WO2023033090A1 - Method for manufacturing semiconductor element package, and semiconductor element package - Google Patents

Method for manufacturing semiconductor element package, and semiconductor element package Download PDF

Info

Publication number
WO2023033090A1
WO2023033090A1 PCT/JP2022/032886 JP2022032886W WO2023033090A1 WO 2023033090 A1 WO2023033090 A1 WO 2023033090A1 JP 2022032886 W JP2022032886 W JP 2022032886W WO 2023033090 A1 WO2023033090 A1 WO 2023033090A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
porous
substrate
manufacturing
semiconductor element
Prior art date
Application number
PCT/JP2022/032886
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 石井
栄作 田中
健郎 井上
陽輔 菅谷
友広 紺谷
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280058779.5A priority Critical patent/CN117897806A/en
Publication of WO2023033090A1 publication Critical patent/WO2023033090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the present invention relates to a semiconductor element package manufacturing method and a semiconductor element package.
  • a semiconductor device package which includes a substrate, a semiconductor device arranged on the substrate, and a cover which covers the semiconductor device and is joined to the substrate, wherein the semiconductor device is housed in an internal space formed by the substrate and the cover.
  • Patent Document 1 describes a semiconductor substrate, a functional element arranged on the semiconductor substrate, a cap substrate arranged opposite to one surface of the semiconductor substrate with a predetermined gap from the surface, and a peripheral of the functional element. and a sealing member disposed in the sealing member to join the semiconductor substrate and the cap member.
  • the semiconductor element package of Patent Document 1 employs a sealing member having a moisture-permeable resin layer for the purpose of preventing dew condensation inside the package.
  • the semiconductor device package of Patent Document 1 (1) may be damaged if the pressure (internal pressure) inside the package rises significantly due to high-temperature processing such as solder reflow. and (2) it is efficient to collectively form a plurality of semiconductor element packages using a substrate sheet on which a plurality of semiconductor elements are arranged, and to divide this to manufacture a plurality of semiconductor element packages.
  • this method is particularly prone to damage. According to studies, it is difficult to cope with the increase in internal pressure by forming the adhesive layer to be bonded to the moisture-permeable resin layer by applying an adhesive composition to the substrate separately from the moisture-permeable resin layer. is estimated to be
  • the present invention provides a method of manufacturing a plurality of semiconductor element packages using a substrate sheet on which a plurality of semiconductor elements are arranged, and is suitable for suppressing damage to the semiconductor element packages due to an increase in internal pressure. aim.
  • the present invention A method for manufacturing a plurality of semiconductor device packages, comprising:
  • the plurality of semiconductor device packages each include a substrate, a semiconductor device arranged on the substrate, a cover covering the semiconductor device, and a semiconductor device arranged between the substrate and the cover so as to surround the semiconductor device. and a porous body, wherein gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space,
  • the manufacturing method is A double-sided pressure-sensitive adhesive sheet having a cover sheet, a substrate sheet on which the plurality of semiconductor elements are arranged, a plurality of through holes, and a porous sheet and adhesive layers preliminarily formed on both sides of the porous sheet.
  • the present invention provides a substrate, a semiconductor element arranged on the substrate, a cover covering the semiconductor element, and a porous body arranged between the substrate and the cover so as to surround the semiconductor element; gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space;
  • the substrate and the cover are bonded via a double-sided adhesive part having the porous body and adhesive layers formed on both sides of the porous body, semiconductor device package, I will provide a.
  • the manufacturing method of the present invention it is possible to efficiently manufacture a semiconductor element package that is suitable for suppressing damage to the semiconductor element package due to an increase in internal pressure. Moreover, according to the semiconductor element package of the present invention, it is possible to reliably suppress damage due to an increase in internal pressure.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device package that can be manufactured by the manufacturing method of the present invention.
  • FIG. 2A is a schematic diagram (exploded perspective view) for explaining an example of the manufacturing method of the present invention.
  • FIG. 2B is a schematic diagram (perspective view) for explaining an example of the manufacturing method of the present invention.
  • FIG. 2C is a schematic diagram (perspective view) for explaining an example of the manufacturing method of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method for evaluating the shear force of a porous sheet that can be included in the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention.
  • FIG. 4 is a schematic diagram for explaining a method for evaluating the lateral water pressure resistance of a porous sheet that can be included in the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention.
  • the manufacturing method comprises: A method for manufacturing a plurality of semiconductor device packages, comprising: The plurality of semiconductor device packages each include a substrate, a semiconductor device arranged on the substrate, a cover covering the semiconductor device, and a semiconductor device arranged between the substrate and the cover so as to surround the semiconductor device. and a porous body, wherein gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space,
  • the manufacturing method is A double-sided pressure-sensitive adhesive sheet having a cover sheet, a substrate sheet on which the plurality of semiconductor elements are arranged, a plurality of through holes, and a porous sheet and adhesive layers preliminarily formed on both sides of the porous sheet.
  • the porous sheet has a shearing force of 50 N/100 mm 2 or more.
  • the lateral water pressure resistance of the porous sheet is 400 kPa or more.
  • the porous sheet contains a heat-resistant material.
  • the heat-resistant material is fluororesin.
  • the porous sheet is a stretched porous fluororesin sheet.
  • the cover sheet does not have air permeability in the thickness direction.
  • the cover sheet is optically transparent.
  • the cover sheet contains at least one selected from heat-resistant resin and glass.
  • the cover sheet includes an optical lens.
  • a semiconductor element package includes: a substrate, a semiconductor element arranged on the substrate, a cover covering the semiconductor element, and a porous body arranged between the substrate and the cover so as to surround the semiconductor element; gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space;
  • the substrate and the cover are bonded via a double-sided adhesive portion having the porous body and adhesive layers formed on both sides of the porous body.
  • the porous body has a shearing force of 50 N/100 mm 2 or more.
  • the porous body has a lateral water pressure resistance of 400 kPa or more.
  • the manufacturing method of this embodiment is a method of manufacturing a semiconductor device package 11 in which a semiconductor device 13 is arranged in an internal space 14 formed by a substrate 12 and a cover 15 (see FIG. 1; shows an example of a semiconductor device package that can be manufactured by the manufacturing method of .
  • the semiconductor device package 11 includes a substrate 12, a semiconductor device 13 arranged on the substrate 12, a cover 15 covering the semiconductor device 13, and arranged between the substrate 12 and the cover 15 so as to surround the semiconductor device 13. and a porous body 2 .
  • the internal space 14 in which the semiconductor element 13 is arranged can communicate with the external space 16 via the inside of the porous body 2 .
  • the substrate 12 and the cover 15 comprise a double-sided adhesive portion 1 having a porous body 2 and adhesive layers 3 (first adhesive layer 3A and second adhesive layer 3B) formed in advance on both sides of the porous body 2 respectively. are connected through
  • the cover 15 can protect the semiconductor device 13 from foreign substances in the external space 16, such as dust, debris, and water.
  • the cover 15 may have a function other than the function of protecting the semiconductor element 13 from foreign matter in the external space 16 .
  • an optically transparent cover 15 or a cover 15 including an optical lens can provide a light transmission path between the semiconductor element 13 and the external space 16 .
  • Reference numeral 18 is a resin lid formed on the substrate 12 .
  • the resin lid 18 may be arranged on the substrate 12 for the purpose of ensuring bonding between the substrate 12 and the adhesive layer 3, for example.
  • the double-sided adhesive part 1 and the resin lid 18 constitute the wall surface of the internal space 14 .
  • the semiconductor element 13 in FIG. 1 is exposed in the internal space 14 .
  • a laminate 21 is formed by bonding a cover sheet 25 and a substrate sheet 22 having a plurality of semiconductor elements 13 formed thereon through a double-sided adhesive sheet 31.
  • the double-sided adhesive sheet 31 has a plurality of through-holes 26, and the porous sheet 32 and the adhesive layers 3 (first adhesive layer 3A and second adhesive layer 3B) formed in advance on both sides of the porous sheet 32, respectively. ) and Bonding is performed such that the semiconductor element 13 is positioned within the through hole 26 and covered by the cover sheet 25 .
  • the double-sided adhesive sheet 31 has a plurality of through-holes 26 respectively corresponding to the semiconductor elements 13 .
  • Each through-hole 26 generally has a shape surrounding each corresponding semiconductor element 13 when viewed from a direction perpendicular to the main surface of the substrate sheet 22 .
  • both openings of the through holes 26 are closed by the cover sheet 25 and the substrate sheet 22 .
  • a resin layer 28 that becomes the resin lid 18 after the laminate 21 is divided is arranged between the substrate sheet 22 and the double-sided adhesive sheet 31.
  • the cover sheet 25 and the double-sided adhesive sheet 31 are in contact with each other.
  • Other members may or may not be arranged between the substrate sheet 22 and the double-sided adhesive sheet 31 and between the double-sided adhesive sheet 31 and the cover sheet 25 .
  • the plurality of semiconductor elements 13 are arranged regularly (in a two-dimensional array).
  • the laminate is formed such that a plurality of covers 15, a plurality of substrates 12, and a plurality of porous bodies 2 are obtained from the cover sheet 25, the substrate sheet 22, and the porous body sheet 32, respectively.
  • 21 is divided to obtain a plurality of semiconductor element packages 11 (dividing step). The division is usually performed at positions (dividing lines 29) between the through-holes 26 when viewed from the direction perpendicular to the main surface of the substrate sheet 22. As shown in FIG.
  • the adhesive composition When the adhesive composition is applied to the surface of the substrate sheet 22 and the porous sheet 32 is attached thereon, the adhesive composition easily permeates into the porous sheet 32 .
  • the double-sided adhesive sheet 31 having the porous sheet 32 and the adhesive layers 3 pre-formed on both sides of the porous sheet 32 penetration of the adhesive component into the porous sheet 32 is suppressed. Therefore, the manufacturing method of this embodiment using the double-sided adhesive sheet 31 for bonding is suitable for ensuring air permeability through the porous body sheet 32 and the porous body 2 .
  • the substrate sheet 22 includes, for example, a semiconductor material such as silicon (Si), a phenol resin, an epoxy resin, ceramic, or the like based on paper, glass cloth, or the like.
  • the substrate sheet 22 may be a semiconductor substrate sheet.
  • the substrate sheet 22 is not limited to the above example, and a substrate sheet 22 containing the same material as a substrate provided in a known semiconductor device package can be selected.
  • the substrate sheet 22 may be a circuit board sheet having circuits formed thereon.
  • a resin layer 28 that will become the resin lid 18 is formed on the surface of the substrate sheet 22 in FIGS. 2A to 2C by a dividing process.
  • a plurality of through holes 24 are formed in the resin layer 28 of FIGS.
  • 2A to 2C has the same shape as the through hole 26 of the double-sided adhesive sheet 31 when viewed from the direction perpendicular to the main surface of the substrate sheet 22. As shown in FIG. Moreover, the wall surface of the through-hole 24 and the wall surface of the through-hole 26 are aligned when viewed from the vertical direction.
  • the shape of the through hole 24 is not limited to the above example, and can be selected according to the configuration of the semiconductor element package 11 to be manufactured, for example.
  • the resin contained in the resin layer 28 is, for example, resist resin. In the resin layer 28 containing resist resin, the through holes 24 can be formed by a resist process. However, the resin contained in the resin layer 28 is not limited to the above examples. A member other than the semiconductor element 13 and the resin layer 28, such as a metal layer intended to reinforce the substrate sheet 22, may or may not be placed on the substrate sheet 22.
  • semiconductor element 13 examples of the semiconductor element 13 are optical semiconductor elements such as CCD, CMOS, infrared (IR) sensor elements, TOF sensor elements, LIDAR sensor elements and laser elements, and acceleration sensors.
  • Semiconductor device 13 may be a micro-electro-mechanical system (MEMS). However, the semiconductor element 13 is not limited to the above example.
  • the double-sided pressure-sensitive adhesive sheet 31 includes a porous sheet 32, a first pressure-sensitive adhesive layer 3A and a second pressure-sensitive adhesive layer 3B.
  • the shear force of the porous sheet 32 is, for example, 50 N/100 mm 2 or more, 75 N/100 mm 2 or more, 100 N/100 mm 2 or more, 125 N/100 mm 2 or more, 150 N/100 mm 2 or more, 170 N/100 mm 2 or more, 180 N/ It may be 100 mm 2 or more, 190 N/100 mm 2 or more, 200 N/100 mm 2 or more, or even 210 N/100 mm 2 or more.
  • the upper limit of shear force is, for example, 350 N/100 mm 2 or less.
  • the porous sheet 32 having a shear force within the above range can contribute to suppression of breakage (such as tearing) of the porous sheet 32 in the dividing step.
  • a method for evaluating the shear force of the porous sheet 32 will be described with reference to FIG.
  • a square having a length of 10 mm and a width of 10 mm (area of 100 mm 2 ) is cut out from the porous sheet 32 to be evaluated.
  • double-sided adhesive tapes 51 having the same shape are attached to both sides of the cut porous sheet 32 .
  • the double-faced adhesive tape 51 is adhered so that the perimeter of the double-sided adhesive tape 51 and the perimeter of the porous sheet 32 are aligned.
  • the double-sided adhesive tape 51 may be a baseless tape.
  • a stainless steel plate 52 as a test plate is attached to the exposed surface of each double-sided adhesive tape 51 .
  • the shape of the stainless plate 52 is a rectangle with a length of 20 mm or more and a width of 10 mm.
  • Each stainless steel plate 52 has a porous sheet 32 and a pair of double-sided adhesive tapes when viewed perpendicularly to the main surface of the porous sheet 32 so that the long sides of the stainless steel plates 52 match the long sides of the porous sheet 32 .
  • 51 are laminated so as to cover the entire laminate.
  • Each stainless steel plate 52 is provided with an end portion 53 (the end portion 53 is not in contact with the double-sided adhesive tape 51) having a length sufficient to fix the stainless steel plate 52 to the chuck of the tensile tester.
  • the maximum stress value in the -strain (SS) curve can be defined as the shear force of the porous sheet 32 . Evaluation is carried out at room temperature.
  • the shear force of the porous sheet 32 in the state of the double-sided adhesive sheet 31 can be reduced by using the adhesive layer 3 included in the double-sided adhesive sheet 31 instead of the double-sided adhesive tape 51 (in other words, the porous sheet 32 and the adhesive A double-sided adhesive sheet 31, which is a laminate of layers 3, is cut out) and evaluated in the same manner as described above.
  • the cutting is preferably performed while avoiding the edges of the double-sided adhesive sheet 31 .
  • the side water pressure resistance of the porous sheet 32 is, for example, 400 kPa or more, and may be 450 kPa or more, 500 kPa or more, 550 kPa or more, 600 kPa or more, 650 kPa or more, 700 kPa or more, 750 kPa or more, or even 800 kPa or more.
  • the upper limit of the lateral water pressure resistance is, for example, 2000 kPa or less, and may be 1500 kPa or less, or even 1000 kPa or less.
  • porous sheet 32 has a side water pressure resistance within the above range is effective in suppressing the scattering of fine powder that occurs during division and in the division process in which water is sometimes used to cool the division jig (for example, a dicing blade). , the entry of water into the internal space 14 of the semiconductor device package 11 can be suppressed.
  • a method for evaluating the side water pressure resistance of the porous sheet 32 will be described with reference to FIG.
  • a porous sheet 32 to be evaluated is cut into a picture frame having an outer dimension of 20 mm ⁇ 10 mm and an inner dimension of 16.5 mm ⁇ 5 mm.
  • frame-shaped double-sided adhesive tapes 61 of the same size are attached to both sides of the cut porous sheet 32 .
  • the double-faced adhesive tape 61 is adhered so that the perimeter of the double-sided adhesive tape 61 and the perimeter of the porous sheet 32 are aligned.
  • a tape having sufficient water resistance and adhesiveness that does not allow water to permeate and that does not come off during evaluation of side water pressure resistance can be selected.
  • the double-sided adhesive tape 61 may be a baseless tape.
  • a glass plate 62 is attached to each exposed surface of each double-sided adhesive tape 61 .
  • the porous sheet 32 and the pair of double-sided adhesive tapes 61 are attached to the glass plate 62 so as to cover the entire laminate of the porous sheet 32 and the pair of double-sided adhesive tapes 61 when viewed perpendicularly to the main surface of the porous sheet 32 .
  • the glass plate 62 can be selected from those having sufficient area and strength so that the above bonding is possible and that the glass plate 62 is not greatly deformed during the evaluation of the lateral water pressure resistance.
  • a space 63 surrounded by the side surface of the porous sheet 32, the side surface of the double-sided adhesive tape 61, and the glass plate 62 is formed with the pair of glass plates 62 bonded together.
  • the whole is then placed in the interior 64 of a sealable evaluation container 65 and the container 65 is sealed.
  • the container 65 can be selected to have sufficient transparency and strength to allow observation of the inside 64 and to withstand evaluation of lateral water pressure resistance.
  • the container 65 is made of glass or acrylic, for example.
  • water is poured into the interior 64 of the container 65 to increase the water pressure at a rate of 5 kPa/sec. , as the lateral water pressure resistance of the porous sheet 32 . Evaluation is carried out at room temperature.
  • the side water pressure resistance of the porous sheet 32 in the state of the double-sided adhesive sheet 31 can be improved by using the adhesive layer 3 included in the double-sided adhesive sheet 31 instead of the double-sided adhesive tape 61 (in other words, the porous sheet 32 and the adhesive
  • the double-sided adhesive sheet 31, which is a laminate of the agent layer 3, is cut out), and the evaluation can be performed in the same manner as described above.
