WO2023033017A1 - Method for producing ganirelix or salt thereof - Google Patents

Method for producing ganirelix or salt thereof Download PDF

Info

Publication number
WO2023033017A1
WO2023033017A1 PCT/JP2022/032700 JP2022032700W WO2023033017A1 WO 2023033017 A1 WO2023033017 A1 WO 2023033017A1 JP 2022032700 W JP2022032700 W JP 2022032700W WO 2023033017 A1 WO2023033017 A1 WO 2023033017A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
amino acid
amino
hydrogen atom
Prior art date
Application number
PCT/JP2022/032700
Other languages
French (fr)
Japanese (ja)
Inventor
真也 矢野
卓 松本
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Publication of WO2023033017A1 publication Critical patent/WO2023033017A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/23Luteinising hormone-releasing hormone [LHRH]; Related peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a gonadotropin antagonist Ganirelix or a salt thereof.
  • Ganirelix is a gonadotropin antagonist and is marketed as an anti-premature ovulatory drug under controlled ovarian stimulation.
  • Ganirelix is a decapeptide drug having diethylhomoarginine residues at the 3rd and 5th positions from the C-terminus, and is produced by a solid-phase peptide synthesis method (Patent Documents 1 and 2, Non-Patent Document 1).
  • the solid-phase peptide synthesis method is preferable for small amounts of reagents, but it is not suitable for mass production such as supply as pharmaceuticals. This is because the solid-phase synthesis is a heterogeneous reaction system, the mixing efficiency is low, and the reaction rate is slow. Furthermore, since the peptide cannot be purified during the reaction, it is necessary to use a large excess of 3 to 4 equivalents of amino acids and reagents to be extended for the purpose of quantitative reaction. On the other hand, according to the liquid-phase peptide synthesis method, it is a homogeneous reaction system, and it is possible to reduce the amount of reagents used.
  • the amino acid or the like bound to the carrier is dissolved in the organic layer, and unnecessary components such as surplus raw material amino acids used in the peptide elongation reaction and its By dissolving in the aqueous layer the decomposition products and compounds produced as by-products when the protective groups of the starting amino acids are deprotected, there is an advantage that the amino acids bound to the carrier can be simply purified by liquid-liquid separation. Furthermore, there is also the advantage that crude purification of the peptide is possible even in a carrier-bound state.
  • amino acid amide refers to a structure in which the C-terminal carboxy group (--COOH) of an amino acid is replaced by an amide group (--CONH 2 ).
  • amide group refers to a structure in which the C-terminal carboxyl group of a peptide is an amide group.
  • an object of the present invention is to provide a new method for producing Ganirelix by a liquid-phase peptide synthesis method.
  • the present invention provides the following inventions [1] to [11].
  • [1] A method for producing Ganirelix or a salt thereof by a liquid-phase peptide synthesis method, wherein the following formulas (1) to (3) are used as starting materials for the condensation reaction of the 3rd and 5th diethylhomoarginine residues from the C-terminus.
  • a method for producing ganirelix or a salt thereof using one or more compounds of the group represented by and a carrier for liquid-phase peptide synthesis [2] The production method according to [1], characterized by including the following steps a to c. a. a step of condensing an amino acid, peptide, amino acid amide or peptide amide bound to a carrier for liquid phase peptide synthesis with an amino acid or peptide having a protected amino group in a solvent containing an organic solvent; b.
  • the amino acid sequence of the Ganirelix or its salt is D-AlaNH 2 , Pro, hArg(Et) 2 , Leu, D-hArg(Et) 2 , Tyr, Ser, D-3-pyridyl Ala from the C-terminal side.
  • the water-soluble amine is hydroxylamine, amidosulfuric acid, hydroxylamine-O-sulfonic acid, hydroxylamine-O-phosphonic acid, or an alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, aryl group, aralkyl primary, secondary or tertiary amines having one or more selected from groups and heterocyclic groups, wherein a hydroxy group, an ether bond, an alkoxy group, a sulfonyl group, a sulfonic acid group, a sulfate group, and a phosphoric acid group, the production method according to [7], which is an amine optionally having one or more substituents.
  • the dibenzofulvene trapping agent is a mercapto compound having an alkyl group of 1 to 10 carbon atoms and is selected from carboxylic acid, alkali metal salt of carboxylic acid, sulfonic acid, or alkali metal salt of sulfonic acid.
  • the production method according to any one of [1] to [10], wherein the carrier for liquid-phase peptide synthesis is a compound represented by the following formula (I).
  • Ring A represents a C4-20 aromatic ring which may contain heteroatoms and may be polycyclic;
  • R 11 is a hydrogen atom, or when ring A is a benzene ring and Rb is a group represented by the following formula (b), together with R 13 represents a single bond, and ring A and may form a fluorene ring together with ring B, or may form a xanthene ring together with ring A and ring B via an oxygen atom;
  • p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • A represents either a silyl group or an alkyl group to which a silyloxy group is attached; p represents an integer of 1 to 4; Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of; Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom; Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or formula (b);
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • A represents either a silyl group or an alkyl group to which a silyloxy group is attached
  • R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B through an oxygen atom.
  • Ring B in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of ) represents a group represented by; Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
  • Ganirelix or a salt thereof is produced by the method using the protected form of diethylhomoarginine of the present invention, the liquid-liquid separation after the condensation reaction is facilitated, and Ganirelix or a salt thereof can be industrially produced advantageously.
  • Ganirelix the target compound of the present invention
  • is a gonadotropin antagonist and is marketed as an anti-premature ovulatory agent under controlled ovarian stimulation.
  • the amino acid residues constituting the decapeptide structure are, from the C-terminal side, D-AlaNH 2 , Pro, hArg(Et) 2 , Leu, D-hArg(Et) 2 , Tyr, Ser, D- It may be abbreviated as 3-pyridyl Ala, Dp-chloroPhe, and D-naphthyl Ala.
  • the method for producing Ganirelix or a salt thereof of the present invention is a method for producing Ganirelix or a salt thereof by a liquid-phase peptide synthesis method, wherein the following are used as starting materials for the condensation reaction of the 3rd and 5th diethylhomoarginine residues from the C-terminus: Formulas (1) to (3)
  • R 1 and R 2 represent Boc, Cbz, Troc, Alloc, Trt, Mmt, Teoc, Phth, SES, or ivDde, and R 3 represents an amino protecting group
  • R 1 and R 2 are protecting groups, Boc (tert-butoxycarbonyl), Cbz (benzyloxycarbonyl), Troc (2,2,2-trichloroethoxycarbonyl) or Alloc (allyloxycarbonyl), Trt (trityl) , Mmt (4-monomethoxytrityl), Teoc (2-(trimethylsilyl)ethoxycarbonyl), Phth (phthaloyl), SES ((2-trimethylsilyl)-ethanesulfonyl), ivDde (1-(4,4-dimethyl-2 , 6-dioxocyclohex-1-ylidene)-3-methylbutyl).
  • R 3 represents an amino protecting group.
  • the amino-protecting group includes Fmoc (9-fluorenylmethyloxycarbonyl), Boc, Cbz, etc. Among them, Fmoc and Cbz are preferred, and Fmoc, which can be deprotected under basic conditions, is more preferred.
  • R 1 , R 2 and R 3 are preferably orthogonal protecting groups. That is, preferably the deprotection conditions for R 1 and R 2 do not affect R 3 and the deprotection conditions for R 3 do not affect R 1 and R 2 . Particularly preferred are compounds in which R 1 and R 2 are Boc and R 3 is Fmoc.
  • the structures represented by formulas (1) to (3) are E/Z isomers or imino/amino isomers, and the compound may be a mixture of these isomers.
  • the compounds represented by the above formulas (1) to (3) are, for example, ⁇ -amino-protected diethylhomoarginine, or a conjugate of this with a carrier for liquid-phase peptide synthesis, di-tert-butyl dicarbonate, N- It can be produced by reacting an amino-protecting agent such as a Boc agent such as tert-butoxycarbonylimidazole.
  • an amino-protecting agent such as a Boc agent such as tert-butoxycarbonylimidazole.
  • this Boc-forming reaction is preferably carried out in a solvent in the presence of a base.
  • the base may be an organic base such as pyridine, triethylamine, DMAP (4-dimethylaminopyridine), N-methylimidazole, or a mixed organic base thereof, and an inorganic base such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, sodium hydroxide.
  • a base may be used.
  • the amount of the base to be added is 0.1 to 30 equivalents, preferably 1 to 20 equivalents relative to the arginine derivative, but is not limited thereto.
  • Reaction solvents include water, THF (tetrahydrofuran), 2-methylTHF, 1,4-dioxane, toluene, DMF (N,N-dimethylformamide), acetonitrile, dichloromethane, chloroform, methanol, ethanol, or mixed solvents thereof. is used.
  • the reaction is preferably carried out at 0° C. to 40° C. for 1 to 24 hours.
  • Such a carrier for liquid-phase peptide synthesis may be a carrier that protects functional groups of amino acids, peptides, amino acid amides or peptide amides (amino acids, etc.) and solubilizes the protected amino acids, etc. in an organic solvent.
  • a carrier for liquid-phase peptide synthesis may be a carrier that protects functional groups of amino acids, peptides, amino acid amides or peptide amides (amino acids, etc.) and solubilizes the protected amino acids, etc. in an organic solvent.
  • the compounds described in Patent Documents 3 to 18 can be used.
  • Specific examples of such carriers for liquid-phase peptide synthesis include compounds represented by the following formula (I).
  • Ring A represents a C4-20 aromatic ring which may contain heteroatoms and may be polycyclic;
  • R 11 is a hydrogen atom, or when ring A is a benzene ring and Rb is a group represented by the following formula (b), together with R 13 represents a single bond, and ring A and may form a fluorene ring together with ring B, or may form a xanthene ring together with ring A and ring B via an oxygen atom;
  • p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • A represents either a silyl group or an alkyl group to which a silyloxy group is attached; p represents an integer of 1 to 4; Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of; Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom; Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or a group represented by formula (b);
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • A represents either a silyl group or an alkyl group to which a silyloxy group is attached
  • R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B through an oxygen atom.
  • Ring B in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of; Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
  • Ring A in formula (I) represents a C4-20 aromatic ring which may contain a heteroatom and may be monocyclic or polycyclic.
  • the aromatic ring includes a C6-20 aromatic hydrocarbon ring and a C4-10 aromatic heterocyclic ring.
  • Specific C6-20 aromatic hydrocarbon rings include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, tetracene ring, indane ring, indene ring, fluorene ring, biphenyl ring, 1,1′- A binaphthalene ring and the like can be mentioned.
  • the C4-10 aromatic heterocycle is preferably a 5- to 10-membered aromatic heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen and sulfur atoms, specifically , pyrrole ring, furan ring, thiophene ring, indole ring, benzofuran ring, benzothiophene ring, carbazole ring, pyrazole ring, indazole ring, imidazole ring, pyridine ring, quinoline ring, isoquinoline ring and the like.
  • a 5- to 8-membered aromatic heterocyclic ring containing 1 to 3 atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom as a heteroatom is preferable, a pyrrole ring, a furan ring, a thiophene ring, an indole ring, A benzofuran ring, a benzothiophene ring, a carbazole ring, a pyrazole ring, and an indazole ring are more preferred.
  • R 11 represents a hydrogen atom, or represents a single bond together with R 13 when ring A is a benzene ring and Rb is a group represented by the formula (b); and ring B together to form a fluorene ring, or may form a xanthene ring together with ring A and ring B via an oxygen atom.
  • the ring which may be formed by R 11 and R 13 together is preferably a fluorene ring or a xanthene ring.
  • R 15 represents a hydrogen atom, an alkyl group or an aralkyl group
  • R 15 is preferably a hydrogen atom, a C1-10 alkyl group or a C7-20 aralkyl group.
  • Alkyl groups include linear or branched C1- Ten alkyl groups are mentioned.
  • Aralkyl groups include C7-16 aralkyl groups such as benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl and 1-naphthylethyl groups.
  • p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicating a group;
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
  • p represents an integer of 1-4.
  • an organic group having an aliphatic hydrocarbon group is a monovalent organic group having an aliphatic hydrocarbon group in its molecular structure.
  • the site of the aliphatic hydrocarbon group in the organic group having the aliphatic hydrocarbon group is not particularly limited, and may be present at the terminal or at any other site.
  • the aliphatic hydrocarbon group present in the organic group is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group.
  • a hydrogen group is preferred, a C5-50 aliphatic hydrocarbon group is more preferred, and a C8-30 aliphatic hydrocarbon group is even more preferred.
  • the aliphatic hydrocarbon group examples include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group and the like, with alkyl groups, cycloalkyl groups and alkenyl groups being particularly preferred, and alkyl groups being more preferred.
  • a C5-30 linear or branched alkyl group, a C3-8 cycloalkyl group, a C5-30 linear or branched alkenyl group are preferred, and a C5-30 linear or branched alkyl group.
  • a C3-8 cycloalkyl group is more preferred, a C5-30 linear or branched alkyl group is more preferred, and a C8-30 linear or branched alkyl group is even more preferred.
  • alkyl group examples include alkyl groups having 1 to 30 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group and pentyl group.
  • branched alkyl group includes 2,3-dihydrophytyl group and 3,7,11-trimethyldodecyl group.
  • X 1 R 12 includes 2,2,4,8,10,10-hexamethyl-5-dodecanoic acid amide.
  • the alkenyl group includes monovalent groups such as vinyl group, 1-propenyl group, allyl group, isopropenyl group, butenyl group, isobutenyl group and oleyl group, and divalent groups derived therefrom.
  • the alkynyl group includes an ethynyl group, a propargyl group, a 1-propynyl group and the like.
  • the above aliphatic hydrocarbon group may be substituted with an aliphatic hydrocarbon group via an oxygen atom.
  • the aliphatic hydrocarbon group capable of substituting an oxygen atom on the aliphatic hydrocarbon group include straight-chain or branched-chain alkoxy groups having 1 to 20 carbon atoms, alkenyloxy groups having 2 to 20 carbon atoms, and 3 carbon atoms. monovalent groups such as cycloalkyloxy groups of up to 6, divalent groups derived therefrom, and the like. Further, it may have a repeating structure in which an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group through an oxygen atom is further substituted with an aliphatic hydrocarbon group through an oxygen atom.
  • R 12 12-docosyloxy-1-dodecyl group, 3,4,5-tris(octadecyloxy)benzyl group, 2,2,2-tris(octadecyloxymethyl)ethyl group, 3,4, 5-tris(octadecyloxy)cyclohexylmethyl group and the like.
  • the above aliphatic hydrocarbon group may be substituted with an organic group represented by formula (a).
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • X 3 is an oxygen atom or —C( ⁇ O)NR 17 —(R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • A represents a silyl group or an alkyl group to which a silyloxy group is bonded
  • the silyl group is preferably a silyl group substituted by three groups selected from linear or branched alkyl groups having 1 to 6 carbon atoms and aryl groups which may have a substituent.
  • examples of the aryl group which may have a substituent include a phenyl group and a naphthyl group.
  • a preferred silyl group is a silyl group substituted with three linear or branched alkyl groups having 1 to 6 carbon atoms, more preferably three linear or branched alkyl groups having 1 to 4 carbon atoms. It is a substituted silyl group.
  • the three alkyl groups or aryl groups substituting on the silyl group may be the same or different.
  • one silyloxy group substituted by three selected from linear or branched alkyl groups having 1 to 6 carbon atoms and aryl groups which may have substituents is used as the alkyl group to which the silyloxy group is bonded.
  • a linear or branched alkyl group having 1 to 13 carbon atoms with ⁇ 3 bonds is preferred.
  • a preferred silyloxy group is a silyloxy group substituted with three linear or branched alkyl groups having 1 to 6 carbon atoms, more preferably three linear or branched alkyl groups having 1 to 4 carbon atoms. It is a substituted silyloxy group.
  • the three alkyl groups or aryl groups substituted on the silyloxy group may be the same or different.
  • the linear or branched alkyl group having 1 to 13 carbon atoms is preferably branched, and more preferably has a quaternary carbon atom.
  • p represents an integer of 1 to 4.
  • p is preferably 1-3, more preferably 1-2.
  • Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of Halogen atoms include chlorine, fluorine, bromine and iodine atoms.
  • the C1-6 alkyl group optionally substituted with a halogen atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. , a dichloromethyl group, a trichloromethyl group, a trifluoromethyl group, and the like.
  • the C1-6 alkoxy group optionally substituted with a halogen atom includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group, and a trichloromethoxy group. groups, trifluoromethoxy groups, and the like.
  • Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom.
  • the aromatic ring includes a C6-18 aromatic hydrocarbon ring and a C4-10 aromatic heterocyclic ring.
  • Specific C6-18 aromatic hydrocarbon rings include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, tetracene ring, indane ring, indene ring, fluorene ring and biphenyl ring.
  • a benzene ring, a naphthalene ring, a phenanthrene ring, and a fluorene ring are more preferable.
  • the C4-10 aromatic heterocyclic ring is preferably a 5- to 10-membered heterocyclic ring containing 1 to 3 heteroatoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and specifically, pyrrole. ring, furan ring, thiophene ring, indole ring, benzofuran ring, benzothiophene ring, carbazole ring, pyrazole ring, indazole ring, imidazole ring, pyridine ring, quinoline ring, isoquinoline ring and the like.
  • a 5- to 8-membered heterocyclic ring containing 1 to 3 atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom as a heteroatom is preferable, and a pyrrole ring, a furan ring, a thiophene ring, an indole ring, and a benzofuran ring.
  • benzothiophene ring, carbazole ring, pyrazole ring and indazole ring are more preferred.
  • the aromatic ring of Ra may be substituted with 1 to 3 halogen atoms.
  • Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or a group represented by the above formula (b).
  • q in the formula (b) represents an integer of 0-4. q is preferably 0 to 3, more preferably 1 to 3, even more preferably 1 to 2.
  • R 18 represents a hydrogen atom, an alkyl group or an aralkyl group
  • R 18 is preferably a hydrogen atom, a C1-10 alkyl group or a C7-20 aralkyl group.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl and hexyl groups.
  • Aralkyl groups include C7-16 aralkyl groups such as benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl and 1-naphthylethyl groups.
  • q R 14 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicates a group.
  • R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • A represents either a silyl group or an alkyl group to which a silyloxy group is attached.
  • Examples of the organic group represented by R 14 include the same groups as those for R 12 above, and preferably the same groups as those for R 12 above.
  • R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B through an oxygen atom. may be formed.
  • Ring B in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of Halogen atoms include chlorine, fluorine, bromine and iodine atoms.
  • the C1-6 alkyl group optionally substituted with a halogen atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. , a dichloromethyl group, a trichloromethyl group, a trifluoromethyl group, and the like.
  • the C1-6 alkoxy group optionally substituted with a halogen atom includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group, and a trichloromethoxy group. groups, trifluoromethoxy groups, and the like.
  • Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom.
  • R 20 is preferably a hydrogen atom, a C1-10 alkyl group or a C7-20 aralkyl group.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl and hexyl groups.
  • Aralkyl groups include C7-16 aralkyl groups such as benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl and 1-naphthylethyl groups.
  • Yb is --CH 2 OR 34 (wherein R 34 represents a hydrogen atom, a halogenocarbonyl group, an active ester carbonyl group or an active ester sulfonyl group), --CH 2 NHR 35 (wherein R 35 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an aralkyl group), a halogenomethyl group, a formyl group, or an oxime, and R 21 , R 22 , R 23 , R 24 and at least one of R 25 represents a group represented by formula (8);
  • R 26 represents a linear or branched alkylene group having 6 to 16 carbon atoms
  • X 3 represents O or CONR 36 (wherein R 36 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms);
  • A is represented by formula (9), (10), (11), (12), (13), (14), (15), (16), (17), (18) or (19) indicates a group.
  • R 27 , R 28 and R 29 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group which may have a substituent; 30 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms, and R 31 , R 32 and R 33 each represent a linear or branched alkylene group having 1 to 3 carbon atoms.
  • the compound represented by formula (20) can be used as a carrier for liquid-phase peptide synthesis (Patent Documents 11, 12, 15).
  • R 51 represents a hydrogen atom, an active ester carbonyl group or an active ester sulfonyl group
  • R 51 represents a hydrogen atom, an active ester carbonyl group or an active ester sulfonyl group
  • —NHR 35 azide, halogen, isocyanate
  • X 5 is a hydrogen atom or a linear or branched alkyl or alkenyl group having 1 to 4 carbon atoms , or represents a cycloalkyl group
  • X 4 isocyanate
  • X 5 represents a linear or branched alkyl group or alkenyl group having 1 to 4 carbon atoms, or a cycloalkyl group
  • At least one of R 41 to R 50 represents a group represented by formula (2), and the remainder represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an
  • the compound represented by formula (21) can be used as a carrier for liquid-phase peptide synthesis (Patent Documents 13 and 14).
  • X 6 represents a hydroxy group or a halogen atom
  • at least one of R 61 to R 75 represents a group represented by formula (2), and the remainder are hydrogen atoms, halogen atoms, and 1 carbon atom.
  • 4 alkyl group or alkoxy group having 1 to 4 carbon atoms; may form
  • the carrier for liquid-phase peptide synthesis can also be bound via a linker to the carboxyl groups of amino acids, peptides, amino acid amides or peptide amides (such as amino acids) as raw materials.
  • the linker as used herein is an organic group having two reactive groups, one of which binds to the carboxyl group of the amino acid or the like, and the other of which binds to the carrier for liquid-phase peptide synthesis.
  • Preferred linkers are organic groups having a molecular weight of about 2000 or less (preferably about 1500 or less, more preferably about 1000 or less) and having reactive groups which may be the same or different, amino, carboxyl, and halomethyl groups. It is a compound having in the molecule at least two groups selected from the group consisting of For example, the following compounds can be mentioned.
  • Y is an integer of 1 to 6, preferably 1 to 4).
  • X is a halogen atom, preferably chlorine or bromine.
  • Z is an integer of 2 to 40, preferably 2 to 35, more preferably 2 to 28.
  • the structural formula of the above linker shows the state before binding to the side chain functional group or the like and the state before binding to the carrier for liquid-phase peptide synthesis).
  • the peptide extension reaction preferably has the following steps a, b and c.
  • the order of steps b and c is not critical, and the order of step b and then step c, that is, the organic solvent layer containing the condensate may be obtained after removing the protective group for the amino group, or step c and then step In the order of b, that is, after obtaining the organic solvent layer containing the condensate, the protective group for the amino group may be removed. a.
  • step a a step of obtaining an organic solvent layer containing;
  • step b a step of adding a dibenzofulvene trapping agent.
  • the amino acid, peptide, amino acid amide, or peptide amide bound to the carrier for liquid-phase peptide synthesis described in step a (hereinafter abbreviated as carrier-bound peptide for liquid-phase peptide synthesis) can be produced as follows. First, a carrier for liquid phase peptide synthesis is dissolved in an organic solvent such as THF, for example, an Fmoc-protected amino acid or peptide, a condensing agent such as N,N'-diisopropylcarbodiimide (DIPCI), and a base such as DMAP are added. to condense.
  • an organic solvent such as THF
  • a carrier-bound peptide for N-Fmoc-liquid phase synthesis which is an intermediate in which a carrier for liquid phase peptide synthesis is bound to the carboxyl group of an amino acid or peptide, can be produced.
  • the carrier for liquid-phase peptide synthesis is dissolved in an organic solvent such as toluene, and condensation is performed by adding, for example, an Fmoc-protected amino acid amide or peptide amide and an acid catalyst such as mesylic acid.
  • N-Fmoc-carrier-bound peptide for liquid phase synthesis which is an intermediate in which a carrier for liquid phase peptide synthesis is bound to the amide group of amino acid amide or peptide amide, can be produced.
  • amino-protected amino acid which is the other raw material
  • amino-protected amino acid is an amino acid or peptide whose amino group is protected with an amino-protecting group
  • carboxyl groups refer to amino acids or peptides that are unprotected and reactive.
  • amino-protecting groups include Fmoc group, Boc group, Cbz group, etc. Among them, Fmoc group, which can be deprotected under basic conditions, is more preferable.
  • amino group-protected amino acid has highly reactive functional groups such as hydroxyl, amino, guanidyl, carboxyl, thiol, indole, and imidazole groups
  • these functional groups are commonly used in peptide synthesis.
  • a protective group may be introduced, and the target compound can be obtained by removing the protective group as necessary at any point after the completion of the reaction.
  • hydroxyl-protecting groups include tBu, Trt, Bz (benzoyl), acetyl, and silyl groups
  • examples of guanidyl-protecting groups include Pbf, Boc, Pmc, and nitro groups.
  • carboxyl-protecting groups include tBu, methyl, ethyl, and Bz groups
  • examples of thiol-protecting groups include Trt, Acm (acetamidomethyl), tBu, and S-tBu ( dithio-tert-butyl) group, Dpm (diphenylmethyl) group, MBom (4-methoxybenzyloxymethyl) group and the like
  • examples of indole group-protecting groups include Boc group and the like
  • imidazole group-protecting group Examples include Boc group, Bom (benzyloxymethyl) group, Bum (tert-butoxymethyl) group, Trt group, Ddm (4,4'-dimethoxydiphenyl) group, MBom group and the like.
  • An amino group-protected amino acid can be produced, for example, by reacting an amino acid or peptide whose amino group is to be protected with an amino-protecting group with Fmoc-OSu or the like in a mixed solvent such as THF/water in the presence of a base. can be done.
  • the step a of the present invention is a step of condensing the raw materials, and the reaction solvent used in the step a is a solvent containing an organic solvent. If amino acids, peptides, amino acid amides or peptide amides are protected with the carrier for liquid-phase peptide synthesis used in the present invention, the obtained carrier-bound peptide for liquid-phase peptide synthesis becomes soluble in an organic solvent. Liquid phase peptide synthesis becomes possible.
  • organic solvents examples include THF, DMF, cyclohexane, CPME, 2-methylTHF, 4-methyltetrahydropyran (4-methylTHP), isopropyl acetate, chloroform, dichloromethane, N-methylpyrrolidone, dimethylacetamide ( DMAc) and NFM (N-formylmorpholine), preferably THF, DMF, CPME, 2-methylTHF, 4-methylTHP and N-methylpyrrolidone.
  • a mixed solvent of two or more of the above solvents may be used.
  • the condensation reaction is carried out by mixing the carrier for liquid phase peptide synthesis or the carrier-bound peptide for liquid phase peptide synthesis, the amino group-protected amino acid, the condensing agent and the base in a solvent containing the organic solvent. can be done.
  • the amount of the amino group-protected amino acid used relative to the carrier-bound peptide for liquid-phase peptide synthesis is generally 1.01-4 equivalents, preferably 1.03-3 equivalents, more preferably 1.03-3 equivalents, relative to the carrier-bound peptide for liquid-phase peptide synthesis. is 1.05 to 2 equivalents, more preferably 1.1 to 1.5 equivalents.
  • the unreacted amino acid active ester can be captured and inactivated by a quenching agent added thereafter. Therefore, even if an excess amino group-protected amino acid is used, the problem of residue does not occur.
  • Condensing agents commonly used in peptide synthesis can also be used in the present invention, such as 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)- 4-methylmorphonium chloride (DMT-MM), O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), O-(7-azabenzo triazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), O-(6-chlorobenzotriazol-1-yl)-1,1,3,3-tetramethyl Uronium hexafluorophosphate (HBTU(6-Cl)), O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), O-(6-chloro Benzotriazol-1-yl)-1,1,3,3-
  • DMT-MM, HBTU, HATU or COMU is preferred.
  • the amount of the condensing agent used is preferably 1 to 4 equivalents, more preferably 1 to 2 equivalents, still more preferably 1.05 to 1.45 equivalents, relative to the carrier-bound peptide for liquid-phase peptide synthesis.
  • Bases commonly used in peptide synthesis can also be used in the present invention. Examples include DIPEA (N,N-diisopropylethylamine), DMAP, NMM (N-methylmorpholine), TMP (2,4,6-trimethylpyridine). DIPEA is preferred.
  • an activator is preferably added in order to promote the reaction and suppress side reactions such as racemization.
  • the activating agent is a reagent that facilitates the formation of a peptide bond (amide bond) by leading an amino acid to a corresponding active ester, symmetrical acid anhydride, or the like in coexistence with a condensing agent.
  • an activator commonly used in peptide synthesis can be used.
  • 1-hydroxybenzotriazole HOBt
  • 1-hydroxy-1H-1,2,3-triazole ethyl carboxylate HCt
  • 1-hydroxy-7-azabenzotriazole HAt
  • 3-hydroxy-4- Ketobenzotriazine HOOBt
  • N-hydroxysuccinimide HSu
  • N-hydroxyphthalimide HPht
  • N-hydroxy-5-norbornene-2,3-dicarboximide HONb
  • pentafluorophenol cyano ( hydroxyimino)ethyl acetate (Oxyma) and the like.
  • Preferred are HOBt, HOOBt, HOCt, HOAt and Oxyma.
  • the amount of the activator used is preferably 1 to 4 equivalents, more preferably 1 to 2 equivalents, still more preferably 1.05 to 1.45 equivalents, relative to the carrier-bound peptide for liquid-phase peptide synthesis.
  • the amount of the solvent used is such that the concentration of the dissolved carrier-bound peptide for liquid-phase peptide synthesis is preferably 0.1 mM to 1M, more preferably 1 mM to 0.5M.
  • the reaction temperature is a temperature commonly used in peptide synthesis, for example, preferably -20 to 40°C, more preferably 0 to 30°C.
  • the condensation reaction time is usually 1 minute to 30 hours.
  • a step of adding an amino acid active ester quenching agent (hereinafter sometimes referred to as "quenching agent”) to the reaction solution after the condensation reaction may be performed.
  • an amino group-protected amino acid as a raw material is added in an excessive amount to the carrier for liquid phase peptide synthesis or the carrier-bound peptide for liquid phase peptide synthesis. Therefore, the amino acid active ester produced by activating the amino group-protected amino acid during the condensation reaction remains in excess after the condensation reaction.
  • the step of adding a quenching agent is a step of quenching this excess amino acid active ester.
  • the amount of the quenching agent to be added in this step is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, still more preferably 1 to 3 equivalents, relative to 1 equivalent of the theoretically remaining active amino acid ester.
  • the amino acid active ester quenching agent is a compound having an amino group in the molecule, and is disclosed in Japanese Patent No. 6703668, Japanese Patent No. 6713983, International Publication No. 2021/132545, Molecules 2021, 26, 3497-3505. . and the like can be used.
  • quenching agents include hydroxylamine, amidosulfuric acid, hydroxylamine-O-sulfonic acid, hydroxylamine-O-phosphonic acid, alkylamines having primary or secondary amines, fragrances having primary or secondary amines.
  • Group amines can be used, and tertiary amines can also be used.
  • excess quenching agent can be removed to the aqueous layer by liquid-liquid separation, it is preferably water-soluble, and amines having hydrophilic substituents such as hydroxyl group, sulfo group, sulfate group and phosphoric acid group are preferred.
  • the number of amino groups in the compound may be one (monovalent), or may be bivalent or more.
  • alkylamines that can be used include alkylamines having 1 to 14 carbon atoms, preferably alkylamines having 2 to 10 carbon atoms, more preferably alkylamines having 2 to 8 carbon atoms, and still more preferably alkylamines having 2 to 8 carbon atoms. is an alkylamine having 3 to 4 carbon atoms.
  • aromatic amines examples include aromatic amines having 1 to 14 carbon atoms, preferably aromatic amines having 6 to 10 carbon atoms.
  • Specific amines include, but are not limited to, propylamine, methylamine, hexylamine, benzylamine, aniline, toluidine, 2,4,6-trimethylaniline, anisidine, phenetidine, hydroxylamine, 1-methyl Piperazine, 4-aminopiperidine, diethylenetriamine, triaminoethylamine, 1-ethylpiperazine, N,N-dimethylethylenediamine, ethylenediamine, piperazine, 2-(2-aminoethoxy)ethanol (AEE), taurine, 2-aminoethyl hydrogen sulfate (2-aminoethyl sulfate, AEHS) and the like.
  • NMI N-methylimidazole
  • DMAP dimethylamine
  • trimethylamine 2-(2-aminoethoxy)ethanol
  • AEE 2-(2-aminoethoxy)ethanol
  • taurine taurine
  • 2-aminoethyl hydrogen sulfate (2-aminoethyl sulfate, AEHS) are preferred.
  • Step b is a step of removing the amino-protecting group of the amino-protected amino acid in the reaction solution.
  • the step of removing the amino-protecting group differs depending on the type of amino-protecting group.
  • the amino-protecting group is an Fmoc group
  • the reaction solution should be made basic.
  • the amino-protecting group is a Boc group
  • the reaction solution may be subjected to acidic conditions.
  • the amino-protecting group is a Cbz group
  • catalytic reduction may be performed.
  • the step of removing the amino-protecting group when the amino-protecting group is an Fmoc group will be described.
  • the reaction solution can be made basic. .0]-5-nonene (DBN), 1,4-diazabicyclo[2.2.2]-octane (DABCO), triethylamine, tertiary amines such as tributylamine; 1-methylpiperazine, 4-aminopiperidine, Diethylenetriamine, triaminoethylamine, 1-ethylpiperazine, N,N-dimethylethylenediamine, ethylenediamine, piperidine, piperazine, etc.
  • Divalent or higher water-soluble amines having at least one primary or secondary amino group are used. be able to. DBU, DBN, piperidine, piperazine, 1-methylpiperazine, 4-aminopiperidine and diethylenetriamine are preferred, and DBU, piperidine, piperazine and 1-methylpiperazine are more preferred.
  • the equivalent of the amine compound added in step b is 1-30 equivalents, preferably 4-20 equivalents, more preferably 4-10 equivalents, relative to the amount of Fmoc groups present in the system.
  • a trapping agent for DBF dibenzofulvene
  • DBF-amine adduct an adduct of DBF and amine
  • Trapping agent a trapping agent for DBF (dibenzofulvene) produced by the de-Fmoc reaction and an adduct of DBF and amine (DBF-amine adduct)
  • DBF-amine adduct an adduct of DBF and amine
  • Trapping agent mercapto compounds.
  • the mercapto compound that can be used is not particularly limited as long as it has a mercapto group and the compound reacted with DBF exhibits water solubility.
  • carboxylic acids alkali metal salts of carboxylic acids, sulfonic acids, or mercapto compounds having one or more substituents selected from alkali metal salts of sulfonic acids, and represented by the following general formula (4) or (5) compounds represented.
  • L1 and L2 each represent a divalent organic group, and M represents a hydrogen atom or an alkali metal
  • L1 and L2 in general formula (4) or (5) each represent a divalent organic group.
  • the divalent organic group is preferably a divalent organic group having 1 to 10 carbon atoms, more preferably a linear or branched alkylene group having 1 to 10 carbon atoms and optionally having a mercapto group. , an arylene group having 6 to 10 carbon atoms which may have a mercapto group, and a heteroarylene group having 4 to 9 carbon atoms which may have a mercapto group.
  • M represents a hydrogen atom or an alkali metal. Specific examples include a hydrogen atom, sodium, and potassium.
  • 3-mercaptopropionic acid thiomalic acid, cysteine, sodium mercaptomethanesulfonate, sodium 2-mercaptoethanesulfonate, 2-mercaptoethanesulfonic acid, 3-mercaptopropanesulfonic acid, 3-mercaptopropanesulfonic acid sodium, 1,3-dimercaptopropanesulfonic acid, sodium 2-mercaptobenzimidazole-5-sulfonate, and the like, with 3-mercaptopropanesulfonic acid being preferred.
  • the amount of the mercapto compound added is preferably 1 to 30 equivalents, more preferably 1 to 10 equivalents, even more preferably 1 to 5 equivalents, relative to the amount of the Fmoc group.
  • the amine compound and the mercapto compound may be added simultaneously, or the mercapto compound and then the amine compound may be added in this order.
  • the Fmoc elimination step may be performed at a temperature of ⁇ 20 to 40° C. for 1 minute to 5 hours.
  • step c an aqueous solution is added to the reaction solution, followed by liquid separation to produce an amino acid, peptide, amino acid amide or peptide amide bound to the carrier for liquid phase peptide synthesis and the amino acid or peptide from which the amino protecting group has been removed.
  • step b is a step of obtaining an organic solvent layer containing a condensate of After adding the aqueous solution to the reaction solution in step b, the aqueous layer and the organic solvent layer are separated.
  • the aqueous layer contains a condensate of an amino acid or peptide from which the amino protecting group has been removed and an active ester quenching agent and a DBF-trapping agent adduct. That is, the condensate of the amino acid or peptide from which the amino protecting group has been removed and the active ester quenching agent is easily extracted into the aqueous layer only by adding the aqueous solution in step c.
  • the organic solvent layer contains a condensate of an amino acid, peptide, amino acid amide or peptide amide bound to a carrier for liquid-phase peptide synthesis and an amino acid or peptide from which the amino protecting group has been removed.
  • the aqueous solution used here includes water or an aqueous solution having a pH in the vicinity of neutral to basic.
  • examples include an aqueous solution, an aqueous sodium hydrogencarbonate solution, an aqueous potassium hydrogencarbonate solution, an aqueous dipotassium hydrogenphosphate solution, an aqueous tripotassium phosphate solution, or a mixed solvent of these aqueous solutions and DMF, DMSO, NFM, or NMP.
  • the resulting Ganirelix is optionally converted into organic acid salts such as acetates, formates, oxalates, succinates and trifluoroacetates, mineral salts such as hydrochlorides, nitrates, sulfates and phosphates. can be converted to
  • Fmoc-hArg(Et) 2 (Boc) 2 -OH represents a mixture of three isomers in the reaction formula. Therefore, H-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) is also presumed to be a mixture of three isomers.
  • Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D -hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) is the combination of hArg(Et) 2 (Boc) 2 and D-hArg (Et) 2 (Boc) 2 is presumed to be each of the three isomers in the reaction formula, possibly resulting in a mixture of nine isomers in total. )
  • * in the structure of R' indicates a binding
  • Example (1-a) 2.00 g (1.83 mmol) of Fmoc-NH(D2-STag) was dissolved in 29.3 mL of cyclopentyl methyl ether (CPME), 7.33 mL of DMF, and 3-mercapto- dissolved in 2.55 mL of dimethylsulfoxide (DMSO).
  • CPME cyclopentyl methyl ether
  • DMF dimethylsulfoxide
  • AEE 2-(2-Aminoethoxy)ethanol
  • Example (1-c) To the resulting mixture, CPME 2.20 mL, DMF 8.30 mL, Fmoc-Pro-OH.H 2 O 0.782 g (2.20 mmol), DIPEA 1.28 mL (7.33 mmol), COMU 0.942 g ( 2.20 mmol) was added and stirred at room temperature for 50 minutes. 44.0 ⁇ L (0.444 mmol) of AEE was added, and the mixture was stirred at room temperature for 15 minutes.
  • Example (1-f) 0.800 mL of CPME, 8.95 mL of DMF, 1.28 mL (7.33 mmol) of DIPEA, 0.126 mL (2.20 mmol) of acetic acid, and 0.942 g (2.20 mmol) of COMU were added to the resulting mixture, and the mixture was cooled to room temperature. and stirred for 50 minutes. The reaction solution was concentrated under reduced pressure, and the resulting residue was added dropwise to 106 mL of acetonitrile (MeCN). Collect the solids by filtration and wash the filter cake with 50.0 mL of MeCN.
  • MeCN acetonitrile
  • Example (1-g) A mixed solution of 13.9 mL (181 mmol) of trifluoroacetic acid, 0.365 mL (1.78 mmol) of Triisopropylsilane, and 0.365 mL (20.3 mmol) of water was cooled to 5° C., and Ac-D-Nal(2)-D- pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH (D2-STag) 1.50 g was added.
  • Comparative examples (a), (b), (c) H-Pro-D-Ala-NH(D2-STag) was prepared from 2.00 g (1.83 mmol) of Fmoc-NH(D2-STag) in the same manner as in Examples 1-a, 1-b, and 1-c.
  • Example (2-a) A mixed solution containing NH 2 (D2-STag) was obtained from 0.800 g (0.733 mmol) of Fmoc-NH(D2-STag) in the same manner as in Example (1-a).
  • Example (2-b) 0.600 mL of CPME, 3.30 mL of DMF, 0.290 g (0.880 mmol) of Fmoc-D-Ala-OH.H 2 O, 0.511 mL (2.93 mmol) of DIPEA, and 0.511 mL of DIPEA were added to the resulting mixture. 377 g (0.880 mmol) was added and stirred at room temperature for 50 minutes. 24.8 mg (0.176 mmol) of 2-AEHS dissolved in 0.704 mL of DMSO was added and stirred at room temperature for 15 minutes.
  • Example (2-c) To the resulting mixture, CPME 0.800 mL, DMF 3.30 mL, Fmoc-Pro-OH.H 2 O 0.313 g (0.880 mmol), DIPEA 0.511 mL (2.93 mmol), COMU 0.377 g ( 0.880 mmol) was added and stirred at room temperature for 50 minutes. 24.8 mg (0.176 mmol) of 2-AEHS dissolved in 0.704 mL of DMSO was added and stirred at room temperature for 15 minutes.
  • Example (2-d) 0.600 mL of CPME, 3.30 mL of DMF, and 0.587 g of Fmoc-hArg(Et) 2 (Boc) 2 -OH (a mixture of three isomers shown in the figure) (0.587 g) were added to the resulting mixture. 880 mmol), 0.511 mL (2.93 mmol) of DIPEA, and 0.377 g (0.880 mmol) of COMU were added and stirred at room temperature for 50 minutes. 24.8 mg (0.176 mmol) of 2-AEHS dissolved in 0.704 mL of DMSO was added and stirred at room temperature for 15 minutes.
  • Example (2-e) Similar to Example (2-d), Fmoc-Leu-OH, Fmoc-D-hArg(Et) 2 (Boc) 2 -OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH , Fmoc-D-Pal(3)-OH, Fmoc-D-pClPhe-OH, Fmoc-D-Nal(2)-OH and HD-Nal(2)-D-pClPhe -D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2- Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH( A mixed solution containing D2-STag) was obtained.
  • Example (2-g) Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 in the same manner as in Example (1-g) (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) from 0.700 g of Ac-D-Nal(2)-D-pClPhe-D-Pal( 3) 0.455 g of -Ser-Tyr-D-hArg(Et) 2 -Leu-hArg(Et) 2 -Pro-D-Ala-NH 2 ⁇ nTFA was obtained.
  • ESIMS (m/z) 785.5 (M+2H) ⁇ 2+> HPLC Purity: 94.4% HPLC analysis conditions: same as (2) in Example (1-g).
  • the Boc-protected Fmoc-hArg(Et) 2 ( Boc) 2 -OH of the present invention was used in place of the conventional proton-protected Fmoc-hArg(Et) 2 -OH ⁇ HCl. It was found that by using it, the liquid separation property is improved, and ganirelix can be obtained by an industrially advantageous method.

