサーバに均等に与えることができ、サーバを効率的に冷却することができる。そのため、サーバルームの風速分布を均一にすることが、サーバの消費電力を抑えるために重要となる。
 (2)全体構成
 空調制御システム1は、主として、空気調和装置10と、最適化装置20とを有する。空気調和装置10と、最適化装置20とは、ネットワークNWによって、通信可能に接続されている。空調制御システム1は、最適化装置20によって、対象空間が所望の環境状態に近づくような、最適な空調設定値を求める。そして、空調制御システム1は、当該最適な空調設定値に基づき、空気調和装置10によって対象空間の冷房(空気調和)を行う。
 本実施形態では、対象空間は、データセンタDCのサーバルームSPである。図1は、データセンタDCの概略平面図である。図2は、データセンタDCの概略断面図である。図1,2に示すように、サーバルームSPは、サーバ設置領域SP1と、空調機設置領域SP2と、を有する。サーバ設置領域SP1には、1列にサーバラックRKが6台並んでいる(以下、サーバラックRKのまとまりを、モジュールと記載することがある。)。モジュールの両側には、コールドアイルCAとホットアイルHAとが存在する。各サーバラックRKの中には、22台のサーバSVが収納されている。そのため、サーバ設置領域SP1には、全体で528台のサーバSVが存在する。空調機設置領域SP2には、空気調和装置10の一部である、3台の室内ユニット11~13が設置されている。空調機設置領域SP2と、サーバ設置領域SP1のコールドアイルCAとの間には、風の透過率を調節可能な2つのアイルメッシュAMが張られている。また、各サーバラックRKのコールドアイルCA側には、風の透過率を調節可能なラックメッシュRMが張られている。図1,2内の矢印で示すように、室内ユニット11~13から吹き出された冷風は、室内ユニット11~13の前方の空間で一度整流される。整流された冷風は、アイルメッシュAMと、ラックメッシュRMとを通り、サーバSVに供給される。サーバSVの内部で温められ、サーバSVから排出された空気は、ホットアイルHAから天井裏ACを通って、再び室内ユニット11~13に吸い込まれる。
 サーバルームSPの環境状態は、例えば、サーバルームSPの風速分布や、温度分布等である。また、サーバルームSPの所望の環境状態は、サーバルームSPの風速分布が均一となる状態や、サーバルームSPの温度分布が特定の場所に偏っている状態等である。本実施形態では、サーバルームSPの所望の環境状態は、サーバルームSPのホットアイルHAの風速分布が均一となる状態とする。最適化装置20は、サーバルームSPのホットアイルHAの風速分布が均一となるような、最適な空調設定値を求める。そのため、最適化装置20は、空調設定値から、サーバルームSPの風速分布を予測する必要がある。最適化装置20は、空調設定値から、サーバルームSPの風速分布を予測するために、CFDシミュレーションを用いる。
 CFDシミュレーションは、サーバルームSPを多数の細かい空間(以下、空間メッシュと記載することがある。)に区切り、空間メッシュごとに、風速や温度等の環境パラメータを予測する。本実施形態では、環境パラメータは、風速である。空間メッシュの数が多い程、精密な結果が得られるが、空間メッシュ数が多いCFDシミュレーションは、1回の計算に膨大な時間を要する。しかし、一方で、データセンタDCでは、サーバラックRK内にサーバSVが密集して設置されているため、精密な結果を得る必要があり、空間メッシュ数を少なくすることができない。
 そこで、本実施形態では、最適化装置20は、(空間メッシュの数が比較的少ない)低精度のCFDシミュレーション(以下、低精度CFDと記載することがある。)を行う。そして、最適化装置20は、低精度CFDの結果から、(空間メッシュの数が比較的多い)高精度のCFDシミュレーション(以下、高精度CFDと記載することがある。)の結果を、回帰予測する。回帰予測には、ニューラルネットワークモデル(以下、NN(Neural Network)モデルと記載することがある。)を用いる。これにより、高精度CFDの実行時間を削減することができる。
 また、本実施形態では、最適化装置20は、CFDシミュレーションの実行回数を削減するために、強化学習モデル(以下、DRL(Deep Reinforcement Learning)モデルと記載することがある。)を用いる。最適化装置20は、空調設定値のすべての組み合わせの探索を行うことなく、現実的な時間で最適な空調設定値を求めることができる。
 (3)詳細構成
 (3-1)空気調和装置
 図3は、空調制御システム1の機能ブロック図である。図1~3に示すように、空気調和装置10は、主として、室内ユニット11~13と、空調コントローラ19と、を有する。本実施形態では、空気調和装置10は、アイルメッシュAMと、ラックメッシュRMとを、構成要素として含む。
 室内ユニット11~13は、いわゆるパッケージ式の装置である。室内ユニット11~13は、空調機設置領域SP2の床に設置される。室内ユニット11~13はそれぞれ、主として、圧縮機と、凝縮器と、膨張弁と、蒸発器と、ファンと、を有する。圧縮機と、凝縮器と、膨張弁と、蒸発器とは、冷媒回路によって接続されている。
 圧縮機は、低圧の冷媒を吸入し、圧縮機構によって冷媒を圧縮して、圧縮した冷媒を吐出する。圧縮機の圧縮機構は、圧縮機モータによって駆動される。圧縮機モータの回転数は、インバータにより制御可能である。
 凝縮器では、凝縮器の内部を流れる冷媒と、例えば、データセンタDCの屋上等に設置される熱源ユニットによって冷却された水と、の間で熱交換が行われる。このとき、凝縮器の内部を流れる冷媒は、凝縮により液冷媒となる。
 膨張弁は、冷媒回路を流れる冷媒の圧力や流量を調節する。膨張弁は、開度調節が可能な電子膨張弁である。
 ファンは、蒸発器に、空調機設置領域SP2の空気を供給する。ファンは、ファンモータによって駆動される。ファンモータの回転数は、インバータによって制御可能である。
 蒸発器では、蒸発器を流れる冷媒と、ファンによって供給された空調機設置領域SP2の空気と、の間で熱交換が行われる。図2に示すように、室内ユニット11~13は、ファンを駆動して、上部の吸込口から空調機設置領域SP2の空気を吸い込む。吸い込まれた空調機設置領域SP2の空気は、蒸発器を通過する。このとき、蒸発器の内部を流れる冷媒は、蒸発によりガス冷媒となる。蒸発器を通過した空気は冷却され、冷風が室内ユニット11~13の吹出口から吹き出される。
 空調コントローラ19は、空気調和装置10を構成する各種機器の動作を制御する。
 空調コントローラ19は、制御演算装置及び記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、空気調和装置10を構成する各種機器の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。
 空調コントローラ19は、空気調和装置10を構成する各種機器と、制御信号や情報のやりとりを行うことが可能となるように、電気的に接続されている。また、空調コントローラ19は、空気調和装置10に設けられている各種センサと通信可能に接続されている。また、空調コントローラ19は、ネットワークNWを介して、最適化装置20の制御部29との間で、空調設定値を含む各種情報や、各種信号のやりとりを行う。空調コントローラ19は、最適化装置20から、最適な空調設定値を受信し、当該最適な空調設定値によって、空気調和装置10を構成する各種機器を制御する。空調設定値は、例えば、室内ユニット11~13のそれぞれの吹出風速、設定温度、設定湿度等、アイルメッシュAM及びラックメッシュRMのそれぞれの透過率、等を含む。
 (3-2)最適化装置
 本実施形態の最適化装置20は、クラウド上に設置されるコンピュータである。最適化装置20は、例えば、データセンタDC内に設置されてもよい。図3に示すように、最適化装置20は、主として、記憶部21と、入力部22と、表示部23と、通信部24と、制御部29と、を有する。
 (3-2-1)記憶部
 記憶部21は、RAM、ROM及びHDD(ハードディスクドライブ)等の記憶装置である。記憶部21は、制御部29が実行するプログラムや、プログラムの実行に必要なデータ等を記憶している。
 (3-2-2)入力部
 入力部22は、キーボード、及びマウスである。探索する空調設定値の初期値等、最適化装置20に対する各種指令や各種情報は、入力部22を用いて入力することができる。
 (3-2-3)表示部
 表示部23は、モニターである。表示部23には、CFDシミュレーションの結果等を、表示することができる。
 (3-2-4)通信部
 通信部24は、ネットワークNWを介して、空気調和装置10と通信を行うためのネットワークインターフェイス機器である。
 (3-2-5)制御部
 制御部29は、CPUやGPU等のプロセッサである。本実施形態では、プロセッサとして、「Intel CoreTM i7-8700K 3.7GHz」を用いた。制御部29は、記憶部21に記憶されているプログラムを読み込んで実行し、最適化装置20の様々な機能を実現する。また、制御部29は、プログラムに従って、演算結果を記憶部21に書き込んだり、記憶部21に記憶されている情報を読み出したりすることができる。
 制御部29は、ネットワークNWを介して、空気調和装置10の空調コントローラ19との間で、空調設定値を含む各種情報や、各種信号のやりとりを行う。
 制御部29は、図3に示すように、機能ブロックとして、演算部31と、第1学習部32と、予測部33と、生成部34と、評価部35と、抽出部36と、第2学習部37と、を有する。演算部31と、第1学習部32と、予測部33と、生成部34と、評価部35と、抽出部36と、第2学習部37とは、DRLモデル51~53を実現するための機能ブロックである。
 (3-2-5-1)演算部
 演算部31は、空調設定値(動作条件)を入力として、サーバルームSPの風速分布(環境状態)のCFDシミュレーションを行う。
 本実施形態における空調設定値は、室内ユニット11~13のそれぞれの吹出風速と、アイルメッシュAM及びラックメッシュRMのそれぞれの透過率と、の5つの要素を有する。空調設定値の各要素は、以下の数1の条件を満たす。
Figure JPOXMLDOC01-appb-M000001
 ここで、Sは空調設定値を、MaisleはアイルメッシュAMの透過率を、MrackはラックメッシュRMの透過率を、P~Pはそれぞれ室内ユニット11~13の吹出風速を示している。
 本実施形態では、CFDシミュレーションを行うためのソフトとして、アドバンスナレッジ研究所が提供するFlow Designerを用いる。CFDシミュレーションの結果(空間メッシュごとの風速)は、CSVファイル等に出力される。
 演算部31は、サーバルームSPの高精度CFDの結果である高精度の風速分布(第1環境状態。以下、高精度風速分布と記載することがある。)と、サーバルームSPの低精度CFDの結果である低精度の風速分布(第2環境状態。以下、低精度風速分布と記載することがある。)と、を算出する。
