WO2023033082A1 - Plant cultivation method and tomato - Google Patents

Plant cultivation method and tomato Download PDF

Info

Publication number
WO2023033082A1
WO2023033082A1 PCT/JP2022/032870 JP2022032870W WO2023033082A1 WO 2023033082 A1 WO2023033082 A1 WO 2023033082A1 JP 2022032870 W JP2022032870 W JP 2022032870W WO 2023033082 A1 WO2023033082 A1 WO 2023033082A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
cultivating
cultivation
tomato
gene
Prior art date
Application number
PCT/JP2022/032870
Other languages
French (fr)
Japanese (ja)
Inventor
孝幸 松岡
俊之 谷水
和子 篠崎
順哉 溝井
大輔 戸高
聡 城所
そよ香 徳長
Original Assignee
株式会社プラントライフシステムズ
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プラントライフシステムズ, 国立大学法人 東京大学 filed Critical 株式会社プラントライフシステムズ
Publication of WO2023033082A1 publication Critical patent/WO2023033082A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics

Definitions

  • the present invention relates to a method for cultivating plants and tomatoes.
  • Patent Document 1 A technique for cultivating plants by supplying a nutrient solution to a medium has been proposed (see Patent Document 1).
  • An object of the present invention is to provide a method for cultivating plants that improves yield and sugar content, and highly functional tomatoes.
  • a plant cultivation method includes a step of expressing a plant gene that is expressed when phosphoric acid is deficient, thereby increasing the sugar content and yield of a plant, particularly a tomato.
  • the plant cultivation method of the present invention comprises A step (A) of expressing plant genes that are expressed when phosphoric acid is deficient is included.
  • the method of cultivating plants is a method of cultivating plants in an alkaline medium, By changing the amount and timing of water supply according to the growth stage of the plant, it is possible to control the expression of plant genes that are expressed when phosphoric acid is deficient.
  • the culture medium is made of a porous substance capable of adsorbing phosphoric acid.
  • the medium contains calcium, It can be a material capable of adsorbing phosphoric acid as calcium phosphate.
  • the medium can have a buffering function to try to maintain the phosphate concentration.
  • the medium may comprise porous calcium carbonate.
  • the medium can be made by pulverizing and baking coral sand or scallop shells.
  • a nutrient solution containing phosphoric acid is supplied to the medium, In the step (A), the phosphoric acid concentration may be decreased.
  • the present invention can include a step in which the concentration of phosphoric acid in the leaves of the plant is lower than the concentration at the time of adjustment of the nutrient solution.
  • the concentration of phosphoric acid in the leaves of the plant is preferably 20% or less, more preferably 40% or less, relative to the concentration at the time of adjustment of the nutrient solution.
  • the present invention can include a step in which the concentration of phosphoric acid in the medium is lower than the concentration at the time of adjustment of the nutrient solution.
  • the concentration of phosphoric acid in the medium is preferably 20% or less, more preferably 40% or less, relative to the concentration at the time of adjustment of the nutrient solution.
  • the method for cultivating the plant can be carried out without causing changes in the expression of genes related to photosynthesis of the plant and genes induced by stress such as drought.
  • the expression level of the acid phosphatase gene is preferably 2-fold or more, more preferably 4-fold or more, compared to soil culture conditions.
  • the expression level of the acid phosphatase gene in the leaves of the plant, can be preferably 2 times or more, more preferably 4 times or more, compared to soil culture conditions.
  • the plant is a tomato
  • the expression level of the acid phosphatase gene (ACP5) is preferably 2-fold or more, more preferably 4-fold or more, compared to soil culture conditions.
  • the plant is a tomato
  • the expression level of the acid phosphatase gene (ACP5) is preferably 2-fold or more, more preferably 4-fold or more, as compared to soil culture conditions.
  • the plant is a tomato
  • Tomatoes can be grown such that the leaf glucose content is 1.0-4.0 ⁇ mol/gFW and the leaf fructose content is 3.5-6 ⁇ mol/gFW.
  • the plant is a tomato
  • Tomatoes can be cultivated so that the leaf phosphate concentration is 1.0 to 6.0 ⁇ mol/gFW, preferably 1.0 to 5.0 ⁇ mol/gFW, more preferably 1.0 to 4.0 ⁇ mol/gFW.
  • the plant is a tomato
  • Tomatoes are cultivated so that the expression of at least one of the acid phosphatase gene and the SPX domain protein gene, which is most induced by phosphate deficiency, is doubled or more compared to when no medium is used.
  • the acid phosphatase gene can be acid phosphatase gene (Solyc03g098010) and the SPX domain protein gene can be SPX domain protein (Solyc08g060920).
  • the method for cultivating the plant includes: Phosphate concentration in the leaves of the plant can be reduced to 80% or less compared to hydroponics, soil culture, or hydroponics using vermiculite, rockwool, or the like.
  • the method for cultivating the plant includes: The expression of acid phosphatase gene and SPX domain protein gene, which are induced most strongly by phosphate depletion, were significantly higher than those in hydroponics, soil culture, or hydroponics using vermiculite, rockwool, etc. It can be done to raise more than double.
  • the tomato according to the present invention has a sugar content of 8 Brix% or more, an acidity of 0.350% or more, and a glucose content of 120 ⁇ mol/gFW or more.
  • the yield and sugar content of plants can be improved.
  • FIG. 1 is a diagram showing a comparison with commercially available tomato fruits purchased at a supermarket.
  • FIG. 2 is a diagram showing the sugar content and fruit weight of tomato fruits cultivated in the Toyota field of Plant Life Systems Co., Ltd. of the present applicant.
  • FIG. 3 is a scatter diagram with sugar content and fruit weight as two variables.
  • FIG. 4 is a diagram showing the effect of coral sand cultivation on the growth of tomatoes (Frutica).
  • FIG. 5 is a diagram showing the effect of coral sand cultivation on tomato (Frutica) photosynthesis.
  • FIG. 6 is a diagram showing the effect of coral sand cultivation on sugar content in mature fruits.
  • FIG. 7 is a diagram showing the effect of coral sand cultivation on starch content in immature tomato fruits.
  • FIG. 1 is a diagram showing a comparison with commercially available tomato fruits purchased at a supermarket.
  • FIG. 2 is a diagram showing the sugar content and fruit weight of tomato fruits cultivated in the Toyota field of Plant Life Systems Co., Ltd. of the present
  • FIG. 8 is a comprehensive analysis diagram of the influence of coral sand cultivation on gene expression in tomato leaves.
  • FIG. 9 shows the effect of coral sand cultivation on gene expression in tomato leaves.
  • FIG. 10 shows the effect of coral sand cultivation on gene expression in tomato fruit.
  • FIG. 11 shows the phosphoric acid concentration in the nutrient solution.
  • FIG. 12 shows phosphate concentrations in leaves.
  • FIG. 13 is a diagram showing the results of comprehensive analysis of phosphorus deficiency-responsive genes and comparison with coral sand cultivation.
  • FIG. 14 shows the expression of phosphorus deficiency-inducible genes in tomato leaves hydroponically grown at different phosphate concentrations.
  • FIG. 15 is a diagram showing the sugar content and the number of fruits in tomatoes cultivated by hydroponics at different phosphoric acid concentrations.
  • the plant cultivation method includes, in cultivating a plant, a step of expressing a plant gene that is expressed when phosphoric acid is deficient.
  • the plant cultivation method is, in particular, a cultivation method using an alkaline medium, and by changing the amount and timing of water supply during the growth stage of the plant, the gene that is expressed when phosphoric acid is deficient among plant genes. can control the expression of
  • the medium is a substance that can adsorb phosphoric acid.
  • the medium preferably contains calcium such as calcium carbonate and is made of a material capable of adsorbing phosphoric acid as calcium phosphate.
  • Examples of the medium include coral sand, scallop shells, and the like.
  • the medium can have a buffering function to try to maintain the phosphate concentration.
  • the particle size of coral sand can be, for example, 1-10 mm, preferably 3-5 mm.
  • Plant Cultivation System Examples of plant cultivation systems include the following.
  • a cultivation kit provided with a cultivation tank and a liquid fertilizer tank provided below the cultivation tank can be applied.
  • this cultivation kit for example, a communication passage communicating with a liquid fertilizer tank provided at the bottom of the cultivation tank is provided, and the nutrient solution in the liquid fertilizer tank is pumped up into the cultivation tank by a pump and passed through the culture medium in the cultivation tank. The nutrient solution can be returned to the liquid fertilizer tank from the communication passage.
  • An example of such a cultivation kit is Home Hyponica 303 (trade name).
  • a cultivation method can be adopted in which a culture medium is placed in a cultivation tank in a cultivation bed, a nutrient solution circulation system is constructed, and the nutrient solution is circulated in the cultivation bed by a watering means.
  • the light source can be natural light or an artificial light source such as LED.
  • the nutrient solution can contain water, at least one of nitrate nitrogen and ammonia nitrogen, phosphoric acid, potassium oxide, and calcium oxide.
  • nitrate nitrogen include nitrate ions.
  • ammonium nitrogen include, for example, ammonium ions.
  • the content of phosphoric acid can be 48 to 70 parts by weight when the total of nitrate nitrogen and ammonia nitrogen is 100 parts by weight.
  • the content of potassium oxide can be 160 to 180 parts by weight when the total of nitrate nitrogen and ammonia nitrogen is 100 parts by weight.
  • the content of calcium oxide is 30 to 85 parts by weight, preferably 50 to 85 parts by weight, more preferably 60 to 85 parts by weight, when the total of nitrate nitrogen and ammonia nitrogen is 100 parts by weight.
  • the ratio of calcium oxide content to phosphoric acid content is preferably 1.2 to 1.6.
  • the total concentration of nitrate nitrogen and ammonium nitrogen in the nutrient solution is, for example, 80-550 mg/L, preferably 200-440 mg/L, more preferably 250-380 mg/L.
  • the ratio of nitrate nitrogen to ammonia nitrogen content is preferably 5-10, more preferably 7-10.
  • the ratio of nitrate nitrogen to ammonium nitrogen content is within this range, especially when the medium is an alkaline medium, the plant can more appropriately absorb trace components of other nutrient solutions.
  • the ratio of potassium oxide content to calcium oxide content is preferably 2.0 to 2.6.
  • the nutrient solution preferably does not contain sulfur oxides.
  • the nutrient solution can contain at least one selected from the group consisting of MgO, MnO, B2O3 , Fe, Cu, Zn and Mo.
  • Table 1 shows the composition of the nutrient solution.
  • Table 2 shows an example of the EC concentration in the nutrient solution at each stage of cultivation.
  • Tomato Fruit The tomato fruit according to the embodiment has, for example, a sugar content of 8 Brix% or higher, an acidity of 0.350% or higher, and a glucose content of 120 ⁇ mol/gFW or higher.
  • the method of cultivating plants according to the present embodiment is applicable to, for example, tomatoes, melons, watermelons, strawberries, mangoes, and tea.