Abstract

Provided is a novel method for producing ganirelix by liquid phase peptide synthesis method. The present invention pertains to a method that is for producing ganirelix or a salt thereof by a liquid phase peptide synthesis method, and that uses a binding product between a compound represented by formulae (1)-(3) (where R1 and R2 each represent Boc, Cbz, Troc, Alloc, Trt, Mmt, Teoc, Phth, SES, or ivDde, and R3 represents an amino-protecting group) and a carrier for liquid phase peptide synthesis, as a raw material for a condensation reaction of the third and fifth diethyl homoarginine residues from the C terminal.

Description

ガニレリクス又はその塩の製造法Method for producing Ganirelix or its salt
 本発明は、ゴナドトロピンアンタゴニストであるガニレリクス又はその塩の製造法に関する。 The present invention relates to a method for producing a gonadotropin antagonist Ganirelix or a salt thereof.
 ガニレリクスは、ゴナドトロピンアンタゴニストであり、調節卵巣刺激下における早発排卵防止薬として上市されている。ガニレリクスは、C末端から3番目と5番目にジエチルホモアルギニン残基を有するデカペプチド医薬品であり、固相ペプチド合成法により製造されている(特許文献1、2、非特許文献1)。 Ganirelix is a gonadotropin antagonist and is marketed as an anti-premature ovulatory drug under controlled ovarian stimulation. Ganirelix is a decapeptide drug having diethylhomoarginine residues at the 3rd and 5th positions from the C-terminus, and is produced by a solid-phase peptide synthesis method (Patent Documents 1 and 2, Non-Patent Document 1).
CN102584945ACN102584945A 国際公開第2015/188774号WO2015/188774 特許第5113118号公報Japanese Patent No. 5113118 特許第4500854号Patent No. 4500854 特許第5929756号公報Japanese Patent No. 5929756 特許第6092513号公報Japanese Patent No. 6092513 特許第5768712号公報Japanese Patent No. 5768712 特許第5803674号公報Japanese Patent No. 5803674 特許第6116782号公報Japanese Patent No. 6116782 特許第6201076号公報Japanese Patent No. 6201076 特許第6283774号公報Japanese Patent No. 6283774 特許第6283775号公報Japanese Patent No. 6283775 特許第6322350号公報Japanese Patent No. 6322350 特許第6393857号公報Japanese Patent No. 6393857 特許第6531235号公報Japanese Patent No. 6531235 国際公開第2019/009317号WO2019/009317 国際公開第2020/175472号WO2020/175472 国際公開第2020/175473号WO2020/175473 特表2003-500416号公報Japanese Patent Publication No. 2003-500416 特表2004-516330号公報Japanese translation of PCT publication No. 2004-516330 特開平4-211096号公報JP-A-4-211096 特開平5-170795号公報JP-A-5-170795
 ガニレリクスのようなデカペプチドの製造法としては、試薬レベルの少量であれば固相ペプチド合成法が好ましいが、医薬品としての供給という大量生産には不向きである。これは、固相合成が不均一な反応系であり混合効率が低く、反応速度が遅いためである。さらに、反応途中にペプチドを精製することができないため、定量的に反応させる目的で、伸長させるアミノ酸や試薬を3~4当量と大過剰量使用する必要もある。一方、液相ペプチド合成法によれば、均一な反応系であり、試薬の使用量を抑えることも可能である。しかしながら、ペプチド鎖の伸長に伴い有機溶媒への溶解度が低下することに起因する反応速度の低下や、ペプチド伸長反応毎に各ペプチドの性質に適した分離工程を検討する必要があり煩雑であることから、いわゆる液相ペプチド合成は近年おこなわれておらず、液相ペプチド合成法によるガニレリクスの合成も行われていなかった。 As a method for producing decapeptides such as Ganirelix, the solid-phase peptide synthesis method is preferable for small amounts of reagents, but it is not suitable for mass production such as supply as pharmaceuticals. This is because the solid-phase synthesis is a heterogeneous reaction system, the mixing efficiency is low, and the reaction rate is slow. Furthermore, since the peptide cannot be purified during the reaction, it is necessary to use a large excess of 3 to 4 equivalents of amino acids and reagents to be extended for the purpose of quantitative reaction. On the other hand, according to the liquid-phase peptide synthesis method, it is a homogeneous reaction system, and it is possible to reduce the amount of reagents used. However, it is complicated because it is necessary to consider the separation process suitable for the properties of each peptide for each peptide elongation reaction, as well as the decrease in reaction rate due to the decrease in solubility in organic solvents as the peptide chain elongates. Therefore, the so-called liquid-phase peptide synthesis has not been performed in recent years, nor has Ganirelix been synthesized by the liquid-phase peptide synthesis method.
 これに対し、近年、液相ペプチド合成において、液相ペプチド合成用担体(Tag)が報告されている(特許文献3~18)。本担体は疎水性が高い化合物であるため、親水性の高いアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミド(以下、アミノ酸等ということがある)を本担体に結合することで、有機溶媒への溶解性を大きく向上させることができる。従って、本担体にアミノ酸等を結合した状態でペプチド伸長反応を実施した場合、担体に結合したアミノ酸等を有機層に溶解させ、不要成分、たとえばペプチド伸長反応に使用した余剰の原料アミノ酸や、その分解物、原料アミノ酸の保護基を脱保護した際に副生する化合物等を水層に溶解させることで、液液分離により、担体に結合したアミノ酸等を簡便に精製できるという利点がある。さらに担体が結合した状態でもペプチドの粗精製が可能という利点もある。このように、液相ペプチド合成用担体を使用すれば、煩雑な分離操作を必要とせずに、ペプチドの大量製造が可能となった。
 なお、本明細書で「アミノ酸アミド」とは、アミノ酸のC末端のカルボキシ基(-COOH)がアミド基(-CONH2)となった構造をいう。また、「ペプチドアミド」とは、ペプチドのC末端のカルボキシ基がアミド基となった構造をいう。
 さらに、本明細書で「液液分離」と記載した場合、前述の工程、すなわち担体に結合したアミノ酸等を有機層に溶解させ、不要成分、たとえばペプチド伸長反応に使用した余剰の原料アミノ酸や、その分解物、原料アミノ酸の保護基を脱保護した際に副生する化合物等を水層に溶解させる工程をいう。
On the other hand, in recent years, liquid-phase peptide synthesis carriers (Tag) have been reported (Patent Documents 3 to 18). Since this carrier is a highly hydrophobic compound, by binding highly hydrophilic amino acids, peptides, amino acid amides or peptide amides (hereinafter sometimes referred to as amino acids, etc.) to this carrier, solubility in organic solvents can be improved. can be greatly improved. Therefore, when a peptide elongation reaction is carried out with an amino acid or the like bound to the present carrier, the amino acid or the like bound to the carrier is dissolved in the organic layer, and unnecessary components such as surplus raw material amino acids used in the peptide elongation reaction and its By dissolving in the aqueous layer the decomposition products and compounds produced as by-products when the protective groups of the starting amino acids are deprotected, there is an advantage that the amino acids bound to the carrier can be simply purified by liquid-liquid separation. Furthermore, there is also the advantage that crude purification of the peptide is possible even in a carrier-bound state. Thus, the use of a carrier for liquid-phase peptide synthesis has made it possible to mass-produce peptides without the need for complicated separation procedures.
As used herein, the term "amino acid amide" refers to a structure in which the C-terminal carboxy group (--COOH) of an amino acid is replaced by an amide group (--CONH 2 ). The term "peptide amide" refers to a structure in which the C-terminal carboxyl group of a peptide is an amide group.
Furthermore, when described as "liquid-liquid separation" in this specification, the above-mentioned step, that is, dissolving the amino acid etc. bound to the carrier in the organic layer, unnecessary components such as surplus raw material amino acids used in the peptide elongation reaction, It is a step of dissolving in the water layer the decomposition product, the compound by-produced when the protecting group of the starting amino acid is deprotected, and the like.
 しかし、ガニレリクスの場合、この液相ペプチド合成用担体を使用しても、ガニレリクスの構造中に存在するグアニジル基含有アミノ酸(ジエチルホモアルギニン)の縮合反応の際の液液分離が困難であることが判明した。 However, in the case of Ganirelix, liquid-liquid separation during the condensation reaction of the guanidyl group-containing amino acid (diethylhomoarginine) present in the structure of Ganirelix is difficult even when this carrier for liquid-phase peptide synthesis is used. found.
 従って、本発明の課題は、液相ペプチド合成法による新たなガニレリクスの製造法を提供することにある。 Therefore, an object of the present invention is to provide a new method for producing Ganirelix by a liquid-phase peptide synthesis method.
 そこで、本発明者は、液相ペプチド合成用担体を使用したガニレリクスの液相ペプチド合成に用いるジエチルホモアルギニンのグアニジル基の保護手段について種々検討した。まず、アルギニン類のグアニジル基の保護手段として汎用されてきたプロトン保護(特許文献19~22)を検討したところ、ジエチルホモアルギニンの縮合反応後の液液分離が困難であった。これに対し、アルギニン類のグアニジノ基をBoc基などの保護基で保護したジエチルホモアルギニンを原料として用いれば、縮合反応後の液液分離が良好になり、液相ペプチド合成法により工業的に有利な方法でガニレリクス又はその塩が製造できることを見出し、本発明を完成した。 Therefore, the present inventors conducted various studies on means for protecting the guanidyl group of diethylhomoarginine used for liquid-phase peptide synthesis of Ganirelix using a carrier for liquid-phase peptide synthesis. First, when proton protection (Patent Documents 19 to 22), which has been widely used as a means for protecting the guanidyl group of arginines, was investigated, liquid-liquid separation after the condensation reaction of diethylhomoarginine was difficult. On the other hand, if diethylhomoarginine in which the guanidino group of arginines is protected with a protecting group such as a Boc group is used as a starting material, the liquid-liquid separation after the condensation reaction becomes favorable, and the liquid-phase peptide synthesis method is industrially advantageous. The inventors have found that ganirelix or a salt thereof can be produced by a method, and completed the present invention.
 すなわち、本発明は、次の発明[1]~[11]を提供するものである。
[1]液相ペプチド合成法によるガニレリクス又はその塩の製造方法であって、C末端から3番目及び5番目のジエチルホモアルギニン残基の縮合反応原料として、下記式(1)~(3)
That is, the present invention provides the following inventions [1] to [11].
[1] A method for producing Ganirelix or a salt thereof by a liquid-phase peptide synthesis method, wherein the following formulas (1) to (3) are used as starting materials for the condensation reaction of the 3rd and 5th diethylhomoarginine residues from the C-terminus.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R1及びR2はBoc、Cbz、Troc、Alloc、Trt、Mmt、Teoc、Phth、SES、又はivDdeを示し、R3はアミノ保護基を示す)
で表される群の1つ以上の化合物、および液相ペプチド合成用担体を用いるガニレリクス又はその塩の製造方法。
[2]次の工程a~cを含むことを特徴とする、[1]記載の製造方法。
a.有機溶媒を含む溶媒中で、液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、アミノ基が保護されたアミノ酸又はペプチドとを縮合させる工程、
b.反応液中の前記アミノ基が保護された化合物のアミノ保護基を除去する工程、
c.反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程。
[3]前記ガニレリクス又はその塩のアミノ酸配列が、C末端側からD-AlaNH2、Pro、hArg(Et)2、Leu、D-hArg(Et)2、Tyr、Ser、D-3-ピリジルAla、D-p-クロロPhe、D-ナフチルAlaの順である[1]又は[2]に記載の製造方法。
[4]前記R1及びR2がBocであり、前記R3がFmoc又はCbzである[1]~[3]のいずれかに記載の製造方法。
[5]前記R1及びR2がBocであり、前記R3がFmocである[1]~[4]のいずれかに記載の製造方法。
[6]工程aに引き続き、縮合反応後の反応液に、アミノ酸活性エステルのクエンチ剤を添加する工程を含む、[2]~[5]のいずれかに記載の製造方法。
[7]前記アミノ酸活性エステルのクエンチ剤が、水溶性アミンである、[6]に記載の製造方法。
[8]前記水溶性アミンが、ヒドロキシルアミン、アミド硫酸、ヒドロキシルアミン-O-スルホン酸、ヒドロキシルアミン-O-ホスホン酸、又はアルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基及び複素環式基から選ばれる1種若しくは2種以上を有する1級、2級若しくは3級アミン類であって、ヒドロキシ基、エーテル結合、アルコキシ基、スルホニル基、スルホン酸基、硫酸基、及びリン酸基から選ばれる1種又は2種以上の置換基を有していてもよいアミン類である[7]に記載の製造方法。
[9]R3がFmocである場合において、工程bに引き続き、ジベンゾフルベンのトラッピング剤を添加する工程を含む、[2]~[8]のいずれかに記載の製造方法。
[10]前記ジベンゾフルベンのトラッピング剤が、炭素数1~10のアルキル基を有するメルカプト化合物であって、カルボン酸、カルボン酸のアルカリ金属塩、スルホン酸、又はスルホン酸のアルカリ金属塩から選ばれる1種以上の置換基を有するメルカプト化合物である、[9]に記載の製造方法。
[11]前記液相ペプチド合成用担体が、下記式(I)で表される化合物である[1]~[10]のいずれかに記載の製造方法。
(wherein R 1 and R 2 represent Boc, Cbz, Troc, Alloc, Trt, Mmt, Teoc, Phth, SES, or ivDde, and R 3 represents an amino protecting group)
A method for producing ganirelix or a salt thereof using one or more compounds of the group represented by and a carrier for liquid-phase peptide synthesis.
[2] The production method according to [1], characterized by including the following steps a to c.
a. a step of condensing an amino acid, peptide, amino acid amide or peptide amide bound to a carrier for liquid phase peptide synthesis with an amino acid or peptide having a protected amino group in a solvent containing an organic solvent;
b. removing the amino-protecting group of the compound in which the amino group is protected in the reaction solution;
c. After an aqueous solution is added to the reaction solution, the liquids are separated to obtain a condensate of the amino acid, peptide, amino acid amide or peptide amide bound to the carrier for liquid phase peptide synthesis and the amino acid or peptide from which the amino protecting group has been removed. a step of obtaining an organic solvent layer containing;
[3] The amino acid sequence of the Ganirelix or its salt is D-AlaNH 2 , Pro, hArg(Et) 2 , Leu, D-hArg(Et) 2 , Tyr, Ser, D-3-pyridyl Ala from the C-terminal side. , Dp-chloroPhe, and D-naphthyl Ala in that order [1] or [2].
[4] The production method according to any one of [1] to [3], wherein R 1 and R 2 are Boc, and R 3 is Fmoc or Cbz.
[5] The production method according to any one of [1] to [4], wherein R 1 and R 2 are Boc and R 3 is Fmoc.
[6] The production method according to any one of [2] to [5], comprising the step of adding an amino acid active ester quenching agent to the reaction solution after the condensation reaction, following step a.
[7] The production method according to [6], wherein the quenching agent for the amino acid active ester is a water-soluble amine.
[8] the water-soluble amine is hydroxylamine, amidosulfuric acid, hydroxylamine-O-sulfonic acid, hydroxylamine-O-phosphonic acid, or an alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, aryl group, aralkyl primary, secondary or tertiary amines having one or more selected from groups and heterocyclic groups, wherein a hydroxy group, an ether bond, an alkoxy group, a sulfonyl group, a sulfonic acid group, a sulfate group, and a phosphoric acid group, the production method according to [7], which is an amine optionally having one or more substituents.
[9] The production method according to any one of [2] to [8], which includes the step of adding a trapping agent for dibenzofulvene subsequent to step b when R 3 is Fmoc.
[10] The dibenzofulvene trapping agent is a mercapto compound having an alkyl group of 1 to 10 carbon atoms and is selected from carboxylic acid, alkali metal salt of carboxylic acid, sulfonic acid, or alkali metal salt of sulfonic acid. The production method according to [9], which is a mercapto compound having one or more substituents.
[11] The production method according to any one of [1] to [10], wherein the carrier for liquid-phase peptide synthesis is a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、
環Aはヘテロ原子を含んでいてもよく、多環性でもよいC4~20の芳香環を示し;
11は、水素原子であるか、又は環Aがベンゼン環でRbが下記式(b)で表される基である場合には、R13と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
p個のX1は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR15-(R15は水素原子、アルキル基又はアラルキル基を示す。)を示し;
p個のR12は、それぞれ独立して、脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し;
[In the formula,
Ring A represents a C4-20 aromatic ring which may contain heteroatoms and may be polycyclic;
R 11 is a hydrogen atom, or when ring A is a benzene ring and Rb is a group represented by the following formula (b), together with R 13 represents a single bond, and ring A and may form a fluorene ring together with ring B, or may form a xanthene ring together with ring A and ring B via an oxygen atom;
p X 1 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 15 — (R 15 represents a hydrogen atom, an alkyl group or an aralkyl group);
p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicating a group;
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
pは、1~4の整数を示し;
環Aは、p個のX112に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示し;
Rbは、水素原子、ハロゲン原子により置換されていてもよい芳香環、又は式(b)を示し;
However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
p represents an integer of 1 to 4;
Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of;
Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom;
Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or formula (b);
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、*は結合位置を示し;
qは、0~4の整数を示し;
q個のX2は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)
q個のR14は、それぞれ独立して、
脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し;
(Wherein, * indicates the binding position;
q represents an integer from 0 to 4;
q X 2 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 18 — (R 18 represents a hydrogen atom, an alkyl group or an aralkyl group.)
q R 14 are each independently
an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group through an oxygen atom, or an organic group of formula (a);
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
13は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
環Bは、q個のX214に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;
Yは、ヒドロキシ基、チオール基、NHR20(R20は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。]
However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B through an oxygen atom. may form;
Ring B, in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of ) represents a group represented by;
Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
 本発明のジエチルホモアルギニンの保護体を用いる方法でガニレリクス又はその塩を製造すれば、縮合反応後の液液分離が容易になり、ガニレリクス又はその塩が工業的に有利に製造できる。 If Ganirelix or a salt thereof is produced by the method using the protected form of diethylhomoarginine of the present invention, the liquid-liquid separation after the condensation reaction is facilitated, and Ganirelix or a salt thereof can be industrially produced advantageously.
実施例(1-d)※1の工程における液液分離にて、分液漏斗を振盪後、室温で25分間静置した後の液面の写真である。In the liquid-liquid separation in the step of Example (1-d) *1, it is a photograph of the liquid surface after shaking the separating funnel and allowing it to stand at room temperature for 25 minutes. 比較例(d)※2の工程における液液分離にて、分液漏斗を振盪後、室温で25分間静置した後の液面の写真である。In the liquid-liquid separation in the step of Comparative Example (d) *2, it is a photograph of the liquid surface after shaking the separating funnel and allowing it to stand at room temperature for 25 minutes.
 本発明の目的化合物である、ガニレリクスは下記の構造を有するデカペプチド[N-アセチル-3-(2-ナフチル)-D-アラニル-4-クロロ-D-フェニルアラニル-3-(3-ピリジル)-D-アラニル-L-セリル-L-チロシル-N6-(N,N'-ジエチルカルバミミドイル)-D-リジル-L-ロイシル-N6-(N,N'-ジエチルカルバミミドイル)-L-リジル-L-プロリル-D-アラニンアミド)]であり、ゴナドトロピンアンタゴニストであり、調節卵巣刺激下における早発排卵防止薬として上市されている。 Ganirelix, the target compound of the present invention, is a decapeptide [N-acetyl-3-(2-naphthyl)-D-alanyl-4-chloro-D-phenylalanyl-3-(3-pyridyl )-D-alanyl-L-seryl-L-tyrosyl-N6-(N,N'-diethylcarbamimidoyl)-D-lysyl-L-leucyl-N6-(N,N'-diethylcarbamimidoyl)- L-lysyl-L-prolyl-D-alanamide)], is a gonadotropin antagonist and is marketed as an anti-premature ovulatory agent under controlled ovarian stimulation.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記の構造において、デカペプチド構造を構成するアミノ酸残基は、C末端側から、D-AlaNH2、Pro、hArg(Et)2、Leu、D-hArg(Et)2、Tyr、Ser、D-3-ピリジルAla、D-p-クロロPhe、D-ナフチルAlaと略記することがある。 In the structure above, the amino acid residues constituting the decapeptide structure are, from the C-terminal side, D-AlaNH 2 , Pro, hArg(Et) 2 , Leu, D-hArg(Et) 2 , Tyr, Ser, D- It may be abbreviated as 3-pyridyl Ala, Dp-chloroPhe, and D-naphthyl Ala.
 本発明のガニレリクス又はその塩の製造方法は、液相ペプチド合成法によるガニレリクス又はその塩の製造方法であって、C末端から3番目及び5番目のジエチルホモアルギニン残基の縮合反応原料として、下記式(1)~(3) The method for producing Ganirelix or a salt thereof of the present invention is a method for producing Ganirelix or a salt thereof by a liquid-phase peptide synthesis method, wherein the following are used as starting materials for the condensation reaction of the 3rd and 5th diethylhomoarginine residues from the C-terminus: Formulas (1) to (3)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、R1及びR2はBoc、Cbz、Troc、Alloc、Trt、Mmt、Teoc、Phth、SES、又はivDdeを示し、R3はアミノ保護基を示す)
で表される化合物のうち1つ以上と液相ペプチド合成用担体を用いるガニレリクス又はその塩の製造方法である。
(wherein R 1 and R 2 represent Boc, Cbz, Troc, Alloc, Trt, Mmt, Teoc, Phth, SES, or ivDde, and R 3 represents an amino protecting group)
A method for producing ganirelix or a salt thereof using one or more of the compounds represented by and a carrier for liquid phase peptide synthesis.
 まず、ジエチルホモアルギニン残基の縮合反応原料として用いる前記式(1)~(3)で表される化合物について説明する。
 R1及びR2は保護基であり、Boc(tert-ブトキシカルボニル)、Cbz(ベンジルオキシカルボニル)、Troc(2,2,2-トリクロロエトキシカルボニル)又はAlloc(アリルオキシカルボニル)、Trt(トリチル)、Mmt(4-モノメトキシトリチル)、Teoc(2-(トリメチルシリル)エトキシカルボニル)、Phth(フタロイル)、SES((2-トリメチルシリル)-エタンスルホニル)、ivDde(1-(4,4-ジメチル-2,6-ジオキソシクロヘキサ-1-イリデン)-3-メチルブチル)を示す。このうち、縮合反応物の液液分離を良好にする観点から、Bocが好ましい。
 R3はアミノ保護基を示す。当該アミノ保護基としては、Fmoc(9-フルオレニルメチルオキシカルボニル)、Boc、Cbzなどが挙げられ、このうちFmoc、Cbzが好ましく、塩基性条件で脱保護できるFmocがより好ましい。
 R1及びR2と、R3とはオルソゴナルな性質を有する保護基であることが好ましい。つまり、R1及びR2の脱保護条件がR3に影響を及ぼさず、R3の脱保護条件がR1及びR2に影響を及ぼさないことが好ましい。特に、R1及びR2がBocであり、R3がFmocである化合物がより好ましい。
First, the compounds represented by the above formulas (1) to (3) used as starting materials for the condensation reaction of the diethylhomoarginine residue will be described.
R 1 and R 2 are protecting groups, Boc (tert-butoxycarbonyl), Cbz (benzyloxycarbonyl), Troc (2,2,2-trichloroethoxycarbonyl) or Alloc (allyloxycarbonyl), Trt (trityl) , Mmt (4-monomethoxytrityl), Teoc (2-(trimethylsilyl)ethoxycarbonyl), Phth (phthaloyl), SES ((2-trimethylsilyl)-ethanesulfonyl), ivDde (1-(4,4-dimethyl-2 , 6-dioxocyclohex-1-ylidene)-3-methylbutyl). Among these, Boc is preferable from the viewpoint of improving the liquid-liquid separation of the condensation reaction product.
R 3 represents an amino protecting group. The amino-protecting group includes Fmoc (9-fluorenylmethyloxycarbonyl), Boc, Cbz, etc. Among them, Fmoc and Cbz are preferred, and Fmoc, which can be deprotected under basic conditions, is more preferred.
R 1 , R 2 and R 3 are preferably orthogonal protecting groups. That is, preferably the deprotection conditions for R 1 and R 2 do not affect R 3 and the deprotection conditions for R 3 do not affect R 1 and R 2 . Particularly preferred are compounds in which R 1 and R 2 are Boc and R 3 is Fmoc.