 演算部31は、最適な空調設定値を探索する際、NNモデル41に入力するために、探索する空調設定値ごとに、低精度風速分布を算出する。また、演算部31は、NNモデル41を事前学習するために、複数の空調設定値ごとに、低精度風速分布と高精度風速分布とのペア(NNモデル41の学習用データセット)を算出する。
 (3-2-5-2)第1学習部
 第1学習部32は、演算部31によって算出したNNモデル41の学習用データセットを用いて、NNモデル41を生成する。このとき、第1学習部32は、低精度風速分布を説明変数とし、高精度風速分布を目的変数として、NNモデル41を学習する。
 本実施形態では、NNモデル41の学習用データセットを作成するために、数1の制約のもと、以下の数2を満たす896通りの空調設定値を用いた。
Figure JPOXMLDOC01-appb-M000002
 演算部31は、これらの空調設定値ごとに、以下の表1に示す、3種類の低精度CFDと、1種類の高精度CFDを行った。
Figure JPOXMLDOC01-appb-T000003
 図4は、1つの空調設定値に対する、空間メッシュ数と、CFDシミュレーションの実行時間(以下、CFD実行時間と記載することがある。)との関係を示すグラフである。図4に示すように、空間メッシュ数が増えるにつれ、CFD実行時間は長くなる。例えば、空間メッシュ数が23,750個の場合、CFD実行時間は約20秒であり、空間メッシュ数が1,000,000個の場合、CFD実行時間は約780秒である。
 本実施形態では、NNモデル41の学習用データセットのうち、8割を学習データ、2割をテストデータとした。図5は、NNモデル41の精度を示すグラフである。精度の評価指標は、RMSE(Root Mean Square Error)である。図5の実線グラフは、低精度風速分布と、高精度風速分布とを対応付けて学習したNNモデル41の精度を示す。図5の破線グラフは、空調設定値と、高精度風速分布とを対応付けて学習した学習モデルの精度を示す。例えば、空間メッシュ数が23,750個の場合、実線グラフのRMSEは約0.009m/sであり、破線グラフのRMSEは約0.07m/sである。そのため、空間メッシュ数が23,750個の場合、NNモデル41は、空調設定値から高精度風速分布を予測する学習モデルよりも、大幅に精度が高いことがわかる。また、NNモデル41は、空間メッシュ数が23,750個の場合の精度と、空間メッシュ数が500,000個の場合の精度とが、ほぼ同じであることがわかる。
 言い換えると、NNモデル41によって低精度風速分布から高精度風速分布を算出する時間は、空調設定値から高精度CFDによって高精度風速分布を算出する時間よりも、約20倍短いことがわかる。
 図4及び図5についての考察から、本実施形態では、高精度風速分布を予測する際、空間メッシュ数が23,750個の低精度風速分布を用いる。
 (3-2-5-3)予測部
 予測部33は、第1学習部32によって生成されたNNモデル41を用いて、高精度風速分布を予測する。具体的には、予測部33は、空調設定値に基づいて演算部31が算出した低精度風速分布を、NNモデル41に入力し、高精度風速分布を予測する。
 (3-2-5-4)生成部
 空調設定値には、数万から数十万通りの組み合わせが考えられるため、それらをすべて探索することは現実的ではない。そのため、最適な空調設定値を探索するための手法として、DRLモデルを用いる。本実施形態では、DRLモデルにおいて、次の行動を選択するために用いる学習モデルは、Dueling Networkモデル(以下、DNモデルと記載することがある。)である。
 単一のDRLモデルで探索を行った場合、空調設定値の組み合わせ数が、数万から数十万通り存在することに、変わりはない。そこで、本実施形態では、3つのDRLモデル51~53を用いる。そして、DRLモデル51~53ごとに、空調設定値の探索値域と探索幅とを段階的に変更することにより、空調設定値の組み合わせ数を削減する。このようにすることで、各DRLモデル51~53における組み合わせ数が千数百程度に抑えられるため、CFDシミュレーションの実行回数が大幅に削減される。各DRLモデル51~53における空調設定値の探索値域と探索幅を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000004
 DRLモデル51~53を用いることにより、最終的に、アイルメッシュAM、及びラックメッシュRMの透過率が1%単位で、室内ユニット11~13の吹出風速が0.1m/s単位で、最適な空調設定値を求めることができる。
 DRLモデル51~53における状態(空調設定値)と行動を、以下の数3に示す。
Figure JPOXMLDOC01-appb-M000005
 ここで、Sは状態を、aは行動を、Maisle 等は対応する空調設定値を探索幅だけ増減させる行動を、示している。例えば、DRLモデル51におけるMaisle は、Maisleを10%増やすことを意味する。
 本実施形態では、最適な空調設定値を求めるための総探索回数は、DRLモデル51~53全体で5,000ステップとする。
 生成部34は、評価部35の評価を価値(報酬)とするDRLモデル51~53によって、探索すべき空調設定値の候補を生成する。具体的には、生成部34は、現在の空調設定値に基づいて、次の空調設定値の候補を決定するDNモデル61~63を用いて、期待される報酬が高い空調設定値の候補を生成する。DNモデル61~63はそれぞれ、DRLモデル51~53に対応する学習モデルである。
 (3-2-5-5)評価部
 評価部35は、空調設定値に対応する高精度風速分布を評価する。
 評価部35は、まず、空調設定値と、当該空調設定値に対応する高精度風速分布とに基づいて、当該空調設定値の評価値を算出する。
 本実施形態では、評価値は、以下の数4で定義される。
Figure JPOXMLDOC01-appb-M000006
 評価値は、分散スコア、メッシュスコア、及び空調スコアに、重みα,β,γを付けて平均したものである。分散スコア、メッシュスコア、及び空調スコアは、それぞれ0以上100以下の値をとるように構成される(その結果、評価値も、0以上100以下の値をとる。)。評価値、分散スコア、メッシュスコア、及び空調スコアは、値が大きい程、評価が高い。
 分散スコアは、高精度風速分布に含まれる、各サーバSVの背面(ホットアイルHA側)に存在する特定の空間メッシュの風速、からなる集合の分散に依存する。分散スコアは、分散が小さい程、値が大きくなるように構成されている。分散スコアは、サーバルームSPのホットアイルHAの風速分布の均一さを表す。分散スコアが大きいほど、サーバルームSPのホットアイルHAは、均一な風速分布となる。
 メッシュスコアは、アイルメッシュAMの透過率と、ラックメッシュRMの透過率との和に依存する。メッシュスコアは、アイルメッシュAMの透過率や、ラックメッシュRMの透過率が大きい程、値が大きくなるように構成されている。メッシュスコアが大きい程、アイルメッシュAMや、ラックメッシュRMを、風がよく通過するため、分散スコアは小さくなる。
 空調スコアは、室内ユニット11~13のそれぞれの吹出風速の3乗を、足し合わせたものに依存する。空調スコアは、室内ユニット11~13の排気風速が小さい程(空気調和装置10の消費電力が小さい程)、値が大きくなるように構成されている。空調スコアは、空気調和装置10の消費電力が、吹出風速の3乗に比例することから、このように定義される。
 本実施形態では、ホットアイルHAの風速分布の均一化を重視しているため、αを(比較的値が大きい)0.6に、βを0.1に、γを0.3に設定する。
 評価部35は、評価値を算出すると、当該評価値に基づいて、以下の表3に示すように、DRLモデル51~53の報酬を算出する。
Figure JPOXMLDOC01-appb-T000007
 本実施形態では、今回の評価値を、過去10ステップの評価値の平均と比較することで、DRLモデル51~53の安定化を図っている。
 (3-2-5-6)抽出部
 抽出部36は、生成部34が生成した複数の空調設定値の候補の中から、評価部35の評価値が最も高い、最適な空調設定値を、DRLモデル51~53ごとに抽出する。制御部29は、最終的には、DRLモデル53における最適な空調設定値を、空気調和装置10に送信する。
 (3-2-5-7)第2学習部
 第2学習部37は、DRLモデル51~53による探索の間、状態と、当該状態から各行動をとったときに期待される報酬と、を対応付けて、DRLモデル51~53ごとに、記憶部21にストックする。
 第2学習部37は、記憶部21にストックされた上記のデータを用いて、随時、DNモデル61~63を学習し、更新する。
 (4)検証結果
 本実施形態では、DRLモデル51における空調設定値の初期値として、以下の数5の空調設定値を用いた。
Figure JPOXMLDOC01-appb-M000008
 当該空調設定値は、メッシュスコアと空調スコアとが、100となる値である。
 以下の表4は、DRLモデル51~53において抽出された、最適な空調設定値と、その評価値である。
Figure JPOXMLDOC01-appb-T000009
 表4に示すように、DRLモデル51~53は、比較的評価値が高い空調設定値を抽出している。
 図6は、空気調和装置10に、DRLモデル53における最適な空調設定値を設定した際の、サーバルームSPの風速分布を示すヒートマップである。図6に示すように、ホットアイルHAの風速分布は、ほぼ均一(濃淡の程度が同じ)になっている。
 以下の表5は、DRLモデル51~53ごとに、探索回数と、CFDシミュレーションの実行回数と、を示したものである。
Figure JPOXMLDOC01-appb-T000010
 表5に示すように、DRLモデル51~53による段階的な探索を行ったことで、CFDシミュレーションの実行回数を、大幅に削減することができた。なお、本検証では、空調設定値を探索する過程において、初めて登場する空調設定値と、対応する高精度風速分布とを、記憶部21に記憶した。空調設定値を探索する過程において、記憶部21に記憶した空調設定値が再度登場した場合は、CFDシミュレーションを行わず、記憶部21から対応する高精度風速分布を読み出すことで、シミュレーションの実行回数を削減した。
 DRLモデル51~53は、1回の探索ごとに、0.3秒を要する。また、高精度風速分布の算出は、1回の算出ごとに、20.3秒(空調設定値の入力に10秒、低精度CFDに5秒、CSVファイル等への出力に5秒、NNモデル60による高精度風速分布の算出に0.3秒)を要する。そのため、本実施形態における空調制御システム1は、約3.77時間(=(5000×0.3秒+596×20.3秒)÷3600)で、DRLモデル53における最適な空調設定値を求めることができた。
 (5)処理