  • Tomatoes (Fourth cultivation example: hydroponics) were hydroponically cultivated under the conditions of the nutrient solution components shown in Table 1 without adding a medium to the cultivation tank of Home Hyponica 303 (trade name). Specific conditions are as follows. ⁇ Cultivation tank: Approximately 30 L (650 x 650 x 70 to 75 mm) circulating hydroponics. To prevent the growth of bacteria in the nutrient solution, replace the entire nutrient solution once every 14 days. ⁇ Home Hyponica 303, 4 plants per container. Planted in a square arrangement with 300mm spacing between each plant (150mm distance from the wall to the planting position). There is no restriction on roots in the cultivation tank (free state with no occupied tank). ⁇ Induction height is 1500mm.
  • Table 3 shows the EC concentration of the nutrient solution at each stage in the first to fourth cultivation examples. For two weeks after planting, watering was performed six times for two minutes between 8:00 and 15:00. After that, irrigation was performed four times. The amount of water for one irrigation was set at 0.5 to 0.7 L per plant, and since 4 plants were planted in one device, the amount of water for one irrigation was set at 2 to 2.4 L per device.
  • FIG. 1 is a diagram showing a comparison between commercially available tomato fruits purchased at a supermarket and tomatoes obtained by the present cultivation method.
  • A is the appearance of the fruit and
  • B is the sugar content of the fruit. It was measured using a pocket saccharimeter (PAL-BX
  • ACID3, ATAGO) (n 7 to 12).
  • C shows the acidity of the fruit, which was measured using a pocket sugar-acidity meter (PAL-BX
  • ACID3, ATAGO) (n 7 to 12).
  • error bars indicate standard deviation. Asterisks in the figure indicate significant difference at 5% level by t-test.
  • the tomatoes cultivated by this cultivation method showed higher sugar content and acidity values than commercially available tomatoes purchased at supermarkets.
  • the glucose contents of the tomatoes cultivated by this cultivation method showed higher values than those of commercial tomatoes purchased at supermarkets.
  • FIG. 2 is a diagram showing the sugar content and fruit weight of tomatoes cultivated in the Toyoda field of Plant Life Systems Co., Ltd. of the present applicant.
  • A is the sugar content of tomato fruit for each inflorescence. The variety used is Frutica. Measured with a pocket saccharimeter.
  • FIG. 3 is a scatter diagram with sugar content and fruit weight as two variables.
  • A) is a scatter diagram plotting the sugar content and fruit weight of all the fruits shown in FIG. 3
  • B) is a scatter diagram plotting the sugar content and fruit weight for each cultivation treatment for the data in (A). .
  • Tomatoes cultivated with coral sand and scallop shell produced fruit weighing less than 40g and with high sugar content at a higher frequency than those cultivated with hydroponics or soil culture.
  • FIG. 4 is a diagram showing the influence of coral sand cultivation on the growth of tomato (Frutica).
  • A) is the number of fruits per plant
  • B) is the plant height
  • C is the stem diameter at the base of the plant
  • D is the stem diameter just below the fifth inflorescence.
  • the number of fruits per individual tomato cultivated with coral sand and scallop shells was lower than that cultivated hydroponically.
  • FIG. 5 is a diagram showing the effect of coral sand cultivation on photosynthesis of tomato (Frutica).
  • A is Fv/Fm.
  • B is the SPAD value.
  • the SPAD value which is an index of the amount of chlorophyll
  • FIG. 6 is a diagram showing the effect of coral sand cultivation on the sugar content in mature fruit.
  • A shows the glucose content
  • B shows the fructose content
  • C shows the sucrose content
  • A to (C) various sugar contents were measured using an enzyme assay kit.
  • Mature fruits of the 5th or 6th inflorescence cultivated in the Toyota field 108 days after planting were used (n 3). Error bars indicate standard deviation
  • sucrose content in mature fruits cultivated with coral sand showed higher values than those in mature fruits cultivated with hydroponics, soil culture, and scallop shell cultivation.
  • FIG. 7 is a diagram showing the effect of coral sand cultivation on the starch content in immature tomato fruits.
  • starch in immature tomato fruits can be a raw material for monosaccharides and disaccharides in mature fruits. Therefore, it was suggested that the increase in starch content in immature fruits is related to the increase in monosaccharide and disaccharide contents in mature fruits in tomato plants cultivated with coral sand.
  • FIG. 8 is a comprehensive analysis diagram of the effect of coral sand cultivation on tomato leaf gene expression.
  • A Tomato cultivation method, cultivation area, and comparative analysis settings used for analysis.
  • (a) is a coral sand cultivation system
  • (b) is a system using potting soil instead of coral sand, which were cultivated in the same field (vinyl greenhouse).
  • c was cultivated in a greenhouse using potting soil.
  • B Results of transcriptome analysis. The dots show the expression changes of each gene, the horizontal axis is the ratio of expression levels in coral sand (a) and soil culture (b), and the vertical axis is the expression level in coral sand (a) and soil culture (c).
  • the ratio of each is indicated by the log2 value.
  • a total of 9 sections (I to IX) were set by dividing each axis into sections exhibiting an absolute value of log2 of 1 or more (change of 2-fold or more) (indicated by dotted lines).
  • the numbers in parentheses indicate the number of genes belonging to each compartment.
  • Table 4 shows 45 genes whose expression was elevated in coral cultivation.
  • Table 4 is a list of genes whose expression was more than doubled (q ⁇ 0.05) in coral sand cultivation in both experiments.
  • a Order of expression increase rate in experiment 1 in Fig. 8;
  • b ITAG3.2 gene prediction;
  • c genes encoding proteins with the highest sequence similarity in Arabidopsis thaliana;
  • d Arabidopsis homologous genes induced by phosphorus deficiency Where indicated, the fold induction was given.
  • Inducibility in Arabidopsis is according to Liu et al. (2011) Plant Physiol. 156: 1176-1189.
  • Table 5 shows the results of Gene Ontology (GO) analysis of genes whose expression was found to increase in coral sand cultivation.
  • Table 5 shows the GO analysis results for 283 genes whose expression increased by 1.5 times or more in coral sand cultivation in Experiment 1 in Fig. 8.
  • the top 20 GO terms (gene functional classification) that were significantly enriched compared to the expected value based on the number of genes in the entire genome are shown in descending order of P value.
  • FIG. 9 is a diagram showing the effect of coral sand cultivation on gene expression in tomato leaves.
  • FIG. 10 is a diagram showing the effect of coral sand cultivation on gene expression in tomato fruit.
  • the phosphorus deficiency-inducible genes ACP5 and SPX tended to be high in coral sand and scallop shells, indicating the possibility that fruits are also phosphorus deficient.
  • the expression levels of PEPC-related genes in fruit showed little difference between experimental plots.
  • Both AgpL1 and LIN5 are genes identified from quantitative trait loci associated with high sugar content, and the intensity of expression of these genes may be related to sugar content.
  • AgpL1 tended to be higher in coral sand and scallop shell experiments.
  • AgpL1 expression may be associated with increased starch content in coral sand and scallop shell experimental plots.
  • FIG. 11 shows the effect of coral sand cultivation on the concentration of phosphate in the nutrient solution.
  • A shows the phosphate concentration two weeks after planting in four experimental plots: soil culture, hydroponics, coral sand, and scallop shell. The dotted line indicates the concentration of phosphoric acid when the nutrient solution was prepared.
  • B shows changes in phosphoric acid concentration in the nutrient solution during the cultivation period using the coral cultivation system. The nutrient solution was completely replaced on the days indicated by the arrows, and replenished for the decreased amount on the other days.
  • the preparation concentration is the phosphoric acid concentration at the time of preparation of the nutrient solution, and increases stepwise as the concentration of the nutrient solution increases in accordance with the growth of the plant body.
  • FIG. 12 shows the effect of coral sand cultivation on the leaf phosphate concentration. Phosphate concentration in leaves just above the 5th inflorescence was measured using 6 to 8 individual leaves per experimental plot in 4 experimental plots: soil culture, hydroponics, coral sand, and scallop shell. Graphs show mean values and standard deviations. Alphabets in the figure indicate that there is a significant difference at the 5% level between opposite signs by Tukey-Kramer's multiple comparison test.
  • FIG. 13 is a diagram showing the results of comprehensive analysis of phosphorus deficiency-responsive genes in tomato leaves and comparison with coral sand cultivation.
  • Tomato plants were cultivated in a normal hydroponic solution (100% phosphorus, P100) or in a low phosphorus hydroponic solution (1% phosphorus, P1), and gene expression in leaves was comprehensively analyzed by microarray (Experiment 3). ). Venn diagrams were created for the genes whose expression increased and those whose expression decreased in the three experiments.
  • Table 6 shows 30 genes whose expression increased more than twice in all experiments of coral sand cultivation (experiment 1, experiment 2) and low phosphorus cultivation (experiment 3).
  • a Ranking of expression increase rate in experiment 1;
  • b gene prediction by ITAG3.2;
  • c genes encoding proteins with the highest sequence similarity in Arabidopsis thaliana.
  • genes that showed strong inducibility in the P1 area were weakly induced in the P10 area, confirming that the P10 area is under mild phosphorus-deficient conditions.
  • FIG. 4 is a diagram showing numbers; P100 is a treatment group cultivated in a normal hydroponic medium, and P10 is a treatment group cultivated in a hydroponic medium in which the phosphorus concentration is reduced to 1/10.
  • A shows the sugar content of each inflorescence of Chika
  • B shows the sugar content of each inflorescence of Frutica
  • C shows the weight of each inflorescence of Chika
  • D shows the weight of each inflorescence of Frutica.
  • the fruit weight of each inflorescence is shown.
  • error bars indicate standard deviation.
  • Asterisks in the figure indicate that the t-Test results are significantly different at the 5% level.
  • the sugar content in the fruits in the first to third flower clusters of Chika showed significantly higher values in the P10 treatment area than in the P100 treatment area.
  • the sugar content of tomato fruits treated with P10 in the first to fourth inflorescences was significantly higher than that treated with P100.
  • the P10 treatment plots were smaller than the P100 treatment plots. From these results, it was clarified that the sugar content increased by suppressing the amount of donated phosphorus.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Provided are: a plant cultivation method that improves yield and sugar content; and a high-performance tomato. According to the present invention, a plant cultivation method includes a step (A) for making a plant express a gene that is expressed when there is a phosphate deficiency. The plant cultivation method uses an alkali medium and involves changing the amount and timing of water supply in accordance with the growth stage of the plant to control the expression of the gene of the plant that is expressed when there is a phosphate deficiency. The medium is a porous material, e.g., coral sand, that includes a calcium component and can adsorb phosphate as calcium phosphate. According to the present invention, a tomato fruit has a sugar content of at least 8 Brix%, an acidity of at least 0.350%, and a glucose content of at least 120 μmol/g FW.