  • the cutting is preferably performed while avoiding the edges of the double-sided adhesive sheet 31 .
  • the porosity of the porous sheet 32 is, for example, 20-95%.
  • the lower limit of the porosity may be 25% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, or even 70% or more.
  • the upper limit of the porosity may be 90% or less, 85% or less, or even 80% or less.
  • the porosity of the porous sheet 32 can be evaluated as follows.
  • the porous sheet 32 to be evaluated is cut into a certain size (for example, a circle with a diameter of 47 mm), and its volume and weight are determined.
  • the porosity of the porous sheet 32 is calculated by substituting the obtained volume and weight into the following formula (1).
  • V is the volume (cm 3 )
  • W is the weight (g)
  • D is the true density (g/cm 3 ) of the material forming the porous sheet 32 .
  • the porous sheet 32 may or may not have air permeability in the thickness direction.
  • the air permeability in the thickness direction is the air permeability (Gurley air permeability) obtained in accordance with the air permeability measurement method B (Gurley type method) specified in Japanese Industrial Standards (former Japanese Industrial Standards; JIS) L1096:2010. can be represented by When the Gurley air permeability exceeds 10,000 seconds/100 mL, it can be determined that the porous sheet 32 does not have air permeability in the thickness direction.
  • the porous sheet 32 having air permeability in the thickness direction has air permeability in the thickness direction of 1 to 350 seconds/100 mL, 5 to 300 seconds/100 mL, and further 10 to 200 seconds/100 mL, as expressed by Gurley air permeability. may have
  • the water pressure resistance in the thickness direction of the porous sheet 32 is, for example, 100 kPa or more, and may be 110 kPa or more, 150 kPa or more, 180 kPa or more, 200 kPa or more, 230 kPa or more, 250 kPa or more, or even 270 kPa or more.
  • the upper limit of water pressure resistance in the thickness direction is, for example, 1000 kPa or less, and may be 800 kPa or less, 700 kPa or less, 600 kPa or less, 550 kPa or less, or even 500 kPa or less.
  • the water pressure resistance in the thickness direction can be evaluated according to JIS L1092:2009 water resistance test method A (low water pressure method) or B method (high water pressure method).
  • Examples of materials included in the porous sheet 32 are metals, metal compounds, resins, and composite materials thereof.
  • Examples of resins that can be contained in the porous sheet 32 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET), silicone resins, polycarbonates, polyimides, polyamideimides, polyphenylene sulfides, polyetheretherketones (PEEK), and fluororesin.
  • Examples of fluoroplastics are PTFE, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer (ETFE).
  • the resin is not limited to the above examples.
  • metals that can be contained in the porous sheet 32 are stainless steel and aluminum.
  • metal compounds that can be contained in the porous sheet 32 are metal oxides, metal nitrides, and metal oxynitrides. Note that the metal includes silicon.
  • the metal compound may be a silicon compound such as silica.
  • the porous sheet 32 may contain a heat-resistant material.
  • the porous sheet 32 containing a heat-resistant material is particularly suitable, for example, when performing high-temperature processing such as solder reflow on the laminate 21 and/or the manufactured semiconductor device package 11 .
  • refractory materials are metals, metal compounds and refractory resins.
  • a heat resistant resin typically has a melting point of 150° C. or higher.
  • the melting point of the heat-resistant resin may be 160° C. or higher, 200° C. or higher, 250° C. or higher, 260° C. or higher, or even 300° C. or higher.
  • heat-resistant resins are silicone resins, polyimides, polyamideimides, polyphenylene sulfides, PEEK and fluororesins.
  • the fluororesin may be PTFE.
  • PTFE is particularly excellent in heat resistance.
  • metal compounds that are refractory materials are silicon compounds.
  • the heat resistant material may be fluororesin.
  • the porous sheet 32 may be a stretched porous resin sheet or a porous aggregation sheet of particles.
  • the mode of the porous sheet 32 is not limited to the above example.
  • the stretched porous resin sheet may be a fluororesin stretched porous sheet or a PTFE stretched porous sheet.
  • Expanded porous sheets of PTFE are typically formed by stretching paste extrudates or cast membranes containing PTFE particles. Expanded porous sheets of PTFE are usually composed of fine fibrils of PTFE and may have nodes in which the PTFE is in a state of agglomeration relative to the fibrils.
  • the stretched porous sheet is not limited to the above examples.
  • Examples of particles contained in the porous aggregated sheet of particles are resin particles, metal particles and metal compound particles. Examples of resins, metals and metal compounds, including refractory materials, are described above. Examples of porous agglomerated sheets are sintered sheets of ultra-high molecular weight polyethylene particles, agglomerated sheets of silica particles (such as fumed silica sheets). However, the porous aggregation sheet is not limited to the above examples.
  • the porous sheet 32 typically has communication holes that allow ventilation in the in-plane direction.
  • the stretched porous sheet of resin and the porous agglomerated sheet of particles usually have communicating pores.
  • the porous sheet 32 may or may not have independent pores.
  • the first adhesive layer 3A and the second adhesive layer 3B are typically layers formed from an adhesive composition.
  • the adhesive composition may be a pressure-sensitive adhesive composition, in other words, at least one selected from the first adhesive layer 3A and the second adhesive layer 3B is a pressure-sensitive adhesive layer.
  • may In a thermosetting or photosensitive adhesive composition for example, an epoxy-based or benzocyclobutene (BCB)-based adhesive composition disclosed in Patent Document 1
  • BCB benzocyclobutene
  • the pressure-sensitive adhesive composition is particularly suitable for forming a layer in which impregnation of the porous sheet 32 is suppressed.
  • the adhesive composition may be an epoxy-based, phenol-based, or other thermosetting adhesive composition, in other words, at least one selected from the first adhesive layer 3A and the second adhesive layer 3B
  • One may be a thermosetting adhesive layer.
  • the adhesive layer 3 formed from a thermosetting adhesive composition generally has excellent heat resistance.
  • the thermosetting adhesive composition may have a storage elastic modulus of 1 ⁇ 10 5 Pa or more at 130 to 170° C., and 5 ⁇ at 250° C. It may have a storage elastic modulus after thermosetting of 10 5 Pa or more.
  • a high storage modulus can contribute to suppression of fluidity.
  • 130 to 170° C. corresponds to a general temperature that initiates the progress of thermosetting of the thermosetting pressure-sensitive adhesive composition.
  • the storage modulus at 130 to 170 ° C. is measured by using a film of the adhesive composition (length 22.5 mm and width 10 mm) as a test piece and using a forced vibration type solid viscoelasticity measuring device, for example from 0 ° C. to 260 ° C. , is defined as the storage elastic modulus at 130 to 170° C., which is evaluated while heating the test piece at a heating rate of 10° C./min.
  • the measurement direction (vibration direction) of the test piece shall be the longitudinal direction, and the vibration frequency shall be 1 Hz.
  • the storage elastic modulus at 250°C (after curing) can be evaluated by conducting the same test on a test piece after thermally curing the film of the pressure-sensitive adhesive composition.
  • adhesive compositions are acrylic-, silicone-, urethane-, epoxy-, and rubber-based adhesive compositions.
  • An acrylic or silicone adhesive composition with excellent heat resistance may be selected.
  • at least one selected from the first pressure-sensitive adhesive layer 3A and the second pressure-sensitive adhesive layer 3B may be an acrylic pressure-sensitive adhesive layer or a silicone pressure-sensitive adhesive layer.
  • the systems of the pressure-sensitive adhesive composition may differ between the first pressure-sensitive adhesive layer 3A and the second pressure-sensitive adhesive layer 3B.
  • the acrylic pressure-sensitive adhesive is, for example, the pressure-sensitive adhesive disclosed in JP-A-2005-105212.
  • the silicone adhesive is, for example, the adhesive disclosed in JP-A-2003-313516 (including those disclosed as comparative examples).
  • the adhesive strength of the adhesive layer 3 is the peeling adhesive strength obtained by conducting the 180° peeling adhesive strength test (method 1) specified in JIS Z0237: 2009, for example, 0.5 to 30 N/20 mm. Yes, 0.7 to 20 N/20 mm, or even 1 to 15 N/20 mm.
  • the pressure-sensitive adhesive layer 3 has a rate of decrease in adhesive strength (based on adhesive strength before the test) before and after a heat resistance test at a peak temperature of 250° C. assuming solder reflow is 60% or less, 50% or less, and further 40% or less. may
  • the pressure-sensitive adhesive layer 3 that satisfies the above range of reduction rate is particularly excellent in heat resistance.
  • the thickness of the pressure-sensitive adhesive layer 3 is, for example, 2 to 150 ⁇ m, may be 5 to 100 ⁇ m, and may be 7 to 90 ⁇ m.
  • the thickness of the double-sided adhesive sheet 31 is, for example, 10 to 300 ⁇ m, may be 20 to 200 ⁇ m, and may be 20 to 150 ⁇ m.
  • the through-holes 26 can be formed, for example, by shaping the double-sided adhesive sheet 31 .
  • An example of shaping is punching.
  • the cover sheet 25 may or may not have air permeability in the thickness direction. Even if the cover sheet 25 does not have air permeability in the thickness direction, the air permeability can be ensured by the porous body sheet 32 and the porous body 2 .
  • Examples of materials included in the cover sheet 25 are metals, metal compounds, resins, and composite materials thereof.
  • Examples of resins, metals, and metal compounds that can be contained in the cover sheet 25 are the same as examples of resins, metals, and metal compounds that can be contained in the porous sheet 32, respectively.
  • the cover sheet 25 may contain a heat-resistant material.
  • the cover sheet 25 containing a heat-resistant material is particularly suitable, for example, when performing high-temperature processing such as solder reflow on the laminate 21 and/or the manufactured semiconductor device package 11 .
  • Examples of heat-resistant materials that can be included in the cover sheet 25 are the same as examples of heat-resistant materials that can be included in the porous sheet 32 .
  • the cover sheet 25 may contain at least one selected from a heat-resistant resin material (heat-resistant resin) and glass.
  • the heat-resistant resin may be at least one selected from silicone resins, fluororesins and polyimides, and may be polyimides.
  • the cover sheet 25 may be optically transparent.
  • the optically transparent cover sheet 25 is suitable, for example, for manufacturing optical semiconductor device packages.
  • optically transparent means that the total light transmittance in the thickness direction defined in JIS K7375 is 80% or more, preferably 85% or more, more preferably 90% when the thickness is 50 ⁇ m. % or more, more preferably 95% or more.
  • the optically transparent cover sheet 25 contains, for example, at least one selected from transparent resin and glass.
  • transparent resins are polyimide, polyethylene terephthalate and acrylic resins.
  • Cover sheet 25 may comprise a heat resistant material and may be optically transparent.
  • An example of a sheet that includes a heat resistant material and is optically transparent is a polyimide sheet.
  • the cover sheet 25 may have an optical function.
  • Examples of the cover sheet 25 having optical functions include optical sheets such as optical lenses.
  • Optical sheets include various optical members such as lenses, retardation films, polarizing films, reflective films, and antireflection films.
  • the cover sheet 25 may be a single layer or may have a multi-layer structure of two or more layers.
  • the thickness of the cover sheet 25 is, for example, 1 to 2000 ⁇ m.
  • the method and conditions for forming the laminate 21 in the lamination step can be selected based on the bonding conditions of the double-sided adhesive sheets 31, for example.
  • dicing which is a technique for cutting out individual semiconductor elements from a semiconductor wafer, can be applied to divide the stacked body 21 .
  • Dicing is suitable for efficient manufacture of the semiconductor device package 11 .
  • the method of dividing the laminate 21 is not limited to the above example. Dicing can be performed by known devices and methods.
  • the dividing line 29 can be set according to the shape of the laminate 21 and the semiconductor element package 11 to be manufactured.
  • semiconductor element package An example of the semiconductor element package of this embodiment is the semiconductor element package 11 shown in FIG.
  • Substrate 12 may have a similar configuration to substrate sheet 22, except that it is split.
  • the cover 15 may have the same configuration as the cover sheet 25, except that it is split.
  • the porous body 2 can have the same configuration as the porous body sheet 32 except that it is divided.
  • the double-sided adhesive part 1 can have the same configuration as the double-sided adhesive sheet 31 except that it is divided.
  • Examples of the semiconductor element package 11 are optical semiconductor elements such as CCD, CMOS, infrared (IR) sensor elements, TOF sensor elements, LIDAR sensor elements and laser elements, and acceleration sensor packages.
  • Semiconductor device package 11 may be a micro-electro-mechanical system (MEMS) package.
  • MEMS micro-electro-mechanical system
  • the semiconductor element package 11 is not limited to the above example.
  • the semiconductor element package of this embodiment can be manufactured by the manufacturing method of this embodiment.
  • the manufacturing method of the semiconductor element package of this embodiment is not limited to the manufacturing method of this embodiment.
  • the porosity of the porous sheet was evaluated by the method described above.
  • the shape of the test piece was circular with a diameter of 47 mm.
  • the lateral water pressure resistance of the porous sheet was evaluated by the method described above.
  • the double-sided adhesive tape 61 to be attached to both sides of the cut porous sheet is made of Nitto Denko, No. 585 was used.
  • the thickness of the glass plate was 2 mm.
  • the shear force of the porous sheet was evaluated by the method described above.
  • the double-faced adhesive tape 51 to be attached to both sides of the cut porous sheet is made of Nitto Denko Co., Ltd., No. 585 was used.
  • Autograph Ag-X plus (desktop type) manufactured by Shimadzu Corporation was used as a tensile tester.
  • a pressing roller having a mass of 2 kg defined in JIS Z0237 was reciprocated once, and the bonding was stabilized by allowing the two to stand at room temperature for 30 minutes. carried out later.
  • sample 1 As a porous sheet of sample 1, an expanded porous sheet of PTFE (NTF1122 manufactured by Nitto Denko) was prepared. The prepared porous sheet had air permeability in the in-plane direction. Next, double-sided adhesive tape (manufactured by Nitto Denko, No. 585) was attached to both sides of the prepared porous sheet, respectively, and then punched out to form 25 through-holes each having a square shape of 10 mm square. A double-sided pressure-sensitive adhesive sheet having a square shape of 100 mm square was prepared in which the squares were arranged in a 5 ⁇ 5 array.
  • a glass epoxy substrate having a square shape of 100 mm square (R1700 manufactured by Panasonic Electric Works) in which 25 bottomed depressions having a square shape of 10 mm square are provided on one surface.
  • the double-sided pressure-sensitive adhesive sheets were bonded together so that the circumference of the through-hole of the double-sided pressure-sensitive adhesive sheet and the circumference of the depression of the substrate were aligned when viewed from the direction perpendicular to the main surface of the substrate.
  • a glass sheet (thickness: 500 ⁇ m) having a square shape of 100 mm ⁇ 100 mm is attached to the exposed surface of the double-sided pressure-sensitive adhesive sheet to form a package imitating a semiconductor device package (an internal structure composed of through holes and recesses).
  • a laminate was prepared for obtaining a space between the substrate and the glass) by splitting.
  • the laminate was subjected to a high-temperature treatment simulating solder reflow, and then the laminate was divided by dicing.
  • the dividing line was positioned between each through-hole (and recess) when viewed from the direction perpendicular to the main surface of the substrate.
  • DFD6450 manufactured by DISCO was used as a dicing machine.
  • P1A861 SDC300N was used for the blade, and the rotation speed of the blade was 30000 rpm and the feed rate was 30 mm/sec. No package damage occurred during solder reflow in the laminated state. In addition, the package could be manufactured without causing breakage of the porous sheet and leakage of water into the package when dividing the laminate by dicing.
  • an expanded porous sheet of PTFE was prepared as follows. 100 parts by weight of PTFE fine powder (Fluon PTFE CD123E, manufactured by AGC) and 20 parts by weight of n-dodecane (manufactured by Japan Energy) as a molding aid are uniformly mixed, and the resulting mixture is compressed with a cylinder and then rammed. It was extruded to form a sheet-like mixture. Next, the formed sheet-like mixture was rolled through a pair of metal rolls to a thickness of 0.2 mm, and the forming aid was removed by heating at 150° C. to form a belt-like PTFE sheet molded body.
  • PTFE fine powder Fluon PTFE CD123E, manufactured by AGC
  • n-dodecane manufactured by Japan Energy
  • the formed sheet molding is stretched in the longitudinal direction at a stretching temperature of 120° C. and a stretching ratio of 1.7 times, and then further stretched in the longitudinal direction at a stretching temperature of 375° C. and a stretching ratio of 1.3 times to obtain PTFE.
  • the prepared porous sheet had air permeability in the in-plane direction.
  • a package imitating a semiconductor element package was manufactured in the same manner as Sample 1, and no damage occurred to the package during solder reflow in the state of the laminate.
  • the package could be manufactured without causing breakage of the porous sheet and leakage of water into the package when dividing the laminate by dicing.
  • an expanded porous sheet of PTFE was prepared as follows. After uniformly mixing 100 parts by weight of PTFE fine powder (Polyflon F-121, manufactured by Daikin Industries) and 20 parts by weight of n-dodecane (manufactured by Japan Energy) as a molding aid, and compressing the resulting mixture with a cylinder. was ram extruded to form a sheet-like mixture. Next, the formed sheet-like mixture was rolled through a pair of metal rolls to a thickness of 0.8 mm, and the forming aid was removed by heating at 150° C. to form a belt-like PTFE sheet molded body.
  • PTFE fine powder Polyflon F-121, manufactured by Daikin Industries
  • n-dodecane manufactured by Japan Energy
  • the formed sheet molding is stretched in the longitudinal direction at a stretching temperature of 300° C. and a stretching ratio of 3.5 times, and then further stretched in the width direction at a stretching temperature of 150° C. and a stretching ratio of 25 times. was fired at 400° C., which is the temperature of , to obtain an expanded porous sheet of PTFE.
  • the prepared porous sheet had air permeability in the in-plane direction.
  • porous sheet Using the obtained porous sheet, a package imitating a semiconductor element package was manufactured in the same manner as Sample 1, and no damage occurred to the package during solder reflow in the state of the laminate. However, when the laminate was divided by dicing, although water did not leak into the package, the porous sheet was torn.
  • sample 4 As the porous sheet of sample 4, an expanded porous sheet of PTFE (NTF1131 manufactured by Nitto Denko) was prepared. The prepared porous sheet had air permeability in the in-plane direction.
  • a semiconductor element package can be manufactured.