 最適な空調設定値によって、空気調和装置10を制御する処理の一例を、図7のフローチャートを用いて説明する。本フローチャートでは、DRLモデル51~53が順に実行されることに対応して、ステップS1からステップS8を3回繰り返す。
 1回目のステップS1からステップS8の処理は、DRLモデル51に関する処理である。
 ステップS1に示すように、DRLモデル51における空調設定値の初期値が、最適化装置20に入力される。
 ステップS1を終えると、ステップS2に示すように、空調制御システム1は、空調設定値から、低精度風速分布を算出する。
 ステップS2を終えると、ステップS3に示すように、空調制御システム1は、NNモデル41によって、低精度風速分布から、高精度風速分布を予測する。
 ステップS3を終えると、ステップS4に示すように、空調制御システム1は、空調設定値と、高精度風速分布とから、当該空調設定値の評価値及び報酬を算出する。
 ステップS4を終えると、ステップS5に示すように、空調制御システム1は、DNモデル61によって、期待される報酬が高い空調設定値の候補を生成する。
 ステップS5を終えると、ステップS6に示すように、空調制御システム1は、DRLモデル51による探索回数が、所定回数(事前に設定したDRLモデル51の総探索回数)以下であるか否かを判定する。DRLモデル51による探索回数が、所定回数以下である場合、ステップS2に進む。DRLモデル51による探索回数が、所定回数より大きい場合、ステップS7に進む。
 ステップS6からステップS2に進むと、空調制御システム1は、ステップS5において生成した空調設定値から、低精度風速分布を算出する。言い換えると、空調制御システム1は、DRLモデル51による探索回数が、所定回数より大きくなるまで、ステップS2~S6を繰り返す。
 ステップS6からステップS7に進むと、空調制御システム1は、DRLモデル51において探索した空調設定値の中から、最も評価値が高い、最適な空調設定値を抽出する。
 ステップS7を終えると、ステップS8に示すように、空調制御システム1は、すべてのDRLモデル51~53の処理が終了したか否かを判定する。現段階では、DRLモデル51を終えただけであるので、ステップS1に進む。
 2回目のステップS1からステップS8の処理は、DRLモデル52に関する処理である。基本的には、1回目のステップS1からステップS8の処理と同様であるため、異なる部分のみを説明する。
 ステップS1では、空調制御システム1は、最適化装置20に、DRLモデル52における空調設定値の初期値として、1回目のステップS7において抽出したDRLモデル51の最適な空調設定値を入力する。
 ステップS5では、空調制御システム1は、DNモデル62によって、期待される報酬が高い空調設定値の候補を生成する。
 ステップS6では、空調制御システム1は、DRLモデル52による探索回数が、所定回数(事前に設定したDRLモデル52の総探索回数)以下であるか否かを判定する。
 ステップS7では、空調制御システム1は、DRLモデル52において探索した空調設定値の中から、最も評価値が高い、最適な空調設定値を抽出する。
 ステップS8では、空調制御システム1は、すべてのDRLモデル51~53の処理が終了したか否かを判定する。現段階では、DRLモデル51,52を終えただけであるので、ステップS1に進む。
 3回目のステップS1からステップS8の処理は、DRLモデル53に関する処理である。基本的には、1回目のステップS1からステップS8の処理と同様であるため、異なる部分のみを説明する。
 ステップS1では、空調制御システム1は、最適化装置20に、DRLモデル53における空調設定値の初期値として、2回目のステップS7において抽出したDRLモデル52の最適な空調設定値を入力する。
 ステップS5では、空調制御システム1は、DNモデル63によって、期待される報酬が高い空調設定値の候補を生成する。
 ステップS6では、空調制御システム1は、DRLモデル53による探索回数が、所定回数(事前に設定したDRLモデル53の総探索回数)以下であるか否かを判定する。
 ステップS7では、空調制御システム1は、DRLモデル53において探索した空調設定値の中から、最も評価値が高い、最適な空調設定値を抽出する。
 ステップS8では、空調制御システム1は、すべてのDRLモデル51~53の処理が終了したか否かを判定する。現段階では、すべてのDRLモデル51~53の処理が終了しているため、ステップS9に進む。
 ステップS8からステップS9に進むと、空調制御システム1は、3回目のステップS7において抽出したDRLモデル53の最適な空調設定値を、最適化装置20から空気調和装置10に送信し、当該最適な空調設定値によって、空気調和装置10を制御する。
 なお、空調制御システム1は、DRLモデル51~53の処理の間、随時、DNモデル61~63を学習し、更新する。
 (6)特徴
 (6-1)
 従来、対象空間が所望の環境状態となるように、空気調和装置の最適な動作条件を求める技術がある。
 しかし、従来の技術では、既存のデータベースに基づいて空気調和装置の動作条件を決定するため、対象空間を十分に所望の環境状態に近づけることができない、という課題がある。また、従来の技術では、対象空間全体を、同時に、十分に所望の環境状態に近づけることができない、という課題がある。
 本実施形態の空調制御システム1は、空気調和装置10によってサーバルームSPの空調を行う。空調制御システム1は、生成部34と、第1学習部32と、予測部33と、評価部35と、抽出部36と、空調コントローラ19と、を備える。生成部34は、空気調和装置10の空調設定値の候補を複数生成する。第1学習部32は、NNモデル41を生成する。予測部33は、NNモデル41を用いて風速分布を予測する。NNモデル41は、空調設定値に基づいてサーバルームSPの風速分布を予測する。評価部35は、空調設定値に対応する風速分布を評価する。抽出部36は、複数の空調設定値の候補の中から、評価部35の評価が最も高い空調設定値を抽出する。空調コントローラ19は、抽出部36が抽出した空調設定値によって空気調和装置10を制御する。
 空調制御システム1は、サーバルームSPの風速分布に基づいて、空調設定値を抽出する。その結果、空調制御システム1は、サーバルームSPが所望の風速分布に近づくような、最適な空調設定値を求めることができる。また、空調制御システム1は、サーバルームSP全体を、同時に、所望の風速分布に近づけることができる。
 (6-2)
 本実施形態の空調制御システム1は、演算部31をさらに備える。演算部31は、空調設定値を入力として、風速分布のCFDシミュレーションを行う。演算部31は、高精度風速分布と、低精度風速分布と、を算出する。NNモデル41は、低精度風速分布を入力として、高精度風速分布を予測する。NNモデル41は、低精度風速分布を説明変数とし、高精度風速分布を目的変数として、学習を行ったモデルである。
 空調制御システム1は、空調設定値を入力として、サーバルームSPの風速分布のCFDシミュレーションを行う。空調制御システム1は、空調設定値から、低精度風速分布を算出する。空調制御システム1は、NNモデル41によって、低精度風速分布から、高精度風速分布を予測する。
 そのため、空調制御システム1は、空調設定値から高精度風速分布を算出する場合と比較して、CFDシミュレーションに要する時間を削減することができる。その結果、空調制御システム1は、サーバルームSPが所望の風速分布に近づくような、最適な空調設定値を、現実的な時間で求めることができる。
 (6-3)
 本実施形態の空調制御システム1では、生成部34は、評価部35の評価を価値とする強化学習によって、空調設定値の候補を生成する。
 その結果、空調制御システム1は、運用者の経験に依らずに、かつすべての空調設定値の候補を生成することなく、サーバルームSPが所望の風速分布に近づくような、最適な空調設定値を求めることができる。
 (6-4)
 本実施形態の空調制御システム1では、生成部34は、現在の空調設定値に基づいて、次の空調設定値の候補を決定するDNモデル61~63を用いて、空調設定値の候補を生成する。
 その結果、空調制御システム1は、DNモデル61~63を用いたDRLモデル51~53により、空調設定値の要素が多数となっても、容易に最適な空調設定値の候補を生成することができる。
 (6-5)
 本実施形態の空調制御システム1では、対象空間は、データセンタDCにおけるサーバラックRK間のアイルを含む。
 その結果、空調制御システム1は、サーバルームSPのコールドアイルCAやホットアイルHAの風速分布を、所望の風速分布に近づけることにより、サーバSVの消費電力を抑えることができる。
 (7)変形例
 (7-1)変形例1A
 本実施形態では、空気調和装置10は、床置き式、かつパッケージ式の室内ユニット11~13によって、サーバルームSPの空調を行った。しかし、空気調和装置10は、いわゆるビルマルチ方式や、セントラル空調方式によって、サーバルームSPの空調を行ってもよい。また、室内ユニット11~13は、天吊り式や、壁掛け式であってもよい。
 (7-2)
 本実施形態では、空調制御システム1の対象空間は、データセンタDC内のサーバルームSPであった。しかし、これに限定されず、空調制御システム1の対象空間は、商業施設内の空間や、オフィス空間等であってもよい。
 (7-3)
 本実施形態では、空調制御システム1は、空調設定値から低精度風速分布を算出し、当該低精度風速分布を、NNモデル41に入力することにより、高精度風速分布を予測した。しかし、空調制御システム1は、空調設定値を入力として、高精度風速分布を予測する学習モデル42を用いてもよい。学習モデル42は、例えば、ニューラルネットワークである。
 このとき、演算部31は、学習モデル42を事前学習するために、複数の空調設定値ごとに、高精度風速分布(学習モデル42の学習用データセット)を算出する。
 第1学習部32は、演算部31によって算出した学習モデル42の学習用データセットを用いて、学習モデル42を生成する。このとき、第1学習部32は、空調設定値を説明変数とし、高精度風速分布を目的変数として、学習モデル42を学習する。
 予測部33は、第1学習部32によって生成された学習モデル42を用いて、高精度風速分布を予測する。具体的には、予測部33は、空調設定値を、学習モデル42に入力し、高精度風速分布を予測する。
 その結果、空調制御システム1は、空調設定値ごとに、実際に空気調和装置10を制御しなくても、サーバルームSPが所望の風速分布に近づくような、最適な空調設定値を求めることができる。
 (7-4)
 本実施形態では、環境状態は、サーバルームSPの風速分布であった。そして、サーバルームSPの風速分布が、所望の風速分布となるときに、対応する空調設定値の評価が高くなるように、空調設定値の評価値を定義した(数4)。