Description

植物の栽培方法およびトマトPlant cultivation method and tomato
 本発明は、植物の栽培方法およびトマトに関する。 The present invention relates to a method for cultivating plants and tomatoes.
 養液を培地に供給して、植物を栽培する技術が提案されている(特許文献1参照)。 A technique for cultivating plants by supplying a nutrient solution to a medium has been proposed (see Patent Document 1).
特開2004-033151号公報Japanese Patent Application Laid-Open No. 2004-033151
 本発明の目的は、収量および糖度が向上する植物の栽培方法および高機能のトマトを提供することにある。 An object of the present invention is to provide a method for cultivating plants that improves yield and sugar content, and highly functional tomatoes.
 本願発明者らは、植物の栽培方法に当たって、植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子を発現させる工程を含むことで、植物、特にトマトの糖度と収量が増加することを見出し、本発明に至った。 The inventors of the present application found that a plant cultivation method includes a step of expressing a plant gene that is expressed when phosphoric acid is deficient, thereby increasing the sugar content and yield of a plant, particularly a tomato. The discovery led to the present invention.
 本発明の植物の栽培方法は、
 植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子を発現させる工程(A)を含む。
The plant cultivation method of the present invention comprises
A step (A) of expressing plant genes that are expressed when phosphoric acid is deficient is included.
 本発明において、
 植物の栽培方法は、アルカリ培地による植物の栽培方法であり、
 植物の生長段階に応じて水の供給量および供給時期を変えることで、植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子の発現を制御することができる。
In the present invention,
The method of cultivating plants is a method of cultivating plants in an alkaline medium,
By changing the amount and timing of water supply according to the growth stage of the plant, it is possible to control the expression of plant genes that are expressed when phosphoric acid is deficient.
 本発明において、
 前記培地は、多孔質のリン酸を吸着し得る物質からなる植物の栽培方法。
In the present invention,
The method for cultivating plants, wherein the culture medium is made of a porous substance capable of adsorbing phosphoric acid.
 本発明において、
 前記培地は、カルシウム分を含み、
 リン酸カルシウムとしてリン酸を吸着し得る材質であることができる。
In the present invention,
The medium contains calcium,
It can be a material capable of adsorbing phosphoric acid as calcium phosphate.
 本発明において、
 前記培地は、リン酸濃度を維持しようとする緩衝機能を有することができる。
In the present invention,
The medium can have a buffering function to try to maintain the phosphate concentration.
 本発明において、
 前記培地は、多孔質の炭酸カルシウムを有することができる。
In the present invention,
The medium may comprise porous calcium carbonate.
 本発明において、
 前記培地は、サンゴ砂またはホタテ貝殻を粉砕焼成したものとすることができる。
In the present invention,
The medium can be made by pulverizing and baking coral sand or scallop shells.
 本発明において、
 前記培地にリン酸を含む養液が供給され、
 前記工程(A)において、リン酸濃度が減少するものであることができる。
In the present invention,
A nutrient solution containing phosphoric acid is supplied to the medium,
In the step (A), the phosphoric acid concentration may be decreased.
 本発明において、前記養液の調整時の濃度より、前記植物の葉におけるリン酸濃度が低くなる工程を含むことができる。具体的には、前記養液の調整時の濃度より、前記植物の葉におけるリン酸濃度が好ましくは20%以下、より好ましくは40%以下となる工程であるとよい。 The present invention can include a step in which the concentration of phosphoric acid in the leaves of the plant is lower than the concentration at the time of adjustment of the nutrient solution. Specifically, the concentration of phosphoric acid in the leaves of the plant is preferably 20% or less, more preferably 40% or less, relative to the concentration at the time of adjustment of the nutrient solution.
 本発明において、前記養液の調整時の濃度より、前記培地におけるリン酸濃度が低くなる工程を含むことができる。具体的には、前記養液の調整時の濃度より、前記培地におけるリン酸濃度が好ましくは20%以下、より好ましくは40%以下となる工程であるとよい。 The present invention can include a step in which the concentration of phosphoric acid in the medium is lower than the concentration at the time of adjustment of the nutrient solution. Specifically, the concentration of phosphoric acid in the medium is preferably 20% or less, more preferably 40% or less, relative to the concentration at the time of adjustment of the nutrient solution.
 本発明において、
 前記植物の栽培方法は、前記植物の光合成関連の遺伝子および乾燥などのストレス誘導性遺伝子の発現に変化を生じさせずに行われることができる。
In the present invention,
The method for cultivating the plant can be carried out without causing changes in the expression of genes related to photosynthesis of the plant and genes induced by stress such as drought.
 本発明において、酸性ホスファターゼ遺伝子の発現量が土耕栽培の条件に比べて、好ましくは2倍以上、より好ましくは4倍以上である。 In the present invention, the expression level of the acid phosphatase gene is preferably 2-fold or more, more preferably 4-fold or more, compared to soil culture conditions.
 本発明において、前記植物の葉において、酸性ホスファターゼ遺伝子の発現量が土耕栽培の条件に比べて、好ましくは2倍以上、より好ましくは4倍以上であることができる。 In the present invention, in the leaves of the plant, the expression level of the acid phosphatase gene can be preferably 2 times or more, more preferably 4 times or more, compared to soil culture conditions.
 本発明において、
 前記植物はトマトであり、
 酸性ホスファターゼ遺伝子(ACP5)の発現量が土耕栽培の条件に比べて、好ましくは2倍以上、より好ましくは4倍以上であることができる。
In the present invention,
the plant is a tomato,
The expression level of the acid phosphatase gene (ACP5) is preferably 2-fold or more, more preferably 4-fold or more, compared to soil culture conditions.
 本発明において、
 前記植物はトマトであり、
 前記トマトの葉において、酸性ホスファターゼ遺伝子(ACP5)の発現量が土耕栽培の条件に比べて、好ましくは2倍以上、より好ましくは4倍以上であることができる。
In the present invention,
the plant is a tomato,
In the tomato leaves, the expression level of the acid phosphatase gene (ACP5) is preferably 2-fold or more, more preferably 4-fold or more, as compared to soil culture conditions.
 本発明において、
 前記植物はトマトであり、
 葉のグルコースの含量が1.0~4.0 μmol/gFWであり、葉のフルクトースの含量が3.5~6μmol/gFWとなるようにトマトを栽培することができる。
In the present invention,
the plant is a tomato,
Tomatoes can be grown such that the leaf glucose content is 1.0-4.0 μmol/gFW and the leaf fructose content is 3.5-6 μmol/gFW.
 本発明において、
 前記植物はトマトであり、
 葉のリン酸濃度が1.0~6.0 μmol/gFW、好ましくは1.0~5.0 μmol/gFW、より好ましくは1.0~4.0 μmol/gFWとなるようにトマトを栽培することができる。
In the present invention,
the plant is a tomato,
Tomatoes can be cultivated so that the leaf phosphate concentration is 1.0 to 6.0 μmol/gFW, preferably 1.0 to 5.0 μmol/gFW, more preferably 1.0 to 4.0 μmol/gFW.
 本発明において、
 前記植物はトマトであり、
 リン酸欠乏で最も誘導される酸性ホスファターゼ遺伝子あるいはSPXドメインタンパク質遺伝子の少なくともいずれか一方の発現が培地を用いない場合と比較して2倍以上となるようにトマトを栽培するものである。
In the present invention,
the plant is a tomato,
Tomatoes are cultivated so that the expression of at least one of the acid phosphatase gene and the SPX domain protein gene, which is most induced by phosphate deficiency, is doubled or more compared to when no medium is used.
 本発明において、
 前記酸性ホスファターゼ遺伝子は酸性ホスファターゼ遺伝子(Solyc03g098010)であり、前記SPXドメインタンパク質遺伝子は、SPXドメインタンパク質(Solyc08g060920)であることができる。
In the present invention,
The acid phosphatase gene can be acid phosphatase gene (Solyc03g098010) and the SPX domain protein gene can be SPX domain protein (Solyc08g060920).
 本発明において、
 前記植物の栽培方法は、
 前記植物の葉におけるリン酸濃度が、水耕、土耕、あるいはバーミキュライト、ロックウール等を用いた養液栽培と比較して、80%以下に低下するように行われることができる。
In the present invention,
The method for cultivating the plant includes:
Phosphate concentration in the leaves of the plant can be reduced to 80% or less compared to hydroponics, soil culture, or hydroponics using vermiculite, rockwool, or the like.
 本発明において、
 前記植物の栽培方法は、
 リン酸欠乏で最も強く誘導される酸性ホスファターゼ遺伝子および最も強く誘導されるSPXドメインタンパク質遺伝子の発現が、水耕、土耕、あるいはバーミキュライト、ロックウール等を用いた養液栽培と比較して、2倍以上に上昇するように行われることができる。
In the present invention,
The method for cultivating the plant includes:
The expression of acid phosphatase gene and SPX domain protein gene, which are induced most strongly by phosphate depletion, were significantly higher than those in hydroponics, soil culture, or hydroponics using vermiculite, rockwool, etc. It can be done to raise more than double.
 本発明に係るトマトは、糖度が8 Brix%以上であり、酸度が0.350%以上であり、グルコース含量が120 μmol/gFW以上である。 The tomato according to the present invention has a sugar content of 8 Brix% or more, an acidity of 0.350% or more, and a glucose content of 120 μmol/gFW or more.
 本発明の植物の栽培方法によれば、植物の収量と糖度を向上させることができる。 According to the plant cultivation method of the present invention, the yield and sugar content of plants can be improved.
図1は、スーパーで購入した市販トマト果実との比較を示す図である。FIG. 1 is a diagram showing a comparison with commercially available tomato fruits purchased at a supermarket. 図2は、本出願人の株式会社プラントライフシステムズの豊田圃場において栽培されたトマト果実の糖度および果重を示す図である。FIG. 2 is a diagram showing the sugar content and fruit weight of tomato fruits cultivated in the Toyota field of Plant Life Systems Co., Ltd. of the present applicant. 図3は、糖度と果重を2変数とした散布図である。FIG. 3 is a scatter diagram with sugar content and fruit weight as two variables. 図4は、サンゴ砂栽培がトマト(フルティカ)の生育に与える影響を示す図である。FIG. 4 is a diagram showing the effect of coral sand cultivation on the growth of tomatoes (Frutica). 図5は、サンゴ砂栽培がトマト(フルティカ)の光合成に与える影響を示す図である。FIG. 5 is a diagram showing the effect of coral sand cultivation on tomato (Frutica) photosynthesis. 図6は、サンゴ砂栽培が成熟果実における糖含量に与える影響を示す図である。FIG. 6 is a diagram showing the effect of coral sand cultivation on sugar content in mature fruits. 図7は、サンゴ砂栽培がトマトの未成熟果実におけるデンプン含量に与える影響を示す図である。FIG. 7 is a diagram showing the effect of coral sand cultivation on starch content in immature tomato fruits. 図8は、サンゴ砂栽培がトマト葉の遺伝子発現に与える影響の網羅的解析図である。FIG. 8 is a comprehensive analysis diagram of the influence of coral sand cultivation on gene expression in tomato leaves. 図9は、サンゴ砂栽培がトマト葉における遺伝子発現に与える影響を示す図である。FIG. 9 shows the effect of coral sand cultivation on gene expression in tomato leaves. 図10は、サンゴ砂栽培がトマト果実における遺伝子発現に与える影響を示す図である。FIG. 10 shows the effect of coral sand cultivation on gene expression in tomato fruit. 図11は、養液中のリン酸濃度について示す。FIG. 11 shows the phosphoric acid concentration in the nutrient solution. 図12は、葉のリン酸濃度を示す。FIG. 12 shows phosphate concentrations in leaves. 図13は、リン欠乏応答性遺伝子の網羅的解析の結果およびサンゴ砂栽培との比較を示す図である。FIG. 13 is a diagram showing the results of comprehensive analysis of phosphorus deficiency-responsive genes and comparison with coral sand cultivation. 図14は、異なるリン酸濃度で水耕栽培したトマトの葉におけるリン欠乏誘導性遺伝子の発現を示す図である。FIG. 14 shows the expression of phosphorus deficiency-inducible genes in tomato leaves hydroponically grown at different phosphate concentrations. 図15は、異なるリン酸濃度での水耕栽培により栽培したトマトにおける果実の糖度および果実数を示す図である。FIG. 15 is a diagram showing the sugar content and the number of fruits in tomatoes cultivated by hydroponics at different phosphoric acid concentrations.