Abstract

The present invention provides a method for manufacturing a plurality of semiconductor element packages using a substrate sheet having a plurality of semiconductor elements disposed thereon, the manufacturing method being suitable for reducing damage to the semiconductor element packages due to an increase in internal pressure. The provided manufacturing method comprises: obtaining a laminate by bonding a cover sheet and a substrate sheet having a plurality of semiconductor elements disposed thereon to each other with a double-side adhesive sheet therebetween, the double-side adhesive sheet having a plurality of through-holes and comprising a porous body sheet and an adhesive layer pre-formed on each of both surfaces of the porous body sheet, with the semiconductor elements positioned in the through-holes and covered by the cover sheet; and dividing the laminate so that a plurality of covers, a plurality of substrates, and a plurality of porous bodies are obtained respectively from the cover sheet, the substrate sheet, and the porous body sheet.

Description

半導体素子パッケージの製造方法及び半導体素子パッケージSemiconductor device package manufacturing method and semiconductor device package
 本発明は、半導体素子パッケージの製造方法及び半導体素子パッケージに関する。 The present invention relates to a semiconductor element package manufacturing method and a semiconductor element package.
 基板と、基板上に配置された半導体素子と、半導体素子を覆うと共に基板と接合されたカバーとを備え、基板及びカバーにより形成された内部空間に半導体素子が収容された半導体素子パッケージが知られている。特許文献1には、半導体基板と、半導体基板上に配置された機能素子と、半導体基板の一面と対向するように当該一面から所定の間隔を介して配置されたキャップ基板と、機能素子の周囲に配置されて半導体基板とキャップ部材とを接合する封止部材と、を備えた半導体素子パッケージが開示されている。 A semiconductor device package is known which includes a substrate, a semiconductor device arranged on the substrate, and a cover which covers the semiconductor device and is joined to the substrate, wherein the semiconductor device is housed in an internal space formed by the substrate and the cover. ing. Patent Document 1 describes a semiconductor substrate, a functional element arranged on the semiconductor substrate, a cap substrate arranged opposite to one surface of the semiconductor substrate with a predetermined gap from the surface, and a peripheral of the functional element. and a sealing member disposed in the sealing member to join the semiconductor substrate and the cap member.
特開2009-43893号公報JP 2009-43893 A
 特許文献1の半導体素子パッケージでは、パッケージ内の結露を防止することを目的として、透湿樹脂層を有する封止部材が採用されている。しかし、本発明者らの検討によれば、特許文献1の半導体素子パッケージでは、(1)ハンダリフロー等の高温処理によってパッケージ内の圧力(内圧)が大きく上昇した場合にパッケージに損傷が生じうること、及び(2)複数の半導体素子が配置された基板シートを用いて複数の半導体素子パッケージを一括して形成し、これを分割して複数の半導体素子パッケージを製造することが効率的であるものの、この製法を採用した場合には特に損傷が生じやすいこと、が判明した。検討によれば、透湿樹脂層に接合させる接着剤層を、透湿樹脂層とは別個に基板への接着剤組成物の塗布により形成することが、上記内圧の上昇への対応が難しい理由であると推定される。 The semiconductor element package of Patent Document 1 employs a sealing member having a moisture-permeable resin layer for the purpose of preventing dew condensation inside the package. However, according to studies by the present inventors, the semiconductor device package of Patent Document 1 (1) may be damaged if the pressure (internal pressure) inside the package rises significantly due to high-temperature processing such as solder reflow. and (2) it is efficient to collectively form a plurality of semiconductor element packages using a substrate sheet on which a plurality of semiconductor elements are arranged, and to divide this to manufacture a plurality of semiconductor element packages. However, it has been found that this method is particularly prone to damage. According to studies, it is difficult to cope with the increase in internal pressure by forming the adhesive layer to be bonded to the moisture-permeable resin layer by applying an adhesive composition to the substrate separately from the moisture-permeable resin layer. is estimated to be
 本発明は、複数の半導体素子が配置された基板シートを用いて複数の半導体素子パッケージを製造する方法であって、内圧の上昇による半導体素子パッケージの損傷を抑えることに適した製造方法の提供を目的とする。 The present invention provides a method of manufacturing a plurality of semiconductor element packages using a substrate sheet on which a plurality of semiconductor elements are arranged, and is suitable for suppressing damage to the semiconductor element packages due to an increase in internal pressure. aim.
 本発明は、
 複数の半導体素子パッケージの製造方法であって、
 前記複数の半導体素子パッケージは、それぞれ、基板と、前記基板上に配置された半導体素子と、前記半導体素子を覆うカバーと、前記基板と前記カバーとの間において前記半導体素子を囲むように配置された多孔体と、を備え、かつ、前記半導体素子が配置された内部空間と外部空間との間は、前記多孔体の内部を介して気体が通過可能であり、
 前記製造方法は、
 カバーシートと、前記複数の半導体素子が配置された基板シートとを、複数の貫通孔を有すると共に多孔体シートと前記多孔体シートの両面それぞれに予め形成された粘着層とを有する両面粘着シートを介して、前記半導体素子が前記貫通孔内に位置すると共に前記カバーシートにより覆われるように接合して、積層体を得ることと、
 前記カバーシート、前記基板シート、及び前記多孔体シートから、それぞれ、複数の前記カバー、複数の前記基板、及び複数の前記多孔体が得られるように、前記積層体を分割することと、を含む、製造方法、
 を提供する。
The present invention
A method for manufacturing a plurality of semiconductor device packages, comprising:
The plurality of semiconductor device packages each include a substrate, a semiconductor device arranged on the substrate, a cover covering the semiconductor device, and a semiconductor device arranged between the substrate and the cover so as to surround the semiconductor device. and a porous body, wherein gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space,
The manufacturing method is
A double-sided pressure-sensitive adhesive sheet having a cover sheet, a substrate sheet on which the plurality of semiconductor elements are arranged, a plurality of through holes, and a porous sheet and adhesive layers preliminarily formed on both sides of the porous sheet. bonding the semiconductor element through the through hole so that the semiconductor element is positioned in the through hole and covered with the cover sheet to obtain a laminate;
dividing the laminate so that a plurality of the covers, a plurality of the substrates, and a plurality of the porous bodies are obtained from the cover sheet, the substrate sheet, and the porous body sheet, respectively. ,Production method,
I will provide a.
 別の側面から、本発明は、
 基板と、前記基板上に配置された半導体素子と、前記半導体素子を覆うカバーと、前記基板と前記カバーとの間において前記半導体素子を囲むように配置された多孔体と、を備え、かつ、前記半導体素子が配置された内部空間と外部空間との間は、前記多孔体の内部を介して気体が通過可能であり、
 前記基板と前記カバーとは、前記多孔体と前記多孔体の両面それぞれに形成された粘着層とを有する両面粘着部を介して接合されている、
 半導体素子パッケージ、
 を提供する。
From another aspect, the present invention provides
a substrate, a semiconductor element arranged on the substrate, a cover covering the semiconductor element, and a porous body arranged between the substrate and the cover so as to surround the semiconductor element; gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space;
The substrate and the cover are bonded via a double-sided adhesive part having the porous body and adhesive layers formed on both sides of the porous body,
semiconductor device package,
I will provide a.
 本発明による製造方法によれば、内圧の上昇による半導体素子パッケージの損傷を抑えることに適した半導体素子パッケージを効率的に製造することができる。また、本発明の半導体素子パッケージによれば、内圧の上昇による損傷を確実に抑制することが可能となる。 According to the manufacturing method of the present invention, it is possible to efficiently manufacture a semiconductor element package that is suitable for suppressing damage to the semiconductor element package due to an increase in internal pressure. Moreover, according to the semiconductor element package of the present invention, it is possible to reliably suppress damage due to an increase in internal pressure.
図1は、本発明の製造方法により製造可能な半導体素子パッケージの一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device package that can be manufactured by the manufacturing method of the present invention. 図2Aは、本発明の製造方法の一例を説明するための模式図(分解斜視図)である。FIG. 2A is a schematic diagram (exploded perspective view) for explaining an example of the manufacturing method of the present invention. 図2Bは、本発明の製造方法の一例を説明するための模式図(斜視図)である。FIG. 2B is a schematic diagram (perspective view) for explaining an example of the manufacturing method of the present invention. 図2Cは、本発明の製造方法の一例を説明するための模式図(斜視図)である。FIG. 2C is a schematic diagram (perspective view) for explaining an example of the manufacturing method of the present invention. 図3は、本発明の製造方法に使用する両面粘着シートが備えうる多孔体シートについて、せん断力を評価する方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method for evaluating the shear force of a porous sheet that can be included in the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention. 図4は、本発明の製造方法に使用する両面粘着シートが備えうる多孔体シートについて、側面耐水圧を評価する方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a method for evaluating the lateral water pressure resistance of a porous sheet that can be included in the double-sided pressure-sensitive adhesive sheet used in the production method of the present invention.
 本発明の第1態様にかかる製造方法は、
 複数の半導体素子パッケージの製造方法であって、
 前記複数の半導体素子パッケージは、それぞれ、基板と、前記基板上に配置された半導体素子と、前記半導体素子を覆うカバーと、前記基板と前記カバーとの間において前記半導体素子を囲むように配置された多孔体と、を備え、かつ、前記半導体素子が配置された内部空間と外部空間との間は、前記多孔体の内部を介して気体が通過可能であり、
 前記製造方法は、
 カバーシートと、前記複数の半導体素子が配置された基板シートとを、複数の貫通孔を有すると共に多孔体シートと前記多孔体シートの両面それぞれに予め形成された粘着層とを有する両面粘着シートを介して、前記半導体素子が前記貫通孔内に位置すると共に前記カバーシートにより覆われるように接合して、積層体を得ることと、
 前記カバーシート、前記基板シート、及び前記多孔体シートから、それぞれ、複数の前記カバー、複数の前記基板、及び複数の前記多孔体が得られるように、前記積層体を分割することと、を含む。
The manufacturing method according to the first aspect of the present invention comprises:
A method for manufacturing a plurality of semiconductor device packages, comprising:
The plurality of semiconductor device packages each include a substrate, a semiconductor device arranged on the substrate, a cover covering the semiconductor device, and a semiconductor device arranged between the substrate and the cover so as to surround the semiconductor device. and a porous body, wherein gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space,
The manufacturing method is
A double-sided pressure-sensitive adhesive sheet having a cover sheet, a substrate sheet on which the plurality of semiconductor elements are arranged, a plurality of through holes, and a porous sheet and adhesive layers preliminarily formed on both sides of the porous sheet. bonding the semiconductor element through the through hole so that the semiconductor element is positioned in the through hole and covered with the cover sheet to obtain a laminate;
dividing the laminate so that a plurality of the covers, a plurality of the substrates, and a plurality of the porous bodies are obtained from the cover sheet, the substrate sheet, and the porous body sheet, respectively. .
 本発明の第2態様において、例えば、第1態様にかかる製造方法では、前記多孔体シートのせん断力が50N/100mm2以上である。 In the second aspect of the present invention, for example, in the manufacturing method according to the first aspect, the porous sheet has a shearing force of 50 N/100 mm 2 or more.
 本発明の第3態様において、例えば、第1又は第2態様にかかる製造方法では、前記多孔体シートの側面耐水圧が400kPa以上である。 In the third aspect of the present invention, for example, in the manufacturing method according to the first or second aspect, the lateral water pressure resistance of the porous sheet is 400 kPa or more.
 本発明の第4態様において、例えば、第1から第3態様のいずれか1つの態様にかかる製造方法では、前記多孔体シートは耐熱性材料を含む。 In the fourth aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to third aspects, the porous sheet contains a heat-resistant material.
 本発明の第5態様において、例えば、第4態様にかかる製造方法では、前記耐熱性材料はフッ素樹脂である。 In the fifth aspect of the present invention, for example, in the manufacturing method according to the fourth aspect, the heat-resistant material is fluororesin.
 本発明の第6態様において、例えば、第1から第5態様のいずれか1つの態様にかかる製造方法では、前記多孔体シートは、フッ素樹脂の延伸多孔質シートである。 In the sixth aspect of the present invention, for example, in the manufacturing method according to any one of the first to fifth aspects, the porous sheet is a stretched porous fluororesin sheet.
 本発明の第7態様において、例えば、第1から第6態様のいずれか1つの態様にかかる製造方法では、前記カバーシートは厚さ方向の通気性を有さない。 In the seventh aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to sixth aspects, the cover sheet does not have air permeability in the thickness direction.
 本発明の第8態様において、例えば、第1から第7態様のいずれか1つの態様にかかる製造方法では、前記カバーシートは光学的に透明である。 In the eighth aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to seventh aspects, the cover sheet is optically transparent.
 本発明の第9態様において、例えば、第1から第8態様のいずれか1つの態様にかかる製造方法では、前記カバーシートは、耐熱性樹脂及びガラスから選ばれる少なくとも1種を含む。 In the ninth aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to eighth aspects, the cover sheet contains at least one selected from heat-resistant resin and glass.
 本発明の第10態様において、例えば、第1から第9態様のいずれか1つの態様にかかる製造方法では、前記カバーシートは光学レンズを含む。 In the tenth aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to ninth aspects, the cover sheet includes an optical lens.
 本発明の第11態様にかかる半導体素子パッケージは、
 基板と、前記基板上に配置された半導体素子と、前記半導体素子を覆うカバーと、前記基板と前記カバーとの間において前記半導体素子を囲むように配置された多孔体と、を備え、かつ、前記半導体素子が配置された内部空間と外部空間との間は、前記多孔体の内部を介して気体が通過可能であり、
 前記基板と前記カバーとは、前記多孔体と前記多孔体の両面それぞれに形成された粘着層とを有する両面粘着部を介して接合されている。
A semiconductor element package according to an eleventh aspect of the present invention includes:
a substrate, a semiconductor element arranged on the substrate, a cover covering the semiconductor element, and a porous body arranged between the substrate and the cover so as to surround the semiconductor element; gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space;
The substrate and the cover are bonded via a double-sided adhesive portion having the porous body and adhesive layers formed on both sides of the porous body.
 本発明の第12態様において、例えば、第11態様にかかる半導体素子パッケージでは、前記多孔体のせん断力が50N/100mm2以上である。 In the twelfth aspect of the present invention, for example, in the semiconductor device package according to the eleventh aspect, the porous body has a shearing force of 50 N/100 mm 2 or more.
 本発明の第13態様において、例えば、第11又は第12にかかる半導体素子パッケージでは、前記多孔体の側面耐水圧が400kPa以上である。 In the thirteenth aspect of the present invention, for example, in the semiconductor element package according to the eleventh or twelfth aspect, the porous body has a lateral water pressure resistance of 400 kPa or more.
 以下、実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments will be described with reference to the drawings. The present invention is not limited to the following embodiments.
[半導体素子パッケージの製造方法]
 本実施形態の製造方法の一例について、図1及び図2A~図2Cを参照しながら説明する。本実施形態の製造方法は、基板12及びカバー15により形成された内部空間14に半導体素子13が配置された半導体素子パッケージ11の製造方法である(図1参照;図1には、本実施形態の製造方法により製造可能な半導体素子パッケージの一例が示されている)。
[Method for manufacturing semiconductor device package]
An example of the manufacturing method of this embodiment will be described with reference to FIGS. 1 and 2A to 2C. The manufacturing method of this embodiment is a method of manufacturing a semiconductor device package 11 in which a semiconductor device 13 is arranged in an internal space 14 formed by a substrate 12 and a cover 15 (see FIG. 1; shows an example of a semiconductor device package that can be manufactured by the manufacturing method of .
 半導体素子パッケージ11は、基板12と、基板12上に配置された半導体素子13と、半導体素子13を覆うカバー15と、基板12とカバー15との間において半導体素子13を囲むように配置された多孔体2とを備える。半導体素子13が配置された内部空間14は、多孔体2の内部を介して外部空間16と通気可能である。基板12とカバー15とは、多孔体2と、多孔体2の両面それぞれに予め形成された粘着層3(第1の粘着層3A及び第2の粘着層3B)とを有する両面粘着部1を介して接合されている。カバー15によって半導体素子13は、例えば、塵、塵芥及び水等の外部空間16の異物から保護されうる。また、カバー15は、外部空間16の異物から半導体素子13を保護する機能以外の機能を有しうる。例えば、光学的に透明であるカバー15や光学レンズを含むカバー15は、半導体素子13と外部空間16との間の光の透過経路となりうる。符号18は、基板12上に形成された樹脂リッドである。樹脂リッド18は、例えば、基板12と粘着層3との間の接合性の確保等を目的として、基板12上に配置されることがある。図1の両面粘着部1、多孔体2及び樹脂リッド18は、基板12の主面に垂直な方向から見て、半導体素子13を囲む形状を有している。より具体的には、両面粘着部1、多孔体2及び樹脂リッド18は、上記垂直な方向から見て、基板12の周縁部に対応する形状を有しており、基板12が正方形又は長方形である場合には額縁状の形状を有する。両面粘着部1及び樹脂リッド18は、内部空間14の壁面を構成している。図1の半導体素子13は、内部空間14に露出している。 The semiconductor device package 11 includes a substrate 12, a semiconductor device 13 arranged on the substrate 12, a cover 15 covering the semiconductor device 13, and arranged between the substrate 12 and the cover 15 so as to surround the semiconductor device 13. and a porous body 2 . The internal space 14 in which the semiconductor element 13 is arranged can communicate with the external space 16 via the inside of the porous body 2 . The substrate 12 and the cover 15 comprise a double-sided adhesive portion 1 having a porous body 2 and adhesive layers 3 (first adhesive layer 3A and second adhesive layer 3B) formed in advance on both sides of the porous body 2 respectively. are connected through The cover 15 can protect the semiconductor device 13 from foreign substances in the external space 16, such as dust, debris, and water. Also, the cover 15 may have a function other than the function of protecting the semiconductor element 13 from foreign matter in the external space 16 . For example, an optically transparent cover 15 or a cover 15 including an optical lens can provide a light transmission path between the semiconductor element 13 and the external space 16 . Reference numeral 18 is a resin lid formed on the substrate 12 . The resin lid 18 may be arranged on the substrate 12 for the purpose of ensuring bonding between the substrate 12 and the adhesive layer 3, for example. The double-sided adhesive portion 1, the porous body 2, and the resin lid 18 shown in FIG. More specifically, the double-sided adhesive portion 1, the porous body 2, and the resin lid 18 have a shape corresponding to the peripheral portion of the substrate 12 when viewed from the vertical direction, and the substrate 12 is square or rectangular. In some cases it has a picture frame shape. The double-sided adhesive part 1 and the resin lid 18 constitute the wall surface of the internal space 14 . The semiconductor element 13 in FIG. 1 is exposed in the internal space 14 .