 しかし、環境状態は、サーバルームSPの温度分布であってもよい。この場合、サーバルームSPの温度分布が、所望の温度分布となるときに、対応する空調設定値の評価が高くなるように、空調設定値の評価値を定義する。所望の温度分布は、例えば、均一な温度分布や、ある特定の部分の温度が高くなるホットスポット、を解消するような温度分布等である。
 このように、空調設定値の評価値を任意に設定することにより、所望の環境状態を実現できることが特徴である。
 (7-5)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 <第2実施形態>
 以下、第1実施形態とは異なる部分を中心に説明する。本実施形態で記載する内容以外は、基本的には、第1実施形態と同様である。
 (1)全体構成
 空調制御システム2は、主として、空気調和装置10と、最適化装置120とを有する。空調制御システム2は、最適化装置120によって、サーバルームSPが所望の環境状態に近づくような、最適な空調設定値を求める。
 図8は、本実施形態におけるデータセンタDCの概略平面図である。第1実施形態との相違点は、いくつかのサーバラックRKの背面(ホットアイルHA側)に、周囲の風速や温度等を測定する環境センサが設置されている点である。本実施形態では、環境センサは、風速センサSS1である。また、図8において、風速センサSS1が設置されていないサーバラックRKの背面には、実際には設置されていない仮想的な風速センサSS2(以下、仮想風速センサSS2と記載することがある。)が記載されている。図8では、仮想風速センサSS2を塗りつぶすことによって、風速センサSS1と、仮想風速センサSS2とを区別している。空調制御システム2では、サーバルームSPの環境状態は、サーバルームSP内の、風速センサSS1の設置箇所(第1箇所)、及び仮想風速センサSS2の設置箇所(第2箇所)の風速(環境パラメータ)の値である。言い換えると、サーバルームSPの環境状態は、風速センサSS1及び仮想風速センサSS2の計測値である。また、サーバルームSPの所望の環境状態は、風速センサSS1及び仮想風速センサSS2の計測値が、均一となる状態である。言い換えると、サーバルームSPの所望の環境状態は、第1実施形態と同様に、ホットアイルHAの風速分布が均一となるような状態である。
 (2)詳細構成
 (2-1)空気調和装置
 本実施形態では、空気調和装置10は、さらに風速センサSS1を構成要素として含む。空調コントローラ19は、風速センサSS1と通信可能に接続されている。空調コントローラ19は、風速センサSS1の計測値を、実測により取得することができる(以下、風速センサSS1の実測による計測値を、実測センサ値と記載することがある。)。
 (2-2)最適化装置
 図9は、空調制御システム2の機能ブロック図である。図9に示すように、最適化装置120は、主として、記憶部21と、入力部22と、表示部23と、通信部24と、制御部129と、を有する。
 制御部129は、図9に示すように、機能ブロックとして、取得部138と、演算部131と、第1学習部132と、予測部133と、生成部34と、評価部35と、抽出部36と、第2学習部37と、を有する。取得部138と、演算部131と、第1学習部132と、予測部133と、生成部34と、評価部35と、抽出部36と、第2学習部37と、は、DRLモデル51~53を実現するための機能ブロックである。
 (2-2-1)取得部
 取得部138は、空調コントローラ19を介して、実測センサ値を取得する。
 (2-2-2)演算部
 演算部131は、空調設定値を入力として、風速センサSS1及び仮想風速センサSS2の計測値のCFDシミュレーションを行う(以下、CFDシミュレーションを行った風速センサSS1の計測値をCFDセンサ値、CFDシミュレーションを行った仮想風速センサSS2の計測値をCFD仮想センサ値、と記載することがある。)。ここでいう、CFDシミュレーションを行った風速センサSS1及び仮想風速センサSS2の計測値とは、風速センサSS1及び仮想風速センサSS2の設置箇所に該当する空間メッシュにおける、シミュレートされた風速の値である。
 (2-2-3)第1学習部
 第1学習部132は、学習モデル43を生成する。学習モデル43は、ある空調設定値によって空気調和装置10が制御されたときの実測センサ値を入力として、仮想風速センサSS2の計測値を予測する。
 第1学習部132は、3段階に分けて、学習モデル43を事前学習する。
 第1段階として、第1学習部132は、複数の空調設定値を用意する。第1学習部132は、用意した複数の空調設定値ごとに、当該空調設定値によって空気調和装置10を制御し、その時の実測センサ値を取得する。また、第1学習部132は、用意した複数の空調設定値ごとに、CFDシミュレーションを行った、CFDセンサ値及びCFD仮想センサ値を取得する。第1学習部132は、CFDセンサ値と、実測センサ値とを対応付けて、学習モデル43aを学習する。このとき、第1学習部132は、CFDセンサ値を説明変数とし、実測センサ値を目的変数として、学習モデル43a(第1学習モデル)を学習する。
 第2段階として、第1学習部132は、学習モデル43aに、第1段階で取得したCFD仮想センサ値を入力し、仮想風速センサSS2の計測値を予測する。
 第3段階として、第1学習部132は、第1段階で取得した実測センサ値と、第2段階で予測した仮想風速センサSS2の計測値とを対応付けて、学習モデル43を学習する。このとき、第1学習部132は、実測センサ値を説明変数とし、仮想風速センサSS2の計測値を目的変数として、学習モデル43を学習する。学習モデル43は、実測センサ値を入力として、仮想風速センサSS2の計測値を予測する学習モデルとして用いられる。
 学習モデル43,43aは、例えば、ニューラルネットワークである。
 (2-2-4)予測部
 予測部133は、ある空調設定値によって空気調和装置10が制御されたときの実測センサ値を、学習モデル43に入力し、仮想風速センサSS2の計測値を予測する。
 (2-2-5)評価部
 評価部35が算出する分散スコアは、実測センサ値と、学習モデル43によって予測された仮想風速センサSS2の計測値と、からなる集合の分散に依存する。
 (3)処理
 最適な空調設定値によって、空気調和装置10を制御する処理の一例を、図10のフローチャートを用いて説明する。ステップS1,S5~S9の処理の説明は、図7と同様であるため省略する。以下で説明するステップS10~S12の処理は、DRLモデル51~53に共通のものである。
 ステップS1を終えると、ステップS10に示すように、空調制御システム2は、空調設定値を、最適化装置120から空気調和装置10に送信し、当該空調設定値によって、空気調和装置10を制御する。
 ステップS10を終えると、ステップS11に示すように、空調制御システム2は、風速センサSS1から、実測センサ値を取得する。
 ステップS11を終えると、ステップS12に示すように、空調制御システム2は、学習モデル43によって、実測センサ値から、仮想風速センサSS2の計測値を予測する。
 ステップS12を終えると、ステップS13に示すように、空調制御システム2は、実測センサ値と、学習モデル43によって予測された仮想風速センサSS2の計測値とから、当該空調設定値の評価値及び報酬を算出する。
 (4)特徴
 (4-1)
 本実施形態の空調制御システム2は、環境状態は、サーバルームSP内の、風速センサSS1の設置箇所、及び仮想風速センサSS2の設置箇所、を含む複数の箇所の風速の値である。空調制御システム2は、取得部138をさらに備える。取得部138は、風速センサSS1の設置箇所の風速の値を、実測により取得する。学習モデル43は、空調設定値によって空気調和装置10が制御されたときの取得部138により取得した風速センサSS1の設置箇所の風速の値に基づいて、仮想風速センサSS2の設置箇所の風速の値を予測する。学習モデル43は、空調設定値によって空気調和装置10が制御されたときの取得部138により取得した風速センサSS1の設置箇所の風速の値を説明変数とし、仮想風速センサSS2の設置箇所の風速の値を目的変数として、学習を行ったモデルである。
 空調制御システム2では、学習モデル43は、実測センサ値に基づいて、仮想風速センサSS2の計測値を予測する。その結果、空調制御システム2は、一部の箇所の実測センサ値から、全体の箇所のセンサ値を予測することができる。
 (4-2)
 本実施形態の空調制御システム2は、演算部131をさらに備える。演算部131は、空調設定値を入力として、風速センサSS1の設置箇所、及び仮想風速センサSS2の設置箇所の風速の値のCFDシミュレーションを行う。学習モデル43は、取得部138により取得した風速センサSS1の設置箇所の風速の値と、演算部131によって算出された風速センサSS1の設置箇所、及び仮想風速センサSS2の設置箇所の風速の値と、に基づいて、仮想風速センサSS2の設置箇所の風速の値を予測する。学習モデル43は、取得部138により取得した風速センサSS1の設置箇所の風速の値を説明変数とし、仮想風速センサSS2の設置箇所の風速の値を目的変数として、学習を行ったモデルである。仮想風速センサSS2の設置箇所の風速の値は、演算部131によって算出された風速センサSS1の設置箇所の風速の値を説明変数とし、取得部138により取得した風速センサSS1の設置箇所の風速の値を目的変数として、学習を行った学習モデル43aに、演算部131によって算出された仮想風速センサSS2の設置箇所の風速の値を入力することにより予測する。
 (5)変形例
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 <第3実施形態>
 (1)全体構成
 配置決定装置220は、対象空間における空気調和装置210の配置を決定する。配置決定装置220は、対象空間が所望の環境状態に近づくような、最適な空気調和装置210の配置の条件(以下、配置条件と記載することがある。)を求める。
 本実施形態では、対象空間は、データセンタDCのサーバルームSPである。図11は、データセンタDCの概略平面図である。図12は、データセンタDCの概略断面図である。図11,12に示すように、サーバルームSPは、サーバ設置領域SP1と、空調機設置領域SP2と、を有する。
 サーバ設置領域SP1には、1列にサーバラックRKが6台並んでいる(以下、サーバラックRKのまとまりを、モジュールと記載することがある。)。モジュールの両側には、コールドアイルCAとホットアイルHAとが存在する。各サーバラックRKの中には、サーバSVが収納されている。
 空調機設置領域SP2には、空気調和装置210の一部である、3台の室内ユニット211~213が、仮に設置されている。本実施形態における空気調和装置210の配置条件は、空調機設置領域SP2における、室内ユニット211~213それぞれの、X軸方向の位置である。