 前記式(1)~(3)で表される構造は、E/Z異性体又はイミノ/アミノ異性体であり、当該化合物は、これらの異性体の混合物であってもよい。 The structures represented by formulas (1) to (3) are E/Z isomers or imino/amino isomers, and the compound may be a mixture of these isomers.
 前記式(1)~(3)で表される化合物は、例えば、αアミノ保護ジエチルホモアルギニン、又はこれと液相ペプチド合成用担体との結合体に、二炭酸ジ-tert-ブチル、N-tert-ブトキシカルボニルイミダゾール等のBoc化剤などのアミノ保護化剤を反応させることにより製造できる。
 例えば、このBoc化反応は、塩基の存在下、溶媒中で行うのが好ましい。塩基としては、ピリジン、トリエチルアミン、DMAP(4-ジメチルアミノピリジン)、N-メチルイミダゾールなどの有機塩基又はこれらの混合有機塩基でもよく、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウムなどの無機塩基でもよい。塩基の添加量は、アルギニン誘導体に対して0.1~30当量、好ましくは1~20当量であるが、これに限定されない。
 反応溶媒は、水、THF(テトラヒドロフラン)、2-メチルTHF、1,4-ジオキサン、トルエン、DMF(N,N-ジメチルホルムアミド)、アセトニトリル、ジクロロメタン、クロロホルム、メタノール、エタノール、又はこれらの混合溶媒などが用いられる。反応は、0℃~40℃で、1~24時間行うのが好ましい。
The compounds represented by the above formulas (1) to (3) are, for example, α-amino-protected diethylhomoarginine, or a conjugate of this with a carrier for liquid-phase peptide synthesis, di-tert-butyl dicarbonate, N- It can be produced by reacting an amino-protecting agent such as a Boc agent such as tert-butoxycarbonylimidazole.
For example, this Boc-forming reaction is preferably carried out in a solvent in the presence of a base. The base may be an organic base such as pyridine, triethylamine, DMAP (4-dimethylaminopyridine), N-methylimidazole, or a mixed organic base thereof, and an inorganic base such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, sodium hydroxide. A base may be used. The amount of the base to be added is 0.1 to 30 equivalents, preferably 1 to 20 equivalents relative to the arginine derivative, but is not limited thereto.
Reaction solvents include water, THF (tetrahydrofuran), 2-methylTHF, 1,4-dioxane, toluene, DMF (N,N-dimethylformamide), acetonitrile, dichloromethane, chloroform, methanol, ethanol, or mixed solvents thereof. is used. The reaction is preferably carried out at 0° C. to 40° C. for 1 to 24 hours.
 次に、前記液相ペプチド合成用担体について、説明する。このような液相ペプチド合成用担体は、アミノ酸、ペプチド、アミノ酸アミド又はペプチドアミド(アミノ酸等)の官能基を保護して、当該保護されたアミノ酸等を有機溶媒に可溶化する担体であれば良く、例えば、特許文献3~18などに記載の化合物を用いることができる。
 このような液相ペプチド合成用担体としては、具体的には、下記式(I)で表される化合物が挙げられる。
Next, the carrier for liquid-phase peptide synthesis will be described. Such a carrier for liquid-phase peptide synthesis may be a carrier that protects functional groups of amino acids, peptides, amino acid amides or peptide amides (amino acids, etc.) and solubilizes the protected amino acids, etc. in an organic solvent. , for example, the compounds described in Patent Documents 3 to 18 can be used.
Specific examples of such carriers for liquid-phase peptide synthesis include compounds represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、
環Aはヘテロ原子を含んでいてもよく、多環性でもよいC4~20の芳香環を示し;
11は、水素原子であるか、又は環Aがベンゼン環でRbが下記式(b)で表される基である場合には、R13と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
p個のX1は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR15-(R15は水素原子、アルキル基又はアラルキル基を示す。)を示し;
p個のR12は、それぞれ独立して、脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し;
[In the formula,
Ring A represents a C4-20 aromatic ring which may contain heteroatoms and may be polycyclic;
R 11 is a hydrogen atom, or when ring A is a benzene ring and Rb is a group represented by the following formula (b), together with R 13 represents a single bond, and ring A and may form a fluorene ring together with ring B, or may form a xanthene ring together with ring A and ring B via an oxygen atom;
p X 1 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 15 — (R 15 represents a hydrogen atom, an alkyl group or an aralkyl group);
p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicating a group;
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
pは、1~4の整数を示し;
環Aは、p個のX112に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示し;
Rbは、水素原子、ハロゲン原子により置換されていてもよい芳香環、又は式(b)で表される基を示し;
However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
p represents an integer of 1 to 4;
Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of;
Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom;
Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or a group represented by formula (b);
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、*は結合位置を示し;
qは、0~4の整数を示し;
q個のX2は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示し;
q個のR14は、それぞれ独立して、脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し;
(Wherein, * indicates the binding position;
q represents an integer from 0 to 4;
q X 2 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 18 — (R 18 represents a hydrogen atom, an alkyl group or an aralkyl group);
q R 14 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicating a group;
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
13は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
環Bは、q個のX214に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Yは、ヒドロキシ基、チオール基、NHR20(R20は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。]
However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B through an oxygen atom. may form;
Ring B, in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of;
Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
 式(I)中の環Aは、ヘテロ原子を含んでいてもよく、単環性でも、多環性でよいC4~20の芳香環を示す。当該芳香環としては、C6~20の芳香族炭化水素環、及びC4~10の芳香族複素環が挙げられる。
 具体的なC6~20の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、テトラセン環、インダン環、インデン環、フルオレン環、ビフェニル環、1,1’-ビナフタレン環などが挙げられる。このうち、ベンゼン環、ナフタレン環、フェナントレン環、フルオレン環がより好ましい。
 C4~10の芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~10員環の芳香族複素環が好ましく、具体的には、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環、イミダゾール環、ピリジン環、キノリン環、イソキノリン環などが挙げられる。このうち、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~8員環の芳香族複素環が好ましく、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環がより好ましい。
Ring A in formula (I) represents a C4-20 aromatic ring which may contain a heteroatom and may be monocyclic or polycyclic. The aromatic ring includes a C6-20 aromatic hydrocarbon ring and a C4-10 aromatic heterocyclic ring.
Specific C6-20 aromatic hydrocarbon rings include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, tetracene ring, indane ring, indene ring, fluorene ring, biphenyl ring, 1,1′- A binaphthalene ring and the like can be mentioned. Among these, a benzene ring, a naphthalene ring, a phenanthrene ring, and a fluorene ring are more preferable.
The C4-10 aromatic heterocycle is preferably a 5- to 10-membered aromatic heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen and sulfur atoms, specifically , pyrrole ring, furan ring, thiophene ring, indole ring, benzofuran ring, benzothiophene ring, carbazole ring, pyrazole ring, indazole ring, imidazole ring, pyridine ring, quinoline ring, isoquinoline ring and the like. Among these, a 5- to 8-membered aromatic heterocyclic ring containing 1 to 3 atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom as a heteroatom is preferable, a pyrrole ring, a furan ring, a thiophene ring, an indole ring, A benzofuran ring, a benzothiophene ring, a carbazole ring, a pyrazole ring, and an indazole ring are more preferred.
 R11は、水素原子を示すか、又は環Aがベンゼン環でRbが前記式(b)で表される基である場合には、R13と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよい。R11とR13が一緒になって形成してもよい環としては、フルオレン環又はキサンテン環が好ましい。 R 11 represents a hydrogen atom, or represents a single bond together with R 13 when ring A is a benzene ring and Rb is a group represented by the formula (b); and ring B together to form a fluorene ring, or may form a xanthene ring together with ring A and ring B via an oxygen atom. The ring which may be formed by R 11 and R 13 together is preferably a fluorene ring or a xanthene ring.
 p個のX1は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR15-(R15は水素原子、アルキル基又はアラルキル基を示す。)を示す。
 ここで、R15としては、水素原子、C1~10のアルキル基又はC7~20のアラルキル基が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの直鎖又は分岐鎖のC1~10のアルキル基が挙げられる。
 アラルキル基としては、C7~16アラルキル基、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基などが挙げられる。
p X 1 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 15 -- (R 15 represents a hydrogen atom, an alkyl group or an aralkyl group);
Here, R 15 is preferably a hydrogen atom, a C1-10 alkyl group or a C7-20 aralkyl group. Alkyl groups include linear or branched C1- Ten alkyl groups are mentioned.
Aralkyl groups include C7-16 aralkyl groups such as benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl and 1-naphthylethyl groups.
 p個のR12は、それぞれ独立して、脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し; p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicating a group;
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
 pは、1~4の整数を示す。
However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
p represents an integer of 1-4.
 本明細書において、脂肪族炭化水素基を有する有機基とは、その分子構造中に脂肪族炭化水素基を有する一価の有機基である。当該脂肪族炭化水素基を有する有機基中の脂肪族炭化水素基の部位は、特に限定されず、末端に存在してもよく、それ以外の部位に存在してもよい。
 当該有機基中に存在する脂肪族炭化水素基とは、直鎖、分岐状若しくは環状の飽和又は不飽和の脂肪族炭化水素基であり、有機溶媒溶解性の点から、C5以上の脂肪族炭化水素基が好ましく、C5~50の脂肪族炭化水素基がより好ましく、C8~30の脂肪族炭化水素基がさらに好ましい。当該脂肪族炭化水素基の具体例としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられるが、特にアルキル基、シクロアルキル基、アルケニル基が好ましく、アルキル基がより好ましい。さらに、C5~30の直鎖又は分岐鎖のアルキル基、C3~8のシクロアルキル基、C5~30の直鎖又は分岐鎖のアルケニル基が好ましく、C5~30の直鎖又は分岐鎖のアルキル基、C3~8のシクロアルキル基がより好ましく、C5~30の直鎖又は分岐鎖のアルキル基がさらに好ましく、C8~30の直鎖又は分岐鎖のアルキル基がよりさらに好ましい。
As used herein, an organic group having an aliphatic hydrocarbon group is a monovalent organic group having an aliphatic hydrocarbon group in its molecular structure. The site of the aliphatic hydrocarbon group in the organic group having the aliphatic hydrocarbon group is not particularly limited, and may be present at the terminal or at any other site.
The aliphatic hydrocarbon group present in the organic group is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group. A hydrogen group is preferred, a C5-50 aliphatic hydrocarbon group is more preferred, and a C8-30 aliphatic hydrocarbon group is even more preferred. Specific examples of the aliphatic hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group and the like, with alkyl groups, cycloalkyl groups and alkenyl groups being particularly preferred, and alkyl groups being more preferred. Further, a C5-30 linear or branched alkyl group, a C3-8 cycloalkyl group, a C5-30 linear or branched alkenyl group are preferred, and a C5-30 linear or branched alkyl group. , a C3-8 cycloalkyl group is more preferred, a C5-30 linear or branched alkyl group is more preferred, and a C8-30 linear or branched alkyl group is even more preferred.
 アルキル基の具体例としては、炭素数1~30のアルキル基が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ラウリル基、トリデシル基、ミリスチル基、セチル基、ステアリル基、アラキル基、べへニル基、テトラコサニル基、ヘキサコサニル基、イソステアリル基などの一価の基、それらから誘導される二価の基、各種ステロイド基から水酸基などを除外した基が挙げられる。
 分岐鎖を有するアルキル基としては、2、3―ジヒドロフィチル基、3,7,11-トリメチルドデシル基が挙げられる。またX1が-NHC(=O)-の場合、X112として2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸アミドが挙げられる。
 アルケニル基としては、ビニル基、1-プロぺニル基、アリル基、イソプロペニル基、ブテニル基、イソブテニル基、オレイル基などの一価の基、それらから誘導される二価の基が挙げられる。
 アルキニル基としては、エチニル基、プロパルギル基、1-プロピニル基などが挙げられる。
Specific examples of the alkyl group include alkyl groups having 1 to 30 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group and pentyl group. , hexyl group, octyl group, decyl group, lauryl group, tridecyl group, myristyl group, cetyl group, stearyl group, arachyl group, behenyl group, tetracosanyl group, hexacosanyl group, isostearyl group, and other monovalent groups; divalent groups derived from and various steroid groups excluding hydroxyl groups and the like.
The branched alkyl group includes 2,3-dihydrophytyl group and 3,7,11-trimethyldodecyl group. When X 1 is -NHC(=O)-, X 1 R 12 includes 2,2,4,8,10,10-hexamethyl-5-dodecanoic acid amide.
The alkenyl group includes monovalent groups such as vinyl group, 1-propenyl group, allyl group, isopropenyl group, butenyl group, isobutenyl group and oleyl group, and divalent groups derived therefrom.
The alkynyl group includes an ethynyl group, a propargyl group, a 1-propynyl group and the like.
 上記の脂肪族炭化水素基には、酸素原子を介して脂肪族炭化水素基が置換していてもよい。脂肪族炭化水素基に酸素原子を介して置換し得る脂肪族炭化水素基としては、炭素数1~20の直鎖又は分岐鎖のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数3~6のシクロアルキルオキシ基などの一価の基、それらから誘導される二価の基などが挙げられる。また、酸素原子を介して脂肪族炭化水素基が置換している脂肪族炭化水素基に、さらに酸素原子を介して脂肪族炭化水素基が置換した繰り返し構造を有していてもよい。
 具体的には、R12として12-ドコシルオキシ-1-ドデシル基、3,4,5-トリス(オクタデシルオキシ)ベンジル基、2,2,2-トリス(オクタデシルオキシメチル)エチル基、3,4,5-トリス(オクタデシルオキシ)シクロへキシルメチル基などが挙げられる。
The above aliphatic hydrocarbon group may be substituted with an aliphatic hydrocarbon group via an oxygen atom. Examples of the aliphatic hydrocarbon group capable of substituting an oxygen atom on the aliphatic hydrocarbon group include straight-chain or branched-chain alkoxy groups having 1 to 20 carbon atoms, alkenyloxy groups having 2 to 20 carbon atoms, and 3 carbon atoms. monovalent groups such as cycloalkyloxy groups of up to 6, divalent groups derived therefrom, and the like. Further, it may have a repeating structure in which an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group through an oxygen atom is further substituted with an aliphatic hydrocarbon group through an oxygen atom.
Specifically, as R 12 , 12-docosyloxy-1-dodecyl group, 3,4,5-tris(octadecyloxy)benzyl group, 2,2,2-tris(octadecyloxymethyl)ethyl group, 3,4, 5-tris(octadecyloxy)cyclohexylmethyl group and the like.
 上記の脂肪族炭化水素基には、式(a)で表される有機基が置換していてもよい。 The above aliphatic hydrocarbon group may be substituted with an organic group represented by formula (a).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(R16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基を示す)
 シリル基としては、炭素数1~6の直鎖又は分岐鎖のアルキル基及び置換基を有していてもよいアリール基から選ばれる3個が置換したシリル基が好ましい。ここで、置換基を有していてもよいアリール基としては、フェニル基、ナフチル基などが挙げられる。
 好ましいシリル基としては、炭素数1~6の直鎖又は分岐鎖のアルキル基が3個置換したシリル基であり、より好ましくは炭素数1~4の直鎖又は分岐鎖のアルキル基が3個置換したシリル基である。シリル基に置換する3個のアルキル基又はアリール基は、同一でも異なっていてもよい。
 また、シリルオキシ基が結合したアルキル基としては、炭素数1~6の直鎖又は分岐鎖のアルキル基及び置換基を有していてもよいアリール基から選ばれる3個が置換したシリルオキシ基が1~3個結合した、炭素数1~13の直鎖又は分岐鎖のアルキル基が好ましい。好ましいシリルオキシ基としては、炭素数1~6の直鎖又は分岐鎖のアルキル基が3個置換したシリルオキシ基であり、より好ましくは炭素数1~4の直鎖又は分岐鎖のアルキル基が3個置換したシリルオキシ基である。シリルオキシ基に置換する3個のアルキル基又はアリール基は、同一でも異なっていてもよい。
 炭素数1~13の直鎖又は分岐鎖のアルキル基は、分岐鎖であることが好ましく、4級炭素原子を有することがさらに好ましい。
(R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, X 3 is an oxygen atom or —C(═O)NR 17 —(R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms) A represents a silyl group or an alkyl group to which a silyloxy group is bonded)
The silyl group is preferably a silyl group substituted by three groups selected from linear or branched alkyl groups having 1 to 6 carbon atoms and aryl groups which may have a substituent. Here, examples of the aryl group which may have a substituent include a phenyl group and a naphthyl group.
A preferred silyl group is a silyl group substituted with three linear or branched alkyl groups having 1 to 6 carbon atoms, more preferably three linear or branched alkyl groups having 1 to 4 carbon atoms. It is a substituted silyl group. The three alkyl groups or aryl groups substituting on the silyl group may be the same or different.
In addition, as the alkyl group to which the silyloxy group is bonded, one silyloxy group substituted by three selected from linear or branched alkyl groups having 1 to 6 carbon atoms and aryl groups which may have substituents is used. A linear or branched alkyl group having 1 to 13 carbon atoms with ˜3 bonds is preferred. A preferred silyloxy group is a silyloxy group substituted with three linear or branched alkyl groups having 1 to 6 carbon atoms, more preferably three linear or branched alkyl groups having 1 to 4 carbon atoms. It is a substituted silyloxy group. The three alkyl groups or aryl groups substituted on the silyloxy group may be the same or different.
The linear or branched alkyl group having 1 to 13 carbon atoms is preferably branched, and more preferably has a quaternary carbon atom.
 pは、1~4の整数を示す。ここで、pは、1~3が好ましく、1~2がより好ましい。  p represents an integer of 1 to 4. Here, p is preferably 1-3, more preferably 1-2.
 環Aは、p個のX112に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。ハロゲン原子で置換されていてもよいC1-6アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ジクロロメチル基、トリクロロメチル基、トリフルオロメチル基などが挙げられる。ハロゲン原子で置換されていてもよいC1-6アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、トリクロロメトキシ基、トリフルオロメトキシ基などが挙げられる。
Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of
Halogen atoms include chlorine, fluorine, bromine and iodine atoms. The C1-6 alkyl group optionally substituted with a halogen atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. , a dichloromethyl group, a trichloromethyl group, a trifluoromethyl group, and the like. The C1-6 alkoxy group optionally substituted with a halogen atom includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group, and a trichloromethoxy group. groups, trifluoromethoxy groups, and the like.
 Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示す。
 ここで、芳香族環としては、C6~18の芳香族炭化水素環、及びC4~10の芳香族複素環が挙げられる。
 具体的なC6~18の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、テトラセン環、インダン環、インデン環、フルオレン環、ビフェニル環などが挙げられる。このうち、ベンゼン環、ナフタレン環、フェナントレン環、フルオレン環がより好ましい。
 C4~10の芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~10員環の複素環が好ましく、具体的には、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環、イミダゾール環、ピリジン環、キノリン環、イソキノリン環などが挙げられる。このうち、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~8員環の複素環が好ましく、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環がより好ましい。
 Raの芳香族環には、1~3個のハロゲン原子が置換していてもよい。
Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom.
Here, the aromatic ring includes a C6-18 aromatic hydrocarbon ring and a C4-10 aromatic heterocyclic ring.
Specific C6-18 aromatic hydrocarbon rings include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, tetracene ring, indane ring, indene ring, fluorene ring and biphenyl ring. Among these, a benzene ring, a naphthalene ring, a phenanthrene ring, and a fluorene ring are more preferable.
The C4-10 aromatic heterocyclic ring is preferably a 5- to 10-membered heterocyclic ring containing 1 to 3 heteroatoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and specifically, pyrrole. ring, furan ring, thiophene ring, indole ring, benzofuran ring, benzothiophene ring, carbazole ring, pyrazole ring, indazole ring, imidazole ring, pyridine ring, quinoline ring, isoquinoline ring and the like. Among these, a 5- to 8-membered heterocyclic ring containing 1 to 3 atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom as a heteroatom is preferable, and a pyrrole ring, a furan ring, a thiophene ring, an indole ring, and a benzofuran ring. , benzothiophene ring, carbazole ring, pyrazole ring and indazole ring are more preferred.
The aromatic ring of Ra may be substituted with 1 to 3 halogen atoms.
 Rbは、水素原子、ハロゲン原子により置換されていてもよい芳香族環、又は前記式(b)で表される基を示す。
 式(b)中のqは、0~4の整数を示す。
 qは、0~3が好ましく、1~3がより好ましく、1~2がさらに好ましい。
Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or a group represented by the above formula (b).
q in the formula (b) represents an integer of 0-4.
q is preferably 0 to 3, more preferably 1 to 3, even more preferably 1 to 2.
 q個のX2は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示す。
 ここで、R18としては、水素原子、C1~10のアルキル基又はC7~20のアラルキル基が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 アラルキル基としては、C7~16アラルキル基、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基などが挙げられる。
q X 2 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 18 — (R 18 represents a hydrogen atom, an alkyl group or an aralkyl group);
Here, R 18 is preferably a hydrogen atom, a C1-10 alkyl group or a C7-20 aralkyl group. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl and hexyl groups.
Aralkyl groups include C7-16 aralkyl groups such as benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl and 1-naphthylethyl groups.
 q個のR14は、それぞれ独立して、脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示す。 q R 14 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicates a group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す。
 R14で表される有機基は、前記のR12と同じものが挙げられ、前記のR12と同じものが好ましい。
However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached.
Examples of the organic group represented by R 14 include the same groups as those for R 12 above, and preferably the same groups as those for R 12 above.
 R13は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよい。 R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B through an oxygen atom. may be formed.
 環Bは、q個のX214に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。ハロゲン原子で置換されていてもよいC1-6アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ジクロロメチル基、トリクロロメチル基、トリフルオロメチル基などが挙げられる。ハロゲン原子で置換されていてもよいC1-6アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、トリクロロメトキシ基、トリフルオロメトキシ基などが挙げられる。
Ring B, in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of