 図2A及び図2Bに示すように、上記製造方法では、カバーシート25と、複数の半導体素子13が形成された基板シート22とを両面粘着シート31を介して接合して、積層体21を形成する(積層工程)。両面粘着シート31は、複数の貫通孔26を有すると共に、多孔体シート32と、多孔体シート32の両面それぞれに予め形成された粘着層3(第1の粘着層3A及び第2の粘着層3B)とを有する。接合は、半導体素子13が貫通孔26内に位置すると共にカバーシート25により覆われるように実施する。両面粘着シート31は、各々の半導体素子13にそれぞれ対応する複数の貫通孔26を有する。それぞれの貫通孔26は、通常、基板シート22の主面に垂直な方向から見たときに、対応する各々の半導体素子13を囲む形状を有している。積層工程では、貫通孔26の双方の開口はカバーシート25及び基板シート22により塞がれる。なお、図2A及び図2Bの例では、基板シート22と両面粘着シート31との間には、積層体21の分割後に樹脂リッド18となる樹脂層28が配置されている。一方、カバーシート25と両面粘着シート31とは、互いに接している。基板シート22と両面粘着シート31との間、及び両面粘着シート31とカバーシート25との間には、他の部材が配置されていても、配置されていなくてもよい。また、図2A及び図2Bの例では、複数の半導体素子13は規則的に(2次元のアレイ状に)配置されている。 As shown in FIGS. 2A and 2B, in the manufacturing method described above, a laminate 21 is formed by bonding a cover sheet 25 and a substrate sheet 22 having a plurality of semiconductor elements 13 formed thereon through a double-sided adhesive sheet 31. (lamination process). The double-sided adhesive sheet 31 has a plurality of through-holes 26, and the porous sheet 32 and the adhesive layers 3 (first adhesive layer 3A and second adhesive layer 3B) formed in advance on both sides of the porous sheet 32, respectively. ) and Bonding is performed such that the semiconductor element 13 is positioned within the through hole 26 and covered by the cover sheet 25 . The double-sided adhesive sheet 31 has a plurality of through-holes 26 respectively corresponding to the semiconductor elements 13 . Each through-hole 26 generally has a shape surrounding each corresponding semiconductor element 13 when viewed from a direction perpendicular to the main surface of the substrate sheet 22 . In the lamination process, both openings of the through holes 26 are closed by the cover sheet 25 and the substrate sheet 22 . 2A and 2B, a resin layer 28 that becomes the resin lid 18 after the laminate 21 is divided is arranged between the substrate sheet 22 and the double-sided adhesive sheet 31. As shown in FIG. On the other hand, the cover sheet 25 and the double-sided adhesive sheet 31 are in contact with each other. Other members may or may not be arranged between the substrate sheet 22 and the double-sided adhesive sheet 31 and between the double-sided adhesive sheet 31 and the cover sheet 25 . 2A and 2B, the plurality of semiconductor elements 13 are arranged regularly (in a two-dimensional array).
 次に、図2Cに示すように、カバーシート25、基板シート22、及び多孔体シート32から、それぞれ、複数のカバー15、複数の基板12、及び複数の多孔体2が得られるように積層体21を分割して、複数の半導体素子パッケージ11を得る(分割工程)。分割は、通常、基板シート22の主面に垂直な方向から見て各々の貫通孔26の間の位置(分割線29)で行う。 Next, as shown in FIG. 2C, the laminate is formed such that a plurality of covers 15, a plurality of substrates 12, and a plurality of porous bodies 2 are obtained from the cover sheet 25, the substrate sheet 22, and the porous body sheet 32, respectively. 21 is divided to obtain a plurality of semiconductor element packages 11 (dividing step). The division is usually performed at positions (dividing lines 29) between the through-holes 26 when viewed from the direction perpendicular to the main surface of the substrate sheet 22. As shown in FIG.
 基板シート22の表面に接着剤組成物を塗布し、その上に多孔体シート32を貼り付けると、接着剤組成物が多孔体シート32の内部に浸透しやすい。これに対し、多孔体シート32と、多孔体シート32の両面それぞれに予め形成された粘着層3とを有する両面粘着シート31では、多孔体シート32に対する接着成分の浸透が抑制される。このため、両面粘着シート31を接合に用いる本実施形態の製造方法は、多孔体シート32及び多孔体2を介した通気性を確保することに適している。 When the adhesive composition is applied to the surface of the substrate sheet 22 and the porous sheet 32 is attached thereon, the adhesive composition easily permeates into the porous sheet 32 . On the other hand, in the double-sided adhesive sheet 31 having the porous sheet 32 and the adhesive layers 3 pre-formed on both sides of the porous sheet 32, penetration of the adhesive component into the porous sheet 32 is suppressed. Therefore, the manufacturing method of this embodiment using the double-sided adhesive sheet 31 for bonding is suitable for ensuring air permeability through the porous body sheet 32 and the porous body 2 .
 <積層工程>
  (基板シート22)
 基板シート22は、例えば、シリコン(Si)等の半導体材料、紙やガラス布等を基材とするフェノール樹脂やエポキシ樹脂、セラミック等を含む。基板シート22は、半導体基板シートであってもよい。ただし、基板シート22は上記例に限定されず、公知の半導体素子パッケージが備える基板と同じ材料を含む基板シート22を選択できる。基板シート22は、回路が形成された回路基板シートであってもよい。図2A~図2Cの基板シート22の表面には、分割工程により樹脂リッド18となる樹脂層28が形成されている。図2A~図2Cの樹脂層28には、複数の貫通孔24が形成されている。図2A~図2Cの貫通孔24の形状は、基板シート22の主面に垂直な方向から見て、両面粘着シート31の貫通孔26の形状と同一である。また、上記垂直な方向から見て、貫通孔24の壁面と貫通孔26の壁面とは一致している。ただし、貫通孔24の形状は上記例に限定されず、例えば、製造する半導体素子パッケージ11の構成に応じて選択できる。樹脂層28に含まれる樹脂は、例えば、レジスト樹脂である。レジスト樹脂を含む樹脂層28では、レジスト工程によって貫通孔24を形成できる。ただし、樹脂層28に含まれる樹脂は、上記例に限定されない。基板シート22上には、半導体素子13及び樹脂層28以外の部材、例えば、基板シート22の補強を目的とする金属層等が配置されていてもよいし、配置されていなくてもよい。
<Lamination process>
(Substrate sheet 22)
The substrate sheet 22 includes, for example, a semiconductor material such as silicon (Si), a phenol resin, an epoxy resin, ceramic, or the like based on paper, glass cloth, or the like. The substrate sheet 22 may be a semiconductor substrate sheet. However, the substrate sheet 22 is not limited to the above example, and a substrate sheet 22 containing the same material as a substrate provided in a known semiconductor device package can be selected. The substrate sheet 22 may be a circuit board sheet having circuits formed thereon. A resin layer 28 that will become the resin lid 18 is formed on the surface of the substrate sheet 22 in FIGS. 2A to 2C by a dividing process. A plurality of through holes 24 are formed in the resin layer 28 of FIGS. 2A to 2C. 2A to 2C has the same shape as the through hole 26 of the double-sided adhesive sheet 31 when viewed from the direction perpendicular to the main surface of the substrate sheet 22. As shown in FIG. Moreover, the wall surface of the through-hole 24 and the wall surface of the through-hole 26 are aligned when viewed from the vertical direction. However, the shape of the through hole 24 is not limited to the above example, and can be selected according to the configuration of the semiconductor element package 11 to be manufactured, for example. The resin contained in the resin layer 28 is, for example, resist resin. In the resin layer 28 containing resist resin, the through holes 24 can be formed by a resist process. However, the resin contained in the resin layer 28 is not limited to the above examples. A member other than the semiconductor element 13 and the resin layer 28, such as a metal layer intended to reinforce the substrate sheet 22, may or may not be placed on the substrate sheet 22.
  (半導体素子13)
 半導体素子13の例は、CCD、CMOS、赤外(IR)センサー素子、TOFセンサー素子、LIDARセンサー素子及びレーザー素子等の光半導体素子、加速度センサーである。半導体素子13は、微小電気機械システム(MEMS)であってもよい。ただし、半導体素子13は、上記例に限定されない。
(Semiconductor element 13)
Examples of the semiconductor element 13 are optical semiconductor elements such as CCD, CMOS, infrared (IR) sensor elements, TOF sensor elements, LIDAR sensor elements and laser elements, and acceleration sensors. Semiconductor device 13 may be a micro-electro-mechanical system (MEMS). However, the semiconductor element 13 is not limited to the above example.
  (両面粘着シート31)
 両面粘着シート31は、多孔体シート32、第1の粘着剤層3A及び第2の粘着剤層3Bを備える。多孔体シート32のせん断力は、例えば50N/100mm2以上であり、75N/100mm2以上、100N/100mm2以上、125N/100mm2以上、150N/100mm2以上、170N/100mm2以上、180N/100mm2以上、190N/100mm2以上、200N/100mm2以上、更には210N/100mm2以上であってもよい。せん断力の上限は、例えば350N/100mm2以下である。多孔体シート32が上記範囲のせん断力を有することは、分割工程における多孔体シート32の破損(裂け等)の抑制に寄与しうる。
(Double-sided adhesive sheet 31)
The double-sided pressure-sensitive adhesive sheet 31 includes a porous sheet 32, a first pressure-sensitive adhesive layer 3A and a second pressure-sensitive adhesive layer 3B. The shear force of the porous sheet 32 is, for example, 50 N/100 mm 2 or more, 75 N/100 mm 2 or more, 100 N/100 mm 2 or more, 125 N/100 mm 2 or more, 150 N/100 mm 2 or more, 170 N/100 mm 2 or more, 180 N/ It may be 100 mm 2 or more, 190 N/100 mm 2 or more, 200 N/100 mm 2 or more, or even 210 N/100 mm 2 or more. The upper limit of shear force is, for example, 350 N/100 mm 2 or less. The porous sheet 32 having a shear force within the above range can contribute to suppression of breakage (such as tearing) of the porous sheet 32 in the dividing step.
 多孔体シート32のせん断力を評価する方法について、図3を参照しながら説明する。評価すべき多孔体シート32を長さ10mm×幅10mmの正方形(面積100mm2)に切り出す。次に、切り出した多孔体シート32の両面に、同形状の両面粘着テープ51をそれぞれ貼り合わせる。両面粘着テープ51は、その外周と多孔体シート32の外周とが一致するように貼り合わせる。両面粘着テープ51には、せん断力の評価時に剥がれることのない十分な粘着性を有するテープを選択できる。両面粘着テープ51は、基材レスのテープであってもよい。次に、各々の両面粘着テープ51の露出面に対して、それぞれ、試験板であるステンレス板52を貼り合わせる。ステンレス板52の形状は、長さ20mm以上及び幅10mmの長方形とする。各々のステンレス板52は、その長辺と多孔体シート32の長辺とが一致するように、かつ、多孔体シート32の主面に垂直に見て、多孔体シート32及び一対の両面粘着テープ51の積層体の全体を覆うように貼り合わせる。また、各々のステンレス板52について、引張試験機のチャックにステンレス板52を固定できるだけの長さの端部53(端部53は両面粘着テープ51と接していない)を設けておく。次に、一方のステンレス板52を引張試験機の上部チャックに、他方のステンレス板52を引張試験機の下部チャックに固定し、引張速度200mm/分で引張試験を実施して、得られた応力-歪み(S-S)曲線における最大の応力値を多孔体シート32のせん断力と定めることができる。評価は常温で実施する。両面粘着シート31の状態にある多孔体シート32のせん断力は、両面粘着シート31が備える粘着剤層3を両面粘着テープ51の代わりに用いることで(換言すれば、多孔体シート32及び粘着剤層3の積層体である両面粘着シート31を切り出して)、上記と同様に評価できる。切り出しは、好ましくは、両面粘着シート31の端部を避けて行う。 A method for evaluating the shear force of the porous sheet 32 will be described with reference to FIG. A square having a length of 10 mm and a width of 10 mm (area of 100 mm 2 ) is cut out from the porous sheet 32 to be evaluated. Next, double-sided adhesive tapes 51 having the same shape are attached to both sides of the cut porous sheet 32 . The double-faced adhesive tape 51 is adhered so that the perimeter of the double-sided adhesive tape 51 and the perimeter of the porous sheet 32 are aligned. As the double-sided adhesive tape 51, a tape having sufficient adhesiveness that does not come off during shear force evaluation can be selected. The double-sided adhesive tape 51 may be a baseless tape. Next, a stainless steel plate 52 as a test plate is attached to the exposed surface of each double-sided adhesive tape 51 . The shape of the stainless plate 52 is a rectangle with a length of 20 mm or more and a width of 10 mm. Each stainless steel plate 52 has a porous sheet 32 and a pair of double-sided adhesive tapes when viewed perpendicularly to the main surface of the porous sheet 32 so that the long sides of the stainless steel plates 52 match the long sides of the porous sheet 32 . 51 are laminated so as to cover the entire laminate. Each stainless steel plate 52 is provided with an end portion 53 (the end portion 53 is not in contact with the double-sided adhesive tape 51) having a length sufficient to fix the stainless steel plate 52 to the chuck of the tensile tester. Next, one stainless steel plate 52 is fixed to the upper chuck of the tensile tester, and the other stainless steel plate 52 is fixed to the lower chuck of the tensile tester. The maximum stress value in the -strain (SS) curve can be defined as the shear force of the porous sheet 32 . Evaluation is carried out at room temperature. The shear force of the porous sheet 32 in the state of the double-sided adhesive sheet 31 can be reduced by using the adhesive layer 3 included in the double-sided adhesive sheet 31 instead of the double-sided adhesive tape 51 (in other words, the porous sheet 32 and the adhesive A double-sided adhesive sheet 31, which is a laminate of layers 3, is cut out) and evaluated in the same manner as described above. The cutting is preferably performed while avoiding the edges of the double-sided adhesive sheet 31 .
 多孔体シート32の側面耐水圧は、例えば400kPa以上であり、450kPa以上、500kPa以上、550kPa以上、600kPa以上、650kPa以上、700kPa以上、750kPa以上、更には800kPa以上であってもよい。側面耐水圧の上限は、例えば2000kPa以下であり、1500kPa以下、更には1000kPa以下であってもよい。多孔体シート32が上記範囲の側面耐水圧を有することは、分割時に生じる微粉末の飛散の抑制や分割用治具(例えばダイシング刃)の冷却のために水が使用されることがある分割工程において、半導体素子パッケージ11の内部空間14に対する水の侵入の抑制に寄与しうる。 The side water pressure resistance of the porous sheet 32 is, for example, 400 kPa or more, and may be 450 kPa or more, 500 kPa or more, 550 kPa or more, 600 kPa or more, 650 kPa or more, 700 kPa or more, 750 kPa or more, or even 800 kPa or more. The upper limit of the lateral water pressure resistance is, for example, 2000 kPa or less, and may be 1500 kPa or less, or even 1000 kPa or less. The fact that the porous sheet 32 has a side water pressure resistance within the above range is effective in suppressing the scattering of fine powder that occurs during division and in the division process in which water is sometimes used to cool the division jig (for example, a dicing blade). , the entry of water into the internal space 14 of the semiconductor device package 11 can be suppressed.
 多孔体シート32の側面耐水圧を評価する方法について、図4を参照しながら説明する。評価すべき多孔体シート32を外形20mm×10mm及び内形16.5mm×5mmの額縁状に切り出す。次に、切り出した多孔体シート32の両面に、同サイズの額縁状である両面粘着テープ61をそれぞれ貼り合わせる。両面粘着テープ61は、その外周と多孔体シート32の外周とが一致するように貼り合わせる。両面粘着テープ61には、側面耐水圧の評価時に水を透過させることなく、また、剥がれることのない十分な耐水性及び粘着性を有するテープを選択できる。両面粘着テープ61は、基材レスのテープであってもよい。次に、各々の両面粘着テープ61の露出面に対して、それぞれガラス板62を貼り合わせる。ガラス板62には、それぞれ、多孔体シート32の主面に垂直に見て、多孔体シート32及び一対の両面粘着テープ61の積層体の全体を覆うように貼り合わせる。ガラス板62には、上記貼り合わせが可能であると共に、側面耐水圧の評価時に大きく変形することのない十分な面積及び強度を有するものを選択できる。一対のガラス板62を貼り合わせた状態で、多孔体シート32の側面、両面粘着テープ61の側面及びガラス板62に囲まれた空間63が形成される。次に、密閉可能な評価用の容器65の内部64に全体を収容し、容器65を密閉する。容器65には、内部64を観察できると共に、側面耐水圧の評価に耐えうるだけの十分な透明性及び強度を有するものを選択できる。容器65は、例えば、ガラス又はアクリル製である。次に、容器65の内部64に注水して水圧を5kPa/秒の速度で増加させ、多孔体シート32の空間63側の側面に少なくとも1箇所、水が染み出た時点の内部64の水圧を、多孔体シート32の側面耐水圧として定めることができる。評価は、常温で実施する。両面粘着シート31の状態にある多孔体シート32の側面耐水圧は、両面粘着シート31が備える粘着剤層3を両面粘着テープ61の代わりに用いることで(換言すれば、多孔体シート32及び粘着剤層3の積層体である両面粘着シート31を切り出して)、上記と同様に評価できる。切り出しは、好ましくは、両面粘着シート31の端部を避けて行う。 A method for evaluating the side water pressure resistance of the porous sheet 32 will be described with reference to FIG. A porous sheet 32 to be evaluated is cut into a picture frame having an outer dimension of 20 mm×10 mm and an inner dimension of 16.5 mm×5 mm. Next, frame-shaped double-sided adhesive tapes 61 of the same size are attached to both sides of the cut porous sheet 32 . The double-faced adhesive tape 61 is adhered so that the perimeter of the double-sided adhesive tape 61 and the perimeter of the porous sheet 32 are aligned. For the double-sided adhesive tape 61, a tape having sufficient water resistance and adhesiveness that does not allow water to permeate and that does not come off during evaluation of side water pressure resistance can be selected. The double-sided adhesive tape 61 may be a baseless tape. Next, a glass plate 62 is attached to each exposed surface of each double-sided adhesive tape 61 . The porous sheet 32 and the pair of double-sided adhesive tapes 61 are attached to the glass plate 62 so as to cover the entire laminate of the porous sheet 32 and the pair of double-sided adhesive tapes 61 when viewed perpendicularly to the main surface of the porous sheet 32 . The glass plate 62 can be selected from those having sufficient area and strength so that the above bonding is possible and that the glass plate 62 is not greatly deformed during the evaluation of the lateral water pressure resistance. A space 63 surrounded by the side surface of the porous sheet 32, the side surface of the double-sided adhesive tape 61, and the glass plate 62 is formed with the pair of glass plates 62 bonded together. The whole is then placed in the interior 64 of a sealable evaluation container 65 and the container 65 is sealed. The container 65 can be selected to have sufficient transparency and strength to allow observation of the inside 64 and to withstand evaluation of lateral water pressure resistance. The container 65 is made of glass or acrylic, for example. Next, water is poured into the interior 64 of the container 65 to increase the water pressure at a rate of 5 kPa/sec. , as the lateral water pressure resistance of the porous sheet 32 . Evaluation is carried out at room temperature. The side water pressure resistance of the porous sheet 32 in the state of the double-sided adhesive sheet 31 can be improved by using the adhesive layer 3 included in the double-sided adhesive sheet 31 instead of the double-sided adhesive tape 61 (in other words, the porous sheet 32 and the adhesive The double-sided adhesive sheet 31, which is a laminate of the agent layer 3, is cut out), and the evaluation can be performed in the same manner as described above. The cutting is preferably performed while avoiding the edges of the double-sided adhesive sheet 31 .