 空調機設置領域SP2と、サーバ設置領域SP1のコールドアイルCAとの間には、風の透過率を調節可能な2つのアイルメッシュAMが張られている。また、各サーバラックRKのコールドアイルCA側には、風の透過率を調節可能なラックメッシュRMが張られている。図11,12内の矢印で示すように、室内ユニット211~213から吹き出された冷風は、室内ユニット211~213の前方の空間で一度整流される。整流された冷風は、アイルメッシュAMと、ラックメッシュRMとを通り、サーバSVに供給される。サーバSVの内部で温められ、サーバSVから排出された空気は、ホットアイルHAから天井裏ACを通って、再び室内ユニット211~213に吸い込まれる。
 サーバルームSPの環境状態は、例えば、サーバルームSPの風速分布や、温度分布等である。また、サーバルームSPの所望の環境状態は、サーバルームSPの風速分布が均一となる状態や、サーバルームSPの温度分布が特定の場所に偏っている状態等である。本実施形態では、サーバルームSPの所望の環境状態は、サーバルームSPのホットアイルHAの風速分布が均一となる状態とする。配置決定装置220は、サーバルームSPのホットアイルHAの風速分布が均一となるような、最適な配置条件を求める。そのため、配置決定装置220は、配置条件から、サーバルームSPの風速分布を予測する必要がある。配置決定装置220は、配置条件から、サーバルームSPの風速分布を予測するために、CFDシミュレーションを用いる。
 CFDシミュレーションは、サーバルームSPを多数の細かい空間(以下、空間メッシュと記載することがある。)に区切り、空間メッシュごとに、風速や温度等の環境パラメータを予測する。本実施形態では、環境パラメータは、風速である。空間メッシュの数が多い程、精密な結果が得られるが、空間メッシュ数が多いCFDシミュレーションは、1回の計算に膨大な時間を要する。しかし、一方で、データセンタDCでは、サーバラックRK内にサーバSVが密集して設置されているため、精密な結果を得る必要があり、空間メッシュ数を少なくすることができない。
 そこで、本実施形態では、配置決定装置220は、(空間メッシュの数が比較的少ない)低精度のCFDシミュレーション(以下、低精度CFDと記載することがある。)を行う。そして、配置決定装置220は、低精度CFDの結果から、(空間メッシュの数が比較的多い)高精度のCFDシミュレーション(以下、高精度CFDと記載することがある。)の結果を、回帰予測する。回帰予測には、ニューラルネットワークモデル(以下、NN(Neural Network)モデルと記載することがある。)を用いる。これにより、高精度CFDの実行時間を削減することができる。
 また、本実施形態では、配置決定装置220は、CFDシミュレーションの実行回数を削減するために、強化学習モデル(以下、DRL(Deep Reinforcement Learning)モデルと記載することがある。)を用いる。配置決定装置220は、配置条件のすべての組み合わせの探索を行うことなく、現実的な時間で最適な配置条件を求めることができる。
 (2)詳細構成
 (2-1)空気調和装置
 空気調和装置210によってサーバルームSPの冷房(空気調和)を行う。
 空気調和装置210は、主として、室内ユニット211~213と、空調コントローラ219と、を有する。
 室内ユニット211~213は、いわゆるパッケージ式の装置である。室内ユニット211~213は、空調機設置領域SP2の床に設置される。室内ユニット211~213はそれぞれ、主として、圧縮機と、凝縮器と、膨張弁と、蒸発器と、ファンと、を有する。圧縮機と、凝縮器と、膨張弁と、蒸発器とは、冷媒回路によって接続されている。
 圧縮機は、低圧の冷媒を吸入し、圧縮機構によって冷媒を圧縮して、圧縮した冷媒を吐出する。圧縮機の圧縮機構は、圧縮機モータによって駆動される。圧縮機モータの回転数は、インバータにより制御可能である。
 凝縮器では、凝縮器の内部を流れる冷媒と、例えば、データセンタDCの屋上等に設置される熱源ユニットによって冷却された水と、の間で熱交換が行われる。このとき、凝縮器の内部を流れる冷媒は、凝縮により液冷媒となる。
 膨張弁は、冷媒回路を流れる冷媒の圧力や流量を調節する。膨張弁は、開度調節が可能な電子膨張弁である。
 ファンは、蒸発器に、空調機設置領域SP2の空気を供給する。ファンは、ファンモータによって駆動される。ファンモータの回転数は、インバータによって制御可能である。
 蒸発器では、蒸発器を流れる冷媒と、ファンによって供給された空調機設置領域SP2の空気と、の間で熱交換が行われる。図12に示すように、室内ユニット211~213は、ファンを駆動して、上部の吸込口から空調機設置領域SP2の空気を吸い込む。吸い込まれた空調機設置領域SP2の空気は、蒸発器を通過する。このとき、蒸発器の内部を流れる冷媒は、蒸発によりガス冷媒となる。蒸発器を通過した空気は冷却され、冷風が室内ユニット211~213の吹出口から吹き出される。
 空調コントローラ219は、空気調和装置210を構成する各種機器の動作を制御する。
 空調コントローラ219は、制御演算装置及び記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、空気調和装置210を構成する各種機器の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。
 空調コントローラ219は、空気調和装置210を構成する各種機器と、制御信号や情報のやりとりを行うことが可能となるように、電気的に接続されている。また、空調コントローラ219は、空気調和装置210に設けられている各種センサと通信可能に接続されている。空調コントローラ219は、所定の空調設定値によって、空気調和装置210を構成する各種機器を制御する。空調設定値は、例えば、室内ユニット211~213のそれぞれの吹出風速、設定温度、設定湿度等を含む。
 (2-2)配置決定装置
 図13は、配置決定装置220の機能ブロック図である。図3に示すように、配置決定装置220は、主として、記憶部221と、入力部222と、表示部223と、制御部229と、を有する。
 (2-2-1)記憶部
 記憶部221は、RAM、ROM及びHDD(ハードディスクドライブ)等の記憶装置である。記憶部221は、制御部229が実行するプログラムや、プログラムの実行に必要なデータ等を記憶している。
 (2-2-2)入力部
 入力部222は、キーボード、及びマウスである。探索する配置条件の初期値等、配置決定装置220に対する各種指令や各種情報は、入力部222を用いて入力することができる。
 (2-2-3)表示部
 表示部223は、モニターである。表示部223には、CFDシミュレーションの結果等を、表示することができる。
 (2-2-4)制御部
 制御部229は、CPUやGPU等のプロセッサである。制御部229は、記憶部221に記憶されているプログラムを読み込んで実行し、配置決定装置220の様々な機能を実現する。また、制御部229は、プログラムに従って、演算結果を記憶部221に書き込んだり、記憶部221に記憶されている情報を読み出したりすることができる。
 制御部229は、図13に示すように、機能ブロックとして、演算部231と、第1学習部232と、予測部233と、生成部234と、評価部235と、抽出部236と、第2学習部237と、を有する。演算部231と、第1学習部232と、予測部233と、生成部234と、評価部235と、抽出部236と、第2学習部237とは、DRLモデル251を実現するための機能ブロックである。
 (2-2-4-1)演算部
 演算部231は、配置条件、アイルメッシュAM及びラックメッシュRMのそれぞれの透過率、及び空調設定値、を入力として、サーバルームSPの風速分布のCFDシミュレーションを行う。本実施形態では、アイルメッシュAM及びラックメッシュRMのそれぞれの透過率、及び空調設定値は、所定の値に固定する。そのため、演算部231は、実質的に、配置条件を入力として、サーバルームSPの風速分布のCFDシミュレーションを行う。
 本実施形態における配置条件は、室内ユニット211~213それぞれの、X軸方向の位置である。配置条件の各要素は、以下の数6の条件を満たす。
Figure JPOXMLDOC01-appb-M000011
 ここで、Sは配置条件を、X~Xはそれぞれ、室内ユニット211~213のX軸座標を、LはサーバルームSPのX軸方向の長さを示している。
 CFDシミュレーションを行うためのソフトは、例えば、アドバンスナレッジ研究所が提供するFlow Designerである。CFDシミュレーションの結果(空間メッシュごとの風速)は、CSVファイル等に出力される。
 演算部231は、サーバルームSPの高精度CFDの結果である高精度の風速分布(以下、高精度風速分布と記載することがある。)と、サーバルームSPの低精度CFDの結果である低精度の風速分布(以下、低精度風速分布と記載することがある。)と、を算出する。
 演算部231は、最適な配置条件を探索する際、NNモデル241に入力するために、探索する配置条件ごとに、低精度風速分布を算出する。また、演算部231は、NNモデル241を事前学習するために、複数の配置条件ごとに、低精度風速分布と高精度風速分布とのペア(NNモデル241の学習用データセット)を算出する。
 (2-2-4-2)第1学習部
 第1学習部232は、演算部231によって算出したNNモデル241の学習用データセットを用いて、NNモデル241を生成する。このとき、第1学習部232は、低精度風速分布を説明変数とし、高精度風速分布を目的変数として、NNモデル241を学習する。
 (2-2-4-3)予測部
 予測部233は、第1学習部232によって生成されたNNモデル241を用いて、高精度風速分布を予測する。具体的には、予測部233は、配置条件に基づいて演算部231が算出した低精度風速分布を、NNモデル241に入力し、高精度風速分布を予測する。
 (2-2-4-4)生成部
 本実施形態では、最適な配置条件を探索するための手法として、DRLモデル251を用いる。本実施形態では、DRLモデル251において、次の行動を選択するために用いる学習モデルは、Dueling Networkモデル261(以下、DNモデル261と記載することがある。)とする。
 DRLモデル251における状態(配置条件)と行動を、以下の数7に示す。
Figure JPOXMLDOC01-appb-M000012
 ここで、Sは状態を、aは行動を、X 等は対応する配置条件を探索幅だけ増減させる行動を、示している。
 生成部234は、評価部235の評価を価値(報酬)とするDRLモデル251によって、探索すべき配置条件の候補を生成する。具体的には、生成部234は、現在の配置条件に基づいて、次の配置条件の候補を決定するDNモデル61を用いて、期待される報酬が高い配置条件の候補を生成する。
 (2-2-4-5)評価部
 評価部235は、配置条件に対応する高精度風速分布を評価する。
 評価部235は、まず、配置条件と、当該配置条件に対応する高精度風速分布とに基づいて、当該配置条件の評価値を算出する。