Halogen atoms include chlorine, fluorine, bromine and iodine atoms. The C1-6 alkyl group optionally substituted with a halogen atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. , a dichloromethyl group, a trichloromethyl group, a trifluoromethyl group, and the like. The C1-6 alkoxy group optionally substituted with a halogen atom includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group, and a trichloromethoxy group. groups, trifluoromethoxy groups, and the like.
 Yは、ヒドロキシ基、チオール基、NHR20(R20は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。
 ここで、R20としては、水素原子、C1~10のアルキル基又はC7~20のアラルキル基が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 アラルキル基としては、C7~16アラルキル基、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基などが挙げられる。
Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom.
Here, R 20 is preferably a hydrogen atom, a C1-10 alkyl group or a C7-20 aralkyl group. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl and hexyl groups.
Aralkyl groups include C7-16 aralkyl groups such as benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl and 1-naphthylethyl groups.
 前記の式(I)の化合物のうち、好ましい液相ペプチド合成用担体の具体例としては、下記式(7)、(20)又は(21)で表される化合物が挙げられる。その一つとしては、式(7)で表される化合物を用いることができる(特許文献9、10)。 Among the compounds of formula (I) above, specific examples of preferred carriers for liquid-phase peptide synthesis include compounds represented by the following formulas (7), (20), or (21). As one of them, a compound represented by Formula (7) can be used (Patent Documents 9 and 10).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Ybは-CH2OR34(ここでR34は水素原子、ハロゲノカルボニル基、活性エステル型カルボニル基又は活性エステル型スルホニル基を示す)、-CH2NHR35(ここで、R35は水素原子、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、ハロゲノメチル基、ホルミル基、又はオキシムを示し、R21、R22、R23、R24及びR25のうちの少なくとも1個は式(8)で表される基を示し、 (wherein Yb is --CH 2 OR 34 (wherein R 34 represents a hydrogen atom, a halogenocarbonyl group, an active ester carbonyl group or an active ester sulfonyl group), --CH 2 NHR 35 (wherein R 35 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an aralkyl group), a halogenomethyl group, a formyl group, or an oxime, and R 21 , R 22 , R 23 , R 24 and at least one of R 25 represents a group represented by formula (8);
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
26は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し;
3はO又はCONR36(ここでR36は水素原子又は炭素数1~4のアルキル基を示す)を示し;
Aは式(9)、(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)又は(19)で表される基を示す。
the remainder represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;
R 26 represents a linear or branched alkylene group having 6 to 16 carbon atoms;
X 3 represents O or CONR 36 (wherein R 36 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms);
A is represented by formula (9), (10), (11), (12), (13), (14), (15), (16), (17), (18) or (19) indicates a group.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(ここで、R27、R28、R29は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していても良いアリール基を示し;R30は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R31、R32及びR33はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す。) (Here, R 27 , R 28 and R 29 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group which may have a substituent; 30 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms, and R 31 , R 32 and R 33 each represent a linear or branched alkylene group having 1 to 3 carbon atoms. )
 また、液相ペプチド合成用担体としては、式(20)で表される化合物を用いることができる(特許文献11、12、15)。 In addition, the compound represented by formula (20) can be used as a carrier for liquid-phase peptide synthesis (Patent Documents 11, 12, 15).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、X4は-OR51(ここでR51は水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を示す)、-NHR35、アジド、ハロゲン、イソシアネート、X5と一緒になって=N-OH又は=Oを示し、X4が-OR51、-NHR35、アジド又はハロゲンの場合X5は水素原子又は炭素数1~4の直鎖若しくは分岐鎖のアルキル基若しくはアルケニル基、又はシクロアルキル基を示し、X4がイソシアネートの場合X5は炭素数1~4の直鎖若しくは分岐鎖のアルキル基若しくはアルケニル基、又はシクロアルキル基を示し;
41~R50のうちの少なくとも1個は式(2)で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
4が-OR51、-NHR35、アジド又はハロゲンであり、かつX5が水素原子のとき、若しくはX4とX5が一緒になって=Oのとき、R45とR46は酸素原子を介して結合してキサンテン環を形成していてもよい)
(wherein X 4 is —OR 51 (wherein R 51 represents a hydrogen atom, an active ester carbonyl group or an active ester sulfonyl group), —NHR 35 , azide, halogen, isocyanate, together with X 5 =N-OH or =O, and when X 4 is -OR 51 , -NHR 35 , azide or halogen, X 5 is a hydrogen atom or a linear or branched alkyl or alkenyl group having 1 to 4 carbon atoms , or represents a cycloalkyl group, and when X 4 is isocyanate, X 5 represents a linear or branched alkyl group or alkenyl group having 1 to 4 carbon atoms, or a cycloalkyl group;
At least one of R 41 to R 50 represents a group represented by formula (2), and the remainder represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. indicate;
when X 4 is —OR 51 , —NHR 35 , azide or halogen, and X 5 is a hydrogen atom, or when X 4 and X 5 together are =O, R 45 and R 46 are oxygen atoms to form a xanthene ring)
 また、液相ペプチド合成用担体としては、式(21)で表される化合物を用いることができる(特許文献13、14)。 In addition, the compound represented by formula (21) can be used as a carrier for liquid-phase peptide synthesis (Patent Documents 13 and 14).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、X6はヒドロキシ基又はハロゲン原子を示し、R61~R75のうちの少なくとも1個は式(2)で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、R70とR71は単結合で結合してフルオレン環を形成していてもよく、酸素原子を介して結合してキサンテン環を形成していてもよい) (In the formula, X 6 represents a hydroxy group or a halogen atom, at least one of R 61 to R 75 represents a group represented by formula (2), and the remainder are hydrogen atoms, halogen atoms, and 1 carbon atom. 4 alkyl group or alkoxy group having 1 to 4 carbon atoms; may form)
 なお、液相ペプチド合成用担体は、原料であるアミノ酸、ペプチド、アミノ酸アミド又はぺプチドアミド(アミノ酸等)のカルボキシル基にリンカーを介して結合させることもできる。
 ここでいうリンカーとは、リンカーの一方が、前記アミノ酸等のカルボキシル基と結合し、他方が液相ペプチド合成用担体と結合する2つの反応基をもつ有機基である。好ましいリンカーは、分子量が約2000以下(好ましくは約1500以下、より好ましくは約1000以下)の有機基であって、反応基として、同じでも異なってもよく、アミノ基、カルボキシル基、及びハロメチル基からなる群より選ばれる少なくとも2つの基を分子内にもつ化合物である。例えば、以下の化合物を挙げることができる。
The carrier for liquid-phase peptide synthesis can also be bound via a linker to the carboxyl groups of amino acids, peptides, amino acid amides or peptide amides (such as amino acids) as raw materials.
The linker as used herein is an organic group having two reactive groups, one of which binds to the carboxyl group of the amino acid or the like, and the other of which binds to the carrier for liquid-phase peptide synthesis. Preferred linkers are organic groups having a molecular weight of about 2000 or less (preferably about 1500 or less, more preferably about 1000 or less) and having reactive groups which may be the same or different, amino, carboxyl, and halomethyl groups. It is a compound having in the molecule at least two groups selected from the group consisting of For example, the following compounds can be mentioned.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、Yは1~6、好ましくは1~4の整数である)。 (wherein Y is an integer of 1 to 6, preferably 1 to 4).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、Xはハロゲン原子、好ましくは塩素又は臭素である)。 (wherein X is a halogen atom, preferably chlorine or bromine).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、Zは2~40、好ましくは2~35、より好ましくは、2~28の整数である)。
(上記リンカーの構造式は、側鎖官能基等に結合する前の状態かつ液相ペプチド合成用担体と結合する前の状態を示す)。
(Wherein, Z is an integer of 2 to 40, preferably 2 to 35, more preferably 2 to 28).
(The structural formula of the above linker shows the state before binding to the side chain functional group or the like and the state before binding to the carrier for liquid-phase peptide synthesis).
 次に、ペプチド伸長反応について説明する。ぺプチド伸長反応は、次の工程a、工程b及び工程cを有するのが好ましい。なお、工程b、cの順序は不問であり、工程b次いで工程cの順、すなわちアミノ基の保護基を除去した後に縮合体を含有する有機溶媒層を得てもよいし、工程c次いで工程bの順、すなわち縮合体を含有する有機溶媒層を得た後にアミノ基の保護基を除去してもよい。
a.有機溶媒を含む溶媒中で、液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、アミノ基が保護されたアミノ酸又はペプチドとを縮合させる工程、
b.反応液中の前記アミノ基が保護された化合物のアミノ保護基を除去する工程、
c.反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程。
 なお、工程aに引き続き、縮合反応後の反応液に、アミノ酸活性エステルのクエンチ剤を添加する工程を実施してもよい。また、アミノ保護基がFmoc基である場合、工程bに引き続き、ジベンゾフルベンのトラッピング剤を添加する工程を実施してもよい。
Next, the peptide elongation reaction will be explained. The peptide extension reaction preferably has the following steps a, b and c. The order of steps b and c is not critical, and the order of step b and then step c, that is, the organic solvent layer containing the condensate may be obtained after removing the protective group for the amino group, or step c and then step In the order of b, that is, after obtaining the organic solvent layer containing the condensate, the protective group for the amino group may be removed.
a. a step of condensing an amino acid, peptide, amino acid amide or peptide amide bound to a carrier for liquid phase peptide synthesis with an amino acid or peptide having a protected amino group in a solvent containing an organic solvent;
b. removing the amino-protecting group of the compound in which the amino group is protected in the reaction solution;
c. After an aqueous solution is added to the reaction solution, the liquids are separated to obtain a condensate of the amino acid, peptide, amino acid amide or peptide amide bound to the carrier for liquid phase peptide synthesis and the amino acid or peptide from which the amino protecting group has been removed. a step of obtaining an organic solvent layer containing;
In addition, following the step a, a step of adding a quenching agent for the amino acid active ester to the reaction solution after the condensation reaction may be carried out. Also, when the amino-protecting group is an Fmoc group, step b may be followed by a step of adding a dibenzofulvene trapping agent.
 工程a記載の液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド、又はペプチドアミド(以下、液相ペプチド合成用担体結合ペプチドと略する)は、以下のように製造できる。まず、液相ペプチド合成用担体をTHF等の有機溶媒に溶解し、例えばFmocで保護されたアミノ酸又はペプチド及び縮合剤、例えば、N,N’-ジイソプロピルカルボジイミド(DIPCI)、塩基、例えばDMAPを添加して縮合を行う。すると、アミノ酸又はペプチドのカルボキシ基に液相ペプチド合成用担体が結合した中間体であるN-Fmoc-液相合成用担体結合ペプチドを製造できる。もしくは、液相ペプチド合成用担体をトルエン等の有機溶媒に溶解し、例えばFmocで保護されたアミノ酸アミド又はペプチドアミド及び酸触媒、例えば、メシル酸を添加して縮合を行う。すると、アミノ酸アミドまたはペプチドアミドのアミド基に液相ペプチド合成用担体が結合した中間体であるN-Fmoc-液相合成用担体結合ペプチドを製造できる。 The amino acid, peptide, amino acid amide, or peptide amide bound to the carrier for liquid-phase peptide synthesis described in step a (hereinafter abbreviated as carrier-bound peptide for liquid-phase peptide synthesis) can be produced as follows. First, a carrier for liquid phase peptide synthesis is dissolved in an organic solvent such as THF, for example, an Fmoc-protected amino acid or peptide, a condensing agent such as N,N'-diisopropylcarbodiimide (DIPCI), and a base such as DMAP are added. to condense. Then, a carrier-bound peptide for N-Fmoc-liquid phase synthesis, which is an intermediate in which a carrier for liquid phase peptide synthesis is bound to the carboxyl group of an amino acid or peptide, can be produced. Alternatively, the carrier for liquid-phase peptide synthesis is dissolved in an organic solvent such as toluene, and condensation is performed by adding, for example, an Fmoc-protected amino acid amide or peptide amide and an acid catalyst such as mesylic acid. Then, a N-Fmoc-carrier-bound peptide for liquid phase synthesis, which is an intermediate in which a carrier for liquid phase peptide synthesis is bound to the amide group of amino acid amide or peptide amide, can be produced.
 もう一方の原料である、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチド(以下、アミノ基保護アミノ酸と略する)とは、アミノ酸又はペプチドのアミノ基がアミノ保護基で保護されており、一方、カルボキシル基は保護されておらず反応性であるアミノ酸又はペプチドを意味する。アミノ酸又はペプチドが1以上のアミノ基を有する場合は、少なくとも一つのアミノ基がアミノ保護基で保護されていれば良い。
 アミノ保護基としては、Fmoc基、Boc基、Cbz基などが挙げられ、このうち塩基性条件で脱保護できるFmoc基がより好ましい。
 なお、アミノ基保護アミノ酸が、水酸基、アミノ基、グアニジル基、カルボキシル基、チオール基、インドール基、イミダゾール基等の反応性に富む官能基を有する場合、これらの官能基にペプチド合成で用いられる一般的な保護基が導入されていてもよく、反応終了後の任意の時点で、必要に応じて保護基を除去することで目的化合物を得ることができる。
 水酸基の保護基としてはtBu基、Trt基、Bz(ベンゾイル)基、アセチル基、シリル基等が挙げられ、グアニジル基の保護基としては、Pbf基、Boc基、Pmc基、ニトロ基等が挙げられ、カルボキシル基の保護基としてはtBu基、メチル基、エチル基、Bz基等が挙げられ、チオール基の保護基としては、Trt基、Acm(アセトアミドメチル)基、tBu基、S-tBu(ジチオ-tert-ブチル)基、Dpm(ジフェニルメチル)基、MBom(4-メトキシベンジルオキシメチル)基等が挙げられ、インドール基の保護基としては、Boc基等が挙げられ、イミダゾール基の保護基としては、Boc基、Bom(ベンジルオキシメチル)基、Bum(tert-ブトキシメチル)基、Trt基、Ddm(4,4’-ジメトキシジフェニル)基、MBom基等を挙げることができる。
The amino acid or peptide whose amino group is protected with an amino-protecting group (hereinafter abbreviated as amino-protected amino acid), which is the other raw material, is an amino acid or peptide whose amino group is protected with an amino-protecting group, On the other hand, carboxyl groups refer to amino acids or peptides that are unprotected and reactive. When an amino acid or peptide has one or more amino groups, at least one amino group should be protected with an amino-protecting group.
Examples of amino-protecting groups include Fmoc group, Boc group, Cbz group, etc. Among them, Fmoc group, which can be deprotected under basic conditions, is more preferable.
When the amino group-protected amino acid has highly reactive functional groups such as hydroxyl, amino, guanidyl, carboxyl, thiol, indole, and imidazole groups, these functional groups are commonly used in peptide synthesis. A protective group may be introduced, and the target compound can be obtained by removing the protective group as necessary at any point after the completion of the reaction.
Examples of hydroxyl-protecting groups include tBu, Trt, Bz (benzoyl), acetyl, and silyl groups, and examples of guanidyl-protecting groups include Pbf, Boc, Pmc, and nitro groups. Examples of carboxyl-protecting groups include tBu, methyl, ethyl, and Bz groups, and examples of thiol-protecting groups include Trt, Acm (acetamidomethyl), tBu, and S-tBu ( dithio-tert-butyl) group, Dpm (diphenylmethyl) group, MBom (4-methoxybenzyloxymethyl) group and the like, and examples of indole group-protecting groups include Boc group and the like, imidazole group-protecting group Examples include Boc group, Bom (benzyloxymethyl) group, Bum (tert-butoxymethyl) group, Trt group, Ddm (4,4'-dimethoxydiphenyl) group, MBom group and the like.
 アミノ基保護アミノ酸は、例えば、アミノ保護基でアミノ基を保護したいアミノ酸又はペプチドに、例えばTHF/水などの混合溶媒中でFmoc-OSu等を塩基の存在下に反応させることにより、製造することができる。 An amino group-protected amino acid can be produced, for example, by reacting an amino acid or peptide whose amino group is to be protected with an amino-protecting group with Fmoc-OSu or the like in a mixed solvent such as THF/water in the presence of a base. can be done.
 本発明の工程aは前記の原料を縮合させる工程であり、工程aに用いられる反応溶媒は有機溶媒を含む溶媒である。本発明で用いる前記の液相ペプチド合成用担体でアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドを保護すれば、得られた液相ペプチド合成用担体結合ペプチドが、有機溶媒に溶解するようになるため、液相ペプチド合成が可能となる。
 そのような有機溶媒としては、例えば、THF、DMF、シクロヘキサン、CPME、2-メチルTHF、4-メチルテトラヒドロピラン(4-メチルTHP)、酢酸イソプロピル、クロロホルム、ジクロロメタン、N-メチルピロリドン、ジメチルアセトアミド(DMAc)、NFM(N-formylmorpholine)を挙げることができ、好ましくは、THF、DMF、CPME,2-メチルTHF、4-メチルTHP、N-メチルピロリドンである。さらに、上記溶媒の2種以上の混合溶媒でもよい。
The step a of the present invention is a step of condensing the raw materials, and the reaction solvent used in the step a is a solvent containing an organic solvent. If amino acids, peptides, amino acid amides or peptide amides are protected with the carrier for liquid-phase peptide synthesis used in the present invention, the obtained carrier-bound peptide for liquid-phase peptide synthesis becomes soluble in an organic solvent. Liquid phase peptide synthesis becomes possible.
Examples of such organic solvents include THF, DMF, cyclohexane, CPME, 2-methylTHF, 4-methyltetrahydropyran (4-methylTHP), isopropyl acetate, chloroform, dichloromethane, N-methylpyrrolidone, dimethylacetamide ( DMAc) and NFM (N-formylmorpholine), preferably THF, DMF, CPME, 2-methylTHF, 4-methylTHP and N-methylpyrrolidone. Furthermore, a mixed solvent of two or more of the above solvents may be used.
 縮合反応は、前記有機溶媒を含む溶媒中で、前記液相ペプチド合成用担体、又は液相ペプチド合成用担体結合ペプチドと、前記アミノ基保護アミノ酸と、縮合剤と塩基を混合することにより行うことができる。 The condensation reaction is carried out by mixing the carrier for liquid phase peptide synthesis or the carrier-bound peptide for liquid phase peptide synthesis, the amino group-protected amino acid, the condensing agent and the base in a solvent containing the organic solvent. can be done.
 液相ペプチド合成用担体結合ペプチドに対する、アミノ基保護アミノ酸の使用量は、液相ペプチド合成用担体結合ペプチドに対して、通常1.01~4当量、好ましくは1.03~3当量、より好ましくは1.05~2当量、さらに好ましくは1.1~1.5当量である。本発明のペプチド製造法では、工程aに引き続き、未反応のアミノ酸の活性エステルをその後に添加するクエンチ剤で捕獲して不活性化することができる。そのため、過剰のアミノ基保護アミノ酸を用いても、残存の問題が生じない。 The amount of the amino group-protected amino acid used relative to the carrier-bound peptide for liquid-phase peptide synthesis is generally 1.01-4 equivalents, preferably 1.03-3 equivalents, more preferably 1.03-3 equivalents, relative to the carrier-bound peptide for liquid-phase peptide synthesis. is 1.05 to 2 equivalents, more preferably 1.1 to 1.5 equivalents. In the peptide production method of the present invention, subsequent to step a, the unreacted amino acid active ester can be captured and inactivated by a quenching agent added thereafter. Therefore, even if an excess amino group-protected amino acid is used, the problem of residue does not occur.
 縮合剤としては、ペプチド合成において一般的に用いられる縮合剤を、本発明においても用いることができる、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホニウムクロリド(DMT-MM)、O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HATU)、O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU(6-Cl))、O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TBTU)、O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TCTU)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩(COMU)、ジイソプロピルカルボジイミド(DIPCI)、ジシクロヘキシルカルボジイミド(DCC)、及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDCI・HCl)を挙げることができる。好ましくは、DMT-MM、HBTU、HATU、又はCOMUである。縮合剤の使用量は、液相ペプチド合成用担体結合ペプチドに対して、好ましくは1~4当量、より好ましくは1~2当量、さらに好ましくは1.05~1.45当量である。
 塩基としては、ペプチド合成において一般的に用いられる塩基を、本発明においても用いることができる。例えば、DIPEA(N,N-ジイソプロピルエチルアミン)、DMAP、NMM(N-メチルモルホリン)、TMP(2,4,6-トリメチルピリジン)を挙げることができる。好ましくはDIPEAである。
Condensing agents commonly used in peptide synthesis can also be used in the present invention, such as 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)- 4-methylmorphonium chloride (DMT-MM), O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), O-(7-azabenzo triazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), O-(6-chlorobenzotriazol-1-yl)-1,1,3,3-tetramethyl Uronium hexafluorophosphate (HBTU(6-Cl)), O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), O-(6-chloro Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TCTU), (1-cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylamino-morpholino-carbenium Hexafluorophosphate (COMU), diisopropylcarbodiimide (DIPCI), dicyclohexylcarbodiimide (DCC), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI.HCl) can be mentioned. DMT-MM, HBTU, HATU or COMU is preferred. The amount of the condensing agent used is preferably 1 to 4 equivalents, more preferably 1 to 2 equivalents, still more preferably 1.05 to 1.45 equivalents, relative to the carrier-bound peptide for liquid-phase peptide synthesis.
Bases commonly used in peptide synthesis can also be used in the present invention. Examples include DIPEA (N,N-diisopropylethylamine), DMAP, NMM (N-methylmorpholine), TMP (2,4,6-trimethylpyridine). DIPEA is preferred.
 縮合工程において、反応を促進し、ラセミ化などの副反応を抑制するために、好ましくは、活性化剤が添加される。ここで活性化剤とは、縮合剤との共存化で、アミノ酸を、対応する活性エステル、対称酸無水物などに導いて、ペプチド結合(アミド結合)を形成させやすくする試薬である。活性化剤としては、ペプチド合成において一般的に用いられる活性化剤を用いることができる。例えば、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-1H-1,2,3-トリアゾールカルボン酸エチル(HOCt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、3-ヒドロキシ-4-ケトベンゾトリアジン(HOOBt)、N-ヒドロキシコハク酸イミド(HOSu)、N-ヒドロキシフタルイミド(HOPht)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド(HONb)、ペンタフルオロフェノール、シアノ(ヒドロキシイミノ)酢酸エチル(Oxyma)等を挙げることができる。好ましくは、HOBt、HOOBt、HOCt、HOAt、Oxymaである。活性化剤の使用量は、液相ペプチド合成用担体結合ペプチドに対して、好ましくは1~4当量、より好ましくは1~2当量、さらに好ましくは1.05~1.45当量である。 In the condensation step, an activator is preferably added in order to promote the reaction and suppress side reactions such as racemization. Here, the activating agent is a reagent that facilitates the formation of a peptide bond (amide bond) by leading an amino acid to a corresponding active ester, symmetrical acid anhydride, or the like in coexistence with a condensing agent. As the activator, an activator commonly used in peptide synthesis can be used. For example, 1-hydroxybenzotriazole (HOBt), 1-hydroxy-1H-1,2,3-triazole ethyl carboxylate (HOCt), 1-hydroxy-7-azabenzotriazole (HOAt), 3-hydroxy-4- Ketobenzotriazine (HOOBt), N-hydroxysuccinimide (HOSu), N-hydroxyphthalimide (HOPht), N-hydroxy-5-norbornene-2,3-dicarboximide (HONb), pentafluorophenol, cyano ( hydroxyimino)ethyl acetate (Oxyma) and the like. Preferred are HOBt, HOOBt, HOCt, HOAt and Oxyma. The amount of the activator used is preferably 1 to 4 equivalents, more preferably 1 to 2 equivalents, still more preferably 1.05 to 1.45 equivalents, relative to the carrier-bound peptide for liquid-phase peptide synthesis.