 以下、本発明の好適な実施の形態について詳細に説明する。 Preferred embodiments of the present invention will be described in detail below.
 1.植物の栽培方法
 実施の形態に係る植物の栽培方法は、植物の栽培に当たって、植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子を発現させる工程を含むものである。植物の栽培方法は、特に、アルカリ培地による栽培方法であり、植物の生長段階において、水の供給量および供給時期を変えることで、植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子の発現を制御するものであることができる。
1. Plant Cultivation Method The plant cultivation method according to the embodiment includes, in cultivating a plant, a step of expressing a plant gene that is expressed when phosphoric acid is deficient. The plant cultivation method is, in particular, a cultivation method using an alkaline medium, and by changing the amount and timing of water supply during the growth stage of the plant, the gene that is expressed when phosphoric acid is deficient among plant genes. can control the expression of
 培地は、リン酸を吸着し得る物質である。培地は、炭酸カルシウムなどのカルシウム分を含み、リン酸カルシウムとしてリン酸を吸着し得る材質であることが好ましい。培地としては、たとえば、サンゴ砂、ホタテ貝殻などを挙げることができる。培地は、リン酸濃度を維持しようとする緩衝機能を有することができる。サンゴ砂からなる培地にすることにより、抗菌作用による根系の病害減少、その抗菌作用により培養液の殺菌設備が不要か又は簡素化が可能であり、さらには、入れ替えや廃棄を極力抑えることができる。サンゴ砂の粒径は、たとえば、1~10 mm、好ましくは3~5 mmとすることができる。 The medium is a substance that can adsorb phosphoric acid. The medium preferably contains calcium such as calcium carbonate and is made of a material capable of adsorbing phosphoric acid as calcium phosphate. Examples of the medium include coral sand, scallop shells, and the like. The medium can have a buffering function to try to maintain the phosphate concentration. By using a medium made of coral sand, it is possible to reduce root system diseases due to its antibacterial action, and the antibacterial action makes it unnecessary or possible to simplify equipment for sterilizing the culture solution, and furthermore, it is possible to minimize replacement and disposal. . The particle size of coral sand can be, for example, 1-10 mm, preferably 3-5 mm.
 2.植物の栽培システム
 植物の栽培システムとしては、たとえば、次のものを挙げることができる。
2. Plant Cultivation System Examples of plant cultivation systems include the following.
 (1)第1の態様として、栽培槽と、栽培槽の下に設けられた液肥槽とが設けられた栽培キットを適用することができる。この栽培キットの場合には、たとえば、栽培槽の底部に設けられた液肥槽に連通する連通路を設けると共に、液肥槽の養液をポンプで栽培槽に汲み上げ、栽培槽内の培地を通過した養液が連通路から液肥槽に戻るようにすることができる。このような栽培キットしては、たとえば、ホームハイポニカ303(商品名)を挙げることができる。 (1) As a first aspect, a cultivation kit provided with a cultivation tank and a liquid fertilizer tank provided below the cultivation tank can be applied. In the case of this cultivation kit, for example, a communication passage communicating with a liquid fertilizer tank provided at the bottom of the cultivation tank is provided, and the nutrient solution in the liquid fertilizer tank is pumped up into the cultivation tank by a pump and passed through the culture medium in the cultivation tank. The nutrient solution can be returned to the liquid fertilizer tank from the communication passage. An example of such a cultivation kit is Home Hyponica 303 (trade name).
 (2)第2の態様として、栽培ベッドに栽培槽に培地を入れ、養液の循環系を構築し灌水手段により、栽培ベッド内に養液を循環させる栽培手法を採用することができる。 (2) As a second aspect, a cultivation method can be adopted in which a culture medium is placed in a cultivation tank in a cultivation bed, a nutrient solution circulation system is constructed, and the nutrient solution is circulated in the cultivation bed by a watering means.
 光源は、自然光であっても、LEDなどの人工光源であってもよい。 The light source can be natural light or an artificial light source such as LED.
 3.養液の例
 本実施の形態に係る植物の栽培方法に適用される養液の例を説明する。養液は、水と、硝酸態窒素およびアンモニア態窒素の少なくとも一つと、リン酸と、酸化カリウムと、酸化カルシウムとを含むことができる。硝酸態窒素の具体例としては、たとえば、硝酸イオンを挙げることができる。アンモニア態窒素の具体例としては、たとえば、アンモニウムイオンを挙げることができる。
3. Example of nutrient solution An example of the nutrient solution applied to the plant cultivation method according to the present embodiment will be described. The nutrient solution can contain water, at least one of nitrate nitrogen and ammonia nitrogen, phosphoric acid, potassium oxide, and calcium oxide. Specific examples of nitrate nitrogen include nitrate ions. Specific examples of ammonium nitrogen include, for example, ammonium ions.
 リン酸の含有量は、硝酸態窒素およびアンモニア態窒素の総和を100重量部としたときに、48~70重量部とすることができる。 The content of phosphoric acid can be 48 to 70 parts by weight when the total of nitrate nitrogen and ammonia nitrogen is 100 parts by weight.
 酸化カリウムの含有量は、硝酸態窒素およびアンモニア態窒素の総和を100重量部としたときに、160~180重量部とすることができる。 The content of potassium oxide can be 160 to 180 parts by weight when the total of nitrate nitrogen and ammonia nitrogen is 100 parts by weight.
 酸化カルシウムの含有量は、硝酸態窒素およびアンモニア態窒素の総和を100重量部としたときに、30~85重量部、好ましくは50~85重量部、さらに好ましくは60~85重量部である。 The content of calcium oxide is 30 to 85 parts by weight, preferably 50 to 85 parts by weight, more preferably 60 to 85 parts by weight, when the total of nitrate nitrogen and ammonia nitrogen is 100 parts by weight.
 リン酸の含有量に対する酸化カルシウムの含有量の比(酸化カルシウムの含有量/リン酸の含有量)は、1.2~1.6であることが好ましい。 The ratio of calcium oxide content to phosphoric acid content (calcium oxide content/phosphoric acid content) is preferably 1.2 to 1.6.
 養液における硝酸態窒素およびアンモニア態窒素の総和の濃度は、たとえば80~550 mg/L、好ましくは200~440 mg/L、さらに好ましくは250~380 mg/Lである。 The total concentration of nitrate nitrogen and ammonium nitrogen in the nutrient solution is, for example, 80-550 mg/L, preferably 200-440 mg/L, more preferably 250-380 mg/L.
 アンモニア態窒素の含有量に対する硝酸態窒素の比(硝酸態窒素の含有量/アンモニア態窒素の含有量)は、5~10であることが好ましく、さらに好ましくは7~10である。アンモニア態窒素の含有量に対する硝酸態窒素の比がこの範囲にあると、特に培地がアルカリ培地の場合、植物が他の養液の微量成分をより適度に吸収することができる。 The ratio of nitrate nitrogen to ammonia nitrogen content (nitrate nitrogen content/ammonia nitrogen content) is preferably 5-10, more preferably 7-10. When the ratio of nitrate nitrogen to ammonium nitrogen content is within this range, especially when the medium is an alkaline medium, the plant can more appropriately absorb trace components of other nutrient solutions.
 酸化カルシウムの含有量に対する酸化カリウムの含有量の比(酸化カリウムの含有量/酸化カルシウムの含有量)は、2.0~2.6であることが好ましい。 The ratio of potassium oxide content to calcium oxide content (potassium oxide content/calcium oxide content) is preferably 2.0 to 2.6.
 養液は硫黄酸化物が含まれていないことが好ましい。養液は、MgO、MnO、B、Fe、Cu、ZnおよびMoからなる群から選ばれた少なくとも1種を含むことができる。 The nutrient solution preferably does not contain sulfur oxides. The nutrient solution can contain at least one selected from the group consisting of MgO, MnO, B2O3 , Fe, Cu, Zn and Mo.
 養液の成分表を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the composition of the nutrient solution.
Figure JPOXMLDOC01-appb-T000001
 栽培の各段階における養液のEC濃度の一例を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows an example of the EC concentration in the nutrient solution at each stage of cultivation.
Figure JPOXMLDOC01-appb-T000002
 4.トマト果実
 実施の形態に係るトマト果実は、たとえば、糖度が8 Brix%以上であり、酸度が0.350%以上であり、グルコース含量が120 μmol/gFW以上である。
4. Tomato Fruit The tomato fruit according to the embodiment has, for example, a sugar content of 8 Brix% or higher, an acidity of 0.350% or higher, and a glucose content of 120 μmol/gFW or higher.
 5.作用効果
 本実施の形態によれば、植物、たとえば、トマトの果実における糖度の向上とトマトの収量の向上とを図ることができる。
5. Effects According to the present embodiment, it is possible to improve the sugar content of a plant, for example, the fruit of a tomato, and to improve the yield of the tomato.
 本実施の形態に係る植物の栽培方法は、たとえば、トマト、メロン、スイカ、いちご、マンゴー、お茶などにも適用可能である。 The method of cultivating plants according to the present embodiment is applicable to, for example, tomatoes, melons, watermelons, strawberries, mangoes, and tea.
 以下、実施例について説明する。 Examples will be described below.
 培地をサンゴ砂およびホタテ貝殻とした栽培システムがトマトに与える好影響の原因を分子レベルで解明するために以下の実験を行った。比較の参考実験として、土壌栽培および水耕栽培を実施した。 The following experiments were conducted to clarify at the molecular level the causes of the favorable effects that a cultivation system using coral sand and scallop shells as a medium has on tomatoes. As a reference experiment for comparison, soil cultivation and hydroponics were carried out.
 本実験内容の概略は、次のとおりである。
(1)光合成活性や糖度の解析
(2)トランスクリプトームによる網羅的な遺伝子発現の解析
(3)低リン栽培における遺伝子発現及び果実の糖含量の解析      
 本実験では、ビニールハウス内にて、ホームハイポニカ303(商品名)を使用し、4種類の栽培方法によりトマトを栽培した。4種類の栽培方法は、次のとおりである。苗は、各実験につき4株定植した。
The outline of this experiment is as follows.
(1) Analysis of photosynthetic activity and sugar content
(2) Comprehensive analysis of gene expression by transcriptome
(3) Analysis of gene expression and sugar content in fruits in low phosphorus cultivation
In this experiment, tomatoes were cultivated in a greenhouse using Home Hyponica 303 (trade name) by four different cultivation methods. The four cultivation methods are as follows. Four seedlings were planted for each experiment.
(第1の栽培例:サンゴ砂)
 ホームハイポニカ303(商品名)の栽培槽にサンゴ砂(サンゴサービス有限会社、Mサイズ)を入れ、表1の養液成分の条件で固形培地耕によりトマト(フルティカ)を養液栽培した。具体的な条件は次のとおりである。
・サンゴ量30~35L(600×600×80~100mm、約30kg)
・ホームハイポニカ303、1器当り4株定植。各株間300mmの正方形型の配置になるように定植(壁面から株定植位置までの距離150mm)。1株の占有面積0.09m2(300×300mm)。
・誘引高は1500mm。
・栽培仕立ては主茎1本仕立て。脇芽は150mmで芽カキ。収穫完全終了花房下は葉カキを行い、常に21枚以上の本葉が残っている状態。
・摘果無し。
・遺伝子サンプル採取5日前から、芽カキ、葉カキは行わない。
(First Cultivation Example: Coral Sand)
Coral sand (M size, manufactured by Sango Service Co., Ltd.) was placed in a cultivation tank of Home Hyponica 303 (trade name), and tomatoes (Frutica) were cultivated in a solid medium under the conditions of the nutrient components shown in Table 1. Specific conditions are as follows.
・Amount of coral 30-35L (600×600×80-100mm, about 30kg)
Home Hyponica 303, 4 plants per container. Planted in a square arrangement with 300mm spacing between each plant (150mm distance from the wall to the planting position). 0.09m 2 (300×300mm) of occupied area per plant.
・Induction height is 1500mm.
・Cultivated with one main stem. Side buds are 150mm and bud oysters. When the harvest is complete, under the flower cluster, the leaves are removed, and there are always more than 21 true leaves left.
・No fruit picking.
・From 5 days before collection of the gene sample, oyster sprouts and leaf oysters are not carried out.
(第2の栽培例:ホタテ貝殻)
 ホームハイポニカ303(商品名)の栽培槽にホタテ貝殻を粉砕焼成したもの(有限会社山七長万部運輸製)を入れ、表1の養液成分の条件で固形培地耕によりトマト(フルティカ)を養液栽培した。ホタテ貝殻を粉砕焼成したものの粒径は、1~10 mmであり、平均粒径は約5 mmである。具体的な条件は次のとおりである。
・ホタテ量30~35L(600×600×80~100mm、約30kg)
・ホームハイポニカ303、1器当り4株定植。各株間300mmの正方形型の配置になるように定植(壁面から株定植位置までの距離150mm)。1株の占有面積0.09m2(300×300mm)。
・誘引高は1500mm。
・栽培仕立ては主茎1本仕立て。脇芽は150mmで芽カキ。収穫完全終了花房下は葉カキを行い、常に21枚以上の本葉が残っている状態。
・摘果無し。
・遺伝子サンプル採取5日前から、芽カキ、葉カキは行わない。
(Second cultivation example: scallop shell)