 評価値は、例えば、以下の数8のように定義される。
Figure JPOXMLDOC01-appb-M000013
 評価値は、分散スコア、メッシュスコア、及び空調スコアに、重みα,β,γを付けて平均したものである。分散スコア、メッシュスコア、及び空調スコアは、それぞれ0以上100以下の値をとるように構成される(その結果、評価値も、0以上100以下の値をとる。)。評価値、分散スコア、メッシュスコア、及び空調スコアは、値が大きい程、評価が高い。
 分散スコアは、高精度風速分布に含まれる、各サーバSVの背面(ホットアイルHA側)に存在する特定の空間メッシュの風速、からなる集合の分散に依存する。分散スコアは、分散が小さい程、値が大きくなるように構成されている。分散スコアは、サーバルームSPのホットアイルHAの風速分布の均一さを表す。分散スコアが大きいほど、サーバルームSPのホットアイルHAは、均一な風速分布となる。
 メッシュスコアは、アイルメッシュAMの透過率と、ラックメッシュRMの透過率との和に依存する。メッシュスコアは、アイルメッシュAMの透過率や、ラックメッシュRMの透過率が大きい程、値が大きくなるように構成されている。メッシュスコアが大きい程、アイルメッシュAMや、ラックメッシュRMを、風がよく通過するため、分散スコアは小さくなる。
 空調スコアは、室内ユニット211~213のそれぞれの吹出風速の3乗を、足し合わせたものに依存する。空調スコアは、室内ユニット211~213の排気風速が小さい程(空気調和装置210の消費電力が小さい程)、値が大きくなるように構成されている。空調スコアは、空気調和装置210の消費電力が、吹出風速の3乗に比例することから、このように定義される。
 本実施形態では、ホットアイルHAの風速分布の均一化を重視しているため、αを(比較的値が大きい)0.6に、βを0.1に、γを0.3に設定する。
 評価部235は、評価値を算出すると、当該評価値に基づいて、例えば、以下の表6に示すように、DRLモデル251の報酬を算出する。
Figure JPOXMLDOC01-appb-T000014
 本実施形態では、今回の評価値を、過去10ステップの評価値の平均と比較することで、DRLモデル251の安定化を図っている。
 (2-2-4-6)抽出部
 抽出部236は、生成部234が生成した複数の配置条件の候補の中から、評価部235の評価値が最も高い、最適な配置条件を抽出する。
 (2-2-4-7)第2学習部
 第2学習部237は、DRLモデル251による探索の間、状態と、当該状態から各行動をとったときに期待される報酬と、を対応付けて、記憶部221にストックする。
 第2学習部237は、記憶部221にストックされた上記のデータを用いて、随時、DNモデル261を学習し、更新する。
 (3)処理
 最適な配置条件を求める処理の一例を、図14のフローチャートを用いて説明する。
 ステップS21に示すように、配置条件の初期値が、配置決定装置220に入力される。
 ステップS21を終えると、ステップS22に示すように、配置決定装置220は、配置条件から、低精度風速分布を算出する。
 ステップS22を終えると、ステップS23に示すように、配置決定装置220は、NNモデル241によって、低精度風速分布から、高精度風速分布を予測する。
 ステップS23を終えると、ステップS24に示すように、配置決定装置220は、配置条件と、高精度風速分布とから、当該配置条件の評価値及び報酬を算出する。
 ステップS24を終えると、ステップS25に示すように、配置決定装置220は、DNモデル261によって、期待される報酬が高い配置条件の候補を生成する。
 ステップS25を終えると、ステップS26に示すように、配置決定装置220は、DRLモデル251による探索回数が、所定回数(事前に設定したDRLモデル251の総探索回数)以下であるか否かを判定する。DRLモデル251による探索回数が、所定回数以下である場合、ステップS22に進む。DRLモデル251による探索回数が、所定回数より大きい場合、ステップS27に進む。
 ステップS26からステップS22に進むと、配置決定装置220は、ステップS25において生成した配置条件から、低精度風速分布を算出する。言い換えると、配置決定装置220は、DRLモデル251による探索回数が、所定回数より大きくなるまで、ステップS22~S26を繰り返す。
 ステップS26からステップS27に進むと、配置決定装置220は、DRLモデル251において探索した配置条件の中から、最も評価値が高い、最適な配置条件を抽出する。
 なお、配置決定装置220は、DRLモデル251の処理の間、随時、DNモデル261を学習し、更新する。
 (4)特徴
 (4-1)
 データセンタを設計する際や、サーバルームにモジュールを増設する際には、サーバルームが所望の環境状態となるように、空気調和装置の最適な配置条件を求める必要がある。
 本実施形態の配置決定装置220は、サーバルームSPにおける空気調和装置210の配置を決定する。配置決定装置220は、生成部234と、第1学習部232と、予測部233と、評価部235と、抽出部236と、を備える。生成部234は、空気調和装置210の配置条件の候補を複数生成する。第1学習部232は、NNモデル241を生成する。予測部233は、NNモデル241を用いて風速分布を予測する。NNモデル241は、配置条件に基づいてサーバルームSPの風速分布を予測する。評価部235は、配置条件に対応する風速分布を評価する。抽出部236は、複数の配置条件の候補の中から、評価部235の評価が最も高い配置条件を抽出する。
 配置決定装置220は、サーバルームSPの風速分布に基づいて、配置条件を抽出する。その結果、配置決定装置220は、サーバルームSPが所望の風速分布に近づくような、最適な配置条件を求めることができる。
 (4-2)
 本実施形態の配置決定装置220は、演算部231をさらに備える。演算部231は、配置条件を入力として、風速分布のCFDシミュレーションを行う。演算部231は、高精度風速分布と、低精度風速分布と、を算出する。NNモデル241は、低精度風速分布を入力として、高精度風速分布を予測する。
 配置決定装置220は、配置条件を入力として、サーバルームSPの風速分布のCFDシミュレーションを行う。配置決定装置220は、配置条件から、低精度風速分布を算出する。配置決定装置220は、NNモデル241によって、低精度風速分布から、高精度風速分布を予測する。
 そのため、配置決定装置220は、配置条件から高精度風速分布を算出する場合と比較して、CFDシミュレーションに要する時間を削減することができる。その結果、配置決定装置220は、サーバルームSPが所望の風速分布に近づくような、最適な配置条件を、現実的な時間で求めることができる。
 (4-3)
 本実施形態の配置決定装置220では、生成部234は、評価部235の評価を価値とする強化学習によって、配置条件の候補を生成する。
 その結果、配置決定装置220は、運用者の経験に依らずに、かつすべての配置条件の候補を生成することなく、サーバルームSPが所望の風速分布に近づくような、最適な空調設定値を求めることができる。
 (4-4)
 本実施形態の配置決定装置220では、生成部234は、現在の配置条件に基づいて、次の配置条件の候補を決定するDNモデル261を用いて、配置条件の候補を生成する。
 その結果、配置決定装置220は、DNモデル261を用いたDRLモデル251により、配置条件の要素が多数となっても、容易に最適な配置条件の候補を生成することができる。
 (4-5)
 本実施形態の配置決定装置220では、対象空間は、データセンタDCにおけるサーバラックRK間のアイルを含む。
 その結果、配置決定装置220は、サーバルームSPのコールドアイルCAやホットアイルHAの風速分布を、所望の風速分布に近づけることで、サーバSVの消費電力を抑えることができる。
 (5)変形例
 (5-1)変形例1A
 本実施形態では、空気調和装置210は、床置き式、かつパッケージ式の室内ユニット11~13によって、サーバルームSPの空調を行うものであった。しかし、空気調和装置210は、いわゆるビルマルチ方式や、セントラル空調方式によって、サーバルームSPの空調を行うものであってもよい。また、室内ユニット211~213は、天吊り式や、壁掛け式であってもよい。
 (5-2)
 本実施形態では、配置決定装置220の対象空間は、データセンタDC内のサーバルームSPであった。しかし、配置決定装置220の対象空間は、商業施設内の空間や、オフィス空間等であってもよい。
 (5-3)
 本実施形態では、配置決定装置220は、室内ユニット211~213の吹出口の向きを固定して、1次元状に配置条件を探索した。しかし、配置決定装置220は、2次元状、又は3次元状に、並進自由度、及び回転自由度を考慮して、配置条件を探索してもよい。
 (5-4)
 本実施形態では、配置決定装置220は、配置条件から低精度風速分布を算出し、当該低精度風速分布を、NNモデル241に入力することにより、高精度風速分布を予測した。しかし、配置決定装置220は、配置条件を入力として、高精度風速分布を予測する学習モデル242を用いてもよい。学習モデル242は、例えば、ニューラルネットワークである。
 このとき、演算部231は、学習モデル242を事前学習するために、複数の配置条件ごとに、高精度風速分布(学習モデル242の学習用データセット)を算出する。
 第1学習部232は、演算部231によって算出した学習モデル242の学習用データセットを用いて、学習モデル42を生成する。このとき、第1学習部232は、配置条件を説明変数とし、高精度風速分布を目的変数として、学習モデル242を学習する。
 予測部233は、第1学習部232によって生成された学習モデル242を用いて、高精度風速分布を予測する。具体的には、予測部233は、配置条件を、学習モデル242に入力し、高精度風速分布を予測する。
 その結果、配置決定装置220は、配置条件ごとに、実際に空気調和装置210を運転しなくても、サーバルームSPが所望の風速分布に近づくような、最適な配置条件を求めることができる。
 (5-5)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 1,2    空調制御システム
 10     空気調和装置
 19     空調コントローラ(制御部)
 31,131 演算部
 32,132 第1学習部(学習部)
 33,133 予測部
 34     生成部
 35     評価部
 36     抽出部
 41     NNモデル(学習モデル)
 42,43  学習モデル
 43a    学習モデル(第1学習モデル)
 61~63  DNモデル(学習モデル)
 138    取得部
 CA     コールドアイル(アイル)
 DC     データセンタ
 HA     ホットアイル(アイル)
 RK     サーバラック
 SP     サーバルーム(対象空間)
特開2010-15192号公報