 前記溶媒の使用量は、液相ペプチド合成用担体結合ペプチド等を溶解した濃度が、好ましくは0.1mM~1Mとなる量であり、より好ましくは1mM~0.5Mとなる量である。
 反応温度は、ペプチド合成において一般的に用いられる温度が、例えば、-20~40℃が好ましく、より好ましくは0~30℃である。縮合反応時間は、通常1分~30時間である。
The amount of the solvent used is such that the concentration of the dissolved carrier-bound peptide for liquid-phase peptide synthesis is preferably 0.1 mM to 1M, more preferably 1 mM to 0.5M.
The reaction temperature is a temperature commonly used in peptide synthesis, for example, preferably -20 to 40°C, more preferably 0 to 30°C. The condensation reaction time is usually 1 minute to 30 hours.
 工程aに引き続き、縮合反応後の反応液に、アミノ酸活性エステルクエンチ剤(以下、「クエンチ剤」ということがある)を添加する工程をおこなってもよい。工程aにおいて、原料であるアミノ基保護アミノ酸は、液相ペプチド合成用担体又は液相ペプチド合成用担体結合ペプチドに対して過剰量添加される。このため、アミノ基保護アミノ酸が縮合反応時に活性化されて生じたアミノ酸活性エステルは、縮合反応後に余剰分が残存する。クエンチ剤を添加する工程は、この余剰なアミノ酸活性エステルをクエンチする工程である。
 本工程における前記クエンチ剤の添加量は、理論上残存する活性アミノ酸エステル1当量に対して、好ましくは1~10当量、より好ましくは1~6当量、さらに好ましくは1~3当量である。
Following step a, a step of adding an amino acid active ester quenching agent (hereinafter sometimes referred to as "quenching agent") to the reaction solution after the condensation reaction may be performed. In step a, an amino group-protected amino acid as a raw material is added in an excessive amount to the carrier for liquid phase peptide synthesis or the carrier-bound peptide for liquid phase peptide synthesis. Therefore, the amino acid active ester produced by activating the amino group-protected amino acid during the condensation reaction remains in excess after the condensation reaction. The step of adding a quenching agent is a step of quenching this excess amino acid active ester.
The amount of the quenching agent to be added in this step is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, still more preferably 1 to 3 equivalents, relative to 1 equivalent of the theoretically remaining active amino acid ester.
 前記のアミノ酸活性エステルのクエンチ剤は、分子内にアミノ基を有する化合物であり、特許第6703668号公報、特許第6713983号公報、国際公開第2021/132545号公報、Molecules 2021, 26, 3497-3505.などに記載の化合物を用いることができる。
 当該クエンチ剤としては、ヒドロキシルアミン、アミド硫酸、ヒドロキシルアミン-O-スルホン酸、ヒドロキシルアミン-O-ホスホン酸、1級アミン又は2級アミンを有するアルキルアミン、1級アミン又は2級アミンを有する芳香族アミンを使用することができ、3級アミンを使用することもできる。さらに、余剰のクエンチ剤を液液分離にて水層に除去できることから水溶性であることが好ましく、水酸基、スルホ基、硫酸基、リン酸基といった親水性置換基を有するアミンが好ましい。また、化合物中のアミノ基の数は1つ(1価)でもよく、2価以上でもよい。
 用いることができるアルキルアミンとしては、例えば、炭素数1~14のアルキルアミンを挙げることができ、好ましくは炭素数2~10のアルキルアミン、より好ましくは炭素数2~8のアルキルアミン、さらに好ましくは炭素数3~4のアルキルアミンである。また本発明で用いることができる芳香族アミンとしては、たとえば炭素数1~14の芳香族アミンを挙げることができ、好ましくは炭素数6~10の芳香族アミンである。
 具体的なアミンとしては、これに限定されないが、例えば、プロピルアミン、メチルアミン、ヘキシルアミン、ベンジルアミン、アニリン、トルイジン、2,4,6-トリメチルアニリン、アニシジン、フェネチジン、ヒドロキシルアミン、1-メチルピペラジン、4-アミノピペリジン、ジエチレントリアミン、トリアミノエチルアミン、1-エチルピペラジン、N,N-ジメチルエチレンジアミン、エチレンジアミン、ピペラジン、2-(2-アミノエトキシ)エタノール(AEE)、タウリン、硫酸水素2-アミノエチル(2-アミノエチル硫酸、AEHS)などを挙げることができる。また、NMI(N-メチルイミダゾール)、DMAP、トリメチルアミンを挙げることができる。なかでも、2-(2-アミノエトキシ)エタノール(AEE)、タウリン、硫酸水素2-アミノエチル(2-アミノエチル硫酸、AEHS)が好ましい。
The amino acid active ester quenching agent is a compound having an amino group in the molecule, and is disclosed in Japanese Patent No. 6703668, Japanese Patent No. 6713983, International Publication No. 2021/132545, Molecules 2021, 26, 3497-3505. . and the like can be used.
Such quenching agents include hydroxylamine, amidosulfuric acid, hydroxylamine-O-sulfonic acid, hydroxylamine-O-phosphonic acid, alkylamines having primary or secondary amines, fragrances having primary or secondary amines. Group amines can be used, and tertiary amines can also be used. Furthermore, since excess quenching agent can be removed to the aqueous layer by liquid-liquid separation, it is preferably water-soluble, and amines having hydrophilic substituents such as hydroxyl group, sulfo group, sulfate group and phosphoric acid group are preferred. Further, the number of amino groups in the compound may be one (monovalent), or may be bivalent or more.
Examples of alkylamines that can be used include alkylamines having 1 to 14 carbon atoms, preferably alkylamines having 2 to 10 carbon atoms, more preferably alkylamines having 2 to 8 carbon atoms, and still more preferably alkylamines having 2 to 8 carbon atoms. is an alkylamine having 3 to 4 carbon atoms. Examples of aromatic amines that can be used in the present invention include aromatic amines having 1 to 14 carbon atoms, preferably aromatic amines having 6 to 10 carbon atoms.
Specific amines include, but are not limited to, propylamine, methylamine, hexylamine, benzylamine, aniline, toluidine, 2,4,6-trimethylaniline, anisidine, phenetidine, hydroxylamine, 1-methyl Piperazine, 4-aminopiperidine, diethylenetriamine, triaminoethylamine, 1-ethylpiperazine, N,N-dimethylethylenediamine, ethylenediamine, piperazine, 2-(2-aminoethoxy)ethanol (AEE), taurine, 2-aminoethyl hydrogen sulfate (2-aminoethyl sulfate, AEHS) and the like. Also included are NMI (N-methylimidazole), DMAP and trimethylamine. Among them, 2-(2-aminoethoxy)ethanol (AEE), taurine, and 2-aminoethyl hydrogen sulfate (2-aminoethyl sulfate, AEHS) are preferred.
 工程bは、反応液中の前記アミノ基保護アミノ酸のアミノ保護基を脱離する工程である。
 当該アミノ保護基の脱離工程は、アミノ保護基の種類により相違する。例えば、アミノ保護基がFmoc基の場合は反応液を塩基性条件とすればよい。アミノ保護基がBoc基の場合は反応液を酸性条件とすればよい。アミノ保護基がCbz基の場合は接触還元すればよい。このうち、ワンポット液相合成とするには、アミノ保護基をFmoc基とするのがより好ましい。
Step b is a step of removing the amino-protecting group of the amino-protected amino acid in the reaction solution.
The step of removing the amino-protecting group differs depending on the type of amino-protecting group. For example, when the amino-protecting group is an Fmoc group, the reaction solution should be made basic. When the amino-protecting group is a Boc group, the reaction solution may be subjected to acidic conditions. When the amino-protecting group is a Cbz group, catalytic reduction may be performed. Among these, it is more preferable to use the Fmoc group as the amino-protecting group for the one-pot liquid-phase synthesis.
 アミノ保護基がFmoc基の場合のアミノ保護基の脱離工程について説明する。
 Fmoc脱離工程は、反応液を塩基性にできればよいが、アミン化合物、例えば、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1,4-ジアザビシクロ[2.2.2]-オクタン(DABCO)、トリエチルアミン、トリブチルアミンなどの3級アミン類;1-メチルピペラジン、4-アミノピペリジン、ジエチレントリアミン、トリアミノエチルアミン、1-エチルピペラジン、N,N-ジメチルエチレンジアミン、エチレンジアミン、ピぺリジン、ピペラジンなどの1級又は2級のアミノ基を少なくとも1つ持つ2価以上の水溶性アミン類を用いることができる。好ましくは、DBU、DBN、ピぺリジン、ピペラジン、1-メチルピペラジン、4-アミノピペリジン、ジエチレントリアミンであり、より好ましくは、DBU、ピぺリジン、ピペラジン、1-メチルピペラジンである。
 工程bにおいて添加するアミン化合物の当量は、系に存在するFmoc基の量に対して、1~30当量、好ましくは4~20当量、より好ましくは4~10当量である。
The step of removing the amino-protecting group when the amino-protecting group is an Fmoc group will be described.
In the Fmoc elimination step, it is sufficient if the reaction solution can be made basic. .0]-5-nonene (DBN), 1,4-diazabicyclo[2.2.2]-octane (DABCO), triethylamine, tertiary amines such as tributylamine; 1-methylpiperazine, 4-aminopiperidine, Diethylenetriamine, triaminoethylamine, 1-ethylpiperazine, N,N-dimethylethylenediamine, ethylenediamine, piperidine, piperazine, etc. Divalent or higher water-soluble amines having at least one primary or secondary amino group are used. be able to. DBU, DBN, piperidine, piperazine, 1-methylpiperazine, 4-aminopiperidine and diethylenetriamine are preferred, and DBU, piperidine, piperazine and 1-methylpiperazine are more preferred.
The equivalent of the amine compound added in step b is 1-30 equivalents, preferably 4-20 equivalents, more preferably 4-10 equivalents, relative to the amount of Fmoc groups present in the system.
 また工程bにおいて、前記アミン化合物に加えて、脱Fmoc反応により生じるDBF(ジベンゾフルベン)及びDBFとアミンとの付加体(DBF-アミン付加体)のトラッピング剤(以下、「トラッピング剤」ということがある)を添加する工程をおこなうのが好ましい。ここで用いられるDBF及びDBF-アミン付加体のトラッピング剤としては、メルカプト化合物が挙げられる。用いることができるメルカプト化合物としては、メルカプト基を有し、DBFと反応した化合物が水溶性を示すものであれば特に限定されないが、例えば炭素数1~10のアルキル基を有するメルカプト化合物であって、カルボン酸、カルボン酸のアルカリ金属塩、スルホン酸、またはスルホン酸のアルカリ金属塩から選ばれる1種以上の置換基を有するメルカプト化合物が挙げられ、下記の一般式(4)又は(5)で表される化合物が挙げられる。 In step b, in addition to the amine compound, a trapping agent for DBF (dibenzofulvene) produced by the de-Fmoc reaction and an adduct of DBF and amine (DBF-amine adduct) (hereinafter referred to as "trapping agent") It is preferable to perform the step of adding Trapping agents for DBF and DBF-amine adducts used herein include mercapto compounds. The mercapto compound that can be used is not particularly limited as long as it has a mercapto group and the compound reacted with DBF exhibits water solubility. , carboxylic acids, alkali metal salts of carboxylic acids, sulfonic acids, or mercapto compounds having one or more substituents selected from alkali metal salts of sulfonic acids, and represented by the following general formula (4) or (5) compounds represented.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、L1及びL2は、それぞれ2価の有機基を示し、Mは水素原子又はアルカリ金属を示す) (Wherein, L1 and L2 each represent a divalent organic group, and M represents a hydrogen atom or an alkali metal)
 一般式(4)又は(5)中のL1及びL2は、それぞれ2価の有機基を示す。当該2価の有機基としては、炭素数1~10の2価の有機基が好ましく、より好ましくは、メルカプト基を有していてもよい炭素数1~10の直鎖又は分岐鎖のアルキレン基、メルカプト基を有していてもよい炭素数6~10のアリーレン基、メルカプト基を有していてもよい炭素数4~9のヘテロアリーレン基が挙げられる。具体的には、メチレン基、エチレン基、トリメチレン基、プロピレン基、メルカプトトリメチレン基、メルカプトプロピレン基、テトラメチレン基、ブチレン基、ペンタメチレン基、フェニレン基、ナフチレン基、インドール基、ベンズイミダゾール基、キノリル基、イソキノリン基などが挙げられる。
 Mは水素原子又はアルカリ金属を示す。具体的には、水素原子、ナトリウム、カリウムが挙げられる。
 具体的には、3-メルカプトプロピオン酸、チオリンゴ酸、システイン、メルカプトメタンスルホン酸ナトリウム、2-メルカプトエタンスルホン酸ナトリウム、2-メルカプトエタンスルホン酸、3-メルカプトプロパンスルホン酸、3-メルカプトプロパンスルホン酸ナトリウム、1,3-ジメルカプトプロパンスルホン酸、2-メルカプトベンズイミダゾール-5-スルホン酸ナトリウム、などが挙げられ、3-メルカプトプロパンスルホン酸が好ましい。
L1 and L2 in general formula (4) or (5) each represent a divalent organic group. The divalent organic group is preferably a divalent organic group having 1 to 10 carbon atoms, more preferably a linear or branched alkylene group having 1 to 10 carbon atoms and optionally having a mercapto group. , an arylene group having 6 to 10 carbon atoms which may have a mercapto group, and a heteroarylene group having 4 to 9 carbon atoms which may have a mercapto group. Specifically, methylene group, ethylene group, trimethylene group, propylene group, mercaptotrimethylene group, mercaptopropylene group, tetramethylene group, butylene group, pentamethylene group, phenylene group, naphthylene group, indole group, benzimidazole group, A quinolyl group, an isoquinoline group, and the like can be mentioned.
M represents a hydrogen atom or an alkali metal. Specific examples include a hydrogen atom, sodium, and potassium.
Specifically, 3-mercaptopropionic acid, thiomalic acid, cysteine, sodium mercaptomethanesulfonate, sodium 2-mercaptoethanesulfonate, 2-mercaptoethanesulfonic acid, 3-mercaptopropanesulfonic acid, 3-mercaptopropanesulfonic acid sodium, 1,3-dimercaptopropanesulfonic acid, sodium 2-mercaptobenzimidazole-5-sulfonate, and the like, with 3-mercaptopropanesulfonic acid being preferred.
 メルカプト化合物の添加量は、Fmoc基の量に対して1~30当量が好ましく、1~10当量がより好ましく、1~5当量がさらに好ましい。
 前記アミン化合物とメルカプト化合物は、同時に添加してもよく、メルカプト化合物、次いでアミン化合物の順に添加してもよい。
 Fmoc脱離工程は、-20~40℃の温度で、1分~5時間行えばよい。
The amount of the mercapto compound added is preferably 1 to 30 equivalents, more preferably 1 to 10 equivalents, even more preferably 1 to 5 equivalents, relative to the amount of the Fmoc group.
The amine compound and the mercapto compound may be added simultaneously, or the mercapto compound and then the amine compound may be added in this order.
The Fmoc elimination step may be performed at a temperature of −20 to 40° C. for 1 minute to 5 hours.
 工程cは、反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体に結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程である。
 工程bの反応液に水溶液を添加した後、水層と有機溶媒層を分液する。
 クエンチ剤及びトラッピング剤を添加する工程をおこなった場合には、アミノ保護基が脱離したアミノ酸又はペプチドと活性エステルクエンチ剤との縮合体と、DBF-トラッピング剤付加体が水層に含まれる。すなわち、アミノ保護基が脱離したアミノ酸又はペプチドと活性エステルクエンチ剤との縮合体は、工程cの水溶液の添加をおこなうだけで、容易に水層に抽出される。
 一方、有機溶媒層には、液相ペプチド合成用担体に結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体が含まれる。
 ここで、用いられる水溶液としては、水、又は中性~塩基性付近のpHを有する水溶液が挙げられる。具体的には、水、塩化ナトリウム水溶液、塩化カルシウム水溶液、塩化セシウム水溶液、塩化カリウム水溶液、塩化リチウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸セシウム水溶液、リン酸水素二ナトリウム水溶液、リン酸三ナトリウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液、リン酸水素二カリウム水溶液、リン酸三カリウム水溶液又はこれらの水溶液とDMF、DMSO、NFM、NMPの混合溶媒等が挙げられる。
In step c, an aqueous solution is added to the reaction solution, followed by liquid separation to produce an amino acid, peptide, amino acid amide or peptide amide bound to the carrier for liquid phase peptide synthesis and the amino acid or peptide from which the amino protecting group has been removed. is a step of obtaining an organic solvent layer containing a condensate of
After adding the aqueous solution to the reaction solution in step b, the aqueous layer and the organic solvent layer are separated.
When the step of adding a quenching agent and a trapping agent is performed, the aqueous layer contains a condensate of an amino acid or peptide from which the amino protecting group has been removed and an active ester quenching agent and a DBF-trapping agent adduct. That is, the condensate of the amino acid or peptide from which the amino protecting group has been removed and the active ester quenching agent is easily extracted into the aqueous layer only by adding the aqueous solution in step c.
On the other hand, the organic solvent layer contains a condensate of an amino acid, peptide, amino acid amide or peptide amide bound to a carrier for liquid-phase peptide synthesis and an amino acid or peptide from which the amino protecting group has been removed.
The aqueous solution used here includes water or an aqueous solution having a pH in the vicinity of neutral to basic. Specifically, water, sodium chloride aqueous solution, calcium chloride aqueous solution, cesium chloride aqueous solution, potassium chloride aqueous solution, lithium chloride aqueous solution, sodium carbonate aqueous solution, potassium carbonate aqueous solution, cesium carbonate aqueous solution, disodium hydrogen phosphate aqueous solution, trisodium phosphate Examples include an aqueous solution, an aqueous sodium hydrogencarbonate solution, an aqueous potassium hydrogencarbonate solution, an aqueous dipotassium hydrogenphosphate solution, an aqueous tripotassium phosphate solution, or a mixed solvent of these aqueous solutions and DMF, DMSO, NFM, or NMP.
 得られたガニレリクスは、必要に応じて酢酸塩、ギ酸塩、シュウ酸塩、コハク酸塩、トリフルオロ酢酸塩などの有機酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩などの鉱酸塩に変換することができる。 The resulting Ganirelix is optionally converted into organic acid salts such as acetates, formates, oxalates, succinates and trifluoroacetates, mineral salts such as hydrochlorides, nitrates, sulfates and phosphates. can be converted to
 このように、本発明方法によれば、単に水溶液を添加して分液するだけで、アミノ酸活性エステルと生成物であるペプチドとの分液不良が起こることがない。また、固液分離を必要としないので、煩雑な分離操作を必要としないワンポット合成が可能になる。前記した一連の工程は、マイクロフロー技術を用いて実施しても良い。マイクロフロー技術を用いたペプチド合成技術については、例えばNature Communications 7, Article number:13491(2016)に記載がある。 As described above, according to the method of the present invention, simply adding an aqueous solution and separating liquids does not cause poor liquid separation between the amino acid active ester and the product peptide. Moreover, since solid-liquid separation is not required, one-pot synthesis that does not require complicated separation operations becomes possible. The series of steps described above may be performed using microflow technology. Peptide synthesis technology using microflow technology is described, for example, in Nature Communications 7, Article number: 13491 (2016).
 次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
参考例
Fmoc-NH(D2-STag)の合成
Synthesis of Reference Example Fmoc-NH(D2-STag)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(O=(D2-STag)、OH(D2-STag)、Fmoc-NH(D2-STag)は式中の構造を示す。) (O = (D2-STag), OH (D2-STag), Fmoc-NH (D2-STag) represent the structures in the formula.)
参考例(a)
 O=(D2-STag)(積水メディカル株式会社製)41.4g(47.7mmol)をトルエン 228mL、メタノール 36.0mLの混合溶液に溶解し、水素化ホウ素ナトリウム 2.16g(57.2mmol)を加え、室温で3時間撹拌した。反応溶液を水 83.0mLで3回分液洗浄した。得られた有機層に無水硫酸ナトリウム20.0gを添加し、充分撹拌した後濾過し、OH(D2-STag)を含むトルエン溶液を得た。
Reference example (a)
O = (D2-STag) (manufactured by Sekisui Medical Co., Ltd.) 41.4 g (47.7 mmol) was dissolved in a mixed solution of 228 mL of toluene and 36.0 mL of methanol, and 2.16 g (57.2 mmol) of sodium borohydride was added. and stirred at room temperature for 3 hours. The reaction solution was separated and washed three times with 83.0 mL of water. 20.0 g of anhydrous sodium sulfate was added to the obtained organic layer, and the mixture was sufficiently stirred and then filtered to obtain a toluene solution containing OH (D2-STag).
参考例(b)
 前行程で得られたトルエン溶液に9-フルオレニルメチルカルバメート 13.7g(57.2mmol)、シュウ酸・2水和物 1.80g(14.3mmol)を添加し、80℃で3時間撹拌した。反応溶液を室温まで冷却し、メタノール:水=9:1 414mL、へプタン414mLを添加し、分液した。得られた有機層を5%炭酸水素ナトリウム水溶液(5%Na2CO3aq.) 207mLで1回、メタノール:水=9:1 414mLで3回分液洗浄した。得られた有機層を減圧下で濃縮し、残渣にテトラヒドロフラン83.0mLを加え、減圧下で濃縮した。残渣をテトラヒドロフラン62mLに溶解し、メタノール830mLに滴下した。析出した固体をろ取し、減圧下で乾燥して、Fmoc-NH(D2-STag) 45.5gを得た。
ESIMS (m/z) 1107.9 (M+NH4+
Reference example (b)
13.7 g (57.2 mmol) of 9-fluorenylmethyl carbamate and 1.80 g (14.3 mmol) of oxalic acid dihydrate are added to the toluene solution obtained in the previous step, and stirred at 80° C. for 3 hours. bottom. The reaction solution was cooled to room temperature, 414 mL of methanol:water=9:1, and 414 mL of heptane were added and separated. The resulting organic layer was washed once with 207 mL of a 5% aqueous sodium hydrogencarbonate solution (5% Na 2 CO 3 aq.) and three times with 414 mL of methanol:water=9:1. The obtained organic layer was concentrated under reduced pressure, 83.0 mL of tetrahydrofuran was added to the residue, and the mixture was concentrated under reduced pressure. The residue was dissolved in 62 mL of tetrahydrofuran and added dropwise to 830 mL of methanol. The precipitated solid was collected by filtration and dried under reduced pressure to obtain 45.5 g of Fmoc-NH(D2-STag).
ESIMS (m/z) 1107.9 (M+ NH4 ) +
実施例1
 Fmoc-hArg(Et)2(Boc)2-OHとFmoc-D-hArg(Et)2(Boc)2-OHを用いたガニレリクスの合成(Fmoc-アミノ-活性エステル体のクエンチング剤として、2-(2-Aminoethoxy)ethanol(AEE)を使用した。)
 なお、以降D体であるとの表記のないアミノ酸はL体を示す。
Example 1
Synthesis of Ganirelix using Fmoc-hArg(Et) 2 (Boc) 2 -OH and Fmoc-D-hArg(Et) 2 (Boc) 2 -OH (2 -(2-Aminoethoxy)ethanol (AEE) was used.)
In addition, the amino acid without the notation that it is a D-form shows the L-form hereinafter.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 反応式中、(NH2(D2-STag)、H-D-Ala-NH(D2-STag)、H-Pro-D-Ala-NH(D2-STag)、Fmoc-hArg(Et)2(Boc)2-OH、H-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)、H-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser-Tyr-D-hArg(Et)2-Leu-hArg(Et)2-Pro-D-Ala-NH2・nTFA)は反応式中の構造を示す。なお、Fmoc-hArg(Et)2(Boc)2-OHは反応式中の3種類の異性体の混合物を示す。このため、H-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)も3種類の異性体の混合物と推測される。さらに、H-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)は、hArg(Et)2(Boc)2とD-hArg(Et)2(Boc)2がそれぞれ反応式中の3種の異性体となっていると推測され、合計9種類の異性体の混合物となっている可能性がある。)また、R’の構造中の*は結合点を示す。 In the reaction formula, (NH 2 (D2-STag), HD-Ala-NH (D2-STag), H-Pro-D-Ala-NH (D2-STag), Fmoc-hArg(Et) 2 (Boc ) 2 -OH, H-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag), HD-Nal(2)-D-pClPhe-D-Pal(3)- Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag), Ac-D -Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag), Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser-Tyr-D-hArg(Et) 2 -Leu-hArg( Et) 2 -Pro-D-Ala-NH 2 ·nTFA) represents the structure in the reaction scheme. Fmoc-hArg(Et) 2 (Boc) 2 -OH represents a mixture of three isomers in the reaction formula. Therefore, H-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) is also presumed to be a mixture of three isomers. Furthermore, HD-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag), Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D -hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) is the combination of hArg(Et) 2 (Boc) 2 and D-hArg (Et) 2 (Boc) 2 is presumed to be each of the three isomers in the reaction formula, possibly resulting in a mixture of nine isomers in total. ) In addition, * in the structure of R' indicates a binding point.
実施例(1-a)
 Fmoc-NH(D2-STag) 2.00g(1.83mmol)をシクロペンチルメチルエーテル(CPME)29.3mLに溶解し、DMF 7.33mL、ジメチルスルホキシド(DMSO)2.55mLに溶解した3-メルカプト-1-プロパンスルホン酸ナトリウム(MPS)0.542g(3.04mmol)、さらにMPS 0.111g(0.62mmol)を固体状態で追加し、2,3,4,6,7,8,9,10-Octahydropyrimidol[1,2-a]azepine(DBU) 0.548mL(3.67mmol)を加え、室温で1時間35分撹拌した。8℃まで冷却し、N,N-ジイソプロピルエチルアミン(DIPEA) 0.319mL(1.83mmol)、1N硫酸3.67mL(3.67mmol)、水24.2mL、CPME 1.00mLを添加し、分液した。得られた有機層にDMF 4.55mL、50%リン酸水素二カリウム水溶液(50%K2HPO4aq.) 6.07mLを加え、分液洗浄し、NH2(D2-STag)を含む混合液を得た。
Example (1-a)