 多孔体シート32の気孔率は、例えば20~95%である。気孔率の下限は、25%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、更には70%以上であってもよい。気孔率の上限は、90%以下、85%以下、更には80%以下であってもよい。 The porosity of the porous sheet 32 is, for example, 20-95%. The lower limit of the porosity may be 25% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, or even 70% or more. The upper limit of the porosity may be 90% or less, 85% or less, or even 80% or less.
 多孔体シート32の気孔率は、次のように評価できる。評価する多孔体シート32を一定の寸法(例えば、直径47mmの円形)に切り出して、その体積及び重量を求める。得られた体積及び重量を以下の式(1)に代入して、多孔体シート32の気孔率を算出する。式(1)のVは体積(cm3)、Wは重量(g)、Dは多孔体シート32を構成する材料の真密度(g/cm3)である。両面粘着シート31の状態にある多孔体シート32の気孔率は、例えば、溶解又は剥離により粘着剤層3を除去した多孔体シート32の体積V及び重量Wを求め、これを式(1)に代入して算出できる。
 気孔率(%)=100×[V-(W/D)]/V   ・・・(1)
The porosity of the porous sheet 32 can be evaluated as follows. The porous sheet 32 to be evaluated is cut into a certain size (for example, a circle with a diameter of 47 mm), and its volume and weight are determined. The porosity of the porous sheet 32 is calculated by substituting the obtained volume and weight into the following formula (1). In Equation (1), V is the volume (cm 3 ), W is the weight (g), and D is the true density (g/cm 3 ) of the material forming the porous sheet 32 . The porosity of the porous sheet 32 in the state of the double-sided pressure-sensitive adhesive sheet 31 is obtained by, for example, obtaining the volume V and the weight W of the porous sheet 32 from which the pressure-sensitive adhesive layer 3 has been removed by dissolution or peeling, and using the formula (1). It can be calculated by substituting.
Porosity (%) = 100 x [V-(W/D)]/V (1)
 多孔体シート32は、厚さ方向の通気性を有していても、有さなくてもよい。厚さ方向の通気性は、日本産業規格(旧日本工業規格;JIS)L1096:2010に定められた通気性測定B法(ガーレー形法)に準拠して求めた空気透過度(ガーレー通気度)により表すことができる。ガーレー通気度が1万秒/100mLを超える場合に、多孔体シート32は厚さ方向の通気性を有さないと判断できる。厚さ方向の通気性を有する多孔体シート32は、ガーレー通気度により表して、1~350秒/100mL、5~300秒/100mL、更には10~200秒/100mLの厚さ方向の通気性を有していてもよい。 The porous sheet 32 may or may not have air permeability in the thickness direction. The air permeability in the thickness direction is the air permeability (Gurley air permeability) obtained in accordance with the air permeability measurement method B (Gurley type method) specified in Japanese Industrial Standards (former Japanese Industrial Standards; JIS) L1096:2010. can be represented by When the Gurley air permeability exceeds 10,000 seconds/100 mL, it can be determined that the porous sheet 32 does not have air permeability in the thickness direction. The porous sheet 32 having air permeability in the thickness direction has air permeability in the thickness direction of 1 to 350 seconds/100 mL, 5 to 300 seconds/100 mL, and further 10 to 200 seconds/100 mL, as expressed by Gurley air permeability. may have
 多孔体シート32の厚さ方向の耐水圧は、例えば100kPa以上であり、110kPa以上、150kPa以上、180kPa以上、200kPa以上、230kPa以上、250kPa以上、更には270kPa以上であってもよい。厚さ方向の耐水圧の上限は、例えば1000kPa以下であり、800kPa以下、700kPa以下、600kPa以下、550kPa以下、更には500kPa以下であってもよい。厚さ方向の耐水圧は、JIS L1092:2009の耐水度試験A法(低水圧法)又はB法(高水圧法)に準拠して評価できる。 The water pressure resistance in the thickness direction of the porous sheet 32 is, for example, 100 kPa or more, and may be 110 kPa or more, 150 kPa or more, 180 kPa or more, 200 kPa or more, 230 kPa or more, 250 kPa or more, or even 270 kPa or more. The upper limit of water pressure resistance in the thickness direction is, for example, 1000 kPa or less, and may be 800 kPa or less, 700 kPa or less, 600 kPa or less, 550 kPa or less, or even 500 kPa or less. The water pressure resistance in the thickness direction can be evaluated according to JIS L1092:2009 water resistance test method A (low water pressure method) or B method (high water pressure method).
 多孔体シート32に含まれる材料の例は、金属、金属化合物、樹脂及びこれらの複合材料である。 Examples of materials included in the porous sheet 32 are metals, metal compounds, resins, and composite materials thereof.
 多孔体シート32に含まれうる樹脂の例は、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート(PET)等のポリエステル、シリコーン樹脂、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン(PEEK)、並びにフッ素樹脂である。フッ素樹脂の例は、PTFE、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)及びテトラフルオロエチレン-エチレン共重合体(ETFE)である。ただし、樹脂は、上記例に限定されない。 Examples of resins that can be contained in the porous sheet 32 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET), silicone resins, polycarbonates, polyimides, polyamideimides, polyphenylene sulfides, polyetheretherketones (PEEK), and fluororesin. Examples of fluoroplastics are PTFE, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer (ETFE). . However, the resin is not limited to the above examples.
 多孔体シート32に含まれうる金属の例は、ステンレス及びアルミニウムである。多孔体シート32に含まれうる金属化合物の例は、金属酸化物、金属窒化物、金属酸窒化物である。なお、金属にはケイ素が含まれる。金属化合物は、シリカ等のケイ素化合物であってもよい。 Examples of metals that can be contained in the porous sheet 32 are stainless steel and aluminum. Examples of metal compounds that can be contained in the porous sheet 32 are metal oxides, metal nitrides, and metal oxynitrides. Note that the metal includes silicon. The metal compound may be a silicon compound such as silica.
 多孔体シート32は、耐熱性材料を含んでいてもよい。耐熱性材料を含む多孔体シート32は、例えば、積層体21及び/又は製造した半導体素子パッケージ11に対してハンダリフロー等の高温処理を実施する場合に、特に適している。耐熱性材料の例は、金属、金属化合物及び耐熱性樹脂である。耐熱性樹脂は、典型的には、150℃以上の融点を有する。耐熱性樹脂の融点は、160℃以上、200℃以上、250℃以上、260℃以上、更には300℃以上であってもよい。耐熱性樹脂の例は、シリコーン樹脂、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイド、PEEK及びフッ素樹脂である。フッ素樹脂は、PTFEであってもよい。PTFEは、耐熱性に特に優れている。耐熱性材料である金属化合物の例は、ケイ素化合物である。耐熱性材料は、フッ素樹脂であってもよい。 The porous sheet 32 may contain a heat-resistant material. The porous sheet 32 containing a heat-resistant material is particularly suitable, for example, when performing high-temperature processing such as solder reflow on the laminate 21 and/or the manufactured semiconductor device package 11 . Examples of refractory materials are metals, metal compounds and refractory resins. A heat resistant resin typically has a melting point of 150° C. or higher. The melting point of the heat-resistant resin may be 160° C. or higher, 200° C. or higher, 250° C. or higher, 260° C. or higher, or even 300° C. or higher. Examples of heat-resistant resins are silicone resins, polyimides, polyamideimides, polyphenylene sulfides, PEEK and fluororesins. The fluororesin may be PTFE. PTFE is particularly excellent in heat resistance. Examples of metal compounds that are refractory materials are silicon compounds. The heat resistant material may be fluororesin.
 多孔体シート32は、樹脂の延伸多孔質シート又は粒子の多孔性凝集シートであってもよい。ただし、多孔体シート32の態様は、上記例に限定されない。 The porous sheet 32 may be a stretched porous resin sheet or a porous aggregation sheet of particles. However, the mode of the porous sheet 32 is not limited to the above example.
 樹脂の延伸多孔質シートは、フッ素樹脂の延伸多孔質シートであってもよく、PTFEの延伸多孔質シートであってもよい。PTFEの延伸多孔質シートは、通常、PTFE粒子を含むペースト押出物又はキャスト膜を延伸して形成される。PTFEの延伸多孔質シートは、通常、PTFEの微細なフィブリルにより構成され、フィブリルに比べてPTFEが凝集した状態にあるノードを有することもある。ただし、延伸多孔質シートは、上記例に限定されない。 The stretched porous resin sheet may be a fluororesin stretched porous sheet or a PTFE stretched porous sheet. Expanded porous sheets of PTFE are typically formed by stretching paste extrudates or cast membranes containing PTFE particles. Expanded porous sheets of PTFE are usually composed of fine fibrils of PTFE and may have nodes in which the PTFE is in a state of agglomeration relative to the fibrils. However, the stretched porous sheet is not limited to the above examples.
 粒子の多孔性凝集シートに含まれる粒子の例は、樹脂粒子、金属粒子及び金属化合物粒子である。耐熱性材料を含め、樹脂、金属及び金属化合物の例は上述のとおりである。多孔性凝集シートの例は、超高分子量ポリエチレン粒子の焼結シート、シリカ粒子の凝集シート(フュームドシリカシート等)である。ただし、多孔性凝集シートは、上記例に限定されない。 Examples of particles contained in the porous aggregated sheet of particles are resin particles, metal particles and metal compound particles. Examples of resins, metals and metal compounds, including refractory materials, are described above. Examples of porous agglomerated sheets are sintered sheets of ultra-high molecular weight polyethylene particles, agglomerated sheets of silica particles (such as fumed silica sheets). However, the porous aggregation sheet is not limited to the above examples.
 多孔体シート32は、典型的には、面内方向に通気可能な連通孔を有している。樹脂の延伸多孔質シート及び粒子の多孔性凝集シートは、通常、連通孔を有する。多孔体シート32は、独立孔を有していても、有さなくてもよい。 The porous sheet 32 typically has communication holes that allow ventilation in the in-plane direction. The stretched porous sheet of resin and the porous agglomerated sheet of particles usually have communicating pores. The porous sheet 32 may or may not have independent pores.
 第1の粘着剤層3A及び第2の粘着剤層3Bは、典型的には、粘着剤組成物から形成された層である。粘着剤組成物は感圧性粘着剤組成物であってもよく、換言すれば、第1の粘着剤層3A及び第2の粘着剤層3Bから選ばれる少なくとも1つが、感圧性粘着剤層であってもよい。熱硬化性や感光性の接着剤組成物(例えば特許文献1に開示のエポキシ系やベンゾシクロブテン(BCB)系)では、通常、低粘度の溶液を塗布することで層を形成するために、多孔体シート32に隣接して層を形成した場合には、多孔体シート32の内部に対して特に組成物が含浸しやすい。一方、感圧性粘着剤組成物は、多孔体シート32に対する含浸が抑制された層の形成に特に適している。 The first adhesive layer 3A and the second adhesive layer 3B are typically layers formed from an adhesive composition. The adhesive composition may be a pressure-sensitive adhesive composition, in other words, at least one selected from the first adhesive layer 3A and the second adhesive layer 3B is a pressure-sensitive adhesive layer. may In a thermosetting or photosensitive adhesive composition (for example, an epoxy-based or benzocyclobutene (BCB)-based adhesive composition disclosed in Patent Document 1), in order to form a layer by applying a low-viscosity solution, When a layer is formed adjacent to the porous sheet 32, the inside of the porous sheet 32 is particularly easily impregnated with the composition. On the other hand, the pressure-sensitive adhesive composition is particularly suitable for forming a layer in which impregnation of the porous sheet 32 is suppressed.
 粘着剤組成物は、エポキシ系、フェノール系等の熱硬化性粘着剤組成物であってもよく、換言すれば、第1の粘着剤層3A及び第2の粘着剤層3Bから選ばれる少なくとも1つが、熱硬化性粘着剤層であってもよい。熱硬化性粘着剤組成物から形成した粘着剤層3は、一般に耐熱性に優れている。ただし、多孔体2に対する含浸の抑制を考慮すると、熱硬化性粘着剤組成物は、130~170℃において1×105Pa以上の貯蔵弾性率を有していてもよく、250℃において5×105Pa以上の熱硬化後の貯蔵弾性率を有していてもよい。貯蔵弾性率の高さは、流動性の抑制に寄与しうる。130~170℃は、熱硬化性粘着剤組成物の熱硬化の進行を開始させる一般的な温度に対応する。130~170℃における貯蔵弾性率は、粘着剤組成物のフィルム(長さ22.5mm及び幅10mm)を試験片とし、強制振動型固体粘弾性測定装置を用いて、例えば0℃から260℃まで、昇温速度10℃/分で上記試験片を加熱しながら評価した130~170℃における貯蔵弾性率として定められる。試験片の測定方向(振動方向)は長さ方向とし、振動周波数は1Hzとする。250℃における貯蔵弾性率(硬化後)は、上記粘着剤組成物のフィルムを熱硬化させた後の試験片に対して同様の試験を実施することで評価できる。 The adhesive composition may be an epoxy-based, phenol-based, or other thermosetting adhesive composition, in other words, at least one selected from the first adhesive layer 3A and the second adhesive layer 3B One may be a thermosetting adhesive layer. The adhesive layer 3 formed from a thermosetting adhesive composition generally has excellent heat resistance. However, considering the suppression of impregnation of the porous body 2, the thermosetting adhesive composition may have a storage elastic modulus of 1×10 5 Pa or more at 130 to 170° C., and 5× at 250° C. It may have a storage elastic modulus after thermosetting of 10 5 Pa or more. A high storage modulus can contribute to suppression of fluidity. 130 to 170° C. corresponds to a general temperature that initiates the progress of thermosetting of the thermosetting pressure-sensitive adhesive composition. The storage modulus at 130 to 170 ° C. is measured by using a film of the adhesive composition (length 22.5 mm and width 10 mm) as a test piece and using a forced vibration type solid viscoelasticity measuring device, for example from 0 ° C. to 260 ° C. , is defined as the storage elastic modulus at 130 to 170° C., which is evaluated while heating the test piece at a heating rate of 10° C./min. The measurement direction (vibration direction) of the test piece shall be the longitudinal direction, and the vibration frequency shall be 1 Hz. The storage elastic modulus at 250°C (after curing) can be evaluated by conducting the same test on a test piece after thermally curing the film of the pressure-sensitive adhesive composition.
 粘着剤組成物の例は、アクリル系、シリコーン系、ウレタン系、エポキシ系及びゴム系の各系統の粘着剤組成物である。耐熱性に優れるアクリル系又はシリコーン系粘着剤組成物を選択してもよい。換言すれば、第1の粘着剤層3A及び第2の粘着剤層3Bから選ばれる少なくとも1つが、アクリル系粘着剤層又はシリコーン系粘着剤層であってもよい。また、第1の粘着剤層3Aと第2の粘着剤層3Bとの間で、粘着剤組成物の系統が異なっていてもよい。 Examples of adhesive compositions are acrylic-, silicone-, urethane-, epoxy-, and rubber-based adhesive compositions. An acrylic or silicone adhesive composition with excellent heat resistance may be selected. In other words, at least one selected from the first pressure-sensitive adhesive layer 3A and the second pressure-sensitive adhesive layer 3B may be an acrylic pressure-sensitive adhesive layer or a silicone pressure-sensitive adhesive layer. Moreover, the systems of the pressure-sensitive adhesive composition may differ between the first pressure-sensitive adhesive layer 3A and the second pressure-sensitive adhesive layer 3B.
 アクリル系粘着剤は、例えば、特開2005-105212号公報に開示の粘着剤である。シリコーン系粘着剤は、例えば、特開2003-313516号公報に開示の粘着剤(比較例として開示のものを含む)である。 The acrylic pressure-sensitive adhesive is, for example, the pressure-sensitive adhesive disclosed in JP-A-2005-105212. The silicone adhesive is, for example, the adhesive disclosed in JP-A-2003-313516 (including those disclosed as comparative examples).
 粘着剤層3の接着強度は、JIS Z0237:2009に定められた180°引きはがし粘着力試験(方法1)を実施して求めた引きはがし粘着力にして、例えば0.5~30N/20mmであり、0.7~20N/20mm、更には1~15N/20mmであってもよい。粘着剤層3は、ハンダリフローを想定したピーク温度250℃の耐熱試験の前後における接着強度の低下率(試験前の接着強度基準)が60%以下、50%以下、更には40%以下であってもよい。上記低下率の範囲を満たす粘着剤層3は、耐熱性に特に優れている。 The adhesive strength of the adhesive layer 3 is the peeling adhesive strength obtained by conducting the 180° peeling adhesive strength test (method 1) specified in JIS Z0237: 2009, for example, 0.5 to 30 N/20 mm. Yes, 0.7 to 20 N/20 mm, or even 1 to 15 N/20 mm. The pressure-sensitive adhesive layer 3 has a rate of decrease in adhesive strength (based on adhesive strength before the test) before and after a heat resistance test at a peak temperature of 250° C. assuming solder reflow is 60% or less, 50% or less, and further 40% or less. may The pressure-sensitive adhesive layer 3 that satisfies the above range of reduction rate is particularly excellent in heat resistance.
 粘着剤層3の厚さは、例えば2~150μmであり、5~100μm、更には7~90μmであってもよい。 The thickness of the pressure-sensitive adhesive layer 3 is, for example, 2 to 150 μm, may be 5 to 100 μm, and may be 7 to 90 μm.
 両面粘着シート31の厚さは、例えば10~300μmであり、20~200μm、更には20~150μmであってもよい。 The thickness of the double-sided adhesive sheet 31 is, for example, 10 to 300 μm, may be 20 to 200 μm, and may be 20 to 150 μm.
 貫通孔26は、例えば、両面粘着シート31に対する形状加工により形成できる。形状加工の例は、打ち抜き加工である。 The through-holes 26 can be formed, for example, by shaping the double-sided adhesive sheet 31 . An example of shaping is punching.
  (カバーシート25)
 カバーシート25は、厚さ方向の通気性を有していても、厚さ方向の通気性を有さなくてもよい。カバーシート25が厚さ方向の通気性を有さない場合においても、多孔体シート32及び多孔体2により通気性を確保しうる。
(Cover sheet 25)
The cover sheet 25 may or may not have air permeability in the thickness direction. Even if the cover sheet 25 does not have air permeability in the thickness direction, the air permeability can be ensured by the porous body sheet 32 and the porous body 2 .
 カバーシート25に含まれる材料の例は、金属、金属化合物、樹脂及びこれらの複合材料である。カバーシート25に含まれうる樹脂、金属及び金属化合物の例は、それぞれ、多孔体シート32に含まれうる樹脂、金属及び金属化合物の例と同じである。 Examples of materials included in the cover sheet 25 are metals, metal compounds, resins, and composite materials thereof. Examples of resins, metals, and metal compounds that can be contained in the cover sheet 25 are the same as examples of resins, metals, and metal compounds that can be contained in the porous sheet 32, respectively.