Claims (13)

  1.  空気調和装置(10)によって対象空間(SP1)の空調を行うための空調制御システム(1,2)であって、
     前記空気調和装置の動作条件の候補を複数生成する、生成部(34)と、
     前記動作条件に基づいて前記対象空間の環境状態を予測する学習モデル(41~43)、を用いて前記環境状態を予測する、予測部(33,133)と、
     前記動作条件に対応する前記環境状態を評価する、評価部(35)と、
     複数の前記動作条件の候補の中から、前記評価部の評価が所定条件を満たす前記動作条件を抽出する、抽出部(36)と、
     前記抽出部が抽出した前記動作条件によって前記空気調和装置を制御する、制御部(19)と、
    を備える、
    空調制御システム(1,2)。
  2.  前記学習モデルを生成する、学習部(32,132)、
    をさらに備える、
    請求項1に記載の空調制御システム(1,2)。
  3.  前記動作条件を入力として、前記環境状態のCFD(Computational Fluid Dynamics)シミュレーションを行う、演算部(31)、
    をさらに備え、
     前記学習モデルは、前記動作条件を入力として、前記CFDシミュレーションの出力である前記環境状態を予測する、
    請求項1又は2に記載の空調制御システム(1)。
  4.  前記学習モデルは、前記動作条件を説明変数とし、前記CFDシミュレーションの出力である前記環境状態を目的変数として、学習を行ったモデルである、
    請求項3に記載の空調制御システム(1)。
  5.  前記動作条件を入力として、前記環境状態のCFD(Computational Fluid Dynamics)シミュレーションを行う、演算部(31)、
    をさらに備え、
     前記演算部は、第1環境状態と、前記第1環境状態よりもシミュレーションの精度が低い第2環境状態と、を算出し、
     前記学習モデルは、前記第2環境状態を入力として、前記第1環境状態を予測する、
    請求項1又は2に記載の空調制御システム(1)。
  6.  前記学習モデルは、前記第2環境状態を説明変数とし、前記第1環境状態を目的変数として、学習を行ったモデルである、
    請求項5に記載の空調制御システム(1)。
  7.  前記環境状態は、前記対象空間内の第1箇所及び第2箇所を含む複数の箇所の環境パラメータの値であり、
     前記第1箇所の前記環境パラメータの値を実測により取得する、取得部(138)、
    をさらに備え、
     前記学習モデルは、前記動作条件によって前記空気調和装置が制御されたときの前記取得部により取得した前記第1箇所の前記環境パラメータの値に基づいて、前記第2箇所の前記環境パラメータの値を予測する、
    請求項1又は2に記載の空調制御システム(2)。
  8.  前記学習モデルは、前記動作条件によって前記空気調和装置が制御されたときの前記取得部により取得した前記第1箇所の前記環境パラメータの値を説明変数とし、前記第2箇所の前記環境パラメータの値を目的変数として、学習を行ったモデルである、
    請求項7に記載の空調制御システム(1)。
  9.  前記動作条件を入力として、前記第1箇所及び前記第2箇所の前記環境パラメータの値のCFD(Computational Fluid Dynamics)シミュレーションを行う、演算部(131)、
    をさらに備え、
     前記学習モデルは、前記取得部により取得した前記第1箇所の前記環境パラメータの値と、前記演算部によって算出された前記第1箇所及び前記第2箇所の前記環境パラメータの値と、に基づいて、前記第2箇所の前記環境パラメータの値を予測する、
    請求項7に記載の空調制御システム(2)。
  10.  前記学習モデルは、
      前記取得部により取得した前記第1箇所の前記環境パラメータの値を説明変数とし、
      前記演算部によって算出された前記第1箇所の前記環境パラメータの値を説明変数とし、前記取得部により取得した前記第1箇所の前記環境パラメータの値を目的変数として、学習を行った第1学習モデル(43a)に、前記演算部によって算出された前記第2箇所の前記環境パラメータの値を入力することにより予測した、前記第2箇所の前記環境パラメータの値を目的変数として、学習を行ったモデルである、
    請求項9に記載の空調制御システム(1)。
  11.  前記生成部は、前記評価部の評価を価値とする強化学習によって、前記動作条件の候補を生成する、
    請求項1から10のいずれか1つに記載の空調制御システム(1,2)。
  12.  前記生成部は、現在の前記動作条件に基づいて、次の前記動作条件の候補を決定する学習モデル(61~63)を用いて、前記動作条件の候補を生成する、
    請求項11に記載の空調制御システム(1,2)。
  13.  前記対象空間は、データセンタ(DC)におけるサーバラック(RK)間のアイル(CA,HA)を含む、
    請求項1から12のいずれか1つに記載の空調制御システム(1,2)。
PCT/JP2022/033172 2021-09-02 2022-09-02 空調制御システム WO2023033155A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058840.6A CN117881934A (zh) 2021-09-02 2022-09-02 空调控制系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021143013 2021-09-02
JP2021-143013 2021-09-02
JP2022-125604 2022-08-05
JP2022125604A JP2023036538A (ja) 2021-09-02 2022-08-05 空調制御システム