2.00 g (1.83 mmol) of Fmoc-NH(D2-STag) was dissolved in 29.3 mL of cyclopentyl methyl ether (CPME), 7.33 mL of DMF, and 3-mercapto- dissolved in 2.55 mL of dimethylsulfoxide (DMSO). 0.542 g (3.04 mmol) of sodium 1-propanesulfonate (MPS) and 0.111 g (0.62 mmol) of MPS were added in the solid state to obtain 2,3,4,6,7,8,9,10 -Octahydropyrimidol[1,2-a]azepine (DBU) 0.548 mL (3.67 mmol) was added and stirred at room temperature for 1 hour and 35 minutes. Cool to 8° C., add 0.319 mL (1.83 mmol) of N,N-diisopropylethylamine (DIPEA), 3.67 mL (3.67 mmol) of 1N sulfuric acid, 24.2 mL of water, and 1.00 mL of CPME, and separate the liquids. bottom. 4.55 mL of DMF and 6.07 mL of 50% aqueous solution of dipotassium hydrogen phosphate (50% K 2 HPO 4 aq.) were added to the obtained organic layer, washed by separation, and mixed with NH 2 (D2-STag). I got the liquid.
実施例(1-b)
 得られた混合液に、CPME 1.00mL、DMF 8.30mL、Fmoc-D-Ala-OH・H2O 0.725g(2.20mmol)、DIPEA 1.28mL(7.33mmol)、COMU 0.942g(2.20mmol)を加え、室温で45分撹拌した。2-(2-Aminoethoxy)ethanol(AEE) 44.0μL(0.444mmol)を加え、室温で15分撹拌した。DMSO 2.35mLに溶解したMPS 0.501g(2.81mmol)、固体のMPS 0.284g(1.59mmol)を加え、10℃に冷却し、DBU 1.43mL(9.54mmol)を加え、1時間20分撹拌した。1N硫酸11.5mL(11.5mmol)、水20.2mL、CPME 0.796mLを添加し、分液した。得られた有機層にDMF 5.10mL、50%K2HPO4aq. 6.80mLを加え、分液洗浄し、H-D-Ala-NH(D2-STag)を含む混合液を得た。
Example (1-b)
To the resulting mixture, 1.00 mL of CPME, 8.30 mL of DMF, 0.725 g (2.20 mmol) of Fmoc-D-Ala-OH.H 2 O, 1.28 mL (7.33 mmol) of DIPEA, and 0.28 mL of COMU were added. 942 g (2.20 mmol) was added and stirred at room temperature for 45 minutes. 44.0 μL (0.444 mmol) of 2-(2-Aminoethoxy)ethanol (AEE) was added and stirred at room temperature for 15 minutes. Add 0.501 g (2.81 mmol) of MPS dissolved in 2.35 mL of DMSO, 0.284 g (1.59 mmol) of solid MPS, cool to 10° C., add 1.43 mL (9.54 mmol) of DBU, add 1 Stirred for 20 minutes. 11.5 mL (11.5 mmol) of 1N sulfuric acid, 20.2 mL of water, and 0.796 mL of CPME were added and separated. DMF 5.10 mL, 50% K 2 HPO 4 aq. 6.80 mL was added, and washing was performed by liquid separation to obtain a mixed solution containing HD-Ala-NH (D2-STag).
実施例(1-c)
 得られた混合液に、CPME 2.20mL、DMF 8.30mL、Fmoc-Pro-OH・H2O 0.782g(2.20mmol)、DIPEA 1.28mL(7.33mmol)、COMU 0.942g(2.20mmol)を加え、室温で50分撹拌した。AEE 44.0μL(0.444mmol)を加え、室温で15分撹拌した。DMSO 2.35mLに溶解したMPS 0.501g(2.81mmol)、固体のMPS 0.284g(1.59mmol)を加え、8℃に冷却し、DBU 1.43mL(9.54mmol)を加え、1時間20分撹拌した。1N硫酸11.5mL(11.5mmol)、水20.2mL、CPME 0.861mLを添加し、分液した。得られた有機層にDMF 5.11mL、50%K2HPO4aq. 6.81mLを加え、分液洗浄し、H-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。
Example (1-c)
To the resulting mixture, CPME 2.20 mL, DMF 8.30 mL, Fmoc-Pro-OH.H 2 O 0.782 g (2.20 mmol), DIPEA 1.28 mL (7.33 mmol), COMU 0.942 g ( 2.20 mmol) was added and stirred at room temperature for 50 minutes. 44.0 μL (0.444 mmol) of AEE was added, and the mixture was stirred at room temperature for 15 minutes. Add 0.501 g (2.81 mmol) of MPS dissolved in 2.35 mL of DMSO, 0.284 g (1.59 mmol) of solid MPS, cool to 8° C., add 1.43 mL (9.54 mmol) of DBU, add 1 Stirred for 20 minutes. 11.5 mL (11.5 mmol) of 1N sulfuric acid, 20.2 mL of water, and 0.861 mL of CPME were added and separated. DMF 5.11 mL, 50% K 2 HPO 4 aq. 6.81 mL was added and washing was carried out to obtain a mixed solution containing H-Pro-D-Ala-NH (D2-STag).
実施例(1-d)
 得られた混合液に、CPME 2.70mL、DMF 8.30mL、Fmoc-hArg(Et)2(Boc)2-OH(反応式中に示した3種のisomerの混合物) 1.47g(2.20mmol)、DIPEA 1.28mL(7.33mmol)、COMU 0.942g(2.20mmol)を加え、室温で50分撹拌した。AEE 44.0μL(0.444mmol)を加え、室温で15分撹拌した。DMSO 2.35mLに溶解したMPS 0.501g(2.81mmol)、固体のMPS 0.284g(1.59mmol)を加え、8℃に冷却し、DBU 1.43mL(9.54mmol)を加え、1時間50分撹拌した。1N硫酸11.5mL(11.5mmol)、水20.3mL、CPME 0.950mLを添加し、分液した※1。得られた有機層にDMF 5.12mL、50%K2HPO4aq. 6.83mLを加え、分液洗浄し、H-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。
ESIMS(m/z) 1463.7 (M+H)+ (3種の異性体の混合物)
※1 有機層中の目的物のHPLC純度:76.2%
HPLC分析条件(1)
カラム:YMC-Pack Pro C18, S-5μm, 12nm, 250mm×4.6mmI.D.
移動相A:500mM過塩素酸ナトリウムaq.
移動相B:THF
流速: 1.0mL/min
カラム温度:45℃
検出波長:280nm
グラジエント条件:75%B(0min)→90%B(10min)→90%B(20min)→75%B(21min)→75%B(33min)
Example (1-d)
To the resulting mixture were added 2.70 mL of CPME, 8.30 mL of DMF, and 1.47 g of Fmoc-hArg(Et) 2 (Boc) 2 -OH (a mixture of three isomers shown in the reaction formula) (2. 20 mmol), 1.28 mL (7.33 mmol) of DIPEA, and 0.942 g (2.20 mmol) of COMU were added and stirred at room temperature for 50 minutes. 44.0 μL (0.444 mmol) of AEE was added, and the mixture was stirred at room temperature for 15 minutes. Add 0.501 g (2.81 mmol) of MPS dissolved in 2.35 mL of DMSO, 0.284 g (1.59 mmol) of solid MPS, cool to 8° C., add 1.43 mL (9.54 mmol) of DBU, add 1 Stirred for 50 minutes. 11.5 mL (11.5 mmol) of 1N sulfuric acid, 20.3 mL of water, and 0.950 mL of CPME were added and separated *1. DMF 5.12 mL, 50% K 2 HPO 4 aq. 6.83 mL was added, and washing was performed by separation to obtain a mixed solution containing H-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag).
ESIMS (m/z) 1463.7 (M+H) + (mixture of 3 isomers)
* 1 HPLC purity of target in organic layer: 76.2%
HPLC analysis conditions (1)
Column: YMC-Pack Pro C18, S-5 μm, 12 nm, 250 mm×4.6 mm I.D. D.
Mobile phase A: 500 mM sodium perchlorate aq.
Mobile phase B: THF
Flow rate: 1.0 mL/min
Column temperature: 45°C
Detection wavelength: 280 nm
Gradient conditions: 75% B (0 min) → 90% B (10 min) → 90% B (20 min) → 75% B (21 min) → 75% B (33 min)
実施例(1-e)
 実施例(1-d)と同様に、Fmoc-Leu-OH、Fmoc-D-hArg(Et)2(Boc)2-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-D-Pal(3)-OH、Fmoc-D-pClPhe-OH、Fmoc-D-Nal(2)-OHを用いてペプチドを伸長し、H-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。なお、Fmoc-D-hArg(Et)2(Boc)2-OH(3種の異性体の混合物)は下記の構造を示し、*は結合点を示す。
Example (1-e)
As in Example (1-d), Fmoc-Leu-OH, Fmoc-D-hArg(Et) 2 (Boc) 2 -OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH , Fmoc-D-Pal(3)-OH, Fmoc-D-pClPhe-OH, Fmoc-D-Nal(2)-OH and HD-Nal(2)-D-pClPhe -D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2- Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH( A mixed solution containing D2-STag) was obtained. Fmoc-D-hArg(Et) 2 (Boc) 2 -OH (a mixture of 3 isomers) has the following structure, and * indicates a binding point.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
実施例(1-f)
 得られた混合液に、CPME 0.800mL、DMF 8.95mL、DIPEA 1.28mL(7.33mmol)、酢酸0.126mL(2.20mmol)、COMU 0.942g(2.20mmol)を加え、室温で50分撹拌した。反応液を減圧下で濃縮し、得られた残渣をアセトニトリル(MeCN) 106mLに滴下した。固体を濾取し、濾物をMeCN 50.0mLで洗浄した。濾物にMeCN 106mLを加え、撹拌した後、固体を濾取し、濾物をMeCN 50.0mLで洗浄した。得られた固体を減圧下で乾燥し、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag) 3.98gを得た。
ESIMS (m/z)  1467.3(M+2H)2+
Example (1-f)
0.800 mL of CPME, 8.95 mL of DMF, 1.28 mL (7.33 mmol) of DIPEA, 0.126 mL (2.20 mmol) of acetic acid, and 0.942 g (2.20 mmol) of COMU were added to the resulting mixture, and the mixture was cooled to room temperature. and stirred for 50 minutes. The reaction solution was concentrated under reduced pressure, and the resulting residue was added dropwise to 106 mL of acetonitrile (MeCN). Collect the solids by filtration and wash the filter cake with 50.0 mL of MeCN. 106 mL of MeCN was added to the filtrate, and after stirring, the solid was collected by filtration, and the filtrate was washed with 50.0 mL of MeCN. The resulting solid was dried under reduced pressure to give Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc ) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) 3.98 g.
ESIMS (m/z) 1467.3 (M+2H) <2+>
実施例(1-g)
 トリフルオロ酢酸13.9mL(181mmol)、Triisopropylsilane 0.365mL(1.78mmol)、水0.365mL(20.3mmol)の混合溶液を5℃に冷却し、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag) 1.50gを添加した。5分後、室温に昇温し、6時間55分撹拌した。反応液を10℃に冷却したmethyl tert-butyl ether(MTBE)に滴下し、5℃、4400rpmで1分間遠心分離し、デカンテーションにより上清を除去し、沈殿物を得た。このMTBEによる洗浄、遠心分離、デカンテーションをさらに3回行い、沈殿物を得た。沈殿物を減圧下で乾燥し、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser-Tyr-D-hArg(Et)2-Leu-hArg(Et)2-Pro-D-Ala-NH2・nTFA 0.929gを得た。
ESIMS (m/z) 785.5(M+2H)2+
HPLC純度:94.3%
HPLC分析条件(2)
カラム:Inertsustain, S-3μm, 250mm×2.1mmI.D.
移動相A:0.1%TFA aq.
移動相B:0.1%TFA含有MeCN
流速: 0.22mL/min
カラム温度:33℃
検出波長:225nm
グラジエント条件:33%B(0min)→47%B(40min)→95%B(60min)→95%B(65min)→33%B(68min)→33%B(85min)
Example (1-g)
A mixed solution of 13.9 mL (181 mmol) of trifluoroacetic acid, 0.365 mL (1.78 mmol) of Triisopropylsilane, and 0.365 mL (20.3 mmol) of water was cooled to 5° C., and Ac-D-Nal(2)-D- pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH (D2-STag) 1.50 g was added. After 5 minutes, the temperature was raised to room temperature, and the mixture was stirred for 6 hours and 55 minutes. The reaction solution was added dropwise to methyl tert-butyl ether (MTBE) cooled to 10°C, centrifuged at 5°C and 4400 rpm for 1 minute, and the supernatant was removed by decantation to obtain a precipitate. This washing with MTBE, centrifugation and decantation were further performed three times to obtain a precipitate. The precipitate is dried under reduced pressure, Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser-Tyr-D-hArg(Et) 2 -Leu-hArg(Et) 2 -Pro 0.929 g of -D-Ala-NH 2 ·nTFA was obtained.
ESIMS (m/z) 785.5 (M+2H) <2+>
HPLC Purity: 94.3%
HPLC analysis conditions (2)
Column: Inertsustain, S-3 μm, 250 mm×2.1 mm I.D. D.
Mobile phase A: 0.1% TFA aq.
Mobile phase B: MeCN with 0.1% TFA
Flow rate: 0.22 mL/min
Column temperature: 33°C
Detection wavelength: 225 nm
Gradient conditions: 33% B (0 min) → 47% B (40 min) → 95% B (60 min) → 95% B (65 min) → 33% B (68 min) → 33% B (85 min)
比較例
Fmoc-hArg(Et)2-OH・HClを用いたH-hArg(Et)2-Pro-D-Ala-NH(D2-STag)の合成(Fmoc-アミノ-活性エステル体のクエンチング剤:AEE)
Comparative Example Synthesis of H-hArg(Et) 2 -Pro-D-Ala-NH(D2-STag) Using Fmoc-hArg(Et) 2 -OH.HCl (Quenching Agent for Fmoc-Amino-Active Ester : AEE)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(Fmoc-hArg(Et)2-OH・HCl、H-hArg(Et)2-Pro-D-Ala-NH(D2-STag)は反応式中の構造を示す。) (Fmoc-hArg(Et) 2 -OH.HCl and H-hArg(Et) 2 -Pro-D-Ala-NH(D2-STag) represent structures in the reaction formula.)
比較例(a)、(b)、(c)
 実施例1-a、1-b、1-cと同様にして、Fmoc-NH(D2-STag) 2.00g(1.83mmol)からH-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。
Comparative examples (a), (b), (c)
H-Pro-D-Ala-NH(D2-STag) was prepared from 2.00 g (1.83 mmol) of Fmoc-NH(D2-STag) in the same manner as in Examples 1-a, 1-b, and 1-c. A mixture containing
比較例(d)
 得られた混合液に、CPME 2.60mL、DMF 8.30mL、Fmoc-hArg(Et)2-OH・HCl 1.11g(2.20mmol)、DIPEA 1.28mL(7.33mmol)、COMU 0.942g(2.20mmol)を加え、室温で50分撹拌した。AEE 44.0μL(0.444mmol)を加え、室温で15分撹拌した。DMSO 2.35mLに溶解したMPS 0.501g(2.81mmol)、固体のMPS 0.284g(1.59mmol)を加え、8℃に冷却し、DBU 1.43mL(9.54mmol)を加え、1時間50分撹拌した。1N硫酸11.5mL(11.5mmol)、水20.3mL、CPME 0.950mLを添加し、分液を試みたが、エマルジョン※2となり、分液操作を行うことができなかった。
ESIMS (m/z) 1263.5(M+H)+
※2 エマルジョン中の目的物のHPLC純度:10.4%
HPLC分析条件:実施例(1-d)の(1)と同一。
Comparative example (d)
To the resulting mixture, 2.60 mL of CPME, 8.30 mL of DMF, 1.11 g (2.20 mmol) of Fmoc-hArg(Et) 2 -OH.HCl, 1.28 mL (7.33 mmol) of DIPEA, and 0.28 mL of COMU were added. 942 g (2.20 mmol) was added and stirred at room temperature for 50 minutes. 44.0 μL (0.444 mmol) of AEE was added, and the mixture was stirred at room temperature for 15 minutes. Add 0.501 g (2.81 mmol) of MPS dissolved in 2.35 mL of DMSO, 0.284 g (1.59 mmol) of solid MPS, cool to 8° C., add 1.43 mL (9.54 mmol) of DBU, add 1 Stirred for 50 minutes. 11.5 mL (11.5 mmol) of 1N sulfuric acid, 20.3 mL of water, and 0.950 mL of CPME were added to attempt to separate the liquids.
ESIMS (m/z) 1263.5 (M+H) +
*2 HPLC purity of target in emulsion: 10.4%
HPLC analysis conditions: same as (1) in Example (1-d).
実施例2
 Fmoc-hArg(Et)2(Boc)2-OHとFmoc-D-hArg(Et)2(Boc)2-OHを用いたGanirelixの合成(Fmoc-アミノ-活性エステル体のクエンチング剤:硫酸水素2-アミノエチル(AEHS))
Example 2
Synthesis of Ganirelix using Fmoc-hArg(Et) 2 (Boc) 2 -OH and Fmoc-D-hArg(Et) 2 (Boc) 2 -OH (quenching agent for Fmoc-amino-active ester: hydrogen sulfate 2-aminoethyl (AEHS))
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
実施例(2-a)
 実施例(1-a)と同様の方法で、Fmoc-NH(D2-STag) 0.800g(0.733mmol)からNH2(D2-STag)を含む混合液を得た。
Example (2-a)
A mixed solution containing NH 2 (D2-STag) was obtained from 0.800 g (0.733 mmol) of Fmoc-NH(D2-STag) in the same manner as in Example (1-a).
実施例(2-b)
 得られた混合液に、CPME 0.600mL、DMF 3.30mL、Fmoc-D-Ala-OH・H2O 0.290g(0.880mmol)、DIPEA 0.511mL(2.93mmol)、COMU 0.377g(0.880mmol)を加え、室温で50分撹拌した。DMSO 0.704mLに溶解した2-AEHS 24.8mg(0.176mmol)を加え、室温で15分撹拌した。DMSO 0.237mLに溶解したMPS 50.4mg(0.283mmol)、固体のMPS 0.263g(1.48mmol)を加え、8℃に冷却し、DBU 0.597mL(3.99mmol)を加え、1時間50分撹拌した。1N硫酸4.60mL(4.60mmol)、10%炭酸ナトリウム水溶液(10%Na2CO3aq.)8.30mL、CPME 0.319mLを添加し、分液した。得られた有機層にDMF 2.04mL、50%K2HPO4aq. 2.72mLを加え、分液洗浄し、H-D-Ala-NH(D2-STag)を含む混合液を得た。
Example (2-b)
0.600 mL of CPME, 3.30 mL of DMF, 0.290 g (0.880 mmol) of Fmoc-D-Ala-OH.H 2 O, 0.511 mL (2.93 mmol) of DIPEA, and 0.511 mL of DIPEA were added to the resulting mixture. 377 g (0.880 mmol) was added and stirred at room temperature for 50 minutes. 24.8 mg (0.176 mmol) of 2-AEHS dissolved in 0.704 mL of DMSO was added and stirred at room temperature for 15 minutes. 50.4 mg (0.283 mmol) of MPS dissolved in 0.237 mL of DMSO, 0.263 g (1.48 mmol) of solid MPS were added, cooled to 8° C., 0.597 mL (3.99 mmol) of DBU was added, and 1 Stirred for 50 minutes. 4.60 mL (4.60 mmol) of 1N sulfuric acid, 8.30 mL of 10% aqueous sodium carbonate solution (10% Na 2 CO 3 aq.), and 0.319 mL of CPME were added and separated. 2.04 mL of DMF, 50% K 2 HPO 4 aq. 2.72 mL was added, and washing was performed by liquid separation to obtain a mixed solution containing HD-Ala-NH (D2-STag).
実施例(2-c)
 得られた混合液に、CPME 0.800mL、DMF 3.30mL、Fmoc-Pro-OH・H2O 0.313g(0.880mmol)、DIPEA 0.511mL(2.93mmol)、COMU 0.377g(0.880mmol)を加え、室温で50分撹拌した。DMSO 0.704mLに溶解した2-AEHS 24.8mg(0.176mmol)を加え、室温で15分撹拌した。DMSO 0.237mLに溶解したMPS 50.4mg(0.283mmol)、固体のMPS 0.263g(1.48mmol)を加え、6℃に冷却し、DBU 0.597mL(3.99mmol)を加え、1時間20分撹拌した。1N硫酸4.60mL(4.60mmol)、10%Na2CO3aq. 8.30mL、CPME 0.345mLを添加し、分液した。得られた有機層にDMF 2.04mL、50%K2HPO4aq. 2.72mLを加え、分液洗浄し、H-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。
Example (2-c)
To the resulting mixture, CPME 0.800 mL, DMF 3.30 mL, Fmoc-Pro-OH.H 2 O 0.313 g (0.880 mmol), DIPEA 0.511 mL (2.93 mmol), COMU 0.377 g ( 0.880 mmol) was added and stirred at room temperature for 50 minutes. 24.8 mg (0.176 mmol) of 2-AEHS dissolved in 0.704 mL of DMSO was added and stirred at room temperature for 15 minutes. 50.4 mg (0.283 mmol) of MPS dissolved in 0.237 mL of DMSO, 0.263 g (1.48 mmol) of solid MPS were added, cooled to 6° C., 0.597 mL (3.99 mmol) of DBU was added, and 1 Stirred for 20 minutes. 4.60 mL (4.60 mmol) of 1N sulfuric acid, 10% Na 2 CO 3 aq. 8.30 mL and 0.345 mL of CPME were added and separated. 2.04 mL of DMF, 50% K 2 HPO 4 aq. 2.72 mL was added and washing was carried out to obtain a mixed solution containing H-Pro-D-Ala-NH (D2-STag).
実施例(2-d)
 得られた混合液に、CPME 0.600mL、DMF 3.30mL、Fmoc-hArg(Et)2(Boc)2-OH(図中に示した3種の異性体の混合物)0.587g(0.880mmol)、DIPEA 0.511mL(2.93mmol)、COMU 0.377g(0.880mmol)を加え、室温で50分撹拌した。DMSO 0.704mLに溶解した2-AEHS 24.8mg(0.176mmol)を加え、室温で15分撹拌した。DMSO 0.237mLに溶解したMPS 50.4mg(0.283mmol)、固体のMPS 0.263g(1.48mmol)を加え、7℃に冷却し、DBU 0.597mL(3.99mmol)を加え、1時間50分撹拌した。1N硫酸4.60mL(4.60mmol)、10%Na2CO3aq. 8.40mL、CPME 0.380mLを添加し、分液した※3。得られた有機層にDMF 2.05mL、50%K2HPO4aq. 2.73mLを加え、分液洗浄し、H-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。
ESIMS (m/z) 1463.6(M+H)+(3種の異性体の混合物)
※3 HPLC純度:78.0%
HPLC分析条件:実施例(1-d)の(1)と同一。
Example (2-d)
0.600 mL of CPME, 3.30 mL of DMF, and 0.587 g of Fmoc-hArg(Et) 2 (Boc) 2 -OH (a mixture of three isomers shown in the figure) (0.587 g) were added to the resulting mixture. 880 mmol), 0.511 mL (2.93 mmol) of DIPEA, and 0.377 g (0.880 mmol) of COMU were added and stirred at room temperature for 50 minutes. 24.8 mg (0.176 mmol) of 2-AEHS dissolved in 0.704 mL of DMSO was added and stirred at room temperature for 15 minutes. 50.4 mg (0.283 mmol) of MPS dissolved in 0.237 mL of DMSO, 0.263 g (1.48 mmol) of solid MPS were added, cooled to 7° C., 0.597 mL (3.99 mmol) of DBU was added, and 1 Stirred for 50 minutes. 4.60 mL (4.60 mmol) of 1N sulfuric acid, 10% Na 2 CO 3 aq. 8.40 mL and 0.380 mL of CPME were added and separated *3. 2.05 mL of DMF, 50% K 2 HPO 4 aq. 2.73 mL was added, and washing was performed by separation to obtain a mixed solution containing H-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag).
ESIMS (m/z) 1463.6 (M+H) + (mixture of 3 isomers)
*3 HPLC purity: 78.0%
HPLC analysis conditions: same as (1) in Example (1-d).
実施例(2-e)
 実施例(2-d)と同様に、Fmoc-Leu-OH、Fmoc-D-hArg(Et)2(Boc)2-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-D-Pal(3)-OH、Fmoc-D-pClPhe-OH、Fmoc-D-Nal(2)-OHを用いてペプチドを伸長し、H-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)を含む混合液を得た。
Example (2-e)
Similar to Example (2-d), Fmoc-Leu-OH, Fmoc-D-hArg(Et) 2 (Boc) 2 -OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH , Fmoc-D-Pal(3)-OH, Fmoc-D-pClPhe-OH, Fmoc-D-Nal(2)-OH and HD-Nal(2)-D-pClPhe -D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 (Boc) 2- Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH( A mixed solution containing D2-STag) was obtained.
実施例(2-f)
 実施例(1-f)と同様の方法で、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag) 1.36gを得た。
ESIMS (m/z)  1467.3(M+2H)2+
Example (2-f)
Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 1.36 g of (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) were obtained.
ESIMS (m/z) 1467.3 (M+2H) <2+>
実施例(2-g)
 実施例(1-g)と同様の方法で、Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et)2(Boc)2-Leu-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag) 0.700gからAc-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser-Tyr-D-hArg(Et)2-Leu-hArg(Et)2-Pro-D-Ala-NH2・nTFA 0.455gを得た。
ESIMS (m/z)  785.5(M+2H)2+
HPLC純度:94.4%
HPLC分析条件:実施例(1-g)の(2)と同一。
Example (2-g)
Ac-D-Nal(2)-D-pClPhe-D-Pal(3)-Ser(tBu)-Tyr(tBu)-D-hArg(Et) 2 in the same manner as in Example (1-g) (Boc) 2 -Leu-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH(D2-STag) from 0.700 g of Ac-D-Nal(2)-D-pClPhe-D-Pal( 3) 0.455 g of -Ser-Tyr-D-hArg(Et) 2 -Leu-hArg(Et) 2 -Pro-D-Ala-NH 2 ·nTFA was obtained.
ESIMS (m/z) 785.5 (M+2H) <2+>
HPLC Purity: 94.4%
HPLC analysis conditions: same as (2) in Example (1-g).
 実施例(1-d)の※1と比較例(d)の※2の分液の様子を図1と図2に示した。図1に示した比較例(d)では、有機層と水層の界面が明瞭であり、液液分離が良好であった。一方図2に示した比較例(d)では、分液漏斗内全体がエマルジョンとなり、室温で25分間静置してもエマルジョンは解消せず、有機層と水層に分離することができなかった。
 次に、実施例1の※1と実施例2の※3と参考例1の※2のHPLC分析結果を表1に示した。本発明のBoc基にて保護したFmoc-hArg(Et)2(Boc)2-OHを使用した実施例1、2では、分液性が良好で、H-hArg(Et)2(Boc)2-Pro-D-Ala-NH(D2-STag)を76.2%、78.0%と高い純度で合成することができた。実施例1、2では、引き続きペプチド伸長反応を実施し、目的物であるガニレリクスの粗体を、94.3%、94.4%と高い純度で得ることができた。一方、Boc基ではなくプロトン保護のみおこなっているFmoc-hArg(Et)2-OH・HClを使用した参考例1では、H-hArg(Et)2-Pro-D-Ala-NH(D2-STag)を合成した際に分液することができなかった。ガニレリクスの合成を継続するには、液液分離ではなく、他の方法でH-hArg(Et)2-Pro-D-Ala-NH(D2-STag)を精製する必要があり、工業的に不利であった。なお、エマルジョン中のH-hArg(Et)2-Pro-D-Ala-NH(D2-STag)の純度は10.4%と著しく低かった。
1 and 2 show the state of liquid separation in *1 of Example (1-d) and *2 in Comparative Example (d). In Comparative Example (d) shown in FIG. 1, the interface between the organic layer and the aqueous layer was clear, and the liquid-liquid separation was good. On the other hand, in Comparative Example (d) shown in FIG. 2, the entire inside of the separatory funnel became an emulsion, and the emulsion did not dissolve even after standing at room temperature for 25 minutes, and the organic layer and the aqueous layer could not be separated. .
Next, Table 1 shows the HPLC analysis results of *1 of Example 1, *3 of Example 2, and *2 of Reference Example 1. In Examples 1 and 2 using Fmoc-hArg(Et) 2 (Boc) 2 -OH protected with a Boc group of the present invention, the liquid separation property was good, and H-hArg(Et) 2 (Boc) 2 -Pro-D-Ala-NH (D2-STag) could be synthesized with high purities of 76.2% and 78.0%. In Examples 1 and 2, the peptide elongation reaction was continued, and crude Ganirelix, which was the target product, was obtained with high purities of 94.3% and 94.4%. On the other hand, in Reference Example 1 using Fmoc-hArg(Et) 2 -OH·HCl which is only proton-protected instead of the Boc group, H-hArg(Et) 2 -Pro-D-Ala-NH(D2-STag ) could not be separated when synthesized. To continue the synthesis of Ganirelix, it is necessary to purify H-hArg(Et) 2 -Pro-D-Ala-NH(D2-STag) by other methods than liquid-liquid separation, which is industrially disadvantageous. Met. The purity of H-hArg(Et) 2 -Pro-D-Ala-NH(D2-STag) in the emulsion was extremely low at 10.4%.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 以上の結果から、従来技術であるプロトン保護をおこなったFmoc-hArg(Et)2-OH・HClの代わりに本発明のBoc保護をおこなったFmoc-hArg(Et)2(Boc)2-OHを用いることで、分液性が改善され、工業的に有利な方法でガニレリクスが得られることがわかった。 Based on the above results, the Boc-protected Fmoc-hArg(Et) 2 ( Boc) 2 -OH of the present invention was used in place of the conventional proton-protected Fmoc-hArg(Et) 2 -OH·HCl. It was found that by using it, the liquid separation property is improved, and ganirelix can be obtained by an industrially advantageous method.