Pulverized and baked scallop shells (manufactured by Yamashichimanbe Unyu Co., Ltd.) are placed in a cultivation tank of Home Hyponica 303 (trade name), and tomatoes (Frutica) are cultivated in a solid medium under the conditions of the nutrient solution shown in Table 1. cultivated. Pulverized and baked scallop shells have a particle size of 1 to 10 mm, with an average particle size of about 5 mm. Specific conditions are as follows.
・Scallop quantity 30-35L (600×600×80-100mm, about 30kg)
Home Hyponica 303, 4 plants per container. Planted in a square arrangement with 300mm spacing between each plant (150mm distance from the wall to the planting position). 0.09m 2 (300×300mm) of occupied area per plant.
・Induction height is 1500mm.
・Cultivated with one main stem. Side buds are 150mm and bud oysters. When the harvest is complete, under the flower cluster, the leaves are removed, and there are always more than 21 true leaves left.
・No fruit picking.
・From 5 days before collection of the gene sample, oyster sprouts and leaf oysters are not carried out.
(第3の栽培例:土壌)
 ホームハイポニカ303(商品名)の栽培槽に土壌を入れ、表1の養液成分の条件でトマト(フルティカ)を養液土耕栽培した。具体的な条件は次のとおりである。
・土壌30~35L(600×600×80~100mm、約30kg)、土壌はココピートを含む。
・ホームハイポニカ303、1器当り4株定植。各株間300mmの正方形型の配置になるように定植(壁面から株定植位置までの距離150mm)。1株の占有面積0.09m2(300×300mm)。
・誘引高は1500mm。
・栽培仕立ては主茎1本仕立て。脇芽は150mmで芽カキ。収穫完全終了花房下は葉カキを行い、常に21枚以上の本葉が残っている状態。
・摘果無し。
・遺伝子サンプル採取5日前から、芽カキ、葉カキは行わない。
(Third cultivation example: soil)
Soil was placed in a cultivation tank of Home Hyponica 303 (trade name), and tomatoes (Frutica) were cultivated under the conditions of the nutrient components shown in Table 1. Specific conditions are as follows.
・30 to 35 L of soil (600 x 600 x 80 to 100 mm, about 30 kg), including coco peat.
Home Hyponica 303, 4 plants per container. Planted in a square arrangement with 300mm spacing between each plant (150mm distance from the wall to the planting position). 0.09m 2 (300×300mm) of occupied area per plant.
・Induction height is 1500mm.
・Cultivated with one main stem. Side buds are 150mm and bud oysters. When the harvest is complete, under the flower cluster, the leaves are removed, and there are always more than 21 true leaves left.
・No fruit picking.
・From 5 days before collection of the gene sample, oyster sprouts and leaf oysters are not carried out.
(第4の栽培例:水耕)
 ホームハイポニカ303(商品名)の栽培槽に培地を入れずに、表1の養液成分の条件で水耕によりトマト(フルティカ)を養液栽培した。具体的な条件は次のとおりである。
・栽培槽;約30L(650×650×70~75mm)の循環式養液栽培。養液内の雑菌繁殖防止の為、14日に1回の養液の全量交換を行う。
・ホームハイポニカ303、1器当り4株定植。各株間300mmの正方形型の配置になるように定植(壁面から株定植位置までの距離150mm)。栽培槽内で根の制限はなし(占有槽はなく自由な状態)。
・誘引高は1500mm。
・栽培仕立ては主茎1本仕立て。脇芽は150mmで芽カキ。収穫完全終了花房下は葉カキを行い、常に21枚以上の本葉が残っている状態。
・摘果無し。
・遺伝子サンプル採取5日前から、培養液の交換、芽カキ、葉カキは行わない。
(Fourth cultivation example: hydroponics)
Tomatoes (Frutica) were hydroponically cultivated under the conditions of the nutrient solution components shown in Table 1 without adding a medium to the cultivation tank of Home Hyponica 303 (trade name). Specific conditions are as follows.
・Cultivation tank: Approximately 30 L (650 x 650 x 70 to 75 mm) circulating hydroponics. To prevent the growth of bacteria in the nutrient solution, replace the entire nutrient solution once every 14 days.
Home Hyponica 303, 4 plants per container. Planted in a square arrangement with 300mm spacing between each plant (150mm distance from the wall to the planting position). There is no restriction on roots in the cultivation tank (free state with no occupied tank).
・Induction height is 1500mm.
・Cultivated with one main stem. Side buds are 150mm and bud oysters. When the harvest is complete, under the flower cluster, the leaves are removed, and there are always more than 21 true leaves left.
・No fruit picking.
・Do not replace the culture solution, remove buds, or remove leaves from 5 days before collection of the gene sample.
 第1~第4の栽培例において、各段階の養液のEC濃度を表3に示す。定植後2週間は、8時~15時までの間において、2分の潅水を6回行った。それ以後は、灌水は4回とした。1回の灌水の水量1株当たり0.5~0.7Lとし、1機器には4株定植であるため、1回の灌水の水量1機器当り2~2.4Lとした。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the EC concentration of the nutrient solution at each stage in the first to fourth cultivation examples. For two weeks after planting, watering was performed six times for two minutes between 8:00 and 15:00. After that, irrigation was performed four times. The amount of water for one irrigation was set at 0.5 to 0.7 L per plant, and since 4 plants were planted in one device, the amount of water for one irrigation was set at 2 to 2.4 L per device.
Figure JPOXMLDOC01-appb-T000003
 本実験の結果を以下に説明する。 The results of this experiment are explained below.
(1)市販トマトとの比較
 図1は、スーパーで購入した市販トマト果実と本栽培法により得られたトマト果実の比較を示す図である。(A)は 果実の外観であり、(B) 果実の糖度である。ポケット糖酸度計(PAL-BX|ACID3、ATAGO社)を用いて測定した(n = 7 to 12)。 (C)は果実の酸度を示し、ポケット糖酸度計(PAL-BX|ACID3、ATAGO社)を用いて測定した(n = 7 to 12)。 (D)は果実(フルティカ)中のグルコース含量を示し、酵素アッセイキット(Sucrose/D-Glucose/D-Fructose、ロシュ社)を用いて測定した(n = 4)。 (E)は果実(フルティカ)中のフルクトース含量を示し、酵素アッセイキット(Sucrose/D-Glucose/D-Fructose、ロシュ社)を用いて測定した(n = 4)。(B)~(E)は、エラーバーは標準偏差を示す。図中のアスタリスクはt-検定により5%レベルで有意差があることを示す。
(1) Comparison with commercially available tomatoes Fig. 1 is a diagram showing a comparison between commercially available tomato fruits purchased at a supermarket and tomatoes obtained by the present cultivation method. (A) is the appearance of the fruit and (B) is the sugar content of the fruit. It was measured using a pocket saccharimeter (PAL-BX|ACID3, ATAGO) (n = 7 to 12). (C) shows the acidity of the fruit, which was measured using a pocket sugar-acidity meter (PAL-BX|ACID3, ATAGO) (n = 7 to 12). (D) shows the glucose content in fruit (Frutica), measured using an enzyme assay kit (Sucrose/D-Glucose/D-Fructose, Roche) (n = 4). (E) shows the fructose content in fruit (Frutica), measured using an enzyme assay kit (Sucrose/D-Glucose/D-Fructose, Roche) (n = 4). In (B)-(E), error bars indicate standard deviation. Asterisks in the figure indicate significant difference at 5% level by t-test.
 図1に示すように、本栽培法によって栽培されたトマトはスーパーで購入した市販トマトと比べ高い糖度と酸度の値を示した。果実中のグルコース含量とフルクトース含量を測定した結果、本栽培法によって栽培されたトマトのグルコース含量はスーパーで購入した市販トマトと比べ高い値を示した。これらの結果より、本栽培法により一般的な従来の栽培手法と比べ糖度の高いトマトを収穫できることが示された。 As shown in Figure 1, the tomatoes cultivated by this cultivation method showed higher sugar content and acidity values than commercially available tomatoes purchased at supermarkets. As a result of measuring the glucose and fructose contents in the fruits, the glucose contents of the tomatoes cultivated by this cultivation method showed higher values than those of commercial tomatoes purchased at supermarkets. These results indicate that tomatoes with higher sugar content can be harvested by this cultivation method compared to conventional cultivation methods.
(2)トマトの糖度と果重
 図2は、本出願人の株式会社プラントライフシステムズの豊田圃場において栽培されたトマトの糖度および果重を示す図である。
(A)は各花房ごとのトマト果実の糖度である。用いた品種はフルティカ。ポケット糖度計によって測定した。 (B)は各花房ごとのトマト果実重である。(A) および (B)の エラーバーは標準偏差を示す(n = 7 to 16)。 Tukeyの多重比較を各花房ごとにおこない、各処理間で5%レベルでの有意な差を異なる小文字アルファベットで示した。第9花房以降はn数が不十分のため統計解析はおこなっていない。
(2) Sugar content and fruit weight of tomato FIG. 2 is a diagram showing the sugar content and fruit weight of tomatoes cultivated in the Toyoda field of Plant Life Systems Co., Ltd. of the present applicant.
(A) is the sugar content of tomato fruit for each inflorescence. The variety used is Frutica. Measured with a pocket saccharimeter. (B) is the tomato fruit weight for each inflorescence. Error bars in (A) and (B) indicate standard deviations (n = 7 to 16). Tukey's multiple comparisons were performed for each inflorescence and significant differences at the 5% level between treatments were indicated by different lower case letters. Statistical analysis was not performed after the 9th flower cluster because the n number was insufficient.
 図2に示すように、第1花房から第7花房までの全ての花房において、サンゴ砂栽培およびホタテ貝殻栽培されたトマトの糖度は水耕栽培されたトマトの糖度よりも有意に高い値を示した。一方果重に関しては、第1花房から第8花房においてサンゴ砂栽培およびホタテ貝殻栽培の方が水耕栽培および土耕栽培と比べ低い傾向を示した。 As shown in Fig. 2, in all inflorescences from the 1st to the 7th inflorescences, the sugar content of the tomatoes cultivated with coral sand and scallop shells was significantly higher than that of the tomatoes cultivated hydroponically. rice field. On the other hand, fruit weight tended to be lower in coral sand cultivation and scallop shell cultivation than hydroponics and soil cultivation in the first to eighth inflorescences.
(3)糖度と果重を2変数とした散布図
 図3は、糖度と果重を2変数とした散布図である。
(A)は図3で示した全果実の糖度と果重をプロットした散布図であり、(B)は(A)のデータに関して各栽培処理ごとに糖度と果重をプロットした散布図である。
(3) Scatter diagram with sugar content and fruit weight as two variables Fig. 3 is a scatter diagram with sugar content and fruit weight as two variables.
(A) is a scatter diagram plotting the sugar content and fruit weight of all the fruits shown in FIG. 3, and (B) is a scatter diagram plotting the sugar content and fruit weight for each cultivation treatment for the data in (A). .
 図3に示すように、いずれの処理も糖度が高い果実ほど小型で果重が軽くなる傾向が見られた。水耕栽培および土耕栽培と比べサンゴ砂およびホタテ貝殻栽培されたトマト個体においては40g以下でかつ糖度が高い果実が高頻度で得られた。 As shown in Fig. 3, in all treatments, the higher the sugar content of the fruit, the smaller and lighter the fruit weight. Tomatoes cultivated with coral sand and scallop shell produced fruit weighing less than 40g and with high sugar content at a higher frequency than those cultivated with hydroponics or soil culture.
(4)サンゴ砂栽培が生育に与える影響
 図4は、サンゴ砂栽培がトマト(フルティカ)の生育に与える影響を示す図である。(A) は1個体当たりの果実数であり、(B) は草丈であり、(C)は株元の茎径であり、(D)は第5花房直下の茎径である。(A) ~ (D)のエラーバーは標準偏差を示す(n = 8)。 図中の異なる小文字アルファベットはTukeyの多重比較の結果、各処理間で5%レベルでの有意な差を表す。
 図4に示すように、サンゴ砂、ホタテ貝殻栽培されたトマト1個体当たりの果実数は水耕栽培されたものと比べ低い値となった。しかしながら、土耕栽培されたトマトと比べサンゴ栽培されたトマトは大きく減少するということはなかった。株元の茎径および第5花房直下の茎径は、水耕栽培されたトマトにおいて大きく、ホタテ貝殻栽培されたトマトにおいて小さい値となる傾向が見られたものの、サンゴ砂栽培されたトマトの茎径は土耕栽培されたものと比べ有意な差は見られなかった。これらの結果より、サンゴ砂栽培によるトマトの生育具合は多くの農家で実施されている栽培方法に近い土耕栽培と比べ低下していないことが示唆された。
(4) Influence of Coral Sand Cultivation on Growth FIG. 4 is a diagram showing the influence of coral sand cultivation on the growth of tomato (Frutica). (A) is the number of fruits per plant, (B) is the plant height, (C) is the stem diameter at the base of the plant, and (D) is the stem diameter just below the fifth inflorescence. Error bars in (A)-(D) indicate standard deviations (n = 8). Different lowercase letters in the figure represent significant differences at the 5% level between treatments as a result of Tukey's multiple comparisons.