Publications (1)

Publication Number Publication Date
WO2023033155A1 true WO2023033155A1 (ja) 2023-03-09

Family

ID=85412386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033172 WO2023033155A1 (ja) 2021-09-02 2022-09-02 空調制御システム

Country Status (2)

Country Link
JP (1) JP2023145497A (ja)
WO (1) WO2023033155A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069273A (ja) * 2002-08-09 2004-03-04 Taisei Corp 建築物の空調における室内温度予測方法及び建築物の空調条件最適化方法
JP2010015192A (ja) 2008-06-30 2010-01-21 Hitachi Ltd 情報処理システムおよびそのシステムにおける省電力制御方法
JP2011052862A (ja) * 2009-08-31 2011-03-17 Takasago Thermal Eng Co Ltd 気流状態算出方法、プログラムおよび装置
JP2015055431A (ja) * 2013-09-12 2015-03-23 新日鉄住金エンジニアリング株式会社 境界条件設定装置及びシミュレーションシステム
JP2021057008A (ja) * 2019-06-21 2021-04-08 ダイキン工業株式会社 情報処理方法、情報処理装置、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069273A (ja) * 2002-08-09 2004-03-04 Taisei Corp 建築物の空調における室内温度予測方法及び建築物の空調条件最適化方法
JP2010015192A (ja) 2008-06-30 2010-01-21 Hitachi Ltd 情報処理システムおよびそのシステムにおける省電力制御方法
JP2011052862A (ja) * 2009-08-31 2011-03-17 Takasago Thermal Eng Co Ltd 気流状態算出方法、プログラムおよび装置
JP2015055431A (ja) * 2013-09-12 2015-03-23 新日鉄住金エンジニアリング株式会社 境界条件設定装置及びシミュレーションシステム
JP2021057008A (ja) * 2019-06-21 2021-04-08 ダイキン工業株式会社 情報処理方法、情報処理装置、及びプログラム

Also Published As

Publication number Publication date
JP2023145497A (ja) 2023-10-11

Similar Documents

Publication Publication Date Title
US10077915B2 (en) On-line optimization scheme for HVAC demand response
JP5511698B2 (ja) 空調機連係制御システム、空調機連係制御方法および空調機連係制御プログラム
Li et al. Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network
US7644051B1 (en) Management of data centers using a model
US11210591B2 (en) Building control system with automated Kalman filter parameter initiation and system identification
US20140303789A1 (en) Automated technique of measuring room air change rates in hvac system
JP2015232436A (ja) 蒸気圧縮システムを制御するシステム及び方法
WO2023010556A1 (zh) 精密空调的动态预测控制方法、装置和系统
CN110736225A (zh) 空调的控制方法和装置
Simon et al. Artificial neural network based prediction of control strategies for multiple air-cooling units in a raised-floor data center
CN115983438A (zh) 数据中心末端空调系统运行策略确定方法及装置
CN113028610B (zh) 中央空调动态负荷全局优化与节能控制的方法和装置
US20240110719A1 (en) Air conditioning control device and air conditioning control method
WO2023033155A1 (ja) 空調制御システム
Muñoz et al. Real-time neural inverse optimal control for indoor air temperature and humidity in a direct expansion (DX) air conditioning (A/C) system
JP7224494B2 (ja) 空調制御装置
US11580281B2 (en) System and method for designing heating, ventilating, and air-conditioning (HVAC) systems
JP2023036538A (ja) 空調制御システム
CN112923534A (zh) 基于神经网络和改进粒子群算法的中央空调系统优化方法和系统
CN116085937B (zh) 智能中央空调节能控制方法及系统
JP2017151617A (ja) シミュレーション装置、シミュレーション方法及びプログラム
JP7345686B2 (ja) Hvac(暖房、換気、空調)システムの動作を制御するためのシステムおよび方法
CN117881934A (zh) 空调控制系统
Kim et al. Nonlinear predictive control of chiller system using gaussian process model
CN114659583A (zh) 气液分离器的液位检测方法、装置、云端服务器及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022864737

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022864737

Country of ref document: EP

Effective date: 20240402