 カバーシート25は、耐熱性材料を含んでいてもよい。耐熱性材料を含むカバーシート25は、例えば、積層体21及び/又は製造した半導体素子パッケージ11に対してハンダリフロー等の高温処理を実施する場合に、特に適している。カバーシート25に含まれうる耐熱性材料の例は、多孔体シート32に含まれうる耐熱性材料の例と同じである。 The cover sheet 25 may contain a heat-resistant material. The cover sheet 25 containing a heat-resistant material is particularly suitable, for example, when performing high-temperature processing such as solder reflow on the laminate 21 and/or the manufactured semiconductor device package 11 . Examples of heat-resistant materials that can be included in the cover sheet 25 are the same as examples of heat-resistant materials that can be included in the porous sheet 32 .
 カバーシート25は、樹脂である耐熱性材料(耐熱性樹脂)及びガラスから選ばれる少なくとも1種を含んでいてもよい。耐熱性樹脂は、シリコーン樹脂、フッ素樹脂及びポリイミドから選ばれる少なくとも1種であってもよく、ポリイミドであってもよい。 The cover sheet 25 may contain at least one selected from a heat-resistant resin material (heat-resistant resin) and glass. The heat-resistant resin may be at least one selected from silicone resins, fluororesins and polyimides, and may be polyimides.
 カバーシート25は、光学的に透明であってもよい。光学的に透明なカバーシート25は、例えば、光半導体素子パッケージの製造に適している。本明細書において光学的に透明であるとは、JIS K7375に定められた厚さ方向の全光線透過率が、厚さ50μmのときに、80%以上、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上であることを意味する。 The cover sheet 25 may be optically transparent. The optically transparent cover sheet 25 is suitable, for example, for manufacturing optical semiconductor device packages. In this specification, optically transparent means that the total light transmittance in the thickness direction defined in JIS K7375 is 80% or more, preferably 85% or more, more preferably 90% when the thickness is 50 μm. % or more, more preferably 95% or more.
 光学的に透明なカバーシート25は、例えば、透明樹脂及びガラスから選ばれる少なくとも1種を含む。透明樹脂の例は、ポリイミド、ポリエチレンテレフタレート及びアクリル樹脂である。カバーシート25は、耐熱性材料を含み、かつ、光学的に透明であってもよい。耐熱性材料を含み、かつ、光学的に透明なシートの例は、ポリイミドシートである。 The optically transparent cover sheet 25 contains, for example, at least one selected from transparent resin and glass. Examples of transparent resins are polyimide, polyethylene terephthalate and acrylic resins. Cover sheet 25 may comprise a heat resistant material and may be optically transparent. An example of a sheet that includes a heat resistant material and is optically transparent is a polyimide sheet.
 カバーシート25は、光学機能を有していてもよい。光学機能を有するカバーシート25の例は、光学レンズ等の光学シートを含む。光学シートには、レンズ、位相差フィルム、偏光フィルム、反射フィルム、反射防止フィルム等の各種の光学部材が含まれる。 The cover sheet 25 may have an optical function. Examples of the cover sheet 25 having optical functions include optical sheets such as optical lenses. Optical sheets include various optical members such as lenses, retardation films, polarizing films, reflective films, and antireflection films.
 カバーシート25は、単層であっても、2以上の層の多層構造を有していてもよい。 The cover sheet 25 may be a single layer or may have a multi-layer structure of two or more layers.
 カバーシート25の厚さは、例えば1~2000μmである。 The thickness of the cover sheet 25 is, for example, 1 to 2000 μm.
 積層工程において積層体21を形成する方法及び条件は、例えば、両面粘着シート31の接合条件に基づいて選択できる。 The method and conditions for forming the laminate 21 in the lamination step can be selected based on the bonding conditions of the double-sided adhesive sheets 31, for example.
 <分割工程>
 積層体21の分割には、例えば、半導体ウェハーから個々の半導体素子を切り出す手法であるダイシングを適用できる。ダイシングは、半導体素子パッケージ11の効率良い製造に適している。ただし、積層体21を分割する方法は、上記例に限定されない。ダイシングは、公知の装置及び手法により実施できる。
<Dividing process>
For example, dicing, which is a technique for cutting out individual semiconductor elements from a semiconductor wafer, can be applied to divide the stacked body 21 . Dicing is suitable for efficient manufacture of the semiconductor device package 11 . However, the method of dividing the laminate 21 is not limited to the above example. Dicing can be performed by known devices and methods.
 分割線29は、積層体21及び製造する半導体素子パッケージ11の形状等に応じて設定できる。 The dividing line 29 can be set according to the shape of the laminate 21 and the semiconductor element package 11 to be manufactured.
[半導体素子パッケージ]
 本実施形態の半導体素子パッケージの一例は、図1に示された半導体素子パッケージ11である。基板12は、分割されている以外は、基板シート22と同様の構成を有しうる。カバー15は、分割されている以外は、カバーシート25と同様の構成を有しうる。多孔体2は、分割されている以外は、多孔体シート32と同様の構成を有しうる。両面粘着部1は、分割されている以外は、両面粘着シート31と同様の構成を有しうる。
[Semiconductor device package]
An example of the semiconductor element package of this embodiment is the semiconductor element package 11 shown in FIG. Substrate 12 may have a similar configuration to substrate sheet 22, except that it is split. The cover 15 may have the same configuration as the cover sheet 25, except that it is split. The porous body 2 can have the same configuration as the porous body sheet 32 except that it is divided. The double-sided adhesive part 1 can have the same configuration as the double-sided adhesive sheet 31 except that it is divided.
 半導体素子パッケージ11の例は、CCD、CMOS、赤外(IR)センサー素子、TOFセンサー素子、LIDARセンサー素子及びレーザー素子等の光半導体素子、並びに加速度センサーのパッケージである。半導体素子パッケージ11は、微小電気機械システム(MEMS)のパッケージであってもよい。ただし、半導体素子パッケージ11は、上記例に限定されない。 Examples of the semiconductor element package 11 are optical semiconductor elements such as CCD, CMOS, infrared (IR) sensor elements, TOF sensor elements, LIDAR sensor elements and laser elements, and acceleration sensor packages. Semiconductor device package 11 may be a micro-electro-mechanical system (MEMS) package. However, the semiconductor element package 11 is not limited to the above example.
 本実施形態の半導体素子パッケージは、本実施形態の製造方法により製造できる。ただし、本実施形態の半導体素子パッケージの製造方法は、本実施形態の製造方法に限定されない。 The semiconductor element package of this embodiment can be manufactured by the manufacturing method of this embodiment. However, the manufacturing method of the semiconductor element package of this embodiment is not limited to the manufacturing method of this embodiment.
 以下、実施例により、本発明を更に詳細に説明する。本発明は、以下の実施例に示す態様に限定されない。 The present invention will be described in more detail below with reference to examples. The invention is not limited to the embodiments shown in the examples below.
 本実施例における評価方法を説明する。 The evaluation method in this example will be explained.
 [厚さ]
 多孔体シートの厚さは、3箇所の測定ポイントについてダイヤル式シックネスゲージ(ミツトヨ製、測定端子径Φ=10mm)により測定した値の平均値として求めた。
[thickness]
The thickness of the porous sheet was obtained as an average value of values measured at three measurement points with a dial-type thickness gauge (manufactured by Mitutoyo, measuring terminal diameter Φ=10 mm).
 [気孔率]
 多孔体シートの気孔率は、上述の方法により評価した。試験片の形状は直径47mmの円形とした。
[Porosity]
The porosity of the porous sheet was evaluated by the method described above. The shape of the test piece was circular with a diameter of 47 mm.
 [通気度]
 多孔体シートの厚さ方向の通気度(ガーレー通気度)は、上述の方法により評価した。
[Permeability]
The air permeability (Gurley air permeability) in the thickness direction of the porous sheet was evaluated by the method described above.
 [厚さ方向の耐水圧]
 多孔体シートの厚さ方向の耐水圧は、上述の方法により評価した。
[Water pressure resistance in the thickness direction]
The water pressure resistance in the thickness direction of the porous sheet was evaluated by the method described above.
 [側面耐水圧]
 多孔体シートの側面耐水圧は、上述の方法により評価した。切り出した多孔体シートの両面に貼り合わせる両面粘着テープ61には、日東電工製、No.585を用いた。ガラス板の厚さは2mmとした。
[Side water pressure resistance]
The lateral water pressure resistance of the porous sheet was evaluated by the method described above. The double-sided adhesive tape 61 to be attached to both sides of the cut porous sheet is made of Nitto Denko, No. 585 was used. The thickness of the glass plate was 2 mm.
 [せん断力]
 多孔体シートのせん断力は、上述の方法により評価した。切り出した多孔体シートの両面に貼り合わせる両面粘着テープ51には、日東電工製、No.585を用いた。引張試験機には、島津製作所製、オートグラフAg-X plus(卓上型)を使用した。評価は、多孔体シートと両面粘着テープ51とを貼り合わせた後、JIS Z0237に定められた質量2kgの圧着ローラを一往復させ、更に常温で30分放置することで両者の接合を安定させた後に実施した。
[Shear force]
The shear force of the porous sheet was evaluated by the method described above. The double-faced adhesive tape 51 to be attached to both sides of the cut porous sheet is made of Nitto Denko Co., Ltd., No. 585 was used. Autograph Ag-X plus (desktop type) manufactured by Shimadzu Corporation was used as a tensile tester. In the evaluation, after bonding the porous sheet and the double-sided adhesive tape 51 together, a pressing roller having a mass of 2 kg defined in JIS Z0237 was reciprocated once, and the bonding was stabilized by allowing the two to stand at room temperature for 30 minutes. carried out later.
 (サンプル1)
 サンプル1の多孔体シートとして、PTFEの延伸多孔質シート(日東電工製、NTF1122)を準備した。準備した多孔体シートは、面内方向の通気性を有していた。次に、準備した多孔体シートの両面に、それぞれ、両面粘着テープ(日東電工製、No.585)を貼り合わせた後、これを打ち抜いて、10mm□の正方形の形状を持つ25個の貫通孔が5×5の配列で形成された、100mm□の正方形の形状を有する両面粘着シートを作製した。次に、10mm□の正方形の形状を有する有底の窪み25個が一方の面に設けられた、100mm□の正方形の形状を有するガラスエポキシ基板(パナソニック電工製、R1700)における当該面に、基板の主面に垂直な方向から見て両面粘着シートの貫通孔の周と基板の窪みの周とが一致するように、両面粘着シートを貼り合わせた。次に、両面粘着シートの露出面に対して、100mm□の正方形の形状を有するガラスシート(厚さ500μm)を貼り合わせて、半導体素子パッケージを模したパッケージ(貫通孔及び窪みにより構成される内部空間を基板とガラスとの間に有する)を分割によって得るための積層体を作製した。次に、積層体に対してハンダリフローを模した高温処理を実施した後、ダイシングにより積層体を分割した。分割線は、基板の主面に垂直な方向から見て、各々の貫通孔(及び窪み)の間の位置とした。ダイシング装置には、DISCO製、DFD6450を使用した。ブレードにはP1A861 SDC300Nを使用し、ブレードの回転速度は30000rpm、送り速度は30mm/秒とした。積層体の状態におけるハンダリフローの際にはパッケージの破損は生じなかった。また、積層体をダイシングにより分割する際に多孔体シートの破損及びパッケージ内への水漏れは起きることなく、パッケージを製造できた。
(Sample 1)
As a porous sheet of sample 1, an expanded porous sheet of PTFE (NTF1122 manufactured by Nitto Denko) was prepared. The prepared porous sheet had air permeability in the in-plane direction. Next, double-sided adhesive tape (manufactured by Nitto Denko, No. 585) was attached to both sides of the prepared porous sheet, respectively, and then punched out to form 25 through-holes each having a square shape of 10 mm square. A double-sided pressure-sensitive adhesive sheet having a square shape of 100 mm square was prepared in which the squares were arranged in a 5×5 array. Next, a glass epoxy substrate having a square shape of 100 mm square (R1700 manufactured by Panasonic Electric Works) in which 25 bottomed depressions having a square shape of 10 mm square are provided on one surface. The double-sided pressure-sensitive adhesive sheets were bonded together so that the circumference of the through-hole of the double-sided pressure-sensitive adhesive sheet and the circumference of the depression of the substrate were aligned when viewed from the direction perpendicular to the main surface of the substrate. Next, a glass sheet (thickness: 500 μm) having a square shape of 100 mm×100 mm is attached to the exposed surface of the double-sided pressure-sensitive adhesive sheet to form a package imitating a semiconductor device package (an internal structure composed of through holes and recesses). A laminate was prepared for obtaining a space between the substrate and the glass) by splitting. Next, the laminate was subjected to a high-temperature treatment simulating solder reflow, and then the laminate was divided by dicing. The dividing line was positioned between each through-hole (and recess) when viewed from the direction perpendicular to the main surface of the substrate. DFD6450 manufactured by DISCO was used as a dicing machine. P1A861 SDC300N was used for the blade, and the rotation speed of the blade was 30000 rpm and the feed rate was 30 mm/sec. No package damage occurred during solder reflow in the laminated state. In addition, the package could be manufactured without causing breakage of the porous sheet and leakage of water into the package when dividing the laminate by dicing.
 (サンプル2)
 サンプル2の多孔体シートとして、PTFEの延伸多孔質シートを以下のように準備した。PTFE微粉末(AGC製、フルオンPTFE CD123E)100重量部と、成形助剤としてn-ドデカン(ジャパンエナジー製)20重量部とを均一に混合し、得られた混合物をシリンダーにより圧縮した後、ラム押出成形して、シート状の混合物を形成した。次に、形成したシート状の混合物を一対の金属ロールを通して厚さ0.2mmに圧延し、更に150℃の加熱により成形助剤を除去して、帯状のPTFEシート成形体を形成した。次に、形成したシート成形体を、延伸温度120℃、延伸倍率1.7倍で長手方向に延伸した後、延伸温度375℃、延伸倍率1.3倍で長手方向に更に延伸して、PTFEの延伸多孔質シートを得た。準備した多孔体シートは、面内方向の通気性を有していた。
(Sample 2)
As the porous sheet of sample 2, an expanded porous sheet of PTFE was prepared as follows. 100 parts by weight of PTFE fine powder (Fluon PTFE CD123E, manufactured by AGC) and 20 parts by weight of n-dodecane (manufactured by Japan Energy) as a molding aid are uniformly mixed, and the resulting mixture is compressed with a cylinder and then rammed. It was extruded to form a sheet-like mixture. Next, the formed sheet-like mixture was rolled through a pair of metal rolls to a thickness of 0.2 mm, and the forming aid was removed by heating at 150° C. to form a belt-like PTFE sheet molded body. Next, the formed sheet molding is stretched in the longitudinal direction at a stretching temperature of 120° C. and a stretching ratio of 1.7 times, and then further stretched in the longitudinal direction at a stretching temperature of 375° C. and a stretching ratio of 1.3 times to obtain PTFE. was obtained. The prepared porous sheet had air permeability in the in-plane direction.
 得られた多孔体シートを用いて、サンプル1と同様に、半導体素子パッケージを模したパッケージを製造したところ、積層体の状態におけるハンダリフローの際にはパッケージの破損は生じなかった。また、積層体をダイシングにより分割する際に多孔体シートの破損及びパッケージ内への水漏れは起きることなく、パッケージを製造できた。 Using the obtained porous sheet, a package imitating a semiconductor element package was manufactured in the same manner as Sample 1, and no damage occurred to the package during solder reflow in the state of the laminate. In addition, the package could be manufactured without causing breakage of the porous sheet and leakage of water into the package when dividing the laminate by dicing.
 (サンプル3)
 サンプル3の多孔体シートとして、PTFEの延伸多孔質シートを以下のように準備した。PTFE微粉末(ダイキン工業製、ポリフロンF-121)100重量部と、成形助剤としてn-ドデカン(ジャパンエナジー製)20重量部とを均一に混合し、得られた混合物をシリンダーにより圧縮した後、ラム押出成形して、シート状の混合物を形成した。次に、形成したシート状の混合物を一対の金属ロールを通して厚さ0.8mmに圧延し、更に150℃の加熱により成形助剤を除去して、帯状のPTFEシート成形体を形成した。次に、形成したシート成形体を、延伸温度300℃、延伸倍率3.5倍で長手方向に延伸した後、延伸温度150℃、延伸倍率25倍で幅方向に更に延伸し、PTFEの融点以上の温度である400℃で焼成して、PTFEの延伸多孔質シートを得た。準備した多孔体シートは、面内方向の通気性を有していた。
(Sample 3)
As the porous sheet of sample 3, an expanded porous sheet of PTFE was prepared as follows. After uniformly mixing 100 parts by weight of PTFE fine powder (Polyflon F-121, manufactured by Daikin Industries) and 20 parts by weight of n-dodecane (manufactured by Japan Energy) as a molding aid, and compressing the resulting mixture with a cylinder. was ram extruded to form a sheet-like mixture. Next, the formed sheet-like mixture was rolled through a pair of metal rolls to a thickness of 0.8 mm, and the forming aid was removed by heating at 150° C. to form a belt-like PTFE sheet molded body. Next, the formed sheet molding is stretched in the longitudinal direction at a stretching temperature of 300° C. and a stretching ratio of 3.5 times, and then further stretched in the width direction at a stretching temperature of 150° C. and a stretching ratio of 25 times. was fired at 400° C., which is the temperature of , to obtain an expanded porous sheet of PTFE. The prepared porous sheet had air permeability in the in-plane direction.
 得られた多孔体シートを用いて、サンプル1と同様に、半導体素子パッケージを模したパッケージを製造したところ、積層体の状態におけるハンダリフローの際にはパッケージの破損は生じなかった。しかし、積層体をダイシングにより分割する際には、パッケージ内への水漏れは生じなかったものの、多孔体シートに裂けが生じた。 Using the obtained porous sheet, a package imitating a semiconductor element package was manufactured in the same manner as Sample 1, and no damage occurred to the package during solder reflow in the state of the laminate. However, when the laminate was divided by dicing, although water did not leak into the package, the porous sheet was torn.
 (サンプル4)
 サンプル4の多孔体シートとして、PTFEの延伸多孔質シート(日東電工製、NTF1131)を準備した。準備した多孔体シートは、面内方向の通気性を有していた。
(Sample 4)
As the porous sheet of sample 4, an expanded porous sheet of PTFE (NTF1131 manufactured by Nitto Denko) was prepared. The prepared porous sheet had air permeability in the in-plane direction.
 得られた多孔体シートを用いて、サンプル1と同様に、半導体素子パッケージを模したパッケージを製造したところ、積層体の状態におけるハンダリフローの際にはパッケージの破損は生じなかった。しかし、積層体をダイシングにより分割する際には、多孔体シートに裂け等の損傷は生じなかったものの、水漏れが発生した。 Using the obtained porous sheet, a package imitating a semiconductor element package was manufactured in the same manner as Sample 1, and no damage occurred to the package during solder reflow in the state of the laminate. However, when the laminate was divided by dicing, although the porous sheet was not damaged such as torn, water leakage occurred.
 各サンプルの評価結果を以下の表1に示す。なお、サンプル3,4についても、ダイシングの条件を変更することで、裂け及び水漏れを十分に抑制してパッケージを製造できる。 The evaluation results of each sample are shown in Table 1 below. For Samples 3 and 4, by changing the dicing conditions, it is possible to manufacture packages while sufficiently suppressing tearing and water leakage.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法によれば、半導体素子パッケージを製造できる。 According to the manufacturing method of the present invention, a semiconductor element package can be manufactured.