As shown in Fig. 4, the number of fruits per individual tomato cultivated with coral sand and scallop shells was lower than that cultivated hydroponically. However, there was no significant reduction in coral-grown tomatoes compared to soil-grown tomatoes. The stem diameter at the base of the plant and the stem diameter immediately below the fifth inflorescence tended to be large in the hydroponic tomatoes and small in the scallop-shell-cultivated tomatoes. There was no significant difference in the diameter compared to the soil-cultivated ones. These results suggested that the growth condition of tomatoes by coral sand cultivation did not deteriorate compared to soil cultivation, which is similar to the cultivation method practiced by many farmers.
(5)サンゴ砂栽培が光合成に与える影響
 図5は、サンゴ砂栽培がトマト(フルティカ)の光合成に与える影響を示す図である。(A)は、Fv/Fmである。光化学系IIの最大量子収率を示すパラメーターであるFv/FmをJunior-PAM(Walz社)によって測定した(n = 8)。豊田圃場において栽培された定植後108日目の第5から第6花房近辺の葉を用いた。用いた品種はフルティカ。 Tukeyの多重比較の結果、各処理間で5%レベルで有意な差は認められなかった。(B)は、SPAD値である。葉緑素量の指標であるSPAD値を葉緑素計(SPAD-502Plus、コニカミノルタ社)によって測定した。(A)と同様の葉を用いた(n = 5 to 8)。(A)および (B)は エラーバーは標準偏差を示す。 Tukeyの多重比較の結果、各処理間で5%レベルで有意な差は認められなかった。
(5) Effect of Coral Sand Cultivation on Photosynthesis FIG. 5 is a diagram showing the effect of coral sand cultivation on photosynthesis of tomato (Frutica). (A) is Fv/Fm. Fv/Fm, a parameter indicating the maximum quantum yield of photosystem II, was measured by Junior-PAM (Walz) (n = 8). Leaves around the 5th to 6th inflorescences cultivated in Toyota field 108 days after planting were used. The variety used is Frutica. As a result of Tukey's multiple comparison, no significant difference was observed at the 5% level between each treatment. (B) is the SPAD value. The SPAD value, which is an index of the amount of chlorophyll, was measured with a chlorophyll meter (SPAD-502Plus, Konica Minolta). Leaves similar to (A) were used (n = 5 to 8). (A) and (B) Error bars indicate standard deviation. As a result of Tukey's multiple comparison, no significant difference was observed at the 5% level between each treatment.
 図5に示すように、Fv/FmおよびSPADの値はいずれも各処理間で有意な差は認められなかったことから、サンゴ砂またはホタテ貝殻による栽培は光合成に大きな影響を与えないことが示唆された。 As shown in Fig. 5, no significant difference was observed in Fv/Fm and SPAD values between treatments, suggesting that cultivation with coral sand or scallop shells does not significantly affect photosynthesis. was done.
(6)サンゴ砂栽培が成熟果実における糖含量に与える影響
 図6は、サンゴ砂栽培が成熟果実における糖含量に与える影響を示す図である。(A) はグルコース含量を示し、(B)はフルクトース含量を示し、(C)はスクロース含量を示し、(A) ~(C)は、各種糖含量は酵素アッセイキットを用いて測定した。豊田圃場において栽培された定植後108日目の第5または第6花房の成熟果実を用いた(n = 3)。 エラーバーは標準偏差を示す
(6) Effect of Coral Sand Cultivation on Sugar Content in Mature Fruit FIG. 6 is a diagram showing the effect of coral sand cultivation on the sugar content in mature fruit. (A) shows the glucose content, (B) shows the fructose content, (C) shows the sucrose content, and (A) to (C) various sugar contents were measured using an enzyme assay kit. Mature fruits of the 5th or 6th inflorescence cultivated in the Toyota field 108 days after planting were used (n = 3). Error bars indicate standard deviation
 図6に示すように、サンゴ砂栽培された成熟果実中のスクロース含量は、水耕、土耕、ホタテ貝殻栽培された成熟果実中のものと比べ高い値を示した。 As shown in Fig. 6, the sucrose content in mature fruits cultivated with coral sand showed higher values than those in mature fruits cultivated with hydroponics, soil culture, and scallop shell cultivation.
(7)サンゴ砂栽培がトマトの未成熟果実におけるデンプン含量に与える影響
 図7は、サンゴ砂栽培がトマトの未成熟果実におけるデンプン含量に与える影響を示す図である。デンプン含量は酵素アッセイキットを用いて測定した。豊田圃場において栽培された定植後108日目の第5または第6花房の成熟果実を用いた(n = 3)。 異なるアルファベット符号はTukeyの多重比較により5%で有意に異なる値であることを示す。エラーバーは標準偏差を示す。
(7) Effect of Coral Sand Cultivation on Starch Content in Immature Tomato Fruits FIG. 7 is a diagram showing the effect of coral sand cultivation on the starch content in immature tomato fruits. Starch content was measured using an enzyme assay kit. Mature fruits of the 5th or 6th inflorescence cultivated in the Toyota field 108 days after planting were used (n = 3). Different alphabetic symbols indicate values that are significantly different at 5% by Tukey's multiple comparisons. Error bars indicate standard deviation.
 図7に示すように、サンゴ砂およびホタテ貝殻栽培されたトマト未成熟果実中のデンプン含量は、水耕栽培されたものと比べ高い値を示した。トマト未成熟果実中のデンプンは、成熟果実中の単糖や二糖類の原料となり得る。従って、サンゴ砂栽培されたトマト個体において、未成熟果実におけるデンプンの含量の増加が成熟果実における単糖や二糖類の含量の上昇と関係している可能性が示された。 As shown in Fig. 7, the starch content in immature fruits of tomatoes cultivated with coral sand and scallop shells showed higher values than those cultivated hydroponically. Starch in immature tomato fruits can be a raw material for monosaccharides and disaccharides in mature fruits. Therefore, it was suggested that the increase in starch content in immature fruits is related to the increase in monosaccharide and disaccharide contents in mature fruits in tomato plants cultivated with coral sand.
(8)サンゴ砂栽培がトマト葉の遺伝子発現に与える影響の網羅的解析
 図8は、サンゴ砂栽培がトマト葉の遺伝子発現に与える影響の網羅的解析図である。(A) 解析に用いたトマトの栽培法、栽培地および比較解析の設定。aはサンゴ砂栽培システム、bはサンゴ砂の代わりに培養土を用いたシステムで、同一の圃場(ビニールハウス)内で栽培された。cは温室内で培養土を用いて栽培された。(B) トランスクリプトーム解析の結果。点は各遺伝子の発現変化を示しており、横軸はサンゴ砂 (a)と土耕 (b)における発現量の比、縦軸は、サンゴ砂(a)と土耕(c)の発現量の比をそれぞれlog2値で示している。各軸について、log2の絶対値が1以上(2倍以上の変化)を示す区域を分け、計9区画(I~IX)を設定した(点線で示す)。なお、括弧内の数字は、各区画に属する遺伝子の数を示している。
(8) Comprehensive Analysis of Effect of Coral Sand Cultivation on Tomato Leaf Gene Expression FIG. 8 is a comprehensive analysis diagram of the effect of coral sand cultivation on tomato leaf gene expression. (A) Tomato cultivation method, cultivation area, and comparative analysis settings used for analysis. (a) is a coral sand cultivation system, and (b) is a system using potting soil instead of coral sand, which were cultivated in the same field (vinyl greenhouse). c was cultivated in a greenhouse using potting soil. (B) Results of transcriptome analysis. The dots show the expression changes of each gene, the horizontal axis is the ratio of expression levels in coral sand (a) and soil culture (b), and the vertical axis is the expression level in coral sand (a) and soil culture (c). The ratio of each is indicated by the log2 value. A total of 9 sections (I to IX) were set by dividing each axis into sections exhibiting an absolute value of log2 of 1 or more (change of 2-fold or more) (indicated by dotted lines). The numbers in parentheses indicate the number of genes belonging to each compartment.
 図8に示すように、いずれの比較においても遺伝子発現が上昇、あるいは低下する一群の遺伝子の存在が見いだされた。これらの遺伝子群がサンゴ砂栽培を特徴づけていると考えられる。 As shown in Fig. 8, the presence of a group of genes with increased or decreased gene expression was found in all comparisons. These gene clusters are considered to characterize coral sand cultivation.
 表4は、サンゴ栽培で発現の上昇が認められた45遺伝子を示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows 45 genes whose expression was elevated in coral cultivation.
Figure JPOXMLDOC01-appb-T000004
 表4は、2回のいずれの実験でもサンゴ砂栽培で発現が2倍以上(q<0.05)上昇していた遺伝子のリストである。a, 図8の実験1における発現上昇率の順位; b, ITAG3.2の遺伝子予測による; c, シロイヌナズナにおいて最も配列類似性が高いタンパク質をコードする遺伝子; d, シロイヌナズナ相同遺伝子がリン欠乏で誘導される場合、誘導倍率を示した。シロイヌナズナにおける誘導性は、Liu et al. (2011) Plant Physiol. 156: 1176-1189による。 Table 4 is a list of genes whose expression was more than doubled (q<0.05) in coral sand cultivation in both experiments. a, Order of expression increase rate in experiment 1 in Fig. 8; b, ITAG3.2 gene prediction; c, genes encoding proteins with the highest sequence similarity in Arabidopsis thaliana; d, Arabidopsis homologous genes induced by phosphorus deficiency Where indicated, the fold induction was given. Inducibility in Arabidopsis is according to Liu et al. (2011) Plant Physiol. 156: 1176-1189.
 表4に示すように、2回の実験で、いずれも発現が増加していた遺伝子の上位には、リン欠乏誘導性遺伝子の相同遺伝子が多く見られ、サンゴ砂栽培ではリン欠乏が起こっていることが示唆された。 As shown in Table 4, in the two experiments, many homologous genes of phosphorus deficiency-inducible genes were found at the top of the genes whose expression was increased in both experiments, and phosphorus deficiency occurred in coral sand cultivation. It has been suggested.
 表5は、サンゴ砂栽培で発現の上昇が認められた遺伝子のGene Ontology (GO)解析結果である。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows the results of Gene Ontology (GO) analysis of genes whose expression was found to increase in coral sand cultivation.
Figure JPOXMLDOC01-appb-T000005
 表5には、図8の実験1において、サンゴ砂栽培で発現が1.5倍以上上昇した283遺伝子についてのGO解析結果を示した。ゲノム全体での遺伝子数に基づく期待値と比較して、有意に濃縮されていた上位20位のGOターム(遺伝子の機能分類)について、P値が低い順に示した。 Table 5 shows the GO analysis results for 283 genes whose expression increased by 1.5 times or more in coral sand cultivation in Experiment 1 in Fig. 8. The top 20 GO terms (gene functional classification) that were significantly enriched compared to the expected value based on the number of genes in the entire genome are shown in descending order of P value.
 表5に示すように、サンゴ栽培で誘導された遺伝子の機能分類の結果、1位、2位のGOタームはリン欠乏に関するものであったことから、サンゴ栽培によってリン欠乏応答が起きていることが示唆された。 As shown in Table 5, as a result of functional classification of genes induced by coral cultivation, the GO terms at positions 1 and 2 were related to phosphorus deficiency, suggesting that coral cultivation causes a phosphorus deficiency response. was suggested.
(9)サンゴ砂栽培がトマト葉における遺伝子発現に与える影響
 図9は、サンゴ砂栽培がトマト葉における遺伝子発現に与える影響を示す図である。トランスクリプトーム解析で用いたサンプルに加え、水耕およびホタテ砂礫を使用して圃場で栽培したサンプルを加え、トランスクリプトーム解析で発現が上昇した遺伝子について発現を個別解析した。値は平均値(n=3), エラーバーは標準誤差を示している。
(9) Effect of Coral Sand Cultivation on Gene Expression in Tomato Leaves FIG. 9 is a diagram showing the effect of coral sand cultivation on gene expression in tomato leaves. In addition to the samples used in the transcriptome analysis, samples cultivated in the field using hydroponics and scallop gravel were added, and the expression of genes whose expression was elevated in the transcriptome analysis was analyzed individually. Values are mean values (n=3), error bars indicate standard errors.