Claims (11)

  1.  液相ペプチド合成法によるガニレリクス又はその塩の製造方法であって、C末端から3番目及び5番目のジエチルホモアルギニン残基の縮合反応原料として、下記式(1)~(3)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はBoc、Cbz、Troc、Alloc、Trt、Mmt、Teoc、Phth、SES、又はivDdeを示し、R3はアミノ保護基を示す)
    で表される群の1つ以上の化合物、および液相ペプチド合成用担体を用いるガニレリクス又はその塩の製造方法。
    In a method for producing Ganirelix or a salt thereof by a liquid-phase peptide synthesis method, the following formulas (1) to (3) are used as starting materials for the condensation reaction of the 3rd and 5th diethylhomoarginine residues from the C-terminus.
    Figure JPOXMLDOC01-appb-C000001
    (wherein R 1 and R 2 represent Boc, Cbz, Troc, Alloc, Trt, Mmt, Teoc, Phth, SES, or ivDde, and R 3 represents an amino protecting group)
    A method for producing ganirelix or a salt thereof using one or more compounds of the group represented by and a carrier for liquid-phase peptide synthesis.
  2.  次の工程a~cを含むことを特徴とする、請求項1に記載の製造方法。
    a.有機溶媒を含む溶媒中で、液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、アミノ基が保護されたアミノ酸又はペプチドとを縮合させる工程、
    b.反応液中の前記アミノ基が保護された化合物のアミノ保護基を除去する工程、
    c.反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体と結合したアミノ酸、ペプチド、アミノ酸アミド又はペプチドアミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程。
    A manufacturing method according to claim 1, characterized in that it comprises the following steps ac.
    a. a step of condensing an amino acid, peptide, amino acid amide or peptide amide bound to a carrier for liquid phase peptide synthesis with an amino acid or peptide having a protected amino group in a solvent containing an organic solvent;
    b. removing the amino-protecting group of the compound in which the amino group is protected in the reaction solution;
    c. After an aqueous solution is added to the reaction solution, the liquids are separated to obtain a condensate of the amino acid, peptide, amino acid amide or peptide amide bound to the carrier for liquid phase peptide synthesis and the amino acid or peptide from which the amino protecting group has been removed. a step of obtaining an organic solvent layer containing;
  3.  前記ガニレリクス又はその塩のアミノ酸配列が、C末端側からD-AlaNH2、Pro、hArg(Et)2、Leu、D-hArg(Et)2、Tyr、Ser、D-3-ピリジルAla、D-p-クロロPhe、D-ナフチルAlaの順である請求項1に記載の製造方法。 The amino acid sequence of the Ganirelix or its salt is, from the C-terminal side, D-AlaNH 2 , Pro, hArg(Et) 2 , Leu, D-hArg(Et) 2 , Tyr, Ser, D-3-pyridyl Ala, D- The production method according to claim 1, wherein the order is p-chloroPhe and D-naphthylAla.
  4.  前記R1及びR2がBocであり、前記R3がFmoc又はCbzである請求項1に記載の製造方法。 2. The production method according to claim 1, wherein said R1 and R2 are Boc and said R3 is Fmoc or Cbz.
  5.  前記R1及びR2がBocであり、前記R3がFmocである請求項1に記載の製造方法。 2. The method according to claim 1, wherein said R1 and R2 are Boc and said R3 is Fmoc.
  6.  工程aに引き続き、縮合反応後の反応液に、アミノ酸活性エステルのクエンチ剤を添加する工程を含む、請求項1記載の製造方法。 The production method according to claim 1, comprising the step of adding a quenching agent for the amino acid active ester to the reaction solution after the condensation reaction following step a.
  7.  前記アミノ酸活性エステルのクエンチ剤が、水溶性アミンである、請求項6に記載の製造方法。 The production method according to claim 6, wherein the quenching agent for the amino acid active ester is a water-soluble amine.
  8.  前記水溶性アミンが、ヒドロキシルアミン、アミド硫酸、ヒドロキシルアミン-O-スルホン酸、ヒドロキシルアミン-O-ホスホン酸、又はアルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基及び複素環式基から選ばれる1種若しくは2種以上を有する1級、2級若しくは3級アミン類であって、ヒドロキシ基、エーテル結合、アルコキシ基、スルホニル基、スルホン酸基、硫酸基、及びリン酸基から選ばれる1種又は2種以上の置換基を有していてもよいアミン類である請求項7記載の製造方法。 The water-soluble amine is hydroxylamine, amidosulfuric acid, hydroxylamine-O-sulfonic acid, hydroxylamine-O-phosphonic acid, or an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, an aralkyl group and a hetero Primary, secondary or tertiary amines having one or more selected from cyclic groups, comprising a hydroxy group, an ether bond, an alkoxy group, a sulfonyl group, a sulfonic acid group, a sulfate group, and a phosphoric acid group 8. The production method according to claim 7, wherein the amines optionally have one or more substituents selected from groups.
  9.  R3がFmocである場合において、工程bに引き続き、ジベンゾフルベンのトラッピング剤を添加する工程を含む、請求項2に記載の製造方法。 3. The production method according to claim 2, comprising the step of adding a dibenzofulvene trapping agent subsequent to step b, when R3 is Fmoc.
  10.  前記ジベンゾフルベンのトラッピング剤が、炭素数1~10のアルキル基を有するメルカプト化合物であって、カルボン酸、カルボン酸のアルカリ金属塩、スルホン酸、又はスルホン酸のアルカリ金属塩から選ばれる1種以上の置換基を有するメルカプト化合物である、請求項9に記載の製造方法。 The dibenzofulvene trapping agent is a mercapto compound having an alkyl group having 1 to 10 carbon atoms, and is at least one selected from carboxylic acid, alkali metal salt of carboxylic acid, sulfonic acid, and alkali metal salt of sulfonic acid. The production method according to claim 9, which is a mercapto compound having a substituent of
  11.  前記液相ペプチド合成用担体が、下記式(I)で表される化合物である請求項1~10のいずれか1項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
    環Aはヘテロ原子を含んでいてもよく、多環性でもよいC4~20の芳香環を示し;
    11は、水素原子であるか、又は環Aがベンゼン環でRbが下記式(b)で表される基である場合には、R13と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
    p個のX1は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR15-(R15は水素原子、アルキル基又はアラルキル基を示す。)を示し;
    p個のR12は、それぞれ独立して、脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し;
    Figure JPOXMLDOC01-appb-C000003
    但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
    pは、1~4の整数を示し;
    環Aは、p個のX112に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
    Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示し;
    Rbは、水素原子、ハロゲン原子により置換されていてもよい芳香環、又は式(b)で表される基を示し;
    Figure JPOXMLDOC01-appb-C000004
    (式中、*は結合位置を示し;
    qは、0~4の整数を示し;
    q個のX2は、それぞれ独立して単結合、-O-、-S-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示し;
    q個のR14は、それぞれ独立して、
    脂肪族炭化水素基、酸素原子を介して脂肪族炭化水素基で置換されている脂肪族炭化水素基、又は式(a)のいずれかである有機基を示し;
    Figure JPOXMLDOC01-appb-C000005
    但しR16は炭素数6~16の直鎖又は分岐鎖のアルキレン基を示し、X3は酸素原子若しくは-C(=O)NR17-(R17は水素原子又は炭素数1~4のアルキル基を示す)を示し、Aはシリル基、又はシリルオキシ基が結合したアルキル基のいずれかを示す;
    13は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
    環Bは、q個のX214に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)
    Yは、ヒドロキシ基、チオール基、NHR20(R20は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。]
    The production method according to any one of claims 1 to 10, wherein the carrier for liquid-phase peptide synthesis is a compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000002
    [In the formula,
    Ring A represents a C4-20 aromatic ring which may contain heteroatoms and may be polycyclic;
    R 11 is a hydrogen atom, or when ring A is a benzene ring and Rb is a group represented by the following formula (b), together with R 13 represents a single bond, and ring A and may form a fluorene ring together with ring B, or may form a xanthene ring together with ring A and ring B via an oxygen atom;
    p X 1 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 15 — (R 15 represents a hydrogen atom, an alkyl group or an aralkyl group);
    p R 12 are each independently an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group via an oxygen atom, or an organic indicating a group;
    Figure JPOXMLDOC01-appb-C000003
    However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
    p represents an integer of 1 to 4;
    Ring A is, in addition to p X 1 R 12 , a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom It may have a substituent selected from the group consisting of;
    Ra represents a hydrogen atom or an aromatic ring optionally substituted with a halogen atom;
    Rb represents a hydrogen atom, an aromatic ring optionally substituted with a halogen atom, or a group represented by formula (b);
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, * indicates the binding position;
    q represents an integer from 0 to 4;
    q X 2 are each independently a single bond, -O-, -S-, -C(=O)O-, -C(=O)NH-, -NHC(=O)-, or - NR 18 — (R 18 represents a hydrogen atom, an alkyl group or an aralkyl group);
    q R 14 are each independently
    an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with an aliphatic hydrocarbon group through an oxygen atom, or an organic group of formula (a);
    Figure JPOXMLDOC01-appb-C000005
    However, R 16 represents a linear or branched alkylene group having 6 to 16 carbon atoms, and X 3 is an oxygen atom or —C(=O)NR 17 — (R 17 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). A represents either a silyl group or an alkyl group to which a silyloxy group is attached;
    R 13 represents a hydrogen atom, represents a single bond together with R 11 to form a fluorene ring together with ring A and ring B, or forms a xanthene ring together with ring A and ring B via an oxygen atom. may form;
    Ring B, in addition to q X 2 R 14 , further comprises a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom may have a substituent selected from the group consisting of )
    Y represents a hydroxy group, a thiol group, NHR 20 (R 20 represents a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
PCT/JP2022/032700 2021-09-01 2022-08-31 Method for producing ganirelix or salt thereof WO2023033017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142162 2021-09-01
JP2021-142162 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023033017A1 true WO2023033017A1 (en) 2023-03-09