Claims (13)

  1.  複数の半導体素子パッケージの製造方法であって、
     前記複数の半導体素子パッケージは、それぞれ、基板と、前記基板上に配置された半導体素子と、前記半導体素子を覆うカバーと、前記基板と前記カバーとの間において前記半導体素子を囲むように配置された多孔体と、を備え、かつ、前記半導体素子が配置された内部空間と外部空間との間は、前記多孔体の内部を介して気体が通過可能であり、
     前記製造方法は、
     カバーシートと、前記複数の半導体素子が配置された基板シートとを、複数の貫通孔を有すると共に多孔体シートと前記多孔体シートの両面それぞれに予め形成された粘着層とを有する両面粘着シートを介して、前記半導体素子が前記貫通孔内に位置すると共に前記カバーシートにより覆われるように接合して、積層体を得ることと、
     前記カバーシート、前記基板シート、及び前記多孔体シートから、それぞれ、複数の前記カバー、複数の前記基板、及び複数の前記多孔体が得られるように、前記積層体を分割することと、を含む、製造方法。
    A method for manufacturing a plurality of semiconductor device packages, comprising:
    The plurality of semiconductor device packages each include a substrate, a semiconductor device arranged on the substrate, a cover covering the semiconductor device, and a semiconductor device arranged between the substrate and the cover so as to surround the semiconductor device. and a porous body, wherein gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space,
    The manufacturing method is
    A double-sided pressure-sensitive adhesive sheet having a cover sheet, a substrate sheet on which the plurality of semiconductor elements are arranged, a plurality of through holes, and a porous sheet and adhesive layers preliminarily formed on both sides of the porous sheet. bonding the semiconductor element through the through hole so that the semiconductor element is positioned in the through hole and covered with the cover sheet to obtain a laminate;
    dividing the laminate so that a plurality of the covers, a plurality of the substrates, and a plurality of the porous bodies are obtained from the cover sheet, the substrate sheet, and the porous body sheet, respectively. ,Production method.
  2.  前記多孔体シートのせん断力が50N/100mm2以上である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the porous sheet has a shearing force of 50 N/100 mm 2 or more.
  3.  前記多孔体シートの側面耐水圧が400kPa以上である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the porous sheet has a lateral water pressure resistance of 400 kPa or more.
  4.  前記多孔体シートは耐熱性材料を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the porous sheet contains a heat-resistant material.
  5.  前記耐熱性材料はフッ素樹脂である、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the heat-resistant material is a fluororesin.
  6.  前記多孔体シートは、フッ素樹脂の延伸多孔質シートである、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the porous sheet is a stretched porous sheet of fluororesin.
  7.  前記カバーシートは厚さ方向の通気性を有さない、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the cover sheet has no air permeability in the thickness direction.
  8.  前記カバーシートは光学的に透明である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the cover sheet is optically transparent.
  9.  前記カバーシートは、耐熱性樹脂及びガラスから選ばれる少なくとも1種を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the cover sheet contains at least one selected from heat-resistant resin and glass.
  10.  前記カバーシートは光学レンズを含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the cover sheet includes an optical lens.
  11.  基板と、前記基板上に配置された半導体素子と、前記半導体素子を覆うカバーと、前記基板と前記カバーとの間において前記半導体素子を囲むように配置された多孔体と、を備え、かつ、前記半導体素子が配置された内部空間と外部空間との間は、前記多孔体の内部を介して気体が通過可能であり、
     前記基板と前記カバーとは、前記多孔体と前記多孔体の両面それぞれに形成された粘着層とを有する両面粘着部を介して接合されている、
     半導体素子パッケージ。
    a substrate, a semiconductor element arranged on the substrate, a cover covering the semiconductor element, and a porous body arranged between the substrate and the cover so as to surround the semiconductor element; gas can pass through the interior of the porous body between the internal space in which the semiconductor element is arranged and the external space;
    The substrate and the cover are bonded via a double-sided adhesive part having the porous body and adhesive layers formed on both sides of the porous body,
    Semiconductor device package.
  12.  前記多孔体のせん断力が50N/100mm2以上である、請求項11に記載の半導体素子パッケージ。 12. The semiconductor device package according to claim 11, wherein said porous body has a shearing force of 50 N/100 mm <2> or more.
  13.  前記多孔体の側面耐水圧が400kPa以上である、請求項11に記載の半導体素子パッケージ。
     