 図9に示すように、リン欠乏誘導性遺伝子である酸性ホスファターゼや、PEPC関連遺伝子について果実の糖度が上昇するサンゴ砂およびホタテ栽培区で発現が高くなる傾向が確かめられた。一方で、カルシウム輸送体の様に甘さとは相関しない遺伝子もあった。乾燥誘導性遺伝子のRD29Bの発現はサンゴ栽培によっても高くはなっていなかったため、トマト植物体に水分ストレスはかかっていないものと考えられる。 As shown in Fig. 9, it was confirmed that acid phosphatase, which is a phosphorus deficiency-inducible gene, and PEPC-related genes tended to be highly expressed in coral sand and scallop cultivation plots, where the sugar content of fruits increased. On the other hand, some genes, such as calcium transporters, did not correlate with sweetness. Since the expression of RD29B, a drought-inducible gene, was not increased by coral cultivation, it is considered that the tomato plants were not subjected to water stress.
(10)サンゴ砂栽培がトマトの果実における遺伝子発現に与える影響
 図10は、サンゴ砂栽培がトマトの果実における遺伝子発現に与える影響を示す図である。
トランスクリプトーム解析で発現が上昇した遺伝子、糖度と関連する遺伝子について、未熟果実での発現を個別解析した。値は平均値(n=3)、エラーバーは標準誤差を示している。
(10) Effect of Coral Sand Cultivation on Gene Expression in Tomato Fruit FIG. 10 is a diagram showing the effect of coral sand cultivation on gene expression in tomato fruit.
The expression in immature fruits was individually analyzed for genes whose expression was elevated in the transcriptome analysis and genes related to sugar content. Values are means (n=3), error bars indicate standard errors.
 図10に示すように、リン欠乏誘導性遺伝子のACP5とSPXはサンゴ砂とホタテ貝殻で高い傾向を示し、果実でもリン欠乏になっている可能性が示された。一方で、PEPC関連遺伝子は、果実においては実験区ごとの発現量の差は小さかった。AgpL1, LIN5はいずれも高糖度に関連する量的形質遺伝子座から同定された遺伝子で、これらの遺伝子の発現の強さが糖度と関係する可能性がある。AgpL1に関しては、サンゴ砂およびホタテ貝殻実験区で高くなる傾向が認められた。AgpL1の発現はサンゴ砂、ホタテ貝殻実験区でのデンプン含量の増加と関係している可能性がある。 As shown in Fig. 10, the phosphorus deficiency-inducible genes ACP5 and SPX tended to be high in coral sand and scallop shells, indicating the possibility that fruits are also phosphorus deficient. On the other hand, the expression levels of PEPC-related genes in fruit showed little difference between experimental plots. Both AgpL1 and LIN5 are genes identified from quantitative trait loci associated with high sugar content, and the intensity of expression of these genes may be related to sugar content. AgpL1 tended to be higher in coral sand and scallop shell experiments. AgpL1 expression may be associated with increased starch content in coral sand and scallop shell experimental plots.
(11)養液中のリン酸濃度
 図11は、サンゴ砂栽培が養液中のリン酸濃度に及ぼす影響を示している。 (A)は、土耕、水耕、サンゴ砂、ホタテ貝殻の4実験区の定植2週間後におけるリン酸濃度を示す。点線は養液調製時のリン酸濃度を示している。(B)は、サンゴ栽培システムを用いた栽培期間中における養液中のリン酸濃度の変化を示す。養液は矢印の日には全量交換を行い、その他の日には減少分の補充を行った。調製濃度は、養液調製時のリン酸濃度で、植物体の生育に合わせた養液濃度の上昇に伴い、段階的に上昇している。
(11) Concentration of phosphoric acid in nutrient solution FIG. 11 shows the effect of coral sand cultivation on the concentration of phosphate in the nutrient solution. (A) shows the phosphate concentration two weeks after planting in four experimental plots: soil culture, hydroponics, coral sand, and scallop shell. The dotted line indicates the concentration of phosphoric acid when the nutrient solution was prepared. (B) shows changes in phosphoric acid concentration in the nutrient solution during the cultivation period using the coral cultivation system. The nutrient solution was completely replaced on the days indicated by the arrows, and replenished for the decreased amount on the other days. The preparation concentration is the phosphoric acid concentration at the time of preparation of the nutrient solution, and increases stepwise as the concentration of the nutrient solution increases in accordance with the growth of the plant body.
 サンゴ砂は実際に養液中のリン酸濃度を低下させる効果があることが明らかになった。サンゴ栽培システムにおいては、リン酸濃度は常に調製濃度より低く、養液ECの増加にもかかわらず比較的一定の値を保っていた。 It became clear that coral sand actually has the effect of lowering the concentration of phosphoric acid in the nutrient solution. In the coral cultivation system, the phosphate concentration was always lower than the prepared concentration and remained relatively constant despite the increase in nutrient solution EC.
(12)葉のリン酸濃度
 図12は、サンゴ砂栽培が葉のリン酸濃度に及ぼす影響を示している。土耕、水耕、サンゴ砂、ホタテ貝殻の4実験区において、第5花房直上の葉におけるリン酸濃度を1実験区あたり6~8個体の葉を用いて測定した。グラフは平均値と標準偏差を示している。図中のアルファベットはTukey-Kramerの多重比較検定により、異符号間に5%レベルで有意差があることを示す。
(12) Leaf Phosphate Concentration FIG. 12 shows the effect of coral sand cultivation on the leaf phosphate concentration. Phosphate concentration in leaves just above the 5th inflorescence was measured using 6 to 8 individual leaves per experimental plot in 4 experimental plots: soil culture, hydroponics, coral sand, and scallop shell. Graphs show mean values and standard deviations. Alphabets in the figure indicate that there is a significant difference at the 5% level between opposite signs by Tukey-Kramer's multiple comparison test.
 サンゴ砂区では、葉においてもリン酸濃度が下がることが明らかになった。この結果から、植物体が実際にリン欠乏状態になっていることが確認された。  In the coral sand plot, it became clear that the phosphate concentration also decreased in the leaves. From this result, it was confirmed that the plant was actually in a phosphorus-deficient state.
(13)リン欠乏応答性遺伝子の網羅的解析の結果およびサンゴ砂栽培との比較
 図13は、トマト葉におけるリン欠乏応答性遺伝子の網羅的解析の結果およびサンゴ砂栽培との比較を示す図である。トマト植物体を通常の水耕液(リン100%、P100)あるいは低リン条件の水耕液(リン1%、P1)で栽培し、葉における遺伝子発現をマイクロアレイによって網羅的に解析した(実験3)。3回の実験で発現が上昇した遺伝子、低下した遺伝子についてそれぞれベン図を作成した。
(13) Comprehensive analysis results of phosphorus deficiency-responsive genes and comparison with coral sand cultivation FIG. 13 is a diagram showing the results of comprehensive analysis of phosphorus deficiency-responsive genes in tomato leaves and comparison with coral sand cultivation. be. Tomato plants were cultivated in a normal hydroponic solution (100% phosphorus, P100) or in a low phosphorus hydroponic solution (1% phosphorus, P1), and gene expression in leaves was comprehensively analyzed by microarray (Experiment 3). ). Venn diagrams were created for the genes whose expression increased and those whose expression decreased in the three experiments.
 図13に示すように、サンゴ砂栽培で発現が上昇する遺伝子にはリン欠乏誘導性遺伝子が多く含まれることが確かめられた。特に、実験1と実験2の共通部分に着目すると、半分以上がリン欠乏誘導性を示した。一方、発現が低下する遺伝子に関しては、サンゴ砂栽培とリン欠乏の間で共通部分の割合は高くなかった。 As shown in Fig. 13, it was confirmed that many of the genes whose expression increased in coral sand cultivation included phosphorus deficiency-inducible genes. In particular, focusing on the common part of Experiment 1 and Experiment 2, more than half showed phosphorus deficiency inducibility. On the other hand, the proportion of genes whose expression decreased was not high between coral sand cultivation and phosphorus deficiency.
 表6は、サンゴ砂栽培(実験1、実験2)、低リン栽培(実験3)のすべての実験で発現が2倍以上上昇した30遺伝子を示す。a, 実験1における発現上昇率の順位; b, ITAG3.2の遺伝子予測による; c, シロイヌナズナにおいて最も配列類似性が高いタンパク質をコードする遺伝子。 Table 6 shows 30 genes whose expression increased more than twice in all experiments of coral sand cultivation (experiment 1, experiment 2) and low phosphorus cultivation (experiment 3). a, Ranking of expression increase rate in experiment 1; b, gene prediction by ITAG3.2; c, genes encoding proteins with the highest sequence similarity in Arabidopsis thaliana.
 表6に示すように、酸性ホスファターゼ、SPXドメインタンパク質やリン脂質代謝の遺伝子など典型的なリン欠乏誘導性遺伝子の発現が、いずれの条件でも上昇していることが確かめられた。サンゴ砂栽培は細胞レベルでは、リン欠乏の影響を特に大きく受けていることが示唆された。
Figure JPOXMLDOC01-appb-T000006
As shown in Table 6, it was confirmed that the expression of typical phosphorus-deficiency-inducible genes such as acid phosphatase, SPX domain protein and phospholipid metabolism genes was increased under all conditions. It was suggested that coral sand cultivation was particularly affected by phosphorus deficiency at the cellular level.
Figure JPOXMLDOC01-appb-T000006
(14)異なるリン酸濃度で水耕栽培したトマトの葉におけるリン欠乏誘導性遺伝子の発現
 図14は、リン濃度を変えて水耕栽培したトマトの葉におけるリン欠乏誘導性遺伝子の発現を示す図である。水耕液中のリン濃度を標準の濃度を基準に、0%, 1%, 10%, 100%とした栽培区(それぞれP0, P1, P10, P100)を設定し、葉における遺伝子発現を定量的RT-PCRで個別解析した。値は平均値(n=3)、エラーバーは標準誤差を示している。
(14) Phosphorus deficiency-inducible gene expression in tomato leaves hydroponically grown at different phosphate concentrations FIG. 14 shows the expression of phosphorus deficiency-inducible genes in tomato leaves hydroponically grown at different phosphorus concentrations. is. Cultivation plots (P0, P1, P10, P100, respectively) were set with phosphorus concentrations of 0%, 1%, 10%, and 100% based on the standard concentration in the hydroponic solution, and gene expression in leaves was quantified. Individually analyzed by specific RT-PCR. Values are means (n=3), error bars indicate standard errors.
 図14に示すように、P1区では強い誘導性を示した遺伝子が、P10区においては弱く誘導されたことから、P10区は温和なリン欠乏条件になっていることが確認できた。 As shown in Fig. 14, genes that showed strong inducibility in the P1 area were weakly induced in the P10 area, confirming that the P10 area is under mild phosphorus-deficient conditions.
(15)異なるリン酸濃度での水耕栽培により栽培したトマトにおける果実の糖度および果実数
 図15は、異なる供与リン量下で水耕栽培したトマト(千果およびフルティカ)の果実における糖度および果実数を示す図である。P100では通常の水耕培地、P10はリン濃度を10分の1に減少させた水耕培地で栽培した処理区である。(A)は千果の各花房ごとの糖度を示し、(B)フルティカの各花房ごとの糖度を示し、(C)は千果の各花房ごとの果重を示し、(D)はフルティカの各花房ごとの果重を示す。(A)~(D)は、エラーバーは標準偏差を示す。図中のアスタリスクはt-Testの結果5%レベルで有意に異なることを示す。
(15) Sugar content and number of fruits in tomatoes grown by hydroponics at different phosphoric acid concentrations FIG. 4 is a diagram showing numbers; P100 is a treatment group cultivated in a normal hydroponic medium, and P10 is a treatment group cultivated in a hydroponic medium in which the phosphorus concentration is reduced to 1/10. (A) shows the sugar content of each inflorescence of Chika, (B) shows the sugar content of each inflorescence of Frutica, (C) shows the weight of each inflorescence of Chika, and (D) shows the weight of each inflorescence of Frutica. The fruit weight of each inflorescence is shown. In (A)-(D), error bars indicate standard deviation. Asterisks in the figure indicate that the t-Test results are significantly different at the 5% level.
 図15に示すように、千果の第1花房から第3花房における果実中の糖度はP10処理区においてP100処理区よりも有意に高い値を示した。フルティカにおいても同様に第1から第4花房におけるP10処理区におけるトマト果実の糖度がP100処理区のものと比べ有意に高い値を示した。果実数に関してはフルティカの第1、第2、第5花房においてP10処理区の方がP100処理区と比べ少ない結果となった。これらの結果より、供与するリンの量を抑えることにより糖度が増加することが明らかとなった。 As shown in Fig. 15, the sugar content in the fruits in the first to third flower clusters of Chika showed significantly higher values in the P10 treatment area than in the P100 treatment area. Similarly, in Frutica, the sugar content of tomato fruits treated with P10 in the first to fourth inflorescences was significantly higher than that treated with P100. Regarding the number of fruits in the 1st, 2nd and 5th inflorescences of Frutica, the P10 treatment plots were smaller than the P100 treatment plots. From these results, it was clarified that the sugar content increased by suppressing the amount of donated phosphorus.
 本実施の形態は、本発明の範囲内において種々の変形が可能である。
 