Family

ID=85411319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032700 WO2023033017A1 (en) 2021-09-01 2022-08-31 Method for producing ganirelix or salt thereof

Country Status (2)

Country Link
TW (1) TW202328164A (en)
WO (1) WO2023033017A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584945A (en) * 2012-02-09 2012-07-18 深圳翰宇药业股份有限公司 Preparation method for ganirelix acetate
CN104844694A (en) * 2014-02-17 2015-08-19 深圳翰宇药业股份有限公司 Ganirelix acetate preparation method
JP2017521487A (en) * 2013-06-18 2017-08-03 深▲せん▼翰宇薬業股▲ふん▼有限公司Hybio Pharmaceutical Co., Ltd. Ganirelix precursor and method for producing ganirelix acetate using the same
WO2019198833A1 (en) * 2018-04-13 2019-10-17 Jitsubo株式会社 Peptide synthesis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584945A (en) * 2012-02-09 2012-07-18 深圳翰宇药业股份有限公司 Preparation method for ganirelix acetate
JP2017521487A (en) * 2013-06-18 2017-08-03 深▲せん▼翰宇薬業股▲ふん▼有限公司Hybio Pharmaceutical Co., Ltd. Ganirelix precursor and method for producing ganirelix acetate using the same
CN104844694A (en) * 2014-02-17 2015-08-19 深圳翰宇药业股份有限公司 Ganirelix acetate preparation method
WO2019198833A1 (en) * 2018-04-13 2019-10-17 Jitsubo株式会社 Peptide synthesis method

Also Published As

Publication number Publication date
TW202328164A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
JP6703668B2 (en) Peptide synthesis method
JP6703669B2 (en) Method for producing leuprorelin
Monfregola et al. Synthetic strategy for side chain mono-N-alkylation of Fmoc-amino acids promoted by molecular sieves
JP7063408B1 (en) Liquid phase peptide production method
JP7063409B1 (en) How to remove the Fmоc group
US20180282367A1 (en) New methods for making barusiban and its intermediates
KR20170020808A (en) Method for producing synthetic pentapeptide
AU596899B2 (en) Guanidine-related compounds comprising a substituted tetraphenylborate ion, process for obtaining these compounds, and use of the compounds
WO2019101939A1 (en) Method for preparing peptides
JP5985534B2 (en) Indolesulfonyl protecting group for protection of guanidyl and amino groups
JP2017537875A (en) Apparatus for performing peptide synthesis method and peptide solid-phase synthesis method
WO2023033017A1 (en) Method for producing ganirelix or salt thereof
TW202112759A (en) Method for manufacturing peptide compound, reagent for forming protecting group, and condensed polycyclic compound
JP5445456B2 (en) Method for removing dibenzofulvene
CN113614100A (en) Method for preparing degarelix
IE67453B1 (en) Process for the solubilization of peptides and process for peptide synthesis
JP7154513B1 (en) Liquid-phase peptide production method
JP7162853B1 (en) Method for analyzing carrier-bound peptides for liquid-phase peptide synthesis
WO2023033016A1 (en) Arginine derivative
CN116997559A (en) Method for producing amino acid or peptide, reagent for forming protecting group, and compound
JP2023551497A (en) Iodotyrosine derivatives and methods for producing iodotyrosine derivatives
TW202233574A (en) Method for producing peptide, reagent for forming protective group, and fused polycyclic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864599

Country of ref document: EP

Kind code of ref document: A1