    12. The semiconductor element package according to claim 11, wherein said porous body has a lateral water pressure resistance of 400 kPa or more.
PCT/JP2022/032886 2021-08-31 2022-08-31 Method for manufacturing semiconductor element package, and semiconductor element package WO2023033090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058779.5A CN117897806A (en) 2021-08-31 2022-08-31 Method for manufacturing semiconductor element package and semiconductor element package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-141967 2021-08-31
JP2021141967 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023033090A1 true WO2023033090A1 (en) 2023-03-09

Family

ID=85412276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032886 WO2023033090A1 (en) 2021-08-31 2022-08-31 Method for manufacturing semiconductor element package, and semiconductor element package

Country Status (3)

Country Link
CN (1) CN117897806A (en)
TW (1) TW202312295A (en)
WO (1) WO2023033090A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064927A (en) * 1996-08-14 1998-03-06 Japan Gore Tex Inc Ic package bonding sheet and ic package
JP2006005025A (en) * 2004-06-15 2006-01-05 Sharp Corp Method of manufacturing semiconductor wafer with lid and method of manufacturing semiconductor apparatus
JP2006344903A (en) * 2005-06-10 2006-12-21 Fujifilm Holdings Corp Semiconductor module
JP2007157792A (en) * 2005-11-30 2007-06-21 Matsushita Electric Works Ltd Method of manufacturing wafer scale semiconductor package
JP2009021381A (en) * 2007-07-12 2009-01-29 Sumitomo Bakelite Co Ltd Light receiving device and manufacturing method of light receiving device
JP2012169564A (en) * 2011-02-16 2012-09-06 Omron Corp Wafer level package, chip size package device, and method of manufacturing wafer level package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064927A (en) * 1996-08-14 1998-03-06 Japan Gore Tex Inc Ic package bonding sheet and ic package
JP2006005025A (en) * 2004-06-15 2006-01-05 Sharp Corp Method of manufacturing semiconductor wafer with lid and method of manufacturing semiconductor apparatus
JP2006344903A (en) * 2005-06-10 2006-12-21 Fujifilm Holdings Corp Semiconductor module
JP2007157792A (en) * 2005-11-30 2007-06-21 Matsushita Electric Works Ltd Method of manufacturing wafer scale semiconductor package
JP2009021381A (en) * 2007-07-12 2009-01-29 Sumitomo Bakelite Co Ltd Light receiving device and manufacturing method of light receiving device
JP2012169564A (en) * 2011-02-16 2012-09-06 Omron Corp Wafer level package, chip size package device, and method of manufacturing wafer level package

Also Published As

Publication number Publication date
TW202312295A (en) 2023-03-16
CN117897806A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
JP5133039B2 (en) Polytetrafluoroethylene porous membrane, method for producing the same, and waterproof air-permeable filter
EP2583996A1 (en) Polytetrafluoroethylene porous membrane with small elongation anisotropy and process for production thereof
KR101440616B1 (en) Adsorbing film and fabrication method thereof, and adsorbing film with release film adhering thereto and fabrication method thereof
JP2012176361A (en) Porous multilayered filter
WO2018101090A1 (en) Double-sided adhesive sheet and production method for semiconductor device
KR20140105720A (en) Porous polytetrafluoroethylene resin film, porous polytetrafluoroethylene resin film composite, and separation membrane element
WO2023033090A1 (en) Method for manufacturing semiconductor element package, and semiconductor element package
WO2018194073A1 (en) Laminate and wound body
JP4702829B2 (en) Vent filter and casing provided with the same
US20220266575A1 (en) Protective cover member and member supplying sheet including the same
KR20220104725A (en) Polytetrafluoroethylene stretched porous membrane, air filtration media and filter member using same
KR20240052777A (en) Manufacturing method and semiconductor device package of semiconductor device package
JP2017105200A (en) Porous sheet for adsorption and surface layer for exchange used in porous sheet for adsorption
WO2023033089A1 (en) Cover member, double-sided adhesive sheet, seal member, and sheet for supplying member
WO2018194072A1 (en) Laminate and wound body
KR20240046823A (en) Cover member, double-sided adhesive sheet, seal member, and member supply sheet
TW202140736A (en) Protective cover member and member-supplying sheet
TW202100447A (en) Vent member, method for manufacturing electronic device including vent member, and member supply tape
JP2008192863A (en) Ceramic cover
JPH08258198A (en) Porous sheet for suction fixation
WO2021033571A1 (en) Cover member and member supplying assembly provided with same
KR20230052127A (en) Adhesive tape and jig cushion for camara module including the same
WO2024024863A1 (en) Sheet for outer package and power storage device comprising same
WO2022210435A1 (en) Sheet for supplying member
JP2007009118A (en) Porous sheet and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545666

Country of ref document: JP