Various modifications of the present embodiment are possible within the scope of the present invention.

Claims (18)

  1.  植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子を発現させる工程(A)を含む植物の栽培方法。 A plant cultivation method including a step (A) of expressing a plant gene that is expressed when phosphoric acid is deficient.
  2.  請求項1において、
     前記植物の栽培方法は、アルカリ培地による植物の栽培方法であり、
     植物の生長段階に応じて水の供給量および供給時期を変えることで、植物の遺伝子のうち、リン酸が欠乏したときに発現する遺伝子の発現を制御する植物の栽培方法。
    In claim 1,
    The plant cultivation method is a plant cultivation method using an alkaline medium,
    A plant cultivation method for regulating the expression of a plant gene that is expressed when phosphoric acid is deficient by changing the amount and timing of water supply according to the growth stage of the plant.
  3.  請求項2において、
     前記培地は、多孔質のリン酸を吸着し得る物質からなる植物の栽培方法。
    In claim 2,
    The method for cultivating plants, wherein the culture medium is made of a porous substance capable of adsorbing phosphoric acid.
  4.  請求項2において、
     前記培地は、カルシウム分を含み、
     リン酸カルシウムとしてリン酸を吸着し得る材質である植物の栽培方法。
    In claim 2,
    The medium contains calcium,
    A method for cultivating a plant whose material is capable of adsorbing phosphoric acid as calcium phosphate.
  5.  請求項2において、
     前記培地は、リン酸濃度を維持しようとする緩衝機能を有する植物の栽培方法。
    In claim 2,
    The method for cultivating plants, wherein the medium has a buffer function to maintain the concentration of phosphoric acid.
  6.  請求項2において、
     前記培地は、多孔質の炭酸カルシウムを有する植物の栽培方法。
    In claim 2,
    The method for cultivating a plant in which the medium contains porous calcium carbonate.
  7.  請求項2において、
     前記培地は、サンゴ砂またはホタテ貝殻を粉砕焼成したものである植物の栽培方法。
    In claim 2,
    The method for cultivating plants, wherein the medium is a material obtained by pulverizing and baking coral sand or scallop shells.
  8.  請求項2において、
     前記培地にリン酸を含む養液が供給され、
     前記工程(A)において、リン酸濃度が減少する植物の栽培方法。
    In claim 2,
    A nutrient solution containing phosphoric acid is supplied to the medium,
    A method for cultivating a plant in which the phosphoric acid concentration is reduced in the step (A).
  9.  請求項8において、
     前記養液の調整時の濃度より、前記植物の葉におけるリン酸濃度が低くなる工程を含む植物の栽培方法。
    In claim 8,
    A method for cultivating a plant, comprising the step of lowering the phosphoric acid concentration in the leaves of the plant from the concentration at the time of adjustment of the nutrient solution.
  10.  請求項8において、
     前記養液の調整時の濃度より、前記培地におけるリン酸濃度が低くなる工程を含む植物の栽培方法。
    In claim 8,
    A method for cultivating a plant, comprising the step of lowering the concentration of phosphoric acid in the medium from the concentration at the time of adjustment of the nutrient solution.
  11.  請求項1において、
     前記植物の栽培方法は、前記植物の光合成関連の遺伝子および乾燥などのストレス誘導性遺伝子の発現に変化を生じさせずに行われる植物の栽培方法。
    In claim 1,
    The method of cultivating a plant is a method of cultivating a plant that is carried out without causing changes in the expression of genes related to photosynthesis and genes inducible to stress such as drought in the plant.
  12.  請求項1において、
     酸性ホスファターゼ遺伝子の発現量が土耕栽培の条件に比べて2倍以上である植物の栽培方法。
    In claim 1,
    A method for cultivating a plant in which the expression level of the acid phosphatase gene is at least twice as high as that under soil culture conditions.
  13.  請求項1において、
     前記植物の葉において、酸性ホスファターゼ遺伝子の発現量が土耕栽培の条件に比べて2倍以上である植物の栽培方法。
    In claim 1,
    A method for cultivating a plant, wherein the expression level of the acid phosphatase gene in the leaves of the plant is at least twice that under soil culture conditions.
  14.  請求項1において、
     前記植物はトマトであり、
     酸性ホスファターゼ遺伝子(ACP5)の発現量が土耕栽培の条件に比べて2倍以上である植物の栽培方法。
    In claim 1,
    the plant is a tomato,
    A method for cultivating a plant in which the expression level of acid phosphatase gene (ACP5) is at least twice that under soil cultivation conditions.
  15.  請求項1において、
     前記植物はトマトであり、
     前記トマトの葉において、酸性ホスファターゼ遺伝子(ACP5)の発現量が土耕栽培の条件に比べて2倍以上である植物の栽培方法。
    In claim 1,
    the plant is a tomato,
    A method for cultivating a plant, wherein the expression level of the acid phosphatase gene (ACP5) in the tomato leaves is at least twice that under soil cultivation conditions.
  16.  請求項1において、
     前記植物はトマトであり、
     リン酸欠乏で最も誘導される酸性ホスファターゼ遺伝子、または、SPXドメインタンパク質遺伝子の少なくともいずれか一方の発現が培地を用いない場合と比較して2倍以上となるようにトマトを栽培する植物の栽培方法。
    In claim 1,
    the plant is a tomato,
    A plant cultivation method for cultivating tomatoes so that the expression of at least one of the acid phosphatase gene, which is most induced by phosphate deficiency, or the SPX domain protein gene is doubled or more compared to when the medium is not used. .
  17.  請求項16において、
     前記酸性ホスファターゼ遺伝子は酸性ホスファターゼ遺伝子(Solyc03g098010)であり、前記SPXドメインタンパク質遺伝子は、SPXドメインタンパク質(Solyc08g060920)である植物の栽培方法。
    In claim 16,
    A method for cultivating a plant, wherein the acid phosphatase gene is acid phosphatase gene (Solyc03g098010) and the SPX domain protein gene is SPX domain protein (Solyc08g060920).
  18.  糖度が8 Brix%以上であり、酸度が0.350%以上であり、グルコース含量が120 μmol/gFW以上であるトマト果実。
     
    A tomato fruit having a sugar content of 8 Brix% or more, an acidity of 0.350% or more, and a glucose content of 120 μmol/gFW or more.
PCT/JP2022/032870 2021-09-01 2022-08-31 Plant cultivation method and tomato WO2023033082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-142813 2021-09-01
JP2021142813 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023033082A1 true WO2023033082A1 (en) 2023-03-09

Family

ID=85412356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032870 WO2023033082A1 (en) 2021-09-01 2022-08-31 Plant cultivation method and tomato

Country Status (2)

Country Link
TW (1) TW202327444A (en)
WO (1) WO2023033082A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065192A (en) * 2002-08-09 2004-03-04 Meiji Univ Method for culturing plant by using organic fertilizer
JP2007104960A (en) * 2005-10-13 2007-04-26 Hokkaido Univ Plant cultivation method and apparatus
JP2012161289A (en) * 2011-02-08 2012-08-30 Shikoku Res Inst Inc Fruit-vegetable-water stress adjusting agent composition, and method for adjustment
WO2015129841A1 (en) * 2014-02-28 2015-09-03 味の素株式会社 Agricultural and horticultural composition and method for cultivating plant
WO2021024375A1 (en) * 2019-08-06 2021-02-11 正月 白川 Plant cultivation method and plant cultivation device
JP2021065167A (en) * 2019-10-24 2021-04-30 田村 喜久雄 Edible plant cultivation apparatus and edible plant cultivation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065192A (en) * 2002-08-09 2004-03-04 Meiji Univ Method for culturing plant by using organic fertilizer
JP2007104960A (en) * 2005-10-13 2007-04-26 Hokkaido Univ Plant cultivation method and apparatus
JP2012161289A (en) * 2011-02-08 2012-08-30 Shikoku Res Inst Inc Fruit-vegetable-water stress adjusting agent composition, and method for adjustment
WO2015129841A1 (en) * 2014-02-28 2015-09-03 味の素株式会社 Agricultural and horticultural composition and method for cultivating plant
WO2021024375A1 (en) * 2019-08-06 2021-02-11 正月 白川 Plant cultivation method and plant cultivation device
JP2021065167A (en) * 2019-10-24 2021-04-30 田村 喜久雄 Edible plant cultivation apparatus and edible plant cultivation method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUSHIGE NAKABAYASHI, SHUNJI SAITOU, NAOKI KOBAYASHI, HIROSHI UENO: "Effects of Pretreatment of Coral Sand Medium with Phospotric Acid and Concentration of Potassium in the Nutrient Solution on the Growth and Yield of Tomatoes", MEMOIRS OF THE INSTITUTE OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, JP, vol. 36, no. 11, 20 March 1998 (1998-03-20), JP, pages 157 - 164, XP009544173, ISSN: 0386-4944 *
NAKABAYASHI, KAZUSHIGE. FUSE, YASUHIRO. NISHIYAMA, TOSHIYUKI. HIRASAWA, KIMIO.: "Growth of Melon Plants by Foam Cultivation, Bubbling Water Cultivation, Coral Sand Cultivation, and Conventional Hydroponics Systems", SHOKUBUTSU KOJO GAKKAISHI, vol. 11, no. 1, 1999, pages 32 - 37, XP055946587 *
SONG, KEMIN; JIAO, XINZHI; LI, LIN; YAN, JIQIONG: "Relationship between the Changes of Acid Phosphatase Activities and Pi-uptake of Tomato Seedings during Phosphate Starvation", ACTA BOTANICA YUNNANICA, vol. 21, no. 1, 1 January 1999 (1999-01-01), pages 101 - 108, XP009544222, ISSN: 2095-0845 *
WASAKI, JUN: "Elucidation of adaptation mechanisms of plants grown under low phosphorus conditions", NIPPON DOJO HIRYOGAKU ZASSHI/JAPANESE JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, NIPPON DOJO HIRYO GAKKAI, JAPAN, vol. 79, no. 5, 1 January 2008 (2008-01-01), Japan , pages 452 - 453, XP009544171, ISSN: 0029-0610, DOI: 10.20710/dojo.79.5_452 *

Also Published As

Publication number Publication date
TW202327444A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
Martinez-Rodriguez et al. The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’genotype is used as scion
Hao et al. Effects of calcium and magnesium on plant growth, biomass partitioning, and fruit yield of winter greenhouse tomato
Peris-Felipo et al. Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status
Lopez et al. Effects of varying sulphate concentrations on growth, physiology and yield of the greenhouse tomato
Yang et al. Nitrate uptake kinetics of grapevine under root restriction
Borghezan et al. Shoot growth of Merlot and Cabernet Sauvignon grapevine varieties
Thwe et al. Effects of acute ozone stress on reproductive traits of tomato, fruit yield and fruit composition
WO2023033082A1 (en) Plant cultivation method and tomato
Seneviratne et al. Development of rapid propagation methods and a miniature plant for export-oriented foliage, Zamioculcas zamiifolia
Horibe et al. Effects of Light Wavelength on Daughter Cladode Growth and Quality in Edible Cactus Cultured in a Plant Factory with Artificial Light
Wyka Effect of nutrients on growth rate and carbohydrate storage in Oxytropis sericea: a test of the carbon accumulation hypothesis
Sarmiento et al. Effect of the form and concentration of N on the growth and mineral composition of olive seedlings
Dewir et al. The effects of paclobutrazol, light emitting diodes (LEDs) and sucrose on flowering of Euphorbia millii plantlets in vitro
Alikhani et al. Silica nanoparticles and calcium on the histological characteristics and stem bending in gerbera cut flower
Posada et al. Pigment content in strawberry leaves (Fragaria sp.) exposed to different light quality
Jerca et al. Study on the influence of environmental conditions from greenhouse on the accumulation of vegetative mass and fructification in some varieties of cherry tomatoes.
Barakat et al. Evaluation of the two rootstocks (SO4 and Freedom) for the salt stress in vitro conditions
Nascimento Junior et al. Biological nitrogen fixation in soybean under water restriction and exposed to 1-methylcyclopropene
Roy et al. Impact of NaCl stress on the physiology of four cultivars of S. lycopersicum
Logendra et al. Ethephon concentrates and advances harvest for limited cluster greenhouse tomato crops
Eshghi et al. Molybdenum and boron affect pollen germination of strawberry and fertile and infertile flowers of pomegranate
YAZAR et al. The Effects of Rootstock-Scion Relationships on Yield and Quality in Grapevine cv. Ekşi Kara (Vitis vinifera L.)
Uysal et al. Establishment of In Vitro Cultures and Investigation of Micropropagation Possibilities In Shoot Tip Explants of Different Mastic Tree (Pistacia lentiscus L.) Genotypes
Shao et al. Application of active EM-calcium in green agricultural production—Case study in tomato and Flue-cured tobacco production
Horibe et al. Red and blue light ratio affects the growth and quality of edible cactus (Nopalea cochenillifera).

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545661

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE